1 //===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that SystemZ uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
15 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
16 
17 #include "SystemZ.h"
18 #include "SystemZInstrInfo.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 
23 namespace llvm {
24 namespace SystemZISD {
25 enum NodeType : unsigned {
26   FIRST_NUMBER = ISD::BUILTIN_OP_END,
27 
28   // Return with a flag operand.  Operand 0 is the chain operand.
29   RET_FLAG,
30 
31   // Calls a function.  Operand 0 is the chain operand and operand 1
32   // is the target address.  The arguments start at operand 2.
33   // There is an optional glue operand at the end.
34   CALL,
35   SIBCALL,
36 
37   // TLS calls.  Like regular calls, except operand 1 is the TLS symbol.
38   // (The call target is implicitly __tls_get_offset.)
39   TLS_GDCALL,
40   TLS_LDCALL,
41 
42   // Wraps a TargetGlobalAddress that should be loaded using PC-relative
43   // accesses (LARL).  Operand 0 is the address.
44   PCREL_WRAPPER,
45 
46   // Used in cases where an offset is applied to a TargetGlobalAddress.
47   // Operand 0 is the full TargetGlobalAddress and operand 1 is a
48   // PCREL_WRAPPER for an anchor point.  This is used so that we can
49   // cheaply refer to either the full address or the anchor point
50   // as a register base.
51   PCREL_OFFSET,
52 
53   // Integer absolute.
54   IABS,
55 
56   // Integer comparisons.  There are three operands: the two values
57   // to compare, and an integer of type SystemZICMP.
58   ICMP,
59 
60   // Floating-point comparisons.  The two operands are the values to compare.
61   FCMP,
62 
63   // Test under mask.  The first operand is ANDed with the second operand
64   // and the condition codes are set on the result.  The third operand is
65   // a boolean that is true if the condition codes need to distinguish
66   // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
67   // register forms do but the memory forms don't).
68   TM,
69 
70   // Branches if a condition is true.  Operand 0 is the chain operand;
71   // operand 1 is the 4-bit condition-code mask, with bit N in
72   // big-endian order meaning "branch if CC=N"; operand 2 is the
73   // target block and operand 3 is the flag operand.
74   BR_CCMASK,
75 
76   // Selects between operand 0 and operand 1.  Operand 2 is the
77   // mask of condition-code values for which operand 0 should be
78   // chosen over operand 1; it has the same form as BR_CCMASK.
79   // Operand 3 is the flag operand.
80   SELECT_CCMASK,
81 
82   // Evaluates to the gap between the stack pointer and the
83   // base of the dynamically-allocatable area.
84   ADJDYNALLOC,
85 
86   // For allocating stack space when using stack clash protector.
87   // Allocation is performed by block, and each block is probed.
88   PROBED_ALLOCA,
89 
90   // Count number of bits set in operand 0 per byte.
91   POPCNT,
92 
93   // Wrappers around the ISD opcodes of the same name.  The output is GR128.
94   // Input operands may be GR64 or GR32, depending on the instruction.
95   SMUL_LOHI,
96   UMUL_LOHI,
97   SDIVREM,
98   UDIVREM,
99 
100   // Add/subtract with overflow/carry.  These have the same operands as
101   // the corresponding standard operations, except with the carry flag
102   // replaced by a condition code value.
103   SADDO, SSUBO, UADDO, USUBO, ADDCARRY, SUBCARRY,
104 
105   // Set the condition code from a boolean value in operand 0.
106   // Operand 1 is a mask of all condition-code values that may result of this
107   // operation, operand 2 is a mask of condition-code values that may result
108   // if the boolean is true.
109   // Note that this operation is always optimized away, we will never
110   // generate any code for it.
111   GET_CCMASK,
112 
113   // Use a series of MVCs to copy bytes from one memory location to another.
114   // The operands are:
115   // - the target address
116   // - the source address
117   // - the constant length
118   //
119   // This isn't a memory opcode because we'd need to attach two
120   // MachineMemOperands rather than one.
121   MVC,
122 
123   // Like MVC, but implemented as a loop that handles X*256 bytes
124   // followed by straight-line code to handle the rest (if any).
125   // The value of X is passed as an additional operand.
126   MVC_LOOP,
127 
128   // Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR).
129   NC,
130   NC_LOOP,
131   OC,
132   OC_LOOP,
133   XC,
134   XC_LOOP,
135 
136   // Use CLC to compare two blocks of memory, with the same comments
137   // as for MVC and MVC_LOOP.
