1 //===-- sanitizer_fuchsia.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and other sanitizer
10 // run-time libraries and implements Fuchsia-specific functions from
11 // sanitizer_common.h.
12 //===----------------------------------------------------------------------===//
13
14 #include "sanitizer_fuchsia.h"
15 #if SANITIZER_FUCHSIA
16
17 #include <limits.h>
18 #include <pthread.h>
19 #include <stdlib.h>
20 #include <unistd.h>
21 #include <zircon/errors.h>
22 #include <zircon/process.h>
23 #include <zircon/syscalls.h>
24 #include <zircon/utc.h>
25
26 #include "sanitizer_common.h"
27 #include "sanitizer_libc.h"
28 #include "sanitizer_mutex.h"
29
30 namespace __sanitizer {
31
internal__exit(int exitcode)32 void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }
33
internal_sched_yield()34 uptr internal_sched_yield() {
35 zx_status_t status = _zx_nanosleep(0);
36 CHECK_EQ(status, ZX_OK);
37 return 0; // Why doesn't this return void?
38 }
39
internal_nanosleep(zx_time_t ns)40 static void internal_nanosleep(zx_time_t ns) {
41 zx_status_t status = _zx_nanosleep(_zx_deadline_after(ns));
42 CHECK_EQ(status, ZX_OK);
43 }
44
internal_sleep(unsigned int seconds)45 unsigned int internal_sleep(unsigned int seconds) {
46 internal_nanosleep(ZX_SEC(seconds));
47 return 0;
48 }
49
NanoTime()50 u64 NanoTime() {
51 zx_handle_t utc_clock = _zx_utc_reference_get();
52 CHECK_NE(utc_clock, ZX_HANDLE_INVALID);
53 zx_time_t time;
54 zx_status_t status = _zx_clock_read(utc_clock, &time);
55 CHECK_EQ(status, ZX_OK);
56 return time;
57 }
58
MonotonicNanoTime()59 u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); }
60
internal_getpid()61 uptr internal_getpid() {
62 zx_info_handle_basic_t info;
63 zx_status_t status =
64 _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
65 sizeof(info), NULL, NULL);
66 CHECK_EQ(status, ZX_OK);
67 uptr pid = static_cast<uptr>(info.koid);
68 CHECK_EQ(pid, info.koid);
69 return pid;
70 }
71
internal_dlinfo(void * handle,int request,void * p)72 int internal_dlinfo(void *handle, int request, void *p) {
73 UNIMPLEMENTED();
74 }
75
GetThreadSelf()76 uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }
77
GetTid()78 tid_t GetTid() { return GetThreadSelf(); }
79
Abort()80 void Abort() { abort(); }
81
Atexit(void (* function)(void))82 int Atexit(void (*function)(void)) { return atexit(function); }
83
SleepForSeconds(int seconds)84 void SleepForSeconds(int seconds) { internal_sleep(seconds); }
85
SleepForMillis(int millis)86 void SleepForMillis(int millis) { internal_nanosleep(ZX_MSEC(millis)); }
87
GetThreadStackTopAndBottom(bool,uptr * stack_top,uptr * stack_bottom)88 void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
89 pthread_attr_t attr;
90 CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
91 void *base;
92 size_t size;
93 CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
94 CHECK_EQ(pthread_attr_destroy(&attr), 0);
95
96 *stack_bottom = reinterpret_cast<uptr>(base);
97 *stack_top = *stack_bottom + size;
98 }
99
InitializePlatformEarly()100 void InitializePlatformEarly() {}
MaybeReexec()101 void MaybeReexec() {}
CheckASLR()102 void CheckASLR() {}
CheckMPROTECT()103 void CheckMPROTECT() {}
PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments * args)104 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
DisableCoreDumperIfNecessary()105 void DisableCoreDumperIfNecessary() {}
InstallDeadlySignalHandlers(SignalHandlerType handler)106 void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
SetAlternateSignalStack()107 void SetAlternateSignalStack() {}
UnsetAlternateSignalStack()108 void UnsetAlternateSignalStack() {}
InitTlsSize()109 void InitTlsSize() {}
110
IsStackOverflow() const111 bool SignalContext::IsStackOverflow() const { return false; }
DumpAllRegisters(void * context)112 void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
Describe() const113 const char *SignalContext::Describe() const { UNIMPLEMENTED(); }
114
115 enum MutexState : int { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 };
116
BlockingMutex()117 BlockingMutex::BlockingMutex() {
118 // NOTE! It's important that this use internal_memset, because plain
119 // memset might be intercepted (e.g., actually be __asan_memset).
