1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/DemandedBits.h"
18 #include "llvm/Analysis/DomTreeUpdater.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/MustExecute.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/ValueHandle.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/KnownBits.h"
37 
38 using namespace llvm;
39 using namespace llvm::PatternMatch;
40 
41 #define DEBUG_TYPE "iv-descriptors"
42 
areAllUsesIn(Instruction * I,SmallPtrSetImpl<Instruction * > & Set)43 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
44                                         SmallPtrSetImpl<Instruction *> &Set) {
45   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
46     if (!Set.count(dyn_cast<Instruction>(*Use)))
47       return false;
48   return true;
49 }
50 
isIntegerRecurrenceKind(RecurrenceKind Kind)51 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
52   switch (Kind) {
53   default:
54     break;
55   case RK_IntegerAdd:
56   case RK_IntegerMult:
57   case RK_IntegerOr:
58   case RK_IntegerAnd:
59   case RK_IntegerXor:
60   case RK_IntegerMinMax:
61     return true;
62   }
63   return false;
64 }
65 
isFloatingPointRecurrenceKind(RecurrenceKind Kind)66 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
67   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
68 }
69 
isArithmeticRecurrenceKind(RecurrenceKind Kind)70 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
71   switch (Kind) {
72   default:
73     break;
74   case RK_IntegerAdd:
75   case RK_IntegerMult:
76   case RK_FloatAdd:
77   case RK_FloatMult:
78     return true;
79   }
80   return false;
81 }
82 
83 /// Determines if Phi may have been type-promoted. If Phi has a single user
84 /// that ANDs the Phi with a type mask, return the user. RT is updated to
85 /// account for the narrower bit width represented by the mask, and the AND
86 /// instruction is added to CI.
lookThroughAnd(PHINode * Phi,Type * & RT,SmallPtrSetImpl<Instruction * > & Visited,SmallPtrSetImpl<Instruction * > & CI)87 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
88                                    SmallPtrSetImpl<Instruction *> &Visited,
89                                    SmallPtrSetImpl<Instruction *> &CI) {
90   if (!Phi->hasOneUse())
91     return Phi;
92 
93   const APInt *M = nullptr;
94   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
95 
96   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
97   // with a new integer type of the corresponding bit width.
98   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
99     int32_t Bits = (*M + 1).exactLogBase2();
100     if (Bits > 0) {
101       RT = IntegerType::get(Phi->getContext(), Bits);
102       Visited.insert(Phi);
103       CI.insert(J);
104       return J;
105     }
106   }
107   return Phi;
108 }
109 
110 /// Compute the minimal bit width needed to represent a reduction whose exit
111 /// instruction is given by Exit.
computeRecurrenceType(Instruction * Exit,DemandedBits * DB,AssumptionCache * AC,DominatorTree * DT)112 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
113                                                      DemandedBits *DB,
114                                                      AssumptionCache *AC,
115                                                      DominatorTree *DT) {
116   bool IsSigned = false;
117   const DataLayout &DL = Exit->getModule()->getDataLayout();
118   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
119 
120   if (DB) {
121     // Use the demanded bits analysis to determine the bits that are live out
122     // of the exit instruction, rounding up to the nearest power of two. If the
123     // use of demanded bits results in a smaller bit width, we know the value
124     // must be positive (i.e., IsSigned = false), because if this were not the
125     // case, the sign bit would have been demanded.
126     auto Mask = DB->getDemandedBits(Exit);
127     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
128   }
129 
130   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
131     // If demanded bits wasn't able to limit the bit width, we can try to use
132     // value tracking instead. This can be the case, for example, if the value
133     // may be negative.
134     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
135     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
136     MaxBitWidth = NumTypeBits - NumSignBits;
137     KnownBits Bits = computeKnownBits(Exit, DL);
138     if (!Bits.isNonNegative()) {
139       // If the value is not known to be non-negative, we set IsSigned to true,
140       // meaning that we will use sext instructions instead of zext
141       // instructions to restore the original type.
142       IsSigned = true;
143       if (!Bits.isNegative())
144         // If the value is not known to be negative, we don't known what the
145         // upper bit is, and therefore, we don't know what kind of extend we
146         // will need. In this case, just increase the bit width by one bit and
147         // use sext.
148         ++MaxBitWidth;
149     }
150   }
151   if (!isPowerOf2_64(MaxBitWidth))
152     MaxBitWidth = NextPowerOf2(MaxBitWidth);
153 
154   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
155                         IsSigned);
156 }
157 
158 /// Collect cast instructions that can be ignored in the vectorizer's cost
159 /// model, given a reduction exit value and the minimal type in which the
160 /// reduction can be represented.
collectCastsToIgnore(Loop * TheLoop,Instruction * Exit,Type * RecurrenceType,SmallPtrSetImpl<Instruction * > & Casts)161 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
162                                  Type *RecurrenceType,
163                                  SmallPtrSetImpl<Instruction *> &Casts) {
164 
165   SmallVector<Instruction *, 8> Worklist;
166   SmallPtrSet<Instruction *, 8> Visited;
167   Worklist.push_back(Exit);
168 
169   while (!Worklist.empty()) {
170     Instruction *Val = Worklist.pop_back_val();
171     Visited.insert(Val);
172     if (auto *Cast = dyn_cast<CastInst>(Val))
173       if (Cast->getSrcTy() == RecurrenceType) {
174         // If the source type of a cast instruction is equal to the recurrence
175         // type, it will be eliminated, and should be ignored in the vectorizer
176         // cost model.