138   CLC,
139   CLC_LOOP,
140 
141   // Use an MVST-based sequence to implement stpcpy().
142   STPCPY,
143 
144   // Use a CLST-based sequence to implement strcmp().  The two input operands
145   // are the addresses of the strings to compare.
146   STRCMP,
147 
148   // Use an SRST-based sequence to search a block of memory.  The first
149   // operand is the end address, the second is the start, and the third
150   // is the character to search for.  CC is set to 1 on success and 2
151   // on failure.
152   SEARCH_STRING,
153 
154   // Store the CC value in bits 29 and 28 of an integer.
155   IPM,
156 
157   // Compiler barrier only; generate a no-op.
158   MEMBARRIER,
159 
160   // Transaction begin.  The first operand is the chain, the second
161   // the TDB pointer, and the third the immediate control field.
162   // Returns CC value and chain.
163   TBEGIN,
164   TBEGIN_NOFLOAT,
165 
166   // Transaction end.  Just the chain operand.  Returns CC value and chain.
167   TEND,
168 
169   // Create a vector constant by filling byte N of the result with bit
170   // 15-N of the single operand.
171   BYTE_MASK,
172 
173   // Create a vector constant by replicating an element-sized RISBG-style mask.
174   // The first operand specifies the starting set bit and the second operand
175   // specifies the ending set bit.  Both operands count from the MSB of the
176   // element.
177   ROTATE_MASK,
178 
179   // Replicate a GPR scalar value into all elements of a vector.
180   REPLICATE,
181 
182   // Create a vector from two i64 GPRs.
183   JOIN_DWORDS,
184 
185   // Replicate one element of a vector into all elements.  The first operand
186   // is the vector and the second is the index of the element to replicate.
187   SPLAT,
188 
189   // Interleave elements from the high half of operand 0 and the high half
190   // of operand 1.
191   MERGE_HIGH,
192 
193   // Likewise for the low halves.
194   MERGE_LOW,
195 
196   // Concatenate the vectors in the first two operands, shift them left
197   // by the third operand, and take the first half of the result.
198   SHL_DOUBLE,
199 
200   // Take one element of the first v2i64 operand and the one element of
201   // the second v2i64 operand and concatenate them to form a v2i64 result.
202   // The third operand is a 4-bit value of the form 0A0B, where A and B
203   // are the element selectors for the first operand and second operands
204   // respectively.
205   PERMUTE_DWORDS,
206 
207   // Perform a general vector permute on vector operands 0 and 1.
208   // Each byte of operand 2 controls the corresponding byte of the result,
209   // in the same way as a byte-level VECTOR_SHUFFLE mask.
210   PERMUTE,
211 
212   // Pack vector operands 0 and 1 into a single vector with half-sized elements.
213   PACK,
214 
215   // Likewise, but saturate the result and set CC.  PACKS_CC does signed
216   // saturation and PACKLS_CC does unsigned saturation.
217   PACKS_CC,
218   PACKLS_CC,
219 
220   // Unpack the first half of vector operand 0 into double-sized elements.
221   // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
222   UNPACK_HIGH,
223   UNPACKL_HIGH,
224 
225   // Likewise for the second half.
226   UNPACK_LOW,
227   UNPACKL_LOW,
228 
229   // Shift each element of vector operand 0 by the number of bits specified
230   // by scalar operand 1.
231   VSHL_BY_SCALAR,
232   VSRL_BY_SCALAR,
233   VSRA_BY_SCALAR,
234 
235   // For each element of the output type, sum across all sub-elements of
236   // operand 0 belonging to the corresponding element, and add in the
237   // rightmost sub-element of the corresponding element of operand 1.
238   VSUM,
239 
240   // Compare integer vector operands 0 and 1 to produce the usual 0/-1
241   // vector result.  VICMPE is for equality, VICMPH for "signed greater than"
242   // and VICMPHL for "unsigned greater than".
243   VICMPE,
244   VICMPH,
245   VICMPHL,
246 
247   // Likewise, but also set the condition codes on the result.
248   VICMPES,
249   VICMPHS,
250   VICMPHLS,
251 
252   // Compare floating-point vector operands 0 and 1 to produce the usual 0/-1
253   // vector result.  VFCMPE is for "ordered and equal", VFCMPH for "ordered and
254   // greater than" and VFCMPHE for "ordered and greater than or equal to".
