1 //===- LoopPeel.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop Peeling Utilities.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/Transforms/Utils/LoopPeel.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Optional.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/LoopIterator.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/LoopSimplify.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/UnrollLoop.h"
42 #include "llvm/Transforms/Utils/ValueMapper.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstdint>
46 #include <limits>
47 
48 using namespace llvm;
49 using namespace llvm::PatternMatch;
50 
51 #define DEBUG_TYPE "loop-peel"
52 
53 STATISTIC(NumPeeled, "Number of loops peeled");
54 
55 static cl::opt<unsigned> UnrollPeelCount(
56     "unroll-peel-count", cl::Hidden,
57     cl::desc("Set the unroll peeling count, for testing purposes"));
58 
59 static cl::opt<bool>
60     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
61                        cl::desc("Allows loops to be peeled when the dynamic "
62                                 "trip count is known to be low."));
63 
64 static cl::opt<bool>
65     UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
66                                 cl::init(false), cl::Hidden,
67                                 cl::desc("Allows loop nests to be peeled."));
68 
69 static cl::opt<unsigned> UnrollPeelMaxCount(
70     "unroll-peel-max-count", cl::init(7), cl::Hidden,
71     cl::desc("Max average trip count which will cause loop peeling."));
72 
73 static cl::opt<unsigned> UnrollForcePeelCount(
74     "unroll-force-peel-count", cl::init(0), cl::Hidden,
75     cl::desc("Force a peel count regardless of profiling information."));
76 
77 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
78 
79 // Designates that a Phi is estimated to become invariant after an "infinite"
80 // number of loop iterations (i.e. only may become an invariant if the loop is
81 // fully unrolled).
82 static const unsigned InfiniteIterationsToInvariance =
83     std::numeric_limits<unsigned>::max();
84 
85 // Check whether we are capable of peeling this loop.
canPeel(Loop * L)86 bool llvm::canPeel(Loop *L) {
87   // Make sure the loop is in simplified form
88   if (!L->isLoopSimplifyForm())
89     return false;
90 
91   // Don't try to peel loops where the latch is not the exiting block.
92   // This can be an indication of two different things:
93   // 1) The loop is not rotated.
94   // 2) The loop contains irreducible control flow that involves the latch.
95   const BasicBlock *Latch = L->getLoopLatch();
96   if (!L->isLoopExiting(Latch))
97     return false;
98 
99   // Peeling is only supported if the latch is a branch.
100   if (!isa<BranchInst>(Latch->getTerminator()))
101     return false;
102 
103   SmallVector<BasicBlock *, 4> Exits;
104   L->getUniqueNonLatchExitBlocks(Exits);
105   // The latch must either be the only exiting block or all non-latch exit
106   // blocks have either a deopt or unreachable terminator. Both deopt and
107   // unreachable terminators are a strong indication they are not taken. Note
108   // that this is a profitability check, not a legality check. Also note that
109   // LoopPeeling currently can only update the branch weights of latch blocks
110   // and branch weights to blocks with deopt or unreachable do not need
111   // updating.
112   return all_of(Exits, [](const BasicBlock *BB) {
113     return BB->getTerminatingDeoptimizeCall() ||
114            isa<UnreachableInst>(BB->getTerminator());
115   });
116 }
117 
118 // This function calculates the number of iterations after which the given Phi
119 // becomes an invariant. The pre-calculated values are memorized in the map. The
120 // function (shortcut is I) is calculated according to the following definition:
121 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
122 //   If %y is a loop invariant, then I(%x) = 1.
123 //   If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
124 //   Otherwise, I(%x) is infinite.
125 // TODO: Actually if %y is an expression that depends only on Phi %z and some
126 //       loop invariants, we can estimate I(%x) = I(%z) + 1. The example
127 //       looks like:
128 //         %x = phi(0, %a),  <-- becomes invariant starting from 3rd iteration.
129 //         %y = phi(0, 5),
130 //         %a = %y + 1.
calculateIterationsToInvariance(PHINode * Phi,Loop * L,BasicBlock * BackEdge,SmallDenseMap<PHINode *,unsigned> & IterationsToInvariance)131 static unsigned calculateIterationsToInvariance(
132     PHINode *Phi, Loop *L, BasicBlock *BackEdge,
133     SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) {
134   assert(Phi->getParent() == L->getHeader() &&
135          "Non-loop Phi should not be checked for turning into invariant.");
136   assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
137   // If we already know the answer, take it from the map.
