1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/IntrinsicsARM.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/MC/MCInstrDesc.h"
88 #include "llvm/MC/MCInstrItineraries.h"
89 #include "llvm/MC/MCRegisterInfo.h"
90 #include "llvm/MC/MCSchedule.h"
91 #include "llvm/Support/AtomicOrdering.h"
92 #include "llvm/Support/BranchProbability.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CodeGen.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/ErrorHandling.h"
99 #include "llvm/Support/KnownBits.h"
100 #include "llvm/Support/MachineValueType.h"
101 #include "llvm/Support/MathExtras.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Target/TargetMachine.h"
104 #include "llvm/Target/TargetOptions.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <cstdlib>
109 #include <iterator>
110 #include <limits>
111 #include <string>
112 #include <tuple>
113 #include <utility>
114 #include <vector>
115 
116 using namespace llvm;
117 using namespace llvm::PatternMatch;
118 
119 #define DEBUG_TYPE "arm-isel"
120 
121 STATISTIC(NumTailCalls, "Number of tail calls");
122 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
123 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
124 STATISTIC(NumConstpoolPromoted,
125   "Number of constants with their storage promoted into constant pools");
126 
127 static cl::opt<bool>
128 ARMInterworking("arm-interworking", cl::Hidden,
129   cl::desc("Enable / disable ARM interworking (for debugging only)"),
130   cl::init(true));
131 
132 static cl::opt<bool> EnableConstpoolPromotion(
133     "arm-promote-constant", cl::Hidden,
134     cl::desc("Enable / disable promotion of unnamed_addr constants into "
135              "constant pools"),
136     cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
137 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
138     "arm-promote-constant-max-size", cl::Hidden,
139     cl::desc("Maximum size of constant to promote into a constant pool"),
140     cl::init(64));
141 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
142     "arm-promote-constant-max-total", cl::Hidden,
143     cl::desc("Maximum size of ALL constants to promote into a constant pool"),
144     cl::init(128));
145 
146 cl::opt<unsigned>
147 MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden,
148   cl::desc("Maximum interleave factor for MVE VLDn to generate."),
149   cl::init(2));
150 
151 // The APCS parameter registers.
152 static const MCPhysReg GPRArgRegs[] = {
153   ARM::R0, ARM::R1, ARM::R2, ARM::R3
154 };
155 
addTypeForNEON(MVT VT,MVT PromotedLdStVT,MVT PromotedBitwiseVT)156 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
157                                        MVT PromotedBitwiseVT) {
158   if (VT != PromotedLdStVT) {
159     setOperationAction(ISD::LOAD, VT, Promote);
160     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
161 
162     setOperationAction(ISD::STORE, VT, Promote);
163     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
164   }
165 
166   MVT ElemTy = VT.getVectorElementType();
167   if (ElemTy != MVT::f64)
168     setOperationAction(ISD::SETCC, VT, Custom);
169   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
170   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
171   if (ElemTy == MVT::i32) {
172     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
173     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
174     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
175     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
176   } else {
177     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
178     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
179     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
180     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
181   }
182   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
183   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
184   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
185   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
186   setOperationAction(ISD::SELECT,            VT, Expand);
187   setOperationAction(ISD::SELECT_CC,         VT, Expand);
188   setOperationAction(ISD::VSELECT,           VT, Expand);
189   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
190   if (VT.isInteger()) {
191     setOperationAction(ISD::SHL, VT, Custom);
192     setOperationAction(ISD::SRA, VT, Custom);
193     setOperationAction(ISD::SRL, VT, Custom);
194   }
195 
196   // Promote all bit-wise operations.
197   if (VT.isInteger() && VT != PromotedBitwiseVT) {
198     setOperationAction(ISD::AND, VT, Promote);
199     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
200     setOperationAction(ISD::OR,  VT, Promote);
201     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
202     setOperationAction(ISD::XOR, VT, Promote);
203     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
204   }
205 
206   // Neon does not support vector divide/remainder operations.
207   setOperationAction(ISD::SDIV, VT, Expand);
208   setOperationAction(ISD::UDIV, VT, Expand);
209   setOperationAction(ISD::FDIV, VT, Expand);
210   setOperationAction(ISD::SREM, VT, Expand);
211   setOperationAction(ISD::UREM, VT, Expand);
212   setOperationAction(ISD::FREM, VT, Expand);
213   setOperationAction(ISD::SDIVREM, VT, Expand);
214   setOperationAction(ISD::UDIVREM, VT, Expand);
215 
216   if (!VT.isFloatingPoint() &&
217       VT != MVT::v2i64 && VT != MVT::v1i64)
218     for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
219       setOperationAction(Opcode, VT, Legal);
220   if (!VT.isFloatingPoint())
221     for (auto Opcode : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT})
222       setOperationAction(Opcode, VT, Legal);
223 }
224 
addDRTypeForNEON(MVT VT)225 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
226   addRegisterClass(VT, &ARM::DPRRegClass);
227   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
228 }
229 
addQRTypeForNEON(MVT VT)230 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
231   addRegisterClass(VT, &ARM::DPairRegClass);
232   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
233 }
234 
setAllExpand(MVT VT)235 void ARMTargetLowering::setAllExpand(MVT VT) {
236   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
237     setOperationAction(Opc, VT, Expand);
238 
239   // We support these really simple operations even on types where all
240   // the actual arithmetic has to be broken down into simpler
241   // operations or turned into library calls.
242   setOperationAction(ISD::BITCAST, VT, Legal);
243   setOperationAction(ISD::LOAD, VT, Legal);
244   setOperationAction(ISD::STORE, VT, Legal);
245   setOperationAction(ISD::UNDEF, VT, Legal);
246 }
247 
addAllExtLoads(const MVT From,const MVT To,LegalizeAction Action)248 void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
249                                        LegalizeAction Action) {
250   setLoadExtAction(ISD::EXTLOAD,  From, To, Action);
251   setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
252   setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
253 }
254 
addMVEVectorTypes(bool HasMVEFP)255 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
256   const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
257 
258   for (auto VT : IntTypes) {
259     addRegisterClass(VT, &ARM::MQPRRegClass);
260     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
261     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
262     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
263     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
264     setOperationAction(ISD::SHL, VT, Custom);
265     setOperationAction(ISD::SRA, VT, Custom);
266     setOperationAction(ISD::SRL, VT, Custom);
267     setOperationAction(ISD::SMIN, VT, Legal);
268     setOperationAction(ISD::SMAX, VT, Legal);
269     setOperationAction(ISD::UMIN, VT, Legal);
270     setOperationAction(ISD::UMAX, VT, Legal);
271     setOperationAction(ISD::ABS, VT, Legal);
272     setOperationAction(ISD::SETCC, VT, Custom);
273     setOperationAction(ISD::MLOAD, VT, Custom);
274     setOperationAction(ISD::MSTORE, VT, Legal);
275     setOperationAction(ISD::CTLZ, VT, Legal);
276     setOperationAction(ISD::CTTZ, VT, Custom);
277     setOperationAction(ISD::BITREVERSE, VT, Legal);
278     setOperationAction(ISD::BSWAP, VT, Legal);
279     setOperationAction(ISD::SADDSAT, VT, Legal);
280     setOperationAction(ISD::UADDSAT, VT, Legal);
281     setOperationAction(ISD::SSUBSAT, VT, Legal);
282     setOperationAction(ISD::USUBSAT, VT, Legal);
283 
284     // No native support for these.
285     setOperationAction(ISD::UDIV, VT, Expand);
286     setOperationAction(ISD::SDIV, VT, Expand);
287     setOperationAction(ISD::UREM, VT, Expand);
288     setOperationAction(ISD::SREM, VT, Expand);
289     setOperationAction(ISD::UDIVREM, VT, Expand);
290     setOperationAction(ISD::SDIVREM, VT, Expand);
291     setOperationAction(ISD::CTPOP, VT, Expand);
292     setOperationAction(ISD::SELECT, VT, Expand);
293     setOperationAction(ISD::SELECT_CC, VT, Expand);
294 
295     // Vector reductions
296     setOperationAction(ISD::VECREDUCE_ADD, VT, Legal);
297     setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal);
298     setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal);
299     setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal);
300     setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal);
301     setOperationAction(ISD::VECREDUCE_MUL, VT, Custom);
302     setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
303     setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
304     setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
305 
306     if (!HasMVEFP) {
307       setOperationAction(ISD::SINT_TO_FP, VT, Expand);
308       setOperationAction(ISD::UINT_TO_FP, VT, Expand);
309       setOperationAction(ISD::FP_TO_SINT, VT, Expand);
310       setOperationAction(ISD::FP_TO_UINT, VT, Expand);
311     }
312 
313     // Pre and Post inc are supported on loads and stores
314     for (unsigned im = (unsigned)ISD::PRE_INC;
315          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
316       setIndexedLoadAction(im, VT, Legal);
317       setIndexedStoreAction(im, VT, Legal);
318       setIndexedMaskedLoadAction(im, VT, Legal);
319       setIndexedMaskedStoreAction(im, VT, Legal);
320     }
321   }
322 
323   const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
324   for (auto VT : FloatTypes) {
325     addRegisterClass(VT, &ARM::MQPRRegClass);
326     if (!HasMVEFP)
327       setAllExpand(VT);
328 
329     // These are legal or custom whether we have MVE.fp or not
330     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
331     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
332     setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
333     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
334     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
335     setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
336     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
337     setOperationAction(ISD::SETCC, VT, Custom);
338     setOperationAction(ISD::MLOAD, VT, Custom);
339     setOperationAction(ISD::MSTORE, VT, Legal);
340     setOperationAction(ISD::SELECT, VT, Expand);
341     setOperationAction(ISD::SELECT_CC, VT, Expand);
342 
343     // Pre and Post inc are supported on loads and stores
344     for (unsigned im = (unsigned)ISD::PRE_INC;
345          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
346       setIndexedLoadAction(im, VT, Legal);
347       setIndexedStoreAction(im, VT, Legal);
348       setIndexedMaskedLoadAction(im, VT, Legal);
349       setIndexedMaskedStoreAction(im, VT, Legal);
350     }
351 
352     if (HasMVEFP) {
353       setOperationAction(ISD::FMINNUM, VT, Legal);
354       setOperationAction(ISD::FMAXNUM, VT, Legal);
355       setOperationAction(ISD::FROUND, VT, Legal);
356       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
357       setOperationAction(ISD::VECREDUCE_FMUL, VT, Custom);
358       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
359       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
360 
361       // No native support for these.
362       setOperationAction(ISD::FDIV, VT, Expand);
363       setOperationAction(ISD::FREM, VT, Expand);
364       setOperationAction(ISD::FSQRT, VT, Expand);
365       setOperationAction(ISD::FSIN, VT, Expand);
366       setOperationAction(ISD::FCOS, VT, Expand);
367       setOperationAction(ISD::FPOW, VT, Expand);
368       setOperationAction(ISD::FLOG, VT, Expand);
369       setOperationAction(ISD::FLOG2, VT, Expand);
370       setOperationAction(ISD::FLOG10, VT, Expand);
371       setOperationAction(ISD::FEXP, VT, Expand);
372       setOperationAction(ISD::FEXP2, VT, Expand);
373       setOperationAction(ISD::FNEARBYINT, VT, Expand);
374     }
375   }
376 
377   // Custom Expand smaller than legal vector reductions to prevent false zero
378   // items being added.
379   setOperationAction(ISD::VECREDUCE_FADD, MVT::v4f16, Custom);
380   setOperationAction(ISD::VECREDUCE_FMUL, MVT::v4f16, Custom);
381   setOperationAction(ISD::VECREDUCE_FMIN, MVT::v4f16, Custom);
382   setOperationAction(ISD::VECREDUCE_FMAX, MVT::v4f16, Custom);
383   setOperationAction(ISD::VECREDUCE_FADD, MVT::v2f16, Custom);
384   setOperationAction(ISD::VECREDUCE_FMUL, MVT::v2f16, Custom);
385   setOperationAction(ISD::VECREDUCE_FMIN, MVT::v2f16, Custom);
386   setOperationAction(ISD::VECREDUCE_FMAX, MVT::v2f16, Custom);
387 
388   // We 'support' these types up to bitcast/load/store level, regardless of
389   // MVE integer-only / float support. Only doing FP data processing on the FP
390   // vector types is inhibited at integer-only level.
391   const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
392   for (auto VT : LongTypes) {
393     addRegisterClass(VT, &ARM::MQPRRegClass);
394     setAllExpand(VT);
395     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
396     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
397     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
398   }
399   // We can do bitwise operations on v2i64 vectors
400   setOperationAction(ISD::AND, MVT::v2i64, Legal);
401   setOperationAction(ISD::OR, MVT::v2i64, Legal);
402   setOperationAction(ISD::XOR, MVT::v2i64, Legal);
403 
404   // It is legal to extload from v4i8 to v4i16 or v4i32.
405   addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
406   addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
407   addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
408 
409   // It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16.
410   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
411   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
412   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
413   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8,  Legal);
414   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Legal);
415 
416   // Some truncating stores are legal too.
417   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
418   setTruncStoreAction(MVT::v4i32, MVT::v4i8,  Legal);
419   setTruncStoreAction(MVT::v8i16, MVT::v8i8,  Legal);
420 
421   // Pre and Post inc on these are legal, given the correct extends
422   for (unsigned im = (unsigned)ISD::PRE_INC;
423        im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
424     for (auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) {
425       setIndexedLoadAction(im, VT, Legal);
426       setIndexedStoreAction(im, VT, Legal);
427       setIndexedMaskedLoadAction(im, VT, Legal);
428       setIndexedMaskedStoreAction(im, VT, Legal);
429     }
430   }
431 
432   // Predicate types
433   const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1};
434   for (auto VT : pTypes) {
435     addRegisterClass(VT, &ARM::VCCRRegClass);
436     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
437     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
438     setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
439     setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
440     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
441     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
442     setOperationAction(ISD::SETCC, VT, Custom);
443     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
444     setOperationAction(ISD::LOAD, VT, Custom);
445     setOperationAction(ISD::STORE, VT, Custom);
446     setOperationAction(ISD::TRUNCATE, VT, Custom);
447     setOperationAction(ISD::VSELECT, VT, Expand);
448     setOperationAction(ISD::SELECT, VT, Expand);
449   }
450 }
451 
ARMTargetLowering(const TargetMachine & TM,const ARMSubtarget & STI)452 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
453                                      const ARMSubtarget &STI)
454     : TargetLowering(TM), Subtarget(&STI) {
455   RegInfo = Subtarget->getRegisterInfo();
456   Itins = Subtarget->getInstrItineraryData();
457 
458   setBooleanContents(ZeroOrOneBooleanContent);
459   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
460 
461   if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
462       !Subtarget->isTargetWatchOS()) {
463     bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
464     for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
465       setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
466                             IsHFTarget ? CallingConv::ARM_AAPCS_VFP
467                                        : CallingConv::ARM_AAPCS);
468   }
469 
470   if (Subtarget->isTargetMachO()) {
471     // Uses VFP for Thumb libfuncs if available.
472     if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
473         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
474       static const struct {
475         const RTLIB::Libcall Op;
476         const char * const Name;
477         const ISD::CondCode Cond;
478       } LibraryCalls[] = {
479         // Single-precision floating-point arithmetic.
480         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
481         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
482         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
483         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
484 
485         // Double-precision floating-point arithmetic.
486         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
487         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
488         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
489         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
490 
491         // Single-precision comparisons.
492         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
493         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
494         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
495         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
496         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
497         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
498         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
499 
500         // Double-precision comparisons.
501         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
502         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
503         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
504         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
505         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
506         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
507         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
508 
509         // Floating-point to integer conversions.
510         // i64 conversions are done via library routines even when generating VFP
511         // instructions, so use the same ones.
512         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
513         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
514         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
515         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
516 
517         // Conversions between floating types.
518         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
519         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
520 
521         // Integer to floating-point conversions.
522         // i64 conversions are done via library routines even when generating VFP
523         // instructions, so use the same ones.
524         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
525         // e.g., __floatunsidf vs. __floatunssidfvfp.
526         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
527         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
528         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
529         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
530       };
531 
532       for (const auto &LC : LibraryCalls) {
533         setLibcallName(LC.Op, LC.Name);
534         if (LC.Cond != ISD::SETCC_INVALID)
535           setCmpLibcallCC(LC.Op, LC.Cond);
536       }
537     }
538   }
539 
540   // These libcalls are not available in 32-bit.
541   setLibcallName(RTLIB::SHL_I128, nullptr);
542   setLibcallName(RTLIB::SRL_I128, nullptr);
543   setLibcallName(RTLIB::SRA_I128, nullptr);
544 
545   // RTLIB
546   if (Subtarget->isAAPCS_ABI() &&
547       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
548        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
549     static const struct {
550       const RTLIB::Libcall Op;
551       const char * const Name;
552       const CallingConv::ID CC;
553       const ISD::CondCode Cond;
554     } LibraryCalls[] = {
555       // Double-precision floating-point arithmetic helper functions
556       // RTABI chapter 4.1.2, Table 2
557       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
558       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
559       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
560       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
561 
562       // Double-precision floating-point comparison helper functions
563       // RTABI chapter 4.1.2, Table 3
564       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
565       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
566       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
567       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
568       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
569       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
570       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
571 
572       // Single-precision floating-point arithmetic helper functions
573       // RTABI chapter 4.1.2, Table 4
574       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
575       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
576       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
577       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
578 
579       // Single-precision floating-point comparison helper functions
580       // RTABI chapter 4.1.2, Table 5
581       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
582       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
583       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
584       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
585       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
586       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
587       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
588 
589       // Floating-point to integer conversions.
590       // RTABI chapter 4.1.2, Table 6
591       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
592       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
593       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
594       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
595       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
596       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
597       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
598       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
599 
600       // Conversions between floating types.
601       // RTABI chapter 4.1.2, Table 7
602       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
603       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
604       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
605 
606       // Integer to floating-point conversions.
607       // RTABI chapter 4.1.2, Table 8
608       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
609       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
610       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
611       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
612       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
613       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
614       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
615       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
616 
617       // Long long helper functions
618       // RTABI chapter 4.2, Table 9
619       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
620       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
621       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
622       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
623 
624       // Integer division functions
625       // RTABI chapter 4.3.1
626       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
627       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
628       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
629       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
630       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
631       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
632       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
633       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
634     };
635 
636     for (const auto &LC : LibraryCalls) {
637       setLibcallName(LC.Op, LC.Name);
638       setLibcallCallingConv(LC.Op, LC.CC);
639       if (LC.Cond != ISD::SETCC_INVALID)
640         setCmpLibcallCC(LC.Op, LC.Cond);
641     }
642 
643     // EABI dependent RTLIB
644     if (TM.Options.EABIVersion == EABI::EABI4 ||
645         TM.Options.EABIVersion == EABI::EABI5) {
646       static const struct {
647         const RTLIB::Libcall Op;
648         const char *const Name;
649         const CallingConv::ID CC;
650         const ISD::CondCode Cond;
651       } MemOpsLibraryCalls[] = {
652         // Memory operations
653         // RTABI chapter 4.3.4
654         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
655         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
656         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
657       };
658 
659       for (const auto &LC : MemOpsLibraryCalls) {
660         setLibcallName(LC.Op, LC.Name);
661         setLibcallCallingConv(LC.Op, LC.CC);
662         if (LC.Cond != ISD::SETCC_INVALID)
663           setCmpLibcallCC(LC.Op, LC.Cond);
664       }
665     }
666   }
667 
668   if (Subtarget->isTargetWindows()) {
669     static const struct {
670       const RTLIB::Libcall Op;
671       const char * const Name;
672       const CallingConv::ID CC;
673     } LibraryCalls[] = {
674       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
675       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
676       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
677       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
678       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
679       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
680       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
681       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
682     };
683 
684     for (const auto &LC : LibraryCalls) {
685       setLibcallName(LC.Op, LC.Name);
686       setLibcallCallingConv(LC.Op, LC.CC);
687     }
688   }
689 
690   // Use divmod compiler-rt calls for iOS 5.0 and later.
691   if (Subtarget->isTargetMachO() &&
692       !(Subtarget->isTargetIOS() &&
693         Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
694     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
695     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
696   }
697 
698   // The half <-> float conversion functions are always soft-float on
699   // non-watchos platforms, but are needed for some targets which use a
700   // hard-float calling convention by default.
701   if (!Subtarget->isTargetWatchABI()) {
702     if (Subtarget->isAAPCS_ABI()) {
703       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
704       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
705       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
706     } else {
707       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
708       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
709       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
710     }
711   }
712 
713   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
714   // a __gnu_ prefix (which is the default).
715   if (Subtarget->isTargetAEABI()) {
716     static const struct {
717       const RTLIB::Libcall Op;
718       const char * const Name;
719       const CallingConv::ID CC;
720     } LibraryCalls[] = {
721       { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
722       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
723       { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
724     };
725 
726     for (const auto &LC : LibraryCalls) {
727       setLibcallName(LC.Op, LC.Name);
728       setLibcallCallingConv(LC.Op, LC.CC);
729     }
730   }
731 
732   if (Subtarget->isThumb1Only())
733     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
734   else
735     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
736 
737   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
738       Subtarget->hasFPRegs()) {
739     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
740     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
741     if (!Subtarget->hasVFP2Base())
742       setAllExpand(MVT::f32);
743     if (!Subtarget->hasFP64())
744       setAllExpand(MVT::f64);
745   }
746 
747   if (Subtarget->hasFullFP16()) {
748     addRegisterClass(MVT::f16, &ARM::HPRRegClass);
749     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
750     setOperationAction(ISD::BITCAST, MVT::f16, Custom);
751 
752     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
753     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
754   }
755 
756   if (Subtarget->hasBF16()) {
757     addRegisterClass(MVT::bf16, &ARM::HPRRegClass);
758     setAllExpand(MVT::bf16);
759     if (!Subtarget->hasFullFP16())
760       setOperationAction(ISD::BITCAST, MVT::bf16, Custom);
761   }
762 
763   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
764     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
765       setTruncStoreAction(VT, InnerVT, Expand);
766       addAllExtLoads(VT, InnerVT, Expand);
767     }
768 
769     setOperationAction(ISD::MULHS, VT, Expand);
770     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
771     setOperationAction(ISD::MULHU, VT, Expand);
772     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
773 
774     setOperationAction(ISD::BSWAP, VT, Expand);
775   }
776 
777   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
778   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
779 
780   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
781   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
782 
783   if (Subtarget->hasMVEIntegerOps())
784     addMVEVectorTypes(Subtarget->hasMVEFloatOps());
785 
786   // Combine low-overhead loop intrinsics so that we can lower i1 types.
787   if (Subtarget->hasLOB()) {
788     setTargetDAGCombine(ISD::BRCOND);
789     setTargetDAGCombine(ISD::BR_CC);
790   }
791 
792   if (Subtarget->hasNEON()) {
793     addDRTypeForNEON(MVT::v2f32);
794     addDRTypeForNEON(MVT::v8i8);
795     addDRTypeForNEON(MVT::v4i16);
796     addDRTypeForNEON(MVT::v2i32);
797     addDRTypeForNEON(MVT::v1i64);
798 
799     addQRTypeForNEON(MVT::v4f32);
800     addQRTypeForNEON(MVT::v2f64);
801     addQRTypeForNEON(MVT::v16i8);
802     addQRTypeForNEON(MVT::v8i16);
803     addQRTypeForNEON(MVT::v4i32);
804     addQRTypeForNEON(MVT::v2i64);
805 
806     if (Subtarget->hasFullFP16()) {
807       addQRTypeForNEON(MVT::v8f16);
808       addDRTypeForNEON(MVT::v4f16);
809     }
810 
811     if (Subtarget->hasBF16()) {
812       addQRTypeForNEON(MVT::v8bf16);
813       addDRTypeForNEON(MVT::v4bf16);
814     }
815   }
816 
817   if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
818     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
819     // none of Neon, MVE or VFP supports any arithmetic operations on it.
820     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
821     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
822     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
823     // FIXME: Code duplication: FDIV and FREM are expanded always, see
824     // ARMTargetLowering::addTypeForNEON method for details.
825     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
826     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
827     // FIXME: Create unittest.
828     // In another words, find a way when "copysign" appears in DAG with vector
829     // operands.
830     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
831     // FIXME: Code duplication: SETCC has custom operation action, see
832     // ARMTargetLowering::addTypeForNEON method for details.
833     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
834     // FIXME: Create unittest for FNEG and for FABS.
835     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
836     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
837     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
838     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
839     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
840     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
841     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
842     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
843     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
844     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
845     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
846     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
847     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
848     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
849     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
850     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
851     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
852     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
853   }
854 
855   if (Subtarget->hasNEON()) {
856     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
857     // supported for v4f32.
858     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
859     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
860     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
861     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
862     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
863     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
864     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
865     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
866     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
867     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
868     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
869     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
870     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
871     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
872 
873     // Mark v2f32 intrinsics.
874     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
875     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
876     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
877     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
878     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
879     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
880     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
881     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
882     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
883     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
884     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
885     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
886     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
887     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
888 
889     // Neon does not support some operations on v1i64 and v2i64 types.
890     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
891     // Custom handling for some quad-vector types to detect VMULL.
892     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
893     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
894     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
895     // Custom handling for some vector types to avoid expensive expansions
896     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
897     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
898     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
899     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
900     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
901     // a destination type that is wider than the source, and nor does
902     // it have a FP_TO_[SU]INT instruction with a narrower destination than
903     // source.
904     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
905     setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
906     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
907     setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
908     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
909     setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
910     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
911     setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
912 
913     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
914     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
915 
916     // NEON does not have single instruction CTPOP for vectors with element
917     // types wider than 8-bits.  However, custom lowering can leverage the
918     // v8i8/v16i8 vcnt instruction.
919     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
920     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
921     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
922     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
923     setOperationAction(ISD::CTPOP,      MVT::v1i64, Custom);
924     setOperationAction(ISD::CTPOP,      MVT::v2i64, Custom);
925 
926     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
927     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
928 
929     // NEON does not have single instruction CTTZ for vectors.
930     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
931     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
932     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
933     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
934 
935     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
936     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
937     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
938     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
939 
940     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
941     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
942     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
943     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
944 
945     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
946     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
947     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
948     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
949 
950     // NEON only has FMA instructions as of VFP4.
951     if (!Subtarget->hasVFP4Base()) {
952       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
953       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
954     }
955 
956     setTargetDAGCombine(ISD::SHL);
957     setTargetDAGCombine(ISD::SRL);
958     setTargetDAGCombine(ISD::SRA);
959     setTargetDAGCombine(ISD::FP_TO_SINT);
960     setTargetDAGCombine(ISD::FP_TO_UINT);
961     setTargetDAGCombine(ISD::FDIV);
962     setTargetDAGCombine(ISD::LOAD);
963 
964     // It is legal to extload from v4i8 to v4i16 or v4i32.
965     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
966                    MVT::v2i32}) {
967       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
968         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
969         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
970         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
971       }
972     }
973   }
974 
975   if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
976     setTargetDAGCombine(ISD::BUILD_VECTOR);
977     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
978     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
979     setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
980     setTargetDAGCombine(ISD::STORE);
981     setTargetDAGCombine(ISD::SIGN_EXTEND);
982     setTargetDAGCombine(ISD::ZERO_EXTEND);
983     setTargetDAGCombine(ISD::ANY_EXTEND);
984     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
985     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
986     setTargetDAGCombine(ISD::INTRINSIC_VOID);
987     setTargetDAGCombine(ISD::VECREDUCE_ADD);
988     setTargetDAGCombine(ISD::ADD);
989     setTargetDAGCombine(ISD::BITCAST);
990   }
991   if (Subtarget->hasMVEIntegerOps()) {
992     setTargetDAGCombine(ISD::SMIN);
993     setTargetDAGCombine(ISD::UMIN);
994     setTargetDAGCombine(ISD::SMAX);
995     setTargetDAGCombine(ISD::UMAX);
996     setTargetDAGCombine(ISD::FP_EXTEND);
997     setTargetDAGCombine(ISD::SELECT);
998     setTargetDAGCombine(ISD::SELECT_CC);
999   }
1000 
1001   if (!Subtarget->hasFP64()) {
1002     // When targeting a floating-point unit with only single-precision
1003     // operations, f64 is legal for the few double-precision instructions which
1004     // are present However, no double-precision operations other than moves,
1005     // loads and stores are provided by the hardware.
1006     setOperationAction(ISD::FADD,       MVT::f64, Expand);
1007     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
1008     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
1009     setOperationAction(ISD::FMA,        MVT::f64, Expand);
1010     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
1011     setOperationAction(ISD::FREM,       MVT::f64, Expand);
1012     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
1013     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
1014     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
1015     setOperationAction(ISD::FABS,       MVT::f64, Expand);
1016     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
1017     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
1018     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
1019     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
1020     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
1021     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
1022     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
1023     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
1024     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
1025     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
1026     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
1027     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
1028     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
1029     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
1030     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
1031     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
1032     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1033     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
1034     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
1035     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
1036     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
1037     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
1038     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
1039     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::f64, Custom);
1040     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::f64, Custom);
1041     setOperationAction(ISD::STRICT_FP_ROUND,   MVT::f32, Custom);
1042   }
1043 
1044   if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) {
1045     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
1046     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Custom);
1047     if (Subtarget->hasFullFP16()) {
1048       setOperationAction(ISD::FP_ROUND,  MVT::f16, Custom);
1049       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
1050     }
1051   }
1052 
1053   if (!Subtarget->hasFP16()) {
1054     setOperationAction(ISD::FP_EXTEND,  MVT::f32, Custom);
1055     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Custom);
1056   }
1057 
1058   computeRegisterProperties(Subtarget->getRegisterInfo());
1059 
1060   // ARM does not have floating-point extending loads.
1061   for (MVT VT : MVT::fp_valuetypes()) {
1062     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1063     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
1064   }
1065 
1066   // ... or truncating stores
1067   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1068   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1069   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1070 
1071   // ARM does not have i1 sign extending load.
1072   for (MVT VT : MVT::integer_valuetypes())
1073     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1074 
1075   // ARM supports all 4 flavors of integer indexed load / store.
1076   if (!Subtarget->isThumb1Only()) {
1077     for (unsigned im = (unsigned)ISD::PRE_INC;
1078          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
1079       setIndexedLoadAction(im,  MVT::i1,  Legal);
1080       setIndexedLoadAction(im,  MVT::i8,  Legal);
1081       setIndexedLoadAction(im,  MVT::i16, Legal);
1082       setIndexedLoadAction(im,  MVT::i32, Legal);
1083       setIndexedStoreAction(im, MVT::i1,  Legal);
1084       setIndexedStoreAction(im, MVT::i8,  Legal);
1085       setIndexedStoreAction(im, MVT::i16, Legal);
1086       setIndexedStoreAction(im, MVT::i32, Legal);
1087     }
1088   } else {
1089     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1090     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
1091     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
1092   }
1093 
1094   setOperationAction(ISD::SADDO, MVT::i32, Custom);
1095   setOperationAction(ISD::UADDO, MVT::i32, Custom);
1096   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
1097   setOperationAction(ISD::USUBO, MVT::i32, Custom);
1098 
1099   setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
1100   setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
1101   if (Subtarget->hasDSP()) {
1102     setOperationAction(ISD::SADDSAT, MVT::i8, Custom);
1103     setOperationAction(ISD::SSUBSAT, MVT::i8, Custom);
1104     setOperationAction(ISD::SADDSAT, MVT::i16, Custom);
1105     setOperationAction(ISD::SSUBSAT, MVT::i16, Custom);
1106   }
1107   if (Subtarget->hasBaseDSP()) {
1108     setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
1109     setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
1110   }
1111 
1112   // i64 operation support.
1113   setOperationAction(ISD::MUL,     MVT::i64, Expand);
1114   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
1115   if (Subtarget->isThumb1Only()) {
1116     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1117     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1118   }
1119   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
1120       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
1121     setOperationAction(ISD::MULHS, MVT::i32, Expand);
1122 
1123   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
1124   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
1125   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
1126   setOperationAction(ISD::SRL,       MVT::i64, Custom);
1127   setOperationAction(ISD::SRA,       MVT::i64, Custom);
1128   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1129   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
1130   setOperationAction(ISD::LOAD, MVT::i64, Custom);
1131   setOperationAction(ISD::STORE, MVT::i64, Custom);
1132 
1133   // MVE lowers 64 bit shifts to lsll and lsrl
1134   // assuming that ISD::SRL and SRA of i64 are already marked custom
1135   if (Subtarget->hasMVEIntegerOps())
1136     setOperationAction(ISD::SHL, MVT::i64, Custom);
1137 
1138   // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1139   if (Subtarget->isThumb1Only()) {
1140     setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1141     setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1142     setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1143   }
1144 
1145   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
1146     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1147 
1148   // ARM does not have ROTL.