177         Casts.insert(Cast);
178         continue;
179       }
180 
181     // Add all operands to the work list if they are loop-varying values that
182     // we haven't yet visited.
183     for (Value *O : cast<User>(Val)->operands())
184       if (auto *I = dyn_cast<Instruction>(O))
185         if (TheLoop->contains(I) && !Visited.count(I))
186           Worklist.push_back(I);
187   }
188 }
189 
AddReductionVar(PHINode * Phi,RecurrenceKind Kind,Loop * TheLoop,bool HasFunNoNaNAttr,RecurrenceDescriptor & RedDes,DemandedBits * DB,AssumptionCache * AC,DominatorTree * DT)190 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
191                                            Loop *TheLoop, bool HasFunNoNaNAttr,
192                                            RecurrenceDescriptor &RedDes,
193                                            DemandedBits *DB,
194                                            AssumptionCache *AC,
195                                            DominatorTree *DT) {
196   if (Phi->getNumIncomingValues() != 2)
197     return false;
198 
199   // Reduction variables are only found in the loop header block.
200   if (Phi->getParent() != TheLoop->getHeader())
201     return false;
202 
203   // Obtain the reduction start value from the value that comes from the loop
204   // preheader.
205   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
206 
207   // ExitInstruction is the single value which is used outside the loop.
208   // We only allow for a single reduction value to be used outside the loop.
209   // This includes users of the reduction, variables (which form a cycle
210   // which ends in the phi node).
211   Instruction *ExitInstruction = nullptr;
212   // Indicates that we found a reduction operation in our scan.
213   bool FoundReduxOp = false;
214 
215   // We start with the PHI node and scan for all of the users of this
216   // instruction. All users must be instructions that can be used as reduction
217   // variables (such as ADD). We must have a single out-of-block user. The cycle
218   // must include the original PHI.
219   bool FoundStartPHI = false;
220 
221   // To recognize min/max patterns formed by a icmp select sequence, we store
222   // the number of instruction we saw from the recognized min/max pattern,
223   //  to make sure we only see exactly the two instructions.
224   unsigned NumCmpSelectPatternInst = 0;
225   InstDesc ReduxDesc(false, nullptr);
226 
227   // Data used for determining if the recurrence has been type-promoted.
228   Type *RecurrenceType = Phi->getType();
229   SmallPtrSet<Instruction *, 4> CastInsts;
230   Instruction *Start = Phi;
231   bool IsSigned = false;
232 
233   SmallPtrSet<Instruction *, 8> VisitedInsts;
234   SmallVector<Instruction *, 8> Worklist;
235 
236   // Return early if the recurrence kind does not match the type of Phi. If the
237   // recurrence kind is arithmetic, we attempt to look through AND operations
238   // resulting from the type promotion performed by InstCombine.  Vector
239   // operations are not limited to the legal integer widths, so we may be able
240   // to evaluate the reduction in the narrower width.
241   if (RecurrenceType->isFloatingPointTy()) {
242     if (!isFloatingPointRecurrenceKind(Kind))
243       return false;
244   } else {
245     if (!isIntegerRecurrenceKind(Kind))
246       return false;
247     if (isArithmeticRecurrenceKind(Kind))
248       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
249   }
250 
251   Worklist.push_back(Start);
252   VisitedInsts.insert(Start);
253 
254   // Start with all flags set because we will intersect this with the reduction
255   // flags from all the reduction operations.
256   FastMathFlags FMF = FastMathFlags::getFast();
257 
258   // A value in the reduction can be used:
259   //  - By the reduction:
260   //      - Reduction operation:
261   //        - One use of reduction value (safe).
262   //        - Multiple use of reduction value (not safe).
263   //      - PHI:
264   //        - All uses of the PHI must be the reduction (safe).
265   //        - Otherwise, not safe.
266   //  - By instructions outside of the loop (safe).
267   //      * One value may have several outside users, but all outside
268   //        uses must be of the same value.
269   //  - By an instruction that is not part of the reduction (not safe).
270   //    This is either:
271   //      * An instruction type other than PHI or the reduction operation.
272   //      * A PHI in the header other than the initial PHI.
273   while (!Worklist.empty()) {
274     Instruction *Cur = Worklist.back();
275     Worklist.pop_back();
276 
277     // No Users.
278     // If the instruction has no users then this is a broken chain and can't be
279     // a reduction variable.