120 // Defining this so the compiler initializes each field, e.g.:
121 // BlockingMutex::BlockingMutex() : BlockingMutex(LINKER_INITIALIZED) {}
122 // might result in the compiler generating a call to memset, which would
123 // have the same problem.
124 internal_memset(this, 0, sizeof(*this));
125 }
126
Lock()127 void BlockingMutex::Lock() {
128 CHECK_EQ(owner_, 0);
129 atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
130 if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked)
131 return;
132 while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) {
133 zx_status_t status =
134 _zx_futex_wait(reinterpret_cast<zx_futex_t *>(m), MtxSleeping,
135 ZX_HANDLE_INVALID, ZX_TIME_INFINITE);
136 if (status != ZX_ERR_BAD_STATE) // Normal race.
137 CHECK_EQ(status, ZX_OK);
138 }
139 }
140
Unlock()141 void BlockingMutex::Unlock() {
142 atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
143 u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release);
144 CHECK_NE(v, MtxUnlocked);
145 if (v == MtxSleeping) {
146 zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(m), 1);
147 CHECK_EQ(status, ZX_OK);
148 }
149 }
150
CheckLocked()151 void BlockingMutex::CheckLocked() {
152 atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
153 CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed));
154 }
155
GetPageSize()156 uptr GetPageSize() { return PAGE_SIZE; }
157
GetMmapGranularity()158 uptr GetMmapGranularity() { return PAGE_SIZE; }
159
160 sanitizer_shadow_bounds_t ShadowBounds;
161
GetMaxUserVirtualAddress()162 uptr GetMaxUserVirtualAddress() {
163 ShadowBounds = __sanitizer_shadow_bounds();
164 return ShadowBounds.memory_limit - 1;
165 }
166
GetMaxVirtualAddress()167 uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); }
168
DoAnonymousMmapOrDie(uptr size,const char * mem_type,bool raw_report,bool die_for_nomem)169 static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
170 bool raw_report, bool die_for_nomem) {
171 size = RoundUpTo(size, PAGE_SIZE);
172
173 zx_handle_t vmo;
174 zx_status_t status = _zx_vmo_create(size, 0, &vmo);
175 if (status != ZX_OK) {
176 if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
177 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
178 raw_report);
179 return nullptr;
180 }
181 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
182 internal_strlen(mem_type));
183
184 // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
185 uintptr_t addr;
186 status =
187 _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
188 vmo, 0, size, &addr);
189 _zx_handle_close(vmo);
190
191 if (status != ZX_OK) {
192 if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
193 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
194 raw_report);
195 return nullptr;
196 }
197
198 IncreaseTotalMmap(size);
199
200 return reinterpret_cast<void *>(addr);
201 }
202
MmapOrDie(uptr size,const char * mem_type,bool raw_report)203 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
204 return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
205 }
206
MmapNoReserveOrDie(uptr size,const char * mem_type)207 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
208 return MmapOrDie(size, mem_type);
209 }
210
MmapOrDieOnFatalError(uptr size,const char * mem_type)211 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
212 return DoAnonymousMmapOrDie(size, mem_type, false, false);
213 }
214
Init(uptr init_size,const char * name,uptr fixed_addr)215 uptr ReservedAddressRange::Init(uptr init_size, const char *name,
216 uptr fixed_addr) {
217 init_size = RoundUpTo(init_size, PAGE_SIZE);
218 DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID);
219 uintptr_t base;
220 zx_handle_t vmar;
221 zx_status_t status =
222 _zx_vmar_allocate(
223 _zx_vmar_root_self(),
224 ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC,
225 0, init_size, &vmar, &base);
226 if (status != ZX_OK)
227 ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status);
228 base_ = reinterpret_cast<void *>(base);
229 size_ = init_size;
230 name_ = name;
231 os_handle_ = vmar;
