1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenRegisters.h"
15 #include "CodeGenTarget.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/IntEqClasses.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/TableGen/Error.h"
32 #include "llvm/TableGen/Record.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstdint>
36 #include <iterator>
37 #include <map>
38 #include <queue>
39 #include <set>
40 #include <string>
41 #include <tuple>
42 #include <utility>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "regalloc-emitter"
48 
49 //===----------------------------------------------------------------------===//
50 //                             CodeGenSubRegIndex
51 //===----------------------------------------------------------------------===//
52 
CodeGenSubRegIndex(Record * R,unsigned Enum)53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
54   : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
55   Name = std::string(R->getName());
56   if (R->getValue("Namespace"))
57     Namespace = std::string(R->getValueAsString("Namespace"));
58   Size = R->getValueAsInt("Size");
59   Offset = R->getValueAsInt("Offset");
60 }
61 
CodeGenSubRegIndex(StringRef N,StringRef Nspace,unsigned Enum)62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
63                                        unsigned Enum)
64     : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)),
65       Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true),
66       Artificial(true) {}
67 
getQualifiedName() const68 std::string CodeGenSubRegIndex::getQualifiedName() const {
69   std::string N = getNamespace();
70   if (!N.empty())
71     N += "::";
72   N += getName();
73   return N;
74 }
75 
updateComponents(CodeGenRegBank & RegBank)76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
77   if (!TheDef)
78     return;
79 
80   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
81   if (!Comps.empty()) {
82     if (Comps.size() != 2)
83       PrintFatalError(TheDef->getLoc(),
84                       "ComposedOf must have exactly two entries");
85     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
86     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
87     CodeGenSubRegIndex *X = A->addComposite(B, this);
88     if (X)
89       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
90   }
91 
92   std::vector<Record*> Parts =
93     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
94   if (!Parts.empty()) {
95     if (Parts.size() < 2)
96       PrintFatalError(TheDef->getLoc(),
97                       "CoveredBySubRegs must have two or more entries");
98     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
99     for (Record *Part : Parts)
100       IdxParts.push_back(RegBank.getSubRegIdx(Part));
101     setConcatenationOf(IdxParts);
102   }
103 }
104 
computeLaneMask() const105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
106   // Already computed?
107   if (LaneMask.any())
108     return LaneMask;
109 
110   // Recursion guard, shouldn't be required.
111   LaneMask = LaneBitmask::getAll();
112 
113   // The lane mask is simply the union of all sub-indices.
114   LaneBitmask M;
115   for (const auto &C : Composed)
116     M |= C.second->computeLaneMask();
117   assert(M.any() && "Missing lane mask, sub-register cycle?");
118   LaneMask = M;
119   return LaneMask;
120 }
121 
setConcatenationOf(ArrayRef<CodeGenSubRegIndex * > Parts)122 void CodeGenSubRegIndex::setConcatenationOf(
123     ArrayRef<CodeGenSubRegIndex*> Parts) {
124   if (ConcatenationOf.empty())
125     ConcatenationOf.assign(Parts.begin(), Parts.end());
126   else
127     assert(std::equal(Parts.begin(), Parts.end(),
128                       ConcatenationOf.begin()) && "parts consistent");
129 }
130 
computeConcatTransitiveClosure()131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
132   for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
133        I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
134     CodeGenSubRegIndex *SubIdx = *I;
135     SubIdx->computeConcatTransitiveClosure();
136 #ifndef NDEBUG
137     for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
138       assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
139 #endif
140 
141     if (SubIdx->ConcatenationOf.empty()) {
142       ++I;
143     } else {
144       I = ConcatenationOf.erase(I);
145       I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
146                                  SubIdx->ConcatenationOf.end());
147       I += SubIdx->ConcatenationOf.size();
148     }
149   }
150 }
151 
152 //===----------------------------------------------------------------------===//
153 //                              CodeGenRegister
154 //===----------------------------------------------------------------------===//
155 
CodeGenRegister(Record * R,unsigned Enum)156 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
157     : TheDef(R), EnumValue(Enum),
158       CostPerUse(R->getValueAsListOfInts("CostPerUse")),
159       CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
160       HasDisjunctSubRegs(false), SubRegsComplete(false),
161       SuperRegsComplete(false), TopoSig(~0u) {
162   Artificial = R->getValueAsBit("isArtificial");
163 }
164 
buildObjectGraph(CodeGenRegBank & RegBank)165 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
166   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
167   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
168 
169   if (SRIs.size() != SRs.size())
170     PrintFatalError(TheDef->getLoc(),
171                     "SubRegs and SubRegIndices must have the same size");
172 
173   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
174     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
175     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
176   }
177 
178   // Also compute leading super-registers. Each register has a list of
179   // covered-by-subregs super-registers where it appears as the first explicit
180   // sub-register.
181   //
182   // This is used by computeSecondarySubRegs() to find candidates.
183   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
184     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
185 
186   // Add ad hoc alias links. This is a symmetric relationship between two
187   // registers, so build a symmetric graph by adding links in both ends.
188   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
189   for (Record *Alias : Aliases) {
190     CodeGenRegister *Reg = RegBank.getReg(Alias);
191     ExplicitAliases.push_back(Reg);
192     Reg->ExplicitAliases.push_back(this);
193   }
194 }
195 
getName() const196 StringRef CodeGenRegister::getName() const {
197   assert(TheDef && "no def");
198   return TheDef->getName();
199 }
200 
201 namespace {
202 
203 // Iterate over all register units in a set of registers.
204 class RegUnitIterator {
205   CodeGenRegister::Vec::const_iterator RegI, RegE;
206   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
207 
208 public:
RegUnitIterator(const CodeGenRegister::Vec & Regs)209   RegUnitIterator(const CodeGenRegister::Vec &Regs):
210     RegI(Regs.begin()), RegE(Regs.end()) {
211 
212     if (RegI != RegE) {
213       UnitI = (*RegI)->getRegUnits().begin();
214       UnitE = (*RegI)->getRegUnits().end();
215       advance();
216     }
217   }
218 
isValid() const219   bool isValid() const { return UnitI != UnitE; }
220 
operator *() const221   unsigned operator* () const { assert(isValid()); return *UnitI; }
222 
getReg() const223   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
224 
225   /// Preincrement.  Move to the next unit.
operator ++()226   void operator++() {
227     assert(isValid() && "Cannot advance beyond the last operand");
228     ++UnitI;
229     advance();
230   }
231 
232 protected:
advance()233   void advance() {
234     while (UnitI == UnitE) {
235       if (++RegI == RegE)
236         break;
237       UnitI = (*RegI)->getRegUnits().begin();
238       UnitE = (*RegI)->getRegUnits().end();
239     }
240   }
241 };
242 
243 } // end anonymous namespace
244 
245 // Return true of this unit appears in RegUnits.
hasRegUnit(CodeGenRegister::RegUnitList & RegUnits,unsigned Unit)246 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
247   return RegUnits.test(Unit);
248 }
249 
250 // Inherit register units from subregisters.
251 // Return true if the RegUnits changed.
inheritRegUnits(CodeGenRegBank & RegBank)252 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
253   bool changed = false;
254   for (const auto &SubReg : SubRegs) {
255     CodeGenRegister *SR = SubReg.second;
256     // Merge the subregister's units into this register's RegUnits.
257     changed |= (RegUnits |= SR->RegUnits);
258   }
259 
260   return changed;
261 }
262 
263 const CodeGenRegister::SubRegMap &
computeSubRegs(CodeGenRegBank & RegBank)264 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
265   // Only compute this map once.
266   if (SubRegsComplete)
267     return SubRegs;
268   SubRegsComplete = true;
269 
270   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
271 
272   // First insert the explicit subregs and make sure they are fully indexed.
273   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
274     CodeGenRegister *SR = ExplicitSubRegs[i];
275     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
276     if (!SR->Artificial)
277       Idx->Artificial = false;
278     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
279       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
280                       " appears twice in Register " + getName());
281     // Map explicit sub-registers first, so the names take precedence.
282     // The inherited sub-registers are mapped below.
283     SubReg2Idx.insert(std::make_pair(SR, Idx));
284   }
285 
286   // Keep track of inherited subregs and how they can be reached.
287   SmallPtrSet<CodeGenRegister*, 8> Orphans;
288 
289   // Clone inherited subregs and place duplicate entries in Orphans.
290   // Here the order is important - earlier subregs take precedence.
291   for (CodeGenRegister *ESR : ExplicitSubRegs) {
292     const SubRegMap &Map = ESR->computeSubRegs(RegBank);
293     HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
294 
295     for (const auto &SR : Map) {
296       if (!SubRegs.insert(SR).second)
297         Orphans.insert(SR.second);
298     }
299   }
300 
301   // Expand any composed subreg indices.
302   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
303   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
304   // expanded subreg indices recursively.
305   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
306   for (unsigned i = 0; i != Indices.size(); ++i) {
307     CodeGenSubRegIndex *Idx = Indices[i];
308     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
309     CodeGenRegister *SR = SubRegs[Idx];
310     const SubRegMap &Map = SR->computeSubRegs(RegBank);
311 
312     // Look at the possible compositions of Idx.
313     // They may not all be supported by SR.
314     for (auto Comp : Comps) {
315       SubRegMap::const_iterator SRI = Map.find(Comp.first);
316       if (SRI == Map.end())
317         continue; // Idx + I->first doesn't exist in SR.
318       // Add I->second as a name for the subreg SRI->second, assuming it is
319       // orphaned, and the name isn't already used for something else.
320       if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second))
321         continue;
322       // We found a new name for the orphaned sub-register.
323       SubRegs.insert(std::make_pair(Comp.second, SRI->second));
324       Indices.push_back(Comp.second);
325     }
326   }
327 
328   // Now Orphans contains the inherited subregisters without a direct index.
329   // Create inferred indexes for all missing entries.
330   // Work backwards in the Indices vector in order to compose subregs bottom-up.
331   // Consider this subreg sequence:
332   //
333   //   qsub_1 -> dsub_0 -> ssub_0
334   //
335   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
336   // can be reached in two different ways:
337   //
338   //   qsub_1 -> ssub_0
339   //   dsub_2 -> ssub_0
340   //
341   // We pick the latter composition because another register may have [dsub_0,
342   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
343   // dsub_2 -> ssub_0 composition can be shared.
344   while (!Indices.empty() && !Orphans.empty()) {
345     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
346     CodeGenRegister *SR = SubRegs[Idx];
347     const SubRegMap &Map = SR->computeSubRegs(RegBank);
348     for (const auto &SubReg : Map)
349       if (Orphans.erase(SubReg.second))
350         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
351   }
352 
353   // Compute the inverse SubReg -> Idx map.
354   for (const auto &SubReg : SubRegs) {
355     if (SubReg.second == this) {
356       ArrayRef<SMLoc> Loc;
357       if (TheDef)
358         Loc = TheDef->getLoc();
359       PrintFatalError(Loc, "Register " + getName() +
360                       " has itself as a sub-register");
361     }
362 
363     // Compute AllSuperRegsCovered.