255   VFCMPE,
256   VFCMPH,
257   VFCMPHE,
258 
259   // Likewise, but also set the condition codes on the result.
260   VFCMPES,
261   VFCMPHS,
262   VFCMPHES,
263 
264   // Test floating-point data class for vectors.
265   VFTCI,
266 
267   // Extend the even f32 elements of vector operand 0 to produce a vector
268   // of f64 elements.
269   VEXTEND,
270 
271   // Round the f64 elements of vector operand 0 to f32s and store them in the
272   // even elements of the result.
273   VROUND,
274 
275   // AND the two vector operands together and set CC based on the result.
276   VTM,
277 
278   // String operations that set CC as a side-effect.
279   VFAE_CC,
280   VFAEZ_CC,
281   VFEE_CC,
282   VFEEZ_CC,
283   VFENE_CC,
284   VFENEZ_CC,
285   VISTR_CC,
286   VSTRC_CC,
287   VSTRCZ_CC,
288   VSTRS_CC,
289   VSTRSZ_CC,
290 
291   // Test Data Class.
292   //
293   // Operand 0: the value to test
294   // Operand 1: the bit mask
295   TDC,
296 
297   // Strict variants of scalar floating-point comparisons.
298   // Quiet and signaling versions.
299   STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,
300   STRICT_FCMPS,
301 
302   // Strict variants of vector floating-point comparisons.
303   // Quiet and signaling versions.
304   STRICT_VFCMPE,
305   STRICT_VFCMPH,
306   STRICT_VFCMPHE,
307   STRICT_VFCMPES,
308   STRICT_VFCMPHS,
309   STRICT_VFCMPHES,
310 
311   // Strict variants of VEXTEND and VROUND.
312   STRICT_VEXTEND,
313   STRICT_VROUND,
314 
315   // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
316   // ATOMIC_LOAD_<op>.
317   //
318   // Operand 0: the address of the containing 32-bit-aligned field
319   // Operand 1: the second operand of <op>, in the high bits of an i32
320   //            for everything except ATOMIC_SWAPW
321   // Operand 2: how many bits to rotate the i32 left to bring the first
322   //            operand into the high bits
323   // Operand 3: the negative of operand 2, for rotating the other way
324   // Operand 4: the width of the field in bits (8 or 16)
325   ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
326   ATOMIC_LOADW_ADD,
327   ATOMIC_LOADW_SUB,
328   ATOMIC_LOADW_AND,
329   ATOMIC_LOADW_OR,
330   ATOMIC_LOADW_XOR,
331   ATOMIC_LOADW_NAND,
332   ATOMIC_LOADW_MIN,
333   ATOMIC_LOADW_MAX,
334   ATOMIC_LOADW_UMIN,
335   ATOMIC_LOADW_UMAX,
336 
337   // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
338   //
339   // Operand 0: the address of the containing 32-bit-aligned field
340   // Operand 1: the compare value, in the low bits of an i32
341   // Operand 2: the swap value, in the low bits of an i32
342   // Operand 3: how many bits to rotate the i32 left to bring the first
343   //            operand into the high bits
344   // Operand 4: the negative of operand 2, for rotating the other way
345   // Operand 5: the width of the field in bits (8 or 16)
346   ATOMIC_CMP_SWAPW,
347 
348   // Atomic compare-and-swap returning CC value.
349   // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
350   ATOMIC_CMP_SWAP,
351 
352   // 128-bit atomic load.
353   // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
354   ATOMIC_LOAD_128,
355 
356   // 128-bit atomic store.
357   // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
358   ATOMIC_STORE_128,
359 
360   // 128-bit atomic compare-and-swap.
361   // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
362   ATOMIC_CMP_SWAP_128,
363 
364   // Byte swapping load/store.  Same operands as regular load/store.
365   LRV, STRV,
366 
367   // Element swapping load/store.  Same operands as regular load/store.
368   VLER, VSTER,
369 
370   // Prefetch from the second operand using the 4-bit control code in
371   // the first operand.  The code is 1 for a load prefetch and 2 for
372   // a store prefetch.
373   PREFETCH
374 };
375 
376 // Return true if OPCODE is some kind of PC-relative address.
isPCREL(unsigned Opcode)377 inline bool isPCREL(unsigned Opcode) {
378   return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
379 }
380 } // end namespace SystemZISD
381 
382 namespace SystemZICMP {
383 // Describes whether an integer comparison needs to be signed or unsigned,
384 // or whether either type is OK.
