1 //===- CSE.cpp - Common Sub-expression Elimination ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation pass performs a simple common sub-expression elimination
10 // algorithm on operations within a region.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PassDetail.h"
15 #include "mlir/IR/Dominance.h"
16 #include "mlir/Pass/Pass.h"
17 #include "mlir/Transforms/Passes.h"
18 #include "mlir/Transforms/Utils.h"
19 #include "llvm/ADT/DenseMapInfo.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/ScopedHashTable.h"
22 #include "llvm/Support/Allocator.h"
23 #include "llvm/Support/RecyclingAllocator.h"
24 #include <deque>
25 
26 using namespace mlir;
27 
28 namespace {
29 struct SimpleOperationInfo : public llvm::DenseMapInfo<Operation *> {
getHashValue__anon89e93e7b0111::SimpleOperationInfo30   static unsigned getHashValue(const Operation *opC) {
31     return OperationEquivalence::computeHash(
32         const_cast<Operation *>(opC),
33         /*hashOperands=*/OperationEquivalence::directHashValue,
34         /*hashResults=*/OperationEquivalence::ignoreHashValue,
35         OperationEquivalence::IgnoreLocations);
36   }
isEqual__anon89e93e7b0111::SimpleOperationInfo37   static bool isEqual(const Operation *lhsC, const Operation *rhsC) {
38     auto *lhs = const_cast<Operation *>(lhsC);
39     auto *rhs = const_cast<Operation *>(rhsC);
40     if (lhs == rhs)
41       return true;
42     if (lhs == getTombstoneKey() || lhs == getEmptyKey() ||
43         rhs == getTombstoneKey() || rhs == getEmptyKey())
44       return false;
45     return OperationEquivalence::isEquivalentTo(
46         const_cast<Operation *>(lhsC), const_cast<Operation *>(rhsC),
47         /*mapOperands=*/OperationEquivalence::exactValueMatch,
48         /*mapResults=*/OperationEquivalence::ignoreValueEquivalence,
49         OperationEquivalence::IgnoreLocations);
50   }
51 };
52 } // end anonymous namespace
53 
54 namespace {
55 /// Simple common sub-expression elimination.
56 struct CSE : public CSEBase<CSE> {
57   /// Shared implementation of operation elimination and scoped map definitions.
58   using AllocatorTy = llvm::RecyclingAllocator<
59       llvm::BumpPtrAllocator,
60       llvm::ScopedHashTableVal<Operation *, Operation *>>;
61   using ScopedMapTy = llvm::ScopedHashTable<Operation *, Operation *,
62                                             SimpleOperationInfo, AllocatorTy>;
63 
64   /// Represents a single entry in the depth first traversal of a CFG.
65   struct CFGStackNode {
CFGStackNode__anon89e93e7b0211::CSE::CFGStackNode66     CFGStackNode(ScopedMapTy &knownValues, DominanceInfoNode *node)
67         : scope(knownValues), node(node), childIterator(node->begin()),
68           processed(false) {}
69 
70     /// Scope for the known values.
71     ScopedMapTy::ScopeTy scope;
72 
73     DominanceInfoNode *node;
74     DominanceInfoNode::const_iterator childIterator;
75 
76     /// If this node has been fully processed yet or not.
77     bool processed;
78   };
79 
80   /// Attempt to eliminate a redundant operation. Returns success if the
81   /// operation was marked for removal, failure otherwise.
82   LogicalResult simplifyOperation(ScopedMapTy &knownValues, Operation *op,
83                                   bool hasSSADominance);
84   void simplifyBlock(ScopedMapTy &knownValues, Block *bb, bool hasSSADominance);
85   void simplifyRegion(ScopedMapTy &knownValues, Region &region);
86 
87   void runOnOperation() override;
88 
89 private:
90   /// Operations marked as dead and to be erased.
91   std::vector<Operation *> opsToErase;
92   DominanceInfo *domInfo = nullptr;
93 };
94 } // end anonymous namespace
95 
96 /// Attempt to eliminate a redundant operation.
simplifyOperation(ScopedMapTy & knownValues,Operation * op,bool hasSSADominance)97 LogicalResult CSE::simplifyOperation(ScopedMapTy &knownValues, Operation *op,
98                                      bool hasSSADominance) {
99   // Don't simplify terminator operations.
100   if (op->hasTrait<OpTrait::IsTerminator>())
101     return failure();
102 
103   // If the operation is already trivially dead just add it to the erase list.
104   if (isOpTriviallyDead(op)) {
105     opsToErase.push_back(op);
106     ++numDCE;
107     return success();
108   }
109 
110   // Don't simplify operations with nested blocks. We don't currently model
111   // equality comparisons correctly among other things. It is also unclear
112   // whether we would want to CSE such operations.
113   if (op->getNumRegions() != 0)
114     return failure();
115 
116   // TODO: We currently only eliminate non side-effecting
117   // operations.
118   if (!MemoryEffectOpInterface::hasNoEffect(op))
119     return failure();
120 
121   // Look for an existing definition for the operation.
122   if (auto *existing = knownValues.lookup(op)) {
123 
124     // If we find one then replace all uses of the current operation with the
125     // existing one and mark it for deletion. We can only replace an operand in
126     // an operation if it has not been visited yet.
127     if (hasSSADominance) {
128       // If the region has SSA dominance, then we are guaranteed to have not
129       // visited any use of the current operation.