138   auto I = IterationsToInvariance.find(Phi);
139   if (I != IterationsToInvariance.end())
140     return I->second;
141 
142   // Otherwise we need to analyze the input from the back edge.
143   Value *Input = Phi->getIncomingValueForBlock(BackEdge);
144   // Place infinity to map to avoid infinite recursion for cycled Phis. Such
145   // cycles can never stop on an invariant.
146   IterationsToInvariance[Phi] = InfiniteIterationsToInvariance;
147   unsigned ToInvariance = InfiniteIterationsToInvariance;
148 
149   if (L->isLoopInvariant(Input))
150     ToInvariance = 1u;
151   else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
152     // Only consider Phis in header block.
153     if (IncPhi->getParent() != L->getHeader())
154       return InfiniteIterationsToInvariance;
155     // If the input becomes an invariant after X iterations, then our Phi
156     // becomes an invariant after X + 1 iterations.
157     unsigned InputToInvariance = calculateIterationsToInvariance(
158         IncPhi, L, BackEdge, IterationsToInvariance);
159     if (InputToInvariance != InfiniteIterationsToInvariance)
160       ToInvariance = InputToInvariance + 1u;
161   }
162 
163   // If we found that this Phi lies in an invariant chain, update the map.
164   if (ToInvariance != InfiniteIterationsToInvariance)
165     IterationsToInvariance[Phi] = ToInvariance;
166   return ToInvariance;
167 }
168 
169 // Try to find any invariant memory reads that will become dereferenceable in
170 // the remainder loop after peeling. The load must also be used (transitively)
171 // by an exit condition. Returns the number of iterations to peel off (at the
172 // moment either 0 or 1).
peelToTurnInvariantLoadsDerefencebale(Loop & L,DominatorTree & DT)173 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
174                                                       DominatorTree &DT) {
175   // Skip loops with a single exiting block, because there should be no benefit
176   // for the heuristic below.
177   if (L.getExitingBlock())
178     return 0;
179 
180   // All non-latch exit blocks must have an UnreachableInst terminator.
181   // Otherwise the heuristic below may not be profitable.
182   SmallVector<BasicBlock *, 4> Exits;
183   L.getUniqueNonLatchExitBlocks(Exits);
184   if (any_of(Exits, [](const BasicBlock *BB) {
185         return !isa<UnreachableInst>(BB->getTerminator());
186       }))
187     return 0;
188 
189   // Now look for invariant loads that dominate the latch and are not known to
190   // be dereferenceable. If there are such loads and no writes, they will become
191   // dereferenceable in the loop if the first iteration is peeled off. Also
192   // collect the set of instructions controlled by such loads. Only peel if an
193   // exit condition uses (transitively) such a load.
194   BasicBlock *Header = L.getHeader();
195   BasicBlock *Latch = L.getLoopLatch();
196   SmallPtrSet<Value *, 8> LoadUsers;
197   const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
198   for (BasicBlock *BB : L.blocks()) {
199     for (Instruction &I : *BB) {
200       if (I.mayWriteToMemory())
201         return 0;
202 
203       auto Iter = LoadUsers.find(&I);
204       if (Iter != LoadUsers.end()) {
205         for (Value *U : I.users())
206           LoadUsers.insert(U);
207       }
208       // Do not look for reads in the header; they can already be hoisted
209       // without peeling.
210       if (BB == Header)
211         continue;
212       if (auto *LI = dyn_cast<LoadInst>(&I)) {
213         Value *Ptr = LI->getPointerOperand();
214         if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) &&
215             !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, &DT))
216           for (Value *U : I.users())
217             LoadUsers.insert(U);
218       }
219     }
220   }
221   SmallVector<BasicBlock *> ExitingBlocks;
222   L.getExitingBlocks(ExitingBlocks);
223   if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) {
224         return LoadUsers.contains(Exiting->getTerminator());
225       }))
226     return 1;
227   return 0;
228 }
229 
230 // Return the number of iterations to peel off that make conditions in the
231 // body true/false. For example, if we peel 2 iterations off the loop below,
232 // the condition i < 2 can be evaluated at compile time.