385 enum {
386   Any,
387   UnsignedOnly,
388   SignedOnly
389 };
390 } // end namespace SystemZICMP
391 
392 class SystemZSubtarget;
393 class SystemZTargetMachine;
394 
395 class SystemZTargetLowering : public TargetLowering {
396 public:
397   explicit SystemZTargetLowering(const TargetMachine &TM,
398                                  const SystemZSubtarget &STI);
399 
400   bool useSoftFloat() const override;
401 
402   // Override TargetLowering.
getScalarShiftAmountTy(const DataLayout &,EVT)403   MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
404     return MVT::i32;
405   }
getVectorIdxTy(const DataLayout & DL)406   MVT getVectorIdxTy(const DataLayout &DL) const override {
407     // Only the lower 12 bits of an element index are used, so we don't
408     // want to clobber the upper 32 bits of a GPR unnecessarily.
409     return MVT::i32;
410   }
getPreferredVectorAction(MVT VT)411   TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
412     const override {
413     // Widen subvectors to the full width rather than promoting integer
414     // elements.  This is better because:
415     //
416     // (a) it means that we can handle the ABI for passing and returning
417     //     sub-128 vectors without having to handle them as legal types.
418     //
419     // (b) we don't have instructions to extend on load and truncate on store,
420     //     so promoting the integers is less efficient.
421     //
422     // (c) there are no multiplication instructions for the widest integer
423     //     type (v2i64).
424     if (VT.getScalarSizeInBits() % 8 == 0)
425       return TypeWidenVector;
426     return TargetLoweringBase::getPreferredVectorAction(VT);
427   }
isCheapToSpeculateCtlz()428   bool isCheapToSpeculateCtlz() const override { return true; }
429   EVT getSetCCResultType(const DataLayout &DL, LLVMContext &,
430                          EVT) const override;
431   bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
432                                   EVT VT) const override;
433   bool isFPImmLegal(const APFloat &Imm, EVT VT,
434                     bool ForCodeSize) const override;
435   bool hasInlineStackProbe(MachineFunction &MF) const override;
436   bool isLegalICmpImmediate(int64_t Imm) const override;
437   bool isLegalAddImmediate(int64_t Imm) const override;
438   bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
439                              unsigned AS,
440                              Instruction *I = nullptr) const override;
441   bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS,
442                                       unsigned Align,
443                                       MachineMemOperand::Flags Flags,
444                                       bool *Fast) const override;
445   bool isTruncateFree(Type *, Type *) const override;
isTruncateFree(EVT,EVT)446   bool isTruncateFree(EVT, EVT) const override;
447 
448   bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
449                             bool MathUsed) const override {
450     // Form add and sub with overflow intrinsics regardless of any extra
451     // users of the math result.
452     return VT == MVT::i32 || VT == MVT::i64;
453   }
454 
455   const char *getTargetNodeName(unsigned Opcode) const override;
456   std::pair<unsigned, const TargetRegisterClass *>
457   getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
458                                StringRef Constraint, MVT VT) const override;
459   TargetLowering::ConstraintType
460   getConstraintType(StringRef Constraint) const override;
461   TargetLowering::ConstraintWeight
462     getSingleConstraintMatchWeight(AsmOperandInfo &info,
463                                    const char *constraint) const override;
464   void LowerAsmOperandForConstraint(SDValue Op,
465                                     std::string &Constraint,
466                                     std::vector<SDValue> &Ops,
467                                     SelectionDAG &DAG) const override;
468 
getInlineAsmMemConstraint(StringRef ConstraintCode)469   unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
470     if (ConstraintCode.size() == 1) {
471       switch(ConstraintCode[0]) {
472       default:
473         break;
474       case 'o':
475         return InlineAsm::Constraint_o;
476       case 'Q':
477         return InlineAsm::Constraint_Q;
478       case 'R':
479         return InlineAsm::Constraint_R;
480       case 'S':
481         return InlineAsm::Constraint_S;
482       case 'T':
483         return InlineAsm::Constraint_T;
484       }
485     }
486     return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
487   }
488 
489   Register getRegisterByName(const char *RegName, LLT VT,
490                              const MachineFunction &MF) const override;
491 
492   /// If a physical register, this returns the register that receives the
493   /// exception address on entry to an EH pad.