280     if (Cur->use_empty())
281       return false;
282 
283     bool IsAPhi = isa<PHINode>(Cur);
284 
285     // A header PHI use other than the original PHI.
286     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
287       return false;
288 
289     // Reductions of instructions such as Div, and Sub is only possible if the
290     // LHS is the reduction variable.
291     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
292         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
293         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
294       return false;
295 
296     // Any reduction instruction must be of one of the allowed kinds. We ignore
297     // the starting value (the Phi or an AND instruction if the Phi has been
298     // type-promoted).
299     if (Cur != Start) {
300       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
301       if (!ReduxDesc.isRecurrence())
302         return false;
303       // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
304       if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi)
305         FMF &= ReduxDesc.getPatternInst()->getFastMathFlags();
306     }
307 
308     bool IsASelect = isa<SelectInst>(Cur);
309 
310     // A conditional reduction operation must only have 2 or less uses in
311     // VisitedInsts.
312     if (IsASelect && (Kind == RK_FloatAdd || Kind == RK_FloatMult) &&
313         hasMultipleUsesOf(Cur, VisitedInsts, 2))
314       return false;
315 
316     // A reduction operation must only have one use of the reduction value.
317     if (!IsAPhi && !IsASelect && Kind != RK_IntegerMinMax &&
318         Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts, 1))
319       return false;
320 
321     // All inputs to a PHI node must be a reduction value.
322     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
323       return false;
324 
325     if (Kind == RK_IntegerMinMax &&
326         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
327       ++NumCmpSelectPatternInst;
328     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
329       ++NumCmpSelectPatternInst;
330 
331     // Check  whether we found a reduction operator.
332     FoundReduxOp |= !IsAPhi && Cur != Start;
333 
334     // Process users of current instruction. Push non-PHI nodes after PHI nodes
335     // onto the stack. This way we are going to have seen all inputs to PHI
336     // nodes once we get to them.
337     SmallVector<Instruction *, 8> NonPHIs;
338     SmallVector<Instruction *, 8> PHIs;
339     for (User *U : Cur->users()) {
340       Instruction *UI = cast<Instruction>(U);
341 
342       // Check if we found the exit user.
343       BasicBlock *Parent = UI->getParent();
344       if (!TheLoop->contains(Parent)) {
345         // If we already know this instruction is used externally, move on to
346         // the next user.
347         if (ExitInstruction == Cur)
348           continue;
349 
350         // Exit if you find multiple values used outside or if the header phi
351         // node is being used. In this case the user uses the value of the
352         // previous iteration, in which case we would loose "VF-1" iterations of
353         // the reduction operation if we vectorize.
354         if (ExitInstruction != nullptr || Cur == Phi)
355           return false;
356 
357         // The instruction used by an outside user must be the last instruction
358         // before we feed back to the reduction phi. Otherwise, we loose VF-1
359         // operations on the value.
360         if (!is_contained(Phi->operands(), Cur))
361           return false;
362 
363         ExitInstruction = Cur;
364         continue;
365       }
366 
367       // Process instructions only once (termination). Each reduction cycle
368       // value must only be used once, except by phi nodes and min/max
369       // reductions which are represented as a cmp followed by a select.
370       InstDesc IgnoredVal(false, nullptr);
371       if (VisitedInsts.insert(UI).second) {
372         if (isa<PHINode>(UI))
373           PHIs.push_back(UI);
374         else
375           NonPHIs.push_back(UI);
376       } else if (!isa<PHINode>(UI) &&
377                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
378                    !isa<SelectInst>(UI)) ||
379                   (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
380                    !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())))
381         return false;
382 
383       // Remember that we completed the cycle.
384       if (UI == Phi)
385         FoundStartPHI = true;
386     }
387     Worklist.append(PHIs.begin(), PHIs.end());
388     Worklist.append(NonPHIs.begin(), NonPHIs.end());
389   }
390 
391   // This means we have seen one but not the other instruction of the
392   // pattern or more than just a select and cmp.
393   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
394       NumCmpSelectPatternInst != 2)
395     return false;
396 
397   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
398     return false;
399 
400   if (Start != Phi) {
401     // If the starting value is not the same as the phi node, we speculatively
402     // looked through an 'and' instruction when evaluating a potential
403     // arithmetic reduction to determine if it may have been type-promoted.
404     //
405     // We now compute the minimal bit width that is required to represent the
406     // reduction. If this is the same width that was indicated by the 'and', we
407     // can represent the reduction in the smaller type. The 'and' instruction
408     // will be eliminated since it will essentially be a cast instruction that
409     // can be ignore in the cost model. If we compute a different type than we
410     // did when evaluating the 'and', the 'and' will not be eliminated, and we
411     // will end up with different kinds of operations in the recurrence
412     // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
413     // the case.