233 //  for (i = 0; i < n; i++)
234 //    if (i < 2)
235 //      ..
236 //    else
237 //      ..
238 //   }
countToEliminateCompares(Loop & L,unsigned MaxPeelCount,ScalarEvolution & SE)239 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
240                                          ScalarEvolution &SE) {
241   assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
242   unsigned DesiredPeelCount = 0;
243 
244   for (auto *BB : L.blocks()) {
245     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
246     if (!BI || BI->isUnconditional())
247       continue;
248 
249     // Ignore loop exit condition.
250     if (L.getLoopLatch() == BB)
251       continue;
252 
253     Value *Condition = BI->getCondition();
254     Value *LeftVal, *RightVal;
255     CmpInst::Predicate Pred;
256     if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
257       continue;
258 
259     const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
260     const SCEV *RightSCEV = SE.getSCEV(RightVal);
261 
262     // Do not consider predicates that are known to be true or false
263     // independently of the loop iteration.
264     if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
265       continue;
266 
267     // Check if we have a condition with one AddRec and one non AddRec
268     // expression. Normalize LeftSCEV to be the AddRec.
269     if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
270       if (isa<SCEVAddRecExpr>(RightSCEV)) {
271         std::swap(LeftSCEV, RightSCEV);
272         Pred = ICmpInst::getSwappedPredicate(Pred);
273       } else
274         continue;
275     }
276 
277     const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
278 
279     // Avoid huge SCEV computations in the loop below, make sure we only
280     // consider AddRecs of the loop we are trying to peel.
281     if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
282       continue;
283     if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
284         !SE.getMonotonicPredicateType(LeftAR, Pred))
285       continue;
286 
287     // Check if extending the current DesiredPeelCount lets us evaluate Pred
288     // or !Pred in the loop body statically.
289     unsigned NewPeelCount = DesiredPeelCount;
290 
291     const SCEV *IterVal = LeftAR->evaluateAtIteration(
292         SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
293 
294     // If the original condition is not known, get the negated predicate
295     // (which holds on the else branch) and check if it is known. This allows
296     // us to peel of iterations that make the original condition false.
297     if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
298       Pred = ICmpInst::getInversePredicate(Pred);
299 
300     const SCEV *Step = LeftAR->getStepRecurrence(SE);
301     const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
302     auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
303                                  &NewPeelCount]() {
304       IterVal = NextIterVal;
305       NextIterVal = SE.getAddExpr(IterVal, Step);
306       NewPeelCount++;
307     };
308 
309     auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
310       return NewPeelCount < MaxPeelCount;
311     };
312 
313     while (CanPeelOneMoreIteration() &&
314            SE.isKnownPredicate(Pred, IterVal, RightSCEV))
315       PeelOneMoreIteration();
316 
317     // With *that* peel count, does the predicate !Pred become known in the
318     // first iteration of the loop body after peeling?
319     if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
320                              RightSCEV))
321       continue; // If not, give up.
322 
323     // However, for equality comparisons, that isn't always sufficient to
324     // eliminate the comparsion in loop body, we may need to peel one more
325     // iteration. See if that makes !Pred become unknown again.
326     if (ICmpInst::isEquality(Pred) &&
327         !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
328                              RightSCEV) &&
329         !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
330         SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
331       if (!CanPeelOneMoreIteration())
332         continue; // Need to peel one more iteration, but can't. Give up.
333       PeelOneMoreIteration(); // Great!
334     }
335 
336     DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
337   }
338 
339   return DesiredPeelCount;
340 }
341 
342 // Return the number of iterations we want to peel off.
computePeelCount(Loop * L,unsigned LoopSize,TargetTransformInfo::PeelingPreferences & PP,unsigned & TripCount,DominatorTree & DT,ScalarEvolution & SE,unsigned Threshold)343 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
344                             TargetTransformInfo::PeelingPreferences &PP,
345                             unsigned &TripCount, DominatorTree &DT,
346                             ScalarEvolution &SE, unsigned Threshold) {
347   assert(LoopSize > 0 && "Zero loop size is not allowed!");
348   // Save the PP.PeelCount value set by the target in
349   // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
350   unsigned TargetPeelCount = PP.PeelCount;
351   PP.PeelCount = 0;
352   if (!canPeel(L))
353     return;
354 
355   // Only try to peel innermost loops by default.
