1 //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// \brief
11 /// This file declares a class to represent arbitrary precision floating point
12 /// values and provide a variety of arithmetic operations on them.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_APFLOAT_H
17 #define LLVM_ADT_APFLOAT_H
18 
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/FloatingPointMode.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include <memory>
24 
25 #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
26   do {                                                                         \
27     if (usesLayout<IEEEFloat>(getSemantics()))                                 \
28       return U.IEEE.METHOD_CALL;                                               \
29     if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
30       return U.Double.METHOD_CALL;                                             \
31     llvm_unreachable("Unexpected semantics");                                  \
32   } while (false)
33 
34 namespace llvm {
35 
36 struct fltSemantics;
37 class APSInt;
38 class StringRef;
39 class APFloat;
40 class raw_ostream;
41 
42 template <typename T> class Expected;
43 template <typename T> class SmallVectorImpl;
44 
45 /// Enum that represents what fraction of the LSB truncated bits of an fp number
46 /// represent.
47 ///
48 /// This essentially combines the roles of guard and sticky bits.
49 enum lostFraction { // Example of truncated bits:
50   lfExactlyZero,    // 000000
51   lfLessThanHalf,   // 0xxxxx  x's not all zero
52   lfExactlyHalf,    // 100000
53   lfMoreThanHalf    // 1xxxxx  x's not all zero
54 };
55 
56 /// A self-contained host- and target-independent arbitrary-precision
57 /// floating-point software implementation.
58 ///
59 /// APFloat uses bignum integer arithmetic as provided by static functions in
60 /// the APInt class.  The library will work with bignum integers whose parts are
61 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
62 ///
63 /// Written for clarity rather than speed, in particular with a view to use in
64 /// the front-end of a cross compiler so that target arithmetic can be correctly
65 /// performed on the host.  Performance should nonetheless be reasonable,
66 /// particularly for its intended use.  It may be useful as a base
67 /// implementation for a run-time library during development of a faster
68 /// target-specific one.
69 ///
70 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
71 /// implemented operations.  Currently implemented operations are add, subtract,
72 /// multiply, divide, fused-multiply-add, conversion-to-float,
73 /// conversion-to-integer and conversion-from-integer.  New rounding modes
74 /// (e.g. away from zero) can be added with three or four lines of code.
75 ///
76 /// Four formats are built-in: IEEE single precision, double precision,
77 /// quadruple precision, and x87 80-bit extended double (when operating with
78 /// full extended precision).  Adding a new format that obeys IEEE semantics
79 /// only requires adding two lines of code: a declaration and definition of the
80 /// format.
81 ///
82 /// All operations return the status of that operation as an exception bit-mask,
83 /// so multiple operations can be done consecutively with their results or-ed
84 /// together.  The returned status can be useful for compiler diagnostics; e.g.,
85 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
86 /// and compiler optimizers can determine what exceptions would be raised by
87 /// folding operations and optimize, or perhaps not optimize, accordingly.
88 ///
89 /// At present, underflow tininess is detected after rounding; it should be
90 /// straight forward to add support for the before-rounding case too.
91 ///
92 /// The library reads hexadecimal floating point numbers as per C99, and
93 /// correctly rounds if necessary according to the specified rounding mode.
94 /// Syntax is required to have been validated by the caller.  It also converts
95 /// floating point numbers to hexadecimal text as per the C99 %a and %A
96 /// conversions.  The output precision (or alternatively the natural minimal
97 /// precision) can be specified; if the requested precision is less than the
98 /// natural precision the output is correctly rounded for the specified rounding
99 /// mode.
100 ///
101 /// It also reads decimal floating point numbers and correctly rounds according
102 /// to the specified rounding mode.
103 ///
104 /// Conversion to decimal text is not currently implemented.
105 ///
106 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
107 /// signed exponent, and the significand as an array of integer parts.  After
108 /// normalization of a number of precision P the exponent is within the range of
109 /// the format, and if the number is not denormal the P-th bit of the
110 /// significand is set as an explicit integer bit.  For denormals the most
111 /// significant bit is shifted right so that the exponent is maintained at the
112 /// format's minimum, so that the smallest denormal has just the least
113 /// significant bit of the significand set.  The sign of zeroes and infinities
114 /// is significant; the exponent and significand of such numbers is not stored,
115 /// but has a known implicit (deterministic) value: 0 for the significands, 0
116 /// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
117 /// significand are deterministic, although not really meaningful, and preserved
118 /// in non-conversion operations.  The exponent is implicitly all 1 bits.
119 ///
120 /// APFloat does not provide any exception handling beyond default exception
121 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
122 /// by encoding Signaling NaNs with the first bit of its trailing significand as
123 /// 0.
124 ///
125 /// TODO
126 /// ====
127 ///
128 /// Some features that may or may not be worth adding:
129 ///
130 /// Binary to decimal conversion (hard).
131 ///
132 /// Optional ability to detect underflow tininess before rounding.
133 ///
134 /// New formats: x87 in single and double precision mode (IEEE apart from
135 /// extended exponent range) (hard).
136 ///
137 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
138 ///
139 
140 // This is the common type definitions shared by APFloat and its internal
141 // implementation classes. This struct should not define any non-static data
142 // members.
143 struct APFloatBase {
144   typedef APInt::WordType integerPart;
145   static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;
146 
147   /// A signed type to represent a floating point numbers unbiased exponent.
148   typedef int32_t ExponentType;
149 
150   /// \name Floating Point Semantics.
151   /// @{
152   enum Semantics {
153     S_IEEEhalf,
154     S_BFloat,
155     S_IEEEsingle,
156     S_IEEEdouble,
157     S_x87DoubleExtended,
158     S_IEEEquad,
159     S_PPCDoubleDouble
160   };
161 
162   static const llvm::fltSemantics &EnumToSemantics(Semantics S);
163   static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem);
164 
165   static const fltSemantics &IEEEhalf() LLVM_READNONE;
166   static const fltSemantics &BFloat() LLVM_READNONE;
167   static const fltSemantics &IEEEsingle() LLVM_READNONE;
168   static const fltSemantics &IEEEdouble() LLVM_READNONE;
169   static const fltSemantics &IEEEquad() LLVM_READNONE;
170   static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
171   static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
172 
173   /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
174   /// anything real.
175   static const fltSemantics &Bogus() LLVM_READNONE;
176 
177   /// @}
178 
179   /// IEEE-754R 5.11: Floating Point Comparison Relations.