1149   setOperationAction(ISD::ROTL, MVT::i32, Expand);
1150   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1151     setOperationAction(ISD::ROTL, VT, Expand);
1152     setOperationAction(ISD::ROTR, VT, Expand);
1153   }
1154   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
1155   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1156   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
1157     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
1158     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
1159   }
1160 
1161   // @llvm.readcyclecounter requires the Performance Monitors extension.
1162   // Default to the 0 expansion on unsupported platforms.
1163   // FIXME: Technically there are older ARM CPUs that have
1164   // implementation-specific ways of obtaining this information.
1165   if (Subtarget->hasPerfMon())
1166     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1167 
1168   // Only ARMv6 has BSWAP.
1169   if (!Subtarget->hasV6Ops())
1170     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1171 
1172   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
1173                                         : Subtarget->hasDivideInARMMode();
1174   if (!hasDivide) {
1175     // These are expanded into libcalls if the cpu doesn't have HW divider.
1176     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
1177     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
1178   }
1179 
1180   if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
1181     setOperationAction(ISD::SDIV, MVT::i32, Custom);
1182     setOperationAction(ISD::UDIV, MVT::i32, Custom);
1183 
1184     setOperationAction(ISD::SDIV, MVT::i64, Custom);
1185     setOperationAction(ISD::UDIV, MVT::i64, Custom);
1186   }
1187 
1188   setOperationAction(ISD::SREM,  MVT::i32, Expand);
1189   setOperationAction(ISD::UREM,  MVT::i32, Expand);
1190 
1191   // Register based DivRem for AEABI (RTABI 4.2)
1192   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
1193       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
1194       Subtarget->isTargetWindows()) {
1195     setOperationAction(ISD::SREM, MVT::i64, Custom);
1196     setOperationAction(ISD::UREM, MVT::i64, Custom);
1197     HasStandaloneRem = false;
1198 
1199     if (Subtarget->isTargetWindows()) {
1200       const struct {
1201         const RTLIB::Libcall Op;
1202         const char * const Name;
1203         const CallingConv::ID CC;
1204       } LibraryCalls[] = {
1205         { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
1206         { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
1207         { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
1208         { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
1209 
1210         { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
1211         { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
1212         { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
1213         { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
1214       };
1215 
1216       for (const auto &LC : LibraryCalls) {
1217         setLibcallName(LC.Op, LC.Name);
1218         setLibcallCallingConv(LC.Op, LC.CC);
1219       }
1220     } else {
1221       const struct {
1222         const RTLIB::Libcall Op;
1223         const char * const Name;
1224         const CallingConv::ID CC;
1225       } LibraryCalls[] = {
1226         { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1227         { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1228         { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1229         { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
1230 
1231         { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1232         { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1233         { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1234         { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
1235       };
1236 
1237       for (const auto &LC : LibraryCalls) {
1238         setLibcallName(LC.Op, LC.Name);
1239         setLibcallCallingConv(LC.Op, LC.CC);
1240       }
1241     }
1242 
1243     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
1244     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
1245     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
1246     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
1247   } else {
1248     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1249     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1250   }
1251 
1252   if (Subtarget->getTargetTriple().isOSMSVCRT()) {
1253     // MSVCRT doesn't have powi; fall back to pow
1254     setLibcallName(RTLIB::POWI_F32, nullptr);
1255     setLibcallName(RTLIB::POWI_F64, nullptr);
1256   }
1257 
1258   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
1259   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
1260   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1261   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1262 
1263   setOperationAction(ISD::TRAP, MVT::Other, Legal);
1264   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
1265 
1266   // Use the default implementation.
1267   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
1268   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
1269   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
1270   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
1271   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
1272   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
1273 
1274   if (Subtarget->isTargetWindows())
1275     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1276   else
1277     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1278 
1279   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1280   // the default expansion.
1281   InsertFencesForAtomic = false;
1282   if (Subtarget->hasAnyDataBarrier() &&
1283       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1284     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1285     // to ldrex/strex loops already.
1286     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
1287     if (!Subtarget->isThumb() || !Subtarget->isMClass())
1288       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
1289 
1290     // On v8, we have particularly efficient implementations of atomic fences
1291     // if they can be combined with nearby atomic loads and stores.
1292     if (!Subtarget->hasAcquireRelease() ||
1293         getTargetMachine().getOptLevel() == 0) {
1294       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1295       InsertFencesForAtomic = true;
1296     }
1297   } else {
1298     // If there's anything we can use as a barrier, go through custom lowering
1299     // for ATOMIC_FENCE.
1300     // If target has DMB in thumb, Fences can be inserted.
1301     if (Subtarget->hasDataBarrier())
1302       InsertFencesForAtomic = true;
1303 
1304     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
1305                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1306 
1307     // Set them all for expansion, which will force libcalls.
1308     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
1309     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
1310     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
1311     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
1312     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
1313     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
1314     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
1315     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1316     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1317     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1318     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1319     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1320     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1321     // Unordered/Monotonic case.
1322     if (!InsertFencesForAtomic) {
1323       setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1324       setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1325     }
1326   }
1327 
1328   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
1329 
1330   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1331   if (!Subtarget->hasV6Ops()) {
1332     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1333     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
1334   }
1335   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1336 
1337   if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
1338       !Subtarget->isThumb1Only()) {
1339     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1340     // iff target supports vfp2.
1341     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1342     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1343   }
1344 
1345   // We want to custom lower some of our intrinsics.
1346   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1347   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1348   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1349   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1350   if (Subtarget->useSjLjEH())
1351     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1352 
1353   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
1354   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
1355   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
1356   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
1357   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
1358   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
1359   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1360   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1361   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1362   if (Subtarget->hasFullFP16()) {
1363     setOperationAction(ISD::SETCC,     MVT::f16, Expand);
1364     setOperationAction(ISD::SELECT,    MVT::f16, Custom);
1365     setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1366   }
1367 
1368   setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1369 
1370   setOperationAction(ISD::BRCOND,    MVT::Other, Custom);
1371   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
1372   if (Subtarget->hasFullFP16())
1373       setOperationAction(ISD::BR_CC, MVT::f16,   Custom);
1374   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
1375   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
1376   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
1377 
1378   // We don't support sin/cos/fmod/copysign/pow
1379   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
1380   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
1381   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
1382   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
1383   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
1384   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
1385   setOperationAction(ISD::FREM,      MVT::f64, Expand);
1386   setOperationAction(ISD::FREM,      MVT::f32, Expand);
1387   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1388       !Subtarget->isThumb1Only()) {
1389     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1390     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1391   }
1392   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
1393   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
1394 
1395   if (!Subtarget->hasVFP4Base()) {
1396     setOperationAction(ISD::FMA, MVT::f64, Expand);
1397     setOperationAction(ISD::FMA, MVT::f32, Expand);
1398   }
1399 
1400   // Various VFP goodness
1401   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1402     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1403     if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
1404       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1405       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1406     }
1407 
1408     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1409     if (!Subtarget->hasFP16()) {
1410       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1411       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1412     }
1413 
1414     // Strict floating-point comparisons need custom lowering.
1415     setOperationAction(ISD::STRICT_FSETCC,  MVT::f16, Custom);
1416     setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
1417     setOperationAction(ISD::STRICT_FSETCC,  MVT::f32, Custom);
1418     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
1419     setOperationAction(ISD::STRICT_FSETCC,  MVT::f64, Custom);
1420     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
1421   }
1422 
1423   // Use __sincos_stret if available.
1424   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1425       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1426     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1427     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1428   }
1429 
1430   // FP-ARMv8 implements a lot of rounding-like FP operations.
1431   if (Subtarget->hasFPARMv8Base()) {
1432     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1433     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1434     setOperationAction(ISD::FROUND, MVT::f32, Legal);
1435     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1436     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1437     setOperationAction(ISD::FRINT, MVT::f32, Legal);
1438     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1439     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1440     if (Subtarget->hasNEON()) {
1441       setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1442       setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1443       setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1444       setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1445     }
1446 
1447     if (Subtarget->hasFP64()) {
1448       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1449       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1450       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1451       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1452       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1453       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1454       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1455       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1456     }
1457   }
1458 
1459   // FP16 often need to be promoted to call lib functions
1460   if (Subtarget->hasFullFP16()) {
1461     setOperationAction(ISD::FREM, MVT::f16, Promote);
1462     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
1463     setOperationAction(ISD::FSIN, MVT::f16, Promote);
1464     setOperationAction(ISD::FCOS, MVT::f16, Promote);
1465     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
1466     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
1467     setOperationAction(ISD::FPOW, MVT::f16, Promote);
1468     setOperationAction(ISD::FEXP, MVT::f16, Promote);
1469     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
1470     setOperationAction(ISD::FLOG, MVT::f16, Promote);
1471     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
1472     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
1473 
1474     setOperationAction(ISD::FROUND, MVT::f16, Legal);
1475   }
1476 
1477   if (Subtarget->hasNEON()) {
1478     // vmin and vmax aren't available in a scalar form, so we can use
1479     // a NEON instruction with an undef lane instead.  This has a performance
1480     // penalty on some cores, so we don't do this unless we have been
1481     // asked to by the core tuning model.
1482     if (Subtarget->useNEONForSinglePrecisionFP()) {
1483       setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1484       setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1485       setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1486       setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1487     }
1488     setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1489     setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1490     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1491     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1492 
1493     if (Subtarget->hasFullFP16()) {
1494       setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1495       setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1496       setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1497       setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1498 
1499       setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1500       setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1501       setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1502       setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1503     }
1504   }
1505 
1506   // We have target-specific dag combine patterns for the following nodes:
1507   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1508   setTargetDAGCombine(ISD::ADD);
1509   setTargetDAGCombine(ISD::SUB);
1510   setTargetDAGCombine(ISD::MUL);
1511   setTargetDAGCombine(ISD::AND);
1512   setTargetDAGCombine(ISD::OR);
1513   setTargetDAGCombine(ISD::XOR);
1514 
1515   if (Subtarget->hasMVEIntegerOps())
1516     setTargetDAGCombine(ISD::VSELECT);
1517 
1518   if (Subtarget->hasV6Ops())
1519     setTargetDAGCombine(ISD::SRL);
1520   if (Subtarget->isThumb1Only())
1521     setTargetDAGCombine(ISD::SHL);
1522 
1523   setStackPointerRegisterToSaveRestore(ARM::SP);
1524 
1525   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1526       !Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
1527     setSchedulingPreference(Sched::RegPressure);
1528   else
1529     setSchedulingPreference(Sched::Hybrid);
1530 
1531   //// temporary - rewrite interface to use type
1532   MaxStoresPerMemset = 8;
1533   MaxStoresPerMemsetOptSize = 4;
1534   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1535   MaxStoresPerMemcpyOptSize = 2;
1536   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1537   MaxStoresPerMemmoveOptSize = 2;
1538 
1539   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1540   // are at least 4 bytes aligned.
1541   setMinStackArgumentAlignment(Align(4));
1542 
1543   // Prefer likely predicted branches to selects on out-of-order cores.
1544   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1545 
1546   setPrefLoopAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment()));
1547 
1548   setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4));
1549 
1550   if (Subtarget->isThumb() || Subtarget->isThumb2())
1551     setTargetDAGCombine(ISD::ABS);
1552 }
1553 
useSoftFloat() const1554 bool ARMTargetLowering::useSoftFloat() const {
1555   return Subtarget->useSoftFloat();
1556 }
1557 
1558 // FIXME: It might make sense to define the representative register class as the
1559 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1560 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1561 // SPR's representative would be DPR_VFP2. This should work well if register
1562 // pressure tracking were modified such that a register use would increment the
1563 // pressure of the register class's representative and all of it's super
1564 // classes' representatives transitively. We have not implemented this because
1565 // of the difficulty prior to coalescing of modeling operand register classes
1566 // due to the common occurrence of cross class copies and subregister insertions
1567 // and extractions.
1568 std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const1569 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1570                                            MVT VT) const {
1571   const TargetRegisterClass *RRC = nullptr;
1572   uint8_t Cost = 1;
1573   switch (VT.SimpleTy) {
1574   default:
1575     return TargetLowering::findRepresentativeClass(TRI, VT);
1576   // Use DPR as representative register class for all floating point
1577   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1578   // the cost is 1 for both f32 and f64.
1579   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1580   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1581     RRC = &ARM::DPRRegClass;
1582     // When NEON is used for SP, only half of the register file is available
1583     // because operations that define both SP and DP results will be constrained
1584     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1585     // coalescing by double-counting the SP regs. See the FIXME above.
1586     if (Subtarget->useNEONForSinglePrecisionFP())
1587       Cost = 2;
1588     break;
1589   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1590   case MVT::v4f32: case MVT::v2f64:
1591     RRC = &ARM::DPRRegClass;
1592     Cost = 2;
1593     break;
1594   case MVT::v4i64:
1595     RRC = &ARM::DPRRegClass;
1596     Cost = 4;
1597     break;
1598   case MVT::v8i64:
1599     RRC = &ARM::DPRRegClass;
1600     Cost = 8;
1601     break;
1602   }
1603   return std::make_pair(RRC, Cost);
1604 }
1605 
getTargetNodeName(unsigned Opcode) const1606 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1607   switch ((ARMISD::NodeType)Opcode) {
1608   case ARMISD::FIRST_NUMBER:  break;
1609   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
1610   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
1611   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
1612   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1613   case ARMISD::CALL:          return "ARMISD::CALL";
1614   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
1615   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
1616   case ARMISD::tSECALL:       return "ARMISD::tSECALL";
1617   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
1618   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
1619   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
1620   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
1621   case ARMISD::SERET_FLAG:    return "ARMISD::SERET_FLAG";
1622   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
1623   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
1624   case ARMISD::CMP:           return "ARMISD::CMP";
1625   case ARMISD::CMN:           return "ARMISD::CMN";
1626   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
1627   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
1628   case ARMISD::CMPFPE:        return "ARMISD::CMPFPE";
1629   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
1630   case ARMISD::CMPFPEw0:      return "ARMISD::CMPFPEw0";
1631   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
1632   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
1633 
1634   case ARMISD::CMOV:          return "ARMISD::CMOV";
1635   case ARMISD::SUBS:          return "ARMISD::SUBS";
1636 
1637   case ARMISD::SSAT:          return "ARMISD::SSAT";
1638   case ARMISD::USAT:          return "ARMISD::USAT";
1639 
1640   case ARMISD::ASRL:          return "ARMISD::ASRL";
1641   case ARMISD::LSRL:          return "ARMISD::LSRL";
1642   case ARMISD::LSLL:          return "ARMISD::LSLL";
1643 
1644   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
1645   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
1646   case ARMISD::RRX:           return "ARMISD::RRX";
1647 
1648   case ARMISD::ADDC:          return "ARMISD::ADDC";
1649   case ARMISD::ADDE:          return "ARMISD::ADDE";
1650   case ARMISD::SUBC:          return "ARMISD::SUBC";
1651   case ARMISD::SUBE:          return "ARMISD::SUBE";
1652   case ARMISD::LSLS:          return "ARMISD::LSLS";
1653 
1654   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
1655   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
1656   case ARMISD::VMOVhr:        return "ARMISD::VMOVhr";
1657   case ARMISD::VMOVrh:        return "ARMISD::VMOVrh";
1658   case ARMISD::VMOVSR:        return "ARMISD::VMOVSR";
1659 
1660   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1661   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1662   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1663 
1664   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
1665 
1666   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1667 
1668   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
1669 
1670   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1671 
1672   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
1673 
1674   case ARMISD::LDRD:          return "ARMISD::LDRD";
1675   case ARMISD::STRD:          return "ARMISD::STRD";
1676 
1677   case ARMISD::WIN__CHKSTK:   return "ARMISD::WIN__CHKSTK";
1678   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
1679 
1680   case ARMISD::PREDICATE_CAST: return "ARMISD::PREDICATE_CAST";
1681   case ARMISD::VECTOR_REG_CAST: return "ARMISD::VECTOR_REG_CAST";
1682   case ARMISD::VCMP:          return "ARMISD::VCMP";
1683   case ARMISD::VCMPZ:         return "ARMISD::VCMPZ";
1684   case ARMISD::VTST:          return "ARMISD::VTST";
1685 
1686   case ARMISD::VSHLs:         return "ARMISD::VSHLs";
1687   case ARMISD::VSHLu:         return "ARMISD::VSHLu";
1688   case ARMISD::VSHLIMM:       return "ARMISD::VSHLIMM";
1689   case ARMISD::VSHRsIMM:      return "ARMISD::VSHRsIMM";
1690   case ARMISD::VSHRuIMM:      return "ARMISD::VSHRuIMM";
1691   case ARMISD::VRSHRsIMM:     return "ARMISD::VRSHRsIMM";
1692   case ARMISD::VRSHRuIMM:     return "ARMISD::VRSHRuIMM";
1693   case ARMISD::VRSHRNIMM:     return "ARMISD::VRSHRNIMM";
1694   case ARMISD::VQSHLsIMM:     return "ARMISD::VQSHLsIMM";
1695   case ARMISD::VQSHLuIMM:     return "ARMISD::VQSHLuIMM";
1696   case ARMISD::VQSHLsuIMM:    return "ARMISD::VQSHLsuIMM";
1697   case ARMISD::VQSHRNsIMM:    return "ARMISD::VQSHRNsIMM";
1698   case ARMISD::VQSHRNuIMM:    return "ARMISD::VQSHRNuIMM";
1699   case ARMISD::VQSHRNsuIMM:   return "ARMISD::VQSHRNsuIMM";
1700   case ARMISD::VQRSHRNsIMM:   return "ARMISD::VQRSHRNsIMM";
1701   case ARMISD::VQRSHRNuIMM:   return "ARMISD::VQRSHRNuIMM";
1702   case ARMISD::VQRSHRNsuIMM:  return "ARMISD::VQRSHRNsuIMM";
1703   case ARMISD::VSLIIMM:       return "ARMISD::VSLIIMM";
1704   case ARMISD::VSRIIMM:       return "ARMISD::VSRIIMM";
1705   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1706   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1707   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1708   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1709   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1710   case ARMISD::VDUP:          return "ARMISD::VDUP";
1711   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1712   case ARMISD::VEXT:          return "ARMISD::VEXT";
1713   case ARMISD::VREV64:        return "ARMISD::VREV64";
1714   case ARMISD::VREV32:        return "ARMISD::VREV32";
1715   case ARMISD::VREV16:        return "ARMISD::VREV16";
1716   case ARMISD::VZIP:          return "ARMISD::VZIP";
1717   case ARMISD::VUZP:          return "ARMISD::VUZP";
1718   case ARMISD::VTRN:          return "ARMISD::VTRN";
1719   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1720   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1721   case ARMISD::VMOVN:         return "ARMISD::VMOVN";
1722   case ARMISD::VQMOVNs:       return "ARMISD::VQMOVNs";
1723   case ARMISD::VQMOVNu:       return "ARMISD::VQMOVNu";
1724   case ARMISD::VCVTN:         return "ARMISD::VCVTN";
1725   case ARMISD::VCVTL:         return "ARMISD::VCVTL";
1726   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1727   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1728   case ARMISD::VQDMULH:       return "ARMISD::VQDMULH";
1729   case ARMISD::VADDVs:        return "ARMISD::VADDVs";
1730   case ARMISD::VADDVu:        return "ARMISD::VADDVu";
1731   case ARMISD::VADDVps:       return "ARMISD::VADDVps";
1732   case ARMISD::VADDVpu:       return "ARMISD::VADDVpu";
1733   case ARMISD::VADDLVs:       return "ARMISD::VADDLVs";
1734   case ARMISD::VADDLVu:       return "ARMISD::VADDLVu";
1735   case ARMISD::VADDLVAs:      return "ARMISD::VADDLVAs";
1736   case ARMISD::VADDLVAu:      return "ARMISD::VADDLVAu";
1737   case ARMISD::VADDLVps:      return "ARMISD::VADDLVps";
1738   case ARMISD::VADDLVpu:      return "ARMISD::VADDLVpu";
1739   case ARMISD::VADDLVAps:     return "ARMISD::VADDLVAps";
1740   case ARMISD::VADDLVApu:     return "ARMISD::VADDLVApu";
1741   case ARMISD::VMLAVs:        return "ARMISD::VMLAVs";
1742   case ARMISD::VMLAVu:        return "ARMISD::VMLAVu";
1743   case ARMISD::VMLAVps:       return "ARMISD::VMLAVps";
1744   case ARMISD::VMLAVpu:       return "ARMISD::VMLAVpu";
1745   case ARMISD::VMLALVs:       return "ARMISD::VMLALVs";
1746   case ARMISD::VMLALVu:       return "ARMISD::VMLALVu";
1747   case ARMISD::VMLALVps:      return "ARMISD::VMLALVps";
1748   case ARMISD::VMLALVpu:      return "ARMISD::VMLALVpu";
1749   case ARMISD::VMLALVAs:      return "ARMISD::VMLALVAs";
1750   case ARMISD::VMLALVAu:      return "ARMISD::VMLALVAu";
1751   case ARMISD::VMLALVAps:     return "ARMISD::VMLALVAps";
1752   case ARMISD::VMLALVApu:     return "ARMISD::VMLALVApu";
1753   case ARMISD::VMINVu:        return "ARMISD::VMINVu";
1754   case ARMISD::VMINVs:        return "ARMISD::VMINVs";
1755   case ARMISD::VMAXVu:        return "ARMISD::VMAXVu";
1756   case ARMISD::VMAXVs:        return "ARMISD::VMAXVs";
1757   case ARMISD::UMAAL:         return "ARMISD::UMAAL";
1758   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1759   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1760   case ARMISD::SMLALBB:       return "ARMISD::SMLALBB";
1761   case ARMISD::SMLALBT:       return "ARMISD::SMLALBT";
1762   case ARMISD::SMLALTB:       return "ARMISD::SMLALTB";
1763   case ARMISD::SMLALTT:       return "ARMISD::SMLALTT";
1764   case ARMISD::SMULWB:        return "ARMISD::SMULWB";
1765   case ARMISD::SMULWT:        return "ARMISD::SMULWT";
1766   case ARMISD::SMLALD:        return "ARMISD::SMLALD";
1767   case ARMISD::SMLALDX:       return "ARMISD::SMLALDX";
1768   case ARMISD::SMLSLD:        return "ARMISD::SMLSLD";
1769   case ARMISD::SMLSLDX:       return "ARMISD::SMLSLDX";
1770   case ARMISD::SMMLAR:        return "ARMISD::SMMLAR";
1771   case ARMISD::SMMLSR:        return "ARMISD::SMMLSR";
1772   case ARMISD::QADD16b:       return "ARMISD::QADD16b";
1773   case ARMISD::QSUB16b:       return "ARMISD::QSUB16b";
1774   case ARMISD::QADD8b:        return "ARMISD::QADD8b";
1775   case ARMISD::QSUB8b:        return "ARMISD::QSUB8b";
1776   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1777   case ARMISD::BFI:           return "ARMISD::BFI";
1778   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1779   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1780   case ARMISD::VBSP:          return "ARMISD::VBSP";
1781   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
1782   case ARMISD::VLD1DUP:       return "ARMISD::VLD1DUP";
1783   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1784   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1785   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1786   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1787   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1788   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1789   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1790   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1791   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1792   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1793   case ARMISD::VLD1DUP_UPD:   return "ARMISD::VLD1DUP_UPD";
1794   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1795   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1796   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1797   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1798   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1799   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1800   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1801   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1802   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1803   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1804   case ARMISD::WLS:           return "ARMISD::WLS";
1805   case ARMISD::LE:            return "ARMISD::LE";
1806   case ARMISD::LOOP_DEC:      return "ARMISD::LOOP_DEC";
1807   case ARMISD::CSINV:         return "ARMISD::CSINV";
1808   case ARMISD::CSNEG:         return "ARMISD::CSNEG";
1809   case ARMISD::CSINC:         return "ARMISD::CSINC";
1810   }
1811   return nullptr;
1812 }
1813 
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const1814 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1815                                           EVT VT) const {
1816   if (!VT.isVector())
1817     return getPointerTy(DL);
1818 
1819   // MVE has a predicate register.
1820   if (Subtarget->hasMVEIntegerOps() &&
1821       (VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8))
1822     return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1823   return VT.changeVectorElementTypeToInteger();
1824 }
1825 
1826 /// getRegClassFor - Return the register class that should be used for the
1827 /// specified value type.
1828 const TargetRegisterClass *
getRegClassFor(MVT VT,bool isDivergent) const1829 ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
1830   (void)isDivergent;
1831   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1832   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1833   // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1834   // MVE Q registers.
1835   if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
1836     if (VT == MVT::v4i64)
1837       return &ARM::QQPRRegClass;
1838     if (VT == MVT::v8i64)
1839       return &ARM::QQQQPRRegClass;
1840   }
1841   return TargetLowering::getRegClassFor(VT);
1842 }
1843 
1844 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1845 // source/dest is aligned and the copy size is large enough. We therefore want
1846 // to align such objects passed to memory intrinsics.
shouldAlignPointerArgs(CallInst * CI,unsigned & MinSize,unsigned & PrefAlign) const1847 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1848                                                unsigned &PrefAlign) const {
1849   if (!isa<MemIntrinsic>(CI))
1850     return false;
1851   MinSize = 8;
1852   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1853   // cycle faster than 4-byte aligned LDM.
1854   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1855   return true;
1856 }
1857 
1858 // Create a fast isel object.
1859 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const1860 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1861                                   const TargetLibraryInfo *libInfo) const {
1862   return ARM::createFastISel(funcInfo, libInfo);
1863 }
1864 
getSchedulingPreference(SDNode * N) const1865 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1866   unsigned NumVals = N->getNumValues();
1867   if (!NumVals)
1868     return Sched::RegPressure;
1869 
1870   for (unsigned i = 0; i != NumVals; ++i) {
1871     EVT VT = N->getValueType(i);
1872     if (VT == MVT::Glue || VT == MVT::Other)
1873       continue;
1874     if (VT.isFloatingPoint() || VT.isVector())
1875       return Sched::ILP;
1876   }
1877 
1878   if (!N->isMachineOpcode())
1879     return Sched::RegPressure;
1880 
1881   // Load are scheduled for latency even if there instruction itinerary
1882   // is not available.
1883   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1884   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1885 
1886   if (MCID.getNumDefs() == 0)
1887     return Sched::RegPressure;
1888   if (!Itins->isEmpty() &&
1889       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1890     return Sched::ILP;
1891 
1892   return Sched::RegPressure;
1893 }
1894 
1895 //===----------------------------------------------------------------------===//
1896 // Lowering Code
1897 //===----------------------------------------------------------------------===//
1898 
isSRL16(const SDValue & Op)1899 static bool isSRL16(const SDValue &Op) {
1900   if (Op.getOpcode() != ISD::SRL)
1901     return false;
1902   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1903     return Const->getZExtValue() == 16;
1904   return false;
1905 }
1906 
isSRA16(const SDValue & Op)1907 static bool isSRA16(const SDValue &Op) {
1908   if (Op.getOpcode() != ISD::SRA)
1909     return false;
1910   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1911     return Const->getZExtValue() == 16;
1912   return false;
1913 }
1914 
isSHL16(const SDValue & Op)1915 static bool isSHL16(const SDValue &Op) {
1916   if (Op.getOpcode() != ISD::SHL)
1917     return false;
1918   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1919     return Const->getZExtValue() == 16;
1920   return false;
1921 }
1922 
1923 // Check for a signed 16-bit value. We special case SRA because it makes it
1924 // more simple when also looking for SRAs that aren't sign extending a
1925 // smaller value. Without the check, we'd need to take extra care with
1926 // checking order for some operations.
isS16(const SDValue & Op,SelectionDAG & DAG)1927 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
1928   if (isSRA16(Op))
1929     return isSHL16(Op.getOperand(0));
1930   return DAG.ComputeNumSignBits(Op) == 17;
1931 }
1932 
1933 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
IntCCToARMCC(ISD::CondCode CC)1934 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1935   switch (CC) {
1936   default: llvm_unreachable("Unknown condition code!");
1937   case ISD::SETNE:  return ARMCC::NE;
1938   case ISD::SETEQ:  return ARMCC::EQ;
1939   case ISD::SETGT:  return ARMCC::GT;
1940   case ISD::SETGE:  return ARMCC::GE;
1941   case ISD::SETLT:  return ARMCC::LT;
1942   case ISD::SETLE:  return ARMCC::LE;
1943   case ISD::SETUGT: return ARMCC::HI;
1944   case ISD::SETUGE: return ARMCC::HS;
1945   case ISD::SETULT: return ARMCC::LO;
1946   case ISD::SETULE: return ARMCC::LS;
1947   }
1948 }
1949 
1950 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
FPCCToARMCC(ISD::CondCode CC,ARMCC::CondCodes & CondCode,ARMCC::CondCodes & CondCode2)1951 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1952                         ARMCC::CondCodes &CondCode2) {
1953   CondCode2 = ARMCC::AL;
1954   switch (CC) {
1955   default: llvm_unreachable("Unknown FP condition!");
1956   case ISD::SETEQ:
1957   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1958   case ISD::SETGT:
1959   case ISD::SETOGT: CondCode = ARMCC::GT; break;
1960   case ISD::SETGE:
1961   case ISD::SETOGE: CondCode = ARMCC::GE; break;
1962   case ISD::SETOLT: CondCode = ARMCC::MI; break;
1963   case ISD::SETOLE: CondCode = ARMCC::LS; break;
1964   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1965   case ISD::SETO:   CondCode = ARMCC::VC; break;
1966   case ISD::SETUO:  CondCode = ARMCC::VS; break;
1967   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1968   case ISD::SETUGT: CondCode = ARMCC::HI; break;
1969   case ISD::SETUGE: CondCode = ARMCC::PL; break;
1970   case ISD::SETLT:
1971   case ISD::SETULT: CondCode = ARMCC::LT; break;
1972   case ISD::SETLE:
1973   case ISD::SETULE: CondCode = ARMCC::LE; break;
1974   case ISD::SETNE:
1975   case ISD::SETUNE: CondCode = ARMCC::NE; break;
1976   }
1977 }
1978 
1979 //===----------------------------------------------------------------------===//
1980 //                      Calling Convention Implementation
1981 //===----------------------------------------------------------------------===//
1982 
1983 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1984 /// account presence of floating point hardware and calling convention
1985 /// limitations, such as support for variadic functions.
1986 CallingConv::ID
getEffectiveCallingConv(CallingConv::ID CC,bool isVarArg) const1987 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1988                                            bool isVarArg) const {
1989   switch (CC) {
1990   default:
1991     report_fatal_error("Unsupported calling convention");
1992   case CallingConv::ARM_AAPCS:
1993   case CallingConv::ARM_APCS:
1994   case CallingConv::GHC:
1995   case CallingConv::CFGuard_Check:
1996     return CC;
1997   case CallingConv::PreserveMost:
1998     return CallingConv::PreserveMost;
1999   case CallingConv::ARM_AAPCS_VFP:
2000   case CallingConv::Swift:
2001     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
2002   case CallingConv::C:
2003     if (!Subtarget->isAAPCS_ABI())
2004       return CallingConv::ARM_APCS;
2005     else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() &&
2006              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
2007              !isVarArg)
2008       return CallingConv::ARM_AAPCS_VFP;
2009     else
2010       return CallingConv::ARM_AAPCS;
2011   case CallingConv::Fast:
2012   case CallingConv::CXX_FAST_TLS:
2013     if (!Subtarget->isAAPCS_ABI()) {
2014       if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
2015         return CallingConv::Fast;
2016       return CallingConv::ARM_APCS;
2017     } else if (Subtarget->hasVFP2Base() &&
2018                !Subtarget->isThumb1Only() && !isVarArg)
2019       return CallingConv::ARM_AAPCS_VFP;
2020     else
2021       return CallingConv::ARM_AAPCS;
2022   }
2023 }
2024 
CCAssignFnForCall(CallingConv::ID CC,bool isVarArg) const2025 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2026                                                  bool isVarArg) const {
2027   return CCAssignFnForNode(CC, false, isVarArg);
2028 }
2029 
CCAssignFnForReturn(CallingConv::ID CC,bool isVarArg) const2030 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
2031                                                    bool isVarArg) const {
2032   return CCAssignFnForNode(CC, true, isVarArg);
2033 }
2034 
2035 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
2036 /// CallingConvention.
