1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenRegisters.h"
15 #include "CodeGenTarget.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/IntEqClasses.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/TableGen/Error.h"
32 #include "llvm/TableGen/Record.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstdint>
36 #include <iterator>
37 #include <map>
38 #include <queue>
39 #include <set>
40 #include <string>
41 #include <tuple>
42 #include <utility>
43 #include <vector>
44
45 using namespace llvm;
46
47 #define DEBUG_TYPE "regalloc-emitter"
48
49 //===----------------------------------------------------------------------===//
50 // CodeGenSubRegIndex
51 //===----------------------------------------------------------------------===//
52
CodeGenSubRegIndex(Record * R,unsigned Enum)53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
54 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
55 Name = std::string(R->getName());
56 if (R->getValue("Namespace"))
57 Namespace = std::string(R->getValueAsString("Namespace"));
58 Size = R->getValueAsInt("Size");
59 Offset = R->getValueAsInt("Offset");
60 }
61
CodeGenSubRegIndex(StringRef N,StringRef Nspace,unsigned Enum)62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
63 unsigned Enum)
64 : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)),
65 Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true),
66 Artificial(true) {}
67
getQualifiedName() const68 std::string CodeGenSubRegIndex::getQualifiedName() const {
69 std::string N = getNamespace();
70 if (!N.empty())
71 N += "::";
72 N += getName();
73 return N;
74 }
75
updateComponents(CodeGenRegBank & RegBank)76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
77 if (!TheDef)
78 return;
79
80 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
81 if (!Comps.empty()) {
82 if (Comps.size() != 2)
83 PrintFatalError(TheDef->getLoc(),
84 "ComposedOf must have exactly two entries");
85 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
86 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
87 CodeGenSubRegIndex *X = A->addComposite(B, this);
88 if (X)
89 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
90 }
91
92 std::vector<Record*> Parts =
93 TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
94 if (!Parts.empty()) {
95 if (Parts.size() < 2)
96 PrintFatalError(TheDef->getLoc(),
97 "CoveredBySubRegs must have two or more entries");
98 SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
99 for (Record *Part : Parts)
100 IdxParts.push_back(RegBank.getSubRegIdx(Part));
101 setConcatenationOf(IdxParts);
102 }
103 }
104
computeLaneMask() const105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
106 // Already computed?
107 if (LaneMask.any())
108 return LaneMask;
109
110 // Recursion guard, shouldn't be required.
111 LaneMask = LaneBitmask::getAll();
112
113 // The lane mask is simply the union of all sub-indices.
114 LaneBitmask M;
115 for (const auto &C : Composed)
116 M |= C.second->computeLaneMask();
117 assert(M.any() && "Missing lane mask, sub-register cycle?");
118 LaneMask = M;
119 return LaneMask;
120 }
121
setConcatenationOf(ArrayRef<CodeGenSubRegIndex * > Parts)122 void CodeGenSubRegIndex::setConcatenationOf(
123 ArrayRef<CodeGenSubRegIndex*> Parts) {
124 if (ConcatenationOf.empty())
125 ConcatenationOf.assign(Parts.begin(), Parts.end());
126 else
127 assert(std::equal(Parts.begin(), Parts.end(),
128 ConcatenationOf.begin()) && "parts consistent");
129 }
130
computeConcatTransitiveClosure()131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
132 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
133 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
134 CodeGenSubRegIndex *SubIdx = *I;
135 SubIdx->computeConcatTransitiveClosure();
136 #ifndef NDEBUG
137 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
138 assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
139 #endif
140
141 if (SubIdx->ConcatenationOf.empty()) {
142 ++I;
143 } else {
144 I = ConcatenationOf.erase(I);
145 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
146 SubIdx->ConcatenationOf.end());
147 I += SubIdx->ConcatenationOf.size();
148 }
149 }
150 }
151
152 //===----------------------------------------------------------------------===//
153 // CodeGenRegister
154 //===----------------------------------------------------------------------===//
155
CodeGenRegister(Record * R,unsigned Enum)156 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
157 : TheDef(R), EnumValue(Enum),
158 CostPerUse(R->getValueAsListOfInts("CostPerUse")),
159 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
160 HasDisjunctSubRegs(false), SubRegsComplete(false),
161 SuperRegsComplete(false), TopoSig(~0u) {
162 Artificial = R->getValueAsBit("isArtificial");
163 }
164
buildObjectGraph(CodeGenRegBank & RegBank)165 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
166 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
167 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
168
169 if (SRIs.size() != SRs.size())
170 PrintFatalError(TheDef->getLoc(),
171 "SubRegs and SubRegIndices must have the same size");
172
173 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
174 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
175 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
176 }
177
178 // Also compute leading super-registers. Each register has a list of
179 // covered-by-subregs super-registers where it appears as the first explicit
180 // sub-register.
181 //
182 // This is used by computeSecondarySubRegs() to find candidates.
183 if (CoveredBySubRegs && !ExplicitSubRegs.empty())
184 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
185
186 // Add ad hoc alias links. This is a symmetric relationship between two
187 // registers, so build a symmetric graph by adding links in both ends.
188 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
189 for (Record *Alias : Aliases) {
190 CodeGenRegister *Reg = RegBank.getReg(Alias);
191 ExplicitAliases.push_back(Reg);
192 Reg->ExplicitAliases.push_back(this);
193 }
194 }
195
getName() const196 StringRef CodeGenRegister::getName() const {
197 assert(TheDef && "no def");
198 return TheDef->getName();
199 }
200
201 namespace {
202
203 // Iterate over all register units in a set of registers.
204 class RegUnitIterator {
205 CodeGenRegister::Vec::const_iterator RegI, RegE;
206 CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
207
208 public:
RegUnitIterator(const CodeGenRegister::Vec & Regs)209 RegUnitIterator(const CodeGenRegister::Vec &Regs):
210 RegI(Regs.begin()), RegE(Regs.end()) {
211
212 if (RegI != RegE) {
213 UnitI = (*RegI)->getRegUnits().begin();
214 UnitE = (*RegI)->getRegUnits().end();
215 advance();
216 }
217 }
218
isValid() const219 bool isValid() const { return UnitI != UnitE; }
220
operator *() const221 unsigned operator* () const { assert(isValid()); return *UnitI; }
222
getReg() const223 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
224
225 /// Preincrement. Move to the next unit.
operator ++()226 void operator++() {
227 assert(isValid() && "Cannot advance beyond the last operand");
228 ++UnitI;
229 advance();
230 }
231
232 protected:
advance()233 void advance() {
234 while (UnitI == UnitE) {
235 if (++RegI == RegE)
236 break;
237 UnitI = (*RegI)->getRegUnits().begin();
238 UnitE = (*RegI)->getRegUnits().end();
239 }
240 }
241 };
242
243 } // end anonymous namespace
244
245 // Return true of this unit appears in RegUnits.
hasRegUnit(CodeGenRegister::RegUnitList & RegUnits,unsigned Unit)246 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
247 return RegUnits.test(Unit);
248 }
249
250 // Inherit register units from subregisters.
251 // Return true if the RegUnits changed.
inheritRegUnits(CodeGenRegBank & RegBank)252 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
253 bool changed = false;
254 for (const auto &SubReg : SubRegs) {
255 CodeGenRegister *SR = SubReg.second;
256 // Merge the subregister's units into this register's RegUnits.
257 changed |= (RegUnits |= SR->RegUnits);
258 }
259
260 return changed;
261 }
262
263 const CodeGenRegister::SubRegMap &
computeSubRegs(CodeGenRegBank & RegBank)264 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
265 // Only compute this map once.
266 if (SubRegsComplete)
267 return SubRegs;
268 SubRegsComplete = true;
269
270 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
271
272 // First insert the explicit subregs and make sure they are fully indexed.
273 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
274 CodeGenRegister *SR = ExplicitSubRegs[i];
275 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
276 if (!SR->Artificial)
277 Idx->Artificial = false;
278 if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
279 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
280 " appears twice in Register " + getName());
281 // Map explicit sub-registers first, so the names take precedence.
282 // The inherited sub-registers are mapped below.
283 SubReg2Idx.insert(std::make_pair(SR, Idx));
284 }
285
286 // Keep track of inherited subregs and how they can be reached.
287 SmallPtrSet<CodeGenRegister*, 8> Orphans;
288
289 // Clone inherited subregs and place duplicate entries in Orphans.
290 // Here the order is important - earlier subregs take precedence.
291 for (CodeGenRegister *ESR : ExplicitSubRegs) {
292 const SubRegMap &Map = ESR->computeSubRegs(RegBank);
293 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
294
295 for (const auto &SR : Map) {
296 if (!SubRegs.insert(SR).second)
297 Orphans.insert(SR.second);
298 }
299 }
300
301 // Expand any composed subreg indices.
302 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
303 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process
304 // expanded subreg indices recursively.
305 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
306 for (unsigned i = 0; i != Indices.size(); ++i) {
307 CodeGenSubRegIndex *Idx = Indices[i];
308 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
309 CodeGenRegister *SR = SubRegs[Idx];
310 const SubRegMap &Map = SR->computeSubRegs(RegBank);
311
312 // Look at the possible compositions of Idx.
313 // They may not all be supported by SR.
314 for (auto Comp : Comps) {
315 SubRegMap::const_iterator SRI = Map.find(Comp.first);
316 if (SRI == Map.end())
317 continue; // Idx + I->first doesn't exist in SR.
318 // Add I->second as a name for the subreg SRI->second, assuming it is
319 // orphaned, and the name isn't already used for something else.
320 if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second))
321 continue;
322 // We found a new name for the orphaned sub-register.
323 SubRegs.insert(std::make_pair(Comp.second, SRI->second));
324 Indices.push_back(Comp.second);
325 }
326 }
327
328 // Now Orphans contains the inherited subregisters without a direct index.
329 // Create inferred indexes for all missing entries.
330 // Work backwards in the Indices vector in order to compose subregs bottom-up.
331 // Consider this subreg sequence:
332 //
333 // qsub_1 -> dsub_0 -> ssub_0
334 //
335 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
336 // can be reached in two different ways:
337 //
338 // qsub_1 -> ssub_0
339 // dsub_2 -> ssub_0
340 //
341 // We pick the latter composition because another register may have [dsub_0,
342 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The
343 // dsub_2 -> ssub_0 composition can be shared.
344 while (!Indices.empty() && !Orphans.empty()) {
345 CodeGenSubRegIndex *Idx = Indices.pop_back_val();
346 CodeGenRegister *SR = SubRegs[Idx];
347 const SubRegMap &Map = SR->computeSubRegs(RegBank);
348 for (const auto &SubReg : Map)
349 if (Orphans.erase(SubReg.second))
350 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
351 }
352
353 // Compute the inverse SubReg -> Idx map.
354 for (const auto &SubReg : SubRegs) {
355 if (SubReg.second == this) {
356 ArrayRef<SMLoc> Loc;
357 if (TheDef)
358 Loc = TheDef->getLoc();
359 PrintFatalError(Loc, "Register " + getName() +
360 " has itself as a sub-register");
361 }
362
363 // Compute AllSuperRegsCovered.