180   enum cmpResult {
181     cmpLessThan,
182     cmpEqual,
183     cmpGreaterThan,
184     cmpUnordered
185   };
186 
187   /// IEEE-754R 4.3: Rounding-direction attributes.
188   using roundingMode = llvm::RoundingMode;
189 
190   static constexpr roundingMode rmNearestTiesToEven =
191                                                 RoundingMode::NearestTiesToEven;
192   static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive;
193   static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative;
194   static constexpr roundingMode rmTowardZero     = RoundingMode::TowardZero;
195   static constexpr roundingMode rmNearestTiesToAway =
196                                                 RoundingMode::NearestTiesToAway;
197 
198   /// IEEE-754R 7: Default exception handling.
199   ///
200   /// opUnderflow or opOverflow are always returned or-ed with opInexact.
201   ///
202   /// APFloat models this behavior specified by IEEE-754:
203   ///   "For operations producing results in floating-point format, the default
204   ///    result of an operation that signals the invalid operation exception
205   ///    shall be a quiet NaN."
206   enum opStatus {
207     opOK = 0x00,
208     opInvalidOp = 0x01,
209     opDivByZero = 0x02,
210     opOverflow = 0x04,
211     opUnderflow = 0x08,
212     opInexact = 0x10
213   };
214 
215   /// Category of internally-represented number.
216   enum fltCategory {
217     fcInfinity,
218     fcNaN,
219     fcNormal,
220     fcZero
221   };
222 
223   /// Convenience enum used to construct an uninitialized APFloat.
224   enum uninitializedTag {
225     uninitialized
226   };
227 
228   /// Enumeration of \c ilogb error results.
229   enum IlogbErrorKinds {
230     IEK_Zero = INT_MIN + 1,
231     IEK_NaN = INT_MIN,
232     IEK_Inf = INT_MAX
233   };
234 
235   static unsigned int semanticsPrecision(const fltSemantics &);
236   static ExponentType semanticsMinExponent(const fltSemantics &);
237   static ExponentType semanticsMaxExponent(const fltSemantics &);
238   static unsigned int semanticsSizeInBits(const fltSemantics &);
239 
240   /// Returns the size of the floating point number (in bits) in the given
241   /// semantics.
242   static unsigned getSizeInBits(const fltSemantics &Sem);
243 };
244 
245 namespace detail {
246 
247 class IEEEFloat final : public APFloatBase {
248 public:
249   /// \name Constructors
250   /// @{
251 
252   IEEEFloat(const fltSemantics &); // Default construct to 0.0
253   IEEEFloat(const fltSemantics &, integerPart);
254   IEEEFloat(const fltSemantics &, uninitializedTag);
255   IEEEFloat(const fltSemantics &, const APInt &);
256   explicit IEEEFloat(double d);
257   explicit IEEEFloat(float f);
258   IEEEFloat(const IEEEFloat &);
259   IEEEFloat(IEEEFloat &&);
260   ~IEEEFloat();
261 
262   /// @}
263 
264   /// Returns whether this instance allocated memory.
needsCleanup()265   bool needsCleanup() const { return partCount() > 1; }
266 
267   /// \name Convenience "constructors"
268   /// @{
269 
270   /// @}
271 
272   /// \name Arithmetic
273   /// @{
274 
275   opStatus add(const IEEEFloat &, roundingMode);
276   opStatus subtract(const IEEEFloat &, roundingMode);
277   opStatus multiply(const IEEEFloat &, roundingMode);
278   opStatus divide(const IEEEFloat &, roundingMode);
279   /// IEEE remainder.
280   opStatus remainder(const IEEEFloat &);
281   /// C fmod, or llvm frem.
282   opStatus mod(const IEEEFloat &);
283   opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
284   opStatus roundToIntegral(roundingMode);
285   /// IEEE-754R 5.3.1: nextUp/nextDown.
286   opStatus next(bool nextDown);
287 
288   /// @}
289 
290   /// \name Sign operations.
291   /// @{
292 
293   void changeSign();
294 
295   /// @}
296 
297   /// \name Conversions
298   /// @{
299 
300   opStatus convert(const fltSemantics &, roundingMode, bool *);
301   opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
302                             roundingMode, bool *) const;
303   opStatus convertFromAPInt(const APInt &, bool, roundingMode);
304   opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
305                                           bool, roundingMode);
306   opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
307                                           bool, roundingMode);
308   Expected<opStatus> convertFromString(StringRef, roundingMode);
309   APInt bitcastToAPInt() const;
310   double convertToDouble() const;
311   float convertToFloat() const;
312 
313   /// @}
314 
315   /// The definition of equality is not straightforward for floating point, so
316   /// we won't use operator==.  Use one of the following, or write whatever it
317   /// is you really mean.
318   bool operator==(const IEEEFloat &) const = delete;
319 
320   /// IEEE comparison with another floating point number (NaNs compare
321   /// unordered, 0==-0).
322   cmpResult compare(const IEEEFloat &) const;
323 
324   /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
325   bool bitwiseIsEqual(const IEEEFloat &) const;
326 
327   /// Write out a hexadecimal representation of the floating point value to DST,
328   /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
329   /// Return the number of characters written, excluding the terminating NUL.
330   unsigned int convertToHexString(char *dst, unsigned int hexDigits,
331                                   bool upperCase, roundingMode) const;
332 
333   /// \name IEEE-754R 5.7.2 General operations.
334   /// @{
335 
336   /// IEEE-754R isSignMinus: Returns true if and only if the current value is
337   /// negative.
338   ///
339   /// This applies to zeros and NaNs as well.
isNegative()340   bool isNegative() const { return sign; }
341 
342   /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
343   ///
344   /// This implies that the current value of the float is not zero, subnormal,
345   /// infinite, or NaN following the definition of normality from IEEE-754R.
isNormal()346   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
347 
348   /// Returns true if and only if the current value is zero, subnormal, or
349   /// normal.
350   ///
351   /// This means that the value is not infinite or NaN.
isFinite()352   bool isFinite() const { return !isNaN() && !isInfinity(); }
353 
354   /// Returns true if and only if the float is plus or minus zero.
isZero()355   bool isZero() const { return category == fcZero; }
356 
357   /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
358   /// denormal.