356   // The constraint can be relaxed by the target in TTI.getUnrollingPreferences
357   // or by the flag -unroll-allow-loop-nests-peeling.
358   if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
359     return;
360 
361   // If the user provided a peel count, use that.
362   bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
363   if (UserPeelCount) {
364     LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
365                       << " iterations.\n");
366     PP.PeelCount = UnrollForcePeelCount;
367     PP.PeelProfiledIterations = true;
368     return;
369   }
370 
371   // Skip peeling if it's disabled.
372   if (!PP.AllowPeeling)
373     return;
374 
375   unsigned AlreadyPeeled = 0;
376   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
377     AlreadyPeeled = *Peeled;
378   // Stop if we already peeled off the maximum number of iterations.
379   if (AlreadyPeeled >= UnrollPeelMaxCount)
380     return;
381 
382   // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
383   // iterations of the loop. For this we compute the number for iterations after
384   // which every Phi is guaranteed to become an invariant, and try to peel the
385   // maximum number of iterations among these values, thus turning all those
386   // Phis into invariants.
387   // First, check that we can peel at least one iteration.
388   if (2 * LoopSize <= Threshold && UnrollPeelMaxCount > 0) {
389     // Store the pre-calculated values here.
390     SmallDenseMap<PHINode *, unsigned> IterationsToInvariance;
391     // Now go through all Phis to calculate their the number of iterations they
392     // need to become invariants.
393     // Start the max computation with the UP.PeelCount value set by the target
394     // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
395     unsigned DesiredPeelCount = TargetPeelCount;
396     BasicBlock *BackEdge = L->getLoopLatch();
397     assert(BackEdge && "Loop is not in simplified form?");
398     for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
399       PHINode *Phi = cast<PHINode>(&*BI);
400       unsigned ToInvariance = calculateIterationsToInvariance(
401           Phi, L, BackEdge, IterationsToInvariance);
402       if (ToInvariance != InfiniteIterationsToInvariance)
403         DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance);
404     }
405 
406     // Pay respect to limitations implied by loop size and the max peel count.
407     unsigned MaxPeelCount = UnrollPeelMaxCount;
408     MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
409 
410     DesiredPeelCount = std::max(DesiredPeelCount,
411                                 countToEliminateCompares(*L, MaxPeelCount, SE));
412 
413     if (DesiredPeelCount == 0)
414       DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT);
415 
416     if (DesiredPeelCount > 0) {
417       DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
418       // Consider max peel count limitation.
419       assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
420       if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
421         LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
422                           << " iteration(s) to turn"
423                           << " some Phis into invariants.\n");
424         PP.PeelCount = DesiredPeelCount;
425         PP.PeelProfiledIterations = false;
426         return;
427       }
428     }
429   }
430 
431   // Bail if we know the statically calculated trip count.
432   // In this case we rather prefer partial unrolling.
433   if (TripCount)
434     return;
435 
436   // Do not apply profile base peeling if it is disabled.
437   if (!PP.PeelProfiledIterations)
438     return;
439   // If we don't know the trip count, but have reason to believe the average
440   // trip count is low, peeling should be beneficial, since we will usually
441   // hit the peeled section.
442   // We only do this in the presence of profile information, since otherwise
443   // our estimates of the trip count are not reliable enough.
444   if (L->getHeader()->getParent()->hasProfileData()) {
445     Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
446     if (!PeelCount)
447       return;
448 
449     LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
450                       << "\n");
451 
452     if (*PeelCount) {
453       if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) &&
454           (LoopSize * (*PeelCount + 1) <= Threshold)) {
455         LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount
456                           << " iterations.\n");
457         PP.PeelCount = *PeelCount;
458         return;
459       }
460       LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
461       LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
462       LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
463       LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1)
464                         << "\n");
465       LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
466     }
467   }
468 }
469 
470 /// Update the branch weights of the latch of a peeled-off loop
471 /// iteration.