CCAssignFnForNode(CallingConv::ID CC,bool Return,bool isVarArg) const2037 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
2038                                                  bool Return,
2039                                                  bool isVarArg) const {
2040   switch (getEffectiveCallingConv(CC, isVarArg)) {
2041   default:
2042     report_fatal_error("Unsupported calling convention");
2043   case CallingConv::ARM_APCS:
2044     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
2045   case CallingConv::ARM_AAPCS:
2046     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2047   case CallingConv::ARM_AAPCS_VFP:
2048     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
2049   case CallingConv::Fast:
2050     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
2051   case CallingConv::GHC:
2052     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
2053   case CallingConv::PreserveMost:
2054     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2055   case CallingConv::CFGuard_Check:
2056     return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
2057   }
2058 }
2059 
MoveToHPR(const SDLoc & dl,SelectionDAG & DAG,MVT LocVT,MVT ValVT,SDValue Val) const2060 SDValue ARMTargetLowering::MoveToHPR(const SDLoc &dl, SelectionDAG &DAG,
2061                                      MVT LocVT, MVT ValVT, SDValue Val) const {
2062   Val = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocVT.getSizeInBits()),
2063                     Val);
2064   if (Subtarget->hasFullFP16()) {
2065     Val = DAG.getNode(ARMISD::VMOVhr, dl, ValVT, Val);
2066   } else {
2067     Val = DAG.getNode(ISD::TRUNCATE, dl,
2068                       MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2069     Val = DAG.getNode(ISD::BITCAST, dl, ValVT, Val);
2070   }
2071   return Val;
2072 }
2073 
MoveFromHPR(const SDLoc & dl,SelectionDAG & DAG,MVT LocVT,MVT ValVT,SDValue Val) const2074 SDValue ARMTargetLowering::MoveFromHPR(const SDLoc &dl, SelectionDAG &DAG,
2075                                        MVT LocVT, MVT ValVT,
2076                                        SDValue Val) const {
2077   if (Subtarget->hasFullFP16()) {
2078     Val = DAG.getNode(ARMISD::VMOVrh, dl,
2079                       MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2080   } else {
2081     Val = DAG.getNode(ISD::BITCAST, dl,
2082                       MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2083     Val = DAG.getNode(ISD::ZERO_EXTEND, dl,
2084                       MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2085   }
2086   return DAG.getNode(ISD::BITCAST, dl, LocVT, Val);
2087 }
2088 
2089 /// LowerCallResult - Lower the result values of a call into the
2090 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool isThisReturn,SDValue ThisVal) const2091 SDValue ARMTargetLowering::LowerCallResult(
2092     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2093     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2094     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2095     SDValue ThisVal) const {
2096   // Assign locations to each value returned by this call.
2097   SmallVector<CCValAssign, 16> RVLocs;
2098   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2099                  *DAG.getContext());
2100   CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
2101 
2102   // Copy all of the result registers out of their specified physreg.
2103   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2104     CCValAssign VA = RVLocs[i];
2105 
2106     // Pass 'this' value directly from the argument to return value, to avoid
2107     // reg unit interference
2108     if (i == 0 && isThisReturn) {
2109       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
2110              "unexpected return calling convention register assignment");
2111       InVals.push_back(ThisVal);
2112       continue;
2113     }
2114 
2115     SDValue Val;
2116     if (VA.needsCustom() &&
2117         (VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2f64)) {
2118       // Handle f64 or half of a v2f64.
2119       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2120                                       InFlag);
2121       Chain = Lo.getValue(1);
2122       InFlag = Lo.getValue(2);
2123       VA = RVLocs[++i]; // skip ahead to next loc
2124       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2125                                       InFlag);
2126       Chain = Hi.getValue(1);
2127       InFlag = Hi.getValue(2);
2128       if (!Subtarget->isLittle())
2129         std::swap (Lo, Hi);
2130       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2131 
2132       if (VA.getLocVT() == MVT::v2f64) {
2133         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2134         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2135                           DAG.getConstant(0, dl, MVT::i32));
2136 
2137         VA = RVLocs[++i]; // skip ahead to next loc
2138         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2139         Chain = Lo.getValue(1);
2140         InFlag = Lo.getValue(2);
2141         VA = RVLocs[++i]; // skip ahead to next loc
2142         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2143         Chain = Hi.getValue(1);
2144         InFlag = Hi.getValue(2);
2145         if (!Subtarget->isLittle())
2146           std::swap (Lo, Hi);
2147         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2148         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2149                           DAG.getConstant(1, dl, MVT::i32));
2150       }
2151     } else {
2152       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
2153                                InFlag);
2154       Chain = Val.getValue(1);
2155       InFlag = Val.getValue(2);
2156     }
2157 
2158     switch (VA.getLocInfo()) {
2159     default: llvm_unreachable("Unknown loc info!");
2160     case CCValAssign::Full: break;
2161     case CCValAssign::BCvt:
2162       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
2163       break;
2164     }
2165 
2166     // f16 arguments have their size extended to 4 bytes and passed as if they
2167     // had been copied to the LSBs of a 32-bit register.
2168     // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2169     if (VA.needsCustom() &&
2170         (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
2171       Val = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Val);
2172 
2173     InVals.push_back(Val);
2174   }
2175 
2176   return Chain;
2177 }
2178 
2179 /// LowerMemOpCallTo - Store the argument to the stack.
LowerMemOpCallTo(SDValue Chain,SDValue StackPtr,SDValue Arg,const SDLoc & dl,SelectionDAG & DAG,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const2180 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
2181                                             SDValue Arg, const SDLoc &dl,
2182                                             SelectionDAG &DAG,
2183                                             const CCValAssign &VA,
2184                                             ISD::ArgFlagsTy Flags) const {
2185   unsigned LocMemOffset = VA.getLocMemOffset();
2186   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
2187   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
2188                        StackPtr, PtrOff);
2189   return DAG.getStore(
2190       Chain, dl, Arg, PtrOff,
2191       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
2192 }
2193 
PassF64ArgInRegs(const SDLoc & dl,SelectionDAG & DAG,SDValue Chain,SDValue & Arg,RegsToPassVector & RegsToPass,CCValAssign & VA,CCValAssign & NextVA,SDValue & StackPtr,SmallVectorImpl<SDValue> & MemOpChains,ISD::ArgFlagsTy Flags) const2194 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
2195                                          SDValue Chain, SDValue &Arg,
2196                                          RegsToPassVector &RegsToPass,
2197                                          CCValAssign &VA, CCValAssign &NextVA,
2198                                          SDValue &StackPtr,
2199                                          SmallVectorImpl<SDValue> &MemOpChains,
2200                                          ISD::ArgFlagsTy Flags) const {
2201   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2202                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
2203   unsigned id = Subtarget->isLittle() ? 0 : 1;
2204   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
2205 
2206   if (NextVA.isRegLoc())
2207     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
2208   else {
2209     assert(NextVA.isMemLoc());
2210     if (!StackPtr.getNode())
2211       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
2212                                     getPointerTy(DAG.getDataLayout()));
2213 
2214     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
2215                                            dl, DAG, NextVA,
2216                                            Flags));
2217   }
2218 }
2219 
2220 /// LowerCall - Lowering a call into a callseq_start <-
2221 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2222 /// nodes.
2223 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const2224 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2225                              SmallVectorImpl<SDValue> &InVals) const {
2226   SelectionDAG &DAG                     = CLI.DAG;
2227   SDLoc &dl                             = CLI.DL;
2228   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2229   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2230   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2231   SDValue Chain                         = CLI.Chain;
2232   SDValue Callee                        = CLI.Callee;
2233   bool &isTailCall                      = CLI.IsTailCall;
2234   CallingConv::ID CallConv              = CLI.CallConv;
2235   bool doesNotRet                       = CLI.DoesNotReturn;
2236   bool isVarArg                         = CLI.IsVarArg;
2237 
2238   MachineFunction &MF = DAG.getMachineFunction();
2239   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2240   MachineFunction::CallSiteInfo CSInfo;
2241   bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2242   bool isThisReturn = false;
2243   bool isCmseNSCall   = false;
2244   bool PreferIndirect = false;
2245 
2246   // Determine whether this is a non-secure function call.
2247   if (CLI.CB && CLI.CB->getAttributes().hasFnAttribute("cmse_nonsecure_call"))
2248     isCmseNSCall = true;
2249 
2250   // Disable tail calls if they're not supported.
2251   if (!Subtarget->supportsTailCall())
2252     isTailCall = false;
2253 
2254   // For both the non-secure calls and the returns from a CMSE entry function,
2255   // the function needs to do some extra work afte r the call, or before the
2256   // return, respectively, thus it cannot end with atail call
2257   if (isCmseNSCall || AFI->isCmseNSEntryFunction())
2258     isTailCall = false;
2259 
2260   if (isa<GlobalAddressSDNode>(Callee)) {
2261     // If we're optimizing for minimum size and the function is called three or
2262     // more times in this block, we can improve codesize by calling indirectly
2263     // as BLXr has a 16-bit encoding.
2264     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2265     if (CLI.CB) {
2266       auto *BB = CLI.CB->getParent();
2267       PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
2268                        count_if(GV->users(), [&BB](const User *U) {
2269                          return isa<Instruction>(U) &&
2270                                 cast<Instruction>(U)->getParent() == BB;
2271                        }) > 2;
2272     }
2273   }
2274   if (isTailCall) {
2275     // Check if it's really possible to do a tail call.
2276     isTailCall = IsEligibleForTailCallOptimization(
2277         Callee, CallConv, isVarArg, isStructRet,
2278         MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
2279         PreferIndirect);
2280     if (!isTailCall && CLI.CB && CLI.CB->isMustTailCall())
2281       report_fatal_error("failed to perform tail call elimination on a call "
2282                          "site marked musttail");
2283     // We don't support GuaranteedTailCallOpt for ARM, only automatically
2284     // detected sibcalls.
2285     if (isTailCall)
2286       ++NumTailCalls;
2287   }
2288 
2289   // Analyze operands of the call, assigning locations to each operand.
2290   SmallVector<CCValAssign, 16> ArgLocs;
2291   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2292                  *DAG.getContext());
2293   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
2294 
2295   // Get a count of how many bytes are to be pushed on the stack.
2296   unsigned NumBytes = CCInfo.getNextStackOffset();
2297 
2298   if (isTailCall) {
2299     // For tail calls, memory operands are available in our caller's stack.
2300     NumBytes = 0;
2301   } else {
2302     // Adjust the stack pointer for the new arguments...
2303     // These operations are automatically eliminated by the prolog/epilog pass
2304     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
2305   }
2306 
2307   SDValue StackPtr =
2308       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
2309 
2310   RegsToPassVector RegsToPass;
2311   SmallVector<SDValue, 8> MemOpChains;
2312 
2313   // Walk the register/memloc assignments, inserting copies/loads.  In the case
2314   // of tail call optimization, arguments are handled later.
2315   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2316        i != e;
2317        ++i, ++realArgIdx) {
2318     CCValAssign &VA = ArgLocs[i];
2319     SDValue Arg = OutVals[realArgIdx];
2320     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2321     bool isByVal = Flags.isByVal();
2322 
2323     // Promote the value if needed.
2324     switch (VA.getLocInfo()) {
2325     default: llvm_unreachable("Unknown loc info!");
2326     case CCValAssign::Full: break;
2327     case CCValAssign::SExt:
2328       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
2329       break;
2330     case CCValAssign::ZExt:
2331       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
2332       break;
2333     case CCValAssign::AExt:
2334       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
2335       break;
2336     case CCValAssign::BCvt:
2337       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2338       break;
2339     }
2340 
2341     // f16 arguments have their size extended to 4 bytes and passed as if they
2342     // had been copied to the LSBs of a 32-bit register.
2343     // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2344     if (VA.needsCustom() &&
2345         (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) {
2346       Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
2347     } else {
2348       // f16 arguments could have been extended prior to argument lowering.
2349       // Mask them arguments if this is a CMSE nonsecure call.
2350       auto ArgVT = Outs[realArgIdx].ArgVT;
2351       if (isCmseNSCall && (ArgVT == MVT::f16)) {
2352         auto LocBits = VA.getLocVT().getSizeInBits();
2353         auto MaskValue = APInt::getLowBitsSet(LocBits, ArgVT.getSizeInBits());
2354         SDValue Mask =
2355             DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
2356         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
2357         Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
2358         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2359       }
2360     }
2361 
2362     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2363     if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
2364       SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2365                                 DAG.getConstant(0, dl, MVT::i32));
2366       SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2367                                 DAG.getConstant(1, dl, MVT::i32));
2368 
2369       PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i],
2370                        StackPtr, MemOpChains, Flags);
2371 
2372       VA = ArgLocs[++i]; // skip ahead to next loc
2373       if (VA.isRegLoc()) {
2374         PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i],
2375                          StackPtr, MemOpChains, Flags);
2376       } else {
2377         assert(VA.isMemLoc());
2378 
2379         MemOpChains.push_back(
2380             LowerMemOpCallTo(Chain, StackPtr, Op1, dl, DAG, VA, Flags));
2381       }
2382     } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
2383       PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
2384                        StackPtr, MemOpChains, Flags);
2385     } else if (VA.isRegLoc()) {
2386       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
2387           Outs[0].VT == MVT::i32) {
2388         assert(VA.getLocVT() == MVT::i32 &&
2389                "unexpected calling convention register assignment");
2390         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
2391                "unexpected use of 'returned'");
2392         isThisReturn = true;
2393       }
2394       const TargetOptions &Options = DAG.getTarget().Options;
2395       if (Options.EmitCallSiteInfo)
2396         CSInfo.emplace_back(VA.getLocReg(), i);
2397       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2398     } else if (isByVal) {
2399       assert(VA.isMemLoc());
2400       unsigned offset = 0;
2401 
2402       // True if this byval aggregate will be split between registers
2403       // and memory.
2404       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
2405       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
2406 
2407       if (CurByValIdx < ByValArgsCount) {
2408 
2409         unsigned RegBegin, RegEnd;
2410         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
2411 
2412         EVT PtrVT =
2413             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2414         unsigned int i, j;
2415         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
2416           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
2417           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2418           SDValue Load =
2419               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(),
2420                           DAG.InferPtrAlign(AddArg));
2421           MemOpChains.push_back(Load.getValue(1));
2422           RegsToPass.push_back(std::make_pair(j, Load));
2423         }
2424 
2425         // If parameter size outsides register area, "offset" value
2426         // helps us to calculate stack slot for remained part properly.
2427         offset = RegEnd - RegBegin;
2428 
2429         CCInfo.nextInRegsParam();
2430       }
2431 
2432       if (Flags.getByValSize() > 4*offset) {
2433         auto PtrVT = getPointerTy(DAG.getDataLayout());
2434         unsigned LocMemOffset = VA.getLocMemOffset();
2435         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
2436         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
2437         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
2438         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
2439         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
2440                                            MVT::i32);
2441         SDValue AlignNode =
2442             DAG.getConstant(Flags.getNonZeroByValAlign().value(), dl, MVT::i32);
2443 
2444         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2445         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2446         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
2447                                           Ops));
2448       }
2449     } else if (!isTailCall) {
2450       assert(VA.isMemLoc());
2451 
2452       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2453                                              dl, DAG, VA, Flags));
2454     }
2455   }
2456 
2457   if (!MemOpChains.empty())
2458     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2459 
2460   // Build a sequence of copy-to-reg nodes chained together with token chain
2461   // and flag operands which copy the outgoing args into the appropriate regs.
2462   SDValue InFlag;
2463   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2464     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2465                              RegsToPass[i].second, InFlag);
2466     InFlag = Chain.getValue(1);
2467   }
2468 
2469   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2470   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2471   // node so that legalize doesn't hack it.
2472   bool isDirect = false;
2473 
2474   const TargetMachine &TM = getTargetMachine();
2475   const Module *Mod = MF.getFunction().getParent();
2476   const GlobalValue *GV = nullptr;
2477   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2478     GV = G->getGlobal();
2479   bool isStub =
2480       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
2481 
2482   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2483   bool isLocalARMFunc = false;
2484   auto PtrVt = getPointerTy(DAG.getDataLayout());
2485 
2486   if (Subtarget->genLongCalls()) {
2487     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2488            "long-calls codegen is not position independent!");
2489     // Handle a global address or an external symbol. If it's not one of
2490     // those, the target's already in a register, so we don't need to do
2491     // anything extra.
2492     if (isa<GlobalAddressSDNode>(Callee)) {
2493       // Create a constant pool entry for the callee address
2494       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2495       ARMConstantPoolValue *CPV =
2496         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
2497 
2498       // Get the address of the callee into a register
2499       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2500       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2501       Callee = DAG.getLoad(
2502           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2503           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2504     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2505       const char *Sym = S->getSymbol();
2506 
2507       // Create a constant pool entry for the callee address
2508       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2509       ARMConstantPoolValue *CPV =
2510         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2511                                       ARMPCLabelIndex, 0);
2512       // Get the address of the callee into a register
2513       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2514       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2515       Callee = DAG.getLoad(
2516           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2517           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2518     }
2519   } else if (isa<GlobalAddressSDNode>(Callee)) {
2520     if (!PreferIndirect) {
2521       isDirect = true;
2522       bool isDef = GV->isStrongDefinitionForLinker();
2523 
2524       // ARM call to a local ARM function is predicable.
2525       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2526       // tBX takes a register source operand.
2527       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2528         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2529         Callee = DAG.getNode(
2530             ARMISD::WrapperPIC, dl, PtrVt,
2531             DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2532         Callee = DAG.getLoad(
2533             PtrVt, dl, DAG.getEntryNode(), Callee,
2534             MachinePointerInfo::getGOT(DAG.getMachineFunction()), MaybeAlign(),
2535             MachineMemOperand::MODereferenceable |
2536                 MachineMemOperand::MOInvariant);
2537       } else if (Subtarget->isTargetCOFF()) {
2538         assert(Subtarget->isTargetWindows() &&
2539                "Windows is the only supported COFF target");
2540         unsigned TargetFlags = ARMII::MO_NO_FLAG;
2541         if (GV->hasDLLImportStorageClass())
2542           TargetFlags = ARMII::MO_DLLIMPORT;
2543         else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
2544           TargetFlags = ARMII::MO_COFFSTUB;
2545         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*offset=*/0,
2546                                             TargetFlags);
2547         if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
2548           Callee =
2549               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2550                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2551                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2552       } else {
2553         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2554       }
2555     }
2556   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2557     isDirect = true;
2558     // tBX takes a register source operand.
2559     const char *Sym = S->getSymbol();
2560     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2561       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2562       ARMConstantPoolValue *CPV =
2563         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2564                                       ARMPCLabelIndex, 4);
2565       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2566       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2567       Callee = DAG.getLoad(
2568           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2569           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2570       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2571       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2572     } else {
2573       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2574     }
2575   }
2576 
2577   if (isCmseNSCall) {
2578     assert(!isARMFunc && !isDirect &&
2579            "Cannot handle call to ARM function or direct call");
2580     if (NumBytes > 0) {
2581       DiagnosticInfoUnsupported Diag(DAG.getMachineFunction().getFunction(),
2582                                      "call to non-secure function would "
2583                                      "require passing arguments on stack",
2584                                      dl.getDebugLoc());
2585       DAG.getContext()->diagnose(Diag);
2586     }
2587     if (isStructRet) {
2588       DiagnosticInfoUnsupported Diag(
2589           DAG.getMachineFunction().getFunction(),
2590           "call to non-secure function would return value through pointer",
2591           dl.getDebugLoc());
2592       DAG.getContext()->diagnose(Diag);
2593     }
2594   }
2595 
2596   // FIXME: handle tail calls differently.
2597   unsigned CallOpc;
2598   if (Subtarget->isThumb()) {
2599     if (isCmseNSCall)
2600       CallOpc = ARMISD::tSECALL;
2601     else if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2602       CallOpc = ARMISD::CALL_NOLINK;
2603     else
2604       CallOpc = ARMISD::CALL;
2605   } else {
2606     if (!isDirect && !Subtarget->hasV5TOps())
2607       CallOpc = ARMISD::CALL_NOLINK;
2608     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2609              // Emit regular call when code size is the priority
2610              !Subtarget->hasMinSize())
2611       // "mov lr, pc; b _foo" to avoid confusing the RSP
2612       CallOpc = ARMISD::CALL_NOLINK;
2613     else
2614       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2615   }
2616 
2617   std::vector<SDValue> Ops;
2618   Ops.push_back(Chain);
2619   Ops.push_back(Callee);
2620 
2621   // Add argument registers to the end of the list so that they are known live
2622   // into the call.
2623   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2624     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2625                                   RegsToPass[i].second.getValueType()));
2626 
2627   // Add a register mask operand representing the call-preserved registers.
2628   if (!isTailCall) {
2629     const uint32_t *Mask;
2630     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2631     if (isThisReturn) {
2632       // For 'this' returns, use the R0-preserving mask if applicable
2633       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2634       if (!Mask) {
2635         // Set isThisReturn to false if the calling convention is not one that
2636         // allows 'returned' to be modeled in this way, so LowerCallResult does
2637         // not try to pass 'this' straight through
2638         isThisReturn = false;
2639         Mask = ARI->getCallPreservedMask(MF, CallConv);
2640       }
2641     } else
2642       Mask = ARI->getCallPreservedMask(MF, CallConv);
2643 
2644     assert(Mask && "Missing call preserved mask for calling convention");
2645     Ops.push_back(DAG.getRegisterMask(Mask));
2646   }
2647 
2648   if (InFlag.getNode())
2649     Ops.push_back(InFlag);
2650 
2651   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2652   if (isTailCall) {
2653     MF.getFrameInfo().setHasTailCall();
2654     SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2655     DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
2656     return Ret;
2657   }
2658 
2659   // Returns a chain and a flag for retval copy to use.
2660   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2661   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2662   InFlag = Chain.getValue(1);
2663   DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
2664 
2665   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2666                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2667   if (!Ins.empty())
2668     InFlag = Chain.getValue(1);
2669 
2670   // Handle result values, copying them out of physregs into vregs that we
2671   // return.
2672   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2673                          InVals, isThisReturn,
2674                          isThisReturn ? OutVals[0] : SDValue());
2675 }
2676 
2677 /// HandleByVal - Every parameter *after* a byval parameter is passed
2678 /// on the stack.  Remember the next parameter register to allocate,
2679 /// and then confiscate the rest of the parameter registers to insure
2680 /// this.
HandleByVal(CCState * State,unsigned & Size,Align Alignment) const2681 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2682                                     Align Alignment) const {
2683   // Byval (as with any stack) slots are always at least 4 byte aligned.
2684   Alignment = std::max(Alignment, Align(4));
2685 
2686   unsigned Reg = State->AllocateReg(GPRArgRegs);
2687   if (!Reg)
2688     return;
2689 
2690   unsigned AlignInRegs = Alignment.value() / 4;
2691   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2692   for (unsigned i = 0; i < Waste; ++i)
2693     Reg = State->AllocateReg(GPRArgRegs);
2694 
2695   if (!Reg)
2696     return;
2697 
2698   unsigned Excess = 4 * (ARM::R4 - Reg);
2699 
2700   // Special case when NSAA != SP and parameter size greater than size of
2701   // all remained GPR regs. In that case we can't split parameter, we must
2702   // send it to stack. We also must set NCRN to R4, so waste all
2703   // remained registers.
2704   const unsigned NSAAOffset = State->getNextStackOffset();
2705   if (NSAAOffset != 0 && Size > Excess) {
2706     while (State->AllocateReg(GPRArgRegs))
2707       ;
2708     return;
2709   }
2710 
2711   // First register for byval parameter is the first register that wasn't
2712   // allocated before this method call, so it would be "reg".
2713   // If parameter is small enough to be saved in range [reg, r4), then
2714   // the end (first after last) register would be reg + param-size-in-regs,
2715   // else parameter would be splitted between registers and stack,
2716   // end register would be r4 in this case.
2717   unsigned ByValRegBegin = Reg;
2718   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2719   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2720   // Note, first register is allocated in the beginning of function already,
2721   // allocate remained amount of registers we need.
2722   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2723     State->AllocateReg(GPRArgRegs);
2724   // A byval parameter that is split between registers and memory needs its
2725   // size truncated here.
2726   // In the case where the entire structure fits in registers, we set the
2727   // size in memory to zero.
2728   Size = std::max<int>(Size - Excess, 0);
2729 }
2730 
2731 /// MatchingStackOffset - Return true if the given stack call argument is
2732 /// already available in the same position (relatively) of the caller's
2733 /// incoming argument stack.
2734 static
MatchingStackOffset(SDValue Arg,unsigned Offset,ISD::ArgFlagsTy Flags,MachineFrameInfo & MFI,const MachineRegisterInfo * MRI,const TargetInstrInfo * TII)2735 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2736                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2737                          const TargetInstrInfo *TII) {
2738   unsigned Bytes = Arg.getValueSizeInBits() / 8;
2739   int FI = std::numeric_limits<int>::max();
2740   if (Arg.getOpcode() == ISD::CopyFromReg) {
2741     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2742     if (!Register::isVirtualRegister(VR))
2743       return false;
2744     MachineInstr *Def = MRI->getVRegDef(VR);
2745     if (!Def)
2746       return false;
2747     if (!Flags.isByVal()) {
2748       if (!TII->isLoadFromStackSlot(*Def, FI))
2749         return false;
2750     } else {
2751       return false;
2752     }
2753   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2754     if (Flags.isByVal())
2755       // ByVal argument is passed in as a pointer but it's now being
2756       // dereferenced. e.g.
2757       // define @foo(%struct.X* %A) {
2758       //   tail call @bar(%struct.X* byval %A)
2759       // }
2760       return false;
2761     SDValue Ptr = Ld->getBasePtr();
2762     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2763     if (!FINode)
2764       return false;
2765     FI = FINode->getIndex();
2766   } else
2767     return false;
2768 
2769   assert(FI != std::numeric_limits<int>::max());
2770   if (!MFI.isFixedObjectIndex(FI))
2771     return false;
2772   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2773 }
2774 
2775 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2776 /// for tail call optimization. Targets which want to do tail call
2777 /// optimization should implement this function.
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,bool isCalleeStructRet,bool isCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG,const bool isIndirect) const2778 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2779     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2780     bool isCalleeStructRet, bool isCallerStructRet,
2781     const SmallVectorImpl<ISD::OutputArg> &Outs,
2782     const SmallVectorImpl<SDValue> &OutVals,
2783     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
2784     const bool isIndirect) const {
2785   MachineFunction &MF = DAG.getMachineFunction();
2786   const Function &CallerF = MF.getFunction();
2787   CallingConv::ID CallerCC = CallerF.getCallingConv();
2788 
2789   assert(Subtarget->supportsTailCall());
2790 
2791   // Indirect tail calls cannot be optimized for Thumb1 if the args
2792   // to the call take up r0-r3. The reason is that there are no legal registers
2793   // left to hold the pointer to the function to be called.
2794   if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
2795       (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect))
2796     return false;
2797 
2798   // Look for obvious safe cases to perform tail call optimization that do not
2799   // require ABI changes. This is what gcc calls sibcall.
2800 
2801   // Exception-handling functions need a special set of instructions to indicate
2802   // a return to the hardware. Tail-calling another function would probably
2803   // break this.
2804   if (CallerF.hasFnAttribute("interrupt"))
2805     return false;
2806 
2807   // Also avoid sibcall optimization if either caller or callee uses struct
2808   // return semantics.
2809   if (isCalleeStructRet || isCallerStructRet)
2810     return false;
2811 
2812   // Externally-defined functions with weak linkage should not be
2813   // tail-called on ARM when the OS does not support dynamic
2814   // pre-emption of symbols, as the AAELF spec requires normal calls
2815   // to undefined weak functions to be replaced with a NOP or jump to the
2816   // next instruction. The behaviour of branch instructions in this
2817   // situation (as used for tail calls) is implementation-defined, so we
2818   // cannot rely on the linker replacing the tail call with a return.
2819   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2820     const GlobalValue *GV = G->getGlobal();
2821     const Triple &TT = getTargetMachine().getTargetTriple();
2822     if (GV->hasExternalWeakLinkage() &&
2823         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2824       return false;
2825   }
2826 
2827   // Check that the call results are passed in the same way.
2828   LLVMContext &C = *DAG.getContext();
2829   if (!CCState::resultsCompatible(
2830           getEffectiveCallingConv(CalleeCC, isVarArg),
2831           getEffectiveCallingConv(CallerCC, CallerF.isVarArg()), MF, C, Ins,
2832           CCAssignFnForReturn(CalleeCC, isVarArg),
2833           CCAssignFnForReturn(CallerCC, CallerF.isVarArg())))
2834     return false;
2835   // The callee has to preserve all registers the caller needs to preserve.
2836   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2837   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2838   if (CalleeCC != CallerCC) {
2839     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2840     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2841       return false;
2842   }
2843 
2844   // If Caller's vararg or byval argument has been split between registers and
2845   // stack, do not perform tail call, since part of the argument is in caller's
2846   // local frame.
2847   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2848   if (AFI_Caller->getArgRegsSaveSize())
2849     return false;
2850 
2851   // If the callee takes no arguments then go on to check the results of the
2852   // call.
2853   if (!Outs.empty()) {
2854     // Check if stack adjustment is needed. For now, do not do this if any
2855     // argument is passed on the stack.
2856     SmallVector<CCValAssign, 16> ArgLocs;
2857     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2858     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2859     if (CCInfo.getNextStackOffset()) {
2860       // Check if the arguments are already laid out in the right way as
2861       // the caller's fixed stack objects.
2862       MachineFrameInfo &MFI = MF.getFrameInfo();
2863       const MachineRegisterInfo *MRI = &MF.getRegInfo();
2864       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2865       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2866            i != e;
2867            ++i, ++realArgIdx) {
2868         CCValAssign &VA = ArgLocs[i];
2869         EVT RegVT = VA.getLocVT();
2870         SDValue Arg = OutVals[realArgIdx];
2871         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2872         if (VA.getLocInfo() == CCValAssign::Indirect)
2873           return false;
2874         if (VA.needsCustom() && (RegVT == MVT::f64 || RegVT == MVT::v2f64)) {
2875           // f64 and vector types are split into multiple registers or
2876           // register/stack-slot combinations.  The types will not match
2877           // the registers; give up on memory f64 refs until we figure
2878           // out what to do about this.
2879           if (!VA.isRegLoc())
2880             return false;
2881           if (!ArgLocs[++i].isRegLoc())
2882             return false;
2883           if (RegVT == MVT::v2f64) {
2884             if (!ArgLocs[++i].isRegLoc())
2885               return false;
2886             if (!ArgLocs[++i].isRegLoc())
2887               return false;
2888           }
2889         } else if (!VA.isRegLoc()) {
2890           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2891                                    MFI, MRI, TII))
2892             return false;
2893         }
2894       }
2895     }
2896 
2897     const MachineRegisterInfo &MRI = MF.getRegInfo();
2898     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2899       return false;
2900   }
2901 
2902   return true;
2903 }
2904 
2905 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const2906 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2907                                   MachineFunction &MF, bool isVarArg,
2908                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2909                                   LLVMContext &Context) const {
2910   SmallVector<CCValAssign, 16> RVLocs;
2911   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2912   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2913 }
2914 
LowerInterruptReturn(SmallVectorImpl<SDValue> & RetOps,const SDLoc & DL,SelectionDAG & DAG)2915 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2916                                     const SDLoc &DL, SelectionDAG &DAG) {
2917   const MachineFunction &MF = DAG.getMachineFunction();
2918   const Function &F = MF.getFunction();
2919 
2920   StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
2921 
2922   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2923   // version of the "preferred return address". These offsets affect the return
2924   // instruction if this is a return from PL1 without hypervisor extensions.
2925   //    IRQ/FIQ: +4     "subs pc, lr, #4"
2926   //    SWI:     0      "subs pc, lr, #0"
2927   //    ABORT:   +4     "subs pc, lr, #4"
2928   //    UNDEF:   +4/+2  "subs pc, lr, #0"
2929   // UNDEF varies depending on where the exception came from ARM or Thumb
2930   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2931 
2932   int64_t LROffset;
2933   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2934       IntKind == "ABORT")
2935     LROffset = 4;
2936   else if (IntKind == "SWI" || IntKind == "UNDEF")
2937     LROffset = 0;
2938   else
2939     report_fatal_error("Unsupported interrupt attribute. If present, value "
2940                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2941 
2942   RetOps.insert(RetOps.begin() + 1,
2943                 DAG.getConstant(LROffset, DL, MVT::i32, false));
2944 
2945   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2946 }
2947 
2948 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const2949 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2950                                bool isVarArg,
2951                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2952                                const SmallVectorImpl<SDValue> &OutVals,
2953                                const SDLoc &dl, SelectionDAG &DAG) const {
2954   // CCValAssign - represent the assignment of the return value to a location.