364 if (!CoveredBySubRegs)
365 SubReg.first->AllSuperRegsCovered = false;
366
367 // Ensure that every sub-register has a unique name.
368 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
369 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
370 if (Ins->second == SubReg.first)
371 continue;
372 // Trouble: Two different names for SubReg.second.
373 ArrayRef<SMLoc> Loc;
374 if (TheDef)
375 Loc = TheDef->getLoc();
376 PrintFatalError(Loc, "Sub-register can't have two names: " +
377 SubReg.second->getName() + " available as " +
378 SubReg.first->getName() + " and " + Ins->second->getName());
379 }
380
381 // Derive possible names for sub-register concatenations from any explicit
382 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
383 // that getConcatSubRegIndex() won't invent any concatenated indices that the
384 // user already specified.
385 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
386 CodeGenRegister *SR = ExplicitSubRegs[i];
387 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
388 SR->Artificial)
389 continue;
390
391 // SR is composed of multiple sub-regs. Find their names in this register.
392 SmallVector<CodeGenSubRegIndex*, 8> Parts;
393 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
394 CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
395 if (!I.Artificial)
396 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
397 }
398
399 // Offer this as an existing spelling for the concatenation of Parts.
400 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
401 Idx.setConcatenationOf(Parts);
402 }
403
404 // Initialize RegUnitList. Because getSubRegs is called recursively, this
405 // processes the register hierarchy in postorder.
406 //
407 // Inherit all sub-register units. It is good enough to look at the explicit
408 // sub-registers, the other registers won't contribute any more units.
409 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
410 CodeGenRegister *SR = ExplicitSubRegs[i];
411 RegUnits |= SR->RegUnits;
412 }
413
414 // Absent any ad hoc aliasing, we create one register unit per leaf register.
415 // These units correspond to the maximal cliques in the register overlap
416 // graph which is optimal.
417 //
418 // When there is ad hoc aliasing, we simply create one unit per edge in the
419 // undirected ad hoc aliasing graph. Technically, we could do better by
420 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
421 // are extremely rare anyway (I've never seen one), so we don't bother with
422 // the added complexity.
423 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
424 CodeGenRegister *AR = ExplicitAliases[i];
425 // Only visit each edge once.
426 if (AR->SubRegsComplete)
427 continue;
428 // Create a RegUnit representing this alias edge, and add it to both
429 // registers.
430 unsigned Unit = RegBank.newRegUnit(this, AR);
431 RegUnits.set(Unit);
432 AR->RegUnits.set(Unit);
433 }
434
435 // Finally, create units for leaf registers without ad hoc aliases. Note that
436 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
437 // necessary. This means the aliasing leaf registers can share a single unit.
438 if (RegUnits.empty())
439 RegUnits.set(RegBank.newRegUnit(this));
440
441 // We have now computed the native register units. More may be adopted later
442 // for balancing purposes.
443 NativeRegUnits = RegUnits;
444
445 return SubRegs;
446 }
447
448 // In a register that is covered by its sub-registers, try to find redundant
449 // sub-registers. For example:
450 //
451 // QQ0 = {Q0, Q1}
452 // Q0 = {D0, D1}
453 // Q1 = {D2, D3}
454 //
455 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
456 // the register definition.
457 //
458 // The explicitly specified registers form a tree. This function discovers
459 // sub-register relationships that would force a DAG.
460 //
computeSecondarySubRegs(CodeGenRegBank & RegBank)461 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
462 SmallVector<SubRegMap::value_type, 8> NewSubRegs;
463
464 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
465 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
466 SubRegQueue.push(P);
467
468 // Look at the leading super-registers of each sub-register. Those are the
469 // candidates for new sub-registers, assuming they are fully contained in
470 // this register.
471 while (!SubRegQueue.empty()) {
472 CodeGenSubRegIndex *SubRegIdx;
473 const CodeGenRegister *SubReg;
474 std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
475 SubRegQueue.pop();
476
477 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
478 for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
479 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
480 // Already got this sub-register?
481 if (Cand == this || getSubRegIndex(Cand))
482 continue;
483 // Check if each component of Cand is already a sub-register.
484 assert(!Cand->ExplicitSubRegs.empty() &&
485 "Super-register has no sub-registers");
486 if (Cand->ExplicitSubRegs.size() == 1)
487 continue;
488 SmallVector<CodeGenSubRegIndex*, 8> Parts;
489 // We know that the first component is (SubRegIdx,SubReg). However we
490 // may still need to split it into smaller subregister parts.
491 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
492 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
493 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
494 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
495 if (SubRegIdx->ConcatenationOf.empty())
496 Parts.push_back(SubRegIdx);
497 else
498 append_range(Parts, SubRegIdx->ConcatenationOf);
499 } else {
500 // Sub-register doesn't exist.
501 Parts.clear();
502 break;
503 }
504 }
505 // There is nothing to do if some Cand sub-register is not part of this
506 // register.
507 if (Parts.empty())
508 continue;
509
510 // Each part of Cand is a sub-register of this. Make the full Cand also
511 // a sub-register with a concatenated sub-register index.
512 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
513 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
514 std::make_pair(Concat, Cand);
515
516 if (!SubRegs.insert(NewSubReg).second)
517 continue;
518
519 // We inserted a new subregister.
520 NewSubRegs.push_back(NewSubReg);
521 SubRegQueue.push(NewSubReg);
522 SubReg2Idx.insert(std::make_pair(Cand, Concat));
523 }
524 }
525
526 // Create sub-register index composition maps for the synthesized indices.
527 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
528 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
529 CodeGenRegister *NewSubReg = NewSubRegs[i].second;
530 for (auto SubReg : NewSubReg->SubRegs) {
531 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second);
532 if (!SubIdx)
533 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
534 SubReg.second->getName() +
535 " in " + getName());
536 NewIdx->addComposite(SubReg.first, SubIdx);
537 }
538 }
539 }
540
computeSuperRegs(CodeGenRegBank & RegBank)541 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
542 // Only visit each register once.
543 if (SuperRegsComplete)
544 return;
545 SuperRegsComplete = true;
546
547 // Make sure all sub-registers have been visited first, so the super-reg
548 // lists will be topologically ordered.
549 for (auto SubReg : SubRegs)
550 SubReg.second->computeSuperRegs(RegBank);
551
552 // Now add this as a super-register on all sub-registers.
553 // Also compute the TopoSigId in post-order.
554 TopoSigId Id;
555 for (auto SubReg : SubRegs) {
556 // Topological signature computed from SubIdx, TopoId(SubReg).
557 // Loops and idempotent indices have TopoSig = ~0u.
558 Id.push_back(SubReg.first->EnumValue);
559 Id.push_back(SubReg.second->TopoSig);
560
561 // Don't add duplicate entries.
562 if (!SubReg.second->SuperRegs.empty() &&
563 SubReg.second->SuperRegs.back() == this)
564 continue;
565 SubReg.second->SuperRegs.push_back(this);
566 }
567 TopoSig = RegBank.getTopoSig(Id);
568 }
569
570 void
addSubRegsPreOrder(SetVector<const CodeGenRegister * > & OSet,CodeGenRegBank & RegBank) const571 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
572 CodeGenRegBank &RegBank) const {
573 assert(SubRegsComplete && "Must precompute sub-registers");
574 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
575 CodeGenRegister *SR = ExplicitSubRegs[i];
576 if (OSet.insert(SR))
577 SR->addSubRegsPreOrder(OSet, RegBank);
578 }
579 // Add any secondary sub-registers that weren't part of the explicit tree.
580 for (auto SubReg : SubRegs)
581 OSet.insert(SubReg.second);
582 }
583
584 // Get the sum of this register's unit weights.
getWeight(const CodeGenRegBank & RegBank) const585 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
586 unsigned Weight = 0;
587 for (unsigned RegUnit : RegUnits) {
588 Weight += RegBank.getRegUnit(RegUnit).Weight;
589 }
590 return Weight;
591 }
592
593 //===----------------------------------------------------------------------===//
594 // RegisterTuples
595 //===----------------------------------------------------------------------===//
596
597 // A RegisterTuples def is used to generate pseudo-registers from lists of
598 // sub-registers. We provide a SetTheory expander class that returns the new
599 // registers.
600 namespace {
601
602 struct TupleExpander : SetTheory::Expander {
603 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
604 // the synthesized definitions for their lifetime.
605 std::vector<std::unique_ptr<Record>> &SynthDefs;
606
TupleExpander__anon523724c10211::TupleExpander607 TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
608 : SynthDefs(SynthDefs) {}
609
expand__anon523724c10211::TupleExpander610 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
611 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
612 unsigned Dim = Indices.size();
613 ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
614 if (Dim != SubRegs->size())
615 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
616 if (Dim < 2)
617 PrintFatalError(Def->getLoc(),
618 "Tuples must have at least 2 sub-registers");
619
620 // Evaluate the sub-register lists to be zipped.
621 unsigned Length = ~0u;
622 SmallVector<SetTheory::RecSet, 4> Lists(Dim);
623 for (unsigned i = 0; i != Dim; ++i) {
624 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
625 Length = std::min(Length, unsigned(Lists[i].size()));
626 }
627
628 if (Length == 0)
629 return;
630
631 // Precompute some types.
632 Record *RegisterCl = Def->getRecords().getClass("Register");
633 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
634 std::vector<StringRef> RegNames =
635 Def->getValueAsListOfStrings("RegAsmNames");
636
637 // Zip them up.
638 for (unsigned n = 0; n != Length; ++n) {
639 std::string Name;
640 Record *Proto = Lists[0][n];
641 std::vector<Init*> Tuple;
642 for (unsigned i = 0; i != Dim; ++i) {
643 Record *Reg = Lists[i][n];
644 if (i) Name += '_';
645 Name += Reg->getName();
646 Tuple.push_back(DefInit::get(Reg));
647 }
648
649 // Take the cost list of the first register in the tuple.
650 ListInit *CostList = Proto->getValueAsListInit("CostPerUse");
651 SmallVector<Init *, 2> CostPerUse;
652 CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end());
653
654 StringInit *AsmName = StringInit::get("");
655 if (!RegNames.empty()) {
656 if (RegNames.size() <= n)
657 PrintFatalError(Def->getLoc(),
658 "Register tuple definition missing name for '" +
659 Name + "'.");
660 AsmName = StringInit::get(RegNames[n]);
661 }
662
663 // Create a new Record representing the synthesized register. This record
664 // is only for consumption by CodeGenRegister, it is not added to the
665 // RecordKeeper.
666 SynthDefs.emplace_back(
667 std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
668 Record *NewReg = SynthDefs.back().get();
669 Elts.insert(NewReg);
670
671 // Copy Proto super-classes.
672 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
673 for (const auto &SuperPair : Supers)
674 NewReg->addSuperClass(SuperPair.first, SuperPair.second);
675
676 // Copy Proto fields.