359   bool isDenormal() const;
360 
361   /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
isInfinity()362   bool isInfinity() const { return category == fcInfinity; }
363 
364   /// Returns true if and only if the float is a quiet or signaling NaN.
isNaN()365   bool isNaN() const { return category == fcNaN; }
366 
367   /// Returns true if and only if the float is a signaling NaN.
368   bool isSignaling() const;
369 
370   /// @}
371 
372   /// \name Simple Queries
373   /// @{
374 
getCategory()375   fltCategory getCategory() const { return category; }
getSemantics()376   const fltSemantics &getSemantics() const { return *semantics; }
isNonZero()377   bool isNonZero() const { return category != fcZero; }
isFiniteNonZero()378   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
isPosZero()379   bool isPosZero() const { return isZero() && !isNegative(); }
isNegZero()380   bool isNegZero() const { return isZero() && isNegative(); }
381 
382   /// Returns true if and only if the number has the smallest possible non-zero
383   /// magnitude in the current semantics.
384   bool isSmallest() const;
385 
386   /// Returns true if and only if the number has the largest possible finite
387   /// magnitude in the current semantics.
388   bool isLargest() const;
389 
390   /// Returns true if and only if the number is an exact integer.
391   bool isInteger() const;
392 
393   /// @}
394 
395   IEEEFloat &operator=(const IEEEFloat &);
396   IEEEFloat &operator=(IEEEFloat &&);
397 
398   /// Overload to compute a hash code for an APFloat value.
399   ///
400   /// Note that the use of hash codes for floating point values is in general
401   /// frought with peril. Equality is hard to define for these values. For
402   /// example, should negative and positive zero hash to different codes? Are
403   /// they equal or not? This hash value implementation specifically
404   /// emphasizes producing different codes for different inputs in order to
405   /// be used in canonicalization and memoization. As such, equality is
406   /// bitwiseIsEqual, and 0 != -0.
407   friend hash_code hash_value(const IEEEFloat &Arg);
408 
409   /// Converts this value into a decimal string.
410   ///
411   /// \param FormatPrecision The maximum number of digits of
412   ///   precision to output.  If there are fewer digits available,
413   ///   zero padding will not be used unless the value is
414   ///   integral and small enough to be expressed in
415   ///   FormatPrecision digits.  0 means to use the natural
416   ///   precision of the number.
417   /// \param FormatMaxPadding The maximum number of zeros to
418   ///   consider inserting before falling back to scientific
419   ///   notation.  0 means to always use scientific notation.
420   ///
421   /// \param TruncateZero Indicate whether to remove the trailing zero in
422   ///   fraction part or not. Also setting this parameter to false forcing
423   ///   producing of output more similar to default printf behavior.
424   ///   Specifically the lower e is used as exponent delimiter and exponent
425   ///   always contains no less than two digits.
426   ///
427   /// Number       Precision    MaxPadding      Result
428   /// ------       ---------    ----------      ------
429   /// 1.01E+4              5             2       10100
430   /// 1.01E+4              4             2       1.01E+4
431   /// 1.01E+4              5             1       1.01E+4
432   /// 1.01E-2              5             2       0.0101
433   /// 1.01E-2              4             2       0.0101
434   /// 1.01E-2              4             1       1.01E-2
435   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
436                 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
437 
438   /// If this value has an exact multiplicative inverse, store it in inv and
439   /// return true.
440   bool getExactInverse(APFloat *inv) const;
441 
442   /// Returns the exponent of the internal representation of the APFloat.
443   ///
444   /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
445   /// For special APFloat values, this returns special error codes:
446   ///
447   ///   NaN -> \c IEK_NaN
448   ///   0   -> \c IEK_Zero
449   ///   Inf -> \c IEK_Inf
450   ///
451   friend int ilogb(const IEEEFloat &Arg);
452 
453   /// Returns: X * 2^Exp for integral exponents.
454   friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
455 
456   friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
457 
458   /// \name Special value setters.
459   /// @{
460 
461   void makeLargest(bool Neg = false);
462   void makeSmallest(bool Neg = false);
463   void makeNaN(bool SNaN = false, bool Neg = false,
464                const APInt *fill = nullptr);
465   void makeInf(bool Neg = false);
466   void makeZero(bool Neg = false);
467   void makeQuiet();
468 
469   /// Returns the smallest (by magnitude) normalized finite number in the given
470   /// semantics.
471   ///
472   /// \param Negative - True iff the number should be negative
473   void makeSmallestNormalized(bool Negative = false);
474 
475   /// @}
476 
477   cmpResult compareAbsoluteValue(const IEEEFloat &) const;
478 
479 private:
480   /// \name Simple Queries
481   /// @{
482 
483   integerPart *significandParts();
484   const integerPart *significandParts() const;
485   unsigned int partCount() const;
486 
487   /// @}
488 
489   /// \name Significand operations.
490   /// @{
491 
492   integerPart addSignificand(const IEEEFloat &);
493   integerPart subtractSignificand(const IEEEFloat &, integerPart);
494   lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
495   lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat);
496   lostFraction multiplySignificand(const IEEEFloat&);
497   lostFraction divideSignificand(const IEEEFloat &);
498   void incrementSignificand();
499   void initialize(const fltSemantics *);
500   void shiftSignificandLeft(unsigned int);
501   lostFraction shiftSignificandRight(unsigned int);
502   unsigned int significandLSB() const;
503   unsigned int significandMSB() const;
504   void zeroSignificand();
505   /// Return true if the significand excluding the integral bit is all ones.
506   bool isSignificandAllOnes() const;
507   /// Return true if the significand excluding the integral bit is all zeros.
508   bool isSignificandAllZeros() const;
509 
510   /// @}
511 
512   /// \name Arithmetic on special values.