472 /// This sets the branch weights for the latch of the recently peeled off loop
473 /// iteration correctly.
474 /// Let F is a weight of the edge from latch to header.
475 /// Let E is a weight of the edge from latch to exit.
476 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
477 /// go to exit.
478 /// Then, Estimated TripCount = F / E.
479 /// For I-th (counting from 0) peeled off iteration we set the the weights for
480 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution,
481 /// The probability to go to exit 1/(TC-I) increases. At the same time
482 /// the estimated trip count of remaining loop reduces by I.
483 /// To avoid dealing with division rounding we can just multiple both part
484 /// of weights to E and use weight as (F - I * E, E).
485 ///
486 /// \param Header The copy of the header block that belongs to next iteration.
487 /// \param LatchBR The copy of the latch branch that belongs to this iteration.
488 /// \param[in,out] FallThroughWeight The weight of the edge from latch to
489 /// header before peeling (in) and after peeled off one iteration (out).
updateBranchWeights(BasicBlock * Header,BranchInst * LatchBR,uint64_t ExitWeight,uint64_t & FallThroughWeight)490 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
491                                 uint64_t ExitWeight,
492                                 uint64_t &FallThroughWeight) {
493   // FallThroughWeight is 0 means that there is no branch weights on original
494   // latch block or estimated trip count is zero.
495   if (!FallThroughWeight)
496     return;
497 
498   unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
499   MDBuilder MDB(LatchBR->getContext());
500   MDNode *WeightNode =
501       HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
502                 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
503   LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
504   FallThroughWeight =
505       FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1;
506 }
507 
508 /// Initialize the weights.
509 ///
510 /// \param Header The header block.
511 /// \param LatchBR The latch branch.
512 /// \param[out] ExitWeight The weight of the edge from Latch to Exit.
513 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header.
initBranchWeights(BasicBlock * Header,BranchInst * LatchBR,uint64_t & ExitWeight,uint64_t & FallThroughWeight)514 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
515                               uint64_t &ExitWeight,
516                               uint64_t &FallThroughWeight) {
517   uint64_t TrueWeight, FalseWeight;
518   if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
519     return;
520   unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
521   ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
522   FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight;
523 }
524 
525 /// Update the weights of original Latch block after peeling off all iterations.
526 ///
527 /// \param Header The header block.
528 /// \param LatchBR The latch branch.
529 /// \param ExitWeight The weight of the edge from Latch to Exit.
530 /// \param FallThroughWeight The weight of the edge from Latch to Header.
fixupBranchWeights(BasicBlock * Header,BranchInst * LatchBR,uint64_t ExitWeight,uint64_t FallThroughWeight)531 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
532                                uint64_t ExitWeight,
533                                uint64_t FallThroughWeight) {
534   // FallThroughWeight is 0 means that there is no branch weights on original
535   // latch block or estimated trip count is zero.
536   if (!FallThroughWeight)
537     return;
538 
539   // Sets the branch weights on the loop exit.
540   MDBuilder MDB(LatchBR->getContext());
541   unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
542   MDNode *WeightNode =
543       HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
544                 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
545   LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
546 }
547 
548 /// Clones the body of the loop L, putting it between \p InsertTop and \p
549 /// InsertBot.
550 /// \param IterNumber The serial number of the iteration currently being
551 /// peeled off.
552 /// \param ExitEdges The exit edges of the original loop.
553 /// \param[out] NewBlocks A list of the blocks in the newly created clone
554 /// \param[out] VMap The value map between the loop and the new clone.
555 /// \param LoopBlocks A helper for DFS-traversal of the loop.