494   Register
getExceptionPointerRegister(const Constant * PersonalityFn)495   getExceptionPointerRegister(const Constant *PersonalityFn) const override {
496     return SystemZ::R6D;
497   }
498 
499   /// If a physical register, this returns the register that receives the
500   /// exception typeid on entry to a landing pad.
501   Register
getExceptionSelectorRegister(const Constant * PersonalityFn)502   getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
503     return SystemZ::R7D;
504   }
505 
506   /// Override to support customized stack guard loading.
useLoadStackGuardNode()507   bool useLoadStackGuardNode() const override {
508     return true;
509   }
insertSSPDeclarations(Module & M)510   void insertSSPDeclarations(Module &M) const override {
511   }
512 
513   MachineBasicBlock *
514   EmitInstrWithCustomInserter(MachineInstr &MI,
515                               MachineBasicBlock *BB) const override;
516   SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
517   void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
518                              SelectionDAG &DAG) const override;
519   void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
520                           SelectionDAG &DAG) const override;
521   const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
522   bool allowTruncateForTailCall(Type *, Type *) const override;
523   bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
524   SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
525                                bool isVarArg,
526                                const SmallVectorImpl<ISD::InputArg> &Ins,
527                                const SDLoc &DL, SelectionDAG &DAG,
528                                SmallVectorImpl<SDValue> &InVals) const override;
529   SDValue LowerCall(CallLoweringInfo &CLI,
530                     SmallVectorImpl<SDValue> &InVals) const override;
531 
532   bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
533                       bool isVarArg,
534                       const SmallVectorImpl<ISD::OutputArg> &Outs,
535                       LLVMContext &Context) const override;
536   SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
537                       const SmallVectorImpl<ISD::OutputArg> &Outs,
538                       const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
539                       SelectionDAG &DAG) const override;
540   SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
541 
542   /// Determine which of the bits specified in Mask are known to be either
543   /// zero or one and return them in the KnownZero/KnownOne bitsets.
544   void computeKnownBitsForTargetNode(const SDValue Op,
545                                      KnownBits &Known,
546                                      const APInt &DemandedElts,
547                                      const SelectionDAG &DAG,
548                                      unsigned Depth = 0) const override;
549 
550   /// Determine the number of bits in the operation that are sign bits.
551   unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
552                                            const APInt &DemandedElts,
553                                            const SelectionDAG &DAG,
554                                            unsigned Depth) const override;
555 
getExtendForAtomicOps()556   ISD::NodeType getExtendForAtomicOps() const override {
557     return ISD::ANY_EXTEND;
558   }
559 
supportSwiftError()560   bool supportSwiftError() const override {
561     return true;
562   }
563 
564   unsigned getStackProbeSize(MachineFunction &MF) const;
565 
566 private:
567   const SystemZSubtarget &Subtarget;
568 
569   // Implement LowerOperation for individual opcodes.
570   SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
571                        const SDLoc &DL, EVT VT,
572                        SDValue CmpOp0, SDValue CmpOp1, SDValue Chain) const;
573   SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL,
574                            EVT VT, ISD::CondCode CC,
575                            SDValue CmpOp0, SDValue CmpOp1,
576                            SDValue Chain = SDValue(),
577                            bool IsSignaling = false) const;
578   SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
579   SDValue lowerSTRICT_FSETCC(SDValue Op, SelectionDAG &DAG,
580                              bool IsSignaling) const;
581   SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
582   SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
583   SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
584                              SelectionDAG &DAG) const;
585   SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
586                             SelectionDAG &DAG, unsigned Opcode,
587                             SDValue GOTOffset) const;
588   SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const;
589   SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
590                                 SelectionDAG &DAG) const;
591   SDValue lowerBlockAddress(BlockAddressSDNode *Node,
592                             SelectionDAG &DAG) const;
593   SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
594   SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
595   SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
596   SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
597   SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
598   SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
599   SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
600   SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
601   SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
602   SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
603   SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
604   SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
605   SDValue lowerXALUO(SDValue Op, SelectionDAG &DAG) const;
606   SDValue lowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) const;
607   SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
608   SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
609   SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
610   SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
611   SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
612   SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
613   SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