513   /// @{
514 
515   opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
516   opStatus divideSpecials(const IEEEFloat &);
517   opStatus multiplySpecials(const IEEEFloat &);
518   opStatus modSpecials(const IEEEFloat &);
519   opStatus remainderSpecials(const IEEEFloat&);
520 
521   /// @}
522 
523   /// \name Miscellany
524   /// @{
525 
526   bool convertFromStringSpecials(StringRef str);
527   opStatus normalize(roundingMode, lostFraction);
528   opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
529   opStatus handleOverflow(roundingMode);
530   bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
531   opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
532                                         unsigned int, bool, roundingMode,
533                                         bool *) const;
534   opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
535                                     roundingMode);
536   Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode);
537   Expected<opStatus> convertFromDecimalString(StringRef, roundingMode);
538   char *convertNormalToHexString(char *, unsigned int, bool,
539                                  roundingMode) const;
540   opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
541                                         roundingMode);
542 
543   /// @}
544 
545   APInt convertHalfAPFloatToAPInt() const;
546   APInt convertBFloatAPFloatToAPInt() const;
547   APInt convertFloatAPFloatToAPInt() const;
548   APInt convertDoubleAPFloatToAPInt() const;
549   APInt convertQuadrupleAPFloatToAPInt() const;
550   APInt convertF80LongDoubleAPFloatToAPInt() const;
551   APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
552   void initFromAPInt(const fltSemantics *Sem, const APInt &api);
553   void initFromHalfAPInt(const APInt &api);
554   void initFromBFloatAPInt(const APInt &api);
555   void initFromFloatAPInt(const APInt &api);
556   void initFromDoubleAPInt(const APInt &api);
557   void initFromQuadrupleAPInt(const APInt &api);
558   void initFromF80LongDoubleAPInt(const APInt &api);
559   void initFromPPCDoubleDoubleAPInt(const APInt &api);
560 
561   void assign(const IEEEFloat &);
562   void copySignificand(const IEEEFloat &);
563   void freeSignificand();
564 
565   /// Note: this must be the first data member.
566   /// The semantics that this value obeys.
567   const fltSemantics *semantics;
568 
569   /// A binary fraction with an explicit integer bit.
570   ///
571   /// The significand must be at least one bit wider than the target precision.
572   union Significand {
573     integerPart part;
574     integerPart *parts;
575   } significand;
576 
577   /// The signed unbiased exponent of the value.
578   ExponentType exponent;
579 
580   /// What kind of floating point number this is.
581   ///
582   /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
583   /// Using the extra bit keeps it from failing under VisualStudio.
584   fltCategory category : 3;
585 
586   /// Sign bit of the number.
587   unsigned int sign : 1;
588 };
589 
590 hash_code hash_value(const IEEEFloat &Arg);
591 int ilogb(const IEEEFloat &Arg);
592 IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
593 IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
594 
595 // This mode implements more precise float in terms of two APFloats.
596 // The interface and layout is designed for arbitrary underlying semantics,
597 // though currently only PPCDoubleDouble semantics are supported, whose
598 // corresponding underlying semantics are IEEEdouble.
599 class DoubleAPFloat final : public APFloatBase {
600   // Note: this must be the first data member.
601   const fltSemantics *Semantics;
602   std::unique_ptr<APFloat[]> Floats;
603 
604   opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
605                    const APFloat &cc, roundingMode RM);
606 
607   opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
608                           DoubleAPFloat &Out, roundingMode RM);
609 
610 public:
611   DoubleAPFloat(const fltSemantics &S);
612   DoubleAPFloat(const fltSemantics &S, uninitializedTag);
613   DoubleAPFloat(const fltSemantics &S, integerPart);
614   DoubleAPFloat(const fltSemantics &S, const APInt &I);
615   DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
616   DoubleAPFloat(const DoubleAPFloat &RHS);
617   DoubleAPFloat(DoubleAPFloat &&RHS);
618 
619   DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
620 
621   DoubleAPFloat &operator=(DoubleAPFloat &&RHS) {
622     if (this != &RHS) {
623       this->~DoubleAPFloat();
624       new (this) DoubleAPFloat(std::move(RHS));
625     }
626     return *this;
627   }
628 
needsCleanup()629   bool needsCleanup() const { return Floats != nullptr; }
630 
getFirst()631   APFloat &getFirst() { return Floats[0]; }
getFirst()632   const APFloat &getFirst() const { return Floats[0]; }
getSecond()633   APFloat &getSecond() { return Floats[1]; }
getSecond()634   const APFloat &getSecond() const { return Floats[1]; }
635 
636   opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
637   opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
638   opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
639   opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
640   opStatus remainder(const DoubleAPFloat &RHS);
641   opStatus mod(const DoubleAPFloat &RHS);
642   opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
643                             const DoubleAPFloat &Addend, roundingMode RM);
644   opStatus roundToIntegral(roundingMode RM);
645   void changeSign();
646   cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
647 
648   fltCategory getCategory() const;
649   bool isNegative() const;
650 
651   void makeInf(bool Neg);
652   void makeZero(bool Neg);
653   void makeLargest(bool Neg);
654   void makeSmallest(bool Neg);
655   void makeSmallestNormalized(bool Neg);
656   void makeNaN(bool SNaN, bool Neg, const APInt *fill);
657 
658   cmpResult compare(const DoubleAPFloat &RHS) const;
659   bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
660   APInt bitcastToAPInt() const;
661   Expected<opStatus> convertFromString(StringRef, roundingMode);
662   opStatus next(bool nextDown);
663 
664   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
665                             unsigned int Width, bool IsSigned, roundingMode RM,
666                             bool *IsExact) const;
667   opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
668   opStatus convertFromSignExtendedInteger(const integerPart *Input,
669                                           unsigned int InputSize, bool IsSigned,
670                                           roundingMode RM);
671   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
672                                           unsigned int InputSize, bool IsSigned,
673                                           roundingMode RM);
674   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
675                                   bool UpperCase, roundingMode RM) const;
676 
677   bool isDenormal() const;
678   bool isSmallest() const;
679   bool isLargest() const;
680   bool isInteger() const;
681 
682   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
683                 unsigned FormatMaxPadding, bool TruncateZero = true) const;
684 
685   bool getExactInverse(APFloat *inv) const;
686 
687   friend int ilogb(const DoubleAPFloat &Arg);
688   friend DoubleAPFloat scalbn(DoubleAPFloat X, int Exp, roundingMode);
689   friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
690   friend hash_code hash_value(const DoubleAPFloat &Arg);
691 };
692 
693 hash_code hash_value(const DoubleAPFloat &Arg);
694 
695 } // End detail namespace
696 
697 // This is a interface class that is currently forwarding functionalities from
698 // detail::IEEEFloat.