2955   SmallVector<CCValAssign, 16> RVLocs;
2956 
2957   // CCState - Info about the registers and stack slots.
2958   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2959                  *DAG.getContext());
2960 
2961   // Analyze outgoing return values.
2962   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2963 
2964   SDValue Flag;
2965   SmallVector<SDValue, 4> RetOps;
2966   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2967   bool isLittleEndian = Subtarget->isLittle();
2968 
2969   MachineFunction &MF = DAG.getMachineFunction();
2970   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2971   AFI->setReturnRegsCount(RVLocs.size());
2972 
2973  // Report error if cmse entry function returns structure through first ptr arg.
2974   if (AFI->isCmseNSEntryFunction() && MF.getFunction().hasStructRetAttr()) {
2975     // Note: using an empty SDLoc(), as the first line of the function is a
2976     // better place to report than the last line.
2977     DiagnosticInfoUnsupported Diag(
2978         DAG.getMachineFunction().getFunction(),
2979         "secure entry function would return value through pointer",
2980         SDLoc().getDebugLoc());
2981     DAG.getContext()->diagnose(Diag);
2982   }
2983 
2984   // Copy the result values into the output registers.
2985   for (unsigned i = 0, realRVLocIdx = 0;
2986        i != RVLocs.size();
2987        ++i, ++realRVLocIdx) {
2988     CCValAssign &VA = RVLocs[i];
2989     assert(VA.isRegLoc() && "Can only return in registers!");
2990 
2991     SDValue Arg = OutVals[realRVLocIdx];
2992     bool ReturnF16 = false;
2993 
2994     if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
2995       // Half-precision return values can be returned like this:
2996       //
2997       // t11 f16 = fadd ...
2998       // t12: i16 = bitcast t11
2999       //   t13: i32 = zero_extend t12
3000       // t14: f32 = bitcast t13  <~~~~~~~ Arg
3001       //
3002       // to avoid code generation for bitcasts, we simply set Arg to the node
3003       // that produces the f16 value, t11 in this case.
3004       //
3005       if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
3006         SDValue ZE = Arg.getOperand(0);
3007         if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
3008           SDValue BC = ZE.getOperand(0);
3009           if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
3010             Arg = BC.getOperand(0);
3011             ReturnF16 = true;
3012           }
3013         }
3014       }
3015     }
3016 
3017     switch (VA.getLocInfo()) {
3018     default: llvm_unreachable("Unknown loc info!");
3019     case CCValAssign::Full: break;
3020     case CCValAssign::BCvt:
3021       if (!ReturnF16)
3022         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3023       break;
3024     }
3025 
3026     // Mask f16 arguments if this is a CMSE nonsecure entry.
3027     auto RetVT = Outs[realRVLocIdx].ArgVT;
3028     if (AFI->isCmseNSEntryFunction() && (RetVT == MVT::f16)) {
3029       if (VA.needsCustom() && VA.getValVT() == MVT::f16) {
3030         Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
3031       } else {
3032         auto LocBits = VA.getLocVT().getSizeInBits();
3033         auto MaskValue = APInt::getLowBitsSet(LocBits, RetVT.getSizeInBits());
3034         SDValue Mask =
3035             DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
3036         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
3037         Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
3038         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3039       }
3040     }
3041 
3042     if (VA.needsCustom() &&
3043         (VA.getLocVT() == MVT::v2f64 || VA.getLocVT() == MVT::f64)) {
3044       if (VA.getLocVT() == MVT::v2f64) {
3045         // Extract the first half and return it in two registers.
3046         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3047                                    DAG.getConstant(0, dl, MVT::i32));
3048         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
3049                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
3050 
3051         Chain =
3052             DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3053                              HalfGPRs.getValue(isLittleEndian ? 0 : 1), Flag);
3054         Flag = Chain.getValue(1);
3055         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3056         VA = RVLocs[++i]; // skip ahead to next loc
3057         Chain =
3058             DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3059                              HalfGPRs.getValue(isLittleEndian ? 1 : 0), Flag);
3060         Flag = Chain.getValue(1);
3061         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3062         VA = RVLocs[++i]; // skip ahead to next loc
3063 
3064         // Extract the 2nd half and fall through to handle it as an f64 value.
3065         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3066                           DAG.getConstant(1, dl, MVT::i32));
3067       }
3068       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
3069       // available.
3070       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
3071                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
3072       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3073                                fmrrd.getValue(isLittleEndian ? 0 : 1), Flag);
3074       Flag = Chain.getValue(1);
3075       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3076       VA = RVLocs[++i]; // skip ahead to next loc
3077       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3078                                fmrrd.getValue(isLittleEndian ? 1 : 0), Flag);
3079     } else
3080       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
3081 
3082     // Guarantee that all emitted copies are
3083     // stuck together, avoiding something bad.
3084     Flag = Chain.getValue(1);
3085     RetOps.push_back(DAG.getRegister(
3086         VA.getLocReg(), ReturnF16 ? Arg.getValueType() : VA.getLocVT()));
3087   }
3088   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
3089   const MCPhysReg *I =
3090       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3091   if (I) {
3092     for (; *I; ++I) {
3093       if (ARM::GPRRegClass.contains(*I))
3094         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
3095       else if (ARM::DPRRegClass.contains(*I))
3096         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3097       else
3098         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3099     }
3100   }
3101 
3102   // Update chain and glue.
3103   RetOps[0] = Chain;
3104   if (Flag.getNode())
3105     RetOps.push_back(Flag);
3106 
3107   // CPUs which aren't M-class use a special sequence to return from
3108   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
3109   // though we use "subs pc, lr, #N").
3110   //
3111   // M-class CPUs actually use a normal return sequence with a special
3112   // (hardware-provided) value in LR, so the normal code path works.
3113   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
3114       !Subtarget->isMClass()) {
3115     if (Subtarget->isThumb1Only())
3116       report_fatal_error("interrupt attribute is not supported in Thumb1");
3117     return LowerInterruptReturn(RetOps, dl, DAG);
3118   }
3119 
3120   ARMISD::NodeType RetNode = AFI->isCmseNSEntryFunction() ? ARMISD::SERET_FLAG :
3121                                                             ARMISD::RET_FLAG;
3122   return DAG.getNode(RetNode, dl, MVT::Other, RetOps);
3123 }
3124 
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const3125 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
3126   if (N->getNumValues() != 1)
3127     return false;
3128   if (!N->hasNUsesOfValue(1, 0))
3129     return false;
3130 
3131   SDValue TCChain = Chain;
3132   SDNode *Copy = *N->use_begin();
3133   if (Copy->getOpcode() == ISD::CopyToReg) {
3134     // If the copy has a glue operand, we conservatively assume it isn't safe to
3135     // perform a tail call.
3136     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3137       return false;
3138     TCChain = Copy->getOperand(0);
3139   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
3140     SDNode *VMov = Copy;
3141     // f64 returned in a pair of GPRs.
3142     SmallPtrSet<SDNode*, 2> Copies;
3143     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
3144          UI != UE; ++UI) {
3145       if (UI->getOpcode() != ISD::CopyToReg)
3146         return false;
3147       Copies.insert(*UI);
3148     }
3149     if (Copies.size() > 2)
3150       return false;
3151 
3152     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
3153          UI != UE; ++UI) {
3154       SDValue UseChain = UI->getOperand(0);
3155       if (Copies.count(UseChain.getNode()))
3156         // Second CopyToReg
3157         Copy = *UI;
3158       else {
3159         // We are at the top of this chain.
3160         // If the copy has a glue operand, we conservatively assume it
3161         // isn't safe to perform a tail call.
3162         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
3163           return false;
3164         // First CopyToReg
3165         TCChain = UseChain;
3166       }
3167     }
3168   } else if (Copy->getOpcode() == ISD::BITCAST) {
3169     // f32 returned in a single GPR.
3170     if (!Copy->hasOneUse())
3171       return false;
3172     Copy = *Copy->use_begin();
3173     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
3174       return false;
3175     // If the copy has a glue operand, we conservatively assume it isn't safe to
3176     // perform a tail call.
3177     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3178       return false;
3179     TCChain = Copy->getOperand(0);
3180   } else {
3181     return false;
3182   }
3183 
3184   bool HasRet = false;
3185   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
3186        UI != UE; ++UI) {
3187     if (UI->getOpcode() != ARMISD::RET_FLAG &&
3188         UI->getOpcode() != ARMISD::INTRET_FLAG)
3189       return false;
3190     HasRet = true;
3191   }
3192 
3193   if (!HasRet)
3194     return false;
3195 
3196   Chain = TCChain;
3197   return true;
3198 }
3199 
mayBeEmittedAsTailCall(const CallInst * CI) const3200 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3201   if (!Subtarget->supportsTailCall())
3202     return false;
3203 
3204   if (!CI->isTailCall())
3205     return false;
3206 
3207   return true;
3208 }
3209 
3210 // Trying to write a 64 bit value so need to split into two 32 bit values first,
3211 // and pass the lower and high parts through.
LowerWRITE_REGISTER(SDValue Op,SelectionDAG & DAG)3212 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
3213   SDLoc DL(Op);
3214   SDValue WriteValue = Op->getOperand(2);
3215 
3216   // This function is only supposed to be called for i64 type argument.
3217   assert(WriteValue.getValueType() == MVT::i64
3218           && "LowerWRITE_REGISTER called for non-i64 type argument.");
3219 
3220   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
3221                            DAG.getConstant(0, DL, MVT::i32));
3222   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
3223                            DAG.getConstant(1, DL, MVT::i32));
3224   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
3225   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
3226 }
3227 
3228 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3229 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
3230 // one of the above mentioned nodes. It has to be wrapped because otherwise
3231 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3232 // be used to form addressing mode. These wrapped nodes will be selected
3233 // into MOVi.
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const3234 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
3235                                              SelectionDAG &DAG) const {
3236   EVT PtrVT = Op.getValueType();
3237   // FIXME there is no actual debug info here
3238   SDLoc dl(Op);
3239   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3240   SDValue Res;
3241 
3242   // When generating execute-only code Constant Pools must be promoted to the
3243   // global data section. It's a bit ugly that we can't share them across basic
3244   // blocks, but this way we guarantee that execute-only behaves correct with
3245   // position-independent addressing modes.
3246   if (Subtarget->genExecuteOnly()) {
3247     auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3248     auto T = const_cast<Type*>(CP->getType());
3249     auto C = const_cast<Constant*>(CP->getConstVal());
3250     auto M = const_cast<Module*>(DAG.getMachineFunction().
3251                                  getFunction().getParent());
3252     auto GV = new GlobalVariable(
3253                     *M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
3254                     Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
3255                     Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
3256                     Twine(AFI->createPICLabelUId())
3257                   );
3258     SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
3259                                             dl, PtrVT);
3260     return LowerGlobalAddress(GA, DAG);
3261   }
3262 
3263   if (CP->isMachineConstantPoolEntry())
3264     Res =
3265         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3266   else
3267     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign());
3268   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
3269 }
3270 
getJumpTableEncoding() const3271 unsigned ARMTargetLowering::getJumpTableEncoding() const {
3272   return MachineJumpTableInfo::EK_Inline;
3273 }
3274 
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const3275 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
3276                                              SelectionDAG &DAG) const {
3277   MachineFunction &MF = DAG.getMachineFunction();
3278   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3279   unsigned ARMPCLabelIndex = 0;
3280   SDLoc DL(Op);
3281   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3282   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3283   SDValue CPAddr;
3284   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
3285   if (!IsPositionIndependent) {
3286     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, Align(4));
3287   } else {
3288     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
3289     ARMPCLabelIndex = AFI->createPICLabelUId();
3290     ARMConstantPoolValue *CPV =
3291       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
3292                                       ARMCP::CPBlockAddress, PCAdj);
3293     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3294   }
3295   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
3296   SDValue Result = DAG.getLoad(
3297       PtrVT, DL, DAG.getEntryNode(), CPAddr,
3298       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3299   if (!IsPositionIndependent)
3300     return Result;
3301   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
3302   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
3303 }
3304 
3305 /// Convert a TLS address reference into the correct sequence of loads
3306 /// and calls to compute the variable's address for Darwin, and return an
3307 /// SDValue containing the final node.
3308 
3309 /// Darwin only has one TLS scheme which must be capable of dealing with the
3310 /// fully general situation, in the worst case. This means:
3311 ///     + "extern __thread" declaration.
3312 ///     + Defined in a possibly unknown dynamic library.
3313 ///
3314 /// The general system is that each __thread variable has a [3 x i32] descriptor
3315 /// which contains information used by the runtime to calculate the address. The
3316 /// only part of this the compiler needs to know about is the first word, which
3317 /// contains a function pointer that must be called with the address of the
3318 /// entire descriptor in "r0".
3319 ///
3320 /// Since this descriptor may be in a different unit, in general access must
3321 /// proceed along the usual ARM rules. A common sequence to produce is:
3322 ///
3323 ///     movw rT1, :lower16:_var$non_lazy_ptr
3324 ///     movt rT1, :upper16:_var$non_lazy_ptr
3325 ///     ldr r0, [rT1]
3326 ///     ldr rT2, [r0]
3327 ///     blx rT2
3328 ///     [...address now in r0...]
3329 SDValue
LowerGlobalTLSAddressDarwin(SDValue Op,SelectionDAG & DAG) const3330 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
3331                                                SelectionDAG &DAG) const {
3332   assert(Subtarget->isTargetDarwin() &&
3333          "This function expects a Darwin target");
3334   SDLoc DL(Op);
3335 
3336   // First step is to get the address of the actua global symbol. This is where
3337   // the TLS descriptor lives.
3338   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
3339 
3340   // The first entry in the descriptor is a function pointer that we must call
3341   // to obtain the address of the variable.
3342   SDValue Chain = DAG.getEntryNode();
3343   SDValue FuncTLVGet = DAG.getLoad(
3344       MVT::i32, DL, Chain, DescAddr,
3345       MachinePointerInfo::getGOT(DAG.getMachineFunction()), Align(4),
3346       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
3347           MachineMemOperand::MOInvariant);
3348   Chain = FuncTLVGet.getValue(1);
3349 
3350   MachineFunction &F = DAG.getMachineFunction();
3351   MachineFrameInfo &MFI = F.getFrameInfo();
3352   MFI.setAdjustsStack(true);
3353 
3354   // TLS calls preserve all registers except those that absolutely must be
3355   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3356   // silly).
3357   auto TRI =
3358       getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
3359   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
3360   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
3361 
3362   // Finally, we can make the call. This is just a degenerate version of a
3363   // normal AArch64 call node: r0 takes the address of the descriptor, and
3364   // returns the address of the variable in this thread.
3365   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
3366   Chain =
3367       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3368                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
3369                   DAG.getRegisterMask(Mask), Chain.getValue(1));
3370   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
3371 }
3372 
3373 SDValue
LowerGlobalTLSAddressWindows(SDValue Op,SelectionDAG & DAG) const3374 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
3375                                                 SelectionDAG &DAG) const {
3376   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
3377 
3378   SDValue Chain = DAG.getEntryNode();
3379   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3380   SDLoc DL(Op);
3381 
3382   // Load the current TEB (thread environment block)
3383   SDValue Ops[] = {Chain,
3384                    DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
3385                    DAG.getTargetConstant(15, DL, MVT::i32),
3386                    DAG.getTargetConstant(0, DL, MVT::i32),
3387                    DAG.getTargetConstant(13, DL, MVT::i32),
3388                    DAG.getTargetConstant(0, DL, MVT::i32),
3389                    DAG.getTargetConstant(2, DL, MVT::i32)};
3390   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
3391                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
3392 
3393   SDValue TEB = CurrentTEB.getValue(0);
3394   Chain = CurrentTEB.getValue(1);
3395 
3396   // Load the ThreadLocalStoragePointer from the TEB
3397   // A pointer to the TLS array is located at offset 0x2c from the TEB.
3398   SDValue TLSArray =
3399       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
3400   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
3401 
3402   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3403   // offset into the TLSArray.
3404 
3405   // Load the TLS index from the C runtime
3406   SDValue TLSIndex =
3407       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
3408   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
3409   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
3410 
3411   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
3412                               DAG.getConstant(2, DL, MVT::i32));
3413   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
3414                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
3415                             MachinePointerInfo());
3416 
3417   // Get the offset of the start of the .tls section (section base)
3418   const auto *GA = cast<GlobalAddressSDNode>(Op);
3419   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
3420   SDValue Offset = DAG.getLoad(
3421       PtrVT, DL, Chain,
3422       DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
3423                   DAG.getTargetConstantPool(CPV, PtrVT, Align(4))),
3424       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3425 
3426   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
3427 }
3428 
3429 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3430 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const3431 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
3432                                                  SelectionDAG &DAG) const {
3433   SDLoc dl(GA);
3434   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3435   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3436   MachineFunction &MF = DAG.getMachineFunction();
3437   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3438   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3439   ARMConstantPoolValue *CPV =
3440     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3441                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
3442   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3443   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
3444   Argument = DAG.getLoad(
3445       PtrVT, dl, DAG.getEntryNode(), Argument,
3446       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3447   SDValue Chain = Argument.getValue(1);
3448 
3449   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3450   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
3451 
3452   // call __tls_get_addr.
3453   ArgListTy Args;
3454   ArgListEntry Entry;
3455   Entry.Node = Argument;
3456   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
3457   Args.push_back(Entry);
3458 
3459   // FIXME: is there useful debug info available here?
3460   TargetLowering::CallLoweringInfo CLI(DAG);
3461   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3462       CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
3463       DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
3464 
3465   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3466   return CallResult.first;
3467 }
3468 
3469 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3470 // "local exec" model.
3471 SDValue
LowerToTLSExecModels(GlobalAddressSDNode * GA,SelectionDAG & DAG,TLSModel::Model model) const3472 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
3473                                         SelectionDAG &DAG,
3474                                         TLSModel::Model model) const {
3475   const GlobalValue *GV = GA->getGlobal();
3476   SDLoc dl(GA);
3477   SDValue Offset;
3478   SDValue Chain = DAG.getEntryNode();
3479   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3480   // Get the Thread Pointer
3481   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3482 
3483   if (model == TLSModel::InitialExec) {
3484     MachineFunction &MF = DAG.getMachineFunction();
3485     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3486     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3487     // Initial exec model.
3488     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3489     ARMConstantPoolValue *CPV =
3490       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3491                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
3492                                       true);
3493     Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3494     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3495     Offset = DAG.getLoad(
3496         PtrVT, dl, Chain, Offset,
3497         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3498     Chain = Offset.getValue(1);
3499 
3500     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3501     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3502 
3503     Offset = DAG.getLoad(
3504         PtrVT, dl, Chain, Offset,
3505         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3506   } else {
3507     // local exec model
3508     assert(model == TLSModel::LocalExec);
3509     ARMConstantPoolValue *CPV =
3510       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3511     Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3512     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3513     Offset = DAG.getLoad(
3514         PtrVT, dl, Chain, Offset,
3515         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3516   }
3517 
3518   // The address of the thread local variable is the add of the thread
3519   // pointer with the offset of the variable.
3520   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3521 }
3522 
3523 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3524 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3525   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3526   if (DAG.getTarget().useEmulatedTLS())
3527     return LowerToTLSEmulatedModel(GA, DAG);
3528 
3529   if (Subtarget->isTargetDarwin())
3530     return LowerGlobalTLSAddressDarwin(Op, DAG);
3531 
3532   if (Subtarget->isTargetWindows())
3533     return LowerGlobalTLSAddressWindows(Op, DAG);
3534 
3535   // TODO: implement the "local dynamic" model
3536   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3537   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3538 
3539   switch (model) {
3540     case TLSModel::GeneralDynamic:
3541     case TLSModel::LocalDynamic:
3542       return LowerToTLSGeneralDynamicModel(GA, DAG);
3543     case TLSModel::InitialExec:
3544     case TLSModel::LocalExec:
3545       return LowerToTLSExecModels(GA, DAG, model);
3546   }
3547   llvm_unreachable("bogus TLS model");
3548 }
3549 
3550 /// Return true if all users of V are within function F, looking through
3551 /// ConstantExprs.
allUsersAreInFunction(const Value * V,const Function * F)3552 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3553   SmallVector<const User*,4> Worklist;
3554   for (auto *U : V->users())
3555     Worklist.push_back(U);
3556   while (!Worklist.empty()) {
3557     auto *U = Worklist.pop_back_val();
3558     if (isa<ConstantExpr>(U)) {
3559       append_range(Worklist, U->users());
3560       continue;
3561     }
3562 
3563     auto *I = dyn_cast<Instruction>(U);
3564     if (!I || I->getParent()->getParent() != F)
3565       return false;
3566   }
3567   return true;
3568 }
3569 
promoteToConstantPool(const ARMTargetLowering * TLI,const GlobalValue * GV,SelectionDAG & DAG,EVT PtrVT,const SDLoc & dl)3570 static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3571                                      const GlobalValue *GV, SelectionDAG &DAG,
3572                                      EVT PtrVT, const SDLoc &dl) {
3573   // If we're creating a pool entry for a constant global with unnamed address,
3574   // and the global is small enough, we can emit it inline into the constant pool
3575   // to save ourselves an indirection.
3576   //
3577   // This is a win if the constant is only used in one function (so it doesn't
3578   // need to be duplicated) or duplicating the constant wouldn't increase code
3579   // size (implying the constant is no larger than 4 bytes).
3580   const Function &F = DAG.getMachineFunction().getFunction();
3581 
3582   // We rely on this decision to inline being idemopotent and unrelated to the
3583   // use-site. We know that if we inline a variable at one use site, we'll
3584   // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3585   // doesn't know about this optimization, so bail out if it's enabled else
3586   // we could decide to inline here (and thus never emit the GV) but require
3587   // the GV from fast-isel generated code.
3588   if (!EnableConstpoolPromotion ||
3589       DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3590       return SDValue();
3591 
3592   auto *GVar = dyn_cast<GlobalVariable>(GV);
3593   if (!GVar || !GVar->hasInitializer() ||
3594       !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3595       !GVar->hasLocalLinkage())
3596     return SDValue();
3597 
3598   // If we inline a value that contains relocations, we move the relocations
3599   // from .data to .text. This is not allowed in position-independent code.
3600   auto *Init = GVar->getInitializer();
3601   if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3602       Init->needsRelocation())
3603     return SDValue();
3604 
3605   // The constant islands pass can only really deal with alignment requests
3606   // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3607   // any type wanting greater alignment requirements than 4 bytes. We also
3608   // can only promote constants that are multiples of 4 bytes in size or
3609   // are paddable to a multiple of 4. Currently we only try and pad constants
3610   // that are strings for simplicity.
3611   auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3612   unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3613   Align PrefAlign = DAG.getDataLayout().getPreferredAlign(GVar);
3614   unsigned RequiredPadding = 4 - (Size % 4);
3615   bool PaddingPossible =
3616     RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3617   if (!PaddingPossible || PrefAlign > 4 || Size > ConstpoolPromotionMaxSize ||
3618       Size == 0)
3619     return SDValue();
3620 
3621   unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3622   MachineFunction &MF = DAG.getMachineFunction();
3623   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3624 
3625   // We can't bloat the constant pool too much, else the ConstantIslands pass
3626   // may fail to converge. If we haven't promoted this global yet (it may have
3627   // multiple uses), and promoting it would increase the constant pool size (Sz
3628   // > 4), ensure we have space to do so up to MaxTotal.
3629   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3630     if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3631         ConstpoolPromotionMaxTotal)
3632       return SDValue();
3633 
3634   // This is only valid if all users are in a single function; we can't clone
3635   // the constant in general. The LLVM IR unnamed_addr allows merging
3636   // constants, but not cloning them.
3637   //
3638   // We could potentially allow cloning if we could prove all uses of the
3639   // constant in the current function don't care about the address, like
3640   // printf format strings. But that isn't implemented for now.
3641   if (!allUsersAreInFunction(GVar, &F))
3642     return SDValue();
3643 
3644   // We're going to inline this global. Pad it out if needed.
3645   if (RequiredPadding != 4) {
3646     StringRef S = CDAInit->getAsString();
3647 
3648     SmallVector<uint8_t,16> V(S.size());
3649     std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3650     while (RequiredPadding--)
3651       V.push_back(0);
3652     Init = ConstantDataArray::get(*DAG.getContext(), V);
3653   }
3654 
3655   auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3656   SDValue CPAddr = DAG.getTargetConstantPool(CPVal, PtrVT, Align(4));
3657   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3658     AFI->markGlobalAsPromotedToConstantPool(GVar);
3659     AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3660                                       PaddedSize - 4);
3661   }
3662   ++NumConstpoolPromoted;
3663   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3664 }
3665 
isReadOnly(const GlobalValue * GV) const3666 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3667   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3668     if (!(GV = GA->getBaseObject()))
3669       return false;
3670   if (const auto *V = dyn_cast<GlobalVariable>(GV))
3671     return V->isConstant();
3672   return isa<Function>(GV);
3673 }
3674 
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const3675 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3676                                               SelectionDAG &DAG) const {
3677   switch (Subtarget->getTargetTriple().getObjectFormat()) {
3678   default: llvm_unreachable("unknown object format");
3679   case Triple::COFF:
3680     return LowerGlobalAddressWindows(Op, DAG);
3681   case Triple::ELF:
3682     return LowerGlobalAddressELF(Op, DAG);
3683   case Triple::MachO:
3684     return LowerGlobalAddressDarwin(Op, DAG);
3685   }
3686 }
3687 
LowerGlobalAddressELF(SDValue Op,SelectionDAG & DAG) const3688 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3689                                                  SelectionDAG &DAG) const {
3690   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3691   SDLoc dl(Op);
3692   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3693   const TargetMachine &TM = getTargetMachine();
3694   bool IsRO = isReadOnly(GV);
3695 
3696   // promoteToConstantPool only if not generating XO text section
3697   if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3698     if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
3699       return V;
3700 
3701   if (isPositionIndependent()) {
3702     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3703     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3704                                            UseGOT_PREL ? ARMII::MO_GOT : 0);
3705     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3706     if (UseGOT_PREL)
3707       Result =
3708           DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3709                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3710     return Result;
3711   } else if (Subtarget->isROPI() && IsRO) {
3712     // PC-relative.
3713     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3714     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3715     return Result;
3716   } else if (Subtarget->isRWPI() && !IsRO) {
3717     // SB-relative.
3718     SDValue RelAddr;
3719     if (Subtarget->useMovt()) {
3720       ++NumMovwMovt;
3721       SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3722       RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3723     } else { // use literal pool for address constant
3724       ARMConstantPoolValue *CPV =
3725         ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3726       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3727       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3728       RelAddr = DAG.getLoad(
3729           PtrVT, dl, DAG.getEntryNode(), CPAddr,
3730           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3731     }
3732     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3733     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3734     return Result;
3735   }
3736 
3737   // If we have T2 ops, we can materialize the address directly via movt/movw
3738   // pair. This is always cheaper.
3739   if (Subtarget->useMovt()) {
3740     ++NumMovwMovt;
3741     // FIXME: Once remat is capable of dealing with instructions with register
3742     // operands, expand this into two nodes.
3743     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3744                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3745   } else {
3746     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, Align(4));
3747     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3748     return DAG.getLoad(
3749         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3750         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3751   }
3752 }
3753 
LowerGlobalAddressDarwin(SDValue Op,SelectionDAG & DAG) const3754 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3755                                                     SelectionDAG &DAG) const {
3756   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3757          "ROPI/RWPI not currently supported for Darwin");
3758   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3759   SDLoc dl(Op);
3760   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3761 
3762   if (Subtarget->useMovt())
3763     ++NumMovwMovt;
3764 
3765   // FIXME: Once remat is capable of dealing with instructions with register
3766   // operands, expand this into multiple nodes
3767   unsigned Wrapper =
3768       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3769 
3770   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3771   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3772 
3773   if (Subtarget->isGVIndirectSymbol(GV))
3774     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3775                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3776   return Result;
3777 }
3778 
LowerGlobalAddressWindows(SDValue Op,SelectionDAG & DAG) const3779 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3780                                                      SelectionDAG &DAG) const {
3781   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3782   assert(Subtarget->useMovt() &&
3783          "Windows on ARM expects to use movw/movt");
3784   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3785          "ROPI/RWPI not currently supported for Windows");
3786 
3787   const TargetMachine &TM = getTargetMachine();
3788   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3789   ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
3790   if (GV->hasDLLImportStorageClass())
3791     TargetFlags = ARMII::MO_DLLIMPORT;
3792   else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
3793     TargetFlags = ARMII::MO_COFFSTUB;
3794   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3795   SDValue Result;
3796   SDLoc DL(Op);
3797 
3798   ++NumMovwMovt;
3799 
3800   // FIXME: Once remat is capable of dealing with instructions with register
3801   // operands, expand this into two nodes.
3802   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3803                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
3804                                                   TargetFlags));
3805   if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
3806     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3807                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3808   return Result;
3809 }
3810 
3811 SDValue
LowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const3812 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3813   SDLoc dl(Op);
3814   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3815   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3816                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3817                      Op.getOperand(1), Val);
3818 }
3819 
3820 SDValue
LowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const3821 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3822   SDLoc dl(Op);
3823   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3824                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3825 }
3826 
LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,SelectionDAG & DAG) const3827 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3828                                                       SelectionDAG &DAG) const {
3829   SDLoc dl(Op);
3830   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3831                      Op.getOperand(0));
3832 }
3833 
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const3834 SDValue ARMTargetLowering::LowerINTRINSIC_VOID(
3835     SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const {
3836   unsigned IntNo =
3837       cast<ConstantSDNode>(
3838           Op.getOperand(Op.getOperand(0).getValueType() == MVT::Other))
3839           ->getZExtValue();
3840   switch (IntNo) {
3841     default:
3842       return SDValue();  // Don't custom lower most intrinsics.
3843     case Intrinsic::arm_gnu_eabi_mcount: {
3844       MachineFunction &MF = DAG.getMachineFunction();
3845       EVT PtrVT = getPointerTy(DAG.getDataLayout());
3846       SDLoc dl(Op);
3847       SDValue Chain = Op.getOperand(0);
3848       // call "\01__gnu_mcount_nc"
3849       const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
3850       const uint32_t *Mask =
3851           ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3852       assert(Mask && "Missing call preserved mask for calling convention");
3853       // Mark LR an implicit live-in.
3854       unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3855       SDValue ReturnAddress =
3856           DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT);
3857       constexpr EVT ResultTys[] = {MVT::Other, MVT::Glue};
3858       SDValue Callee =
3859           DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0);
3860       SDValue RegisterMask = DAG.getRegisterMask(Mask);
3861       if (Subtarget->isThumb())
3862         return SDValue(
3863             DAG.getMachineNode(
3864                 ARM::tBL_PUSHLR, dl, ResultTys,
3865                 {ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT),
3866                  DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}),
3867             0);
3868       return SDValue(
3869           DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys,
3870                              {ReturnAddress, Callee, RegisterMask, Chain}),
3871           0);
3872     }
3873   }
3874 }
3875 
3876 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const3877 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3878                                           const ARMSubtarget *Subtarget) const {
3879   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3880   SDLoc dl(Op);
3881   switch (IntNo) {
3882   default: return SDValue();    // Don't custom lower most intrinsics.