414     //
415     // The vectorizer relies on InstCombine to perform the actual
416     // type-shrinking. It does this by inserting instructions to truncate the
417     // exit value of the reduction to the width indicated by RecurrenceType and
418     // then extend this value back to the original width. If IsSigned is false,
419     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
420     // used.
421     //
422     // TODO: We should not rely on InstCombine to rewrite the reduction in the
423     //       smaller type. We should just generate a correctly typed expression
424     //       to begin with.
425     Type *ComputedType;
426     std::tie(ComputedType, IsSigned) =
427         computeRecurrenceType(ExitInstruction, DB, AC, DT);
428     if (ComputedType != RecurrenceType)
429       return false;
430 
431     // The recurrence expression will be represented in a narrower type. If
432     // there are any cast instructions that will be unnecessary, collect them
433     // in CastInsts. Note that the 'and' instruction was already included in
434     // this list.
435     //
436     // TODO: A better way to represent this may be to tag in some way all the
437     //       instructions that are a part of the reduction. The vectorizer cost
438     //       model could then apply the recurrence type to these instructions,
439     //       without needing a white list of instructions to ignore.
440     collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
441   }
442 
443   // We found a reduction var if we have reached the original phi node and we
444   // only have a single instruction with out-of-loop users.
445 
446   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
447   // is saved as part of the RecurrenceDescriptor.
448 
449   // Save the description of this reduction variable.
450   RecurrenceDescriptor RD(
451       RdxStart, ExitInstruction, Kind, FMF, ReduxDesc.getMinMaxKind(),
452       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
453   RedDes = RD;
454 
455   return true;
456 }
457 
458 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
459 /// pattern corresponding to a min(X, Y) or max(X, Y).
460 RecurrenceDescriptor::InstDesc
isMinMaxSelectCmpPattern(Instruction * I,InstDesc & Prev)461 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
462 
463   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
464          "Expect a select instruction");
465   Instruction *Cmp = nullptr;
466   SelectInst *Select = nullptr;
467 
468   // We must handle the select(cmp()) as a single instruction. Advance to the
469   // select.
470   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
471     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
472       return InstDesc(false, I);
473     return InstDesc(Select, Prev.getMinMaxKind());
474   }
475 
476   // Only handle single use cases for now.
477   if (!(Select = dyn_cast<SelectInst>(I)))
478     return InstDesc(false, I);
479   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
480       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
481     return InstDesc(false, I);
482   if (!Cmp->hasOneUse())
483     return InstDesc(false, I);
484 
485   Value *CmpLeft;
486   Value *CmpRight;
487 
488   // Look for a min/max pattern.
489   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
490     return InstDesc(Select, MRK_UIntMin);
491   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
492     return InstDesc(Select, MRK_UIntMax);
493   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
494     return InstDesc(Select, MRK_SIntMax);
495   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
496     return InstDesc(Select, MRK_SIntMin);
497   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
498     return InstDesc(Select, MRK_FloatMin);
499   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
500     return InstDesc(Select, MRK_FloatMax);
501   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
502     return InstDesc(Select, MRK_FloatMin);
503   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
504     return InstDesc(Select, MRK_FloatMax);
505 
506   return InstDesc(false, I);
507 }
508 
509 /// Returns true if the select instruction has users in the compare-and-add
510 /// reduction pattern below. The select instruction argument is the last one
511 /// in the sequence.
512 ///
513 /// %sum.1 = phi ...
514 /// ...
515 /// %cmp = fcmp pred %0, %CFP
516 /// %add = fadd %0, %sum.1
517 /// %sum.2 = select %cmp, %add, %sum.1
518 RecurrenceDescriptor::InstDesc
isConditionalRdxPattern(RecurrenceKind Kind,Instruction * I)519 RecurrenceDescriptor::isConditionalRdxPattern(
520     RecurrenceKind Kind, Instruction *I) {
521   SelectInst *SI = dyn_cast<SelectInst>(I);
522   if (!SI)
523     return InstDesc(false, I);
524 
525   CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
526   // Only handle single use cases for now.
527   if (!CI || !CI->hasOneUse())
528     return InstDesc(false, I);
529 
530   Value *TrueVal = SI->getTrueValue();
531   Value *FalseVal = SI->getFalseValue();
532   // Handle only when either of operands of select instruction is a PHI
533   // node for now.