130       op->replaceAllUsesWith(existing);
131       opsToErase.push_back(op);
132     } else {
133       // When the region does not have SSA dominance, we need to check if we
134       // have visited a use before replacing any use.
135       for (auto it : llvm::zip(op->getResults(), existing->getResults())) {
136         std::get<0>(it).replaceUsesWithIf(
137             std::get<1>(it), [&](OpOperand &operand) {
138               return !knownValues.count(operand.getOwner());
139             });
140       }
141 
142       // There may be some remaining uses of the operation.
143       if (op->use_empty())
144         opsToErase.push_back(op);
145     }
146 
147     // If the existing operation has an unknown location and the current
148     // operation doesn't, then set the existing op's location to that of the
149     // current op.
150     if (existing->getLoc().isa<UnknownLoc>() &&
151         !op->getLoc().isa<UnknownLoc>()) {
152       existing->setLoc(op->getLoc());
153     }
154 
155     ++numCSE;
156     return success();
157   }
158 
159   // Otherwise, we add this operation to the known values map.
160   knownValues.insert(op, op);
161   return failure();
162 }
163 
simplifyBlock(ScopedMapTy & knownValues,Block * bb,bool hasSSADominance)164 void CSE::simplifyBlock(ScopedMapTy &knownValues, Block *bb,
165                         bool hasSSADominance) {
166   for (auto &op : *bb) {
167     // If the operation is simplified, we don't process any held regions.
168     if (succeeded(simplifyOperation(knownValues, &op, hasSSADominance)))
169       continue;
170 
171     // Most operations don't have regions, so fast path that case.
172     if (op.getNumRegions() == 0)
173       continue;
174 
175     // If this operation is isolated above, we can't process nested regions with
176     // the given 'knownValues' map. This would cause the insertion of implicit
177     // captures in explicit capture only regions.
178     if (op.mightHaveTrait<OpTrait::IsIsolatedFromAbove>()) {
179       ScopedMapTy nestedKnownValues;
180       for (auto &region : op.getRegions())
181         simplifyRegion(nestedKnownValues, region);
182       continue;
183     }
184 
185     // Otherwise, process nested regions normally.
186     for (auto &region : op.getRegions())
187       simplifyRegion(knownValues, region);
188   }
189 }
190 
simplifyRegion(ScopedMapTy & knownValues,Region & region)191 void CSE::simplifyRegion(ScopedMapTy &knownValues, Region &region) {
192   // If the region is empty there is nothing to do.
193   if (region.empty())
194     return;
195 
196   bool hasSSADominance = domInfo->hasSSADominance(&region);
197 
198   // If the region only contains one block, then simplify it directly.
199   if (region.hasOneBlock()) {
200     ScopedMapTy::ScopeTy scope(knownValues);
201     simplifyBlock(knownValues, &region.front(), hasSSADominance);
202     return;
203   }
204 
205   // If the region does not have dominanceInfo, then skip it.
206   // TODO: Regions without SSA dominance should define a different
207   // traversal order which is appropriate and can be used here.
208   if (!hasSSADominance)
209     return;
210 
211   // Note, deque is being used here because there was significant performance
212   // gains over vector when the container becomes very large due to the
213   // specific access patterns. If/when these performance issues are no
214   // longer a problem we can change this to vector. For more information see
215   // the llvm mailing list discussion on this:
216   // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
217   std::deque<std::unique_ptr<CFGStackNode>> stack;
218 
219   // Process the nodes of the dom tree for this region.
220   stack.emplace_back(std::make_unique<CFGStackNode>(
221       knownValues, domInfo->getRootNode(&region)));
222 
223   while (!stack.empty()) {
224     auto &currentNode = stack.back();
225 
226     // Check to see if we need to process this node.
227     if (!currentNode->processed) {
228       currentNode->processed = true;
229       simplifyBlock(knownValues, currentNode->node->getBlock(),
230                     hasSSADominance);
231     }
232 
233     // Otherwise, check to see if we need to process a child node.
234     if (currentNode->childIterator != currentNode->node->end()) {
235       auto *childNode = *(currentNode->childIterator++);
236       stack.emplace_back(
237           std::make_unique<CFGStackNode>(knownValues, childNode));
238     } else {
239       // Finally, if the node and all of its children have been processed
240       // then we delete the node.
241       stack.pop_back();
242     }
243   }
244 }
245 
runOnOperation()246 void CSE::runOnOperation() {
247   /// A scoped hash table of defining operations within a region.
248   ScopedMapTy knownValues;
249 
250   domInfo = &getAnalysis<DominanceInfo>();
251   Operation *rootOp = getOperation();
252 
253   for (auto &region : rootOp->getRegions())
254     simplifyRegion(knownValues, region);
255 
256   // If no operations were erased, then we mark all analyses as preserved.
257   if (opsToErase.empty())
258     return markAllAnalysesPreserved();
259 
260   /// Erase any operations that were marked as dead during simplification.
261   for (auto *op : opsToErase)
262     op->erase();
263   opsToErase.clear();
264 
265   // We currently don't remove region operations, so mark dominance as
266   // preserved.
267   markAnalysesPreserved<DominanceInfo, PostDominanceInfo>();
268   domInfo = nullptr;
269 }
270 
createCSEPass()271 std::unique_ptr<Pass> mlir::createCSEPass() { return std::make_unique<CSE>(); }
272