3883   case Intrinsic::thread_pointer: {
3884     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3885     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3886   }
3887   case Intrinsic::arm_cls: {
3888     const SDValue &Operand = Op.getOperand(1);
3889     const EVT VTy = Op.getValueType();
3890     SDValue SRA =
3891         DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy));
3892     SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand);
3893     SDValue SHL =
3894         DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy));
3895     SDValue OR =
3896         DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy));
3897     SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR);
3898     return Result;
3899   }
3900   case Intrinsic::arm_cls64: {
3901     // cls(x) = if cls(hi(x)) != 31 then cls(hi(x))
3902     //          else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x)))
3903     const SDValue &Operand = Op.getOperand(1);
3904     const EVT VTy = Op.getValueType();
3905 
3906     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
3907                              DAG.getConstant(1, dl, VTy));
3908     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
3909                              DAG.getConstant(0, dl, VTy));
3910     SDValue Constant0 = DAG.getConstant(0, dl, VTy);
3911     SDValue Constant1 = DAG.getConstant(1, dl, VTy);
3912     SDValue Constant31 = DAG.getConstant(31, dl, VTy);
3913     SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31);
3914     SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi);
3915     SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1);
3916     SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1);
3917     SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi);
3918     SDValue CheckLo =
3919         DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ);
3920     SDValue HiIsZero =
3921         DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ);
3922     SDValue AdjustedLo =
3923         DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy));
3924     SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo);
3925     SDValue Result =
3926         DAG.getSelect(dl, VTy, CheckLo,
3927                       DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi);
3928     return Result;
3929   }
3930   case Intrinsic::eh_sjlj_lsda: {
3931     MachineFunction &MF = DAG.getMachineFunction();
3932     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3933     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3934     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3935     SDValue CPAddr;
3936     bool IsPositionIndependent = isPositionIndependent();
3937     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3938     ARMConstantPoolValue *CPV =
3939       ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
3940                                       ARMCP::CPLSDA, PCAdj);
3941     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3942     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3943     SDValue Result = DAG.getLoad(
3944         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3945         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3946 
3947     if (IsPositionIndependent) {
3948       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3949       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3950     }
3951     return Result;
3952   }
3953   case Intrinsic::arm_neon_vabs:
3954     return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
3955                         Op.getOperand(1));
3956   case Intrinsic::arm_neon_vmulls:
3957   case Intrinsic::arm_neon_vmullu: {
3958     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3959       ? ARMISD::VMULLs : ARMISD::VMULLu;
3960     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3961                        Op.getOperand(1), Op.getOperand(2));
3962   }
3963   case Intrinsic::arm_neon_vminnm:
3964   case Intrinsic::arm_neon_vmaxnm: {
3965     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3966       ? ISD::FMINNUM : ISD::FMAXNUM;
3967     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3968                        Op.getOperand(1), Op.getOperand(2));
3969   }
3970   case Intrinsic::arm_neon_vminu:
3971   case Intrinsic::arm_neon_vmaxu: {
3972     if (Op.getValueType().isFloatingPoint())
3973       return SDValue();
3974     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3975       ? ISD::UMIN : ISD::UMAX;
3976     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3977                          Op.getOperand(1), Op.getOperand(2));
3978   }
3979   case Intrinsic::arm_neon_vmins:
3980   case Intrinsic::arm_neon_vmaxs: {
3981     // v{min,max}s is overloaded between signed integers and floats.
3982     if (!Op.getValueType().isFloatingPoint()) {
3983       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3984         ? ISD::SMIN : ISD::SMAX;
3985       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3986                          Op.getOperand(1), Op.getOperand(2));
3987     }
3988     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3989       ? ISD::FMINIMUM : ISD::FMAXIMUM;
3990     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3991                        Op.getOperand(1), Op.getOperand(2));
3992   }
3993   case Intrinsic::arm_neon_vtbl1:
3994     return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
3995                        Op.getOperand(1), Op.getOperand(2));
3996   case Intrinsic::arm_neon_vtbl2:
3997     return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
3998                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3999   case Intrinsic::arm_mve_pred_i2v:
4000   case Intrinsic::arm_mve_pred_v2i:
4001     return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(),
4002                        Op.getOperand(1));
4003   case Intrinsic::arm_mve_vreinterpretq:
4004     return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(Op), Op.getValueType(),
4005                        Op.getOperand(1));
4006   case Intrinsic::arm_mve_lsll:
4007     return DAG.getNode(ARMISD::LSLL, SDLoc(Op), Op->getVTList(),
4008                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4009   case Intrinsic::arm_mve_asrl:
4010     return DAG.getNode(ARMISD::ASRL, SDLoc(Op), Op->getVTList(),
4011                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4012   }
4013 }
4014 
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)4015 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
4016                                  const ARMSubtarget *Subtarget) {
4017   SDLoc dl(Op);
4018   ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
4019   auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
4020   if (SSID == SyncScope::SingleThread)
4021     return Op;
4022 
4023   if (!Subtarget->hasDataBarrier()) {
4024     // Some ARMv6 cpus can support data barriers with an mcr instruction.
4025     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
4026     // here.
4027     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
4028            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
4029     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
4030                        DAG.getConstant(0, dl, MVT::i32));
4031   }
4032 
4033   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
4034   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
4035   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
4036   if (Subtarget->isMClass()) {
4037     // Only a full system barrier exists in the M-class architectures.
4038     Domain = ARM_MB::SY;
4039   } else if (Subtarget->preferISHSTBarriers() &&
4040              Ord == AtomicOrdering::Release) {
4041     // Swift happens to implement ISHST barriers in a way that's compatible with
4042     // Release semantics but weaker than ISH so we'd be fools not to use
4043     // it. Beware: other processors probably don't!
4044     Domain = ARM_MB::ISHST;
4045   }
4046 
4047   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
4048                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
4049                      DAG.getConstant(Domain, dl, MVT::i32));
4050 }
4051 
LowerPREFETCH(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)4052 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
4053                              const ARMSubtarget *Subtarget) {
4054   // ARM pre v5TE and Thumb1 does not have preload instructions.
4055   if (!(Subtarget->isThumb2() ||
4056         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
4057     // Just preserve the chain.
4058     return Op.getOperand(0);
4059 
4060   SDLoc dl(Op);
4061   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
4062   if (!isRead &&
4063       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
4064     // ARMv7 with MP extension has PLDW.
4065     return Op.getOperand(0);
4066 
4067   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4068   if (Subtarget->isThumb()) {
4069     // Invert the bits.
4070     isRead = ~isRead & 1;
4071     isData = ~isData & 1;
4072   }
4073 
4074   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
4075                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
4076                      DAG.getConstant(isData, dl, MVT::i32));
4077 }
4078 
LowerVASTART(SDValue Op,SelectionDAG & DAG)4079 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
4080   MachineFunction &MF = DAG.getMachineFunction();
4081   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
4082 
4083   // vastart just stores the address of the VarArgsFrameIndex slot into the
4084   // memory location argument.
4085   SDLoc dl(Op);
4086   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4087   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4088   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4089   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
4090                       MachinePointerInfo(SV));
4091 }
4092 
GetF64FormalArgument(CCValAssign & VA,CCValAssign & NextVA,SDValue & Root,SelectionDAG & DAG,const SDLoc & dl) const4093 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
4094                                                 CCValAssign &NextVA,
4095                                                 SDValue &Root,
4096                                                 SelectionDAG &DAG,
4097                                                 const SDLoc &dl) const {
4098   MachineFunction &MF = DAG.getMachineFunction();
4099   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4100 
4101   const TargetRegisterClass *RC;
4102   if (AFI->isThumb1OnlyFunction())
4103     RC = &ARM::tGPRRegClass;
4104   else
4105     RC = &ARM::GPRRegClass;
4106 
4107   // Transform the arguments stored in physical registers into virtual ones.
4108   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
4109   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4110 
4111   SDValue ArgValue2;
4112   if (NextVA.isMemLoc()) {
4113     MachineFrameInfo &MFI = MF.getFrameInfo();
4114     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
4115 
4116     // Create load node to retrieve arguments from the stack.
4117     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4118     ArgValue2 = DAG.getLoad(
4119         MVT::i32, dl, Root, FIN,
4120         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4121   } else {
4122     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
4123     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4124   }
4125   if (!Subtarget->isLittle())
4126     std::swap (ArgValue, ArgValue2);
4127   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
4128 }
4129 
4130 // The remaining GPRs hold either the beginning of variable-argument
4131 // data, or the beginning of an aggregate passed by value (usually
4132 // byval).  Either way, we allocate stack slots adjacent to the data
4133 // provided by our caller, and store the unallocated registers there.
4134 // If this is a variadic function, the va_list pointer will begin with
4135 // these values; otherwise, this reassembles a (byval) structure that
4136 // was split between registers and memory.
4137 // Return: The frame index registers were stored into.
StoreByValRegs(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,const Value * OrigArg,unsigned InRegsParamRecordIdx,int ArgOffset,unsigned ArgSize) const4138 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
4139                                       const SDLoc &dl, SDValue &Chain,
4140                                       const Value *OrigArg,
4141                                       unsigned InRegsParamRecordIdx,
4142                                       int ArgOffset, unsigned ArgSize) const {
4143   // Currently, two use-cases possible:
4144   // Case #1. Non-var-args function, and we meet first byval parameter.
4145   //          Setup first unallocated register as first byval register;
4146   //          eat all remained registers
4147   //          (these two actions are performed by HandleByVal method).
4148   //          Then, here, we initialize stack frame with
4149   //          "store-reg" instructions.
4150   // Case #2. Var-args function, that doesn't contain byval parameters.
4151   //          The same: eat all remained unallocated registers,
4152   //          initialize stack frame.
4153 
4154   MachineFunction &MF = DAG.getMachineFunction();
4155   MachineFrameInfo &MFI = MF.getFrameInfo();
4156   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4157   unsigned RBegin, REnd;
4158   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
4159     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
4160   } else {
4161     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4162     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
4163     REnd = ARM::R4;
4164   }
4165 
4166   if (REnd != RBegin)
4167     ArgOffset = -4 * (ARM::R4 - RBegin);
4168 
4169   auto PtrVT = getPointerTy(DAG.getDataLayout());
4170   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
4171   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
4172 
4173   SmallVector<SDValue, 4> MemOps;
4174   const TargetRegisterClass *RC =
4175       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
4176 
4177   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
4178     unsigned VReg = MF.addLiveIn(Reg, RC);
4179     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4180     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4181                                  MachinePointerInfo(OrigArg, 4 * i));
4182     MemOps.push_back(Store);
4183     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
4184   }
4185 
4186   if (!MemOps.empty())
4187     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4188   return FrameIndex;
4189 }
4190 
4191 // Setup stack frame, the va_list pointer will start from.
VarArgStyleRegisters(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,unsigned ArgOffset,unsigned TotalArgRegsSaveSize,bool ForceMutable) const4192 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
4193                                              const SDLoc &dl, SDValue &Chain,
4194                                              unsigned ArgOffset,
4195                                              unsigned TotalArgRegsSaveSize,
4196                                              bool ForceMutable) const {
4197   MachineFunction &MF = DAG.getMachineFunction();
4198   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4199 
4200   // Try to store any remaining integer argument regs
4201   // to their spots on the stack so that they may be loaded by dereferencing
4202   // the result of va_next.
4203   // If there is no regs to be stored, just point address after last
4204   // argument passed via stack.
4205   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
4206                                   CCInfo.getInRegsParamsCount(),
4207                                   CCInfo.getNextStackOffset(),
4208                                   std::max(4U, TotalArgRegsSaveSize));
4209   AFI->setVarArgsFrameIndex(FrameIndex);
4210 }
4211 
splitValueIntoRegisterParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,Optional<CallingConv::ID> CC) const4212 bool ARMTargetLowering::splitValueIntoRegisterParts(
4213     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
4214     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
4215   bool IsABIRegCopy = CC.hasValue();
4216   EVT ValueVT = Val.getValueType();
4217   if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
4218       PartVT == MVT::f32) {
4219     unsigned ValueBits = ValueVT.getSizeInBits();
4220     unsigned PartBits = PartVT.getSizeInBits();
4221     Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(ValueBits), Val);
4222     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::getIntegerVT(PartBits), Val);
4223     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
4224     Parts[0] = Val;
4225     return true;
4226   }
4227   return false;
4228 }
4229 
joinRegisterPartsIntoValue(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,Optional<CallingConv::ID> CC) const4230 SDValue ARMTargetLowering::joinRegisterPartsIntoValue(
4231     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
4232     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
4233   bool IsABIRegCopy = CC.hasValue();
4234   if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
4235       PartVT == MVT::f32) {
4236     unsigned ValueBits = ValueVT.getSizeInBits();
4237     unsigned PartBits = PartVT.getSizeInBits();
4238     SDValue Val = Parts[0];
4239 
4240     Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(PartBits), Val);
4241     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::getIntegerVT(ValueBits), Val);
4242     Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
4243     return Val;
4244   }
4245   return SDValue();
4246 }
4247 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const4248 SDValue ARMTargetLowering::LowerFormalArguments(
4249     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4250     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4251     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4252   MachineFunction &MF = DAG.getMachineFunction();
4253   MachineFrameInfo &MFI = MF.getFrameInfo();
4254 
4255   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4256 
4257   // Assign locations to all of the incoming arguments.
4258   SmallVector<CCValAssign, 16> ArgLocs;
4259   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4260                  *DAG.getContext());
4261   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
4262 
4263   SmallVector<SDValue, 16> ArgValues;
4264   SDValue ArgValue;
4265   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
4266   unsigned CurArgIdx = 0;
4267 
4268   // Initially ArgRegsSaveSize is zero.
4269   // Then we increase this value each time we meet byval parameter.
4270   // We also increase this value in case of varargs function.
4271   AFI->setArgRegsSaveSize(0);
4272 
4273   // Calculate the amount of stack space that we need to allocate to store
4274   // byval and variadic arguments that are passed in registers.
4275   // We need to know this before we allocate the first byval or variadic
4276   // argument, as they will be allocated a stack slot below the CFA (Canonical
4277   // Frame Address, the stack pointer at entry to the function).
4278   unsigned ArgRegBegin = ARM::R4;
4279   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4280     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
4281       break;
4282 
4283     CCValAssign &VA = ArgLocs[i];
4284     unsigned Index = VA.getValNo();
4285     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
4286     if (!Flags.isByVal())
4287       continue;
4288 
4289     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
4290     unsigned RBegin, REnd;
4291     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
4292     ArgRegBegin = std::min(ArgRegBegin, RBegin);
4293 
4294     CCInfo.nextInRegsParam();
4295   }
4296   CCInfo.rewindByValRegsInfo();
4297 
4298   int lastInsIndex = -1;
4299   if (isVarArg && MFI.hasVAStart()) {
4300     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4301     if (RegIdx != array_lengthof(GPRArgRegs))
4302       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
4303   }
4304 
4305   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
4306   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
4307   auto PtrVT = getPointerTy(DAG.getDataLayout());
4308 
4309   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4310     CCValAssign &VA = ArgLocs[i];
4311     if (Ins[VA.getValNo()].isOrigArg()) {
4312       std::advance(CurOrigArg,
4313                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
4314       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
4315     }
4316     // Arguments stored in registers.
4317     if (VA.isRegLoc()) {
4318       EVT RegVT = VA.getLocVT();
4319 
4320       if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
4321         // f64 and vector types are split up into multiple registers or
4322         // combinations of registers and stack slots.
4323         SDValue ArgValue1 =
4324             GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4325         VA = ArgLocs[++i]; // skip ahead to next loc
4326         SDValue ArgValue2;
4327         if (VA.isMemLoc()) {
4328           int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
4329           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4330           ArgValue2 = DAG.getLoad(
4331               MVT::f64, dl, Chain, FIN,
4332               MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4333         } else {
4334           ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4335         }
4336         ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
4337         ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4338                                ArgValue1, DAG.getIntPtrConstant(0, dl));
4339         ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4340                                ArgValue2, DAG.getIntPtrConstant(1, dl));
4341       } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
4342         ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4343       } else {
4344         const TargetRegisterClass *RC;
4345 
4346         if (RegVT == MVT::f16 || RegVT == MVT::bf16)
4347           RC = &ARM::HPRRegClass;
4348         else if (RegVT == MVT::f32)
4349           RC = &ARM::SPRRegClass;
4350         else if (RegVT == MVT::f64 || RegVT == MVT::v4f16 ||
4351                  RegVT == MVT::v4bf16)
4352           RC = &ARM::DPRRegClass;
4353         else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16 ||
4354                  RegVT == MVT::v8bf16)
4355           RC = &ARM::QPRRegClass;
4356         else if (RegVT == MVT::i32)
4357           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
4358                                            : &ARM::GPRRegClass;
4359         else
4360           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4361 
4362         // Transform the arguments in physical registers into virtual ones.
4363         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
4364         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
4365 
4366         // If this value is passed in r0 and has the returned attribute (e.g.
4367         // C++ 'structors), record this fact for later use.
4368         if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
4369           AFI->setPreservesR0();
4370         }
4371       }
4372 
4373       // If this is an 8 or 16-bit value, it is really passed promoted
4374       // to 32 bits.  Insert an assert[sz]ext to capture this, then
4375       // truncate to the right size.
4376       switch (VA.getLocInfo()) {
4377       default: llvm_unreachable("Unknown loc info!");
4378       case CCValAssign::Full: break;
4379       case CCValAssign::BCvt:
4380         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
4381         break;
4382       case CCValAssign::SExt:
4383         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
4384                                DAG.getValueType(VA.getValVT()));
4385         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4386         break;
4387       case CCValAssign::ZExt:
4388         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
4389                                DAG.getValueType(VA.getValVT()));
4390         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4391         break;
4392       }
4393 
4394       // f16 arguments have their size extended to 4 bytes and passed as if they
4395       // had been copied to the LSBs of a 32-bit register.
4396       // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
4397       if (VA.needsCustom() &&
4398           (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
4399         ArgValue = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), ArgValue);
4400 
4401       InVals.push_back(ArgValue);
4402     } else { // VA.isRegLoc()
4403       // sanity check
4404       assert(VA.isMemLoc());
4405       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
4406 
4407       int index = VA.getValNo();
4408 
4409       // Some Ins[] entries become multiple ArgLoc[] entries.
4410       // Process them only once.
4411       if (index != lastInsIndex)
4412         {
4413           ISD::ArgFlagsTy Flags = Ins[index].Flags;
4414           // FIXME: For now, all byval parameter objects are marked mutable.
4415           // This can be changed with more analysis.
4416           // In case of tail call optimization mark all arguments mutable.
4417           // Since they could be overwritten by lowering of arguments in case of
4418           // a tail call.
4419           if (Flags.isByVal()) {
4420             assert(Ins[index].isOrigArg() &&
4421                    "Byval arguments cannot be implicit");
4422             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
4423 
4424             int FrameIndex = StoreByValRegs(
4425                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
4426                 VA.getLocMemOffset(), Flags.getByValSize());
4427             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
4428             CCInfo.nextInRegsParam();
4429           } else {
4430             unsigned FIOffset = VA.getLocMemOffset();
4431             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
4432                                            FIOffset, true);
4433 
4434             // Create load nodes to retrieve arguments from the stack.
4435             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4436             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
4437                                          MachinePointerInfo::getFixedStack(
4438                                              DAG.getMachineFunction(), FI)));
4439           }
4440           lastInsIndex = index;
4441         }
4442     }
4443   }
4444 
4445   // varargs
4446   if (isVarArg && MFI.hasVAStart()) {
4447     VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset(),
4448                          TotalArgRegsSaveSize);
4449     if (AFI->isCmseNSEntryFunction()) {
4450       DiagnosticInfoUnsupported Diag(
4451           DAG.getMachineFunction().getFunction(),
4452           "secure entry function must not be variadic", dl.getDebugLoc());
4453       DAG.getContext()->diagnose(Diag);
4454     }
4455   }
4456 
4457   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
4458 
4459   if (CCInfo.getNextStackOffset() > 0 && AFI->isCmseNSEntryFunction()) {
4460     DiagnosticInfoUnsupported Diag(
4461         DAG.getMachineFunction().getFunction(),
4462         "secure entry function requires arguments on stack", dl.getDebugLoc());
4463     DAG.getContext()->diagnose(Diag);
4464   }
4465 
4466   return Chain;
4467 }
4468 
4469 /// isFloatingPointZero - Return true if this is +0.0.
isFloatingPointZero(SDValue Op)4470 static bool isFloatingPointZero(SDValue Op) {
4471   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
4472     return CFP->getValueAPF().isPosZero();
4473   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
4474     // Maybe this has already been legalized into the constant pool?
4475     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
4476       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
4477       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
4478         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
4479           return CFP->getValueAPF().isPosZero();
4480     }
4481   } else if (Op->getOpcode() == ISD::BITCAST &&
4482              Op->getValueType(0) == MVT::f64) {
4483     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4484     // created by LowerConstantFP().
4485     SDValue BitcastOp = Op->getOperand(0);
4486     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
4487         isNullConstant(BitcastOp->getOperand(0)))
4488       return true;
4489   }
4490   return false;
4491 }
4492 
4493 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4494 /// the given operands.
getARMCmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & ARMcc,SelectionDAG & DAG,const SDLoc & dl) const4495 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4496                                      SDValue &ARMcc, SelectionDAG &DAG,
4497                                      const SDLoc &dl) const {
4498   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
4499     unsigned C = RHSC->getZExtValue();
4500     if (!isLegalICmpImmediate((int32_t)C)) {
4501       // Constant does not fit, try adjusting it by one.
4502       switch (CC) {
4503       default: break;
4504       case ISD::SETLT:
4505       case ISD::SETGE:
4506         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
4507           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
4508           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4509         }
4510         break;
4511       case ISD::SETULT:
4512       case ISD::SETUGE:
4513         if (C != 0 && isLegalICmpImmediate(C-1)) {
4514           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
4515           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4516         }
4517         break;
4518       case ISD::SETLE:
4519       case ISD::SETGT:
4520         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
4521           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
4522           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4523         }
4524         break;
4525       case ISD::SETULE:
4526       case ISD::SETUGT:
4527         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
4528           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4529           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4530         }
4531         break;
4532       }
4533     }
4534   } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
4535              (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
4536     // In ARM and Thumb-2, the compare instructions can shift their second
4537     // operand.
4538     CC = ISD::getSetCCSwappedOperands(CC);
4539     std::swap(LHS, RHS);
4540   }
4541 
4542   // Thumb1 has very limited immediate modes, so turning an "and" into a
4543   // shift can save multiple instructions.
4544   //
4545   // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4546   // into "((x << n) >> n)".  But that isn't necessarily profitable on its
4547   // own. If it's the operand to an unsigned comparison with an immediate,
4548   // we can eliminate one of the shifts: we transform
4549   // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4550   //
4551   // We avoid transforming cases which aren't profitable due to encoding
4552   // details:
4553   //
4554   // 1. C2 fits into the immediate field of a cmp, and the transformed version
4555   // would not; in that case, we're essentially trading one immediate load for
4556   // another.
4557   // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4558   // 3. C2 is zero; we have other code for this special case.
4559   //
4560   // FIXME: Figure out profitability for Thumb2; we usually can't save an
4561   // instruction, since the AND is always one instruction anyway, but we could
4562   // use narrow instructions in some cases.
4563   if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
4564       LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4565       LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
4566       !isSignedIntSetCC(CC)) {
4567     unsigned Mask = cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue();
4568     auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
4569     uint64_t RHSV = RHSC->getZExtValue();
4570     if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
4571       unsigned ShiftBits = countLeadingZeros(Mask);
4572       if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
4573         SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
4574         LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
4575         RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
4576       }
4577     }
4578   }
4579 
4580   // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4581   // single "lsls x, c+1".  The shift sets the "C" and "Z" flags the same
4582   // way a cmp would.
4583   // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4584   // some tweaks to the heuristics for the previous and->shift transform.
4585   // FIXME: Optimize cases where the LHS isn't a shift.
4586   if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
4587       isa<ConstantSDNode>(RHS) &&
4588       cast<ConstantSDNode>(RHS)->getZExtValue() == 0x80000000U &&
4589       CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4590       cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() < 31) {
4591     unsigned ShiftAmt =
4592       cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() + 1;
4593     SDValue Shift = DAG.getNode(ARMISD::LSLS, dl,
4594                                 DAG.getVTList(MVT::i32, MVT::i32),
4595                                 LHS.getOperand(0),
4596                                 DAG.getConstant(ShiftAmt, dl, MVT::i32));
4597     SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
4598                                      Shift.getValue(1), SDValue());
4599     ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
4600     return Chain.getValue(1);
4601   }
4602 
4603   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4604 
4605   // If the RHS is a constant zero then the V (overflow) flag will never be
4606   // set. This can allow us to simplify GE to PL or LT to MI, which can be
4607   // simpler for other passes (like the peephole optimiser) to deal with.
4608   if (isNullConstant(RHS)) {
4609     switch (CondCode) {
4610       default: break;
4611       case ARMCC::GE:
4612         CondCode = ARMCC::PL;
4613         break;
4614       case ARMCC::LT:
4615         CondCode = ARMCC::MI;
4616         break;
4617     }
4618   }
4619 
4620   ARMISD::NodeType CompareType;
4621   switch (CondCode) {
4622   default:
4623     CompareType = ARMISD::CMP;
4624     break;
4625   case ARMCC::EQ:
4626   case ARMCC::NE:
4627     // Uses only Z Flag
4628     CompareType = ARMISD::CMPZ;
4629     break;
4630   }
4631   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4632   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
4633 }
4634 
4635 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
getVFPCmp(SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl,bool Signaling) const4636 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
4637                                      SelectionDAG &DAG, const SDLoc &dl,
4638                                      bool Signaling) const {
4639   assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
4640   SDValue Cmp;
4641   if (!isFloatingPointZero(RHS))
4642     Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPE : ARMISD::CMPFP,
4643                       dl, MVT::Glue, LHS, RHS);
4644   else
4645     Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPEw0 : ARMISD::CMPFPw0,
4646                       dl, MVT::Glue, LHS);
4647   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
4648 }
4649 
4650 /// duplicateCmp - Glue values can have only one use, so this function
4651 /// duplicates a comparison node.
4652 SDValue
duplicateCmp(SDValue Cmp,SelectionDAG & DAG) const4653 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
4654   unsigned Opc = Cmp.getOpcode();
4655   SDLoc DL(Cmp);
4656   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
4657     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4658 
4659   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
4660   Cmp = Cmp.getOperand(0);
4661   Opc = Cmp.getOpcode();
4662   if (Opc == ARMISD::CMPFP)
4663     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4664   else {
4665     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
4666     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
4667   }
4668   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
4669 }
4670 
4671 // This function returns three things: the arithmetic computation itself
4672 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc).  The
4673 // comparison and the condition code define the case in which the arithmetic
4674 // computation *does not* overflow.
4675 std::pair<SDValue, SDValue>
getARMXALUOOp(SDValue Op,SelectionDAG & DAG,SDValue & ARMcc) const4676 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
4677                                  SDValue &ARMcc) const {
4678   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
4679 
4680   SDValue Value, OverflowCmp;
4681   SDValue LHS = Op.getOperand(0);
4682   SDValue RHS = Op.getOperand(1);
4683   SDLoc dl(Op);
4684 
4685   // FIXME: We are currently always generating CMPs because we don't support
4686   // generating CMN through the backend. This is not as good as the natural
4687   // CMP case because it causes a register dependency and cannot be folded
4688   // later.
4689 
4690   switch (Op.getOpcode()) {
4691   default:
4692     llvm_unreachable("Unknown overflow instruction!");
4693   case ISD::SADDO:
4694     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4695     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
4696     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4697     break;
4698   case ISD::UADDO:
4699     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4700     // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4701     // We do not use it in the USUBO case as Value may not be used.
4702     Value = DAG.getNode(ARMISD::ADDC, dl,
4703                         DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
4704                 .getValue(0);
4705     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4706     break;
4707   case ISD::SSUBO:
4708     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4709     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4710     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4711     break;
4712   case ISD::USUBO:
4713     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4714     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4715     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4716     break;
4717   case ISD::UMULO:
4718     // We generate a UMUL_LOHI and then check if the high word is 0.
4719     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4720     Value = DAG.getNode(ISD::UMUL_LOHI, dl,
4721                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4722                         LHS, RHS);
4723     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4724                               DAG.getConstant(0, dl, MVT::i32));
4725     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4726     break;
4727   case ISD::SMULO:
4728     // We generate a SMUL_LOHI and then check if all the bits of the high word
4729     // are the same as the sign bit of the low word.
4730     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4731     Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4732                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4733                         LHS, RHS);
4734     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4735                               DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4736                                           Value.getValue(0),
4737                                           DAG.getConstant(31, dl, MVT::i32)));
4738     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4739     break;
4740   } // switch (...)
4741 
4742   return std::make_pair(Value, OverflowCmp);
4743 }
4744 
4745 SDValue
LowerSignedALUO(SDValue Op,SelectionDAG & DAG) const4746 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4747   // Let legalize expand this if it isn't a legal type yet.
4748   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4749     return SDValue();
4750 
4751   SDValue Value, OverflowCmp;
4752   SDValue ARMcc;
4753   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4754   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4755   SDLoc dl(Op);
4756   // We use 0 and 1 as false and true values.
4757   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4758   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4759   EVT VT = Op.getValueType();
4760 
4761   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4762                                  ARMcc, CCR, OverflowCmp);
4763 
4764   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4765   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4766 }
4767 
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,SelectionDAG & DAG)4768 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4769                                               SelectionDAG &DAG) {
4770   SDLoc DL(BoolCarry);
4771   EVT CarryVT = BoolCarry.getValueType();
4772 
4773   // This converts the boolean value carry into the carry flag by doing
4774   // ARMISD::SUBC Carry, 1
4775   SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4776                               DAG.getVTList(CarryVT, MVT::i32),
4777                               BoolCarry, DAG.getConstant(1, DL, CarryVT));
4778   return Carry.getValue(1);
4779 }
4780 
ConvertCarryFlagToBooleanCarry(SDValue Flags,EVT VT,SelectionDAG & DAG)4781 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4782                                               SelectionDAG &DAG) {
4783   SDLoc DL(Flags);
4784 
4785   // Now convert the carry flag into a boolean carry. We do this
4786   // using ARMISD:ADDE 0, 0, Carry
4787   return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
4788                      DAG.getConstant(0, DL, MVT::i32),
4789                      DAG.getConstant(0, DL, MVT::i32), Flags);
4790 }
4791 
LowerUnsignedALUO(SDValue Op,SelectionDAG & DAG) const4792 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
4793                                              SelectionDAG &DAG) const {
4794   // Let legalize expand this if it isn't a legal type yet.
4795   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4796     return SDValue();
4797 
4798   SDValue LHS = Op.getOperand(0);
4799   SDValue RHS = Op.getOperand(1);
4800   SDLoc dl(Op);
4801 
4802   EVT VT = Op.getValueType();
4803   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4804   SDValue Value;
4805   SDValue Overflow;
4806   switch (Op.getOpcode()) {
4807   default:
4808     llvm_unreachable("Unknown overflow instruction!");
4809   case ISD::UADDO:
4810     Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
4811     // Convert the carry flag into a boolean value.
4812     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4813     break;
4814   case ISD::USUBO: {
4815     Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
4816     // Convert the carry flag into a boolean value.
4817     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4818     // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4819     // value. So compute 1 - C.
4820     Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
4821                            DAG.getConstant(1, dl, MVT::i32), Overflow);
4822     break;
4823   }
4824   }
4825 
4826   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4827 }
4828 
LowerSADDSUBSAT(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)4829 static SDValue LowerSADDSUBSAT(SDValue Op, SelectionDAG &DAG,
4830                                const ARMSubtarget *Subtarget) {
4831   EVT VT = Op.getValueType();
4832   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
4833     return SDValue();
4834   if (!VT.isSimple())
4835     return SDValue();
4836 
4837   unsigned NewOpcode;
4838   bool IsAdd = Op->getOpcode() == ISD::SADDSAT;
4839   switch (VT.getSimpleVT().SimpleTy) {
4840   default:
4841     return SDValue();
4842   case MVT::i8:
4843     NewOpcode = IsAdd ? ARMISD::QADD8b : ARMISD::QSUB8b;
4844     break;
4845   case MVT::i16:
4846     NewOpcode = IsAdd ? ARMISD::QADD16b : ARMISD::QSUB16b;
4847     break;
4848   }
4849 
4850   SDLoc dl(Op);
4851   SDValue Add =
4852       DAG.getNode(NewOpcode, dl, MVT::i32,
4853                   DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32),
4854                   DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32));
4855   return DAG.getNode(ISD::TRUNCATE, dl, VT, Add);
4856 }
4857 
LowerSELECT(SDValue Op,SelectionDAG & DAG) const4858 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
4859   SDValue Cond = Op.getOperand(0);
4860   SDValue SelectTrue = Op.getOperand(1);
4861   SDValue SelectFalse = Op.getOperand(2);
4862   SDLoc dl(Op);
4863   unsigned Opc = Cond.getOpcode();
4864 
4865   if (Cond.getResNo() == 1 &&
4866       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4867        Opc == ISD::USUBO)) {
4868     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4869       return SDValue();
4870 
4871     SDValue Value, OverflowCmp;
4872     SDValue ARMcc;
4873     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4874     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4875     EVT VT = Op.getValueType();
4876 
4877     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
4878                    OverflowCmp, DAG);
4879   }
4880 
4881   // Convert:
4882   //
4883   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4884   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4885   //
4886   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
4887     const ConstantSDNode *CMOVTrue =
4888       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
4889     const ConstantSDNode *CMOVFalse =
4890       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
4891 
4892     if (CMOVTrue && CMOVFalse) {
4893       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
4894       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
4895 
4896       SDValue True;
4897       SDValue False;
4898       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
4899         True = SelectTrue;
4900         False = SelectFalse;
4901       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
4902         True = SelectFalse;
4903         False = SelectTrue;
4904       }
4905 
4906       if (True.getNode() && False.getNode()) {
4907         EVT VT = Op.getValueType();
4908         SDValue ARMcc = Cond.getOperand(2);
4909         SDValue CCR = Cond.getOperand(3);
4910         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
4911         assert(True.getValueType() == VT);
4912         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
4913       }
4914     }
4915   }
4916 
4917   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4918   // undefined bits before doing a full-word comparison with zero.