364     if (!CoveredBySubRegs)
365       SubReg.first->AllSuperRegsCovered = false;
366 
367     // Ensure that every sub-register has a unique name.
368     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
369       SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
370     if (Ins->second == SubReg.first)
371       continue;
372     // Trouble: Two different names for SubReg.second.
373     ArrayRef<SMLoc> Loc;
374     if (TheDef)
375       Loc = TheDef->getLoc();
376     PrintFatalError(Loc, "Sub-register can't have two names: " +
377                   SubReg.second->getName() + " available as " +
378                   SubReg.first->getName() + " and " + Ins->second->getName());
379   }
380 
381   // Derive possible names for sub-register concatenations from any explicit
382   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
383   // that getConcatSubRegIndex() won't invent any concatenated indices that the
384   // user already specified.
385   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
386     CodeGenRegister *SR = ExplicitSubRegs[i];
387     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
388         SR->Artificial)
389       continue;
390 
391     // SR is composed of multiple sub-regs. Find their names in this register.
392     SmallVector<CodeGenSubRegIndex*, 8> Parts;
393     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
394       CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
395       if (!I.Artificial)
396         Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
397     }
398 
399     // Offer this as an existing spelling for the concatenation of Parts.
400     CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
401     Idx.setConcatenationOf(Parts);
402   }
403 
404   // Initialize RegUnitList. Because getSubRegs is called recursively, this
405   // processes the register hierarchy in postorder.
406   //
407   // Inherit all sub-register units. It is good enough to look at the explicit
408   // sub-registers, the other registers won't contribute any more units.
409   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
410     CodeGenRegister *SR = ExplicitSubRegs[i];
411     RegUnits |= SR->RegUnits;
412   }
413 
414   // Absent any ad hoc aliasing, we create one register unit per leaf register.
415   // These units correspond to the maximal cliques in the register overlap
416   // graph which is optimal.
417   //
418   // When there is ad hoc aliasing, we simply create one unit per edge in the
419   // undirected ad hoc aliasing graph. Technically, we could do better by
420   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
421   // are extremely rare anyway (I've never seen one), so we don't bother with
422   // the added complexity.
423   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
424     CodeGenRegister *AR = ExplicitAliases[i];
425     // Only visit each edge once.
426     if (AR->SubRegsComplete)
427       continue;
428     // Create a RegUnit representing this alias edge, and add it to both
429     // registers.
430     unsigned Unit = RegBank.newRegUnit(this, AR);
431     RegUnits.set(Unit);
432     AR->RegUnits.set(Unit);
433   }
434 
435   // Finally, create units for leaf registers without ad hoc aliases. Note that
436   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
437   // necessary. This means the aliasing leaf registers can share a single unit.
438   if (RegUnits.empty())
439     RegUnits.set(RegBank.newRegUnit(this));
440 
441   // We have now computed the native register units. More may be adopted later
442   // for balancing purposes.
443   NativeRegUnits = RegUnits;
444 
445   return SubRegs;
446 }
447 
448 // In a register that is covered by its sub-registers, try to find redundant
449 // sub-registers. For example:
450 //
451 //   QQ0 = {Q0, Q1}
452 //   Q0 = {D0, D1}
453 //   Q1 = {D2, D3}
454 //
455 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
456 // the register definition.
457 //
458 // The explicitly specified registers form a tree. This function discovers
459 // sub-register relationships that would force a DAG.
460 //
computeSecondarySubRegs(CodeGenRegBank & RegBank)461 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
462   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
463 
464   std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
465   for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
466     SubRegQueue.push(P);
467 
468   // Look at the leading super-registers of each sub-register. Those are the
469   // candidates for new sub-registers, assuming they are fully contained in
470   // this register.
471   while (!SubRegQueue.empty()) {
472     CodeGenSubRegIndex *SubRegIdx;
473     const CodeGenRegister *SubReg;
474     std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
475     SubRegQueue.pop();
476 
477     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
478     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
479       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
480       // Already got this sub-register?
481       if (Cand == this || getSubRegIndex(Cand))
482         continue;
483       // Check if each component of Cand is already a sub-register.
484       assert(!Cand->ExplicitSubRegs.empty() &&
485              "Super-register has no sub-registers");
486       if (Cand->ExplicitSubRegs.size() == 1)
487         continue;
488       SmallVector<CodeGenSubRegIndex*, 8> Parts;
489       // We know that the first component is (SubRegIdx,SubReg). However we
490       // may still need to split it into smaller subregister parts.
491       assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
492       assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
493       for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
494         if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
495           if (SubRegIdx->ConcatenationOf.empty())
496             Parts.push_back(SubRegIdx);
497           else
498             append_range(Parts, SubRegIdx->ConcatenationOf);
499         } else {
500           // Sub-register doesn't exist.
501           Parts.clear();
502           break;
503         }
504       }
505       // There is nothing to do if some Cand sub-register is not part of this
506       // register.
507       if (Parts.empty())
508         continue;
509 
510       // Each part of Cand is a sub-register of this. Make the full Cand also
511       // a sub-register with a concatenated sub-register index.
512       CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
513       std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
514           std::make_pair(Concat, Cand);
515 
516       if (!SubRegs.insert(NewSubReg).second)
517         continue;
518 
519       // We inserted a new subregister.
520       NewSubRegs.push_back(NewSubReg);
521       SubRegQueue.push(NewSubReg);
522       SubReg2Idx.insert(std::make_pair(Cand, Concat));
523     }
524   }
525 
526   // Create sub-register index composition maps for the synthesized indices.
527   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
528     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
529     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
530     for (auto SubReg : NewSubReg->SubRegs) {
531       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second);
532       if (!SubIdx)
533         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
534                                               SubReg.second->getName() +
535                                               " in " + getName());
536       NewIdx->addComposite(SubReg.first, SubIdx);
537     }
538   }
539 }
540 
computeSuperRegs(CodeGenRegBank & RegBank)541 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
542   // Only visit each register once.
543   if (SuperRegsComplete)
544     return;
545   SuperRegsComplete = true;
546 
547   // Make sure all sub-registers have been visited first, so the super-reg
548   // lists will be topologically ordered.
549   for (auto SubReg : SubRegs)
550     SubReg.second->computeSuperRegs(RegBank);
551 
552   // Now add this as a super-register on all sub-registers.
553   // Also compute the TopoSigId in post-order.
554   TopoSigId Id;
555   for (auto SubReg : SubRegs) {
556     // Topological signature computed from SubIdx, TopoId(SubReg).
557     // Loops and idempotent indices have TopoSig = ~0u.
558     Id.push_back(SubReg.first->EnumValue);
559     Id.push_back(SubReg.second->TopoSig);
560 
561     // Don't add duplicate entries.
562     if (!SubReg.second->SuperRegs.empty() &&
563         SubReg.second->SuperRegs.back() == this)
564       continue;
565     SubReg.second->SuperRegs.push_back(this);
566   }
567   TopoSig = RegBank.getTopoSig(Id);
568 }
569 
570 void
addSubRegsPreOrder(SetVector<const CodeGenRegister * > & OSet,CodeGenRegBank & RegBank) const571 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
572                                     CodeGenRegBank &RegBank) const {
573   assert(SubRegsComplete && "Must precompute sub-registers");
574   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
575     CodeGenRegister *SR = ExplicitSubRegs[i];
576     if (OSet.insert(SR))
577       SR->addSubRegsPreOrder(OSet, RegBank);
578   }
579   // Add any secondary sub-registers that weren't part of the explicit tree.
580   for (auto SubReg : SubRegs)
581     OSet.insert(SubReg.second);
582 }
583 
584 // Get the sum of this register's unit weights.
getWeight(const CodeGenRegBank & RegBank) const585 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
586   unsigned Weight = 0;
587   for (unsigned RegUnit : RegUnits) {
588     Weight += RegBank.getRegUnit(RegUnit).Weight;
589   }
590   return Weight;
591 }
592 
593 //===----------------------------------------------------------------------===//
594 //                               RegisterTuples
595 //===----------------------------------------------------------------------===//
596 
597 // A RegisterTuples def is used to generate pseudo-registers from lists of
598 // sub-registers. We provide a SetTheory expander class that returns the new
599 // registers.
600 namespace {
601 
602 struct TupleExpander : SetTheory::Expander {
603   // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
604   // the synthesized definitions for their lifetime.
605   std::vector<std::unique_ptr<Record>> &SynthDefs;
606 
TupleExpander__anon523724c10211::TupleExpander607   TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
608       : SynthDefs(SynthDefs) {}
609 
expand__anon523724c10211::TupleExpander610   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
611     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
612     unsigned Dim = Indices.size();
613     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
614     if (Dim != SubRegs->size())
615       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
616     if (Dim < 2)
617       PrintFatalError(Def->getLoc(),
618                       "Tuples must have at least 2 sub-registers");
619 
620     // Evaluate the sub-register lists to be zipped.
621     unsigned Length = ~0u;
622     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
623     for (unsigned i = 0; i != Dim; ++i) {
624       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
625       Length = std::min(Length, unsigned(Lists[i].size()));
626     }
627 
628     if (Length == 0)
629       return;
630 
631     // Precompute some types.
632     Record *RegisterCl = Def->getRecords().getClass("Register");
633     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
634     std::vector<StringRef> RegNames =
635       Def->getValueAsListOfStrings("RegAsmNames");
636 
637     // Zip them up.
638     for (unsigned n = 0; n != Length; ++n) {
639       std::string Name;
640       Record *Proto = Lists[0][n];
641       std::vector<Init*> Tuple;
642       for (unsigned i = 0; i != Dim; ++i) {
643         Record *Reg = Lists[i][n];
644         if (i) Name += '_';
645         Name += Reg->getName();
646         Tuple.push_back(DefInit::get(Reg));
647       }
648 
649       // Take the cost list of the first register in the tuple.
650       ListInit *CostList = Proto->getValueAsListInit("CostPerUse");
651       SmallVector<Init *, 2> CostPerUse;
652       CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end());
653 
654       StringInit *AsmName = StringInit::get("");
655       if (!RegNames.empty()) {
656         if (RegNames.size() <= n)
657           PrintFatalError(Def->getLoc(),
658                           "Register tuple definition missing name for '" +
659                             Name + "'.");
660         AsmName = StringInit::get(RegNames[n]);
661       }
662 
663       // Create a new Record representing the synthesized register. This record
664       // is only for consumption by CodeGenRegister, it is not added to the
665       // RecordKeeper.
666       SynthDefs.emplace_back(
667           std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
668       Record *NewReg = SynthDefs.back().get();
669       Elts.insert(NewReg);
670 
671       // Copy Proto super-classes.
672       ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
673       for (const auto &SuperPair : Supers)
674         NewReg->addSuperClass(SuperPair.first, SuperPair.second);
675 
676       // Copy Proto fields.
677       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
678         RecordVal RV = Proto->getValues()[i];
679 
680         // Skip existing fields, like NAME.
681         if (NewReg->getValue(RV.getNameInit()))
682           continue;
683 
684         StringRef Field = RV.getName();
685 
686         // Replace the sub-register list with Tuple.