699 class APFloat : public APFloatBase {
700   typedef detail::IEEEFloat IEEEFloat;
701   typedef detail::DoubleAPFloat DoubleAPFloat;
702 
703   static_assert(std::is_standard_layout<IEEEFloat>::value, "");
704 
705   union Storage {
706     const fltSemantics *semantics;
707     IEEEFloat IEEE;
708     DoubleAPFloat Double;
709 
710     explicit Storage(IEEEFloat F, const fltSemantics &S);
Storage(DoubleAPFloat F,const fltSemantics & S)711     explicit Storage(DoubleAPFloat F, const fltSemantics &S)
712         : Double(std::move(F)) {
713       assert(&S == &PPCDoubleDouble());
714     }
715 
716     template <typename... ArgTypes>
Storage(const fltSemantics & Semantics,ArgTypes &&...Args)717     Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
718       if (usesLayout<IEEEFloat>(Semantics)) {
719         new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
720         return;
721       }
722       if (usesLayout<DoubleAPFloat>(Semantics)) {
723         new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
724         return;
725       }
726       llvm_unreachable("Unexpected semantics");
727     }
728 
~Storage()729     ~Storage() {
730       if (usesLayout<IEEEFloat>(*semantics)) {
731         IEEE.~IEEEFloat();
732         return;
733       }
734       if (usesLayout<DoubleAPFloat>(*semantics)) {
735         Double.~DoubleAPFloat();
736         return;
737       }
738       llvm_unreachable("Unexpected semantics");
739     }
740 
Storage(const Storage & RHS)741     Storage(const Storage &RHS) {
742       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
743         new (this) IEEEFloat(RHS.IEEE);
744         return;
745       }
746       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
747         new (this) DoubleAPFloat(RHS.Double);
748         return;
749       }
750       llvm_unreachable("Unexpected semantics");
751     }
752 
Storage(Storage && RHS)753     Storage(Storage &&RHS) {
754       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
755         new (this) IEEEFloat(std::move(RHS.IEEE));
756         return;
757       }
758       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
759         new (this) DoubleAPFloat(std::move(RHS.Double));
760         return;
761       }
762       llvm_unreachable("Unexpected semantics");
763     }
764 
765     Storage &operator=(const Storage &RHS) {
766       if (usesLayout<IEEEFloat>(*semantics) &&
767           usesLayout<IEEEFloat>(*RHS.semantics)) {
768         IEEE = RHS.IEEE;
769       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
770                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
771         Double = RHS.Double;
772       } else if (this != &RHS) {
773         this->~Storage();
774         new (this) Storage(RHS);
775       }
776       return *this;
777     }
778 
779     Storage &operator=(Storage &&RHS) {
780       if (usesLayout<IEEEFloat>(*semantics) &&
781           usesLayout<IEEEFloat>(*RHS.semantics)) {
782         IEEE = std::move(RHS.IEEE);
783       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
784                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
785         Double = std::move(RHS.Double);
786       } else if (this != &RHS) {
787         this->~Storage();
788         new (this) Storage(std::move(RHS));
789       }
790       return *this;
791     }
792   } U;
793 
usesLayout(const fltSemantics & Semantics)794   template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
795     static_assert(std::is_same<T, IEEEFloat>::value ||
796                   std::is_same<T, DoubleAPFloat>::value, "");
797     if (std::is_same<T, DoubleAPFloat>::value) {
798       return &Semantics == &PPCDoubleDouble();
799     }
800     return &Semantics != &PPCDoubleDouble();
801   }
802 
getIEEE()803   IEEEFloat &getIEEE() {
804     if (usesLayout<IEEEFloat>(*U.semantics))
805       return U.IEEE;
806     if (usesLayout<DoubleAPFloat>(*U.semantics))
807       return U.Double.getFirst().U.IEEE;
808     llvm_unreachable("Unexpected semantics");
809   }
810 
getIEEE()811   const IEEEFloat &getIEEE() const {
812     if (usesLayout<IEEEFloat>(*U.semantics))
813       return U.IEEE;
814     if (usesLayout<DoubleAPFloat>(*U.semantics))
815       return U.Double.getFirst().U.IEEE;
816     llvm_unreachable("Unexpected semantics");
817   }
818 
makeZero(bool Neg)819   void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
820 
makeInf(bool Neg)821   void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
822 
makeNaN(bool SNaN,bool Neg,const APInt * fill)823   void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
824     APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
825   }
826 
makeLargest(bool Neg)827   void makeLargest(bool Neg) {
828     APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
829   }
830 
makeSmallest(bool Neg)831   void makeSmallest(bool Neg) {
832     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
833   }
834 
makeSmallestNormalized(bool Neg)835   void makeSmallestNormalized(bool Neg) {
836     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
837   }
838 
839   // FIXME: This is due to clang 3.3 (or older version) always checks for the
840   // default constructor in an array aggregate initialization, even if no
841   // elements in the array is default initialized.
APFloat()842   APFloat() : U(IEEEdouble()) {
843     llvm_unreachable("This is a workaround for old clang.");
844   }
845 
APFloat(IEEEFloat F,const fltSemantics & S)846   explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
APFloat(DoubleAPFloat F,const fltSemantics & S)847   explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
848       : U(std::move(F), S) {}
849 
compareAbsoluteValue(const APFloat & RHS)850   cmpResult compareAbsoluteValue(const APFloat &RHS) const {
851     assert(&getSemantics() == &RHS.getSemantics() &&
852            "Should only compare APFloats with the same semantics");
853     if (usesLayout<IEEEFloat>(getSemantics()))
854       return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
855     if (usesLayout<DoubleAPFloat>(getSemantics()))
856       return U.Double.compareAbsoluteValue(RHS.U.Double);
857     llvm_unreachable("Unexpected semantics");
858   }
859 
860 public:
APFloat(const fltSemantics & Semantics)861   APFloat(const fltSemantics &Semantics) : U(Semantics) {}
862   APFloat(const fltSemantics &Semantics, StringRef S);
APFloat(const fltSemantics & Semantics,integerPart I)863   APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
864   template <typename T,
865             typename = std::enable_if_t<std::is_floating_point<T>::value>>
866   APFloat(const fltSemantics &Semantics, T V) = delete;
867   // TODO: Remove this constructor. This isn't faster than the first one.
APFloat(const fltSemantics & Semantics,uninitializedTag)868   APFloat(const fltSemantics &Semantics, uninitializedTag)
869       : U(Semantics, uninitialized) {}
APFloat(const fltSemantics & Semantics,const APInt & I)870   APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
APFloat(double d)871   explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
APFloat(float f)872   explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
873   APFloat(const APFloat &RHS) = default;
874   APFloat(APFloat &&RHS) = default;
875 
876   ~APFloat() = default;
877 
needsCleanup()878   bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
879 
880   /// Factory for Positive and Negative Zero.