4919   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
4920                      DAG.getConstant(1, dl, Cond.getValueType()));
4921 
4922   return DAG.getSelectCC(dl, Cond,
4923                          DAG.getConstant(0, dl, Cond.getValueType()),
4924                          SelectTrue, SelectFalse, ISD::SETNE);
4925 }
4926 
checkVSELConstraints(ISD::CondCode CC,ARMCC::CondCodes & CondCode,bool & swpCmpOps,bool & swpVselOps)4927 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
4928                                  bool &swpCmpOps, bool &swpVselOps) {
4929   // Start by selecting the GE condition code for opcodes that return true for
4930   // 'equality'
4931   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
4932       CC == ISD::SETULE || CC == ISD::SETGE  || CC == ISD::SETLE)
4933     CondCode = ARMCC::GE;
4934 
4935   // and GT for opcodes that return false for 'equality'.
4936   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
4937            CC == ISD::SETULT || CC == ISD::SETGT  || CC == ISD::SETLT)
4938     CondCode = ARMCC::GT;
4939 
4940   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4941   // to swap the compare operands.
4942   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
4943       CC == ISD::SETULT || CC == ISD::SETLE  || CC == ISD::SETLT)
4944     swpCmpOps = true;
4945 
4946   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4947   // If we have an unordered opcode, we need to swap the operands to the VSEL
4948   // instruction (effectively negating the condition).
4949   //
4950   // This also has the effect of swapping which one of 'less' or 'greater'
4951   // returns true, so we also swap the compare operands. It also switches
4952   // whether we return true for 'equality', so we compensate by picking the
4953   // opposite condition code to our original choice.
4954   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
4955       CC == ISD::SETUGT) {
4956     swpCmpOps = !swpCmpOps;
4957     swpVselOps = !swpVselOps;
4958     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
4959   }
4960 
4961   // 'ordered' is 'anything but unordered', so use the VS condition code and
4962   // swap the VSEL operands.
4963   if (CC == ISD::SETO) {
4964     CondCode = ARMCC::VS;
4965     swpVselOps = true;
4966   }
4967 
4968   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4969   // code and swap the VSEL operands. Also do this if we don't care about the
4970   // unordered case.
4971   if (CC == ISD::SETUNE || CC == ISD::SETNE) {
4972     CondCode = ARMCC::EQ;
4973     swpVselOps = true;
4974   }
4975 }
4976 
getCMOV(const SDLoc & dl,EVT VT,SDValue FalseVal,SDValue TrueVal,SDValue ARMcc,SDValue CCR,SDValue Cmp,SelectionDAG & DAG) const4977 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
4978                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
4979                                    SDValue Cmp, SelectionDAG &DAG) const {
4980   if (!Subtarget->hasFP64() && VT == MVT::f64) {
4981     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4982                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
4983     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4984                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
4985 
4986     SDValue TrueLow = TrueVal.getValue(0);
4987     SDValue TrueHigh = TrueVal.getValue(1);
4988     SDValue FalseLow = FalseVal.getValue(0);
4989     SDValue FalseHigh = FalseVal.getValue(1);
4990 
4991     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
4992                               ARMcc, CCR, Cmp);
4993     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
4994                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
4995 
4996     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
4997   } else {
4998     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
4999                        Cmp);
5000   }
5001 }
5002 
isGTorGE(ISD::CondCode CC)5003 static bool isGTorGE(ISD::CondCode CC) {
5004   return CC == ISD::SETGT || CC == ISD::SETGE;
5005 }
5006 
isLTorLE(ISD::CondCode CC)5007 static bool isLTorLE(ISD::CondCode CC) {
5008   return CC == ISD::SETLT || CC == ISD::SETLE;
5009 }
5010 
5011 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
5012 // All of these conditions (and their <= and >= counterparts) will do:
5013 //          x < k ? k : x
5014 //          x > k ? x : k
5015 //          k < x ? x : k
5016 //          k > x ? k : x
isLowerSaturate(const SDValue LHS,const SDValue RHS,const SDValue TrueVal,const SDValue FalseVal,const ISD::CondCode CC,const SDValue K)5017 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
5018                             const SDValue TrueVal, const SDValue FalseVal,
5019                             const ISD::CondCode CC, const SDValue K) {
5020   return (isGTorGE(CC) &&
5021           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
5022          (isLTorLE(CC) &&
5023           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
5024 }
5025 
5026 // Check if two chained conditionals could be converted into SSAT or USAT.
5027 //
5028 // SSAT can replace a set of two conditional selectors that bound a number to an
5029 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
5030 //
5031 //     x < -k ? -k : (x > k ? k : x)
5032 //     x < -k ? -k : (x < k ? x : k)
5033 //     x > -k ? (x > k ? k : x) : -k
5034 //     x < k ? (x < -k ? -k : x) : k
5035 //     etc.
5036 //
5037 // LLVM canonicalizes these to either a min(max()) or a max(min())
5038 // pattern. This function tries to match one of these and will return a SSAT
5039 // node if successful.
5040 //
5041 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1
5042 // is a power of 2.
LowerSaturatingConditional(SDValue Op,SelectionDAG & DAG)5043 static SDValue LowerSaturatingConditional(SDValue Op, SelectionDAG &DAG) {
5044   EVT VT = Op.getValueType();
5045   SDValue V1 = Op.getOperand(0);
5046   SDValue K1 = Op.getOperand(1);
5047   SDValue TrueVal1 = Op.getOperand(2);
5048   SDValue FalseVal1 = Op.getOperand(3);
5049   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5050 
5051   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
5052   if (Op2.getOpcode() != ISD::SELECT_CC)
5053     return SDValue();
5054 
5055   SDValue V2 = Op2.getOperand(0);
5056   SDValue K2 = Op2.getOperand(1);
5057   SDValue TrueVal2 = Op2.getOperand(2);
5058   SDValue FalseVal2 = Op2.getOperand(3);
5059   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
5060 
5061   SDValue V1Tmp = V1;
5062   SDValue V2Tmp = V2;
5063 
5064   // Check that the registers and the constants match a max(min()) or min(max())
5065   // pattern
5066   if (V1Tmp != TrueVal1 || V2Tmp != TrueVal2 || K1 != FalseVal1 ||
5067       K2 != FalseVal2 ||
5068       !((isGTorGE(CC1) && isLTorLE(CC2)) || (isLTorLE(CC1) && isGTorGE(CC2))))
5069     return SDValue();
5070 
5071   // Check that the constant in the lower-bound check is
5072   // the opposite of the constant in the upper-bound check
5073   // in 1's complement.
5074   if (!isa<ConstantSDNode>(K1) || !isa<ConstantSDNode>(K2))
5075     return SDValue();
5076 
5077   int64_t Val1 = cast<ConstantSDNode>(K1)->getSExtValue();
5078   int64_t Val2 = cast<ConstantSDNode>(K2)->getSExtValue();
5079   int64_t PosVal = std::max(Val1, Val2);
5080   int64_t NegVal = std::min(Val1, Val2);
5081 
5082   if (!((Val1 > Val2 && isLTorLE(CC1)) || (Val1 < Val2 && isLTorLE(CC2))) ||
5083       !isPowerOf2_64(PosVal + 1))
5084     return SDValue();
5085 
5086   // Handle the difference between USAT (unsigned) and SSAT (signed)
5087   // saturation
5088   // At this point, PosVal is guaranteed to be positive
5089   uint64_t K = PosVal;
5090   SDLoc dl(Op);
5091   if (Val1 == ~Val2)
5092     return DAG.getNode(ARMISD::SSAT, dl, VT, V2Tmp,
5093                        DAG.getConstant(countTrailingOnes(K), dl, VT));
5094   if (NegVal == 0)
5095     return DAG.getNode(ARMISD::USAT, dl, VT, V2Tmp,
5096                        DAG.getConstant(countTrailingOnes(K), dl, VT));
5097 
5098   return SDValue();
5099 }
5100 
5101 // Check if a condition of the type x < k ? k : x can be converted into a
5102 // bit operation instead of conditional moves.
5103 // Currently this is allowed given:
5104 // - The conditions and values match up
5105 // - k is 0 or -1 (all ones)
5106 // This function will not check the last condition, thats up to the caller
5107 // It returns true if the transformation can be made, and in such case
5108 // returns x in V, and k in SatK.
isLowerSaturatingConditional(const SDValue & Op,SDValue & V,SDValue & SatK)5109 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
5110                                          SDValue &SatK)
5111 {
5112   SDValue LHS = Op.getOperand(0);
5113   SDValue RHS = Op.getOperand(1);
5114   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5115   SDValue TrueVal = Op.getOperand(2);
5116   SDValue FalseVal = Op.getOperand(3);
5117 
5118   SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
5119                                                ? &RHS
5120                                                : nullptr;
5121 
5122   // No constant operation in comparison, early out
5123   if (!K)
5124     return false;
5125 
5126   SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
5127   V = (KTmp == TrueVal) ? FalseVal : TrueVal;
5128   SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
5129 
5130   // If the constant on left and right side, or variable on left and right,
5131   // does not match, early out
5132   if (*K != KTmp || V != VTmp)
5133     return false;
5134 
5135   if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
5136     SatK = *K;
5137     return true;
5138   }
5139 
5140   return false;
5141 }
5142 
isUnsupportedFloatingType(EVT VT) const5143 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
5144   if (VT == MVT::f32)
5145     return !Subtarget->hasVFP2Base();
5146   if (VT == MVT::f64)
5147     return !Subtarget->hasFP64();
5148   if (VT == MVT::f16)
5149     return !Subtarget->hasFullFP16();
5150   return false;
5151 }
5152 
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const5153 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
5154   EVT VT = Op.getValueType();
5155   SDLoc dl(Op);
5156 
5157   // Try to convert two saturating conditional selects into a single SSAT
5158   if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2())
5159     if (SDValue SatValue = LowerSaturatingConditional(Op, DAG))
5160       return SatValue;
5161 
5162   // Try to convert expressions of the form x < k ? k : x (and similar forms)
5163   // into more efficient bit operations, which is possible when k is 0 or -1
5164   // On ARM and Thumb-2 which have flexible operand 2 this will result in
5165   // single instructions. On Thumb the shift and the bit operation will be two
5166   // instructions.
5167   // Only allow this transformation on full-width (32-bit) operations
5168   SDValue LowerSatConstant;
5169   SDValue SatValue;
5170   if (VT == MVT::i32 &&
5171       isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
5172     SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
5173                                  DAG.getConstant(31, dl, VT));
5174     if (isNullConstant(LowerSatConstant)) {
5175       SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
5176                                       DAG.getAllOnesConstant(dl, VT));
5177       return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
5178     } else if (isAllOnesConstant(LowerSatConstant))
5179       return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
5180   }
5181 
5182   SDValue LHS = Op.getOperand(0);
5183   SDValue RHS = Op.getOperand(1);
5184   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5185   SDValue TrueVal = Op.getOperand(2);
5186   SDValue FalseVal = Op.getOperand(3);
5187   ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FalseVal);
5188   ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TrueVal);
5189 
5190   if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal &&
5191       LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) {
5192     unsigned TVal = CTVal->getZExtValue();
5193     unsigned FVal = CFVal->getZExtValue();
5194     unsigned Opcode = 0;
5195 
5196     if (TVal == ~FVal) {
5197       Opcode = ARMISD::CSINV;
5198     } else if (TVal == ~FVal + 1) {
5199       Opcode = ARMISD::CSNEG;
5200     } else if (TVal + 1 == FVal) {
5201       Opcode = ARMISD::CSINC;
5202     } else if (TVal == FVal + 1) {
5203       Opcode = ARMISD::CSINC;
5204       std::swap(TrueVal, FalseVal);
5205       std::swap(TVal, FVal);
5206       CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5207     }
5208 
5209     if (Opcode) {
5210       // If one of the constants is cheaper than another, materialise the
5211       // cheaper one and let the csel generate the other.
5212       if (Opcode != ARMISD::CSINC &&
5213           HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) {
5214         std::swap(TrueVal, FalseVal);
5215         std::swap(TVal, FVal);
5216         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5217       }
5218 
5219       // Attempt to use ZR checking TVal is 0, possibly inverting the condition
5220       // to get there. CSINC not is invertable like the other two (~(~a) == a,
5221       // -(-a) == a, but (a+1)+1 != a).
5222       if (FVal == 0 && Opcode != ARMISD::CSINC) {
5223         std::swap(TrueVal, FalseVal);
5224         std::swap(TVal, FVal);
5225         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5226       }
5227       if (TVal == 0)
5228         TrueVal = DAG.getRegister(ARM::ZR, MVT::i32);
5229 
5230       // Drops F's value because we can get it by inverting/negating TVal.
5231       FalseVal = TrueVal;
5232 
5233       SDValue ARMcc;
5234       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5235       EVT VT = TrueVal.getValueType();
5236       return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp);
5237     }
5238   }
5239 
5240   if (isUnsupportedFloatingType(LHS.getValueType())) {
5241     DAG.getTargetLoweringInfo().softenSetCCOperands(
5242         DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5243 
5244     // If softenSetCCOperands only returned one value, we should compare it to
5245     // zero.
5246     if (!RHS.getNode()) {
5247       RHS = DAG.getConstant(0, dl, LHS.getValueType());
5248       CC = ISD::SETNE;
5249     }
5250   }
5251 
5252   if (LHS.getValueType() == MVT::i32) {
5253     // Try to generate VSEL on ARMv8.
5254     // The VSEL instruction can't use all the usual ARM condition
5255     // codes: it only has two bits to select the condition code, so it's
5256     // constrained to use only GE, GT, VS and EQ.
5257     //
5258     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
5259     // swap the operands of the previous compare instruction (effectively
5260     // inverting the compare condition, swapping 'less' and 'greater') and
5261     // sometimes need to swap the operands to the VSEL (which inverts the
5262     // condition in the sense of firing whenever the previous condition didn't)
5263     if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
5264                                         TrueVal.getValueType() == MVT::f32 ||
5265                                         TrueVal.getValueType() == MVT::f64)) {
5266       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5267       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
5268           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
5269         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5270         std::swap(TrueVal, FalseVal);
5271       }
5272     }
5273 
5274     SDValue ARMcc;
5275     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5276     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5277     // Choose GE over PL, which vsel does now support
5278     if (cast<ConstantSDNode>(ARMcc)->getZExtValue() == ARMCC::PL)
5279       ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
5280     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5281   }
5282 
5283   ARMCC::CondCodes CondCode, CondCode2;
5284   FPCCToARMCC(CC, CondCode, CondCode2);
5285 
5286   // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
5287   // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
5288   // must use VSEL (limited condition codes), due to not having conditional f16
5289   // moves.
5290   if (Subtarget->hasFPARMv8Base() &&
5291       !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
5292       (TrueVal.getValueType() == MVT::f16 ||
5293        TrueVal.getValueType() == MVT::f32 ||
5294        TrueVal.getValueType() == MVT::f64)) {
5295     bool swpCmpOps = false;
5296     bool swpVselOps = false;
5297     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
5298 
5299     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
5300         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
5301       if (swpCmpOps)
5302         std::swap(LHS, RHS);
5303       if (swpVselOps)
5304         std::swap(TrueVal, FalseVal);
5305     }
5306   }
5307 
5308   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5309   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5310   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5311   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5312   if (CondCode2 != ARMCC::AL) {
5313     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
5314     // FIXME: Needs another CMP because flag can have but one use.
5315     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
5316     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
5317   }
5318   return Result;
5319 }
5320 
5321 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
5322 /// to morph to an integer compare sequence.
canChangeToInt(SDValue Op,bool & SeenZero,const ARMSubtarget * Subtarget)5323 static bool canChangeToInt(SDValue Op, bool &SeenZero,
5324                            const ARMSubtarget *Subtarget) {
5325   SDNode *N = Op.getNode();
5326   if (!N->hasOneUse())
5327     // Otherwise it requires moving the value from fp to integer registers.
5328     return false;
5329   if (!N->getNumValues())
5330     return false;
5331   EVT VT = Op.getValueType();
5332   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
5333     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
5334     // vmrs are very slow, e.g. cortex-a8.
5335     return false;
5336 
5337   if (isFloatingPointZero(Op)) {
5338     SeenZero = true;
5339     return true;
5340   }
5341   return ISD::isNormalLoad(N);
5342 }
5343 
bitcastf32Toi32(SDValue Op,SelectionDAG & DAG)5344 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
5345   if (isFloatingPointZero(Op))
5346     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
5347 
5348   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
5349     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
5350                        Ld->getPointerInfo(), Ld->getAlignment(),
5351                        Ld->getMemOperand()->getFlags());
5352 
5353   llvm_unreachable("Unknown VFP cmp argument!");
5354 }
5355 
expandf64Toi32(SDValue Op,SelectionDAG & DAG,SDValue & RetVal1,SDValue & RetVal2)5356 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
5357                            SDValue &RetVal1, SDValue &RetVal2) {
5358   SDLoc dl(Op);
5359 
5360   if (isFloatingPointZero(Op)) {
5361     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
5362     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
5363     return;
5364   }
5365 
5366   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
5367     SDValue Ptr = Ld->getBasePtr();
5368     RetVal1 =
5369         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
5370                     Ld->getAlignment(), Ld->getMemOperand()->getFlags());
5371 
5372     EVT PtrType = Ptr.getValueType();
5373     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
5374     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
5375                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
5376     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
5377                           Ld->getPointerInfo().getWithOffset(4), NewAlign,
5378                           Ld->getMemOperand()->getFlags());
5379     return;
5380   }
5381 
5382   llvm_unreachable("Unknown VFP cmp argument!");
5383 }
5384 
5385 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5386 /// f32 and even f64 comparisons to integer ones.
5387 SDValue
OptimizeVFPBrcond(SDValue Op,SelectionDAG & DAG) const5388 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
5389   SDValue Chain = Op.getOperand(0);
5390   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5391   SDValue LHS = Op.getOperand(2);
5392   SDValue RHS = Op.getOperand(3);
5393   SDValue Dest = Op.getOperand(4);
5394   SDLoc dl(Op);
5395 
5396   bool LHSSeenZero = false;
5397   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
5398   bool RHSSeenZero = false;
5399   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
5400   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
5401     // If unsafe fp math optimization is enabled and there are no other uses of
5402     // the CMP operands, and the condition code is EQ or NE, we can optimize it
5403     // to an integer comparison.
5404     if (CC == ISD::SETOEQ)
5405       CC = ISD::SETEQ;
5406     else if (CC == ISD::SETUNE)
5407       CC = ISD::SETNE;
5408 
5409     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5410     SDValue ARMcc;
5411     if (LHS.getValueType() == MVT::f32) {
5412       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5413                         bitcastf32Toi32(LHS, DAG), Mask);
5414       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5415                         bitcastf32Toi32(RHS, DAG), Mask);
5416       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5417       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5418       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5419                          Chain, Dest, ARMcc, CCR, Cmp);
5420     }
5421 
5422     SDValue LHS1, LHS2;
5423     SDValue RHS1, RHS2;
5424     expandf64Toi32(LHS, DAG, LHS1, LHS2);
5425     expandf64Toi32(RHS, DAG, RHS1, RHS2);
5426     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
5427     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
5428     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5429     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5430     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5431     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
5432     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
5433   }
5434 
5435   return SDValue();
5436 }
5437 
LowerBRCOND(SDValue Op,SelectionDAG & DAG) const5438 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
5439   SDValue Chain = Op.getOperand(0);
5440   SDValue Cond = Op.getOperand(1);
5441   SDValue Dest = Op.getOperand(2);
5442   SDLoc dl(Op);
5443 
5444   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5445   // instruction.
5446   unsigned Opc = Cond.getOpcode();
5447   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5448                       !Subtarget->isThumb1Only();
5449   if (Cond.getResNo() == 1 &&
5450       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5451        Opc == ISD::USUBO || OptimizeMul)) {
5452     // Only lower legal XALUO ops.
5453     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5454       return SDValue();
5455 
5456     // The actual operation with overflow check.
5457     SDValue Value, OverflowCmp;
5458     SDValue ARMcc;
5459     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5460 
5461     // Reverse the condition code.
5462     ARMCC::CondCodes CondCode =
5463         (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5464     CondCode = ARMCC::getOppositeCondition(CondCode);
5465     ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5466     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5467 
5468     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5469                        OverflowCmp);
5470   }
5471 
5472   return SDValue();
5473 }
5474 
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const5475 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
5476   SDValue Chain = Op.getOperand(0);
5477   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5478   SDValue LHS = Op.getOperand(2);
5479   SDValue RHS = Op.getOperand(3);
5480   SDValue Dest = Op.getOperand(4);
5481   SDLoc dl(Op);
5482 
5483   if (isUnsupportedFloatingType(LHS.getValueType())) {
5484     DAG.getTargetLoweringInfo().softenSetCCOperands(
5485         DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5486 
5487     // If softenSetCCOperands only returned one value, we should compare it to
5488     // zero.
5489     if (!RHS.getNode()) {
5490       RHS = DAG.getConstant(0, dl, LHS.getValueType());
5491       CC = ISD::SETNE;
5492     }
5493   }
5494 
5495   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5496   // instruction.
5497   unsigned Opc = LHS.getOpcode();
5498   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5499                       !Subtarget->isThumb1Only();
5500   if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
5501       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5502        Opc == ISD::USUBO || OptimizeMul) &&
5503       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5504     // Only lower legal XALUO ops.
5505     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
5506       return SDValue();
5507 
5508     // The actual operation with overflow check.
5509     SDValue Value, OverflowCmp;
5510     SDValue ARMcc;
5511     std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
5512 
5513     if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
5514       // Reverse the condition code.
5515       ARMCC::CondCodes CondCode =
5516           (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5517       CondCode = ARMCC::getOppositeCondition(CondCode);
5518       ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5519     }
5520     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5521 
5522     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5523                        OverflowCmp);
5524   }
5525 
5526   if (LHS.getValueType() == MVT::i32) {
5527     SDValue ARMcc;
5528     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5529     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5530     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5531                        Chain, Dest, ARMcc, CCR, Cmp);
5532   }
5533 
5534   if (getTargetMachine().Options.UnsafeFPMath &&
5535       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
5536        CC == ISD::SETNE || CC == ISD::SETUNE)) {
5537     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
5538       return Result;
5539   }
5540 
5541   ARMCC::CondCodes CondCode, CondCode2;
5542   FPCCToARMCC(CC, CondCode, CondCode2);
5543 
5544   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5545   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5546   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5547   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5548   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
5549   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5550   if (CondCode2 != ARMCC::AL) {
5551     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
5552     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
5553     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5554   }
5555   return Res;
5556 }
5557 
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const5558 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
5559   SDValue Chain = Op.getOperand(0);
5560   SDValue Table = Op.getOperand(1);
5561   SDValue Index = Op.getOperand(2);
5562   SDLoc dl(Op);
5563 
5564   EVT PTy = getPointerTy(DAG.getDataLayout());
5565   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
5566   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
5567   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
5568   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
5569   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
5570   if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
5571     // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5572     // which does another jump to the destination. This also makes it easier
5573     // to translate it to TBB / TBH later (Thumb2 only).
5574     // FIXME: This might not work if the function is extremely large.
5575     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
5576                        Addr, Op.getOperand(2), JTI);
5577   }
5578   if (isPositionIndependent() || Subtarget->isROPI()) {
5579     Addr =
5580         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
5581                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5582     Chain = Addr.getValue(1);
5583     Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
5584     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5585   } else {
5586     Addr =
5587         DAG.getLoad(PTy, dl, Chain, Addr,
5588                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5589     Chain = Addr.getValue(1);
5590     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5591   }
5592 }
5593 
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)5594 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
5595   EVT VT = Op.getValueType();
5596   SDLoc dl(Op);
5597 
5598   if (Op.getValueType().getVectorElementType() == MVT::i32) {
5599     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
5600       return Op;
5601     return DAG.UnrollVectorOp(Op.getNode());
5602   }
5603 
5604   const bool HasFullFP16 =
5605     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5606 
5607   EVT NewTy;
5608   const EVT OpTy = Op.getOperand(0).getValueType();
5609   if (OpTy == MVT::v4f32)
5610     NewTy = MVT::v4i32;
5611   else if (OpTy == MVT::v4f16 && HasFullFP16)
5612     NewTy = MVT::v4i16;
5613   else if (OpTy == MVT::v8f16 && HasFullFP16)
5614     NewTy = MVT::v8i16;
5615   else
5616     llvm_unreachable("Invalid type for custom lowering!");
5617 
5618   if (VT != MVT::v4i16 && VT != MVT::v8i16)
5619     return DAG.UnrollVectorOp(Op.getNode());
5620 
5621   Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
5622   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
5623 }
5624 
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const5625 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
5626   EVT VT = Op.getValueType();
5627   if (VT.isVector())
5628     return LowerVectorFP_TO_INT(Op, DAG);
5629 
5630   bool IsStrict = Op->isStrictFPOpcode();
5631   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
5632 
5633   if (isUnsupportedFloatingType(SrcVal.getValueType())) {
5634     RTLIB::Libcall LC;
5635     if (Op.getOpcode() == ISD::FP_TO_SINT ||
5636         Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
5637       LC = RTLIB::getFPTOSINT(SrcVal.getValueType(),
5638                               Op.getValueType());
5639     else
5640       LC = RTLIB::getFPTOUINT(SrcVal.getValueType(),
5641                               Op.getValueType());
5642     SDLoc Loc(Op);
5643     MakeLibCallOptions CallOptions;
5644     SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
5645     SDValue Result;
5646     std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
5647                                           CallOptions, Loc, Chain);
5648     return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
5649   }
5650 
5651   // FIXME: Remove this when we have strict fp instruction selection patterns
5652   if (IsStrict) {
5653     SDLoc Loc(Op);
5654     SDValue Result =
5655         DAG.getNode(Op.getOpcode() == ISD::STRICT_FP_TO_SINT ? ISD::FP_TO_SINT
5656                                                              : ISD::FP_TO_UINT,
5657                     Loc, Op.getValueType(), SrcVal);
5658     return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
5659   }
5660 
5661   return Op;
5662 }
5663 
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)5664 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5665   EVT VT = Op.getValueType();
5666   SDLoc dl(Op);
5667 
5668   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
5669     if (VT.getVectorElementType() == MVT::f32)
5670       return Op;
5671     return DAG.UnrollVectorOp(Op.getNode());
5672   }
5673 
5674   assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
5675           Op.getOperand(0).getValueType() == MVT::v8i16) &&
5676          "Invalid type for custom lowering!");
5677 
5678   const bool HasFullFP16 =
5679     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5680 
5681   EVT DestVecType;
5682   if (VT == MVT::v4f32)
5683     DestVecType = MVT::v4i32;
5684   else if (VT == MVT::v4f16 && HasFullFP16)
5685     DestVecType = MVT::v4i16;
5686   else if (VT == MVT::v8f16 && HasFullFP16)
5687     DestVecType = MVT::v8i16;
5688   else
5689     return DAG.UnrollVectorOp(Op.getNode());
5690 
5691   unsigned CastOpc;
5692   unsigned Opc;
5693   switch (Op.getOpcode()) {
5694   default: llvm_unreachable("Invalid opcode!");
5695   case ISD::SINT_TO_FP:
5696     CastOpc = ISD::SIGN_EXTEND;
5697     Opc = ISD::SINT_TO_FP;
5698     break;
5699   case ISD::UINT_TO_FP:
5700     CastOpc = ISD::ZERO_EXTEND;
5701     Opc = ISD::UINT_TO_FP;
5702     break;
5703   }
5704 
5705   Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
5706   return DAG.getNode(Opc, dl, VT, Op);
5707 }
5708 
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const5709 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
5710   EVT VT = Op.getValueType();
5711   if (VT.isVector())
5712     return LowerVectorINT_TO_FP(Op, DAG);
5713   if (isUnsupportedFloatingType(VT)) {
5714     RTLIB::Libcall LC;
5715     if (Op.getOpcode() == ISD::SINT_TO_FP)
5716       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
5717                               Op.getValueType());
5718     else
5719       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
5720                               Op.getValueType());
5721     MakeLibCallOptions CallOptions;
5722     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
5723                        CallOptions, SDLoc(Op)).first;
5724   }
5725 
5726   return Op;
5727 }
5728 
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const5729 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
5730   // Implement fcopysign with a fabs and a conditional fneg.
5731   SDValue Tmp0 = Op.getOperand(0);
5732   SDValue Tmp1 = Op.getOperand(1);
5733   SDLoc dl(Op);
5734   EVT VT = Op.getValueType();
5735   EVT SrcVT = Tmp1.getValueType();
5736   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
5737     Tmp0.getOpcode() == ARMISD::VMOVDRR;
5738   bool UseNEON = !InGPR && Subtarget->hasNEON();
5739 
5740   if (UseNEON) {
5741     // Use VBSL to copy the sign bit.
5742     unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
5743     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
5744                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
5745     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
5746     if (VT == MVT::f64)
5747       Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5748                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
5749                          DAG.getConstant(32, dl, MVT::i32));
5750     else /*if (VT == MVT::f32)*/
5751       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
5752     if (SrcVT == MVT::f32) {
5753       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
5754       if (VT == MVT::f64)
5755         Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5756                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
5757                            DAG.getConstant(32, dl, MVT::i32));
5758     } else if (VT == MVT::f32)
5759       Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
5760                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
5761                          DAG.getConstant(32, dl, MVT::i32));
5762     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
5763     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
5764 
5765     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5766                                             dl, MVT::i32);
5767     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
5768     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
5769                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
5770 
5771     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
5772                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
5773                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
5774     if (VT == MVT::f32) {
5775       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
5776       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
5777                         DAG.getConstant(0, dl, MVT::i32));
5778     } else {
5779       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
5780     }
5781 
5782     return Res;
5783   }
5784 
5785   // Bitcast operand 1 to i32.
5786   if (SrcVT == MVT::f64)
5787     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5788                        Tmp1).getValue(1);
5789   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
5790 
5791   // Or in the signbit with integer operations.
5792   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
5793   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5794   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
5795   if (VT == MVT::f32) {
5796     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
5797                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
5798     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5799                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
5800   }
5801 
5802   // f64: Or the high part with signbit and then combine two parts.
5803   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5804                      Tmp0);
5805   SDValue Lo = Tmp0.getValue(0);
5806   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
5807   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
5808   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
5809 }
5810 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const5811 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
5812   MachineFunction &MF = DAG.getMachineFunction();
5813   MachineFrameInfo &MFI = MF.getFrameInfo();
5814   MFI.setReturnAddressIsTaken(true);
5815 
5816   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
5817     return SDValue();
5818 
5819   EVT VT = Op.getValueType();
5820   SDLoc dl(Op);
5821   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5822   if (Depth) {
5823     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5824     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
5825     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
5826                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
5827                        MachinePointerInfo());
5828   }
5829 
5830   // Return LR, which contains the return address. Mark it an implicit live-in.
5831   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
5832   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
5833 }
5834 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const5835 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
5836   const ARMBaseRegisterInfo &ARI =
5837     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
5838   MachineFunction &MF = DAG.getMachineFunction();
5839   MachineFrameInfo &MFI = MF.getFrameInfo();
5840   MFI.setFrameAddressIsTaken(true);
5841 
5842   EVT VT = Op.getValueType();
5843   SDLoc dl(Op);  // FIXME probably not meaningful
5844   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5845   Register FrameReg = ARI.getFrameRegister(MF);
5846   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
5847   while (Depth--)
5848     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
5849                             MachinePointerInfo());
5850   return FrameAddr;
5851 }
5852 
5853 // FIXME? Maybe this could be a TableGen attribute on some registers and
5854 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const5855 Register ARMTargetLowering::getRegisterByName(const char* RegName, LLT VT,
5856                                               const MachineFunction &MF) const {
5857   Register Reg = StringSwitch<unsigned>(RegName)
5858                        .Case("sp", ARM::SP)
5859                        .Default(0);
5860   if (Reg)
5861     return Reg;
5862   report_fatal_error(Twine("Invalid register name \""
5863                               + StringRef(RegName)  + "\"."));
5864 }
5865 
5866 // Result is 64 bit value so split into two 32 bit values and return as a
5867 // pair of values.