556 /// \param LVMap A value-map that maps instructions from the original loop to
557 /// instructions in the last peeled-off iteration.
cloneLoopBlocks(Loop * L,unsigned IterNumber,BasicBlock * InsertTop,BasicBlock * InsertBot,SmallVectorImpl<std::pair<BasicBlock *,BasicBlock * >> & ExitEdges,SmallVectorImpl<BasicBlock * > & NewBlocks,LoopBlocksDFS & LoopBlocks,ValueToValueMapTy & VMap,ValueToValueMapTy & LVMap,DominatorTree * DT,LoopInfo * LI,ArrayRef<MDNode * > LoopLocalNoAliasDeclScopes)558 static void cloneLoopBlocks(
559     Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
560     SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
561     SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
562     ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
563     LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes) {
564   BasicBlock *Header = L->getHeader();
565   BasicBlock *Latch = L->getLoopLatch();
566   BasicBlock *PreHeader = L->getLoopPreheader();
567 
568   Function *F = Header->getParent();
569   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
570   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
571   Loop *ParentLoop = L->getParentLoop();
572 
573   // For each block in the original loop, create a new copy,
574   // and update the value map with the newly created values.
575   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
576     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
577     NewBlocks.push_back(NewBB);
578 
579     // If an original block is an immediate child of the loop L, its copy
580     // is a child of a ParentLoop after peeling. If a block is a child of
581     // a nested loop, it is handled in the cloneLoop() call below.
582     if (ParentLoop && LI->getLoopFor(*BB) == L)
583       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
584 
585     VMap[*BB] = NewBB;
586 
587     // If dominator tree is available, insert nodes to represent cloned blocks.
588     if (DT) {
589       if (Header == *BB)
590         DT->addNewBlock(NewBB, InsertTop);
591       else {
592         DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
593         // VMap must contain entry for IDom, as the iteration order is RPO.
594         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
595       }
596     }
597   }
598 
599   {
600     // Identify what other metadata depends on the cloned version. After
601     // cloning, replace the metadata with the corrected version for both
602     // memory instructions and noalias intrinsics.
603     std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
604     cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
605                                Header->getContext(), Ext);
606   }
607 
608   // Recursively create the new Loop objects for nested loops, if any,
609   // to preserve LoopInfo.
610   for (Loop *ChildLoop : *L) {
611     cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
612   }
613 
614   // Hook-up the control flow for the newly inserted blocks.
615   // The new header is hooked up directly to the "top", which is either
616   // the original loop preheader (for the first iteration) or the previous
617   // iteration's exiting block (for every other iteration)
618   InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
619 
620   // Similarly, for the latch:
621   // The original exiting edge is still hooked up to the loop exit.
622   // The backedge now goes to the "bottom", which is either the loop's real
623   // header (for the last peeled iteration) or the copied header of the next
624   // iteration (for every other iteration)
625   BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
626   BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
627   for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx)
628     if (LatchBR->getSuccessor(idx) == Header) {
629       LatchBR->setSuccessor(idx, InsertBot);
630       break;
631     }
632   if (DT)
633     DT->changeImmediateDominator(InsertBot, NewLatch);
634 
635   // The new copy of the loop body starts with a bunch of PHI nodes
636   // that pick an incoming value from either the preheader, or the previous
637   // loop iteration. Since this copy is no longer part of the loop, we
638   // resolve this statically:
639   // For the first iteration, we use the value from the preheader directly.
640   // For any other iteration, we replace the phi with the value generated by
641   // the immediately preceding clone of the loop body (which represents
642   // the previous iteration).
643   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
644     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
645     if (IterNumber == 0) {
646       VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
647     } else {
648       Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
649       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
650       if (LatchInst && L->contains(LatchInst))
651         VMap[&*I] = LVMap[LatchInst];
652       else
653         VMap[&*I] = LatchVal;
654     }
655     cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
656   }
657 
658   // Fix up the outgoing values - we need to add a value for the iteration
659   // we've just created. Note that this must happen *after* the incoming
660   // values are adjusted, since the value going out of the latch may also be
661   // a value coming into the header.
662   for (auto Edge : ExitEdges)
663     for (PHINode &PHI : Edge.second->phis()) {
664       Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
665       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
666       if (LatchInst && L->contains(LatchInst))
667         LatchVal = VMap[LatchVal];
668       PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
669     }
670 
671   // LastValueMap is updated with the values for the current loop
672   // which are used the next time this function is called.