881   ///
882   /// \param Negative True iff the number should be negative.
883   static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
884     APFloat Val(Sem, uninitialized);
885     Val.makeZero(Negative);
886     return Val;
887   }
888 
889   /// Factory for Positive and Negative Infinity.
890   ///
891   /// \param Negative True iff the number should be negative.
892   static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
893     APFloat Val(Sem, uninitialized);
894     Val.makeInf(Negative);
895     return Val;
896   }
897 
898   /// Factory for NaN values.
899   ///
900   /// \param Negative - True iff the NaN generated should be negative.
901   /// \param payload - The unspecified fill bits for creating the NaN, 0 by
902   /// default.  The value is truncated as necessary.
903   static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
904                         uint64_t payload = 0) {
905     if (payload) {
906       APInt intPayload(64, payload);
907       return getQNaN(Sem, Negative, &intPayload);
908     } else {
909       return getQNaN(Sem, Negative, nullptr);
910     }
911   }
912 
913   /// Factory for QNaN values.
914   static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
915                          const APInt *payload = nullptr) {
916     APFloat Val(Sem, uninitialized);
917     Val.makeNaN(false, Negative, payload);
918     return Val;
919   }
920 
921   /// Factory for SNaN values.
922   static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
923                          const APInt *payload = nullptr) {
924     APFloat Val(Sem, uninitialized);
925     Val.makeNaN(true, Negative, payload);
926     return Val;
927   }
928 
929   /// Returns the largest finite number in the given semantics.
930   ///
931   /// \param Negative - True iff the number should be negative
932   static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
933     APFloat Val(Sem, uninitialized);
934     Val.makeLargest(Negative);
935     return Val;
936   }
937 
938   /// Returns the smallest (by magnitude) finite number in the given semantics.
939   /// Might be denormalized, which implies a relative loss of precision.
940   ///
941   /// \param Negative - True iff the number should be negative
942   static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
943     APFloat Val(Sem, uninitialized);
944     Val.makeSmallest(Negative);
945     return Val;
946   }
947 
948   /// Returns the smallest (by magnitude) normalized finite number in the given
949   /// semantics.
950   ///
951   /// \param Negative - True iff the number should be negative
952   static APFloat getSmallestNormalized(const fltSemantics &Sem,
953                                        bool Negative = false) {
954     APFloat Val(Sem, uninitialized);
955     Val.makeSmallestNormalized(Negative);
956     return Val;
957   }
958 
959   /// Returns a float which is bitcasted from an all one value int.
960   ///
961   /// \param Semantics - type float semantics
962   /// \param BitWidth - Select float type
963   static APFloat getAllOnesValue(const fltSemantics &Semantics,
964                                  unsigned BitWidth);
965 
966   /// Used to insert APFloat objects, or objects that contain APFloat objects,
967   /// into FoldingSets.
968   void Profile(FoldingSetNodeID &NID) const;
969 
add(const APFloat & RHS,roundingMode RM)970   opStatus add(const APFloat &RHS, roundingMode RM) {
971     assert(&getSemantics() == &RHS.getSemantics() &&
972            "Should only call on two APFloats with the same semantics");
973     if (usesLayout<IEEEFloat>(getSemantics()))
974       return U.IEEE.add(RHS.U.IEEE, RM);
975     if (usesLayout<DoubleAPFloat>(getSemantics()))
976       return U.Double.add(RHS.U.Double, RM);
977     llvm_unreachable("Unexpected semantics");
978   }
subtract(const APFloat & RHS,roundingMode RM)979   opStatus subtract(const APFloat &RHS, roundingMode RM) {
980     assert(&getSemantics() == &RHS.getSemantics() &&
981            "Should only call on two APFloats with the same semantics");
982     if (usesLayout<IEEEFloat>(getSemantics()))
983       return U.IEEE.subtract(RHS.U.IEEE, RM);
984     if (usesLayout<DoubleAPFloat>(getSemantics()))
985       return U.Double.subtract(RHS.U.Double, RM);
986     llvm_unreachable("Unexpected semantics");
987   }
multiply(const APFloat & RHS,roundingMode RM)988   opStatus multiply(const APFloat &RHS, roundingMode RM) {
989     assert(&getSemantics() == &RHS.getSemantics() &&
990            "Should only call on two APFloats with the same semantics");
991     if (usesLayout<IEEEFloat>(getSemantics()))
992       return U.IEEE.multiply(RHS.U.IEEE, RM);
993     if (usesLayout<DoubleAPFloat>(getSemantics()))
994       return U.Double.multiply(RHS.U.Double, RM);
995     llvm_unreachable("Unexpected semantics");
996   }
divide(const APFloat & RHS,roundingMode RM)997   opStatus divide(const APFloat &RHS, roundingMode RM) {
998     assert(&getSemantics() == &RHS.getSemantics() &&
999            "Should only call on two APFloats with the same semantics");
1000     if (usesLayout<IEEEFloat>(getSemantics()))
1001       return U.IEEE.divide(RHS.U.IEEE, RM);
1002     if (usesLayout<DoubleAPFloat>(getSemantics()))
1003       return U.Double.divide(RHS.U.Double, RM);
1004     llvm_unreachable("Unexpected semantics");
1005   }
remainder(const APFloat & RHS)1006   opStatus remainder(const APFloat &RHS) {
1007     assert(&getSemantics() == &RHS.getSemantics() &&
1008            "Should only call on two APFloats with the same semantics");
1009     if (usesLayout<IEEEFloat>(getSemantics()))
1010       return U.IEEE.remainder(RHS.U.IEEE);
1011     if (usesLayout<DoubleAPFloat>(getSemantics()))
1012       return U.Double.remainder(RHS.U.Double);
1013     llvm_unreachable("Unexpected semantics");
1014   }
mod(const APFloat & RHS)1015   opStatus mod(const APFloat &RHS) {
1016     assert(&getSemantics() == &RHS.getSemantics() &&
1017            "Should only call on two APFloats with the same semantics");
1018     if (usesLayout<IEEEFloat>(getSemantics()))
1019       return U.IEEE.mod(RHS.U.IEEE);
1020     if (usesLayout<DoubleAPFloat>(getSemantics()))
1021       return U.Double.mod(RHS.U.Double);
1022     llvm_unreachable("Unexpected semantics");
1023   }
fusedMultiplyAdd(const APFloat & Multiplicand,const APFloat & Addend,roundingMode RM)1024   opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
1025                             roundingMode RM) {
1026     assert(&getSemantics() == &Multiplicand.getSemantics() &&
1027            "Should only call on APFloats with the same semantics");
1028     assert(&getSemantics() == &Addend.getSemantics() &&
1029            "Should only call on APFloats with the same semantics");
1030     if (usesLayout<IEEEFloat>(getSemantics()))
1031       return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
1032     if (usesLayout<DoubleAPFloat>(getSemantics()))
1033       return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
1034                                        RM);
1035     llvm_unreachable("Unexpected semantics");
1036   }
roundToIntegral(roundingMode RM)1037   opStatus roundToIntegral(roundingMode RM) {
1038     APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
1039   }
1040 
1041   // TODO: bool parameters are not readable and a source of bugs.