534   if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
535       (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
536     return InstDesc(false, I);
537 
538   Instruction *I1 =
539       isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
540                              : dyn_cast<Instruction>(TrueVal);
541   if (!I1 || !I1->isBinaryOp())
542     return InstDesc(false, I);
543 
544   Value *Op1, *Op2;
545   if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1)  ||
546        m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
547       I1->isFast())
548     return InstDesc(Kind == RK_FloatAdd, SI);
549 
550   if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
551     return InstDesc(Kind == RK_FloatMult, SI);
552 
553   return InstDesc(false, I);
554 }
555 
556 RecurrenceDescriptor::InstDesc
isRecurrenceInstr(Instruction * I,RecurrenceKind Kind,InstDesc & Prev,bool HasFunNoNaNAttr)557 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
558                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
559   Instruction *UAI = Prev.getUnsafeAlgebraInst();
560   if (!UAI && isa<FPMathOperator>(I) && !I->hasAllowReassoc())
561     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
562 
563   switch (I->getOpcode()) {
564   default:
565     return InstDesc(false, I);
566   case Instruction::PHI:
567     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
568   case Instruction::Sub:
569   case Instruction::Add:
570     return InstDesc(Kind == RK_IntegerAdd, I);
571   case Instruction::Mul:
572     return InstDesc(Kind == RK_IntegerMult, I);
573   case Instruction::And:
574     return InstDesc(Kind == RK_IntegerAnd, I);
575   case Instruction::Or:
576     return InstDesc(Kind == RK_IntegerOr, I);
577   case Instruction::Xor:
578     return InstDesc(Kind == RK_IntegerXor, I);
579   case Instruction::FMul:
580     return InstDesc(Kind == RK_FloatMult, I, UAI);
581   case Instruction::FSub:
582   case Instruction::FAdd:
583     return InstDesc(Kind == RK_FloatAdd, I, UAI);
584   case Instruction::Select:
585     if (Kind == RK_FloatAdd || Kind == RK_FloatMult)
586       return isConditionalRdxPattern(Kind, I);
587     LLVM_FALLTHROUGH;
588   case Instruction::FCmp:
589   case Instruction::ICmp:
590     if (Kind != RK_IntegerMinMax &&
591         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
592       return InstDesc(false, I);
593     return isMinMaxSelectCmpPattern(I, Prev);
594   }
595 }
596 
hasMultipleUsesOf(Instruction * I,SmallPtrSetImpl<Instruction * > & Insts,unsigned MaxNumUses)597 bool RecurrenceDescriptor::hasMultipleUsesOf(
598     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
599     unsigned MaxNumUses) {
600   unsigned NumUses = 0;
601   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
602        ++Use) {
603     if (Insts.count(dyn_cast<Instruction>(*Use)))
604       ++NumUses;
605     if (NumUses > MaxNumUses)
606       return true;
607   }
608 
609   return false;
610 }
isReductionPHI(PHINode * Phi,Loop * TheLoop,RecurrenceDescriptor & RedDes,DemandedBits * DB,AssumptionCache * AC,DominatorTree * DT)611 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
612                                           RecurrenceDescriptor &RedDes,
613                                           DemandedBits *DB, AssumptionCache *AC,
614                                           DominatorTree *DT) {
615 
616   BasicBlock *Header = TheLoop->getHeader();
617   Function &F = *Header->getParent();
618   bool HasFunNoNaNAttr =
619       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
620 
621   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
622                       AC, DT)) {
623     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
624     return true;
625   }
626   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
627                       AC, DT)) {
628     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
629     return true;
630   }
631   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
632                       AC, DT)) {
633     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
634     return true;
635   }
636   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
637                       AC, DT)) {
638     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
639     return true;
640   }
641   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
642                       AC, DT)) {
643     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
644     return true;
645   }
646   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
647                       DB, AC, DT)) {
648     LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
649     return true;
650   }
651   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
652                       AC, DT)) {
653     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
654     return true;
655   }
656   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
657                       AC, DT)) {
658     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
659     return true;
660   }
661   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
662                       AC, DT)) {
663     LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
664                       << "\n");
665     return true;
666   }
667   // Not a reduction of known type.
668   return false;
669 }
670 
isFirstOrderRecurrence(PHINode * Phi,Loop * TheLoop,DenseMap<Instruction *,Instruction * > & SinkAfter,DominatorTree * DT)671 bool RecurrenceDescriptor::isFirstOrderRecurrence(
672     PHINode *Phi, Loop *TheLoop,
673     DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
674 
675   // Ensure the phi node is in the loop header and has two incoming values.
676   if (Phi->getParent() != TheLoop->getHeader() ||
677       Phi->getNumIncomingValues() != 2)
678     return false;
679 
680   // Ensure the loop has a preheader and a single latch block. The loop
681   // vectorizer will need the latch to set up the next iteration of the loop.
682   auto *Preheader = TheLoop->getLoopPreheader();
683   auto *Latch = TheLoop->getLoopLatch();
684   if (!Preheader || !Latch)
685     return false;
686 
687   // Ensure the phi node's incoming blocks are the loop preheader and latch.
688   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
689       Phi->getBasicBlockIndex(Latch) < 0)
690     return false;
691 
692   // Get the previous value. The previous value comes from the latch edge while
693   // the initial value comes form the preheader edge.
694   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
695   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
696       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
697     return false;
698 
699   // Ensure every user of the phi node is dominated by the previous value.
700   // The dominance requirement ensures the loop vectorizer will not need to
701   // vectorize the initial value prior to the first iteration of the loop.
702   // TODO: Consider extending this sinking to handle memory instructions and
703   // phis with multiple users.