677 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
678 RecordVal RV = Proto->getValues()[i];
679
680 // Skip existing fields, like NAME.
681 if (NewReg->getValue(RV.getNameInit()))
682 continue;
683
684 StringRef Field = RV.getName();
685
686 // Replace the sub-register list with Tuple.
687 if (Field == "SubRegs")
688 RV.setValue(ListInit::get(Tuple, RegisterRecTy));
689
690 if (Field == "AsmName")
691 RV.setValue(AsmName);
692
693 // CostPerUse is aggregated from all Tuple members.
694 if (Field == "CostPerUse")
695 RV.setValue(ListInit::get(CostPerUse, CostList->getElementType()));
696
697 // Composite registers are always covered by sub-registers.
698 if (Field == "CoveredBySubRegs")
699 RV.setValue(BitInit::get(true));
700
701 // Copy fields from the RegisterTuples def.
702 if (Field == "SubRegIndices" ||
703 Field == "CompositeIndices") {
704 NewReg->addValue(*Def->getValue(Field));
705 continue;
706 }
707
708 // Some fields get their default uninitialized value.
709 if (Field == "DwarfNumbers" ||
710 Field == "DwarfAlias" ||
711 Field == "Aliases") {
712 if (const RecordVal *DefRV = RegisterCl->getValue(Field))
713 NewReg->addValue(*DefRV);
714 continue;
715 }
716
717 // Everything else is copied from Proto.
718 NewReg->addValue(RV);
719 }
720 }
721 }
722 };
723
724 } // end anonymous namespace
725
726 //===----------------------------------------------------------------------===//
727 // CodeGenRegisterClass
728 //===----------------------------------------------------------------------===//
729
sortAndUniqueRegisters(CodeGenRegister::Vec & M)730 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
731 llvm::sort(M, deref<std::less<>>());
732 M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end());
733 }
734
CodeGenRegisterClass(CodeGenRegBank & RegBank,Record * R)735 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
736 : TheDef(R), Name(std::string(R->getName())),
737 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), TSFlags(0) {
738 GeneratePressureSet = R->getValueAsBit("GeneratePressureSet");
739 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
740 if (TypeList.empty())
741 PrintFatalError(R->getLoc(), "RegTypes list must not be empty!");
742 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
743 Record *Type = TypeList[i];
744 if (!Type->isSubClassOf("ValueType"))
745 PrintFatalError(R->getLoc(),
746 "RegTypes list member '" + Type->getName() +
747 "' does not derive from the ValueType class!");
748 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
749 }
750
751 // Allocation order 0 is the full set. AltOrders provides others.
752 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
753 ListInit *AltOrders = R->getValueAsListInit("AltOrders");
754 Orders.resize(1 + AltOrders->size());
755
756 // Default allocation order always contains all registers.
757 Artificial = true;
758 for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
759 Orders[0].push_back((*Elements)[i]);
760 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
761 Members.push_back(Reg);
762 Artificial &= Reg->Artificial;
763 TopoSigs.set(Reg->getTopoSig());
764 }
765 sortAndUniqueRegisters(Members);
766
767 // Alternative allocation orders may be subsets.
768 SetTheory::RecSet Order;
769 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
770 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
771 Orders[1 + i].append(Order.begin(), Order.end());
772 // Verify that all altorder members are regclass members.
773 while (!Order.empty()) {
774 CodeGenRegister *Reg = RegBank.getReg(Order.back());
775 Order.pop_back();
776 if (!contains(Reg))
777 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
778 " is not a class member");
779 }
780 }
781
782 Namespace = R->getValueAsString("Namespace");
783
784 if (const RecordVal *RV = R->getValue("RegInfos"))
785 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
786 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
787 unsigned Size = R->getValueAsInt("Size");
788 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
789 "Impossible to determine register size");
790 if (!RSI.hasDefault()) {
791 RegSizeInfo RI;
792 RI.RegSize = RI.SpillSize = Size ? Size
793 : VTs[0].getSimple().getSizeInBits();
794 RI.SpillAlignment = R->getValueAsInt("Alignment");
795 RSI.insertRegSizeForMode(DefaultMode, RI);
796 }
797
798 CopyCost = R->getValueAsInt("CopyCost");
799 Allocatable = R->getValueAsBit("isAllocatable");
800 AltOrderSelect = R->getValueAsString("AltOrderSelect");
801 int AllocationPriority = R->getValueAsInt("AllocationPriority");
802 if (AllocationPriority < 0 || AllocationPriority > 63)
803 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
804 this->AllocationPriority = AllocationPriority;
805
806 BitsInit *TSF = R->getValueAsBitsInit("TSFlags");
807 for (unsigned I = 0, E = TSF->getNumBits(); I != E; ++I) {
808 BitInit *Bit = cast<BitInit>(TSF->getBit(I));
809 TSFlags |= uint8_t(Bit->getValue()) << I;
810 }
811 }
812
813 // Create an inferred register class that was missing from the .td files.
814 // Most properties will be inherited from the closest super-class after the
815 // class structure has been computed.
CodeGenRegisterClass(CodeGenRegBank & RegBank,StringRef Name,Key Props)816 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
817 StringRef Name, Key Props)
818 : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)),
819 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI),
820 CopyCost(0), Allocatable(true), AllocationPriority(0), TSFlags(0) {
821 Artificial = true;
822 GeneratePressureSet = false;
823 for (const auto R : Members) {
824 TopoSigs.set(R->getTopoSig());
825 Artificial &= R->Artificial;
826 }
827 }
828
829 // Compute inherited propertied for a synthesized register class.
inheritProperties(CodeGenRegBank & RegBank)830 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
831 assert(!getDef() && "Only synthesized classes can inherit properties");
832 assert(!SuperClasses.empty() && "Synthesized class without super class");
833
834 // The last super-class is the smallest one.
835 CodeGenRegisterClass &Super = *SuperClasses.back();
836
837 // Most properties are copied directly.
838 // Exceptions are members, size, and alignment
839 Namespace = Super.Namespace;
840 VTs = Super.VTs;
841 CopyCost = Super.CopyCost;
842 // Check for allocatable superclasses.
843 Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) {
844 return S->Allocatable;
845 });
846 AltOrderSelect = Super.AltOrderSelect;
847 AllocationPriority = Super.AllocationPriority;
848 TSFlags = Super.TSFlags;
849 GeneratePressureSet |= Super.GeneratePressureSet;
850
851 // Copy all allocation orders, filter out foreign registers from the larger
852 // super-class.
853 Orders.resize(Super.Orders.size());
854 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
855 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
856 if (contains(RegBank.getReg(Super.Orders[i][j])))
857 Orders[i].push_back(Super.Orders[i][j]);
858 }
859
contains(const CodeGenRegister * Reg) const860 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
861 return std::binary_search(Members.begin(), Members.end(), Reg,
862 deref<std::less<>>());
863 }
864
getWeight(const CodeGenRegBank & RegBank) const865 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const {
866 if (TheDef && !TheDef->isValueUnset("Weight"))
867 return TheDef->getValueAsInt("Weight");
868
869 if (Members.empty() || Artificial)
870 return 0;
871
872 return (*Members.begin())->getWeight(RegBank);
873 }
874
875 namespace llvm {
876
operator <<(raw_ostream & OS,const CodeGenRegisterClass::Key & K)877 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
878 OS << "{ " << K.RSI;
879 for (const auto R : *K.Members)
880 OS << ", " << R->getName();
881 return OS << " }";
882 }
883
884 } // end namespace llvm
885
886 // This is a simple lexicographical order that can be used to search for sets.
887 // It is not the same as the topological order provided by TopoOrderRC.
888 bool CodeGenRegisterClass::Key::
operator <(const CodeGenRegisterClass::Key & B) const889 operator<(const CodeGenRegisterClass::Key &B) const {
890 assert(Members && B.Members);
891 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
892 }
893
894 // Returns true if RC is a strict subclass.
895 // RC is a sub-class of this class if it is a valid replacement for any
896 // instruction operand where a register of this classis required. It must
897 // satisfy these conditions:
898 //
899 // 1. All RC registers are also in this.
900 // 2. The RC spill size must not be smaller than our spill size.
901 // 3. RC spill alignment must be compatible with ours.
902 //
testSubClass(const CodeGenRegisterClass * A,const CodeGenRegisterClass * B)903 static bool testSubClass(const CodeGenRegisterClass *A,
904 const CodeGenRegisterClass *B) {
905 return A->RSI.isSubClassOf(B->RSI) &&
906 std::includes(A->getMembers().begin(), A->getMembers().end(),
907 B->getMembers().begin(), B->getMembers().end(),
908 deref<std::less<>>());
909 }
910
911 /// Sorting predicate for register classes. This provides a topological
912 /// ordering that arranges all register classes before their sub-classes.
913 ///
914 /// Register classes with the same registers, spill size, and alignment form a
915 /// clique. They will be ordered alphabetically.
916 ///
TopoOrderRC(const CodeGenRegisterClass & PA,const CodeGenRegisterClass & PB)917 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
918 const CodeGenRegisterClass &PB) {
919 auto *A = &PA;
920 auto *B = &PB;
921 if (A == B)
922 return false;
923
924 if (A->RSI < B->RSI)
925 return true;
926 if (A->RSI != B->RSI)
927 return false;
928
929 // Order by descending set size. Note that the classes' allocation order may
930 // not have been computed yet. The Members set is always vaild.
931 if (A->getMembers().size() > B->getMembers().size())
932 return true;
933 if (A->getMembers().size() < B->getMembers().size())
934 return false;
935
936 // Finally order by name as a tie breaker.
937 return StringRef(A->getName()) < B->getName();
938 }
939
getQualifiedName() const940 std::string CodeGenRegisterClass::getQualifiedName() const {
941 if (Namespace.empty())
942 return getName();
943 else
944 return (Namespace + "::" + getName()).str();
945 }
946
947 // Compute sub-classes of all register classes.
948 // Assume the classes are ordered topologically.
computeSubClasses(CodeGenRegBank & RegBank)949 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
950 auto &RegClasses = RegBank.getRegClasses();
951
952 // Visit backwards so sub-classes are seen first.
953 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
954 CodeGenRegisterClass &RC = *I;
955 RC.SubClasses.resize(RegClasses.size());
956 RC.SubClasses.set(RC.EnumValue);
957 if (RC.Artificial)
958 continue;
959
960 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
961 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
962 CodeGenRegisterClass &SubRC = *I2;
963 if (RC.SubClasses.test(SubRC.EnumValue))
964 continue;
965 if (!testSubClass(&RC, &SubRC))
966 continue;
967 // SubRC is a sub-class. Grap all its sub-classes so we won't have to
968 // check them again.
969 RC.SubClasses |= SubRC.SubClasses;
970 }
971
972 // Sweep up missed clique members. They will be immediately preceding RC.
973 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
974 RC.SubClasses.set(I2->EnumValue);
975 }
976
977 // Compute the SuperClasses lists from the SubClasses vectors.