1042   // Do something.
next(bool nextDown)1043   opStatus next(bool nextDown) {
1044     APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
1045   }
1046 
1047   /// Negate an APFloat.
1048   APFloat operator-() const {
1049     APFloat Result(*this);
1050     Result.changeSign();
1051     return Result;
1052   }
1053 
1054   /// Add two APFloats, rounding ties to the nearest even.
1055   /// No error checking.
1056   APFloat operator+(const APFloat &RHS) const {
1057     APFloat Result(*this);
1058     (void)Result.add(RHS, rmNearestTiesToEven);
1059     return Result;
1060   }
1061 
1062   /// Subtract two APFloats, rounding ties to the nearest even.
1063   /// No error checking.
1064   APFloat operator-(const APFloat &RHS) const {
1065     APFloat Result(*this);
1066     (void)Result.subtract(RHS, rmNearestTiesToEven);
1067     return Result;
1068   }
1069 
1070   /// Multiply two APFloats, rounding ties to the nearest even.
1071   /// No error checking.
1072   APFloat operator*(const APFloat &RHS) const {
1073     APFloat Result(*this);
1074     (void)Result.multiply(RHS, rmNearestTiesToEven);
1075     return Result;
1076   }
1077 
1078   /// Divide the first APFloat by the second, rounding ties to the nearest even.
1079   /// No error checking.
1080   APFloat operator/(const APFloat &RHS) const {
1081     APFloat Result(*this);
1082     (void)Result.divide(RHS, rmNearestTiesToEven);
1083     return Result;
1084   }
1085 
changeSign()1086   void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
clearSign()1087   void clearSign() {
1088     if (isNegative())
1089       changeSign();
1090   }
copySign(const APFloat & RHS)1091   void copySign(const APFloat &RHS) {
1092     if (isNegative() != RHS.isNegative())
1093       changeSign();
1094   }
1095 
1096   /// A static helper to produce a copy of an APFloat value with its sign
1097   /// copied from some other APFloat.
copySign(APFloat Value,const APFloat & Sign)1098   static APFloat copySign(APFloat Value, const APFloat &Sign) {
1099     Value.copySign(Sign);
1100     return Value;
1101   }
1102 
1103   opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
1104                    bool *losesInfo);
convertToInteger(MutableArrayRef<integerPart> Input,unsigned int Width,bool IsSigned,roundingMode RM,bool * IsExact)1105   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
1106                             unsigned int Width, bool IsSigned, roundingMode RM,
1107                             bool *IsExact) const {
1108     APFLOAT_DISPATCH_ON_SEMANTICS(
1109         convertToInteger(Input, Width, IsSigned, RM, IsExact));
1110   }
1111   opStatus convertToInteger(APSInt &Result, roundingMode RM,
1112                             bool *IsExact) const;
convertFromAPInt(const APInt & Input,bool IsSigned,roundingMode RM)1113   opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
1114                             roundingMode RM) {
1115     APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
1116   }
convertFromSignExtendedInteger(const integerPart * Input,unsigned int InputSize,bool IsSigned,roundingMode RM)1117   opStatus convertFromSignExtendedInteger(const integerPart *Input,
1118                                           unsigned int InputSize, bool IsSigned,
1119                                           roundingMode RM) {
1120     APFLOAT_DISPATCH_ON_SEMANTICS(
1121         convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
1122   }
convertFromZeroExtendedInteger(const integerPart * Input,unsigned int InputSize,bool IsSigned,roundingMode RM)1123   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
1124                                           unsigned int InputSize, bool IsSigned,
1125                                           roundingMode RM) {
1126     APFLOAT_DISPATCH_ON_SEMANTICS(
1127         convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
1128   }
1129   Expected<opStatus> convertFromString(StringRef, roundingMode);
bitcastToAPInt()1130   APInt bitcastToAPInt() const {
1131     APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
1132   }
convertToDouble()1133   double convertToDouble() const { return getIEEE().convertToDouble(); }
convertToFloat()1134   float convertToFloat() const { return getIEEE().convertToFloat(); }
1135 
1136   bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; }
1137 
1138   bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; }
1139 
1140   bool operator<(const APFloat &RHS) const {
1141     return compare(RHS) == cmpLessThan;
1142   }
1143 
1144   bool operator>(const APFloat &RHS) const {
1145     return compare(RHS) == cmpGreaterThan;
1146   }
1147 
1148   bool operator<=(const APFloat &RHS) const {
1149     cmpResult Res = compare(RHS);
1150     return Res == cmpLessThan || Res == cmpEqual;
1151   }
1152 
1153   bool operator>=(const APFloat &RHS) const {
1154     cmpResult Res = compare(RHS);
1155     return Res == cmpGreaterThan || Res == cmpEqual;
1156   }
1157 
compare(const APFloat & RHS)1158   cmpResult compare(const APFloat &RHS) const {
1159     assert(&getSemantics() == &RHS.getSemantics() &&
1160            "Should only compare APFloats with the same semantics");
1161     if (usesLayout<IEEEFloat>(getSemantics()))
1162       return U.IEEE.compare(RHS.U.IEEE);
1163     if (usesLayout<DoubleAPFloat>(getSemantics()))
1164       return U.Double.compare(RHS.U.Double);
1165     llvm_unreachable("Unexpected semantics");
1166   }
1167 
bitwiseIsEqual(const APFloat & RHS)1168   bool bitwiseIsEqual(const APFloat &RHS) const {
1169     if (&getSemantics() != &RHS.getSemantics())
1170       return false;
1171     if (usesLayout<IEEEFloat>(getSemantics()))
1172       return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
1173     if (usesLayout<DoubleAPFloat>(getSemantics()))
1174       return U.Double.bitwiseIsEqual(RHS.U.Double);
1175     llvm_unreachable("Unexpected semantics");
1176   }
1177 
1178   /// We don't rely on operator== working on double values, as
1179   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1180   /// As such, this method can be used to do an exact bit-for-bit comparison of
1181   /// two floating point values.
