1 //===- DependenceGraphBuilder.cpp ------------------------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This file implements common steps of the build algorithm for construction
9 // of dependence graphs such as DDG and PDG.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/Analysis/DependenceGraphBuilder.h"
13 #include "llvm/ADT/DepthFirstIterator.h"
14 #include "llvm/ADT/EnumeratedArray.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/DDG.h"
18 
19 using namespace llvm;
20 
21 #define DEBUG_TYPE "dgb"
22 
23 STATISTIC(TotalGraphs, "Number of dependence graphs created.");
24 STATISTIC(TotalDefUseEdges, "Number of def-use edges created.");
25 STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created.");
26 STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created.");
27 STATISTIC(TotalPiBlockNodes, "Number of pi-block nodes created.");
28 STATISTIC(TotalConfusedEdges,
29           "Number of confused memory dependencies between two nodes.");
30 STATISTIC(TotalEdgeReversals,
31           "Number of times the source and sink of dependence was reversed to "
32           "expose cycles in the graph.");
33 
34 using InstructionListType = SmallVector<Instruction *, 2>;
35 
36 //===--------------------------------------------------------------------===//
37 // AbstractDependenceGraphBuilder implementation
38 //===--------------------------------------------------------------------===//
39 
40 template <class G>
computeInstructionOrdinals()41 void AbstractDependenceGraphBuilder<G>::computeInstructionOrdinals() {
42   // The BBList is expected to be in program order.
43   size_t NextOrdinal = 1;
44   for (auto *BB : BBList)
45     for (auto &I : *BB)
46       InstOrdinalMap.insert(std::make_pair(&I, NextOrdinal++));
47 }
48 
49 template <class G>
createFineGrainedNodes()50 void AbstractDependenceGraphBuilder<G>::createFineGrainedNodes() {
51   ++TotalGraphs;
52   assert(IMap.empty() && "Expected empty instruction map at start");
53   for (BasicBlock *BB : BBList)
54     for (Instruction &I : *BB) {
55       auto &NewNode = createFineGrainedNode(I);
56       IMap.insert(std::make_pair(&I, &NewNode));
57       NodeOrdinalMap.insert(std::make_pair(&NewNode, getOrdinal(I)));
58       ++TotalFineGrainedNodes;
59     }
60 }
61 
62 template <class G>
createAndConnectRootNode()63 void AbstractDependenceGraphBuilder<G>::createAndConnectRootNode() {
64   // Create a root node that connects to every connected component of the graph.
65   // This is done to allow graph iterators to visit all the disjoint components
66   // of the graph, in a single walk.
67   //
68   // This algorithm works by going through each node of the graph and for each
69   // node N, do a DFS starting from N. A rooted edge is established between the
70   // root node and N (if N is not yet visited). All the nodes reachable from N
71   // are marked as visited and are skipped in the DFS of subsequent nodes.
72   //
73   // Note: This algorithm tries to limit the number of edges out of the root
74   // node to some extent, but there may be redundant edges created depending on
75   // the iteration order. For example for a graph {A -> B}, an edge from the
76   // root node is added to both nodes if B is visited before A. While it does
77   // not result in minimal number of edges, this approach saves compile-time
78   // while keeping the number of edges in check.
79   auto &RootNode = createRootNode();
80   df_iterator_default_set<const NodeType *, 4> Visited;
81   for (auto *N : Graph) {
82     if (*N == RootNode)
83       continue;
84     for (auto I : depth_first_ext(N, Visited))
85       if (I == N)
86         createRootedEdge(RootNode, *N);
87   }
88 }
89 
createPiBlocks()90 template <class G> void AbstractDependenceGraphBuilder<G>::createPiBlocks() {
91   if (!shouldCreatePiBlocks())
92     return;
93 
94   LLVM_DEBUG(dbgs() << "==== Start of Creation of Pi-Blocks ===\n");
95 
96   // The overall algorithm is as follows:
97   // 1. Identify SCCs and for each SCC create a pi-block node containing all
98   //    the nodes in that SCC.
99   // 2. Identify incoming edges incident to the nodes inside of the SCC and
100   //    reconnect them to the pi-block node.
