1 //===- llvm/lib/Target/X86/X86CallLowering.cpp - Call lowering ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86CallLowering.h"
16 #include "X86CallingConv.h"
17 #include "X86ISelLowering.h"
18 #include "X86InstrInfo.h"
19 #include "X86RegisterInfo.h"
20 #include "X86Subtarget.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
26 #include "llvm/CodeGen/GlobalISel/Utils.h"
27 #include "llvm/CodeGen/LowLevelType.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/MC/MCRegisterInfo.h"
43 #include "llvm/Support/LowLevelTypeImpl.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include <cassert>
46 #include <cstdint>
47 
48 using namespace llvm;
49 
X86CallLowering(const X86TargetLowering & TLI)50 X86CallLowering::X86CallLowering(const X86TargetLowering &TLI)
51     : CallLowering(&TLI) {}
52 
splitToValueTypes(const ArgInfo & OrigArg,SmallVectorImpl<ArgInfo> & SplitArgs,const DataLayout & DL,MachineRegisterInfo & MRI,SplitArgTy PerformArgSplit) const53 bool X86CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
54                                         SmallVectorImpl<ArgInfo> &SplitArgs,
55                                         const DataLayout &DL,
56                                         MachineRegisterInfo &MRI,
57                                         SplitArgTy PerformArgSplit) const {
58   const X86TargetLowering &TLI = *getTLI<X86TargetLowering>();
59   LLVMContext &Context = OrigArg.Ty->getContext();
60 
61   SmallVector<EVT, 4> SplitVTs;
62   SmallVector<uint64_t, 4> Offsets;
63   ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
64   assert(OrigArg.Regs.size() == 1 && "Can't handle multple regs yet");
65 
66   if (OrigArg.Ty->isVoidTy())
67     return true;
68 
69   EVT VT = SplitVTs[0];
70   unsigned NumParts = TLI.getNumRegisters(Context, VT);
71 
72   if (NumParts == 1) {
73     // replace the original type ( pointer -> GPR ).
74     SplitArgs.emplace_back(OrigArg.Regs[0], VT.getTypeForEVT(Context),
75                            OrigArg.Flags, OrigArg.IsFixed);
76     return true;
77   }
78 
79   SmallVector<Register, 8> SplitRegs;
80 
81   EVT PartVT = TLI.getRegisterType(Context, VT);
82   Type *PartTy = PartVT.getTypeForEVT(Context);
83 
84   for (unsigned i = 0; i < NumParts; ++i) {
85     ArgInfo Info =
86         ArgInfo{MRI.createGenericVirtualRegister(getLLTForType(*PartTy, DL)),
87                 PartTy, OrigArg.Flags};
88     SplitArgs.push_back(Info);
89     SplitRegs.push_back(Info.Regs[0]);
90   }
91 
92   PerformArgSplit(SplitRegs);
93   return true;
94 }
95 
96 namespace {
97 
98 struct OutgoingValueHandler : public CallLowering::ValueHandler {
OutgoingValueHandler__anon9574b78c0111::OutgoingValueHandler99   OutgoingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
100                        MachineInstrBuilder &MIB, CCAssignFn *AssignFn)
101       : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB),
102         DL(MIRBuilder.getMF().getDataLayout()),
103         STI(MIRBuilder.getMF().getSubtarget<X86Subtarget>()) {}
104 
isIncomingArgumentHandler__anon9574b78c0111::OutgoingValueHandler105   bool isIncomingArgumentHandler() const override { return false; }
106 
getStackAddress__anon9574b78c0111::OutgoingValueHandler107   Register getStackAddress(uint64_t Size, int64_t Offset,
108                            MachinePointerInfo &MPO) override {
109     LLT p0 = LLT::pointer(0, DL.getPointerSizeInBits(0));
110     LLT SType = LLT::scalar(DL.getPointerSizeInBits(0));
111     auto SPReg =
112         MIRBuilder.buildCopy(p0, STI.getRegisterInfo()->getStackRegister());
113 
114     auto OffsetReg = MIRBuilder.buildConstant(SType, Offset);
115 
116     auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg);
117 
118     MPO = MachinePointerInfo::getStack(MIRBuilder.getMF(), Offset);
119     return AddrReg.getReg(0);
120   }
121 
assignValueToReg__anon9574b78c0111::OutgoingValueHandler122   void assignValueToReg(Register ValVReg, Register PhysReg,
123                         CCValAssign &VA) override {
124     MIB.addUse(PhysReg, RegState::Implicit);
125 
126     Register ExtReg;
127     // If we are copying the value to a physical register with the
128     // size larger than the size of the value itself - build AnyExt
129     // to the size of the register first and only then do the copy.