1182   ///
1183   /// We leave the version with the double argument here because it's just so
1184   /// convenient to write "2.0" and the like.  Without this function we'd
1185   /// have to duplicate its logic everywhere it's called.
isExactlyValue(double V)1186   bool isExactlyValue(double V) const {
1187     bool ignored;
1188     APFloat Tmp(V);
1189     Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
1190     return bitwiseIsEqual(Tmp);
1191   }
1192 
convertToHexString(char * DST,unsigned int HexDigits,bool UpperCase,roundingMode RM)1193   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
1194                                   bool UpperCase, roundingMode RM) const {
1195     APFLOAT_DISPATCH_ON_SEMANTICS(
1196         convertToHexString(DST, HexDigits, UpperCase, RM));
1197   }
1198 
isZero()1199   bool isZero() const { return getCategory() == fcZero; }
isInfinity()1200   bool isInfinity() const { return getCategory() == fcInfinity; }
isNaN()1201   bool isNaN() const { return getCategory() == fcNaN; }
1202 
isNegative()1203   bool isNegative() const { return getIEEE().isNegative(); }
isDenormal()1204   bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
isSignaling()1205   bool isSignaling() const { return getIEEE().isSignaling(); }
1206 
isNormal()1207   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
isFinite()1208   bool isFinite() const { return !isNaN() && !isInfinity(); }
1209 
getCategory()1210   fltCategory getCategory() const { return getIEEE().getCategory(); }
getSemantics()1211   const fltSemantics &getSemantics() const { return *U.semantics; }
isNonZero()1212   bool isNonZero() const { return !isZero(); }
isFiniteNonZero()1213   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
isPosZero()1214   bool isPosZero() const { return isZero() && !isNegative(); }
isNegZero()1215   bool isNegZero() const { return isZero() && isNegative(); }
isSmallest()1216   bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
isLargest()1217   bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
isInteger()1218   bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
1219 
1220   APFloat &operator=(const APFloat &RHS) = default;
1221   APFloat &operator=(APFloat &&RHS) = default;
1222 
1223   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
1224                 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
1225     APFLOAT_DISPATCH_ON_SEMANTICS(
1226         toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
1227   }
1228 
1229   void print(raw_ostream &) const;
1230   void dump() const;
1231 
getExactInverse(APFloat * inv)1232   bool getExactInverse(APFloat *inv) const {
1233     APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
1234   }
1235 
1236   friend hash_code hash_value(const APFloat &Arg);
ilogb(const APFloat & Arg)1237   friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
1238   friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
1239   friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
1240   friend IEEEFloat;
1241   friend DoubleAPFloat;
1242 };
1243 
1244 /// See friend declarations above.
1245 ///
1246 /// These additional declarations are required in order to compile LLVM with IBM
1247 /// xlC compiler.
1248 hash_code hash_value(const APFloat &Arg);
scalbn(APFloat X,int Exp,APFloat::roundingMode RM)1249 inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
1250   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1251     return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
1252   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1253     return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
1254   llvm_unreachable("Unexpected semantics");
1255 }
1256 
1257 /// Equivalent of C standard library function.
1258 ///
1259 /// While the C standard says Exp is an unspecified value for infinity and nan,
1260 /// this returns INT_MAX for infinities, and INT_MIN for NaNs.
frexp(const APFloat & X,int & Exp,APFloat::roundingMode RM)1261 inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
1262   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1263     return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
1264   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1265     return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
1266   llvm_unreachable("Unexpected semantics");
1267 }
1268 /// Returns the absolute value of the argument.
abs(APFloat X)1269 inline APFloat abs(APFloat X) {
1270   X.clearSign();
1271   return X;
1272 }
1273 
1274 /// Returns the negated value of the argument.
neg(APFloat X)1275 inline APFloat neg(APFloat X) {
1276   X.changeSign();
1277   return X;
1278 }
1279 
1280 /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
1281 /// both are not NaN. If either argument is a NaN, returns the other argument.
1282 LLVM_READONLY
minnum(const APFloat & A,const APFloat & B)1283 inline APFloat minnum(const APFloat &A, const APFloat &B) {
1284   if (A.isNaN())
1285     return B;
1286   if (B.isNaN())
1287     return A;
1288   return B < A ? B : A;
1289 }
1290 
1291 /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
1292 /// both are not NaN. If either argument is a NaN, returns the other argument.
1293 LLVM_READONLY
maxnum(const APFloat & A,const APFloat & B)1294 inline APFloat maxnum(const APFloat &A, const APFloat &B) {
1295   if (A.isNaN())
1296     return B;
1297   if (B.isNaN())
1298     return A;
1299   return A < B ? B : A;
1300 }
1301 
1302 /// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2
1303 /// arguments, propagating NaNs and treating -0 as less than +0.
1304 LLVM_READONLY
minimum(const APFloat & A,const APFloat & B)1305 inline APFloat minimum(const APFloat &A, const APFloat &B) {
1306   if (A.isNaN())
1307     return A;
1308   if (B.isNaN())
1309     return B;
1310   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1311     return A.isNegative() ? A : B;
1312   return B < A ? B : A;
1313 }
1314 
1315 /// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2
1316 /// arguments, propagating NaNs and treating -0 as less than +0.
1317 LLVM_READONLY
maximum(const APFloat & A,const APFloat & B)1318 inline APFloat maximum(const APFloat &A, const APFloat &B) {
1319   if (A.isNaN())
1320     return A;
1321   if (B.isNaN())
1322     return B;
1323   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1324     return A.isNegative() ? B : A;
1325   return A < B ? B : A;
1326 }
1327 
1328 } // namespace llvm
1329 
1330 #undef APFLOAT_DISPATCH_ON_SEMANTICS
1331 #endif // LLVM_ADT_APFLOAT_H
1332