232
233 return reinterpret_cast<uptr>(base_);
234 }
235
DoMmapFixedOrDie(zx_handle_t vmar,uptr fixed_addr,uptr map_size,void * base,const char * name,bool die_for_nomem)236 static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size,
237 void *base, const char *name, bool die_for_nomem) {
238 uptr offset = fixed_addr - reinterpret_cast<uptr>(base);
239 map_size = RoundUpTo(map_size, PAGE_SIZE);
240 zx_handle_t vmo;
241 zx_status_t status = _zx_vmo_create(map_size, 0, &vmo);
242 if (status != ZX_OK) {
243 if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
244 ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status);
245 return 0;
246 }
247 _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name));
248 DCHECK_GE(base + size_, map_size + offset);
249 uintptr_t addr;
250
251 status =
252 _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC,
253 offset, vmo, 0, map_size, &addr);
254 _zx_handle_close(vmo);
255 if (status != ZX_OK) {
256 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) {
257 ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status);
258 }
259 return 0;
260 }
261 IncreaseTotalMmap(map_size);
262 return addr;
263 }
264
Map(uptr fixed_addr,uptr map_size,const char * name)265 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size,
266 const char *name) {
267 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
268 name_, false);
269 }
270
MapOrDie(uptr fixed_addr,uptr map_size,const char * name)271 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size,
272 const char *name) {
273 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
274 name_, true);
275 }
276
UnmapOrDieVmar(void * addr,uptr size,zx_handle_t target_vmar)277 void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar) {
278 if (!addr || !size) return;
279 size = RoundUpTo(size, PAGE_SIZE);
280
281 zx_status_t status =
282 _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size);
283 if (status != ZX_OK) {
284 Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n",
285 SanitizerToolName, size, size, addr);
286 CHECK("unable to unmap" && 0);
287 }
288
289 DecreaseTotalMmap(size);
290 }
291
Unmap(uptr addr,uptr size)292 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
293 CHECK_LE(size, size_);
294 const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_);
295 if (addr == reinterpret_cast<uptr>(base_)) {
296 if (size == size_) {
297 // Destroying the vmar effectively unmaps the whole mapping.
298 _zx_vmar_destroy(vmar);
299 _zx_handle_close(vmar);
300 os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID);
301 DecreaseTotalMmap(size);
302 return;
303 }
304 } else {
305 CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_);
306 }
307 // Partial unmapping does not affect the fact that the initial range is still
308 // reserved, and the resulting unmapped memory can't be reused.
309 UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar);
310 }
311
312 // This should never be called.
MmapFixedNoAccess(uptr fixed_addr,uptr size,const char * name)313 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
314 UNIMPLEMENTED();
315 }
316
MmapAlignedOrDieOnFatalError(uptr size,uptr alignment,const char * mem_type)317 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
318 const char *mem_type) {
319 CHECK_GE(size, PAGE_SIZE);
320 CHECK(IsPowerOfTwo(size));
321 CHECK(IsPowerOfTwo(alignment));
322
323 zx_handle_t vmo;
324 zx_status_t status = _zx_vmo_create(size, 0, &vmo);
325 if (status != ZX_OK) {
326 if (status != ZX_ERR_NO_MEMORY)
327 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
328 return nullptr;
329 }
330 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
331 internal_strlen(mem_type));
332
333 // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
334
335 // Map a larger size to get a chunk of address space big enough that
336 // it surely contains an aligned region of the requested size. Then
337 // overwrite the aligned middle portion with a mapping from the
338 // beginning of the VMO, and unmap the excess before and after.