978 for (auto &RC : RegClasses) {
979 const BitVector &SC = RC.getSubClasses();
980 auto I = RegClasses.begin();
981 for (int s = 0, next_s = SC.find_first(); next_s != -1;
982 next_s = SC.find_next(s)) {
983 std::advance(I, next_s - s);
984 s = next_s;
985 if (&*I == &RC)
986 continue;
987 I->SuperClasses.push_back(&RC);
988 }
989 }
990
991 // With the class hierarchy in place, let synthesized register classes inherit
992 // properties from their closest super-class. The iteration order here can
993 // propagate properties down multiple levels.
994 for (auto &RC : RegClasses)
995 if (!RC.getDef())
996 RC.inheritProperties(RegBank);
997 }
998
999 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
getMatchingSubClassWithSubRegs(CodeGenRegBank & RegBank,const CodeGenSubRegIndex * SubIdx) const1000 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
1001 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
1002 auto SizeOrder = [this](const CodeGenRegisterClass *A,
1003 const CodeGenRegisterClass *B) {
1004 // If there are multiple, identical register classes, prefer the original
1005 // register class.
1006 if (A == B)
1007 return false;
1008 if (A->getMembers().size() == B->getMembers().size())
1009 return A == this;
1010 return A->getMembers().size() > B->getMembers().size();
1011 };
1012
1013 auto &RegClasses = RegBank.getRegClasses();
1014
1015 // Find all the subclasses of this one that fully support the sub-register
1016 // index and order them by size. BiggestSuperRC should always be first.
1017 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
1018 if (!BiggestSuperRegRC)
1019 return None;
1020 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1021 std::vector<CodeGenRegisterClass *> SuperRegRCs;
1022 for (auto &RC : RegClasses)
1023 if (SuperRegRCsBV[RC.EnumValue])
1024 SuperRegRCs.emplace_back(&RC);
1025 llvm::stable_sort(SuperRegRCs, SizeOrder);
1026
1027 assert(SuperRegRCs.front() == BiggestSuperRegRC &&
1028 "Biggest class wasn't first");
1029
1030 // Find all the subreg classes and order them by size too.
1031 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1032 for (auto &RC: RegClasses) {
1033 BitVector SuperRegClassesBV(RegClasses.size());
1034 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1035 if (SuperRegClassesBV.any())
1036 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1037 }
1038 llvm::sort(SuperRegClasses,
1039 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1040 const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1041 return SizeOrder(A.first, B.first);
1042 });
1043
1044 // Find the biggest subclass and subreg class such that R:subidx is in the
1045 // subreg class for all R in subclass.
1046 //
1047 // For example:
1048 // All registers in X86's GR64 have a sub_32bit subregister but no class
1049 // exists that contains all the 32-bit subregisters because GR64 contains RIP
1050 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1051 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1052 // having excluded RIP, we are able to find a SubRegRC (GR32).
1053 CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1054 CodeGenRegisterClass *SubRegRC = nullptr;
1055 for (auto *SuperRegRC : SuperRegRCs) {
1056 for (const auto &SuperRegClassPair : SuperRegClasses) {
1057 const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1058 if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1059 SubRegRC = SuperRegClassPair.first;
1060 ChosenSuperRegClass = SuperRegRC;
1061
1062 // If SubRegRC is bigger than SuperRegRC then there are members of
1063 // SubRegRC that don't have super registers via SubIdx. Keep looking to
1064 // find a better fit and fall back on this one if there isn't one.
1065 //
1066 // This is intended to prevent X86 from making odd choices such as
1067 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1068 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1069 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1070 // mapping.
1071 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1072 return std::make_pair(ChosenSuperRegClass, SubRegRC);
1073 }
1074 }
1075
1076 // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1077 // registers, then we're done.
1078 if (ChosenSuperRegClass)
1079 return std::make_pair(ChosenSuperRegClass, SubRegRC);
1080 }
1081
1082 return None;
1083 }
1084
getSuperRegClasses(const CodeGenSubRegIndex * SubIdx,BitVector & Out) const1085 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1086 BitVector &Out) const {
1087 auto FindI = SuperRegClasses.find(SubIdx);
1088 if (FindI == SuperRegClasses.end())
1089 return;
1090 for (CodeGenRegisterClass *RC : FindI->second)
1091 Out.set(RC->EnumValue);
1092 }
1093
1094 // Populate a unique sorted list of units from a register set.
buildRegUnitSet(const CodeGenRegBank & RegBank,std::vector<unsigned> & RegUnits) const1095 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1096 std::vector<unsigned> &RegUnits) const {
1097 std::vector<unsigned> TmpUnits;
1098 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1099 const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1100 if (!RU.Artificial)
1101 TmpUnits.push_back(*UnitI);
1102 }
1103 llvm::sort(TmpUnits);
1104 std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1105 std::back_inserter(RegUnits));
1106 }
1107
1108 //===----------------------------------------------------------------------===//
1109 // CodeGenRegBank
1110 //===----------------------------------------------------------------------===//
1111
CodeGenRegBank(RecordKeeper & Records,const CodeGenHwModes & Modes)1112 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1113 const CodeGenHwModes &Modes) : CGH(Modes) {
1114 // Configure register Sets to understand register classes and tuples.
1115 Sets.addFieldExpander("RegisterClass", "MemberList");
1116 Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1117 Sets.addExpander("RegisterTuples",
1118 std::make_unique<TupleExpander>(SynthDefs));
1119
1120 // Read in the user-defined (named) sub-register indices.
1121 // More indices will be synthesized later.
1122 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1123 llvm::sort(SRIs, LessRecord());
1124 for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1125 getSubRegIdx(SRIs[i]);
1126 // Build composite maps from ComposedOf fields.
1127 for (auto &Idx : SubRegIndices)
1128 Idx.updateComponents(*this);
1129
1130 // Read in the register definitions.
1131 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
1132 llvm::sort(Regs, LessRecordRegister());
1133 // Assign the enumeration values.
1134 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1135 getReg(Regs[i]);
1136
1137 // Expand tuples and number the new registers.
1138 std::vector<Record*> Tups =
1139 Records.getAllDerivedDefinitions("RegisterTuples");
1140
1141 for (Record *R : Tups) {
1142 std::vector<Record *> TupRegs = *Sets.expand(R);
1143 llvm::sort(TupRegs, LessRecordRegister());
1144 for (Record *RC : TupRegs)
1145 getReg(RC);
1146 }
1147
1148 // Now all the registers are known. Build the object graph of explicit
1149 // register-register references.
1150 for (auto &Reg : Registers)
1151 Reg.buildObjectGraph(*this);
1152
1153 // Compute register name map.
1154 for (auto &Reg : Registers)
1155 // FIXME: This could just be RegistersByName[name] = register, except that
1156 // causes some failures in MIPS - perhaps they have duplicate register name
1157 // entries? (or maybe there's a reason for it - I don't know much about this
1158 // code, just drive-by refactoring)
1159 RegistersByName.insert(
1160 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1161
1162 // Precompute all sub-register maps.
1163 // This will create Composite entries for all inferred sub-register indices.
1164 for (auto &Reg : Registers)
1165 Reg.computeSubRegs(*this);
1166
1167 // Compute transitive closure of subregister index ConcatenationOf vectors
1168 // and initialize ConcatIdx map.
1169 for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1170 SRI.computeConcatTransitiveClosure();
1171 if (!SRI.ConcatenationOf.empty())
1172 ConcatIdx.insert(std::make_pair(
1173 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1174 SRI.ConcatenationOf.end()), &SRI));
1175 }
1176
1177 // Infer even more sub-registers by combining leading super-registers.
1178 for (auto &Reg : Registers)
1179 if (Reg.CoveredBySubRegs)
1180 Reg.computeSecondarySubRegs(*this);
1181
1182 // After the sub-register graph is complete, compute the topologically
1183 // ordered SuperRegs list.
1184 for (auto &Reg : Registers)
1185 Reg.computeSuperRegs(*this);
1186
1187 // For each pair of Reg:SR, if both are non-artificial, mark the
1188 // corresponding sub-register index as non-artificial.
1189 for (auto &Reg : Registers) {
1190 if (Reg.Artificial)
1191 continue;
1192 for (auto P : Reg.getSubRegs()) {
1193 const CodeGenRegister *SR = P.second;
1194 if (!SR->Artificial)
1195 P.first->Artificial = false;
1196 }
1197 }
1198
1199 // Native register units are associated with a leaf register. They've all been
1200 // discovered now.
1201 NumNativeRegUnits = RegUnits.size();
1202
1203 // Read in register class definitions.
1204 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1205 if (RCs.empty())
1206 PrintFatalError("No 'RegisterClass' subclasses defined!");
1207
1208 // Allocate user-defined register classes.
1209 for (auto *R : RCs) {
1210 RegClasses.emplace_back(*this, R);
1211 CodeGenRegisterClass &RC = RegClasses.back();
1212 if (!RC.Artificial)
1213 addToMaps(&RC);
1214 }
1215
1216 // Infer missing classes to create a full algebra.
1217 computeInferredRegisterClasses();
1218
1219 // Order register classes topologically and assign enum values.
1220 RegClasses.sort(TopoOrderRC);
1221 unsigned i = 0;
1222 for (auto &RC : RegClasses)
1223 RC.EnumValue = i++;
1224 CodeGenRegisterClass::computeSubClasses(*this);
1225 }
1226
1227 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1228 CodeGenSubRegIndex*
createSubRegIndex(StringRef Name,StringRef Namespace)1229 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1230 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1231 return &SubRegIndices.back();
1232 }
1233
getSubRegIdx(Record * Def)1234 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1235 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1236 if (Idx)
1237 return Idx;
1238 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1239 Idx = &SubRegIndices.back();
1240 return Idx;
1241 }
1242
1243 const CodeGenSubRegIndex *
findSubRegIdx(const Record * Def) const1244 CodeGenRegBank::findSubRegIdx(const Record* Def) const {
1245 return Def2SubRegIdx.lookup(Def);
1246 }
1247
getReg(Record * Def)1248 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1249 CodeGenRegister *&Reg = Def2Reg[Def];
1250 if (Reg)
1251 return Reg;
1252 Registers.emplace_back(Def, Registers.size() + 1);
1253 Reg = &Registers.back();
1254 return Reg;
1255 }
1256
addToMaps(CodeGenRegisterClass * RC)1257 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1258 if (Record *Def = RC->getDef())
1259 Def2RC.insert(std::make_pair(Def, RC));
1260
1261 // Duplicate classes are rejected by insert().
1262 // That's OK, we only care about the properties handled by CGRC::Key.
1263 CodeGenRegisterClass::Key K(*RC);
1264 Key2RC.insert(std::make_pair(K, RC));
1265 }
1266
1267 // Create a synthetic sub-class if it is missing.
1268 CodeGenRegisterClass*
getOrCreateSubClass(const CodeGenRegisterClass * RC,const CodeGenRegister::Vec * Members,StringRef Name)1269 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1270 const CodeGenRegister::Vec *Members,
1271 StringRef Name) {
1272 // Synthetic sub-class has the same size and alignment as RC.