130     // The example of that would be copying from s32 to xmm0, for which
131     // case ValVT == LocVT == MVT::f32. If LocSize and ValSize are not equal
132     // we expect normal extendRegister mechanism to work.
133     unsigned PhysRegSize =
134         MRI.getTargetRegisterInfo()->getRegSizeInBits(PhysReg, MRI);
135     unsigned ValSize = VA.getValVT().getSizeInBits();
136     unsigned LocSize = VA.getLocVT().getSizeInBits();
137     if (PhysRegSize > ValSize && LocSize == ValSize) {
138       assert((PhysRegSize == 128 || PhysRegSize == 80)  && "We expect that to be 128 bit");
139       auto MIB = MIRBuilder.buildAnyExt(LLT::scalar(PhysRegSize), ValVReg);
140       ExtReg = MIB.getReg(0);
141     } else
142       ExtReg = extendRegister(ValVReg, VA);
143 
144     MIRBuilder.buildCopy(PhysReg, ExtReg);
145   }
146 
assignValueToAddress__anon9574b78c0111::OutgoingValueHandler147   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
148                             MachinePointerInfo &MPO, CCValAssign &VA) override {
149     MachineFunction &MF = MIRBuilder.getMF();
150     Register ExtReg = extendRegister(ValVReg, VA);
151 
152     auto MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOStore,
153                                        VA.getLocVT().getStoreSize(),
154                                        inferAlignFromPtrInfo(MF, MPO));
155     MIRBuilder.buildStore(ExtReg, Addr, *MMO);
156   }
157 
assignArg__anon9574b78c0111::OutgoingValueHandler158   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
159                  CCValAssign::LocInfo LocInfo,
160                  const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags,
161                  CCState &State) override {
162     bool Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
163     StackSize = State.getNextStackOffset();
164 
165     static const MCPhysReg XMMArgRegs[] = {X86::XMM0, X86::XMM1, X86::XMM2,
166                                            X86::XMM3, X86::XMM4, X86::XMM5,
167                                            X86::XMM6, X86::XMM7};
168     if (!Info.IsFixed)
169       NumXMMRegs = State.getFirstUnallocated(XMMArgRegs);
170 
171     return Res;
172   }
173 
getStackSize__anon9574b78c0111::OutgoingValueHandler174   uint64_t getStackSize() { return StackSize; }
getNumXmmRegs__anon9574b78c0111::OutgoingValueHandler175   uint64_t getNumXmmRegs() { return NumXMMRegs; }
176 
177 protected:
178   MachineInstrBuilder &MIB;
179   uint64_t StackSize = 0;
180   const DataLayout &DL;
181   const X86Subtarget &STI;
182   unsigned NumXMMRegs = 0;
183 };
184 
185 } // end anonymous namespace
186 
lowerReturn(MachineIRBuilder & MIRBuilder,const Value * Val,ArrayRef<Register> VRegs) const187 bool X86CallLowering::lowerReturn(
188     MachineIRBuilder &MIRBuilder, const Value *Val,
189     ArrayRef<Register> VRegs) const {
190   assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
191          "Return value without a vreg");
192   auto MIB = MIRBuilder.buildInstrNoInsert(X86::RET).addImm(0);
193 
194   if (!VRegs.empty()) {
195     MachineFunction &MF = MIRBuilder.getMF();
196     const Function &F = MF.getFunction();
197     MachineRegisterInfo &MRI = MF.getRegInfo();
198     auto &DL = MF.getDataLayout();
199     LLVMContext &Ctx = Val->getType()->getContext();
200     const X86TargetLowering &TLI = *getTLI<X86TargetLowering>();
201 
202     SmallVector<EVT, 4> SplitEVTs;
203     ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
204     assert(VRegs.size() == SplitEVTs.size() &&
205            "For each split Type there should be exactly one VReg.");
206 
207     SmallVector<ArgInfo, 8> SplitArgs;
208     for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
209       ArgInfo CurArgInfo = ArgInfo{VRegs[i], SplitEVTs[i].getTypeForEVT(Ctx)};