687         if (Field == "SubRegs")
688           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
689 
690         if (Field == "AsmName")
691           RV.setValue(AsmName);
692 
693         // CostPerUse is aggregated from all Tuple members.
694         if (Field == "CostPerUse")
695           RV.setValue(ListInit::get(CostPerUse, CostList->getElementType()));
696 
697         // Composite registers are always covered by sub-registers.
698         if (Field == "CoveredBySubRegs")
699           RV.setValue(BitInit::get(true));
700 
701         // Copy fields from the RegisterTuples def.
702         if (Field == "SubRegIndices" ||
703             Field == "CompositeIndices") {
704           NewReg->addValue(*Def->getValue(Field));
705           continue;
706         }
707 
708         // Some fields get their default uninitialized value.
709         if (Field == "DwarfNumbers" ||
710             Field == "DwarfAlias" ||
711             Field == "Aliases") {
712           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
713             NewReg->addValue(*DefRV);
714           continue;
715         }
716 
717         // Everything else is copied from Proto.
718         NewReg->addValue(RV);
719       }
720     }
721   }
722 };
723 
724 } // end anonymous namespace
725 
726 //===----------------------------------------------------------------------===//
727 //                            CodeGenRegisterClass
728 //===----------------------------------------------------------------------===//
729 
sortAndUniqueRegisters(CodeGenRegister::Vec & M)730 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
731   llvm::sort(M, deref<std::less<>>());
732   M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end());
733 }
734 
CodeGenRegisterClass(CodeGenRegBank & RegBank,Record * R)735 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
736     : TheDef(R), Name(std::string(R->getName())),
737       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), TSFlags(0) {
738   GeneratePressureSet = R->getValueAsBit("GeneratePressureSet");
739   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
740   if (TypeList.empty())
741     PrintFatalError(R->getLoc(), "RegTypes list must not be empty!");
742   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
743     Record *Type = TypeList[i];
744     if (!Type->isSubClassOf("ValueType"))
745       PrintFatalError(R->getLoc(),
746                       "RegTypes list member '" + Type->getName() +
747                           "' does not derive from the ValueType class!");
748     VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
749   }
750 
751   // Allocation order 0 is the full set. AltOrders provides others.
752   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
753   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
754   Orders.resize(1 + AltOrders->size());
755 
756   // Default allocation order always contains all registers.
757   Artificial = true;
758   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
759     Orders[0].push_back((*Elements)[i]);
760     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
761     Members.push_back(Reg);
762     Artificial &= Reg->Artificial;
763     TopoSigs.set(Reg->getTopoSig());
764   }
765   sortAndUniqueRegisters(Members);
766 
767   // Alternative allocation orders may be subsets.
768   SetTheory::RecSet Order;
769   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
770     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
771     Orders[1 + i].append(Order.begin(), Order.end());
772     // Verify that all altorder members are regclass members.
773     while (!Order.empty()) {
774       CodeGenRegister *Reg = RegBank.getReg(Order.back());
775       Order.pop_back();
776       if (!contains(Reg))
777         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
778                       " is not a class member");
779     }
780   }
781 
782   Namespace = R->getValueAsString("Namespace");
783 
784   if (const RecordVal *RV = R->getValue("RegInfos"))
785     if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
786       RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
787   unsigned Size = R->getValueAsInt("Size");
788   assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
789          "Impossible to determine register size");
790   if (!RSI.hasDefault()) {
791     RegSizeInfo RI;
792     RI.RegSize = RI.SpillSize = Size ? Size
793                                      : VTs[0].getSimple().getSizeInBits();
794     RI.SpillAlignment = R->getValueAsInt("Alignment");
795     RSI.insertRegSizeForMode(DefaultMode, RI);
796   }
797 
798   CopyCost = R->getValueAsInt("CopyCost");
799   Allocatable = R->getValueAsBit("isAllocatable");
800   AltOrderSelect = R->getValueAsString("AltOrderSelect");
801   int AllocationPriority = R->getValueAsInt("AllocationPriority");
802   if (AllocationPriority < 0 || AllocationPriority > 63)
803     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
804   this->AllocationPriority = AllocationPriority;
805 
806   BitsInit *TSF = R->getValueAsBitsInit("TSFlags");
807   for (unsigned I = 0, E = TSF->getNumBits(); I != E; ++I) {
808     BitInit *Bit = cast<BitInit>(TSF->getBit(I));
809     TSFlags |= uint8_t(Bit->getValue()) << I;
810   }
811 }
812 
813 // Create an inferred register class that was missing from the .td files.
814 // Most properties will be inherited from the closest super-class after the
815 // class structure has been computed.
CodeGenRegisterClass(CodeGenRegBank & RegBank,StringRef Name,Key Props)816 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
817                                            StringRef Name, Key Props)
818     : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)),
819       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI),
820       CopyCost(0), Allocatable(true), AllocationPriority(0), TSFlags(0) {
821   Artificial = true;
822   GeneratePressureSet = false;
823   for (const auto R : Members) {
824     TopoSigs.set(R->getTopoSig());
825     Artificial &= R->Artificial;
826   }
827 }
828 
829 // Compute inherited propertied for a synthesized register class.
inheritProperties(CodeGenRegBank & RegBank)830 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
831   assert(!getDef() && "Only synthesized classes can inherit properties");
832   assert(!SuperClasses.empty() && "Synthesized class without super class");
833 
834   // The last super-class is the smallest one.
835   CodeGenRegisterClass &Super = *SuperClasses.back();
836 
837   // Most properties are copied directly.
838   // Exceptions are members, size, and alignment
839   Namespace = Super.Namespace;
840   VTs = Super.VTs;
841   CopyCost = Super.CopyCost;
842   // Check for allocatable superclasses.
843   Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) {
844     return S->Allocatable;
845   });
846   AltOrderSelect = Super.AltOrderSelect;
847   AllocationPriority = Super.AllocationPriority;
848   TSFlags = Super.TSFlags;
849   GeneratePressureSet |= Super.GeneratePressureSet;
850 
851   // Copy all allocation orders, filter out foreign registers from the larger
852   // super-class.
853   Orders.resize(Super.Orders.size());
854   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
855     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
856       if (contains(RegBank.getReg(Super.Orders[i][j])))
857         Orders[i].push_back(Super.Orders[i][j]);
858 }
859 
contains(const CodeGenRegister * Reg) const860 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
861   return std::binary_search(Members.begin(), Members.end(), Reg,
862                             deref<std::less<>>());
863 }
864 
getWeight(const CodeGenRegBank & RegBank) const865 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const {
866   if (TheDef && !TheDef->isValueUnset("Weight"))
867     return TheDef->getValueAsInt("Weight");
868 
869   if (Members.empty() || Artificial)
870     return 0;
871 
872   return (*Members.begin())->getWeight(RegBank);
873 }
874 
875 namespace llvm {
876 
operator <<(raw_ostream & OS,const CodeGenRegisterClass::Key & K)877   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
878     OS << "{ " << K.RSI;
879     for (const auto R : *K.Members)
880       OS << ", " << R->getName();
881     return OS << " }";
882   }
883 
884 } // end namespace llvm
885 
886 // This is a simple lexicographical order that can be used to search for sets.
887 // It is not the same as the topological order provided by TopoOrderRC.
888 bool CodeGenRegisterClass::Key::
operator <(const CodeGenRegisterClass::Key & B) const889 operator<(const CodeGenRegisterClass::Key &B) const {
890   assert(Members && B.Members);
891   return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
892 }
893 
894 // Returns true if RC is a strict subclass.
895 // RC is a sub-class of this class if it is a valid replacement for any
896 // instruction operand where a register of this classis required. It must
897 // satisfy these conditions:
898 //
899 // 1. All RC registers are also in this.
900 // 2. The RC spill size must not be smaller than our spill size.
901 // 3. RC spill alignment must be compatible with ours.
902 //
testSubClass(const CodeGenRegisterClass * A,const CodeGenRegisterClass * B)903 static bool testSubClass(const CodeGenRegisterClass *A,
904                          const CodeGenRegisterClass *B) {
905   return A->RSI.isSubClassOf(B->RSI) &&
906          std::includes(A->getMembers().begin(), A->getMembers().end(),
907                        B->getMembers().begin(), B->getMembers().end(),
908                        deref<std::less<>>());
909 }
910 
911 /// Sorting predicate for register classes.  This provides a topological
912 /// ordering that arranges all register classes before their sub-classes.
913 ///
914 /// Register classes with the same registers, spill size, and alignment form a
915 /// clique.  They will be ordered alphabetically.
916 ///
TopoOrderRC(const CodeGenRegisterClass & PA,const CodeGenRegisterClass & PB)917 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
918                         const CodeGenRegisterClass &PB) {
919   auto *A = &PA;
920   auto *B = &PB;
921   if (A == B)
922     return false;
923 
924   if (A->RSI < B->RSI)
925     return true;
926   if (A->RSI != B->RSI)
927     return false;
928 
929   // Order by descending set size.  Note that the classes' allocation order may
930   // not have been computed yet.  The Members set is always vaild.
931   if (A->getMembers().size() > B->getMembers().size())
932     return true;
933   if (A->getMembers().size() < B->getMembers().size())
934     return false;
935 
936   // Finally order by name as a tie breaker.
937   return StringRef(A->getName()) < B->getName();
938 }
939 
getQualifiedName() const940 std::string CodeGenRegisterClass::getQualifiedName() const {
941   if (Namespace.empty())
942     return getName();
943   else
944     return (Namespace + "::" + getName()).str();
945 }
946 
947 // Compute sub-classes of all register classes.
948 // Assume the classes are ordered topologically.
computeSubClasses(CodeGenRegBank & RegBank)949 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
950   auto &RegClasses = RegBank.getRegClasses();
951 
952   // Visit backwards so sub-classes are seen first.
953   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
954     CodeGenRegisterClass &RC = *I;
955     RC.SubClasses.resize(RegClasses.size());
956     RC.SubClasses.set(RC.EnumValue);
957     if (RC.Artificial)
958       continue;
959 
960     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
961     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
962       CodeGenRegisterClass &SubRC = *I2;
963       if (RC.SubClasses.test(SubRC.EnumValue))
964         continue;
965       if (!testSubClass(&RC, &SubRC))
966         continue;
967       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
968       // check them again.
969       RC.SubClasses |= SubRC.SubClasses;
970     }
971 
972     // Sweep up missed clique members.  They will be immediately preceding RC.
973     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
974       RC.SubClasses.set(I2->EnumValue);
975   }
976 
977   // Compute the SuperClasses lists from the SubClasses vectors.
978   for (auto &RC : RegClasses) {
979     const BitVector &SC = RC.getSubClasses();
980     auto I = RegClasses.begin();
981     for (int s = 0, next_s = SC.find_first(); next_s != -1;
982          next_s = SC.find_next(s)) {
983       std::advance(I, next_s - s);
984       s = next_s;
985       if (&*I == &RC)
986         continue;
987       I->SuperClasses.push_back(&RC);
988     }
989   }
990 
991   // With the class hierarchy in place, let synthesized register classes inherit
992   // properties from their closest super-class. The iteration order here can
993   // propagate properties down multiple levels.