339 size_t map_size = size + alignment;
340 uintptr_t addr;
341 status =
342 _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
343 vmo, 0, map_size, &addr);
344 if (status == ZX_OK) {
345 uintptr_t map_addr = addr;
346 uintptr_t map_end = map_addr + map_size;
347 addr = RoundUpTo(map_addr, alignment);
348 uintptr_t end = addr + size;
349 if (addr != map_addr) {
350 zx_info_vmar_t info;
351 status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info,
352 sizeof(info), NULL, NULL);
353 if (status == ZX_OK) {
354 uintptr_t new_addr;
355 status = _zx_vmar_map(
356 _zx_vmar_root_self(),
357 ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE,
358 addr - info.base, vmo, 0, size, &new_addr);
359 if (status == ZX_OK) CHECK_EQ(new_addr, addr);
360 }
361 }
362 if (status == ZX_OK && addr != map_addr)
363 status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr);
364 if (status == ZX_OK && end != map_end)
365 status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end);
366 }
367 _zx_handle_close(vmo);
368
369 if (status != ZX_OK) {
370 if (status != ZX_ERR_NO_MEMORY)
371 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
372 return nullptr;
373 }
374
375 IncreaseTotalMmap(size);
376
377 return reinterpret_cast<void *>(addr);
378 }
379
UnmapOrDie(void * addr,uptr size)380 void UnmapOrDie(void *addr, uptr size) {
381 UnmapOrDieVmar(addr, size, _zx_vmar_root_self());
382 }
383
384 // This is used on the shadow mapping, which cannot be changed.
385 // Zircon doesn't have anything like MADV_DONTNEED.
ReleaseMemoryPagesToOS(uptr beg,uptr end)386 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {}
387
DumpProcessMap()388 void DumpProcessMap() {
389 // TODO(mcgrathr): write it
390 return;
391 }
392
IsAccessibleMemoryRange(uptr beg,uptr size)393 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
394 // TODO(mcgrathr): Figure out a better way.
395 zx_handle_t vmo;
396 zx_status_t status = _zx_vmo_create(size, 0, &vmo);
397 if (status == ZX_OK) {
398 status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size);
399 _zx_handle_close(vmo);
400 }
401 return status == ZX_OK;
402 }
403
404 // FIXME implement on this platform.
GetMemoryProfile(fill_profile_f cb,uptr * stats,uptr stats_size)405 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {}
406
ReadFileToBuffer(const char * file_name,char ** buff,uptr * buff_size,uptr * read_len,uptr max_len,error_t * errno_p)407 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
408 uptr *read_len, uptr max_len, error_t *errno_p) {
409 zx_handle_t vmo;
410 zx_status_t status = __sanitizer_get_configuration(file_name, &vmo);
411 if (status == ZX_OK) {
412 uint64_t vmo_size;
413 status = _zx_vmo_get_size(vmo, &vmo_size);
414 if (status == ZX_OK) {
415 if (vmo_size < max_len) max_len = vmo_size;
416 size_t map_size = RoundUpTo(max_len, PAGE_SIZE);
417 uintptr_t addr;
418 status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ, 0, vmo, 0,
419 map_size, &addr);
420 if (status == ZX_OK) {
421 *buff = reinterpret_cast<char *>(addr);
422 *buff_size = map_size;
423 *read_len = max_len;
424 }
425 }
426 _zx_handle_close(vmo);
427 }
428 if (status != ZX_OK && errno_p) *errno_p = status;
429 return status == ZX_OK;
430 }
431
RawWrite(const char * buffer)432 void RawWrite(const char *buffer) {
433 constexpr size_t size = 128;
434 static _Thread_local char line[size];
435 static _Thread_local size_t lastLineEnd = 0;
436 static _Thread_local size_t cur = 0;
437
438 while (*buffer) {
439 if (cur >= size) {
440 if (lastLineEnd == 0)
441 lastLineEnd = size;
442 __sanitizer_log_write(line, lastLineEnd);
443 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
444 cur = cur - lastLineEnd;
445 lastLineEnd = 0;
446 }
447 if (*buffer == '\n')
448 lastLineEnd = cur + 1;
449 line[cur++] = *buffer++;
450 }
451 // Flush all complete lines before returning.