1273 CodeGenRegisterClass::Key K(Members, RC->RSI);
1274 RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1275 if (FoundI != Key2RC.end())
1276 return FoundI->second;
1277
1278 // Sub-class doesn't exist, create a new one.
1279 RegClasses.emplace_back(*this, Name, K);
1280 addToMaps(&RegClasses.back());
1281 return &RegClasses.back();
1282 }
1283
getRegClass(const Record * Def) const1284 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const {
1285 if (CodeGenRegisterClass *RC = Def2RC.lookup(Def))
1286 return RC;
1287
1288 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1289 }
1290
1291 CodeGenSubRegIndex*
getCompositeSubRegIndex(CodeGenSubRegIndex * A,CodeGenSubRegIndex * B)1292 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1293 CodeGenSubRegIndex *B) {
1294 // Look for an existing entry.
1295 CodeGenSubRegIndex *Comp = A->compose(B);
1296 if (Comp)
1297 return Comp;
1298
1299 // None exists, synthesize one.
1300 std::string Name = A->getName() + "_then_" + B->getName();
1301 Comp = createSubRegIndex(Name, A->getNamespace());
1302 A->addComposite(B, Comp);
1303 return Comp;
1304 }
1305
1306 CodeGenSubRegIndex *CodeGenRegBank::
getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *,8> & Parts)1307 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1308 assert(Parts.size() > 1 && "Need two parts to concatenate");
1309 #ifndef NDEBUG
1310 for (CodeGenSubRegIndex *Idx : Parts) {
1311 assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1312 }
1313 #endif
1314
1315 // Look for an existing entry.
1316 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1317 if (Idx)
1318 return Idx;
1319
1320 // None exists, synthesize one.
1321 std::string Name = Parts.front()->getName();
1322 // Determine whether all parts are contiguous.
1323 bool isContinuous = true;
1324 unsigned Size = Parts.front()->Size;
1325 unsigned LastOffset = Parts.front()->Offset;
1326 unsigned LastSize = Parts.front()->Size;
1327 for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1328 Name += '_';
1329 Name += Parts[i]->getName();
1330 Size += Parts[i]->Size;
1331 if (Parts[i]->Offset != (LastOffset + LastSize))
1332 isContinuous = false;
1333 LastOffset = Parts[i]->Offset;
1334 LastSize = Parts[i]->Size;
1335 }
1336 Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1337 Idx->Size = Size;
1338 Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1339 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1340 return Idx;
1341 }
1342
computeComposites()1343 void CodeGenRegBank::computeComposites() {
1344 using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;
1345
1346 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1347 // register to (sub)register associated with the action of the left-hand
1348 // side subregister.
1349 std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
1350 for (const CodeGenRegister &R : Registers) {
1351 const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1352 for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
1353 SubRegAction[P.first].insert({&R, P.second});
1354 }
1355
1356 // Calculate the composition of two subregisters as compositions of their
1357 // associated actions.
1358 auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
1359 const CodeGenSubRegIndex *Sub2) {
1360 RegMap C;
1361 const RegMap &Img1 = SubRegAction.at(Sub1);
1362 const RegMap &Img2 = SubRegAction.at(Sub2);
1363 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
1364 auto F = Img2.find(P.second);
1365 if (F != Img2.end())
1366 C.insert({P.first, F->second});
1367 }
1368 return C;
1369 };
1370
1371 // Check if the two maps agree on the intersection of their domains.
1372 auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
1373 // Technically speaking, an empty map agrees with any other map, but
1374 // this could flag false positives. We're interested in non-vacuous
1375 // agreements.
1376 if (Map1.empty() || Map2.empty())
1377 return false;
1378 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
1379 auto F = Map2.find(P.first);
1380 if (F == Map2.end() || P.second != F->second)
1381 return false;
1382 }
1383 return true;
1384 };
1385
1386 using CompositePair = std::pair<const CodeGenSubRegIndex*,
1387 const CodeGenSubRegIndex*>;
1388 SmallSet<CompositePair,4> UserDefined;
1389 for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1390 for (auto P : Idx.getComposites())
1391 UserDefined.insert(std::make_pair(&Idx, P.first));
1392
1393 // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1394 // and many registers will share TopoSigs on regular architectures.
1395 BitVector TopoSigs(getNumTopoSigs());
1396
1397 for (const auto &Reg1 : Registers) {
1398 // Skip identical subreg structures already processed.
1399 if (TopoSigs.test(Reg1.getTopoSig()))
1400 continue;
1401 TopoSigs.set(Reg1.getTopoSig());
1402
1403 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1404 for (auto I1 : SRM1) {
1405 CodeGenSubRegIndex *Idx1 = I1.first;
1406 CodeGenRegister *Reg2 = I1.second;
1407 // Ignore identity compositions.
1408 if (&Reg1 == Reg2)
1409 continue;
1410 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1411 // Try composing Idx1 with another SubRegIndex.
1412 for (auto I2 : SRM2) {
1413 CodeGenSubRegIndex *Idx2 = I2.first;
1414 CodeGenRegister *Reg3 = I2.second;
1415 // Ignore identity compositions.
1416 if (Reg2 == Reg3)
1417 continue;
1418 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1419 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1420 assert(Idx3 && "Sub-register doesn't have an index");
1421
1422 // Conflicting composition? Emit a warning but allow it.
1423 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
1424 // If the composition was not user-defined, always emit a warning.
1425 if (!UserDefined.count({Idx1, Idx2}) ||
1426 agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1427 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1428 " and " + Idx2->getQualifiedName() +
1429 " compose ambiguously as " + Prev->getQualifiedName() +
1430 " or " + Idx3->getQualifiedName());
1431 }
1432 }
1433 }
1434 }
1435 }
1436
1437 // Compute lane masks. This is similar to register units, but at the
1438 // sub-register index level. Each bit in the lane mask is like a register unit
1439 // class, and two lane masks will have a bit in common if two sub-register
1440 // indices overlap in some register.
1441 //
1442 // Conservatively share a lane mask bit if two sub-register indices overlap in
1443 // some registers, but not in others. That shouldn't happen a lot.
computeSubRegLaneMasks()1444 void CodeGenRegBank::computeSubRegLaneMasks() {
1445 // First assign individual bits to all the leaf indices.
1446 unsigned Bit = 0;
1447 // Determine mask of lanes that cover their registers.
1448 CoveringLanes = LaneBitmask::getAll();
1449 for (auto &Idx : SubRegIndices) {
1450 if (Idx.getComposites().empty()) {
1451 if (Bit > LaneBitmask::BitWidth) {
1452 PrintFatalError(
1453 Twine("Ran out of lanemask bits to represent subregister ")
1454 + Idx.getName());
1455 }
1456 Idx.LaneMask = LaneBitmask::getLane(Bit);
1457 ++Bit;
1458 } else {
1459 Idx.LaneMask = LaneBitmask::getNone();
1460 }
1461 }
1462
1463 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1464 // here is that for each possible target subregister we look at the leafs
1465 // in the subregister graph that compose for this target and create
1466 // transformation sequences for the lanemasks. Each step in the sequence
1467 // consists of a bitmask and a bitrotate operation. As the rotation amounts
1468 // are usually the same for many subregisters we can easily combine the steps
1469 // by combining the masks.
1470 for (const auto &Idx : SubRegIndices) {
1471 const auto &Composites = Idx.getComposites();
1472 auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1473
1474 if (Composites.empty()) {
1475 // Moving from a class with no subregisters we just had a single lane:
1476 // The subregister must be a leaf subregister and only occupies 1 bit.
1477 // Move the bit from the class without subregisters into that position.
1478 unsigned DstBit = Idx.LaneMask.getHighestLane();
1479 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1480 "Must be a leaf subregister");
1481 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1482 LaneTransforms.push_back(MaskRol);
1483 } else {
1484 // Go through all leaf subregisters and find the ones that compose with
1485 // Idx. These make out all possible valid bits in the lane mask we want to
1486 // transform. Looking only at the leafs ensure that only a single bit in
1487 // the mask is set.
1488 unsigned NextBit = 0;
1489 for (auto &Idx2 : SubRegIndices) {
1490 // Skip non-leaf subregisters.
1491 if (!Idx2.getComposites().empty())
1492 continue;
1493 // Replicate the behaviour from the lane mask generation loop above.
1494 unsigned SrcBit = NextBit;
1495 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1496 if (NextBit < LaneBitmask::BitWidth-1)
1497 ++NextBit;
1498 assert(Idx2.LaneMask == SrcMask);
1499
1500 // Get the composed subregister if there is any.
1501 auto C = Composites.find(&Idx2);
1502 if (C == Composites.end())
1503 continue;
1504 const CodeGenSubRegIndex *Composite = C->second;
1505 // The Composed subreg should be a leaf subreg too
1506 assert(Composite->getComposites().empty());
1507
1508 // Create Mask+Rotate operation and merge with existing ops if possible.
1509 unsigned DstBit = Composite->LaneMask.getHighestLane();
1510 int Shift = DstBit - SrcBit;
1511 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1512 : LaneBitmask::BitWidth + Shift;
1513 for (auto &I : LaneTransforms) {
1514 if (I.RotateLeft == RotateLeft) {
1515 I.Mask |= SrcMask;
1516 SrcMask = LaneBitmask::getNone();
1517 }
1518 }
1519 if (SrcMask.any()) {
1520 MaskRolPair MaskRol = { SrcMask, RotateLeft };
1521 LaneTransforms.push_back(MaskRol);
1522 }
1523 }
1524 }
1525
1526 // Optimize if the transformation consists of one step only: Set mask to
1527 // 0xffffffff (including some irrelevant invalid bits) so that it should
1528 // merge with more entries later while compressing the table.
1529 if (LaneTransforms.size() == 1)
1530 LaneTransforms[0].Mask = LaneBitmask::getAll();
1531
1532 // Further compression optimization: For invalid compositions resulting
1533 // in a sequence with 0 entries we can just pick any other. Choose
1534 // Mask 0xffffffff with Rotation 0.
1535 if (LaneTransforms.size() == 0) {
1536 MaskRolPair P = { LaneBitmask::getAll(), 0 };
1537 LaneTransforms.push_back(P);
1538 }
1539 }
1540
1541 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1542 // by the sub-register graph? This doesn't occur in any known targets.
1543
1544 // Inherit lanes from composites.
1545 for (const auto &Idx : SubRegIndices) {
1546 LaneBitmask Mask = Idx.computeLaneMask();
1547 // If some super-registers without CoveredBySubRegs use this index, we can
1548 // no longer assume that the lanes are covering their registers.
1549 if (!Idx.AllSuperRegsCovered)
1550 CoveringLanes &= ~Mask;
1551 }
1552
1553 // Compute lane mask combinations for register classes.