704 
705   // Returns true, if all users of I are dominated by DominatedBy.
706   auto allUsesDominatedBy = [DT](Instruction *I, Instruction *DominatedBy) {
707     return all_of(I->uses(), [DT, DominatedBy](Use &U) {
708       return DT->dominates(DominatedBy, U);
709     });
710   };
711 
712   if (Phi->hasOneUse()) {
713     Instruction *I = Phi->user_back();
714 
715     // If the user of the PHI is also the incoming value, we potentially have a
716     // reduction and which cannot be handled by sinking.
717     if (Previous == I)
718       return false;
719 
720     // We cannot sink terminator instructions.
721     if (I->getParent()->getTerminator() == I)
722       return false;
723 
724     // Do not try to sink an instruction multiple times (if multiple operands
725     // are first order recurrences).
726     // TODO: We can support this case, by sinking the instruction after the
727     // 'deepest' previous instruction.
728     if (SinkAfter.find(I) != SinkAfter.end())
729       return false;
730 
731     if (DT->dominates(Previous, I)) // We already are good w/o sinking.
732       return true;
733 
734     // We can sink any instruction without side effects, as long as all users
735     // are dominated by the instruction we are sinking after.
736     if (I->getParent() == Phi->getParent() && !I->mayHaveSideEffects() &&
737         allUsesDominatedBy(I, Previous)) {
738       SinkAfter[I] = Previous;
739       return true;
740     }
741   }
742 
743   return allUsesDominatedBy(Phi, Previous);
744 }
745 
746 /// This function returns the identity element (or neutral element) for
747 /// the operation K.
getRecurrenceIdentity(RecurrenceKind K,Type * Tp)748 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
749                                                       Type *Tp) {
750   switch (K) {
751   case RK_IntegerXor:
752   case RK_IntegerAdd:
753   case RK_IntegerOr:
754     // Adding, Xoring, Oring zero to a number does not change it.
755     return ConstantInt::get(Tp, 0);
756   case RK_IntegerMult:
757     // Multiplying a number by 1 does not change it.
758     return ConstantInt::get(Tp, 1);
759   case RK_IntegerAnd:
760     // AND-ing a number with an all-1 value does not change it.
761     return ConstantInt::get(Tp, -1, true);
762   case RK_FloatMult:
763     // Multiplying a number by 1 does not change it.
764     return ConstantFP::get(Tp, 1.0L);
765   case RK_FloatAdd:
766     // Adding zero to a number does not change it.
767     return ConstantFP::get(Tp, 0.0L);
768   default:
769     llvm_unreachable("Unknown recurrence kind");
770   }
771 }
772 
773 /// This function translates the recurrence kind to an LLVM binary operator.
getRecurrenceBinOp(RecurrenceKind Kind)774 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
775   switch (Kind) {
776   case RK_IntegerAdd:
777     return Instruction::Add;
778   case RK_IntegerMult:
779     return Instruction::Mul;
780   case RK_IntegerOr:
781     return Instruction::Or;
782   case RK_IntegerAnd:
783     return Instruction::And;
784   case RK_IntegerXor:
785     return Instruction::Xor;
786   case RK_FloatMult:
787     return Instruction::FMul;
788   case RK_FloatAdd:
789     return Instruction::FAdd;
790   case RK_IntegerMinMax:
791     return Instruction::ICmp;
792   case RK_FloatMinMax:
793     return Instruction::FCmp;
794   default:
795     llvm_unreachable("Unknown recurrence operation");
796   }
797 }
798 
InductionDescriptor(Value * Start,InductionKind K,const SCEV * Step,BinaryOperator * BOp,SmallVectorImpl<Instruction * > * Casts)799 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
800                                          const SCEV *Step, BinaryOperator *BOp,
801                                          SmallVectorImpl<Instruction *> *Casts)
802     : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
803   assert(IK != IK_NoInduction && "Not an induction");
804 
805   // Start value type should match the induction kind and the value
806   // itself should not be null.
807   assert(StartValue && "StartValue is null");
808   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
809          "StartValue is not a pointer for pointer induction");
810   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
811          "StartValue is not an integer for integer induction");
812 
813   // Check the Step Value. It should be non-zero integer value.
814   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
815          "Step value is zero");
816 
817   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
818          "Step value should be constant for pointer induction");
819   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
820          "StepValue is not an integer");
821 
822   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
823          "StepValue is not FP for FpInduction");
824   assert((IK != IK_FpInduction ||
825           (InductionBinOp &&
826            (InductionBinOp->getOpcode() == Instruction::FAdd ||
827             InductionBinOp->getOpcode() == Instruction::FSub))) &&
828          "Binary opcode should be specified for FP induction");
829 
830   if (Casts) {
831     for (auto &Inst : *Casts) {
832       RedundantCasts.push_back(Inst);
833     }
834   }
835 }
836 
getConsecutiveDirection() const837 int InductionDescriptor::getConsecutiveDirection() const {
838   ConstantInt *ConstStep = getConstIntStepValue();
839   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
840     return ConstStep->getSExtValue();
841   return 0;
842 }
843 
getConstIntStepValue() const844 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
845   if (isa<SCEVConstant>(Step))
846     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
847   return nullptr;
848 }
849 
isFPInductionPHI(PHINode * Phi,const Loop * TheLoop,ScalarEvolution * SE,InductionDescriptor & D)850 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
851                                            ScalarEvolution *SE,
852                                            InductionDescriptor &D) {
853 
854   // Here we only handle FP induction variables.