101   // 3. Identify outgoing edges from the nodes inside of the SCC to nodes
102   //    outside of it and reconnect them so that the edges are coming out of the
103   //    SCC node instead.
104 
105   // Adding nodes as we iterate through the SCCs cause the SCC
106   // iterators to get invalidated. To prevent this invalidation, we first
107   // collect a list of nodes that are part of an SCC, and then iterate over
108   // those lists to create the pi-block nodes. Each element of the list is a
109   // list of nodes in an SCC. Note: trivial SCCs containing a single node are
110   // ignored.
111   SmallVector<NodeListType, 4> ListOfSCCs;
112   for (auto &SCC : make_range(scc_begin(&Graph), scc_end(&Graph))) {
113     if (SCC.size() > 1)
114       ListOfSCCs.emplace_back(SCC.begin(), SCC.end());
115   }
116 
117   for (NodeListType &NL : ListOfSCCs) {
118     LLVM_DEBUG(dbgs() << "Creating pi-block node with " << NL.size()
119                       << " nodes in it.\n");
120 
121     // SCC iterator may put the nodes in an order that's different from the
122     // program order. To preserve original program order, we sort the list of
123     // nodes based on ordinal numbers computed earlier.
124     llvm::sort(NL, [&](NodeType *LHS, NodeType *RHS) {
125       return getOrdinal(*LHS) < getOrdinal(*RHS);
126     });
127 
128     NodeType &PiNode = createPiBlock(NL);
129     ++TotalPiBlockNodes;
130 
131     // Build a set to speed up the lookup for edges whose targets
132     // are inside the SCC.
133     SmallPtrSet<NodeType *, 4> NodesInSCC(NL.begin(), NL.end());
134 
135     // We have the set of nodes in the SCC. We go through the set of nodes
136     // that are outside of the SCC and look for edges that cross the two sets.
137     for (NodeType *N : Graph) {
138 
139       // Skip the SCC node and all the nodes inside of it.
140       if (*N == PiNode || NodesInSCC.count(N))
141         continue;
142 
143       enum Direction {
144         Incoming,      // Incoming edges to the SCC
145         Outgoing,      // Edges going ot of the SCC
146         DirectionCount // To make the enum usable as an array index.
147       };
148 
149       // Use these flags to help us avoid creating redundant edges. If there
150       // are more than one edges from an outside node to inside nodes, we only
151       // keep one edge from that node to the pi-block node. Similarly, if
152       // there are more than one edges from inside nodes to an outside node,
153       // we only keep one edge from the pi-block node to the outside node.
154       // There is a flag defined for each direction (incoming vs outgoing) and
155       // for each type of edge supported, using a two-dimensional boolean
156       // array.
157       using EdgeKind = typename EdgeType::EdgeKind;
158       EnumeratedArray<bool, EdgeKind> EdgeAlreadyCreated[DirectionCount]{false,
159                                                                          false};
160 
161       auto createEdgeOfKind = [this](NodeType &Src, NodeType &Dst,
162                                      const EdgeKind K) {
163         switch (K) {
164         case EdgeKind::RegisterDefUse:
165           createDefUseEdge(Src, Dst);
166           break;
167         case EdgeKind::MemoryDependence:
168           createMemoryEdge(Src, Dst);
169           break;
170         case EdgeKind::Rooted:
171           createRootedEdge(Src, Dst);
172           break;
173         default:
174           llvm_unreachable("Unsupported type of edge.");
175         }
176       };
177 
178       auto reconnectEdges = [&](NodeType *Src, NodeType *Dst, NodeType *New,
179                                 const Direction Dir) {
180         if (!Src->hasEdgeTo(*Dst))
181           return;
182         LLVM_DEBUG(
183             dbgs() << "reconnecting("
184                    << (Dir == Direction::Incoming ? "incoming)" : "outgoing)")
185                    << ":\nSrc:" << *Src << "\nDst:" << *Dst << "\nNew:" << *New
186                    << "\n");
187         assert((Dir == Direction::Incoming || Dir == Direction::Outgoing) &&
188                "Invalid direction.");
189 
190         SmallVector<EdgeType *, 10> EL;
191         Src->findEdgesTo(*Dst, EL);
192         for (EdgeType *OldEdge : EL) {
193           EdgeKind Kind = OldEdge->getKind();
194           if (!EdgeAlreadyCreated[Dir][Kind]) {
195             if (Dir == Direction::Incoming) {
196               createEdgeOfKind(*Src, *New, Kind);
197               LLVM_DEBUG(dbgs() << "created edge from Src to New.\n");
198             } else if (Dir == Direction::Outgoing) {
199               createEdgeOfKind(*New, *Dst, Kind);
200               LLVM_DEBUG(dbgs() << "created edge from New to Dst.\n");
201             }
202             EdgeAlreadyCreated[Dir][Kind] = true;
203           }
204           Src->removeEdge(*OldEdge);
205           destroyEdge(*OldEdge);
206           LLVM_DEBUG(dbgs() << "removed old edge between Src and Dst.\n\n");
207         }
208       };
209 
210       for (NodeType *SCCNode : NL) {
211         // Process incoming edges incident to the pi-block node.