1554 for (auto &RegClass : RegClasses) {
1555 LaneBitmask LaneMask;
1556 for (const auto &SubRegIndex : SubRegIndices) {
1557 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1558 continue;
1559 LaneMask |= SubRegIndex.LaneMask;
1560 }
1561
1562 // For classes without any subregisters set LaneMask to 1 instead of 0.
1563 // This makes it easier for client code to handle classes uniformly.
1564 if (LaneMask.none())
1565 LaneMask = LaneBitmask::getLane(0);
1566
1567 RegClass.LaneMask = LaneMask;
1568 }
1569 }
1570
1571 namespace {
1572
1573 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1574 // the transitive closure of the union of overlapping register
1575 // classes. Together, the UberRegSets form a partition of the registers. If we
1576 // consider overlapping register classes to be connected, then each UberRegSet
1577 // is a set of connected components.
1578 //
1579 // An UberRegSet will likely be a horizontal slice of register names of
1580 // the same width. Nontrivial subregisters should then be in a separate
1581 // UberRegSet. But this property isn't required for valid computation of
1582 // register unit weights.
1583 //
1584 // A Weight field caches the max per-register unit weight in each UberRegSet.
1585 //
1586 // A set of SingularDeterminants flags single units of some register in this set
1587 // for which the unit weight equals the set weight. These units should not have
1588 // their weight increased.
1589 struct UberRegSet {
1590 CodeGenRegister::Vec Regs;
1591 unsigned Weight = 0;
1592 CodeGenRegister::RegUnitList SingularDeterminants;
1593
1594 UberRegSet() = default;
1595 };
1596
1597 } // end anonymous namespace
1598
1599 // Partition registers into UberRegSets, where each set is the transitive
1600 // closure of the union of overlapping register classes.
1601 //
1602 // UberRegSets[0] is a special non-allocatable set.
computeUberSets(std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,CodeGenRegBank & RegBank)1603 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1604 std::vector<UberRegSet*> &RegSets,
1605 CodeGenRegBank &RegBank) {
1606 const auto &Registers = RegBank.getRegisters();
1607
1608 // The Register EnumValue is one greater than its index into Registers.
1609 assert(Registers.size() == Registers.back().EnumValue &&
1610 "register enum value mismatch");
1611
1612 // For simplicitly make the SetID the same as EnumValue.
1613 IntEqClasses UberSetIDs(Registers.size()+1);
1614 std::set<unsigned> AllocatableRegs;
1615 for (auto &RegClass : RegBank.getRegClasses()) {
1616 if (!RegClass.Allocatable)
1617 continue;
1618
1619 const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1620 if (Regs.empty())
1621 continue;
1622
1623 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1624 assert(USetID && "register number 0 is invalid");
1625
1626 AllocatableRegs.insert((*Regs.begin())->EnumValue);
1627 for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) {
1628 AllocatableRegs.insert(CGR->EnumValue);
1629 UberSetIDs.join(USetID, CGR->EnumValue);
1630 }
1631 }
1632 // Combine non-allocatable regs.
1633 for (const auto &Reg : Registers) {
1634 unsigned RegNum = Reg.EnumValue;
1635 if (AllocatableRegs.count(RegNum))
1636 continue;
1637
1638 UberSetIDs.join(0, RegNum);
1639 }
1640 UberSetIDs.compress();
1641
1642 // Make the first UberSet a special unallocatable set.
1643 unsigned ZeroID = UberSetIDs[0];
1644
1645 // Insert Registers into the UberSets formed by union-find.
1646 // Do not resize after this.
1647 UberSets.resize(UberSetIDs.getNumClasses());
1648 unsigned i = 0;
1649 for (const CodeGenRegister &Reg : Registers) {
1650 unsigned USetID = UberSetIDs[Reg.EnumValue];
1651 if (!USetID)
1652 USetID = ZeroID;
1653 else if (USetID == ZeroID)
1654 USetID = 0;
1655
1656 UberRegSet *USet = &UberSets[USetID];
1657 USet->Regs.push_back(&Reg);
1658 sortAndUniqueRegisters(USet->Regs);
1659 RegSets[i++] = USet;
1660 }
1661 }
1662
1663 // Recompute each UberSet weight after changing unit weights.
computeUberWeights(std::vector<UberRegSet> & UberSets,CodeGenRegBank & RegBank)1664 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1665 CodeGenRegBank &RegBank) {
1666 // Skip the first unallocatable set.
1667 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1668 E = UberSets.end(); I != E; ++I) {
1669
1670 // Initialize all unit weights in this set, and remember the max units/reg.
1671 const CodeGenRegister *Reg = nullptr;
1672 unsigned MaxWeight = 0, Weight = 0;
1673 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1674 if (Reg != UnitI.getReg()) {
1675 if (Weight > MaxWeight)
1676 MaxWeight = Weight;
1677 Reg = UnitI.getReg();
1678 Weight = 0;
1679 }
1680 if (!RegBank.getRegUnit(*UnitI).Artificial) {
1681 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1682 if (!UWeight) {
1683 UWeight = 1;
1684 RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1685 }
1686 Weight += UWeight;
1687 }
1688 }
1689 if (Weight > MaxWeight)
1690 MaxWeight = Weight;
1691 if (I->Weight != MaxWeight) {
1692 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1693 << MaxWeight;
1694 for (auto &Unit
1695 : I->Regs) dbgs()
1696 << " " << Unit->getName();
1697 dbgs() << "\n");
1698 // Update the set weight.
1699 I->Weight = MaxWeight;
1700 }
1701
1702 // Find singular determinants.
1703 for (const auto R : I->Regs) {
1704 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1705 I->SingularDeterminants |= R->getRegUnits();
1706 }
1707 }
1708 }
1709 }
1710
1711 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1712 // a register and its subregisters so that they have the same weight as their
1713 // UberSet. Self-recursion processes the subregister tree in postorder so
1714 // subregisters are normalized first.
1715 //
1716 // Side effects:
1717 // - creates new adopted register units
1718 // - causes superregisters to inherit adopted units
1719 // - increases the weight of "singular" units
1720 // - induces recomputation of UberWeights.
normalizeWeight(CodeGenRegister * Reg,std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,BitVector & NormalRegs,CodeGenRegister::RegUnitList & NormalUnits,CodeGenRegBank & RegBank)1721 static bool normalizeWeight(CodeGenRegister *Reg,
1722 std::vector<UberRegSet> &UberSets,
1723 std::vector<UberRegSet*> &RegSets,
1724 BitVector &NormalRegs,
1725 CodeGenRegister::RegUnitList &NormalUnits,
1726 CodeGenRegBank &RegBank) {
1727 NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1728 if (NormalRegs.test(Reg->EnumValue))
1729 return false;
1730 NormalRegs.set(Reg->EnumValue);
1731
1732 bool Changed = false;
1733 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1734 for (auto SRI : SRM) {
1735 if (SRI.second == Reg)
1736 continue; // self-cycles happen
1737
1738 Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs,
1739 NormalUnits, RegBank);
1740 }
1741 // Postorder register normalization.
1742
1743 // Inherit register units newly adopted by subregisters.
1744 if (Reg->inheritRegUnits(RegBank))
1745 computeUberWeights(UberSets, RegBank);
1746
1747 // Check if this register is too skinny for its UberRegSet.
1748 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1749
1750 unsigned RegWeight = Reg->getWeight(RegBank);
1751 if (UberSet->Weight > RegWeight) {
1752 // A register unit's weight can be adjusted only if it is the singular unit
1753 // for this register, has not been used to normalize a subregister's set,
1754 // and has not already been used to singularly determine this UberRegSet.
1755 unsigned AdjustUnit = *Reg->getRegUnits().begin();
1756 if (Reg->getRegUnits().count() != 1
1757 || hasRegUnit(NormalUnits, AdjustUnit)
1758 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1759 // We don't have an adjustable unit, so adopt a new one.
1760 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1761 Reg->adoptRegUnit(AdjustUnit);
1762 // Adopting a unit does not immediately require recomputing set weights.
1763 }
1764 else {
1765 // Adjust the existing single unit.
1766 if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1767 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1768 // The unit may be shared among sets and registers within this set.
1769 computeUberWeights(UberSets, RegBank);
1770 }
1771 Changed = true;
1772 }
1773
1774 // Mark these units normalized so superregisters can't change their weights.
1775 NormalUnits |= Reg->getRegUnits();
1776
1777 return Changed;
1778 }
1779
1780 // Compute a weight for each register unit created during getSubRegs.
1781 //
1782 // The goal is that two registers in the same class will have the same weight,
1783 // where each register's weight is defined as sum of its units' weights.
computeRegUnitWeights()1784 void CodeGenRegBank::computeRegUnitWeights() {
1785 std::vector<UberRegSet> UberSets;
1786 std::vector<UberRegSet*> RegSets(Registers.size());
1787 computeUberSets(UberSets, RegSets, *this);
1788 // UberSets and RegSets are now immutable.
1789
1790 computeUberWeights(UberSets, *this);
1791
1792 // Iterate over each Register, normalizing the unit weights until reaching
1793 // a fix point.
1794 unsigned NumIters = 0;
1795 for (bool Changed = true; Changed; ++NumIters) {
1796 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1797 Changed = false;
1798 for (auto &Reg : Registers) {
1799 CodeGenRegister::RegUnitList NormalUnits;
1800 BitVector NormalRegs;
1801 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1802 NormalUnits, *this);
1803 }
1804 }
1805 }
1806
1807 // Find a set in UniqueSets with the same elements as Set.
1808 // Return an iterator into UniqueSets.
1809 static std::vector<RegUnitSet>::const_iterator
findRegUnitSet(const std::vector<RegUnitSet> & UniqueSets,const RegUnitSet & Set)1810 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1811 const RegUnitSet &Set) {
1812 std::vector<RegUnitSet>::const_iterator
1813 I = UniqueSets.begin(), E = UniqueSets.end();
1814 for(;I != E; ++I) {
1815 if (I->Units == Set.Units)
1816 break;
1817 }
1818 return I;
1819 }
1820
1821 // Return true if the RUSubSet is a subset of RUSuperSet.
isRegUnitSubSet(const std::vector<unsigned> & RUSubSet,const std::vector<unsigned> & RUSuperSet)1822 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1823 const std::vector<unsigned> &RUSuperSet) {
1824 return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1825 RUSubSet.begin(), RUSubSet.end());
1826 }
1827
1828 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1829 /// but with one or two registers removed. We occasionally have registers like
1830 /// APSR and PC thrown in with the general registers. We also see many
1831 /// special-purpose register subsets, such as tail-call and Thumb
1832 /// encodings. Generating all possible overlapping sets is combinatorial and
1833 /// overkill for modeling pressure. Ideally we could fix this statically in
1834 /// tablegen by (1) having the target define register classes that only include
1835 /// the allocatable registers and marking other classes as non-allocatable and
1836 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1837 /// the purpose of pressure. However, we make an attempt to handle targets that
1838 /// are not nicely defined by merging nearly identical register unit sets
1839 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1840 /// set limit by filtering the reserved registers.