994   for (auto &RC : RegClasses)
995     if (!RC.getDef())
996       RC.inheritProperties(RegBank);
997 }
998 
999 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
getMatchingSubClassWithSubRegs(CodeGenRegBank & RegBank,const CodeGenSubRegIndex * SubIdx) const1000 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
1001     CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
1002   auto SizeOrder = [this](const CodeGenRegisterClass *A,
1003                       const CodeGenRegisterClass *B) {
1004     // If there are multiple, identical register classes, prefer the original
1005     // register class.
1006     if (A == B)
1007       return false;
1008     if (A->getMembers().size() == B->getMembers().size())
1009       return A == this;
1010     return A->getMembers().size() > B->getMembers().size();
1011   };
1012 
1013   auto &RegClasses = RegBank.getRegClasses();
1014 
1015   // Find all the subclasses of this one that fully support the sub-register
1016   // index and order them by size. BiggestSuperRC should always be first.
1017   CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
1018   if (!BiggestSuperRegRC)
1019     return None;
1020   BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1021   std::vector<CodeGenRegisterClass *> SuperRegRCs;
1022   for (auto &RC : RegClasses)
1023     if (SuperRegRCsBV[RC.EnumValue])
1024       SuperRegRCs.emplace_back(&RC);
1025   llvm::stable_sort(SuperRegRCs, SizeOrder);
1026 
1027   assert(SuperRegRCs.front() == BiggestSuperRegRC &&
1028          "Biggest class wasn't first");
1029 
1030   // Find all the subreg classes and order them by size too.
1031   std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1032   for (auto &RC: RegClasses) {
1033     BitVector SuperRegClassesBV(RegClasses.size());
1034     RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1035     if (SuperRegClassesBV.any())
1036       SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1037   }
1038   llvm::sort(SuperRegClasses,
1039              [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1040                  const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1041                return SizeOrder(A.first, B.first);
1042              });
1043 
1044   // Find the biggest subclass and subreg class such that R:subidx is in the
1045   // subreg class for all R in subclass.
1046   //
1047   // For example:
1048   // All registers in X86's GR64 have a sub_32bit subregister but no class
1049   // exists that contains all the 32-bit subregisters because GR64 contains RIP
1050   // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1051   // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1052   // having excluded RIP, we are able to find a SubRegRC (GR32).
1053   CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1054   CodeGenRegisterClass *SubRegRC = nullptr;
1055   for (auto *SuperRegRC : SuperRegRCs) {
1056     for (const auto &SuperRegClassPair : SuperRegClasses) {
1057       const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1058       if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1059         SubRegRC = SuperRegClassPair.first;
1060         ChosenSuperRegClass = SuperRegRC;
1061 
1062         // If SubRegRC is bigger than SuperRegRC then there are members of
1063         // SubRegRC that don't have super registers via SubIdx. Keep looking to
1064         // find a better fit and fall back on this one if there isn't one.
1065         //
1066         // This is intended to prevent X86 from making odd choices such as
1067         // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1068         // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1069         // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1070         // mapping.
1071         if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1072           return std::make_pair(ChosenSuperRegClass, SubRegRC);
1073       }
1074     }
1075 
1076     // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1077     // registers, then we're done.
1078     if (ChosenSuperRegClass)
1079       return std::make_pair(ChosenSuperRegClass, SubRegRC);
1080   }
1081 
1082   return None;
1083 }
1084 
getSuperRegClasses(const CodeGenSubRegIndex * SubIdx,BitVector & Out) const1085 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1086                                               BitVector &Out) const {
1087   auto FindI = SuperRegClasses.find(SubIdx);
1088   if (FindI == SuperRegClasses.end())
1089     return;
1090   for (CodeGenRegisterClass *RC : FindI->second)
1091     Out.set(RC->EnumValue);
1092 }
1093 
1094 // Populate a unique sorted list of units from a register set.
buildRegUnitSet(const CodeGenRegBank & RegBank,std::vector<unsigned> & RegUnits) const1095 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1096   std::vector<unsigned> &RegUnits) const {
1097   std::vector<unsigned> TmpUnits;
1098   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1099     const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1100     if (!RU.Artificial)
1101       TmpUnits.push_back(*UnitI);
1102   }
1103   llvm::sort(TmpUnits);
1104   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1105                    std::back_inserter(RegUnits));
1106 }
1107 
1108 //===----------------------------------------------------------------------===//
1109 //                               CodeGenRegBank
1110 //===----------------------------------------------------------------------===//
1111 
CodeGenRegBank(RecordKeeper & Records,const CodeGenHwModes & Modes)1112 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1113                                const CodeGenHwModes &Modes) : CGH(Modes) {
1114   // Configure register Sets to understand register classes and tuples.
1115   Sets.addFieldExpander("RegisterClass", "MemberList");
1116   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1117   Sets.addExpander("RegisterTuples",
1118                    std::make_unique<TupleExpander>(SynthDefs));
1119 
1120   // Read in the user-defined (named) sub-register indices.
1121   // More indices will be synthesized later.
1122   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1123   llvm::sort(SRIs, LessRecord());
1124   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1125     getSubRegIdx(SRIs[i]);
1126   // Build composite maps from ComposedOf fields.
1127   for (auto &Idx : SubRegIndices)
1128     Idx.updateComponents(*this);
1129 
1130   // Read in the register definitions.
1131   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
1132   llvm::sort(Regs, LessRecordRegister());
1133   // Assign the enumeration values.
1134   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1135     getReg(Regs[i]);
1136 
1137   // Expand tuples and number the new registers.
1138   std::vector<Record*> Tups =
1139     Records.getAllDerivedDefinitions("RegisterTuples");
1140 
1141   for (Record *R : Tups) {
1142     std::vector<Record *> TupRegs = *Sets.expand(R);
1143     llvm::sort(TupRegs, LessRecordRegister());
1144     for (Record *RC : TupRegs)
1145       getReg(RC);
1146   }
1147 
1148   // Now all the registers are known. Build the object graph of explicit
1149   // register-register references.
1150   for (auto &Reg : Registers)
1151     Reg.buildObjectGraph(*this);
1152 
1153   // Compute register name map.
1154   for (auto &Reg : Registers)
1155     // FIXME: This could just be RegistersByName[name] = register, except that
1156     // causes some failures in MIPS - perhaps they have duplicate register name
1157     // entries? (or maybe there's a reason for it - I don't know much about this
1158     // code, just drive-by refactoring)
1159     RegistersByName.insert(
1160         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1161 
1162   // Precompute all sub-register maps.
1163   // This will create Composite entries for all inferred sub-register indices.
1164   for (auto &Reg : Registers)
1165     Reg.computeSubRegs(*this);
1166 
1167   // Compute transitive closure of subregister index ConcatenationOf vectors
1168   // and initialize ConcatIdx map.
1169   for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1170     SRI.computeConcatTransitiveClosure();
1171     if (!SRI.ConcatenationOf.empty())
1172       ConcatIdx.insert(std::make_pair(
1173           SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1174                                              SRI.ConcatenationOf.end()), &SRI));
1175   }
1176 
1177   // Infer even more sub-registers by combining leading super-registers.
1178   for (auto &Reg : Registers)
1179     if (Reg.CoveredBySubRegs)
1180       Reg.computeSecondarySubRegs(*this);
1181 
1182   // After the sub-register graph is complete, compute the topologically
1183   // ordered SuperRegs list.
1184   for (auto &Reg : Registers)
1185     Reg.computeSuperRegs(*this);
1186 
1187   // For each pair of Reg:SR, if both are non-artificial, mark the
1188   // corresponding sub-register index as non-artificial.
1189   for (auto &Reg : Registers) {
1190     if (Reg.Artificial)
1191       continue;
1192     for (auto P : Reg.getSubRegs()) {
1193       const CodeGenRegister *SR = P.second;
1194       if (!SR->Artificial)
1195         P.first->Artificial = false;
1196     }
1197   }
1198 
1199   // Native register units are associated with a leaf register. They've all been
1200   // discovered now.
1201   NumNativeRegUnits = RegUnits.size();
1202 
1203   // Read in register class definitions.
1204   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1205   if (RCs.empty())
1206     PrintFatalError("No 'RegisterClass' subclasses defined!");
1207 
1208   // Allocate user-defined register classes.
1209   for (auto *R : RCs) {
1210     RegClasses.emplace_back(*this, R);
1211     CodeGenRegisterClass &RC = RegClasses.back();
1212     if (!RC.Artificial)
1213       addToMaps(&RC);
1214   }
1215 
1216   // Infer missing classes to create a full algebra.
1217   computeInferredRegisterClasses();
1218 
1219   // Order register classes topologically and assign enum values.
1220   RegClasses.sort(TopoOrderRC);
1221   unsigned i = 0;
1222   for (auto &RC : RegClasses)
1223     RC.EnumValue = i++;
1224   CodeGenRegisterClass::computeSubClasses(*this);
1225 }
1226 
1227 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1228 CodeGenSubRegIndex*
createSubRegIndex(StringRef Name,StringRef Namespace)1229 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1230   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1231   return &SubRegIndices.back();
1232 }
1233 
getSubRegIdx(Record * Def)1234 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1235   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1236   if (Idx)
1237     return Idx;
1238   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1239   Idx = &SubRegIndices.back();
1240   return Idx;
1241 }
1242 
1243 const CodeGenSubRegIndex *
findSubRegIdx(const Record * Def) const1244 CodeGenRegBank::findSubRegIdx(const Record* Def) const {
1245   return Def2SubRegIdx.lookup(Def);
1246 }
1247 
getReg(Record * Def)1248 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1249   CodeGenRegister *&Reg = Def2Reg[Def];
1250   if (Reg)
1251     return Reg;
1252   Registers.emplace_back(Def, Registers.size() + 1);
1253   Reg = &Registers.back();
1254   return Reg;
1255 }
1256 
addToMaps(CodeGenRegisterClass * RC)1257 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1258   if (Record *Def = RC->getDef())
1259     Def2RC.insert(std::make_pair(Def, RC));
1260 
1261   // Duplicate classes are rejected by insert().
1262   // That's OK, we only care about the properties handled by CGRC::Key.
1263   CodeGenRegisterClass::Key K(*RC);
1264   Key2RC.insert(std::make_pair(K, RC));
1265 }
1266 
1267 // Create a synthetic sub-class if it is missing.
1268 CodeGenRegisterClass*
getOrCreateSubClass(const CodeGenRegisterClass * RC,const CodeGenRegister::Vec * Members,StringRef Name)1269 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1270                                     const CodeGenRegister::Vec *Members,
1271                                     StringRef Name) {
1272   // Synthetic sub-class has the same size and alignment as RC.
1273   CodeGenRegisterClass::Key K(Members, RC->RSI);
1274   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1275   if (FoundI != Key2RC.end())
1276     return FoundI->second;
1277 
1278   // Sub-class doesn't exist, create a new one.