ExpandREAD_REGISTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)5868 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
5869                                 SelectionDAG &DAG) {
5870   SDLoc DL(N);
5871 
5872   // This function is only supposed to be called for i64 type destination.
5873   assert(N->getValueType(0) == MVT::i64
5874           && "ExpandREAD_REGISTER called for non-i64 type result.");
5875 
5876   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
5877                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
5878                              N->getOperand(0),
5879                              N->getOperand(1));
5880 
5881   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
5882                     Read.getValue(1)));
5883   Results.push_back(Read.getOperand(0));
5884 }
5885 
5886 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5887 /// When \p DstVT, the destination type of \p BC, is on the vector
5888 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5889 /// it might be possible to combine them, such that everything stays on the
5890 /// vector register bank.
5891 /// \p return The node that would replace \p BT, if the combine
5892 /// is possible.
CombineVMOVDRRCandidateWithVecOp(const SDNode * BC,SelectionDAG & DAG)5893 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
5894                                                 SelectionDAG &DAG) {
5895   SDValue Op = BC->getOperand(0);
5896   EVT DstVT = BC->getValueType(0);
5897 
5898   // The only vector instruction that can produce a scalar (remember,
5899   // since the bitcast was about to be turned into VMOVDRR, the source
5900   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5901   // Moreover, we can do this combine only if there is one use.
5902   // Finally, if the destination type is not a vector, there is not
5903   // much point on forcing everything on the vector bank.
5904   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5905       !Op.hasOneUse())
5906     return SDValue();
5907 
5908   // If the index is not constant, we will introduce an additional
5909   // multiply that will stick.
5910   // Give up in that case.
5911   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5912   if (!Index)
5913     return SDValue();
5914   unsigned DstNumElt = DstVT.getVectorNumElements();
5915 
5916   // Compute the new index.
5917   const APInt &APIntIndex = Index->getAPIntValue();
5918   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
5919   NewIndex *= APIntIndex;
5920   // Check if the new constant index fits into i32.
5921   if (NewIndex.getBitWidth() > 32)
5922     return SDValue();
5923 
5924   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5925   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5926   SDLoc dl(Op);
5927   SDValue ExtractSrc = Op.getOperand(0);
5928   EVT VecVT = EVT::getVectorVT(
5929       *DAG.getContext(), DstVT.getScalarType(),
5930       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
5931   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
5932   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
5933                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
5934 }
5935 
5936 /// ExpandBITCAST - If the target supports VFP, this function is called to
5937 /// expand a bit convert where either the source or destination type is i64 to
5938 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
5939 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5940 /// vectors), since the legalizer won't know what to do with that.
ExpandBITCAST(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const5941 SDValue ARMTargetLowering::ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
5942                                          const ARMSubtarget *Subtarget) const {
5943   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5944   SDLoc dl(N);
5945   SDValue Op = N->getOperand(0);
5946 
5947   // This function is only supposed to be called for i16 and i64 types, either
5948   // as the source or destination of the bit convert.
5949   EVT SrcVT = Op.getValueType();
5950   EVT DstVT = N->getValueType(0);
5951 
5952   if ((SrcVT == MVT::i16 || SrcVT == MVT::i32) &&
5953       (DstVT == MVT::f16 || DstVT == MVT::bf16))
5954     return MoveToHPR(SDLoc(N), DAG, MVT::i32, DstVT.getSimpleVT(),
5955                      DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), MVT::i32, Op));
5956 
5957   if ((DstVT == MVT::i16 || DstVT == MVT::i32) &&
5958       (SrcVT == MVT::f16 || SrcVT == MVT::bf16))
5959     return DAG.getNode(
5960         ISD::TRUNCATE, SDLoc(N), DstVT,
5961         MoveFromHPR(SDLoc(N), DAG, MVT::i32, SrcVT.getSimpleVT(), Op));
5962 
5963   if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
5964     return SDValue();
5965 
5966   // Turn i64->f64 into VMOVDRR.
5967   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
5968     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5969     // if we can combine the bitcast with its source.
5970     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
5971       return Val;
5972 
5973     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5974                              DAG.getConstant(0, dl, MVT::i32));
5975     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5976                              DAG.getConstant(1, dl, MVT::i32));
5977     return DAG.getNode(ISD::BITCAST, dl, DstVT,
5978                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
5979   }
5980 
5981   // Turn f64->i64 into VMOVRRD.
5982   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
5983     SDValue Cvt;
5984     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
5985         SrcVT.getVectorNumElements() > 1)
5986       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5987                         DAG.getVTList(MVT::i32, MVT::i32),
5988                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
5989     else
5990       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5991                         DAG.getVTList(MVT::i32, MVT::i32), Op);
5992     // Merge the pieces into a single i64 value.
5993     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
5994   }
5995 
5996   return SDValue();
5997 }
5998 
5999 /// getZeroVector - Returns a vector of specified type with all zero elements.
6000 /// Zero vectors are used to represent vector negation and in those cases
6001 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
6002 /// not support i64 elements, so sometimes the zero vectors will need to be
6003 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
6004 /// zero vector.
getZeroVector(EVT VT,SelectionDAG & DAG,const SDLoc & dl)6005 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
6006   assert(VT.isVector() && "Expected a vector type");
6007   // The canonical modified immediate encoding of a zero vector is....0!
6008   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
6009   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6010   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
6011   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6012 }
6013 
6014 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
6015 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const6016 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
6017                                                 SelectionDAG &DAG) const {
6018   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6019   EVT VT = Op.getValueType();
6020   unsigned VTBits = VT.getSizeInBits();
6021   SDLoc dl(Op);
6022   SDValue ShOpLo = Op.getOperand(0);
6023   SDValue ShOpHi = Op.getOperand(1);
6024   SDValue ShAmt  = Op.getOperand(2);
6025   SDValue ARMcc;
6026   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6027   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
6028 
6029   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
6030 
6031   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6032                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6033   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
6034   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6035                                    DAG.getConstant(VTBits, dl, MVT::i32));
6036   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
6037   SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6038   SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
6039   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6040                             ISD::SETGE, ARMcc, DAG, dl);
6041   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
6042                            ARMcc, CCR, CmpLo);
6043 
6044   SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
6045   SDValue HiBigShift = Opc == ISD::SRA
6046                            ? DAG.getNode(Opc, dl, VT, ShOpHi,
6047                                          DAG.getConstant(VTBits - 1, dl, VT))
6048                            : DAG.getConstant(0, dl, VT);
6049   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6050                             ISD::SETGE, ARMcc, DAG, dl);
6051   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
6052                            ARMcc, CCR, CmpHi);
6053 
6054   SDValue Ops[2] = { Lo, Hi };
6055   return DAG.getMergeValues(Ops, dl);
6056 }
6057 
6058 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
6059 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const6060 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
6061                                                SelectionDAG &DAG) const {
6062   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6063   EVT VT = Op.getValueType();
6064   unsigned VTBits = VT.getSizeInBits();
6065   SDLoc dl(Op);
6066   SDValue ShOpLo = Op.getOperand(0);
6067   SDValue ShOpHi = Op.getOperand(1);
6068   SDValue ShAmt  = Op.getOperand(2);
6069   SDValue ARMcc;
6070   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6071 
6072   assert(Op.getOpcode() == ISD::SHL_PARTS);
6073   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6074                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6075   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
6076   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
6077   SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6078 
6079   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6080                                    DAG.getConstant(VTBits, dl, MVT::i32));
6081   SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
6082   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6083                             ISD::SETGE, ARMcc, DAG, dl);
6084   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
6085                            ARMcc, CCR, CmpHi);
6086 
6087   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6088                           ISD::SETGE, ARMcc, DAG, dl);
6089   SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6090   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
6091                            DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
6092 
6093   SDValue Ops[2] = { Lo, Hi };
6094   return DAG.getMergeValues(Ops, dl);
6095 }
6096 
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const6097 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
6098                                             SelectionDAG &DAG) const {
6099   // The rounding mode is in bits 23:22 of the FPSCR.
6100   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
6101   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
6102   // so that the shift + and get folded into a bitfield extract.
6103   SDLoc dl(Op);
6104   SDValue Chain = Op.getOperand(0);
6105   SDValue Ops[] = {Chain,
6106                    DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32)};
6107 
6108   SDValue FPSCR =
6109       DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, {MVT::i32, MVT::Other}, Ops);
6110   Chain = FPSCR.getValue(1);
6111   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
6112                                   DAG.getConstant(1U << 22, dl, MVT::i32));
6113   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
6114                               DAG.getConstant(22, dl, MVT::i32));
6115   SDValue And = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
6116                             DAG.getConstant(3, dl, MVT::i32));
6117   return DAG.getMergeValues({And, Chain}, dl);
6118 }
6119 
LowerCTTZ(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)6120 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
6121                          const ARMSubtarget *ST) {
6122   SDLoc dl(N);
6123   EVT VT = N->getValueType(0);
6124   if (VT.isVector() && ST->hasNEON()) {
6125 
6126     // Compute the least significant set bit: LSB = X & -X
6127     SDValue X = N->getOperand(0);
6128     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
6129     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
6130 
6131     EVT ElemTy = VT.getVectorElementType();
6132 
6133     if (ElemTy == MVT::i8) {
6134       // Compute with: cttz(x) = ctpop(lsb - 1)
6135       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6136                                 DAG.getTargetConstant(1, dl, ElemTy));
6137       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6138       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6139     }
6140 
6141     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
6142         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
6143       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
6144       unsigned NumBits = ElemTy.getSizeInBits();
6145       SDValue WidthMinus1 =
6146           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6147                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
6148       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
6149       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
6150     }
6151 
6152     // Compute with: cttz(x) = ctpop(lsb - 1)
6153 
6154     // Compute LSB - 1.
6155     SDValue Bits;
6156     if (ElemTy == MVT::i64) {
6157       // Load constant 0xffff'ffff'ffff'ffff to register.
6158       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6159                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
6160       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
6161     } else {
6162       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6163                                 DAG.getTargetConstant(1, dl, ElemTy));
6164       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6165     }
6166     return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6167   }
6168 
6169   if (!ST->hasV6T2Ops())
6170     return SDValue();
6171 
6172   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
6173   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
6174 }
6175 
LowerCTPOP(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)6176 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
6177                           const ARMSubtarget *ST) {
6178   EVT VT = N->getValueType(0);
6179   SDLoc DL(N);
6180 
6181   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
6182   assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
6183           VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
6184          "Unexpected type for custom ctpop lowering");
6185 
6186   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6187   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
6188   SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
6189   Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
6190 
6191   // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
6192   unsigned EltSize = 8;
6193   unsigned NumElts = VT.is64BitVector() ? 8 : 16;
6194   while (EltSize != VT.getScalarSizeInBits()) {
6195     SmallVector<SDValue, 8> Ops;
6196     Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
6197                                   TLI.getPointerTy(DAG.getDataLayout())));
6198     Ops.push_back(Res);
6199 
6200     EltSize *= 2;
6201     NumElts /= 2;
6202     MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
6203     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
6204   }
6205 
6206   return Res;
6207 }
6208 
6209 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
6210 /// operand of a vector shift operation, where all the elements of the
6211 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)6212 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6213   // Ignore bit_converts.
6214   while (Op.getOpcode() == ISD::BITCAST)
6215     Op = Op.getOperand(0);
6216   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6217   APInt SplatBits, SplatUndef;
6218   unsigned SplatBitSize;
6219   bool HasAnyUndefs;
6220   if (!BVN ||
6221       !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6222                             ElementBits) ||
6223       SplatBitSize > ElementBits)
6224     return false;
6225   Cnt = SplatBits.getSExtValue();
6226   return true;
6227 }
6228 
6229 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
6230 /// operand of a vector shift left operation.  That value must be in the range:
6231 ///   0 <= Value < ElementBits for a left shift; or
6232 ///   0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)6233 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6234   assert(VT.isVector() && "vector shift count is not a vector type");
6235   int64_t ElementBits = VT.getScalarSizeInBits();
6236   if (!getVShiftImm(Op, ElementBits, Cnt))
6237     return false;
6238   return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6239 }
6240 
6241 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
6242 /// operand of a vector shift right operation.  For a shift opcode, the value
6243 /// is positive, but for an intrinsic the value count must be negative. The
6244 /// absolute value must be in the range:
6245 ///   1 <= |Value| <= ElementBits for a right shift; or
6246 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,bool isIntrinsic,int64_t & Cnt)6247 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6248                          int64_t &Cnt) {
6249   assert(VT.isVector() && "vector shift count is not a vector type");
6250   int64_t ElementBits = VT.getScalarSizeInBits();
6251   if (!getVShiftImm(Op, ElementBits, Cnt))
6252     return false;
6253   if (!isIntrinsic)
6254     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6255   if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
6256     Cnt = -Cnt;
6257     return true;
6258   }
6259   return false;
6260 }
6261 
LowerShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)6262 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
6263                           const ARMSubtarget *ST) {
6264   EVT VT = N->getValueType(0);
6265   SDLoc dl(N);
6266   int64_t Cnt;
6267 
6268   if (!VT.isVector())
6269     return SDValue();
6270 
6271   // We essentially have two forms here. Shift by an immediate and shift by a
6272   // vector register (there are also shift by a gpr, but that is just handled
6273   // with a tablegen pattern). We cannot easily match shift by an immediate in
6274   // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
6275   // For shifting by a vector, we don't have VSHR, only VSHL (which can be
6276   // signed or unsigned, and a negative shift indicates a shift right).
6277   if (N->getOpcode() == ISD::SHL) {
6278     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
6279       return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
6280                          DAG.getConstant(Cnt, dl, MVT::i32));
6281     return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0),
6282                        N->getOperand(1));
6283   }
6284 
6285   assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
6286          "unexpected vector shift opcode");
6287 
6288   if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
6289     unsigned VShiftOpc =
6290         (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
6291     return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
6292                        DAG.getConstant(Cnt, dl, MVT::i32));
6293   }
6294 
6295   // Other right shifts we don't have operations for (we use a shift left by a
6296   // negative number).
6297   EVT ShiftVT = N->getOperand(1).getValueType();
6298   SDValue NegatedCount = DAG.getNode(
6299       ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1));
6300   unsigned VShiftOpc =
6301       (N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu);
6302   return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount);
6303 }
6304 
Expand64BitShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)6305 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
6306                                 const ARMSubtarget *ST) {
6307   EVT VT = N->getValueType(0);
6308   SDLoc dl(N);
6309 
6310   // We can get here for a node like i32 = ISD::SHL i32, i64
6311   if (VT != MVT::i64)
6312     return SDValue();
6313 
6314   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
6315           N->getOpcode() == ISD::SHL) &&
6316          "Unknown shift to lower!");
6317 
6318   unsigned ShOpc = N->getOpcode();
6319   if (ST->hasMVEIntegerOps()) {
6320     SDValue ShAmt = N->getOperand(1);
6321     unsigned ShPartsOpc = ARMISD::LSLL;
6322     ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);
6323 
6324     // If the shift amount is greater than 32 or has a greater bitwidth than 64
6325     // then do the default optimisation
6326     if (ShAmt->getValueType(0).getSizeInBits() > 64 ||
6327         (Con && (Con->getZExtValue() == 0 || Con->getZExtValue() >= 32)))
6328       return SDValue();
6329 
6330     // Extract the lower 32 bits of the shift amount if it's not an i32
6331     if (ShAmt->getValueType(0) != MVT::i32)
6332       ShAmt = DAG.getZExtOrTrunc(ShAmt, dl, MVT::i32);
6333 
6334     if (ShOpc == ISD::SRL) {
6335       if (!Con)
6336         // There is no t2LSRLr instruction so negate and perform an lsll if the
6337         // shift amount is in a register, emulating a right shift.
6338         ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6339                             DAG.getConstant(0, dl, MVT::i32), ShAmt);
6340       else
6341         // Else generate an lsrl on the immediate shift amount
6342         ShPartsOpc = ARMISD::LSRL;
6343     } else if (ShOpc == ISD::SRA)
6344       ShPartsOpc = ARMISD::ASRL;
6345 
6346     // Lower 32 bits of the destination/source
6347     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6348                              DAG.getConstant(0, dl, MVT::i32));
6349     // Upper 32 bits of the destination/source
6350     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6351                              DAG.getConstant(1, dl, MVT::i32));
6352 
6353     // Generate the shift operation as computed above
6354     Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
6355                      ShAmt);
6356     // The upper 32 bits come from the second return value of lsll
6357     Hi = SDValue(Lo.getNode(), 1);
6358     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6359   }
6360 
6361   // We only lower SRA, SRL of 1 here, all others use generic lowering.
6362   if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
6363     return SDValue();
6364 
6365   // If we are in thumb mode, we don't have RRX.
6366   if (ST->isThumb1Only())
6367     return SDValue();
6368 
6369   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
6370   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6371                            DAG.getConstant(0, dl, MVT::i32));
6372   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6373                            DAG.getConstant(1, dl, MVT::i32));
6374 
6375   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
6376   // captures the result into a carry flag.
6377   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
6378   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
6379 
6380   // The low part is an ARMISD::RRX operand, which shifts the carry in.
6381   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
6382 
6383   // Merge the pieces into a single i64 value.
6384  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6385 }
6386 
LowerVSETCC(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)6387 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG,
6388                            const ARMSubtarget *ST) {
6389   bool Invert = false;
6390   bool Swap = false;
6391   unsigned Opc = ARMCC::AL;
6392 
6393   SDValue Op0 = Op.getOperand(0);
6394   SDValue Op1 = Op.getOperand(1);
6395   SDValue CC = Op.getOperand(2);
6396   EVT VT = Op.getValueType();
6397   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6398   SDLoc dl(Op);
6399 
6400   EVT CmpVT;
6401   if (ST->hasNEON())
6402     CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
6403   else {
6404     assert(ST->hasMVEIntegerOps() &&
6405            "No hardware support for integer vector comparison!");
6406 
6407     if (Op.getValueType().getVectorElementType() != MVT::i1)
6408       return SDValue();
6409 
6410     // Make sure we expand floating point setcc to scalar if we do not have
6411     // mve.fp, so that we can handle them from there.
6412     if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps())
6413       return SDValue();
6414 
6415     CmpVT = VT;
6416   }
6417 
6418   if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
6419       (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
6420     // Special-case integer 64-bit equality comparisons. They aren't legal,
6421     // but they can be lowered with a few vector instructions.
6422     unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
6423     EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
6424     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
6425     SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
6426     SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
6427                               DAG.getCondCode(ISD::SETEQ));
6428     SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
6429     SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
6430     Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
6431     if (SetCCOpcode == ISD::SETNE)
6432       Merged = DAG.getNOT(dl, Merged, CmpVT);
6433     Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
6434     return Merged;
6435   }
6436 
6437   if (CmpVT.getVectorElementType() == MVT::i64)
6438     // 64-bit comparisons are not legal in general.
6439     return SDValue();
6440 
6441   if (Op1.getValueType().isFloatingPoint()) {
6442     switch (SetCCOpcode) {
6443     default: llvm_unreachable("Illegal FP comparison");
6444     case ISD::SETUNE:
6445     case ISD::SETNE:
6446       if (ST->hasMVEFloatOps()) {
6447         Opc = ARMCC::NE; break;
6448       } else {
6449         Invert = true; LLVM_FALLTHROUGH;
6450       }
6451     case ISD::SETOEQ:
6452     case ISD::SETEQ:  Opc = ARMCC::EQ; break;
6453     case ISD::SETOLT:
6454     case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
6455     case ISD::SETOGT:
6456     case ISD::SETGT:  Opc = ARMCC::GT; break;
6457     case ISD::SETOLE:
6458     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
6459     case ISD::SETOGE:
6460     case ISD::SETGE: Opc = ARMCC::GE; break;
6461     case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
6462     case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break;
6463     case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
6464     case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break;
6465     case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
6466     case ISD::SETONE: {
6467       // Expand this to (OLT | OGT).
6468       SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6469                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6470       SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6471                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6472       SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6473       if (Invert)
6474         Result = DAG.getNOT(dl, Result, VT);
6475       return Result;
6476     }
6477     case ISD::SETUO: Invert = true; LLVM_FALLTHROUGH;
6478     case ISD::SETO: {
6479       // Expand this to (OLT | OGE).
6480       SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6481                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6482       SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6483                                    DAG.getConstant(ARMCC::GE, dl, MVT::i32));
6484       SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6485       if (Invert)
6486         Result = DAG.getNOT(dl, Result, VT);
6487       return Result;
6488     }
6489     }
6490   } else {
6491     // Integer comparisons.
6492     switch (SetCCOpcode) {
6493     default: llvm_unreachable("Illegal integer comparison");
6494     case ISD::SETNE:
6495       if (ST->hasMVEIntegerOps()) {
6496         Opc = ARMCC::NE; break;
6497       } else {
6498         Invert = true; LLVM_FALLTHROUGH;
6499       }
6500     case ISD::SETEQ:  Opc = ARMCC::EQ; break;
6501     case ISD::SETLT:  Swap = true; LLVM_FALLTHROUGH;
6502     case ISD::SETGT:  Opc = ARMCC::GT; break;
6503     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
6504     case ISD::SETGE:  Opc = ARMCC::GE; break;
6505     case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
6506     case ISD::SETUGT: Opc = ARMCC::HI; break;
6507     case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
6508     case ISD::SETUGE: Opc = ARMCC::HS; break;
6509     }
6510 
6511     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6512     if (ST->hasNEON() && Opc == ARMCC::EQ) {
6513       SDValue AndOp;
6514       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6515         AndOp = Op0;
6516       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
6517         AndOp = Op1;
6518 
6519       // Ignore bitconvert.
6520       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
6521         AndOp = AndOp.getOperand(0);
6522 
6523       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
6524         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
6525         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
6526         SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1);
6527         if (!Invert)
6528           Result = DAG.getNOT(dl, Result, VT);
6529         return Result;
6530       }
6531     }
6532   }
6533 
6534   if (Swap)
6535     std::swap(Op0, Op1);
6536 
6537   // If one of the operands is a constant vector zero, attempt to fold the
6538   // comparison to a specialized compare-against-zero form.
6539   SDValue SingleOp;
6540   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6541     SingleOp = Op0;
6542   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6543     if (Opc == ARMCC::GE)
6544       Opc = ARMCC::LE;
6545     else if (Opc == ARMCC::GT)
6546       Opc = ARMCC::LT;
6547     SingleOp = Op1;
6548   }
6549 
6550   SDValue Result;
6551   if (SingleOp.getNode()) {
6552     Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, SingleOp,
6553                          DAG.getConstant(Opc, dl, MVT::i32));
6554   } else {
6555     Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6556                          DAG.getConstant(Opc, dl, MVT::i32));
6557   }
6558 
6559   Result = DAG.getSExtOrTrunc(Result, dl, VT);
6560 
6561   if (Invert)
6562     Result = DAG.getNOT(dl, Result, VT);
6563 
6564   return Result;
6565 }
6566 
LowerSETCCCARRY(SDValue Op,SelectionDAG & DAG)6567 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
6568   SDValue LHS = Op.getOperand(0);
6569   SDValue RHS = Op.getOperand(1);
6570   SDValue Carry = Op.getOperand(2);
6571   SDValue Cond = Op.getOperand(3);
6572   SDLoc DL(Op);
6573 
6574   assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6575 
6576   // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6577   // have to invert the carry first.
6578   Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
6579                       DAG.getConstant(1, DL, MVT::i32), Carry);
6580   // This converts the boolean value carry into the carry flag.
6581   Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
6582 
6583   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
6584   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
6585 
6586   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
6587   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
6588   SDValue ARMcc = DAG.getConstant(
6589       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
6590   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6591   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
6592                                    Cmp.getValue(1), SDValue());
6593   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
6594                      CCR, Chain.getValue(1));
6595 }
6596 
6597 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6598 /// valid vector constant for a NEON or MVE instruction with a "modified
6599 /// immediate" operand (e.g., VMOV).  If so, return the encoded value.
isVMOVModifiedImm(uint64_t SplatBits,uint64_t SplatUndef,unsigned SplatBitSize,SelectionDAG & DAG,const SDLoc & dl,EVT & VT,EVT VectorVT,VMOVModImmType type)6600 static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
6601                                  unsigned SplatBitSize, SelectionDAG &DAG,
6602                                  const SDLoc &dl, EVT &VT, EVT VectorVT,
6603                                  VMOVModImmType type) {
6604   unsigned OpCmode, Imm;
6605   bool is128Bits = VectorVT.is128BitVector();
6606 
6607   // SplatBitSize is set to the smallest size that splats the vector, so a
6608   // zero vector will always have SplatBitSize == 8.  However, NEON modified
6609   // immediate instructions others than VMOV do not support the 8-bit encoding
6610   // of a zero vector, and the default encoding of zero is supposed to be the
6611   // 32-bit version.
6612   if (SplatBits == 0)
6613     SplatBitSize = 32;
6614 
6615   switch (SplatBitSize) {
6616   case 8:
6617     if (type != VMOVModImm)
6618       return SDValue();
6619     // Any 1-byte value is OK.  Op=0, Cmode=1110.
6620     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
6621     OpCmode = 0xe;
6622     Imm = SplatBits;
6623     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
6624     break;
6625 
6626   case 16:
6627     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6628     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
6629     if ((SplatBits & ~0xff) == 0) {
6630       // Value = 0x00nn: Op=x, Cmode=100x.
6631       OpCmode = 0x8;
6632       Imm = SplatBits;
6633       break;
6634     }
6635     if ((SplatBits & ~0xff00) == 0) {
6636       // Value = 0xnn00: Op=x, Cmode=101x.
6637       OpCmode = 0xa;
6638       Imm = SplatBits >> 8;
6639       break;
6640     }
6641     return SDValue();
6642 
6643   case 32:
6644     // NEON's 32-bit VMOV supports splat values where:
6645     // * only one byte is nonzero, or
6646     // * the least significant byte is 0xff and the second byte is nonzero, or
6647     // * the least significant 2 bytes are 0xff and the third is nonzero.
6648     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
6649     if ((SplatBits & ~0xff) == 0) {
6650       // Value = 0x000000nn: Op=x, Cmode=000x.
6651       OpCmode = 0;
6652       Imm = SplatBits;
6653       break;
6654     }
6655     if ((SplatBits & ~0xff00) == 0) {
6656       // Value = 0x0000nn00: Op=x, Cmode=001x.
6657       OpCmode = 0x2;
6658       Imm = SplatBits >> 8;
6659       break;
6660     }
6661     if ((SplatBits & ~0xff0000) == 0) {
6662       // Value = 0x00nn0000: Op=x, Cmode=010x.
6663       OpCmode = 0x4;
6664       Imm = SplatBits >> 16;
6665       break;
6666     }
6667     if ((SplatBits & ~0xff000000) == 0) {
6668       // Value = 0xnn000000: Op=x, Cmode=011x.
6669       OpCmode = 0x6;
6670       Imm = SplatBits >> 24;
6671       break;
6672     }
6673 
6674     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6675     if (type == OtherModImm) return SDValue();
6676 
6677     if ((SplatBits & ~0xffff) == 0 &&
6678         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
6679       // Value = 0x0000nnff: Op=x, Cmode=1100.
6680       OpCmode = 0xc;
6681       Imm = SplatBits >> 8;
6682       break;
6683     }
6684 
6685     // cmode == 0b1101 is not supported for MVE VMVN
6686     if (type == MVEVMVNModImm)
6687       return SDValue();
6688 
6689     if ((SplatBits & ~0xffffff) == 0 &&
6690         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
6691       // Value = 0x00nnffff: Op=x, Cmode=1101.
6692       OpCmode = 0xd;
6693       Imm = SplatBits >> 16;
6694       break;
6695     }
6696 
6697     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6698     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6699     // VMOV.I32.  A (very) minor optimization would be to replicate the value
6700     // and fall through here to test for a valid 64-bit splat.  But, then the
6701     // caller would also need to check and handle the change in size.
6702     return SDValue();
6703 
6704   case 64: {
6705     if (type != VMOVModImm)
6706       return SDValue();
6707     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6708     uint64_t BitMask = 0xff;
6709     uint64_t Val = 0;
6710     unsigned ImmMask = 1;
6711     Imm = 0;
6712     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
6713       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
6714         Val |= BitMask;
6715         Imm |= ImmMask;
6716       } else if ((SplatBits & BitMask) != 0) {
6717         return SDValue();
6718       }
6719       BitMask <<= 8;
6720       ImmMask <<= 1;
6721     }
6722 
6723     if (DAG.getDataLayout().isBigEndian()) {
6724       // Reverse the order of elements within the vector.
6725       unsigned BytesPerElem = VectorVT.getScalarSizeInBits() / 8;
6726       unsigned Mask = (1 << BytesPerElem) - 1;
6727       unsigned NumElems = 8 / BytesPerElem;
6728       unsigned NewImm = 0;
6729       for (unsigned ElemNum = 0; ElemNum < NumElems; ++ElemNum) {
6730         unsigned Elem = ((Imm >> ElemNum * BytesPerElem) & Mask);
6731         NewImm |= Elem << (NumElems - ElemNum - 1) * BytesPerElem;
6732       }
6733       Imm = NewImm;
6734     }
6735 
6736     // Op=1, Cmode=1110.
6737     OpCmode = 0x1e;
6738     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
6739     break;
6740   }
6741 
6742   default:
6743     llvm_unreachable("unexpected size for isVMOVModifiedImm");
6744   }
6745 
6746   unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm);
6747   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
6748 }
6749 
LowerConstantFP(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const6750 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
6751                                            const ARMSubtarget *ST) const {
6752   EVT VT = Op.getValueType();
6753   bool IsDouble = (VT == MVT::f64);
6754   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
6755   const APFloat &FPVal = CFP->getValueAPF();
6756 
6757   // Prevent floating-point constants from using literal loads
6758   // when execute-only is enabled.
6759   if (ST->genExecuteOnly()) {
6760     // If we can represent the constant as an immediate, don't lower it
6761     if (isFPImmLegal(FPVal, VT))
6762       return Op;
6763     // Otherwise, construct as integer, and move to float register
6764     APInt INTVal = FPVal.bitcastToAPInt();
6765     SDLoc DL(CFP);
6766     switch (VT.getSimpleVT().SimpleTy) {
6767       default:
6768         llvm_unreachable("Unknown floating point type!");
6769         break;
6770       case MVT::f64: {
6771         SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
6772         SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
6773         return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
6774       }
6775       case MVT::f32:
6776           return DAG.getNode(ARMISD::VMOVSR, DL, VT,
6777               DAG.getConstant(INTVal, DL, MVT::i32));
6778     }
6779   }
6780 
6781   if (!ST->hasVFP3Base())
6782     return SDValue();
6783 
6784   // Use the default (constant pool) lowering for double constants when we have
6785   // an SP-only FPU
6786   if (IsDouble && !Subtarget->hasFP64())
6787     return SDValue();
6788 
6789   // Try splatting with a VMOV.f32...
6790   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
6791 
6792   if (ImmVal != -1) {
6793     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
6794       // We have code in place to select a valid ConstantFP already, no need to
6795       // do any mangling.
6796       return Op;
6797     }
6798 
6799     // It's a float and we are trying to use NEON operations where
6800     // possible. Lower it to a splat followed by an extract.
6801     SDLoc DL(Op);
6802     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
6803     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
6804                                       NewVal);
6805     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
6806                        DAG.getConstant(0, DL, MVT::i32));
6807   }
6808 
6809   // The rest of our options are NEON only, make sure that's allowed before
6810   // proceeding..
6811   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
6812     return SDValue();
6813 
6814   EVT VMovVT;
6815   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
6816 
6817   // It wouldn't really be worth bothering for doubles except for one very
6818   // important value, which does happen to match: 0.0. So make sure we don't do
6819   // anything stupid.
6820   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
6821     return SDValue();
6822 
6823   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6824   SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
6825                                      VMovVT, VT, VMOVModImm);
6826   if (NewVal != SDValue()) {
6827     SDLoc DL(Op);
6828     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
6829                                       NewVal);
6830     if (IsDouble)
6831       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6832 
6833     // It's a float: cast and extract a vector element.