1841 ///
1842 /// Merge sets only if the units have the same weight. For example, on ARM,
1843 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1844 /// should not expand the S set to include D regs.
pruneUnitSets()1845 void CodeGenRegBank::pruneUnitSets() {
1846 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1847
1848 // Form an equivalence class of UnitSets with no significant difference.
1849 std::vector<unsigned> SuperSetIDs;
1850 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1851 SubIdx != EndIdx; ++SubIdx) {
1852 const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1853 unsigned SuperIdx = 0;
1854 for (; SuperIdx != EndIdx; ++SuperIdx) {
1855 if (SuperIdx == SubIdx)
1856 continue;
1857
1858 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1859 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1860 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1861 && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1862 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1863 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1864 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1865 << "\n");
1866 // We can pick any of the set names for the merged set. Go for the
1867 // shortest one to avoid picking the name of one of the classes that are
1868 // artificially created by tablegen. So "FPR128_lo" instead of
1869 // "QQQQ_with_qsub3_in_FPR128_lo".
1870 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1871 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1872 break;
1873 }
1874 }
1875 if (SuperIdx == EndIdx)
1876 SuperSetIDs.push_back(SubIdx);
1877 }
1878 // Populate PrunedUnitSets with each equivalence class's superset.
1879 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1880 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1881 unsigned SuperIdx = SuperSetIDs[i];
1882 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1883 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1884 }
1885 RegUnitSets.swap(PrunedUnitSets);
1886 }
1887
1888 // Create a RegUnitSet for each RegClass that contains all units in the class
1889 // including adopted units that are necessary to model register pressure. Then
1890 // iteratively compute RegUnitSets such that the union of any two overlapping
1891 // RegUnitSets is repreresented.
1892 //
1893 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1894 // RegUnitSet that is a superset of that RegUnitClass.
computeRegUnitSets()1895 void CodeGenRegBank::computeRegUnitSets() {
1896 assert(RegUnitSets.empty() && "dirty RegUnitSets");
1897
1898 // Compute a unique RegUnitSet for each RegClass.
1899 auto &RegClasses = getRegClasses();
1900 for (auto &RC : RegClasses) {
1901 if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet)
1902 continue;
1903
1904 // Speculatively grow the RegUnitSets to hold the new set.
1905 RegUnitSets.resize(RegUnitSets.size() + 1);
1906 RegUnitSets.back().Name = RC.getName();
1907
1908 // Compute a sorted list of units in this class.
1909 RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1910
1911 // Find an existing RegUnitSet.
1912 std::vector<RegUnitSet>::const_iterator SetI =
1913 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1914 if (SetI != std::prev(RegUnitSets.end()))
1915 RegUnitSets.pop_back();
1916 }
1917
1918 if (RegUnitSets.empty())
1919 PrintFatalError("RegUnitSets cannot be empty!");
1920
1921 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
1922 USEnd = RegUnitSets.size();
1923 USIdx < USEnd; ++USIdx) {
1924 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1925 for (auto &U : RegUnitSets[USIdx].Units)
1926 printRegUnitName(U);
1927 dbgs() << "\n";
1928 });
1929
1930 // Iteratively prune unit sets.
1931 pruneUnitSets();
1932
1933 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
1934 USEnd = RegUnitSets.size();
1935 USIdx < USEnd; ++USIdx) {
1936 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1937 for (auto &U : RegUnitSets[USIdx].Units)
1938 printRegUnitName(U);
1939 dbgs() << "\n";
1940 } dbgs() << "\nUnion sets:\n");
1941
1942 // Iterate over all unit sets, including new ones added by this loop.
1943 unsigned NumRegUnitSubSets = RegUnitSets.size();
1944 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1945 // In theory, this is combinatorial. In practice, it needs to be bounded
1946 // by a small number of sets for regpressure to be efficient.
1947 // If the assert is hit, we need to implement pruning.
1948 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1949
1950 // Compare new sets with all original classes.
1951 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1952 SearchIdx != EndIdx; ++SearchIdx) {
1953 std::set<unsigned> Intersection;
1954 std::set_intersection(RegUnitSets[Idx].Units.begin(),
1955 RegUnitSets[Idx].Units.end(),
1956 RegUnitSets[SearchIdx].Units.begin(),
1957 RegUnitSets[SearchIdx].Units.end(),
1958 std::inserter(Intersection, Intersection.begin()));
1959 if (Intersection.empty())
1960 continue;
1961
1962 // Speculatively grow the RegUnitSets to hold the new set.
1963 RegUnitSets.resize(RegUnitSets.size() + 1);
1964 RegUnitSets.back().Name =
1965 RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name;
1966
1967 std::set_union(RegUnitSets[Idx].Units.begin(),
1968 RegUnitSets[Idx].Units.end(),
1969 RegUnitSets[SearchIdx].Units.begin(),
1970 RegUnitSets[SearchIdx].Units.end(),
1971 std::inserter(RegUnitSets.back().Units,
1972 RegUnitSets.back().Units.begin()));
1973
1974 // Find an existing RegUnitSet, or add the union to the unique sets.
1975 std::vector<RegUnitSet>::const_iterator SetI =
1976 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1977 if (SetI != std::prev(RegUnitSets.end()))
1978 RegUnitSets.pop_back();
1979 else {
1980 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
1981 << RegUnitSets.back().Name << ":";
1982 for (auto &U
1983 : RegUnitSets.back().Units) printRegUnitName(U);
1984 dbgs() << "\n";);
1985 }
1986 }
1987 }
1988
1989 // Iteratively prune unit sets after inferring supersets.
1990 pruneUnitSets();
1991
1992 LLVM_DEBUG(
1993 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1994 USIdx < USEnd; ++USIdx) {
1995 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1996 for (auto &U : RegUnitSets[USIdx].Units)
1997 printRegUnitName(U);
1998 dbgs() << "\n";
1999 });
2000
2001 // For each register class, list the UnitSets that are supersets.
2002 RegClassUnitSets.resize(RegClasses.size());
2003 int RCIdx = -1;
2004 for (auto &RC : RegClasses) {
2005 ++RCIdx;
2006 if (!RC.Allocatable)
2007 continue;
2008
2009 // Recompute the sorted list of units in this class.
2010 std::vector<unsigned> RCRegUnits;
2011 RC.buildRegUnitSet(*this, RCRegUnits);
2012
2013 // Don't increase pressure for unallocatable regclasses.
2014 if (RCRegUnits.empty())
2015 continue;
2016
2017 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n";
2018 for (auto U
2019 : RCRegUnits) printRegUnitName(U);
2020 dbgs() << "\n UnitSetIDs:");
2021
2022 // Find all supersets.
2023 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2024 USIdx != USEnd; ++USIdx) {
2025 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2026 LLVM_DEBUG(dbgs() << " " << USIdx);
2027 RegClassUnitSets[RCIdx].push_back(USIdx);
2028 }
2029 }
2030 LLVM_DEBUG(dbgs() << "\n");
2031 assert((!RegClassUnitSets[RCIdx].empty() || !RC.GeneratePressureSet) &&
2032 "missing unit set for regclass");
2033 }
2034
2035 // For each register unit, ensure that we have the list of UnitSets that
2036 // contain the unit. Normally, this matches an existing list of UnitSets for a
2037 // register class. If not, we create a new entry in RegClassUnitSets as a
2038 // "fake" register class.
2039 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
2040 UnitIdx < UnitEnd; ++UnitIdx) {
2041 std::vector<unsigned> RUSets;
2042 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2043 RegUnitSet &RUSet = RegUnitSets[i];
2044 if (!is_contained(RUSet.Units, UnitIdx))
2045 continue;
2046 RUSets.push_back(i);
2047 }
2048 unsigned RCUnitSetsIdx = 0;
2049 for (unsigned e = RegClassUnitSets.size();
2050 RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
2051 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2052 break;
2053 }
2054 }
2055 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2056 if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2057 // Create a new list of UnitSets as a "fake" register class.
2058 RegClassUnitSets.resize(RCUnitSetsIdx + 1);
2059 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
2060 }
2061 }
2062 }
2063
computeRegUnitLaneMasks()2064 void CodeGenRegBank::computeRegUnitLaneMasks() {
2065 for (auto &Register : Registers) {
2066 // Create an initial lane mask for all register units.
2067 const auto &RegUnits = Register.getRegUnits();
2068 CodeGenRegister::RegUnitLaneMaskList
2069 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
2070 // Iterate through SubRegisters.
2071 typedef CodeGenRegister::SubRegMap SubRegMap;
2072 const SubRegMap &SubRegs = Register.getSubRegs();
2073 for (auto S : SubRegs) {
2074 CodeGenRegister *SubReg = S.second;
2075 // Ignore non-leaf subregisters, their lane masks are fully covered by
2076 // the leaf subregisters anyway.
2077 if (!SubReg->getSubRegs().empty())
2078 continue;
2079 CodeGenSubRegIndex *SubRegIndex = S.first;
2080 const CodeGenRegister *SubRegister = S.second;
2081 LaneBitmask LaneMask = SubRegIndex->LaneMask;
2082 // Distribute LaneMask to Register Units touched.
2083 for (unsigned SUI : SubRegister->getRegUnits()) {
2084 bool Found = false;
2085 unsigned u = 0;
2086 for (unsigned RU : RegUnits) {
2087 if (SUI == RU) {
2088 RegUnitLaneMasks[u] |= LaneMask;
2089 assert(!Found);
2090 Found = true;
2091 }
2092 ++u;
2093 }
2094 (void)Found;
2095 assert(Found);
2096 }
2097 }
2098 Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2099 }
2100 }
2101
computeDerivedInfo()2102 void CodeGenRegBank::computeDerivedInfo() {
2103 computeComposites();
2104 computeSubRegLaneMasks();
2105
2106 // Compute a weight for each register unit created during getSubRegs.
2107 // This may create adopted register units (with unit # >= NumNativeRegUnits).
2108 computeRegUnitWeights();
2109
2110 // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2111 // supersets for the union of overlapping sets.
2112 computeRegUnitSets();
2113
2114 computeRegUnitLaneMasks();
2115
2116 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2117 for (CodeGenRegisterClass &RC : RegClasses) {
2118 RC.HasDisjunctSubRegs = false;
2119 RC.CoveredBySubRegs = true;
2120 for (const CodeGenRegister *Reg : RC.getMembers()) {
2121 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2122 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2123 }
2124 }
2125
2126 // Get the weight of each set.
2127 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2128 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2129
2130 // Find the order of each set.
2131 RegUnitSetOrder.reserve(RegUnitSets.size());
2132 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2133 RegUnitSetOrder.push_back(Idx);
2134
2135 llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2136 return getRegPressureSet(ID1).Units.size() <
2137 getRegPressureSet(ID2).Units.size();
2138 });
2139 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2140 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2141 }
2142 }
2143
2144 //
2145 // Synthesize missing register class intersections.
2146 //
2147 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2148 // returns a maximal register class for all X.