1279   RegClasses.emplace_back(*this, Name, K);
1280   addToMaps(&RegClasses.back());
1281   return &RegClasses.back();
1282 }
1283 
getRegClass(const Record * Def) const1284 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const {
1285   if (CodeGenRegisterClass *RC = Def2RC.lookup(Def))
1286     return RC;
1287 
1288   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1289 }
1290 
1291 CodeGenSubRegIndex*
getCompositeSubRegIndex(CodeGenSubRegIndex * A,CodeGenSubRegIndex * B)1292 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1293                                         CodeGenSubRegIndex *B) {
1294   // Look for an existing entry.
1295   CodeGenSubRegIndex *Comp = A->compose(B);
1296   if (Comp)
1297     return Comp;
1298 
1299   // None exists, synthesize one.
1300   std::string Name = A->getName() + "_then_" + B->getName();
1301   Comp = createSubRegIndex(Name, A->getNamespace());
1302   A->addComposite(B, Comp);
1303   return Comp;
1304 }
1305 
1306 CodeGenSubRegIndex *CodeGenRegBank::
getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *,8> & Parts)1307 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1308   assert(Parts.size() > 1 && "Need two parts to concatenate");
1309 #ifndef NDEBUG
1310   for (CodeGenSubRegIndex *Idx : Parts) {
1311     assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1312   }
1313 #endif
1314 
1315   // Look for an existing entry.
1316   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1317   if (Idx)
1318     return Idx;
1319 
1320   // None exists, synthesize one.
1321   std::string Name = Parts.front()->getName();
1322   // Determine whether all parts are contiguous.
1323   bool isContinuous = true;
1324   unsigned Size = Parts.front()->Size;
1325   unsigned LastOffset = Parts.front()->Offset;
1326   unsigned LastSize = Parts.front()->Size;
1327   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1328     Name += '_';
1329     Name += Parts[i]->getName();
1330     Size += Parts[i]->Size;
1331     if (Parts[i]->Offset != (LastOffset + LastSize))
1332       isContinuous = false;
1333     LastOffset = Parts[i]->Offset;
1334     LastSize = Parts[i]->Size;
1335   }
1336   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1337   Idx->Size = Size;
1338   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1339   Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1340   return Idx;
1341 }
1342 
computeComposites()1343 void CodeGenRegBank::computeComposites() {
1344   using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;
1345 
1346   // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1347   // register to (sub)register associated with the action of the left-hand
1348   // side subregister.
1349   std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
1350   for (const CodeGenRegister &R : Registers) {
1351     const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1352     for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
1353       SubRegAction[P.first].insert({&R, P.second});
1354   }
1355 
1356   // Calculate the composition of two subregisters as compositions of their
1357   // associated actions.
1358   auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
1359                                   const CodeGenSubRegIndex *Sub2) {
1360     RegMap C;
1361     const RegMap &Img1 = SubRegAction.at(Sub1);
1362     const RegMap &Img2 = SubRegAction.at(Sub2);
1363     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
1364       auto F = Img2.find(P.second);
1365       if (F != Img2.end())
1366         C.insert({P.first, F->second});
1367     }
1368     return C;
1369   };
1370 
1371   // Check if the two maps agree on the intersection of their domains.
1372   auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
1373     // Technically speaking, an empty map agrees with any other map, but
1374     // this could flag false positives. We're interested in non-vacuous
1375     // agreements.
1376     if (Map1.empty() || Map2.empty())
1377       return false;
1378     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
1379       auto F = Map2.find(P.first);
1380       if (F == Map2.end() || P.second != F->second)
1381         return false;
1382     }
1383     return true;
1384   };
1385 
1386   using CompositePair = std::pair<const CodeGenSubRegIndex*,
1387                                   const CodeGenSubRegIndex*>;
1388   SmallSet<CompositePair,4> UserDefined;
1389   for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1390     for (auto P : Idx.getComposites())
1391       UserDefined.insert(std::make_pair(&Idx, P.first));
1392 
1393   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1394   // and many registers will share TopoSigs on regular architectures.
1395   BitVector TopoSigs(getNumTopoSigs());
1396 
1397   for (const auto &Reg1 : Registers) {
1398     // Skip identical subreg structures already processed.
1399     if (TopoSigs.test(Reg1.getTopoSig()))
1400       continue;
1401     TopoSigs.set(Reg1.getTopoSig());
1402 
1403     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1404     for (auto I1 : SRM1) {
1405       CodeGenSubRegIndex *Idx1 = I1.first;
1406       CodeGenRegister *Reg2 = I1.second;
1407       // Ignore identity compositions.
1408       if (&Reg1 == Reg2)
1409         continue;
1410       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1411       // Try composing Idx1 with another SubRegIndex.
1412       for (auto I2 : SRM2) {
1413         CodeGenSubRegIndex *Idx2 = I2.first;
1414         CodeGenRegister *Reg3 = I2.second;
1415         // Ignore identity compositions.
1416         if (Reg2 == Reg3)
1417           continue;
1418         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1419         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1420         assert(Idx3 && "Sub-register doesn't have an index");
1421 
1422         // Conflicting composition? Emit a warning but allow it.
1423         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
1424           // If the composition was not user-defined, always emit a warning.
1425           if (!UserDefined.count({Idx1, Idx2}) ||
1426               agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1427             PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1428                          " and " + Idx2->getQualifiedName() +
1429                          " compose ambiguously as " + Prev->getQualifiedName() +
1430                          " or " + Idx3->getQualifiedName());
1431         }
1432       }
1433     }
1434   }
1435 }
1436 
1437 // Compute lane masks. This is similar to register units, but at the
1438 // sub-register index level. Each bit in the lane mask is like a register unit
1439 // class, and two lane masks will have a bit in common if two sub-register
1440 // indices overlap in some register.
1441 //
1442 // Conservatively share a lane mask bit if two sub-register indices overlap in
1443 // some registers, but not in others. That shouldn't happen a lot.
computeSubRegLaneMasks()1444 void CodeGenRegBank::computeSubRegLaneMasks() {
1445   // First assign individual bits to all the leaf indices.
1446   unsigned Bit = 0;
1447   // Determine mask of lanes that cover their registers.
1448   CoveringLanes = LaneBitmask::getAll();
1449   for (auto &Idx : SubRegIndices) {
1450     if (Idx.getComposites().empty()) {
1451       if (Bit > LaneBitmask::BitWidth) {
1452         PrintFatalError(
1453           Twine("Ran out of lanemask bits to represent subregister ")
1454           + Idx.getName());
1455       }
1456       Idx.LaneMask = LaneBitmask::getLane(Bit);
1457       ++Bit;
1458     } else {
1459       Idx.LaneMask = LaneBitmask::getNone();
1460     }
1461   }
1462 
1463   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1464   // here is that for each possible target subregister we look at the leafs
1465   // in the subregister graph that compose for this target and create
1466   // transformation sequences for the lanemasks. Each step in the sequence
1467   // consists of a bitmask and a bitrotate operation. As the rotation amounts
1468   // are usually the same for many subregisters we can easily combine the steps
1469   // by combining the masks.
1470   for (const auto &Idx : SubRegIndices) {
1471     const auto &Composites = Idx.getComposites();
1472     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1473 
1474     if (Composites.empty()) {
1475       // Moving from a class with no subregisters we just had a single lane:
1476       // The subregister must be a leaf subregister and only occupies 1 bit.
1477       // Move the bit from the class without subregisters into that position.
1478       unsigned DstBit = Idx.LaneMask.getHighestLane();
1479       assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1480              "Must be a leaf subregister");
1481       MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1482       LaneTransforms.push_back(MaskRol);
1483     } else {
1484       // Go through all leaf subregisters and find the ones that compose with
1485       // Idx. These make out all possible valid bits in the lane mask we want to
1486       // transform. Looking only at the leafs ensure that only a single bit in
1487       // the mask is set.
1488       unsigned NextBit = 0;
1489       for (auto &Idx2 : SubRegIndices) {
1490         // Skip non-leaf subregisters.
1491         if (!Idx2.getComposites().empty())
1492           continue;
1493         // Replicate the behaviour from the lane mask generation loop above.
1494         unsigned SrcBit = NextBit;
1495         LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1496         if (NextBit < LaneBitmask::BitWidth-1)
1497           ++NextBit;
1498         assert(Idx2.LaneMask == SrcMask);
1499 
1500         // Get the composed subregister if there is any.
1501         auto C = Composites.find(&Idx2);
1502         if (C == Composites.end())
1503           continue;
1504         const CodeGenSubRegIndex *Composite = C->second;
1505         // The Composed subreg should be a leaf subreg too
1506         assert(Composite->getComposites().empty());
1507 
1508         // Create Mask+Rotate operation and merge with existing ops if possible.
1509         unsigned DstBit = Composite->LaneMask.getHighestLane();
1510         int Shift = DstBit - SrcBit;
1511         uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1512                                         : LaneBitmask::BitWidth + Shift;
1513         for (auto &I : LaneTransforms) {
1514           if (I.RotateLeft == RotateLeft) {
1515             I.Mask |= SrcMask;
1516             SrcMask = LaneBitmask::getNone();
1517           }
1518         }
1519         if (SrcMask.any()) {
1520           MaskRolPair MaskRol = { SrcMask, RotateLeft };
1521           LaneTransforms.push_back(MaskRol);
1522         }
1523       }
1524     }
1525 
1526     // Optimize if the transformation consists of one step only: Set mask to
1527     // 0xffffffff (including some irrelevant invalid bits) so that it should
1528     // merge with more entries later while compressing the table.
1529     if (LaneTransforms.size() == 1)
1530       LaneTransforms[0].Mask = LaneBitmask::getAll();
1531 
1532     // Further compression optimization: For invalid compositions resulting
1533     // in a sequence with 0 entries we can just pick any other. Choose
1534     // Mask 0xffffffff with Rotation 0.
1535     if (LaneTransforms.size() == 0) {
1536       MaskRolPair P = { LaneBitmask::getAll(), 0 };
1537       LaneTransforms.push_back(P);
1538     }
1539   }
1540 
1541   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1542   // by the sub-register graph? This doesn't occur in any known targets.
1543 
1544   // Inherit lanes from composites.
1545   for (const auto &Idx : SubRegIndices) {
1546     LaneBitmask Mask = Idx.computeLaneMask();
1547     // If some super-registers without CoveredBySubRegs use this index, we can
1548     // no longer assume that the lanes are covering their registers.
1549     if (!Idx.AllSuperRegsCovered)
1550       CoveringLanes &= ~Mask;
1551   }
1552 
1553   // Compute lane mask combinations for register classes.
1554   for (auto &RegClass : RegClasses) {
1555     LaneBitmask LaneMask;
1556     for (const auto &SubRegIndex : SubRegIndices) {
1557       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1558         continue;
1559       LaneMask |= SubRegIndex.LaneMask;
1560     }
1561 
1562     // For classes without any subregisters set LaneMask to 1 instead of 0.