210       setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
211       if (!splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI,
212                              [&](ArrayRef<Register> Regs) {
213                                MIRBuilder.buildUnmerge(Regs, VRegs[i]);
214                              }))
215         return false;
216     }
217 
218     OutgoingValueHandler Handler(MIRBuilder, MRI, MIB, RetCC_X86);
219     if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
220       return false;
221   }
222 
223   MIRBuilder.insertInstr(MIB);
224   return true;
225 }
226 
227 namespace {
228 
229 struct IncomingValueHandler : public CallLowering::ValueHandler {
IncomingValueHandler__anon9574b78c0311::IncomingValueHandler230   IncomingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
231                        CCAssignFn *AssignFn)
232       : ValueHandler(MIRBuilder, MRI, AssignFn),
233         DL(MIRBuilder.getMF().getDataLayout()) {}
234 
isIncomingArgumentHandler__anon9574b78c0311::IncomingValueHandler235   bool isIncomingArgumentHandler() const override { return true; }
236 
getStackAddress__anon9574b78c0311::IncomingValueHandler237   Register getStackAddress(uint64_t Size, int64_t Offset,
238                            MachinePointerInfo &MPO) override {
239     auto &MFI = MIRBuilder.getMF().getFrameInfo();
240     int FI = MFI.CreateFixedObject(Size, Offset, true);
241     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
242 
243     return MIRBuilder
244         .buildFrameIndex(LLT::pointer(0, DL.getPointerSizeInBits(0)), FI)
245         .getReg(0);
246   }
247 
assignValueToAddress__anon9574b78c0311::IncomingValueHandler248   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
249                             MachinePointerInfo &MPO, CCValAssign &VA) override {
250     MachineFunction &MF = MIRBuilder.getMF();
251     auto MMO = MF.getMachineMemOperand(
252         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size,
253         inferAlignFromPtrInfo(MF, MPO));
254     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
255   }
256 
assignValueToReg__anon9574b78c0311::IncomingValueHandler257   void assignValueToReg(Register ValVReg, Register PhysReg,
258                         CCValAssign &VA) override {
259     markPhysRegUsed(PhysReg);
260 
261     switch (VA.getLocInfo()) {
262     default: {
263       // If we are copying the value from a physical register with the
264       // size larger than the size of the value itself - build the copy
265       // of the phys reg first and then build the truncation of that copy.
266       // The example of that would be copying from xmm0 to s32, for which
267       // case ValVT == LocVT == MVT::f32. If LocSize and ValSize are not equal
268       // we expect this to be handled in SExt/ZExt/AExt case.
269       unsigned PhysRegSize =
270           MRI.getTargetRegisterInfo()->getRegSizeInBits(PhysReg, MRI);
271       unsigned ValSize = VA.getValVT().getSizeInBits();
272       unsigned LocSize = VA.getLocVT().getSizeInBits();
273       if (PhysRegSize > ValSize && LocSize == ValSize) {
274         auto Copy = MIRBuilder.buildCopy(LLT::scalar(PhysRegSize), PhysReg);
275         MIRBuilder.buildTrunc(ValVReg, Copy);
276         return;
277       }
278 
279       MIRBuilder.buildCopy(ValVReg, PhysReg);
280       break;
281     }
282     case CCValAssign::LocInfo::SExt:
283     case CCValAssign::LocInfo::ZExt:
284     case CCValAssign::LocInfo::AExt: {
285       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
286       MIRBuilder.buildTrunc(ValVReg, Copy);
287       break;
288     }
289     }
290   }
291 
292   /// How the physical register gets marked varies between formal
293   /// parameters (it's a basic-block live-in), and a call instruction
294   /// (it's an implicit-def of the BL).