2149 //
inferCommonSubClass(CodeGenRegisterClass * RC)2150 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2151 assert(!RegClasses.empty());
2152 // Stash the iterator to the last element so that this loop doesn't visit
2153 // elements added by the getOrCreateSubClass call within it.
2154 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2155 I != std::next(E); ++I) {
2156 CodeGenRegisterClass *RC1 = RC;
2157 CodeGenRegisterClass *RC2 = &*I;
2158 if (RC1 == RC2)
2159 continue;
2160
2161 // Compute the set intersection of RC1 and RC2.
2162 const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2163 const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2164 CodeGenRegister::Vec Intersection;
2165 std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2166 Memb2.end(),
2167 std::inserter(Intersection, Intersection.begin()),
2168 deref<std::less<>>());
2169
2170 // Skip disjoint class pairs.
2171 if (Intersection.empty())
2172 continue;
2173
2174 // If RC1 and RC2 have different spill sizes or alignments, use the
2175 // stricter one for sub-classing. If they are equal, prefer RC1.
2176 if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2177 std::swap(RC1, RC2);
2178
2179 getOrCreateSubClass(RC1, &Intersection,
2180 RC1->getName() + "_and_" + RC2->getName());
2181 }
2182 }
2183
2184 //
2185 // Synthesize missing sub-classes for getSubClassWithSubReg().
2186 //
2187 // Make sure that the set of registers in RC with a given SubIdx sub-register
2188 // form a register class. Update RC->SubClassWithSubReg.
2189 //
inferSubClassWithSubReg(CodeGenRegisterClass * RC)2190 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2191 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2192 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2193 deref<std::less<>>>
2194 SubReg2SetMap;
2195
2196 // Compute the set of registers supporting each SubRegIndex.
2197 SubReg2SetMap SRSets;
2198 for (const auto R : RC->getMembers()) {
2199 if (R->Artificial)
2200 continue;
2201 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2202 for (auto I : SRM) {
2203 if (!I.first->Artificial)
2204 SRSets[I.first].push_back(R);
2205 }
2206 }
2207
2208 for (auto I : SRSets)
2209 sortAndUniqueRegisters(I.second);
2210
2211 // Find matching classes for all SRSets entries. Iterate in SubRegIndex
2212 // numerical order to visit synthetic indices last.
2213 for (const auto &SubIdx : SubRegIndices) {
2214 if (SubIdx.Artificial)
2215 continue;
2216 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2217 // Unsupported SubRegIndex. Skip it.
2218 if (I == SRSets.end())
2219 continue;
2220 // In most cases, all RC registers support the SubRegIndex.
2221 if (I->second.size() == RC->getMembers().size()) {
2222 RC->setSubClassWithSubReg(&SubIdx, RC);
2223 continue;
2224 }
2225 // This is a real subset. See if we have a matching class.
2226 CodeGenRegisterClass *SubRC =
2227 getOrCreateSubClass(RC, &I->second,
2228 RC->getName() + "_with_" + I->first->getName());
2229 RC->setSubClassWithSubReg(&SubIdx, SubRC);
2230 }
2231 }
2232
2233 //
2234 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2235 //
2236 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2237 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2238 //
2239
inferMatchingSuperRegClass(CodeGenRegisterClass * RC,std::list<CodeGenRegisterClass>::iterator FirstSubRegRC)2240 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2241 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2242 SmallVector<std::pair<const CodeGenRegister*,
2243 const CodeGenRegister*>, 16> SSPairs;
2244 BitVector TopoSigs(getNumTopoSigs());
2245
2246 // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2247 for (auto &SubIdx : SubRegIndices) {
2248 // Skip indexes that aren't fully supported by RC's registers. This was
2249 // computed by inferSubClassWithSubReg() above which should have been
2250 // called first.
2251 if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2252 continue;
2253
2254 // Build list of (Super, Sub) pairs for this SubIdx.
2255 SSPairs.clear();
2256 TopoSigs.reset();
2257 for (const auto Super : RC->getMembers()) {
2258 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2259 assert(Sub && "Missing sub-register");
2260 SSPairs.push_back(std::make_pair(Super, Sub));
2261 TopoSigs.set(Sub->getTopoSig());
2262 }
2263
2264 // Iterate over sub-register class candidates. Ignore classes created by
2265 // this loop. They will never be useful.
2266 // Store an iterator to the last element (not end) so that this loop doesn't
2267 // visit newly inserted elements.
2268 assert(!RegClasses.empty());
2269 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2270 I != std::next(E); ++I) {
2271 CodeGenRegisterClass &SubRC = *I;
2272 if (SubRC.Artificial)
2273 continue;
2274 // Topological shortcut: SubRC members have the wrong shape.
2275 if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2276 continue;
2277 // Compute the subset of RC that maps into SubRC.
2278 CodeGenRegister::Vec SubSetVec;
2279 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2280 if (SubRC.contains(SSPairs[i].second))
2281 SubSetVec.push_back(SSPairs[i].first);
2282
2283 if (SubSetVec.empty())
2284 continue;
2285
2286 // RC injects completely into SubRC.
2287 sortAndUniqueRegisters(SubSetVec);
2288 if (SubSetVec.size() == SSPairs.size()) {
2289 SubRC.addSuperRegClass(&SubIdx, RC);
2290 continue;
2291 }
2292
2293 // Only a subset of RC maps into SubRC. Make sure it is represented by a
2294 // class.
2295 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2296 SubIdx.getName() + "_in_" +
2297 SubRC.getName());
2298 }
2299 }
2300 }
2301
2302 //
2303 // Infer missing register classes.
2304 //
computeInferredRegisterClasses()2305 void CodeGenRegBank::computeInferredRegisterClasses() {
2306 assert(!RegClasses.empty());
2307 // When this function is called, the register classes have not been sorted
2308 // and assigned EnumValues yet. That means getSubClasses(),
2309 // getSuperClasses(), and hasSubClass() functions are defunct.
2310
2311 // Use one-before-the-end so it doesn't move forward when new elements are
2312 // added.
2313 auto FirstNewRC = std::prev(RegClasses.end());
2314
2315 // Visit all register classes, including the ones being added by the loop.
2316 // Watch out for iterator invalidation here.
2317 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2318 CodeGenRegisterClass *RC = &*I;
2319 if (RC->Artificial)
2320 continue;
2321
2322 // Synthesize answers for getSubClassWithSubReg().
2323 inferSubClassWithSubReg(RC);
2324
2325 // Synthesize answers for getCommonSubClass().
2326 inferCommonSubClass(RC);
2327
2328 // Synthesize answers for getMatchingSuperRegClass().
2329 inferMatchingSuperRegClass(RC);
2330
2331 // New register classes are created while this loop is running, and we need
2332 // to visit all of them. I particular, inferMatchingSuperRegClass needs
2333 // to match old super-register classes with sub-register classes created
2334 // after inferMatchingSuperRegClass was called. At this point,
2335 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2336 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
2337 if (I == FirstNewRC) {
2338 auto NextNewRC = std::prev(RegClasses.end());
2339 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2340 ++I2)
2341 inferMatchingSuperRegClass(&*I2, E2);
2342 FirstNewRC = NextNewRC;
2343 }
2344 }
2345 }
2346
2347 /// getRegisterClassForRegister - Find the register class that contains the
2348 /// specified physical register. If the register is not in a register class,
2349 /// return null. If the register is in multiple classes, and the classes have a
2350 /// superset-subset relationship and the same set of types, return the
2351 /// superclass. Otherwise return null.
2352 const CodeGenRegisterClass*
getRegClassForRegister(Record * R)2353 CodeGenRegBank::getRegClassForRegister(Record *R) {
2354 const CodeGenRegister *Reg = getReg(R);
2355 const CodeGenRegisterClass *FoundRC = nullptr;
2356 for (const auto &RC : getRegClasses()) {
2357 if (!RC.contains(Reg))
2358 continue;
2359
2360 // If this is the first class that contains the register,
2361 // make a note of it and go on to the next class.
2362 if (!FoundRC) {
2363 FoundRC = &RC;
2364 continue;
2365 }
2366
2367 // If a register's classes have different types, return null.
2368 if (RC.getValueTypes() != FoundRC->getValueTypes())
2369 return nullptr;
2370
2371 // Check to see if the previously found class that contains
2372 // the register is a subclass of the current class. If so,
2373 // prefer the superclass.
2374 if (RC.hasSubClass(FoundRC)) {
2375 FoundRC = &RC;
2376 continue;
2377 }
2378
2379 // Check to see if the previously found class that contains
2380 // the register is a superclass of the current class. If so,
2381 // prefer the superclass.
2382 if (FoundRC->hasSubClass(&RC))
2383 continue;
2384
2385 // Multiple classes, and neither is a superclass of the other.
2386 // Return null.
2387 return nullptr;
2388 }
2389 return FoundRC;
2390 }
2391
2392 const CodeGenRegisterClass *
getMinimalPhysRegClass(Record * RegRecord,ValueTypeByHwMode * VT)2393 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2394 ValueTypeByHwMode *VT) {
2395 const CodeGenRegister *Reg = getReg(RegRecord);
2396 const CodeGenRegisterClass *BestRC = nullptr;
2397 for (const auto &RC : getRegClasses()) {
2398 if ((!VT || RC.hasType(*VT)) &&
2399 RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC)))
2400 BestRC = &RC;
2401 }
2402
2403 assert(BestRC && "Couldn't find the register class");
2404 return BestRC;
2405 }
2406
computeCoveredRegisters(ArrayRef<Record * > Regs)2407 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2408 SetVector<const CodeGenRegister*> Set;
2409
2410 // First add Regs with all sub-registers.
2411 for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2412 CodeGenRegister *Reg = getReg(Regs[i]);
2413 if (Set.insert(Reg))
2414 // Reg is new, add all sub-registers.
2415 // The pre-ordering is not important here.
2416 Reg->addSubRegsPreOrder(Set, *this);
2417 }
2418
2419 // Second, find all super-registers that are completely covered by the set.
2420 for (unsigned i = 0; i != Set.size(); ++i) {
2421 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2422 for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2423 const CodeGenRegister *Super = SR[j];
2424 if (!Super->CoveredBySubRegs || Set.count(Super))
2425 continue;
2426 // This new super-register is covered by its sub-registers.
2427 bool AllSubsInSet = true;
2428 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2429 for (auto I : SRM)
2430 if (!Set.count(I.second)) {
2431 AllSubsInSet = false;
2432 break;
2433 }
2434 // All sub-registers in Set, add Super as well.
2435 // We will visit Super later to recheck its super-registers.
2436 if (AllSubsInSet)
2437 Set.insert(Super);
2438 }
2439 }
2440
2441 // Convert to BitVector.
2442 BitVector BV(Registers.size() + 1);
2443 for (unsigned i = 0, e = Set.size(); i != e; ++i)
2444 BV.set(Set[i]->EnumValue);
2445 return BV;
2446 }
2447
printRegUnitName(unsigned Unit) const2448 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2449 if (Unit < NumNativeRegUnits)
2450 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2451 else
2452 dbgs() << " #" << Unit;
2453 }
2454