212         reconnectEdges(N, SCCNode, &PiNode, Direction::Incoming);
213 
214         // Process edges that are coming out of the pi-block node.
215         reconnectEdges(SCCNode, N, &PiNode, Direction::Outgoing);
216       }
217     }
218   }
219 
220   // Ordinal maps are no longer needed.
221   InstOrdinalMap.clear();
222   NodeOrdinalMap.clear();
223 
224   LLVM_DEBUG(dbgs() << "==== End of Creation of Pi-Blocks ===\n");
225 }
226 
createDefUseEdges()227 template <class G> void AbstractDependenceGraphBuilder<G>::createDefUseEdges() {
228   for (NodeType *N : Graph) {
229     InstructionListType SrcIList;
230     N->collectInstructions([](const Instruction *I) { return true; }, SrcIList);
231 
232     // Use a set to mark the targets that we link to N, so we don't add
233     // duplicate def-use edges when more than one instruction in a target node
234     // use results of instructions that are contained in N.
235     SmallPtrSet<NodeType *, 4> VisitedTargets;
236 
237     for (Instruction *II : SrcIList) {
238       for (User *U : II->users()) {
239         Instruction *UI = dyn_cast<Instruction>(U);
240         if (!UI)
241           continue;
242         NodeType *DstNode = nullptr;
243         if (IMap.find(UI) != IMap.end())
244           DstNode = IMap.find(UI)->second;
245 
246         // In the case of loops, the scope of the subgraph is all the
247         // basic blocks (and instructions within them) belonging to the loop. We
248         // simply ignore all the edges coming from (or going into) instructions
249         // or basic blocks outside of this range.
250         if (!DstNode) {
251           LLVM_DEBUG(
252               dbgs()
253               << "skipped def-use edge since the sink" << *UI
254               << " is outside the range of instructions being considered.\n");
255           continue;
256         }
257 
258         // Self dependencies are ignored because they are redundant and
259         // uninteresting.
260         if (DstNode == N) {
261           LLVM_DEBUG(dbgs()
262                      << "skipped def-use edge since the sink and the source ("
263                      << N << ") are the same.\n");
264           continue;
265         }
266 
267         if (VisitedTargets.insert(DstNode).second) {
268           createDefUseEdge(*N, *DstNode);
269           ++TotalDefUseEdges;
270         }
271       }
272     }
273   }
274 }
275 
276 template <class G>
createMemoryDependencyEdges()277 void AbstractDependenceGraphBuilder<G>::createMemoryDependencyEdges() {
278   using DGIterator = typename G::iterator;
279   auto isMemoryAccess = [](const Instruction *I) {
280     return I->mayReadOrWriteMemory();
281   };
282   for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) {
283     InstructionListType SrcIList;
284     (*SrcIt)->collectInstructions(isMemoryAccess, SrcIList);
285     if (SrcIList.empty())
286       continue;
287 
288     for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) {
289       if (**SrcIt == **DstIt)
290         continue;
291       InstructionListType DstIList;
292       (*DstIt)->collectInstructions(isMemoryAccess, DstIList);
293       if (DstIList.empty())
294         continue;
295       bool ForwardEdgeCreated = false;
296       bool BackwardEdgeCreated = false;
297       for (Instruction *ISrc : SrcIList) {
298         for (Instruction *IDst : DstIList) {
299           auto D = DI.depends(ISrc, IDst, true);
300           if (!D)
301             continue;
302 
303           // If we have a dependence with its left-most non-'=' direction
304           // being '>' we need to reverse the direction of the edge, because
305           // the source of the dependence cannot occur after the sink. For
306           // confused dependencies, we will create edges in both directions to
307           // represent the possibility of a cycle.