295   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
296 
297 protected:
298   const DataLayout &DL;
299 };
300 
301 struct FormalArgHandler : public IncomingValueHandler {
FormalArgHandler__anon9574b78c0311::FormalArgHandler302   FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
303                    CCAssignFn *AssignFn)
304       : IncomingValueHandler(MIRBuilder, MRI, AssignFn) {}
305 
markPhysRegUsed__anon9574b78c0311::FormalArgHandler306   void markPhysRegUsed(unsigned PhysReg) override {
307     MIRBuilder.getMRI()->addLiveIn(PhysReg);
308     MIRBuilder.getMBB().addLiveIn(PhysReg);
309   }
310 };
311 
312 struct CallReturnHandler : public IncomingValueHandler {
CallReturnHandler__anon9574b78c0311::CallReturnHandler313   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
314                     CCAssignFn *AssignFn, MachineInstrBuilder &MIB)
315       : IncomingValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
316 
markPhysRegUsed__anon9574b78c0311::CallReturnHandler317   void markPhysRegUsed(unsigned PhysReg) override {
318     MIB.addDef(PhysReg, RegState::Implicit);
319   }
320 
321 protected:
322   MachineInstrBuilder &MIB;
323 };
324 
325 } // end anonymous namespace
326 
lowerFormalArguments(MachineIRBuilder & MIRBuilder,const Function & F,ArrayRef<ArrayRef<Register>> VRegs) const327 bool X86CallLowering::lowerFormalArguments(
328     MachineIRBuilder &MIRBuilder, const Function &F,
329     ArrayRef<ArrayRef<Register>> VRegs) const {
330   if (F.arg_empty())
331     return true;
332 
333   // TODO: handle variadic function
334   if (F.isVarArg())
335     return false;
336 
337   MachineFunction &MF = MIRBuilder.getMF();
338   MachineRegisterInfo &MRI = MF.getRegInfo();
339   auto DL = MF.getDataLayout();
340 
341   SmallVector<ArgInfo, 8> SplitArgs;
342   unsigned Idx = 0;
343   for (auto &Arg : F.args()) {
344 
345     // TODO: handle not simple cases.
346     if (Arg.hasAttribute(Attribute::ByVal) ||
347         Arg.hasAttribute(Attribute::InReg) ||
348         Arg.hasAttribute(Attribute::StructRet) ||
349         Arg.hasAttribute(Attribute::SwiftSelf) ||
350         Arg.hasAttribute(Attribute::SwiftError) ||
351         Arg.hasAttribute(Attribute::Nest) || VRegs[Idx].size() > 1)
352       return false;
353 
354     ArgInfo OrigArg(VRegs[Idx], Arg.getType());
355     setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F);
356     if (!splitToValueTypes(OrigArg, SplitArgs, DL, MRI,
357                            [&](ArrayRef<Register> Regs) {
358                              MIRBuilder.buildMerge(VRegs[Idx][0], Regs);
359                            }))
360       return false;
361     Idx++;
362   }
363 
364   MachineBasicBlock &MBB = MIRBuilder.getMBB();
365   if (!MBB.empty())
366     MIRBuilder.setInstr(*MBB.begin());
367 
368   FormalArgHandler Handler(MIRBuilder, MRI, CC_X86);
369   if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
370     return false;
371 
372   // Move back to the end of the basic block.
373   MIRBuilder.setMBB(MBB);
374 
375   return true;
376 }
377 
lowerCall(MachineIRBuilder & MIRBuilder,CallLoweringInfo & Info) const378 bool X86CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
379                                 CallLoweringInfo &Info) const {
380   MachineFunction &MF = MIRBuilder.getMF();
381   const Function &F = MF.getFunction();
382   MachineRegisterInfo &MRI = MF.getRegInfo();
383   auto &DL = F.getParent()->getDataLayout();
384   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
385   const TargetInstrInfo &TII = *STI.getInstrInfo();
386   auto TRI = STI.getRegisterInfo();
387 
388   // Handle only Linux C, X86_64_SysV calling conventions for now.