1563     // This makes it easier for client code to handle classes uniformly.
1564     if (LaneMask.none())
1565       LaneMask = LaneBitmask::getLane(0);
1566 
1567     RegClass.LaneMask = LaneMask;
1568   }
1569 }
1570 
1571 namespace {
1572 
1573 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1574 // the transitive closure of the union of overlapping register
1575 // classes. Together, the UberRegSets form a partition of the registers. If we
1576 // consider overlapping register classes to be connected, then each UberRegSet
1577 // is a set of connected components.
1578 //
1579 // An UberRegSet will likely be a horizontal slice of register names of
1580 // the same width. Nontrivial subregisters should then be in a separate
1581 // UberRegSet. But this property isn't required for valid computation of
1582 // register unit weights.
1583 //
1584 // A Weight field caches the max per-register unit weight in each UberRegSet.
1585 //
1586 // A set of SingularDeterminants flags single units of some register in this set
1587 // for which the unit weight equals the set weight. These units should not have
1588 // their weight increased.
1589 struct UberRegSet {
1590   CodeGenRegister::Vec Regs;
1591   unsigned Weight = 0;
1592   CodeGenRegister::RegUnitList SingularDeterminants;
1593 
1594   UberRegSet() = default;
1595 };
1596 
1597 } // end anonymous namespace
1598 
1599 // Partition registers into UberRegSets, where each set is the transitive
1600 // closure of the union of overlapping register classes.
1601 //
1602 // UberRegSets[0] is a special non-allocatable set.
computeUberSets(std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,CodeGenRegBank & RegBank)1603 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1604                             std::vector<UberRegSet*> &RegSets,
1605                             CodeGenRegBank &RegBank) {
1606   const auto &Registers = RegBank.getRegisters();
1607 
1608   // The Register EnumValue is one greater than its index into Registers.
1609   assert(Registers.size() == Registers.back().EnumValue &&
1610          "register enum value mismatch");
1611 
1612   // For simplicitly make the SetID the same as EnumValue.
1613   IntEqClasses UberSetIDs(Registers.size()+1);
1614   std::set<unsigned> AllocatableRegs;
1615   for (auto &RegClass : RegBank.getRegClasses()) {
1616     if (!RegClass.Allocatable)
1617       continue;
1618 
1619     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1620     if (Regs.empty())
1621       continue;
1622 
1623     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1624     assert(USetID && "register number 0 is invalid");
1625 
1626     AllocatableRegs.insert((*Regs.begin())->EnumValue);
1627     for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) {
1628       AllocatableRegs.insert(CGR->EnumValue);
1629       UberSetIDs.join(USetID, CGR->EnumValue);
1630     }
1631   }
1632   // Combine non-allocatable regs.
1633   for (const auto &Reg : Registers) {
1634     unsigned RegNum = Reg.EnumValue;
1635     if (AllocatableRegs.count(RegNum))
1636       continue;
1637 
1638     UberSetIDs.join(0, RegNum);
1639   }
1640   UberSetIDs.compress();
1641 
1642   // Make the first UberSet a special unallocatable set.
1643   unsigned ZeroID = UberSetIDs[0];
1644 
1645   // Insert Registers into the UberSets formed by union-find.
1646   // Do not resize after this.
1647   UberSets.resize(UberSetIDs.getNumClasses());
1648   unsigned i = 0;
1649   for (const CodeGenRegister &Reg : Registers) {
1650     unsigned USetID = UberSetIDs[Reg.EnumValue];
1651     if (!USetID)
1652       USetID = ZeroID;
1653     else if (USetID == ZeroID)
1654       USetID = 0;
1655 
1656     UberRegSet *USet = &UberSets[USetID];
1657     USet->Regs.push_back(&Reg);
1658     sortAndUniqueRegisters(USet->Regs);
1659     RegSets[i++] = USet;
1660   }
1661 }
1662 
1663 // Recompute each UberSet weight after changing unit weights.
computeUberWeights(std::vector<UberRegSet> & UberSets,CodeGenRegBank & RegBank)1664 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1665                                CodeGenRegBank &RegBank) {
1666   // Skip the first unallocatable set.
1667   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1668          E = UberSets.end(); I != E; ++I) {
1669 
1670     // Initialize all unit weights in this set, and remember the max units/reg.
1671     const CodeGenRegister *Reg = nullptr;
1672     unsigned MaxWeight = 0, Weight = 0;
1673     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1674       if (Reg != UnitI.getReg()) {
1675         if (Weight > MaxWeight)
1676           MaxWeight = Weight;
1677         Reg = UnitI.getReg();
1678         Weight = 0;
1679       }
1680       if (!RegBank.getRegUnit(*UnitI).Artificial) {
1681         unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1682         if (!UWeight) {
1683           UWeight = 1;
1684           RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1685         }
1686         Weight += UWeight;
1687       }
1688     }
1689     if (Weight > MaxWeight)
1690       MaxWeight = Weight;
1691     if (I->Weight != MaxWeight) {
1692       LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1693                         << MaxWeight;
1694                  for (auto &Unit
1695                       : I->Regs) dbgs()
1696                  << " " << Unit->getName();
1697                  dbgs() << "\n");
1698       // Update the set weight.
1699       I->Weight = MaxWeight;
1700     }
1701 
1702     // Find singular determinants.
1703     for (const auto R : I->Regs) {
1704       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1705         I->SingularDeterminants |= R->getRegUnits();
1706       }
1707     }
1708   }
1709 }
1710 
1711 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1712 // a register and its subregisters so that they have the same weight as their
1713 // UberSet. Self-recursion processes the subregister tree in postorder so
1714 // subregisters are normalized first.
1715 //
1716 // Side effects:
1717 // - creates new adopted register units
1718 // - causes superregisters to inherit adopted units
1719 // - increases the weight of "singular" units
1720 // - induces recomputation of UberWeights.
normalizeWeight(CodeGenRegister * Reg,std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,BitVector & NormalRegs,CodeGenRegister::RegUnitList & NormalUnits,CodeGenRegBank & RegBank)1721 static bool normalizeWeight(CodeGenRegister *Reg,
1722                             std::vector<UberRegSet> &UberSets,
1723                             std::vector<UberRegSet*> &RegSets,
1724                             BitVector &NormalRegs,
1725                             CodeGenRegister::RegUnitList &NormalUnits,
1726                             CodeGenRegBank &RegBank) {
1727   NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1728   if (NormalRegs.test(Reg->EnumValue))
1729     return false;
1730   NormalRegs.set(Reg->EnumValue);
1731 
1732   bool Changed = false;
1733   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1734   for (auto SRI : SRM) {
1735     if (SRI.second == Reg)
1736       continue; // self-cycles happen
1737 
1738     Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs,
1739                                NormalUnits, RegBank);
1740   }
1741   // Postorder register normalization.
1742 
1743   // Inherit register units newly adopted by subregisters.
1744   if (Reg->inheritRegUnits(RegBank))
1745     computeUberWeights(UberSets, RegBank);
1746 
1747   // Check if this register is too skinny for its UberRegSet.
1748   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1749 
1750   unsigned RegWeight = Reg->getWeight(RegBank);
1751   if (UberSet->Weight > RegWeight) {
1752     // A register unit's weight can be adjusted only if it is the singular unit
1753     // for this register, has not been used to normalize a subregister's set,
1754     // and has not already been used to singularly determine this UberRegSet.
1755     unsigned AdjustUnit = *Reg->getRegUnits().begin();
1756     if (Reg->getRegUnits().count() != 1
1757         || hasRegUnit(NormalUnits, AdjustUnit)
1758         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1759       // We don't have an adjustable unit, so adopt a new one.
1760       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1761       Reg->adoptRegUnit(AdjustUnit);
1762       // Adopting a unit does not immediately require recomputing set weights.
1763     }
1764     else {
1765       // Adjust the existing single unit.
1766       if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1767         RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1768       // The unit may be shared among sets and registers within this set.
1769       computeUberWeights(UberSets, RegBank);
1770     }
1771     Changed = true;
1772   }
1773 
1774   // Mark these units normalized so superregisters can't change their weights.
1775   NormalUnits |= Reg->getRegUnits();
1776 
1777   return Changed;
1778 }
1779 
1780 // Compute a weight for each register unit created during getSubRegs.
1781 //
1782 // The goal is that two registers in the same class will have the same weight,
1783 // where each register's weight is defined as sum of its units' weights.
computeRegUnitWeights()1784 void CodeGenRegBank::computeRegUnitWeights() {
1785   std::vector<UberRegSet> UberSets;
1786   std::vector<UberRegSet*> RegSets(Registers.size());
1787   computeUberSets(UberSets, RegSets, *this);
1788   // UberSets and RegSets are now immutable.
1789 
1790   computeUberWeights(UberSets, *this);
1791 
1792   // Iterate over each Register, normalizing the unit weights until reaching
1793   // a fix point.
1794   unsigned NumIters = 0;
1795   for (bool Changed = true; Changed; ++NumIters) {
1796     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1797     Changed = false;
1798     for (auto &Reg : Registers) {
1799       CodeGenRegister::RegUnitList NormalUnits;
1800       BitVector NormalRegs;
1801       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1802                                  NormalUnits, *this);
1803     }
1804   }
1805 }
1806 
1807 // Find a set in UniqueSets with the same elements as Set.
1808 // Return an iterator into UniqueSets.
1809 static std::vector<RegUnitSet>::const_iterator
findRegUnitSet(const std::vector<RegUnitSet> & UniqueSets,const RegUnitSet & Set)1810 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1811                const RegUnitSet &Set) {
1812   std::vector<RegUnitSet>::const_iterator
1813     I = UniqueSets.begin(), E = UniqueSets.end();
1814   for(;I != E; ++I) {
1815     if (I->Units == Set.Units)
1816       break;
1817   }
1818   return I;
1819 }
1820 
1821 // Return true if the RUSubSet is a subset of RUSuperSet.
isRegUnitSubSet(const std::vector<unsigned> & RUSubSet,const std::vector<unsigned> & RUSuperSet)1822 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1823                             const std::vector<unsigned> &RUSuperSet) {
1824   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1825                        RUSubSet.begin(), RUSubSet.end());
1826 }
1827 
1828 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1829 /// but with one or two registers removed. We occasionally have registers like
1830 /// APSR and PC thrown in with the general registers. We also see many
1831 /// special-purpose register subsets, such as tail-call and Thumb
1832 /// encodings. Generating all possible overlapping sets is combinatorial and
1833 /// overkill for modeling pressure. Ideally we could fix this statically in
1834 /// tablegen by (1) having the target define register classes that only include
1835 /// the allocatable registers and marking other classes as non-allocatable and
1836 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1837 /// the purpose of pressure.  However, we make an attempt to handle targets that
1838 /// are not nicely defined by merging nearly identical register unit sets
1839 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1840 /// set limit by filtering the reserved registers.
1841 ///
1842 /// Merge sets only if the units have the same weight. For example, on ARM,
1843 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1844 /// should not expand the S set to include D regs.
pruneUnitSets()1845 void CodeGenRegBank::pruneUnitSets() {
1846   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1847 
1848   // Form an equivalence class of UnitSets with no significant difference.