855   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
856 
857   if (TheLoop->getHeader() != Phi->getParent())
858     return false;
859 
860   // The loop may have multiple entrances or multiple exits; we can analyze
861   // this phi if it has a unique entry value and a unique backedge value.
862   if (Phi->getNumIncomingValues() != 2)
863     return false;
864   Value *BEValue = nullptr, *StartValue = nullptr;
865   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
866     BEValue = Phi->getIncomingValue(0);
867     StartValue = Phi->getIncomingValue(1);
868   } else {
869     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
870            "Unexpected Phi node in the loop");
871     BEValue = Phi->getIncomingValue(1);
872     StartValue = Phi->getIncomingValue(0);
873   }
874 
875   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
876   if (!BOp)
877     return false;
878 
879   Value *Addend = nullptr;
880   if (BOp->getOpcode() == Instruction::FAdd) {
881     if (BOp->getOperand(0) == Phi)
882       Addend = BOp->getOperand(1);
883     else if (BOp->getOperand(1) == Phi)
884       Addend = BOp->getOperand(0);
885   } else if (BOp->getOpcode() == Instruction::FSub)
886     if (BOp->getOperand(0) == Phi)
887       Addend = BOp->getOperand(1);
888 
889   if (!Addend)
890     return false;
891 
892   // The addend should be loop invariant
893   if (auto *I = dyn_cast<Instruction>(Addend))
894     if (TheLoop->contains(I))
895       return false;
896 
897   // FP Step has unknown SCEV
898   const SCEV *Step = SE->getUnknown(Addend);
899   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
900   return true;
901 }
902 
903 /// This function is called when we suspect that the update-chain of a phi node
904 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
905 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
906 /// predicate P under which the SCEV expression for the phi can be the
907 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
908 /// cast instructions that are involved in the update-chain of this induction.
909 /// A caller that adds the required runtime predicate can be free to drop these
910 /// cast instructions, and compute the phi using \p AR (instead of some scev
911 /// expression with casts).
912 ///
913 /// For example, without a predicate the scev expression can take the following
914 /// form:
915 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
916 ///
917 /// It corresponds to the following IR sequence:
918 /// %for.body:
919 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
920 ///   %casted_phi = "ExtTrunc i64 %x"
921 ///   %add = add i64 %casted_phi, %step
922 ///
923 /// where %x is given in \p PN,
924 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
925 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
926 /// several forms, for example, such as:
927 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
928 /// or:
929 ///   ExtTrunc2:    %t = shl %x, m
930 ///                 %casted_phi = ashr %t, m
931 ///
932 /// If we are able to find such sequence, we return the instructions
933 /// we found, namely %casted_phi and the instructions on its use-def chain up
934 /// to the phi (not including the phi).
getCastsForInductionPHI(PredicatedScalarEvolution & PSE,const SCEVUnknown * PhiScev,const SCEVAddRecExpr * AR,SmallVectorImpl<Instruction * > & CastInsts)935 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
936                                     const SCEVUnknown *PhiScev,
937                                     const SCEVAddRecExpr *AR,
938                                     SmallVectorImpl<Instruction *> &CastInsts) {
939 
940   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
941   auto *PN = cast<PHINode>(PhiScev->getValue());
942   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
943   const Loop *L = AR->getLoop();
944 
945   // Find any cast instructions that participate in the def-use chain of
946   // PhiScev in the loop.
947   // FORNOW/TODO: We currently expect the def-use chain to include only
948   // two-operand instructions, where one of the operands is an invariant.
949   // createAddRecFromPHIWithCasts() currently does not support anything more
950   // involved than that, so we keep the search simple. This can be
951   // extended/generalized as needed.
952 
953   auto getDef = [&](const Value *Val) -> Value * {
954     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
955     if (!BinOp)
956       return nullptr;
957     Value *Op0 = BinOp->getOperand(0);
958     Value *Op1 = BinOp->getOperand(1);
959     Value *Def = nullptr;
960     if (L->isLoopInvariant(Op0))
961       Def = Op1;
962     else if (L->isLoopInvariant(Op1))
963       Def = Op0;
964     return Def;
965   };
966 
967   // Look for the instruction that defines the induction via the
968   // loop backedge.
969   BasicBlock *Latch = L->getLoopLatch();
970   if (!Latch)
971     return false;
972   Value *Val = PN->getIncomingValueForBlock(Latch);
973   if (!Val)
974     return false;
975 
976   // Follow the def-use chain until the induction phi is reached.