614                               unsigned Opcode) const;
615   SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
616   SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
617   SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
618   SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
619   SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
620   SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
621   SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
622   bool isVectorElementLoad(SDValue Op) const;
623   SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
624                       SmallVectorImpl<SDValue> &Elems) const;
625   SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
626   SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
627   SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
628   SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
629   SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
630   SDValue lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
631   SDValue lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
632   SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const;
633 
634   bool canTreatAsByteVector(EVT VT) const;
635   SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp,
636                          unsigned Index, DAGCombinerInfo &DCI,
637                          bool Force) const;
638   SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op,
639                                  DAGCombinerInfo &DCI) const;
640   SDValue combineZERO_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
641   SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
642   SDValue combineSIGN_EXTEND_INREG(SDNode *N, DAGCombinerInfo &DCI) const;
643   SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const;
644   bool canLoadStoreByteSwapped(EVT VT) const;
645   SDValue combineLOAD(SDNode *N, DAGCombinerInfo &DCI) const;
646   SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const;
647   SDValue combineVECTOR_SHUFFLE(SDNode *N, DAGCombinerInfo &DCI) const;
648   SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const;
649   SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const;
650   SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const;
651   SDValue combineFP_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
652   SDValue combineINT_TO_FP(SDNode *N, DAGCombinerInfo &DCI) const;
653   SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const;
654   SDValue combineBR_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
655   SDValue combineSELECT_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
656   SDValue combineGET_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
657   SDValue combineIntDIVREM(SDNode *N, DAGCombinerInfo &DCI) const;
658   SDValue combineINTRINSIC(SDNode *N, DAGCombinerInfo &DCI) const;
659 
660   SDValue unwrapAddress(SDValue N) const override;
661 
662   // If the last instruction before MBBI in MBB was some form of COMPARE,
663   // try to replace it with a COMPARE AND BRANCH just before MBBI.
664   // CCMask and Target are the BRC-like operands for the branch.
665   // Return true if the change was made.
666   bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
667                                   MachineBasicBlock::iterator MBBI,
668                                   unsigned CCMask,
669                                   MachineBasicBlock *Target) const;
670 
671   // Implement EmitInstrWithCustomInserter for individual operation types.
672   MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const;
673   MachineBasicBlock *emitCondStore(MachineInstr &MI, MachineBasicBlock *BB,
674                                    unsigned StoreOpcode, unsigned STOCOpcode,
675                                    bool Invert) const;
676   MachineBasicBlock *emitPair128(MachineInstr &MI,
677                                  MachineBasicBlock *MBB) const;
678   MachineBasicBlock *emitExt128(MachineInstr &MI, MachineBasicBlock *MBB,
679                                 bool ClearEven) const;
680   MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI,
681                                           MachineBasicBlock *BB,
682                                           unsigned BinOpcode, unsigned BitSize,
683                                           bool Invert = false) const;
684   MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI,
685                                           MachineBasicBlock *MBB,
686                                           unsigned CompareOpcode,
687                                           unsigned KeepOldMask,
688                                           unsigned BitSize) const;
689   MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI,
690                                         MachineBasicBlock *BB) const;
691   MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB,
692                                        unsigned Opcode) const;
693   MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB,
694                                        unsigned Opcode) const;
695   MachineBasicBlock *emitTransactionBegin(MachineInstr &MI,
696                                           MachineBasicBlock *MBB,
697                                           unsigned Opcode, bool NoFloat) const;
698   MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI,
699                                          MachineBasicBlock *MBB,
700                                          unsigned Opcode) const;
701   MachineBasicBlock *emitProbedAlloca(MachineInstr &MI,
702                                       MachineBasicBlock *MBB) const;
703 
704   MachineMemOperand::Flags
705   getTargetMMOFlags(const Instruction &I) const override;
706   const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
707 };
708 
709 struct SystemZVectorConstantInfo {
710 private:
711   APInt IntBits;             // The 128 bits as an integer.
712   APInt SplatBits;           // Smallest splat value.
713   APInt SplatUndef;          // Bits correspoding to undef operands of the BVN.
714   unsigned SplatBitSize = 0;
715   bool isFP128 = false;
716 
717 public:
718   unsigned Opcode = 0;
719   SmallVector<unsigned, 2> OpVals;
720   MVT VecVT;
721   SystemZVectorConstantInfo(APFloat FPImm);
722   SystemZVectorConstantInfo(BuildVectorSDNode *BVN);
723   bool isVectorConstantLegal(const SystemZSubtarget &Subtarget);
724 };
725 
726 } // end namespace llvm
727 
728 #endif
729