452 if (lastLineEnd != 0) {
453 __sanitizer_log_write(line, lastLineEnd);
454 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
455 cur = cur - lastLineEnd;
456 lastLineEnd = 0;
457 }
458 }
459
CatastrophicErrorWrite(const char * buffer,uptr length)460 void CatastrophicErrorWrite(const char *buffer, uptr length) {
461 __sanitizer_log_write(buffer, length);
462 }
463
464 char **StoredArgv;
465 char **StoredEnviron;
466
GetArgv()467 char **GetArgv() { return StoredArgv; }
GetEnviron()468 char **GetEnviron() { return StoredEnviron; }
469
GetEnv(const char * name)470 const char *GetEnv(const char *name) {
471 if (StoredEnviron) {
472 uptr NameLen = internal_strlen(name);
473 for (char **Env = StoredEnviron; *Env != 0; Env++) {
474 if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
475 return (*Env) + NameLen + 1;
476 }
477 }
478 return nullptr;
479 }
480
ReadBinaryName(char * buf,uptr buf_len)481 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
482 const char *argv0 = "<UNKNOWN>";
483 if (StoredArgv && StoredArgv[0]) {
484 argv0 = StoredArgv[0];
485 }
486 internal_strncpy(buf, argv0, buf_len);
487 return internal_strlen(buf);
488 }
489
ReadLongProcessName(char * buf,uptr buf_len)490 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
491 return ReadBinaryName(buf, buf_len);
492 }
493
494 uptr MainThreadStackBase, MainThreadStackSize;
495
GetRandom(void * buffer,uptr length,bool blocking)496 bool GetRandom(void *buffer, uptr length, bool blocking) {
497 CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN);
498 _zx_cprng_draw(buffer, length);
499 return true;
500 }
501
GetNumberOfCPUs()502 u32 GetNumberOfCPUs() {
503 return zx_system_get_num_cpus();
504 }
505
GetRSS()506 uptr GetRSS() { UNIMPLEMENTED(); }
507
InitializePlatformCommonFlags(CommonFlags * cf)508 void InitializePlatformCommonFlags(CommonFlags *cf) {}
509
510 } // namespace __sanitizer
511
512 using namespace __sanitizer;
513
514 extern "C" {
__sanitizer_startup_hook(int argc,char ** argv,char ** envp,void * stack_base,size_t stack_size)515 void __sanitizer_startup_hook(int argc, char **argv, char **envp,
516 void *stack_base, size_t stack_size) {
517 __sanitizer::StoredArgv = argv;
518 __sanitizer::StoredEnviron = envp;
519 __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
520 __sanitizer::MainThreadStackSize = stack_size;
521 }
522
__sanitizer_set_report_path(const char * path)523 void __sanitizer_set_report_path(const char *path) {
524 // Handle the initialization code in each sanitizer, but no other calls.
525 // This setting is never consulted on Fuchsia.
526 DCHECK_EQ(path, common_flags()->log_path);
527 }
528
__sanitizer_set_report_fd(void * fd)529 void __sanitizer_set_report_fd(void *fd) {
530 UNREACHABLE("not available on Fuchsia");
531 }
532
__sanitizer_get_report_path()533 const char *__sanitizer_get_report_path() {
534 UNREACHABLE("not available on Fuchsia");
535 }
536 } // extern "C"
537
538 #endif // SANITIZER_FUCHSIA
539