389   if (!STI.isTargetLinux() || !(Info.CallConv == CallingConv::C ||
390                                 Info.CallConv == CallingConv::X86_64_SysV))
391     return false;
392 
393   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
394   auto CallSeqStart = MIRBuilder.buildInstr(AdjStackDown);
395 
396   // Create a temporarily-floating call instruction so we can add the implicit
397   // uses of arg registers.
398   bool Is64Bit = STI.is64Bit();
399   unsigned CallOpc = Info.Callee.isReg()
400                          ? (Is64Bit ? X86::CALL64r : X86::CALL32r)
401                          : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
402 
403   auto MIB = MIRBuilder.buildInstrNoInsert(CallOpc)
404                  .add(Info.Callee)
405                  .addRegMask(TRI->getCallPreservedMask(MF, Info.CallConv));
406 
407   SmallVector<ArgInfo, 8> SplitArgs;
408   for (const auto &OrigArg : Info.OrigArgs) {
409 
410     // TODO: handle not simple cases.
411     if (OrigArg.Flags[0].isByVal())
412       return false;
413 
414     if (OrigArg.Regs.size() > 1)
415       return false;
416 
417     if (!splitToValueTypes(OrigArg, SplitArgs, DL, MRI,
418                            [&](ArrayRef<Register> Regs) {
419                              MIRBuilder.buildUnmerge(Regs, OrigArg.Regs[0]);
420                            }))
421       return false;
422   }
423   // Do the actual argument marshalling.
424   OutgoingValueHandler Handler(MIRBuilder, MRI, MIB, CC_X86);
425   if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
426     return false;
427 
428   bool IsFixed = Info.OrigArgs.empty() ? true : Info.OrigArgs.back().IsFixed;
429   if (STI.is64Bit() && !IsFixed && !STI.isCallingConvWin64(Info.CallConv)) {
430     // From AMD64 ABI document:
431     // For calls that may call functions that use varargs or stdargs
432     // (prototype-less calls or calls to functions containing ellipsis (...) in
433     // the declaration) %al is used as hidden argument to specify the number
434     // of SSE registers used. The contents of %al do not need to match exactly
435     // the number of registers, but must be an ubound on the number of SSE
436     // registers used and is in the range 0 - 8 inclusive.
437 
438     MIRBuilder.buildInstr(X86::MOV8ri)
439         .addDef(X86::AL)
440         .addImm(Handler.getNumXmmRegs());
441     MIB.addUse(X86::AL, RegState::Implicit);
442   }
443 
444   // Now we can add the actual call instruction to the correct basic block.
445   MIRBuilder.insertInstr(MIB);
446 
447   // If Callee is a reg, since it is used by a target specific
448   // instruction, it must have a register class matching the
449   // constraint of that instruction.
450   if (Info.Callee.isReg())
451     MIB->getOperand(0).setReg(constrainOperandRegClass(
452         MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
453         *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
454         0));
455 
456   // Finally we can copy the returned value back into its virtual-register. In
457   // symmetry with the arguments, the physical register must be an
458   // implicit-define of the call instruction.
459 
460   if (!Info.OrigRet.Ty->isVoidTy()) {
461     if (Info.OrigRet.Regs.size() > 1)
462       return false;
463 
464     SplitArgs.clear();
465     SmallVector<Register, 8> NewRegs;
466 
467     if (!splitToValueTypes(Info.OrigRet, SplitArgs, DL, MRI,
468                            [&](ArrayRef<Register> Regs) {
469                              NewRegs.assign(Regs.begin(), Regs.end());
470                            }))
471       return false;
472 
473     CallReturnHandler Handler(MIRBuilder, MRI, RetCC_X86, MIB);
474     if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
475       return false;
476 
477     if (!NewRegs.empty())
478       MIRBuilder.buildMerge(Info.OrigRet.Regs[0], NewRegs);
479   }
480 
481   CallSeqStart.addImm(Handler.getStackSize())
482       .addImm(0 /* see getFrameTotalSize */)
483       .addImm(0 /* see getFrameAdjustment */);
484 
485   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
486   MIRBuilder.buildInstr(AdjStackUp)
487       .addImm(Handler.getStackSize())
488       .addImm(0 /* NumBytesForCalleeToPop */);
489 
490   return true;
491 }
492