673   for (auto KV : VMap)
674     LVMap[KV.first] = KV.second;
675 }
676 
gatherPeelingPreferences(Loop * L,ScalarEvolution & SE,const TargetTransformInfo & TTI,Optional<bool> UserAllowPeeling,Optional<bool> UserAllowProfileBasedPeeling,bool UnrollingSpecficValues)677 TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences(
678     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
679     Optional<bool> UserAllowPeeling,
680     Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) {
681   TargetTransformInfo::PeelingPreferences PP;
682 
683   // Set the default values.
684   PP.PeelCount = 0;
685   PP.AllowPeeling = true;
686   PP.AllowLoopNestsPeeling = false;
687   PP.PeelProfiledIterations = true;
688 
689   // Get the target specifc values.
690   TTI.getPeelingPreferences(L, SE, PP);
691 
692   // User specified values using cl::opt.
693   if (UnrollingSpecficValues) {
694     if (UnrollPeelCount.getNumOccurrences() > 0)
695       PP.PeelCount = UnrollPeelCount;
696     if (UnrollAllowPeeling.getNumOccurrences() > 0)
697       PP.AllowPeeling = UnrollAllowPeeling;
698     if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
699       PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
700   }
701 
702   // User specifed values provided by argument.
703   if (UserAllowPeeling.hasValue())
704     PP.AllowPeeling = *UserAllowPeeling;
705   if (UserAllowProfileBasedPeeling.hasValue())
706     PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
707 
708   return PP;
709 }
710 
711 /// Peel off the first \p PeelCount iterations of loop \p L.
712 ///
713 /// Note that this does not peel them off as a single straight-line block.
714 /// Rather, each iteration is peeled off separately, and needs to check the
715 /// exit condition.
716 /// For loops that dynamically execute \p PeelCount iterations or less
717 /// this provides a benefit, since the peeled off iterations, which account
718 /// for the bulk of dynamic execution, can be further simplified by scalar
719 /// optimizations.
peelLoop(Loop * L,unsigned PeelCount,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,bool PreserveLCSSA)720 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
721                     ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
722                     bool PreserveLCSSA) {
723   assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
724   assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
725 
726   LoopBlocksDFS LoopBlocks(L);
727   LoopBlocks.perform(LI);
728 
729   BasicBlock *Header = L->getHeader();
730   BasicBlock *PreHeader = L->getLoopPreheader();
731   BasicBlock *Latch = L->getLoopLatch();
732   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
733   L->getExitEdges(ExitEdges);
734 
735   DenseMap<BasicBlock *, BasicBlock *> ExitIDom;
736   if (DT) {
737     // We'd like to determine the idom of exit block after peeling one
738     // iteration.
739     // Let Exit is exit block.
740     // Let ExitingSet - is a set of predecessors of Exit block. They are exiting
741     // blocks.
742     // Let Latch' and ExitingSet' are copies after a peeling.
743     // We'd like to find an idom'(Exit) - idom of Exit after peeling.
744     // It is an evident that idom'(Exit) will be the nearest common dominator
745     // of ExitingSet and ExitingSet'.
746     // idom(Exit) is a nearest common dominator of ExitingSet.
747     // idom(Exit)' is a nearest common dominator of ExitingSet'.
748     // Taking into account that we have a single Latch, Latch' will dominate
749     // Header and idom(Exit).
750     // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
751     // All these basic blocks are in the same loop, so what we find is
752     // (nearest common dominator of idom(Exit) and Latch)'.
753     // In the loop below we remember nearest common dominator of idom(Exit) and
754     // Latch to update idom of Exit later.
755     assert(L->hasDedicatedExits() && "No dedicated exits?");
756     for (auto Edge : ExitEdges) {
757       if (ExitIDom.count(Edge.second))
758         continue;
759       BasicBlock *BB = DT->findNearestCommonDominator(
760           DT->getNode(Edge.second)->getIDom()->getBlock(), Latch);
761       assert(L->contains(BB) && "IDom is not in a loop");
762       ExitIDom[Edge.second] = BB;
763     }
764   }
765 
766   Function *F = Header->getParent();
767 
768   // Set up all the necessary basic blocks. It is convenient to split the
769   // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
770   // body, and a new preheader for the "real" loop.
771 
772   // Peeling the first iteration transforms.
773   //
774   // PreHeader:
775   // ...