1849   std::vector<unsigned> SuperSetIDs;
1850   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1851        SubIdx != EndIdx; ++SubIdx) {
1852     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1853     unsigned SuperIdx = 0;
1854     for (; SuperIdx != EndIdx; ++SuperIdx) {
1855       if (SuperIdx == SubIdx)
1856         continue;
1857 
1858       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1859       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1860       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1861           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1862           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1863           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1864         LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1865                           << "\n");
1866         // We can pick any of the set names for the merged set. Go for the
1867         // shortest one to avoid picking the name of one of the classes that are
1868         // artificially created by tablegen. So "FPR128_lo" instead of
1869         // "QQQQ_with_qsub3_in_FPR128_lo".
1870         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1871           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1872         break;
1873       }
1874     }
1875     if (SuperIdx == EndIdx)
1876       SuperSetIDs.push_back(SubIdx);
1877   }
1878   // Populate PrunedUnitSets with each equivalence class's superset.
1879   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1880   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1881     unsigned SuperIdx = SuperSetIDs[i];
1882     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1883     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1884   }
1885   RegUnitSets.swap(PrunedUnitSets);
1886 }
1887 
1888 // Create a RegUnitSet for each RegClass that contains all units in the class
1889 // including adopted units that are necessary to model register pressure. Then
1890 // iteratively compute RegUnitSets such that the union of any two overlapping
1891 // RegUnitSets is repreresented.
1892 //
1893 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1894 // RegUnitSet that is a superset of that RegUnitClass.
computeRegUnitSets()1895 void CodeGenRegBank::computeRegUnitSets() {
1896   assert(RegUnitSets.empty() && "dirty RegUnitSets");
1897 
1898   // Compute a unique RegUnitSet for each RegClass.
1899   auto &RegClasses = getRegClasses();
1900   for (auto &RC : RegClasses) {
1901     if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet)
1902       continue;
1903 
1904     // Speculatively grow the RegUnitSets to hold the new set.
1905     RegUnitSets.resize(RegUnitSets.size() + 1);
1906     RegUnitSets.back().Name = RC.getName();
1907 
1908     // Compute a sorted list of units in this class.
1909     RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1910 
1911     // Find an existing RegUnitSet.
1912     std::vector<RegUnitSet>::const_iterator SetI =
1913       findRegUnitSet(RegUnitSets, RegUnitSets.back());
1914     if (SetI != std::prev(RegUnitSets.end()))
1915       RegUnitSets.pop_back();
1916   }
1917 
1918   if (RegUnitSets.empty())
1919     PrintFatalError("RegUnitSets cannot be empty!");
1920 
1921   LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
1922                                                    USEnd = RegUnitSets.size();
1923                                                    USIdx < USEnd; ++USIdx) {
1924     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1925     for (auto &U : RegUnitSets[USIdx].Units)
1926       printRegUnitName(U);
1927     dbgs() << "\n";
1928   });
1929 
1930   // Iteratively prune unit sets.
1931   pruneUnitSets();
1932 
1933   LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
1934                                                  USEnd = RegUnitSets.size();
1935                                                  USIdx < USEnd; ++USIdx) {
1936     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1937     for (auto &U : RegUnitSets[USIdx].Units)
1938       printRegUnitName(U);
1939     dbgs() << "\n";
1940   } dbgs() << "\nUnion sets:\n");
1941 
1942   // Iterate over all unit sets, including new ones added by this loop.
1943   unsigned NumRegUnitSubSets = RegUnitSets.size();
1944   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1945     // In theory, this is combinatorial. In practice, it needs to be bounded
1946     // by a small number of sets for regpressure to be efficient.
1947     // If the assert is hit, we need to implement pruning.
1948     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1949 
1950     // Compare new sets with all original classes.
1951     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1952          SearchIdx != EndIdx; ++SearchIdx) {
1953       std::set<unsigned> Intersection;
1954       std::set_intersection(RegUnitSets[Idx].Units.begin(),
1955                             RegUnitSets[Idx].Units.end(),
1956                             RegUnitSets[SearchIdx].Units.begin(),
1957                             RegUnitSets[SearchIdx].Units.end(),
1958                             std::inserter(Intersection, Intersection.begin()));
1959       if (Intersection.empty())
1960         continue;
1961 
1962       // Speculatively grow the RegUnitSets to hold the new set.
1963       RegUnitSets.resize(RegUnitSets.size() + 1);
1964       RegUnitSets.back().Name =
1965         RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name;
1966 
1967       std::set_union(RegUnitSets[Idx].Units.begin(),
1968                      RegUnitSets[Idx].Units.end(),
1969                      RegUnitSets[SearchIdx].Units.begin(),
1970                      RegUnitSets[SearchIdx].Units.end(),
1971                      std::inserter(RegUnitSets.back().Units,
1972                                    RegUnitSets.back().Units.begin()));
1973 
1974       // Find an existing RegUnitSet, or add the union to the unique sets.
1975       std::vector<RegUnitSet>::const_iterator SetI =
1976         findRegUnitSet(RegUnitSets, RegUnitSets.back());
1977       if (SetI != std::prev(RegUnitSets.end()))
1978         RegUnitSets.pop_back();
1979       else {
1980         LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
1981                           << RegUnitSets.back().Name << ":";
1982                    for (auto &U
1983                         : RegUnitSets.back().Units) printRegUnitName(U);
1984                    dbgs() << "\n";);
1985       }
1986     }
1987   }
1988 
1989   // Iteratively prune unit sets after inferring supersets.
1990   pruneUnitSets();
1991 
1992   LLVM_DEBUG(
1993       dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1994                            USIdx < USEnd; ++USIdx) {
1995         dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1996         for (auto &U : RegUnitSets[USIdx].Units)
1997           printRegUnitName(U);
1998         dbgs() << "\n";
1999       });
2000 
2001   // For each register class, list the UnitSets that are supersets.
2002   RegClassUnitSets.resize(RegClasses.size());
2003   int RCIdx = -1;
2004   for (auto &RC : RegClasses) {
2005     ++RCIdx;
2006     if (!RC.Allocatable)
2007       continue;
2008 
2009     // Recompute the sorted list of units in this class.
2010     std::vector<unsigned> RCRegUnits;
2011     RC.buildRegUnitSet(*this, RCRegUnits);
2012 
2013     // Don't increase pressure for unallocatable regclasses.
2014     if (RCRegUnits.empty())
2015       continue;
2016 
2017     LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n";
2018                for (auto U
2019                     : RCRegUnits) printRegUnitName(U);
2020                dbgs() << "\n  UnitSetIDs:");
2021 
2022     // Find all supersets.
2023     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2024          USIdx != USEnd; ++USIdx) {
2025       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2026         LLVM_DEBUG(dbgs() << " " << USIdx);
2027         RegClassUnitSets[RCIdx].push_back(USIdx);
2028       }
2029     }
2030     LLVM_DEBUG(dbgs() << "\n");
2031     assert((!RegClassUnitSets[RCIdx].empty() || !RC.GeneratePressureSet) &&
2032            "missing unit set for regclass");
2033   }
2034 
2035   // For each register unit, ensure that we have the list of UnitSets that
2036   // contain the unit. Normally, this matches an existing list of UnitSets for a
2037   // register class. If not, we create a new entry in RegClassUnitSets as a
2038   // "fake" register class.
2039   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
2040        UnitIdx < UnitEnd; ++UnitIdx) {
2041     std::vector<unsigned> RUSets;
2042     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2043       RegUnitSet &RUSet = RegUnitSets[i];
2044       if (!is_contained(RUSet.Units, UnitIdx))
2045         continue;
2046       RUSets.push_back(i);
2047     }
2048     unsigned RCUnitSetsIdx = 0;
2049     for (unsigned e = RegClassUnitSets.size();
2050          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
2051       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2052         break;
2053       }
2054     }
2055     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2056     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2057       // Create a new list of UnitSets as a "fake" register class.
2058       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
2059       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
2060     }
2061   }
2062 }
2063 
computeRegUnitLaneMasks()2064 void CodeGenRegBank::computeRegUnitLaneMasks() {
2065   for (auto &Register : Registers) {
2066     // Create an initial lane mask for all register units.
2067     const auto &RegUnits = Register.getRegUnits();
2068     CodeGenRegister::RegUnitLaneMaskList
2069         RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
2070     // Iterate through SubRegisters.
2071     typedef CodeGenRegister::SubRegMap SubRegMap;
2072     const SubRegMap &SubRegs = Register.getSubRegs();
2073     for (auto S : SubRegs) {
2074       CodeGenRegister *SubReg = S.second;
2075       // Ignore non-leaf subregisters, their lane masks are fully covered by
2076       // the leaf subregisters anyway.
2077       if (!SubReg->getSubRegs().empty())
2078         continue;
2079       CodeGenSubRegIndex *SubRegIndex = S.first;
2080       const CodeGenRegister *SubRegister = S.second;
2081       LaneBitmask LaneMask = SubRegIndex->LaneMask;
2082       // Distribute LaneMask to Register Units touched.
2083       for (unsigned SUI : SubRegister->getRegUnits()) {
2084         bool Found = false;
2085         unsigned u = 0;
2086         for (unsigned RU : RegUnits) {
2087           if (SUI == RU) {
2088             RegUnitLaneMasks[u] |= LaneMask;
2089             assert(!Found);
2090             Found = true;
2091           }
2092           ++u;
2093         }
2094         (void)Found;
2095         assert(Found);
2096       }
2097     }
2098     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2099   }
2100 }
2101 
computeDerivedInfo()2102 void CodeGenRegBank::computeDerivedInfo() {
2103   computeComposites();
2104   computeSubRegLaneMasks();
2105 
2106   // Compute a weight for each register unit created during getSubRegs.
2107   // This may create adopted register units (with unit # >= NumNativeRegUnits).
2108   computeRegUnitWeights();
2109 
2110   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2111   // supersets for the union of overlapping sets.
2112   computeRegUnitSets();
2113 
2114   computeRegUnitLaneMasks();
2115 
2116   // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2117   for (CodeGenRegisterClass &RC : RegClasses) {
2118     RC.HasDisjunctSubRegs = false;
2119     RC.CoveredBySubRegs = true;
2120     for (const CodeGenRegister *Reg : RC.getMembers()) {
2121       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2122       RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2123     }
2124   }
2125 
2126   // Get the weight of each set.
2127   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2128     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2129 
2130   // Find the order of each set.
2131   RegUnitSetOrder.reserve(RegUnitSets.size());
2132   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2133     RegUnitSetOrder.push_back(Idx);
2134 
2135   llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2136     return getRegPressureSet(ID1).Units.size() <
2137            getRegPressureSet(ID2).Units.size();
2138   });
2139   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2140     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2141   }
2142 }
2143 
2144 //
2145 // Synthesize missing register class intersections.
2146 //
2147 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2148 // returns a maximal register class for all X.