977   // If on the way we encounter a Value that has the same SCEV Expr as the
978   // phi node, we can consider the instructions we visit from that point
979   // as part of the cast-sequence that can be ignored.
980   bool InCastSequence = false;
981   auto *Inst = dyn_cast<Instruction>(Val);
982   while (Val != PN) {
983     // If we encountered a phi node other than PN, or if we left the loop,
984     // we bail out.
985     if (!Inst || !L->contains(Inst)) {
986       return false;
987     }
988     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
989     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
990       InCastSequence = true;
991     if (InCastSequence) {
992       // Only the last instruction in the cast sequence is expected to have
993       // uses outside the induction def-use chain.
994       if (!CastInsts.empty())
995         if (!Inst->hasOneUse())
996           return false;
997       CastInsts.push_back(Inst);
998     }
999     Val = getDef(Val);
1000     if (!Val)
1001       return false;
1002     Inst = dyn_cast<Instruction>(Val);
1003   }
1004 
1005   return InCastSequence;
1006 }
1007 
isInductionPHI(PHINode * Phi,const Loop * TheLoop,PredicatedScalarEvolution & PSE,InductionDescriptor & D,bool Assume)1008 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1009                                          PredicatedScalarEvolution &PSE,
1010                                          InductionDescriptor &D, bool Assume) {
1011   Type *PhiTy = Phi->getType();
1012 
1013   // Handle integer and pointer inductions variables.
1014   // Now we handle also FP induction but not trying to make a
1015   // recurrent expression from the PHI node in-place.
1016 
1017   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1018       !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1019     return false;
1020 
1021   if (PhiTy->isFloatingPointTy())
1022     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1023 
1024   const SCEV *PhiScev = PSE.getSCEV(Phi);
1025   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1026 
1027   // We need this expression to be an AddRecExpr.
1028   if (Assume && !AR)
1029     AR = PSE.getAsAddRec(Phi);
1030 
1031   if (!AR) {
1032     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1033     return false;
1034   }
1035 
1036   // Record any Cast instructions that participate in the induction update
1037   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1038   // If we started from an UnknownSCEV, and managed to build an addRecurrence
1039   // only after enabling Assume with PSCEV, this means we may have encountered
1040   // cast instructions that required adding a runtime check in order to
1041   // guarantee the correctness of the AddRecurrence respresentation of the
1042   // induction.
1043   if (PhiScev != AR && SymbolicPhi) {
1044     SmallVector<Instruction *, 2> Casts;
1045     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1046       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1047   }
1048 
1049   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1050 }
1051 
isInductionPHI(PHINode * Phi,const Loop * TheLoop,ScalarEvolution * SE,InductionDescriptor & D,const SCEV * Expr,SmallVectorImpl<Instruction * > * CastsToIgnore)1052 bool InductionDescriptor::isInductionPHI(
1053     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1054     InductionDescriptor &D, const SCEV *Expr,
1055     SmallVectorImpl<Instruction *> *CastsToIgnore) {
1056   Type *PhiTy = Phi->getType();
1057   // We only handle integer and pointer inductions variables.
1058   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1059     return false;
1060 
1061   // Check that the PHI is consecutive.
1062   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1063   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1064 
1065   if (!AR) {
1066     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1067     return false;
1068   }
1069 
1070   if (AR->getLoop() != TheLoop) {
1071     // FIXME: We should treat this as a uniform. Unfortunately, we
1072     // don't currently know how to handled uniform PHIs.
1073     LLVM_DEBUG(
1074         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1075     return false;
1076   }
1077 
1078   Value *StartValue =
1079       Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1080 
1081   BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1082   if (!Latch)
1083     return false;
1084   BinaryOperator *BOp =
1085       dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1086 
1087   const SCEV *Step = AR->getStepRecurrence(*SE);
1088   // Calculate the pointer stride and check if it is consecutive.
1089   // The stride may be a constant or a loop invariant integer value.
1090   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1091   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1092     return false;
1093 
1094   if (PhiTy->isIntegerTy()) {
1095     D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1096                             CastsToIgnore);
1097     return true;
1098   }
1099 
1100   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1101   // Pointer induction should be a constant.
1102   if (!ConstStep)
1103     return false;
1104 
1105   ConstantInt *CV = ConstStep->getValue();
1106   Type *PointerElementType = PhiTy->getPointerElementType();
1107   // The pointer stride cannot be determined if the pointer element type is not
1108   // sized.
1109   if (!PointerElementType->isSized())
1110     return false;
1111 
1112   const DataLayout &DL = Phi->getModule()->getDataLayout();
1113   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
1114   if (!Size)
1115     return false;
1116 
1117   int64_t CVSize = CV->getSExtValue();
1118   if (CVSize % Size)
1119     return false;
1120   auto *StepValue =
1121       SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
1122   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp);
1123   return true;
1124 }
1125