308 
309           auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) {
310             if (!ForwardEdgeCreated) {
311               createMemoryEdge(Src, Dst);
312               ++TotalMemoryEdges;
313             }
314             if (!BackwardEdgeCreated) {
315               createMemoryEdge(Dst, Src);
316               ++TotalMemoryEdges;
317             }
318             ForwardEdgeCreated = BackwardEdgeCreated = true;
319             ++TotalConfusedEdges;
320           };
321 
322           auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) {
323             if (!ForwardEdgeCreated) {
324               createMemoryEdge(Src, Dst);
325               ++TotalMemoryEdges;
326             }
327             ForwardEdgeCreated = true;
328           };
329 
330           auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) {
331             if (!BackwardEdgeCreated) {
332               createMemoryEdge(Dst, Src);
333               ++TotalMemoryEdges;
334             }
335             BackwardEdgeCreated = true;
336           };
337 
338           if (D->isConfused())
339             createConfusedEdges(**SrcIt, **DstIt);
340           else if (D->isOrdered() && !D->isLoopIndependent()) {
341             bool ReversedEdge = false;
342             for (unsigned Level = 1; Level <= D->getLevels(); ++Level) {
343               if (D->getDirection(Level) == Dependence::DVEntry::EQ)
344                 continue;
345               else if (D->getDirection(Level) == Dependence::DVEntry::GT) {
346                 createBackwardEdge(**SrcIt, **DstIt);
347                 ReversedEdge = true;
348                 ++TotalEdgeReversals;
349                 break;
350               } else if (D->getDirection(Level) == Dependence::DVEntry::LT)
351                 break;
352               else {
353                 createConfusedEdges(**SrcIt, **DstIt);
354                 break;
355               }
356             }
357             if (!ReversedEdge)
358               createForwardEdge(**SrcIt, **DstIt);
359           } else
360             createForwardEdge(**SrcIt, **DstIt);
361 
362           // Avoid creating duplicate edges.
363           if (ForwardEdgeCreated && BackwardEdgeCreated)
364             break;
365         }
366 
367         // If we've created edges in both directions, there is no more
368         // unique edge that we can create between these two nodes, so we
369         // can exit early.
370         if (ForwardEdgeCreated && BackwardEdgeCreated)
371           break;
372       }
373     }
374   }
375 }
376 
simplify()377 template <class G> void AbstractDependenceGraphBuilder<G>::simplify() {
378   if (!shouldSimplify())
379     return;
380   LLVM_DEBUG(dbgs() << "==== Start of Graph Simplification ===\n");
381 
382   // This algorithm works by first collecting a set of candidate nodes that have
383   // an out-degree of one (in terms of def-use edges), and then ignoring those
384   // whose targets have an in-degree more than one. Each node in the resulting
385   // set can then be merged with its corresponding target and put back into the
386   // worklist until no further merge candidates are available.
387   SmallPtrSet<NodeType *, 32> CandidateSourceNodes;
388 
389   // A mapping between nodes and their in-degree. To save space, this map
390   // only contains nodes that are targets of nodes in the CandidateSourceNodes.
391   DenseMap<NodeType *, unsigned> TargetInDegreeMap;
392 
393   for (NodeType *N : Graph) {
394     if (N->getEdges().size() != 1)
395       continue;
396     EdgeType &Edge = N->back();
397     if (!Edge.isDefUse())
398       continue;
399     CandidateSourceNodes.insert(N);
400 
401     // Insert an element into the in-degree map and initialize to zero. The
402     // count will get updated in the next step.