2149 //
inferCommonSubClass(CodeGenRegisterClass * RC)2150 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2151   assert(!RegClasses.empty());
2152   // Stash the iterator to the last element so that this loop doesn't visit
2153   // elements added by the getOrCreateSubClass call within it.
2154   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2155        I != std::next(E); ++I) {
2156     CodeGenRegisterClass *RC1 = RC;
2157     CodeGenRegisterClass *RC2 = &*I;
2158     if (RC1 == RC2)
2159       continue;
2160 
2161     // Compute the set intersection of RC1 and RC2.
2162     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2163     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2164     CodeGenRegister::Vec Intersection;
2165     std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2166                           Memb2.end(),
2167                           std::inserter(Intersection, Intersection.begin()),
2168                           deref<std::less<>>());
2169 
2170     // Skip disjoint class pairs.
2171     if (Intersection.empty())
2172       continue;
2173 
2174     // If RC1 and RC2 have different spill sizes or alignments, use the
2175     // stricter one for sub-classing.  If they are equal, prefer RC1.
2176     if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2177       std::swap(RC1, RC2);
2178 
2179     getOrCreateSubClass(RC1, &Intersection,
2180                         RC1->getName() + "_and_" + RC2->getName());
2181   }
2182 }
2183 
2184 //
2185 // Synthesize missing sub-classes for getSubClassWithSubReg().
2186 //
2187 // Make sure that the set of registers in RC with a given SubIdx sub-register
2188 // form a register class.  Update RC->SubClassWithSubReg.
2189 //
inferSubClassWithSubReg(CodeGenRegisterClass * RC)2190 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2191   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2192   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2193                    deref<std::less<>>>
2194       SubReg2SetMap;
2195 
2196   // Compute the set of registers supporting each SubRegIndex.
2197   SubReg2SetMap SRSets;
2198   for (const auto R : RC->getMembers()) {
2199     if (R->Artificial)
2200       continue;
2201     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2202     for (auto I : SRM) {
2203       if (!I.first->Artificial)
2204         SRSets[I.first].push_back(R);
2205     }
2206   }
2207 
2208   for (auto I : SRSets)
2209     sortAndUniqueRegisters(I.second);
2210 
2211   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
2212   // numerical order to visit synthetic indices last.
2213   for (const auto &SubIdx : SubRegIndices) {
2214     if (SubIdx.Artificial)
2215       continue;
2216     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2217     // Unsupported SubRegIndex. Skip it.
2218     if (I == SRSets.end())
2219       continue;
2220     // In most cases, all RC registers support the SubRegIndex.
2221     if (I->second.size() == RC->getMembers().size()) {
2222       RC->setSubClassWithSubReg(&SubIdx, RC);
2223       continue;
2224     }
2225     // This is a real subset.  See if we have a matching class.
2226     CodeGenRegisterClass *SubRC =
2227       getOrCreateSubClass(RC, &I->second,
2228                           RC->getName() + "_with_" + I->first->getName());
2229     RC->setSubClassWithSubReg(&SubIdx, SubRC);
2230   }
2231 }
2232 
2233 //
2234 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2235 //
2236 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2237 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2238 //
2239 
inferMatchingSuperRegClass(CodeGenRegisterClass * RC,std::list<CodeGenRegisterClass>::iterator FirstSubRegRC)2240 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2241                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2242   SmallVector<std::pair<const CodeGenRegister*,
2243                         const CodeGenRegister*>, 16> SSPairs;
2244   BitVector TopoSigs(getNumTopoSigs());
2245 
2246   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2247   for (auto &SubIdx : SubRegIndices) {
2248     // Skip indexes that aren't fully supported by RC's registers. This was
2249     // computed by inferSubClassWithSubReg() above which should have been
2250     // called first.
2251     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2252       continue;
2253 
2254     // Build list of (Super, Sub) pairs for this SubIdx.
2255     SSPairs.clear();
2256     TopoSigs.reset();
2257     for (const auto Super : RC->getMembers()) {
2258       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2259       assert(Sub && "Missing sub-register");
2260       SSPairs.push_back(std::make_pair(Super, Sub));
2261       TopoSigs.set(Sub->getTopoSig());
2262     }
2263 
2264     // Iterate over sub-register class candidates.  Ignore classes created by
2265     // this loop. They will never be useful.
2266     // Store an iterator to the last element (not end) so that this loop doesn't
2267     // visit newly inserted elements.
2268     assert(!RegClasses.empty());
2269     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2270          I != std::next(E); ++I) {
2271       CodeGenRegisterClass &SubRC = *I;
2272       if (SubRC.Artificial)
2273         continue;
2274       // Topological shortcut: SubRC members have the wrong shape.
2275       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2276         continue;
2277       // Compute the subset of RC that maps into SubRC.
2278       CodeGenRegister::Vec SubSetVec;
2279       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2280         if (SubRC.contains(SSPairs[i].second))
2281           SubSetVec.push_back(SSPairs[i].first);
2282 
2283       if (SubSetVec.empty())
2284         continue;
2285 
2286       // RC injects completely into SubRC.
2287       sortAndUniqueRegisters(SubSetVec);
2288       if (SubSetVec.size() == SSPairs.size()) {
2289         SubRC.addSuperRegClass(&SubIdx, RC);
2290         continue;
2291       }
2292 
2293       // Only a subset of RC maps into SubRC. Make sure it is represented by a
2294       // class.
2295       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2296                                           SubIdx.getName() + "_in_" +
2297                                           SubRC.getName());
2298     }
2299   }
2300 }
2301 
2302 //
2303 // Infer missing register classes.
2304 //
computeInferredRegisterClasses()2305 void CodeGenRegBank::computeInferredRegisterClasses() {
2306   assert(!RegClasses.empty());
2307   // When this function is called, the register classes have not been sorted
2308   // and assigned EnumValues yet.  That means getSubClasses(),
2309   // getSuperClasses(), and hasSubClass() functions are defunct.
2310 
2311   // Use one-before-the-end so it doesn't move forward when new elements are
2312   // added.
2313   auto FirstNewRC = std::prev(RegClasses.end());
2314 
2315   // Visit all register classes, including the ones being added by the loop.
2316   // Watch out for iterator invalidation here.
2317   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2318     CodeGenRegisterClass *RC = &*I;
2319     if (RC->Artificial)
2320       continue;
2321 
2322     // Synthesize answers for getSubClassWithSubReg().
2323     inferSubClassWithSubReg(RC);
2324 
2325     // Synthesize answers for getCommonSubClass().
2326     inferCommonSubClass(RC);
2327 
2328     // Synthesize answers for getMatchingSuperRegClass().
2329     inferMatchingSuperRegClass(RC);
2330 
2331     // New register classes are created while this loop is running, and we need
2332     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2333     // to match old super-register classes with sub-register classes created
2334     // after inferMatchingSuperRegClass was called.  At this point,
2335     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2336     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2337     if (I == FirstNewRC) {
2338       auto NextNewRC = std::prev(RegClasses.end());
2339       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2340            ++I2)
2341         inferMatchingSuperRegClass(&*I2, E2);
2342       FirstNewRC = NextNewRC;
2343     }
2344   }
2345 }
2346 
2347 /// getRegisterClassForRegister - Find the register class that contains the
2348 /// specified physical register.  If the register is not in a register class,
2349 /// return null. If the register is in multiple classes, and the classes have a
2350 /// superset-subset relationship and the same set of types, return the
2351 /// superclass.  Otherwise return null.
2352 const CodeGenRegisterClass*
getRegClassForRegister(Record * R)2353 CodeGenRegBank::getRegClassForRegister(Record *R) {
2354   const CodeGenRegister *Reg = getReg(R);
2355   const CodeGenRegisterClass *FoundRC = nullptr;
2356   for (const auto &RC : getRegClasses()) {
2357     if (!RC.contains(Reg))
2358       continue;
2359 
2360     // If this is the first class that contains the register,
2361     // make a note of it and go on to the next class.
2362     if (!FoundRC) {
2363       FoundRC = &RC;
2364       continue;
2365     }
2366 
2367     // If a register's classes have different types, return null.
2368     if (RC.getValueTypes() != FoundRC->getValueTypes())
2369       return nullptr;
2370 
2371     // Check to see if the previously found class that contains
2372     // the register is a subclass of the current class. If so,
2373     // prefer the superclass.
2374     if (RC.hasSubClass(FoundRC)) {
2375       FoundRC = &RC;
2376       continue;
2377     }
2378 
2379     // Check to see if the previously found class that contains
2380     // the register is a superclass of the current class. If so,
2381     // prefer the superclass.
2382     if (FoundRC->hasSubClass(&RC))
2383       continue;
2384 
2385     // Multiple classes, and neither is a superclass of the other.
2386     // Return null.
2387     return nullptr;
2388   }
2389   return FoundRC;
2390 }
2391 
2392 const CodeGenRegisterClass *
getMinimalPhysRegClass(Record * RegRecord,ValueTypeByHwMode * VT)2393 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2394                                        ValueTypeByHwMode *VT) {
2395   const CodeGenRegister *Reg = getReg(RegRecord);
2396   const CodeGenRegisterClass *BestRC = nullptr;
2397   for (const auto &RC : getRegClasses()) {
2398     if ((!VT || RC.hasType(*VT)) &&
2399         RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC)))
2400       BestRC = &RC;
2401   }
2402 
2403   assert(BestRC && "Couldn't find the register class");
2404   return BestRC;
2405 }
2406 
computeCoveredRegisters(ArrayRef<Record * > Regs)2407 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2408   SetVector<const CodeGenRegister*> Set;
2409 
2410   // First add Regs with all sub-registers.
2411   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2412     CodeGenRegister *Reg = getReg(Regs[i]);
2413     if (Set.insert(Reg))
2414       // Reg is new, add all sub-registers.
2415       // The pre-ordering is not important here.
2416       Reg->addSubRegsPreOrder(Set, *this);
2417   }
2418 
2419   // Second, find all super-registers that are completely covered by the set.
2420   for (unsigned i = 0; i != Set.size(); ++i) {
2421     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2422     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2423       const CodeGenRegister *Super = SR[j];
2424       if (!Super->CoveredBySubRegs || Set.count(Super))
2425         continue;
2426       // This new super-register is covered by its sub-registers.
2427       bool AllSubsInSet = true;
2428       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2429       for (auto I : SRM)
2430         if (!Set.count(I.second)) {
2431           AllSubsInSet = false;
2432           break;
2433         }
2434       // All sub-registers in Set, add Super as well.
2435       // We will visit Super later to recheck its super-registers.
2436       if (AllSubsInSet)
2437         Set.insert(Super);
2438     }
2439   }
2440 
2441   // Convert to BitVector.
2442   BitVector BV(Registers.size() + 1);
2443   for (unsigned i = 0, e = Set.size(); i != e; ++i)
2444     BV.set(Set[i]->EnumValue);
2445   return BV;
2446 }
2447 
printRegUnitName(unsigned Unit) const2448 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2449   if (Unit < NumNativeRegUnits)
2450     dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2451   else
2452     dbgs() << " #" << Unit;
2453 }
2454