776   // Header:
777   //   LoopBody
778   //   If (cond) goto Header
779   // Exit:
780   //
781   // into
782   //
783   // InsertTop:
784   //   LoopBody
785   //   If (!cond) goto Exit
786   // InsertBot:
787   // NewPreHeader:
788   // ...
789   // Header:
790   //  LoopBody
791   //  If (cond) goto Header
792   // Exit:
793   //
794   // Each following iteration will split the current bottom anchor in two,
795   // and put the new copy of the loop body between these two blocks. That is,
796   // after peeling another iteration from the example above, we'll split
797   // InsertBot, and get:
798   //
799   // InsertTop:
800   //   LoopBody
801   //   If (!cond) goto Exit
802   // InsertBot:
803   //   LoopBody
804   //   If (!cond) goto Exit
805   // InsertBot.next:
806   // NewPreHeader:
807   // ...
808   // Header:
809   //  LoopBody
810   //  If (cond) goto Header
811   // Exit:
812 
813   BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI);
814   BasicBlock *InsertBot =
815       SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI);
816   BasicBlock *NewPreHeader =
817       SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
818 
819   InsertTop->setName(Header->getName() + ".peel.begin");
820   InsertBot->setName(Header->getName() + ".peel.next");
821   NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
822 
823   ValueToValueMapTy LVMap;
824 
825   // If we have branch weight information, we'll want to update it for the
826   // newly created branches.
827   BranchInst *LatchBR =
828       cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
829   uint64_t ExitWeight = 0, FallThroughWeight = 0;
830   initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
831 
832   // Identify what noalias metadata is inside the loop: if it is inside the
833   // loop, the associated metadata must be cloned for each iteration.
834   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
835   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
836 
837   // For each peeled-off iteration, make a copy of the loop.
838   for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
839     SmallVector<BasicBlock *, 8> NewBlocks;
840     ValueToValueMapTy VMap;
841 
842     cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
843                     LoopBlocks, VMap, LVMap, DT, LI,
844                     LoopLocalNoAliasDeclScopes);
845 
846     // Remap to use values from the current iteration instead of the
847     // previous one.
848     remapInstructionsInBlocks(NewBlocks, VMap);
849 
850     if (DT) {
851       // Latches of the cloned loops dominate over the loop exit, so idom of the
852       // latter is the first cloned loop body, as original PreHeader dominates
853       // the original loop body.
854       if (Iter == 0)
855         for (auto Exit : ExitIDom)
856           DT->changeImmediateDominator(Exit.first,
857                                        cast<BasicBlock>(LVMap[Exit.second]));
858 #ifdef EXPENSIVE_CHECKS
859       assert(DT->verify(DominatorTree::VerificationLevel::Fast));
860 #endif
861     }
862 
863     auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]);
864     updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight);
865     // Remove Loop metadata from the latch branch instruction
866     // because it is not the Loop's latch branch anymore.
867     LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr);
868 
869     InsertTop = InsertBot;
870     InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
871     InsertBot->setName(Header->getName() + ".peel.next");
872 
873     F->getBasicBlockList().splice(InsertTop->getIterator(),
874                                   F->getBasicBlockList(),
875                                   NewBlocks[0]->getIterator(), F->end());
876   }
877 
878   // Now adjust the phi nodes in the loop header to get their initial values
879   // from the last peeled-off iteration instead of the preheader.
880   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
881     PHINode *PHI = cast<PHINode>(I);
882     Value *NewVal = PHI->getIncomingValueForBlock(Latch);
883     Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
884     if (LatchInst && L->contains(LatchInst))
885       NewVal = LVMap[LatchInst];
886 
887     PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
888   }
889 
890   fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
891 
892   // Update Metadata for count of peeled off iterations.
893   unsigned AlreadyPeeled = 0;
894   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
895     AlreadyPeeled = *Peeled;
896   addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
897 
898   if (Loop *ParentLoop = L->getParentLoop())
899     L = ParentLoop;
900 
901   // We modified the loop, update SE.
902   SE->forgetTopmostLoop(L);
903 
904   // Finally DomtTree must be correct.
905   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
906 
907   // FIXME: Incrementally update loop-simplify
908   simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA);
909 
910   NumPeeled++;
911 
912   return true;
913 }
914