403     TargetInDegreeMap.insert({&Edge.getTargetNode(), 0});
404   }
405 
406   LLVM_DEBUG({
407     dbgs() << "Size of candidate src node list:" << CandidateSourceNodes.size()
408            << "\nNode with single outgoing def-use edge:\n";
409     for (NodeType *N : CandidateSourceNodes) {
410       dbgs() << N << "\n";
411     }
412   });
413 
414   for (NodeType *N : Graph) {
415     for (EdgeType *E : *N) {
416       NodeType *Tgt = &E->getTargetNode();
417       auto TgtIT = TargetInDegreeMap.find(Tgt);
418       if (TgtIT != TargetInDegreeMap.end())
419         ++(TgtIT->second);
420     }
421   }
422 
423   LLVM_DEBUG({
424     dbgs() << "Size of target in-degree map:" << TargetInDegreeMap.size()
425            << "\nContent of in-degree map:\n";
426     for (auto &I : TargetInDegreeMap) {
427       dbgs() << I.first << " --> " << I.second << "\n";
428     }
429   });
430 
431   SmallVector<NodeType *, 32> Worklist(CandidateSourceNodes.begin(),
432                                        CandidateSourceNodes.end());
433   while (!Worklist.empty()) {
434     NodeType &Src = *Worklist.pop_back_val();
435     // As nodes get merged, we need to skip any node that has been removed from
436     // the candidate set (see below).
437     if (!CandidateSourceNodes.erase(&Src))
438       continue;
439 
440     assert(Src.getEdges().size() == 1 &&
441            "Expected a single edge from the candidate src node.");
442     NodeType &Tgt = Src.back().getTargetNode();
443     assert(TargetInDegreeMap.find(&Tgt) != TargetInDegreeMap.end() &&
444            "Expected target to be in the in-degree map.");
445 
446     if (TargetInDegreeMap[&Tgt] != 1)
447       continue;
448 
449     if (!areNodesMergeable(Src, Tgt))
450       continue;
451 
452     // Do not merge if there is also an edge from target to src (immediate
453     // cycle).
454     if (Tgt.hasEdgeTo(Src))
455       continue;
456 
457     LLVM_DEBUG(dbgs() << "Merging:" << Src << "\nWith:" << Tgt << "\n");
458 
459     mergeNodes(Src, Tgt);
460 
461     // If the target node is in the candidate set itself, we need to put the
462     // src node back into the worklist again so it gives the target a chance
463     // to get merged into it. For example if we have:
464     // {(a)->(b), (b)->(c), (c)->(d), ...} and the worklist is initially {b, a},
465     // then after merging (a) and (b) together, we need to put (a,b) back in
466     // the worklist so that (c) can get merged in as well resulting in
467     // {(a,b,c) -> d}
468     // We also need to remove the old target (b), from the worklist. We first
469     // remove it from the candidate set here, and skip any item from the
470     // worklist that is not in the set.
471     if (CandidateSourceNodes.erase(&Tgt)) {
472       Worklist.push_back(&Src);
473       CandidateSourceNodes.insert(&Src);
474       LLVM_DEBUG(dbgs() << "Putting " << &Src << " back in the worklist.\n");
475     }
476   }
477   LLVM_DEBUG(dbgs() << "=== End of Graph Simplification ===\n");
478 }
479 
480 template <class G>
sortNodesTopologically()481 void AbstractDependenceGraphBuilder<G>::sortNodesTopologically() {
482 
483   // If we don't create pi-blocks, then we may not have a DAG.
484   if (!shouldCreatePiBlocks())
485     return;
486 
487   SmallVector<NodeType *, 64> NodesInPO;
488   using NodeKind = typename NodeType::NodeKind;
489   for (NodeType *N : post_order(&Graph)) {
490     if (N->getKind() == NodeKind::PiBlock) {
491       // Put members of the pi-block right after the pi-block itself, for
492       // convenience.
493       const NodeListType &PiBlockMembers = getNodesInPiBlock(*N);
494       llvm::append_range(NodesInPO, PiBlockMembers);
495     }
496     NodesInPO.push_back(N);
497   }
498 
499   size_t OldSize = Graph.Nodes.size();
500   Graph.Nodes.clear();
501   append_range(Graph.Nodes, reverse(NodesInPO));
502   if (Graph.Nodes.size() != OldSize)
503     assert(false &&
504            "Expected the number of nodes to stay the same after the sort");
505 }
506 
507 template class llvm::AbstractDependenceGraphBuilder<DataDependenceGraph>;
508 template class llvm::DependenceGraphInfo<DDGNode>;
509