6834     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6835                                        VecConstant);
6836     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6837                        DAG.getConstant(0, DL, MVT::i32));
6838   }
6839 
6840   // Finally, try a VMVN.i32
6841   NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
6842                              VT, VMVNModImm);
6843   if (NewVal != SDValue()) {
6844     SDLoc DL(Op);
6845     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
6846 
6847     if (IsDouble)
6848       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6849 
6850     // It's a float: cast and extract a vector element.
6851     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6852                                        VecConstant);
6853     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6854                        DAG.getConstant(0, DL, MVT::i32));
6855   }
6856 
6857   return SDValue();
6858 }
6859 
6860 // check if an VEXT instruction can handle the shuffle mask when the
6861 // vector sources of the shuffle are the same.
isSingletonVEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)6862 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6863   unsigned NumElts = VT.getVectorNumElements();
6864 
6865   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6866   if (M[0] < 0)
6867     return false;
6868 
6869   Imm = M[0];
6870 
6871   // If this is a VEXT shuffle, the immediate value is the index of the first
6872   // element.  The other shuffle indices must be the successive elements after
6873   // the first one.
6874   unsigned ExpectedElt = Imm;
6875   for (unsigned i = 1; i < NumElts; ++i) {
6876     // Increment the expected index.  If it wraps around, just follow it
6877     // back to index zero and keep going.
6878     ++ExpectedElt;
6879     if (ExpectedElt == NumElts)
6880       ExpectedElt = 0;
6881 
6882     if (M[i] < 0) continue; // ignore UNDEF indices
6883     if (ExpectedElt != static_cast<unsigned>(M[i]))
6884       return false;
6885   }
6886 
6887   return true;
6888 }
6889 
isVEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseVEXT,unsigned & Imm)6890 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
6891                        bool &ReverseVEXT, unsigned &Imm) {
6892   unsigned NumElts = VT.getVectorNumElements();
6893   ReverseVEXT = false;
6894 
6895   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6896   if (M[0] < 0)
6897     return false;
6898 
6899   Imm = M[0];
6900 
6901   // If this is a VEXT shuffle, the immediate value is the index of the first
6902   // element.  The other shuffle indices must be the successive elements after
6903   // the first one.
6904   unsigned ExpectedElt = Imm;
6905   for (unsigned i = 1; i < NumElts; ++i) {
6906     // Increment the expected index.  If it wraps around, it may still be
6907     // a VEXT but the source vectors must be swapped.
6908     ExpectedElt += 1;
6909     if (ExpectedElt == NumElts * 2) {
6910       ExpectedElt = 0;
6911       ReverseVEXT = true;
6912     }
6913 
6914     if (M[i] < 0) continue; // ignore UNDEF indices
6915     if (ExpectedElt != static_cast<unsigned>(M[i]))
6916       return false;
6917   }
6918 
6919   // Adjust the index value if the source operands will be swapped.
6920   if (ReverseVEXT)
6921     Imm -= NumElts;
6922 
6923   return true;
6924 }
6925 
6926 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6927 /// instruction with the specified blocksize.  (The order of the elements
6928 /// within each block of the vector is reversed.)
isVREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)6929 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6930   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
6931          "Only possible block sizes for VREV are: 16, 32, 64");
6932 
6933   unsigned EltSz = VT.getScalarSizeInBits();
6934   if (EltSz == 64)
6935     return false;
6936 
6937   unsigned NumElts = VT.getVectorNumElements();
6938   unsigned BlockElts = M[0] + 1;
6939   // If the first shuffle index is UNDEF, be optimistic.
6940   if (M[0] < 0)
6941     BlockElts = BlockSize / EltSz;
6942 
6943   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6944     return false;
6945 
6946   for (unsigned i = 0; i < NumElts; ++i) {
6947     if (M[i] < 0) continue; // ignore UNDEF indices
6948     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
6949       return false;
6950   }
6951 
6952   return true;
6953 }
6954 
isVTBLMask(ArrayRef<int> M,EVT VT)6955 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
6956   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6957   // range, then 0 is placed into the resulting vector. So pretty much any mask
6958   // of 8 elements can work here.
6959   return VT == MVT::v8i8 && M.size() == 8;
6960 }
6961 
SelectPairHalf(unsigned Elements,ArrayRef<int> Mask,unsigned Index)6962 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
6963                                unsigned Index) {
6964   if (Mask.size() == Elements * 2)
6965     return Index / Elements;
6966   return Mask[Index] == 0 ? 0 : 1;
6967 }
6968 
6969 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6970 // checking that pairs of elements in the shuffle mask represent the same index
6971 // in each vector, incrementing the expected index by 2 at each step.
6972 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6973 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6974 //  v2={e,f,g,h}
6975 // WhichResult gives the offset for each element in the mask based on which
6976 // of the two results it belongs to.
6977 //
6978 // The transpose can be represented either as:
6979 // result1 = shufflevector v1, v2, result1_shuffle_mask
6980 // result2 = shufflevector v1, v2, result2_shuffle_mask
6981 // where v1/v2 and the shuffle masks have the same number of elements
6982 // (here WhichResult (see below) indicates which result is being checked)
6983 //
6984 // or as:
6985 // results = shufflevector v1, v2, shuffle_mask
6986 // where both results are returned in one vector and the shuffle mask has twice
6987 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6988 // want to check the low half and high half of the shuffle mask as if it were
6989 // the other case
isVTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6990 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6991   unsigned EltSz = VT.getScalarSizeInBits();
6992   if (EltSz == 64)
6993     return false;
6994 
6995   unsigned NumElts = VT.getVectorNumElements();
6996   if (M.size() != NumElts && M.size() != NumElts*2)
6997     return false;
6998 
6999   // If the mask is twice as long as the input vector then we need to check the
7000   // upper and lower parts of the mask with a matching value for WhichResult
7001   // FIXME: A mask with only even values will be rejected in case the first
7002   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
7003   // M[0] is used to determine WhichResult
7004   for (unsigned i = 0; i < M.size(); i += NumElts) {
7005     WhichResult = SelectPairHalf(NumElts, M, i);
7006     for (unsigned j = 0; j < NumElts; j += 2) {
7007       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7008           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
7009         return false;
7010     }
7011   }
7012 
7013   if (M.size() == NumElts*2)
7014     WhichResult = 0;
7015 
7016   return true;
7017 }
7018 
7019 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
7020 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7021 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isVTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7022 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7023   unsigned EltSz = VT.getScalarSizeInBits();
7024   if (EltSz == 64)
7025     return false;
7026 
7027   unsigned NumElts = VT.getVectorNumElements();
7028   if (M.size() != NumElts && M.size() != NumElts*2)
7029     return false;
7030 
7031   for (unsigned i = 0; i < M.size(); i += NumElts) {
7032     WhichResult = SelectPairHalf(NumElts, M, i);
7033     for (unsigned j = 0; j < NumElts; j += 2) {
7034       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7035           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
7036         return false;
7037     }
7038   }
7039 
7040   if (M.size() == NumElts*2)
7041     WhichResult = 0;
7042 
7043   return true;
7044 }
7045 
7046 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
7047 // that the mask elements are either all even and in steps of size 2 or all odd
7048 // and in steps of size 2.
7049 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
7050 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
7051 //  v2={e,f,g,h}
7052 // Requires similar checks to that of isVTRNMask with
7053 // respect the how results are returned.
isVUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7054 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7055   unsigned EltSz = VT.getScalarSizeInBits();
7056   if (EltSz == 64)
7057     return false;
7058 
7059   unsigned NumElts = VT.getVectorNumElements();
7060   if (M.size() != NumElts && M.size() != NumElts*2)
7061     return false;
7062 
7063   for (unsigned i = 0; i < M.size(); i += NumElts) {
7064     WhichResult = SelectPairHalf(NumElts, M, i);
7065     for (unsigned j = 0; j < NumElts; ++j) {
7066       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
7067         return false;
7068     }
7069   }
7070 
7071   if (M.size() == NumElts*2)
7072     WhichResult = 0;
7073 
7074   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7075   if (VT.is64BitVector() && EltSz == 32)
7076     return false;
7077 
7078   return true;
7079 }
7080 
7081 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
7082 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7083 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isVUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7084 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7085   unsigned EltSz = VT.getScalarSizeInBits();
7086   if (EltSz == 64)
7087     return false;
7088 
7089   unsigned NumElts = VT.getVectorNumElements();
7090   if (M.size() != NumElts && M.size() != NumElts*2)
7091     return false;
7092 
7093   unsigned Half = NumElts / 2;
7094   for (unsigned i = 0; i < M.size(); i += NumElts) {
7095     WhichResult = SelectPairHalf(NumElts, M, i);
7096     for (unsigned j = 0; j < NumElts; j += Half) {
7097       unsigned Idx = WhichResult;
7098       for (unsigned k = 0; k < Half; ++k) {
7099         int MIdx = M[i + j + k];
7100         if (MIdx >= 0 && (unsigned) MIdx != Idx)
7101           return false;
7102         Idx += 2;
7103       }
7104     }
7105   }
7106 
7107   if (M.size() == NumElts*2)
7108     WhichResult = 0;
7109 
7110   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7111   if (VT.is64BitVector() && EltSz == 32)
7112     return false;
7113 
7114   return true;
7115 }
7116 
7117 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
7118 // that pairs of elements of the shufflemask represent the same index in each
7119 // vector incrementing sequentially through the vectors.
7120 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
7121 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
7122 //  v2={e,f,g,h}
7123 // Requires similar checks to that of isVTRNMask with respect the how results
7124 // are returned.
isVZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7125 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7126   unsigned EltSz = VT.getScalarSizeInBits();
7127   if (EltSz == 64)
7128     return false;
7129 
7130   unsigned NumElts = VT.getVectorNumElements();
7131   if (M.size() != NumElts && M.size() != NumElts*2)
7132     return false;
7133 
7134   for (unsigned i = 0; i < M.size(); i += NumElts) {
7135     WhichResult = SelectPairHalf(NumElts, M, i);
7136     unsigned Idx = WhichResult * NumElts / 2;
7137     for (unsigned j = 0; j < NumElts; j += 2) {
7138       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7139           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
7140         return false;
7141       Idx += 1;
7142     }
7143   }
7144 
7145   if (M.size() == NumElts*2)
7146     WhichResult = 0;
7147 
7148   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7149   if (VT.is64BitVector() && EltSz == 32)
7150     return false;
7151 
7152   return true;
7153 }
7154 
7155 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
7156 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7157 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isVZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7158 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7159   unsigned EltSz = VT.getScalarSizeInBits();
7160   if (EltSz == 64)
7161     return false;
7162 
7163   unsigned NumElts = VT.getVectorNumElements();
7164   if (M.size() != NumElts && M.size() != NumElts*2)
7165     return false;
7166 
7167   for (unsigned i = 0; i < M.size(); i += NumElts) {
7168     WhichResult = SelectPairHalf(NumElts, M, i);
7169     unsigned Idx = WhichResult * NumElts / 2;
7170     for (unsigned j = 0; j < NumElts; j += 2) {
7171       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7172           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
7173         return false;
7174       Idx += 1;
7175     }
7176   }
7177 
7178   if (M.size() == NumElts*2)
7179     WhichResult = 0;
7180 
7181   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7182   if (VT.is64BitVector() && EltSz == 32)
7183     return false;
7184 
7185   return true;
7186 }
7187 
7188 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
7189 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask,EVT VT,unsigned & WhichResult,bool & isV_UNDEF)7190 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
7191                                            unsigned &WhichResult,
7192                                            bool &isV_UNDEF) {
7193   isV_UNDEF = false;
7194   if (isVTRNMask(ShuffleMask, VT, WhichResult))
7195     return ARMISD::VTRN;
7196   if (isVUZPMask(ShuffleMask, VT, WhichResult))
7197     return ARMISD::VUZP;
7198   if (isVZIPMask(ShuffleMask, VT, WhichResult))
7199     return ARMISD::VZIP;
7200 
7201   isV_UNDEF = true;
7202   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
7203     return ARMISD::VTRN;
7204   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7205     return ARMISD::VUZP;
7206   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7207     return ARMISD::VZIP;
7208 
7209   return 0;
7210 }
7211 
7212 /// \return true if this is a reverse operation on an vector.
isReverseMask(ArrayRef<int> M,EVT VT)7213 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
7214   unsigned NumElts = VT.getVectorNumElements();
7215   // Make sure the mask has the right size.
7216   if (NumElts != M.size())
7217       return false;
7218 
7219   // Look for <15, ..., 3, -1, 1, 0>.
7220   for (unsigned i = 0; i != NumElts; ++i)
7221     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
7222       return false;
7223 
7224   return true;
7225 }
7226 
isVMOVNMask(ArrayRef<int> M,EVT VT,bool Top)7227 static bool isVMOVNMask(ArrayRef<int> M, EVT VT, bool Top) {
7228   unsigned NumElts = VT.getVectorNumElements();
7229   // Make sure the mask has the right size.
7230   if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7231       return false;
7232 
7233   // If Top
7234   //   Look for <0, N, 2, N+2, 4, N+4, ..>.
7235   //   This inserts Input2 into Input1
7236   // else if not Top
7237   //   Look for <0, N+1, 2, N+3, 4, N+5, ..>
7238   //   This inserts Input1 into Input2
7239   unsigned Offset = Top ? 0 : 1;
7240   for (unsigned i = 0; i < NumElts; i+=2) {
7241     if (M[i] >= 0 && M[i] != (int)i)
7242       return false;
7243     if (M[i+1] >= 0 && M[i+1] != (int)(NumElts + i + Offset))
7244       return false;
7245   }
7246 
7247   return true;
7248 }
7249 
7250 // Reconstruct an MVE VCVT from a BuildVector of scalar fptrunc, all extracted
7251 // from a pair of inputs. For example:
7252 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7253 //             FP_ROUND(EXTRACT_ELT(Y, 0),
7254 //             FP_ROUND(EXTRACT_ELT(X, 1),
7255 //             FP_ROUND(EXTRACT_ELT(Y, 1), ...)
LowerBuildVectorOfFPTrunc(SDValue BV,SelectionDAG & DAG,const ARMSubtarget * ST)7256 static SDValue LowerBuildVectorOfFPTrunc(SDValue BV, SelectionDAG &DAG,
7257                                          const ARMSubtarget *ST) {
7258   assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7259   if (!ST->hasMVEFloatOps())
7260     return SDValue();
7261 
7262   SDLoc dl(BV);
7263   EVT VT = BV.getValueType();
7264   if (VT != MVT::v8f16)
7265     return SDValue();
7266 
7267   // We are looking for a buildvector of fptrunc elements, where all the
7268   // elements are interleavingly extracted from two sources. Check the first two
7269   // items are valid enough and extract some info from them (they are checked
7270   // properly in the loop below).
7271   if (BV.getOperand(0).getOpcode() != ISD::FP_ROUND ||
7272       BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7273       BV.getOperand(0).getOperand(0).getConstantOperandVal(1) != 0)
7274     return SDValue();
7275   if (BV.getOperand(1).getOpcode() != ISD::FP_ROUND ||
7276       BV.getOperand(1).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7277       BV.getOperand(1).getOperand(0).getConstantOperandVal(1) != 0)
7278     return SDValue();
7279   SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7280   SDValue Op1 = BV.getOperand(1).getOperand(0).getOperand(0);
7281   if (Op0.getValueType() != MVT::v4f32 || Op1.getValueType() != MVT::v4f32)
7282     return SDValue();
7283 
7284   // Check all the values in the BuildVector line up with our expectations.
7285   for (unsigned i = 1; i < 4; i++) {
7286     auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7287       return Trunc.getOpcode() == ISD::FP_ROUND &&
7288              Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7289              Trunc.getOperand(0).getOperand(0) == Op &&
7290              Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7291     };
7292     if (!Check(BV.getOperand(i * 2 + 0), Op0, i))
7293       return SDValue();
7294     if (!Check(BV.getOperand(i * 2 + 1), Op1, i))
7295       return SDValue();
7296   }
7297 
7298   SDValue N1 = DAG.getNode(ARMISD::VCVTN, dl, VT, DAG.getUNDEF(VT), Op0,
7299                            DAG.getConstant(0, dl, MVT::i32));
7300   return DAG.getNode(ARMISD::VCVTN, dl, VT, N1, Op1,
7301                      DAG.getConstant(1, dl, MVT::i32));
7302 }
7303 
7304 // Reconstruct an MVE VCVT from a BuildVector of scalar fpext, all extracted
7305 // from a single input on alternating lanes. For example:
7306 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7307 //             FP_ROUND(EXTRACT_ELT(X, 2),
7308 //             FP_ROUND(EXTRACT_ELT(X, 4), ...)
LowerBuildVectorOfFPExt(SDValue BV,SelectionDAG & DAG,const ARMSubtarget * ST)7309 static SDValue LowerBuildVectorOfFPExt(SDValue BV, SelectionDAG &DAG,
7310                                        const ARMSubtarget *ST) {
7311   assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7312   if (!ST->hasMVEFloatOps())
7313     return SDValue();
7314 
7315   SDLoc dl(BV);
7316   EVT VT = BV.getValueType();
7317   if (VT != MVT::v4f32)
7318     return SDValue();
7319 
7320   // We are looking for a buildvector of fptext elements, where all the
7321   // elements are alternating lanes from a single source. For example <0,2,4,6>
7322   // or <1,3,5,7>. Check the first two items are valid enough and extract some
7323   // info from them (they are checked properly in the loop below).
7324   if (BV.getOperand(0).getOpcode() != ISD::FP_EXTEND ||
7325       BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7326     return SDValue();
7327   SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7328   int Offset = BV.getOperand(0).getOperand(0).getConstantOperandVal(1);
7329   if (Op0.getValueType() != MVT::v8f16 || (Offset != 0 && Offset != 1))
7330     return SDValue();
7331 
7332   // Check all the values in the BuildVector line up with our expectations.
7333   for (unsigned i = 1; i < 4; i++) {
7334     auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7335       return Trunc.getOpcode() == ISD::FP_EXTEND &&
7336              Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7337              Trunc.getOperand(0).getOperand(0) == Op &&
7338              Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7339     };
7340     if (!Check(BV.getOperand(i), Op0, 2 * i + Offset))
7341       return SDValue();
7342   }
7343 
7344   return DAG.getNode(ARMISD::VCVTL, dl, VT, Op0,
7345                      DAG.getConstant(Offset, dl, MVT::i32));
7346 }
7347 
7348 // If N is an integer constant that can be moved into a register in one
7349 // instruction, return an SDValue of such a constant (will become a MOV
7350 // instruction).  Otherwise return null.
IsSingleInstrConstant(SDValue N,SelectionDAG & DAG,const ARMSubtarget * ST,const SDLoc & dl)7351 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
7352                                      const ARMSubtarget *ST, const SDLoc &dl) {
7353   uint64_t Val;
7354   if (!isa<ConstantSDNode>(N))
7355     return SDValue();
7356   Val = cast<ConstantSDNode>(N)->getZExtValue();
7357 
7358   if (ST->isThumb1Only()) {
7359     if (Val <= 255 || ~Val <= 255)
7360       return DAG.getConstant(Val, dl, MVT::i32);
7361   } else {
7362     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
7363       return DAG.getConstant(Val, dl, MVT::i32);
7364   }
7365   return SDValue();
7366 }
7367 
LowerBUILD_VECTOR_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)7368 static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG,
7369                                     const ARMSubtarget *ST) {
7370   SDLoc dl(Op);
7371   EVT VT = Op.getValueType();
7372 
7373   assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
7374 
7375   unsigned NumElts = VT.getVectorNumElements();
7376   unsigned BoolMask;
7377   unsigned BitsPerBool;
7378   if (NumElts == 4) {
7379     BitsPerBool = 4;
7380     BoolMask = 0xf;
7381   } else if (NumElts == 8) {
7382     BitsPerBool = 2;
7383     BoolMask = 0x3;
7384   } else if (NumElts == 16) {
7385     BitsPerBool = 1;
7386     BoolMask = 0x1;
7387   } else
7388     return SDValue();
7389 
7390   // If this is a single value copied into all lanes (a splat), we can just sign
7391   // extend that single value
7392   SDValue FirstOp = Op.getOperand(0);
7393   if (!isa<ConstantSDNode>(FirstOp) &&
7394       std::all_of(std::next(Op->op_begin()), Op->op_end(),
7395                   [&FirstOp](SDUse &U) {
7396                     return U.get().isUndef() || U.get() == FirstOp;
7397                   })) {
7398     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, FirstOp,
7399                               DAG.getValueType(MVT::i1));
7400     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), Ext);
7401   }
7402 
7403   // First create base with bits set where known
7404   unsigned Bits32 = 0;
7405   for (unsigned i = 0; i < NumElts; ++i) {
7406     SDValue V = Op.getOperand(i);
7407     if (!isa<ConstantSDNode>(V) && !V.isUndef())
7408       continue;
7409     bool BitSet = V.isUndef() ? false : cast<ConstantSDNode>(V)->getZExtValue();
7410     if (BitSet)
7411       Bits32 |= BoolMask << (i * BitsPerBool);
7412   }
7413 
7414   // Add in unknown nodes
7415   SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
7416                              DAG.getConstant(Bits32, dl, MVT::i32));
7417   for (unsigned i = 0; i < NumElts; ++i) {
7418     SDValue V = Op.getOperand(i);
7419     if (isa<ConstantSDNode>(V) || V.isUndef())
7420       continue;
7421     Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V,
7422                        DAG.getConstant(i, dl, MVT::i32));
7423   }
7424 
7425   return Base;
7426 }
7427 
7428 // If this is a case we can't handle, return null and let the default
7429 // expansion code take care of it.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const7430 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
7431                                              const ARMSubtarget *ST) const {
7432   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7433   SDLoc dl(Op);
7434   EVT VT = Op.getValueType();
7435 
7436   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
7437     return LowerBUILD_VECTOR_i1(Op, DAG, ST);
7438 
7439   APInt SplatBits, SplatUndef;
7440   unsigned SplatBitSize;
7441   bool HasAnyUndefs;
7442   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7443     if (SplatUndef.isAllOnesValue())
7444       return DAG.getUNDEF(VT);
7445 
7446     if ((ST->hasNEON() && SplatBitSize <= 64) ||
7447         (ST->hasMVEIntegerOps() && SplatBitSize <= 64)) {
7448       // Check if an immediate VMOV works.
7449       EVT VmovVT;
7450       SDValue Val =
7451           isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
7452                             SplatBitSize, DAG, dl, VmovVT, VT, VMOVModImm);
7453 
7454       if (Val.getNode()) {
7455         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
7456         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7457       }
7458 
7459       // Try an immediate VMVN.
7460       uint64_t NegatedImm = (~SplatBits).getZExtValue();
7461       Val = isVMOVModifiedImm(
7462           NegatedImm, SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VmovVT,
7463           VT, ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm);
7464       if (Val.getNode()) {
7465         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
7466         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7467       }
7468 
7469       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7470       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
7471         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
7472         if (ImmVal != -1) {
7473           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
7474           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
7475         }
7476       }
7477     }
7478   }
7479 
7480   // Scan through the operands to see if only one value is used.
7481   //
7482   // As an optimisation, even if more than one value is used it may be more
7483   // profitable to splat with one value then change some lanes.
7484   //
7485   // Heuristically we decide to do this if the vector has a "dominant" value,
7486   // defined as splatted to more than half of the lanes.
7487   unsigned NumElts = VT.getVectorNumElements();
7488   bool isOnlyLowElement = true;
7489   bool usesOnlyOneValue = true;
7490   bool hasDominantValue = false;
7491   bool isConstant = true;
7492 
7493   // Map of the number of times a particular SDValue appears in the
7494   // element list.
7495   DenseMap<SDValue, unsigned> ValueCounts;
7496   SDValue Value;
7497   for (unsigned i = 0; i < NumElts; ++i) {
7498     SDValue V = Op.getOperand(i);
7499     if (V.isUndef())
7500       continue;
7501     if (i > 0)
7502       isOnlyLowElement = false;
7503     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
7504       isConstant = false;
7505 
7506     ValueCounts.insert(std::make_pair(V, 0));
7507     unsigned &Count = ValueCounts[V];
7508 
7509     // Is this value dominant? (takes up more than half of the lanes)
7510     if (++Count > (NumElts / 2)) {
7511       hasDominantValue = true;
7512       Value = V;
7513     }
7514   }
7515   if (ValueCounts.size() != 1)
7516     usesOnlyOneValue = false;
7517   if (!Value.getNode() && !ValueCounts.empty())
7518     Value = ValueCounts.begin()->first;
7519 
7520   if (ValueCounts.empty())
7521     return DAG.getUNDEF(VT);
7522 
7523   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
7524   // Keep going if we are hitting this case.
7525   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
7526     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
7527 
7528   unsigned EltSize = VT.getScalarSizeInBits();
7529 
7530   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
7531   // i32 and try again.
7532   if (hasDominantValue && EltSize <= 32) {
7533     if (!isConstant) {
7534       SDValue N;
7535 
7536       // If we are VDUPing a value that comes directly from a vector, that will
7537       // cause an unnecessary move to and from a GPR, where instead we could
7538       // just use VDUPLANE. We can only do this if the lane being extracted
7539       // is at a constant index, as the VDUP from lane instructions only have
7540       // constant-index forms.
7541       ConstantSDNode *constIndex;
7542       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7543           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
7544         // We need to create a new undef vector to use for the VDUPLANE if the
7545         // size of the vector from which we get the value is different than the
7546         // size of the vector that we need to create. We will insert the element
7547         // such that the register coalescer will remove unnecessary copies.
7548         if (VT != Value->getOperand(0).getValueType()) {
7549           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
7550                              VT.getVectorNumElements();
7551           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7552                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
7553                         Value, DAG.getConstant(index, dl, MVT::i32)),
7554                            DAG.getConstant(index, dl, MVT::i32));
7555         } else
7556           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7557                         Value->getOperand(0), Value->getOperand(1));
7558       } else
7559         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
7560 
7561       if (!usesOnlyOneValue) {
7562         // The dominant value was splatted as 'N', but we now have to insert
7563         // all differing elements.
7564         for (unsigned I = 0; I < NumElts; ++I) {
7565           if (Op.getOperand(I) == Value)
7566             continue;
7567           SmallVector<SDValue, 3> Ops;
7568           Ops.push_back(N);
7569           Ops.push_back(Op.getOperand(I));
7570           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
7571           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
7572         }
7573       }
7574       return N;
7575     }
7576     if (VT.getVectorElementType().isFloatingPoint()) {
7577       SmallVector<SDValue, 8> Ops;
7578       MVT FVT = VT.getVectorElementType().getSimpleVT();
7579       assert(FVT == MVT::f32 || FVT == MVT::f16);
7580       MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
7581       for (unsigned i = 0; i < NumElts; ++i)
7582         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
7583                                   Op.getOperand(i)));
7584       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
7585       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
7586       Val = LowerBUILD_VECTOR(Val, DAG, ST);
7587       if (Val.getNode())
7588         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7589     }
7590     if (usesOnlyOneValue) {
7591       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
7592       if (isConstant && Val.getNode())
7593         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
7594     }
7595   }
7596 
7597   // If all elements are constants and the case above didn't get hit, fall back
7598   // to the default expansion, which will generate a load from the constant
7599   // pool.
7600   if (isConstant)
7601     return SDValue();
7602 
7603   // Reconstruct the BUILDVECTOR to one of the legal shuffles (such as vext and
7604   // vmovn). Empirical tests suggest this is rarely worth it for vectors of
7605   // length <= 2.
7606   if (NumElts >= 4)
7607     if (SDValue shuffle = ReconstructShuffle(Op, DAG))
7608       return shuffle;
7609 
7610   // Attempt to turn a buildvector of scalar fptrunc's or fpext's back into
7611   // VCVT's
7612   if (SDValue VCVT = LowerBuildVectorOfFPTrunc(Op, DAG, Subtarget))
7613     return VCVT;
7614   if (SDValue VCVT = LowerBuildVectorOfFPExt(Op, DAG, Subtarget))
7615     return VCVT;
7616 
7617   if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
7618     // If we haven't found an efficient lowering, try splitting a 128-bit vector
7619     // into two 64-bit vectors; we might discover a better way to lower it.
7620     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
7621     EVT ExtVT = VT.getVectorElementType();
7622     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
7623     SDValue Lower =
7624         DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
7625     if (Lower.getOpcode() == ISD::BUILD_VECTOR)
7626       Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
7627     SDValue Upper = DAG.getBuildVector(
7628         HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
7629     if (Upper.getOpcode() == ISD::BUILD_VECTOR)
7630       Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
7631     if (Lower && Upper)
7632       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
7633   }
7634 
7635   // Vectors with 32- or 64-bit elements can be built by directly assigning
7636   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
7637   // will be legalized.
7638   if (EltSize >= 32) {
7639     // Do the expansion with floating-point types, since that is what the VFP
7640     // registers are defined to use, and since i64 is not legal.
7641     EVT EltVT = EVT::getFloatingPointVT(EltSize);
7642     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7643     SmallVector<SDValue, 8> Ops;
7644     for (unsigned i = 0; i < NumElts; ++i)
7645       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
7646     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7647     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7648   }
7649 
7650   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7651   // know the default expansion would otherwise fall back on something even
7652   // worse. For a vector with one or two non-undef values, that's
7653   // scalar_to_vector for the elements followed by a shuffle (provided the
7654   // shuffle is valid for the target) and materialization element by element
7655   // on the stack followed by a load for everything else.
7656   if (!isConstant && !usesOnlyOneValue) {
7657     SDValue Vec = DAG.getUNDEF(VT);
7658     for (unsigned i = 0 ; i < NumElts; ++i) {
7659       SDValue V = Op.getOperand(i);
7660       if (V.isUndef())
7661         continue;
7662       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
7663       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
7664     }
7665     return Vec;
7666   }
7667 
7668   return SDValue();
7669 }
7670 
7671 // Gather data to see if the operation can be modelled as a
7672 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const7673 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
7674                                               SelectionDAG &DAG) const {
7675   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7676   SDLoc dl(Op);
7677   EVT VT = Op.getValueType();
7678   unsigned NumElts = VT.getVectorNumElements();
7679 
7680   struct ShuffleSourceInfo {
7681     SDValue Vec;
7682     unsigned MinElt = std::numeric_limits<unsigned>::max();
7683     unsigned MaxElt = 0;
7684 
7685     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7686     // be compatible with the shuffle we intend to construct. As a result
7687     // ShuffleVec will be some sliding window into the original Vec.
7688     SDValue ShuffleVec;
7689 
7690     // Code should guarantee that element i in Vec starts at element "WindowBase
7691     // + i * WindowScale in ShuffleVec".
7692     int WindowBase = 0;
7693     int WindowScale = 1;
7694 
7695     ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
7696 
7697     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
7698   };
7699 
7700   // First gather all vectors used as an immediate source for this BUILD_VECTOR
7701   // node.
7702   SmallVector<ShuffleSourceInfo, 2> Sources;
7703   for (unsigned i = 0; i < NumElts; ++i) {
7704     SDValue V = Op.getOperand(i);
7705     if (V.isUndef())
7706       continue;
7707     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
7708       // A shuffle can only come from building a vector from various
7709       // elements of other vectors.
7710       return SDValue();
7711     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
7712       // Furthermore, shuffles require a constant mask, whereas extractelts
7713       // accept variable indices.
7714       return SDValue();
7715     }
7716 
7717     // Add this element source to the list if it's not already there.
7718     SDValue SourceVec = V.getOperand(0);
7719     auto Source = llvm::find(Sources, SourceVec);
7720     if (Source == Sources.end())
7721       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
7722 
7723     // Update the minimum and maximum lane number seen.
7724     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
7725     Source->MinElt = std::min(Source->MinElt, EltNo);
7726     Source->MaxElt = std::max(Source->MaxElt, EltNo);
7727   }
7728 
7729   // Currently only do something sane when at most two source vectors
7730   // are involved.
7731   if (Sources.size() > 2)
7732     return SDValue();
7733 
7734   // Find out the smallest element size among result and two sources, and use
7735   // it as element size to build the shuffle_vector.
7736   EVT SmallestEltTy = VT.getVectorElementType();
7737   for (auto &Source : Sources) {
7738     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
7739     if (SrcEltTy.bitsLT(SmallestEltTy))
7740       SmallestEltTy = SrcEltTy;
7741   }
7742   unsigned ResMultiplier =
7743       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
7744   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
7745   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
7746 
7747   // If the source vector is too wide or too narrow, we may nevertheless be able
7748   // to construct a compatible shuffle either by concatenating it with UNDEF or
7749   // extracting a suitable range of elements.
7750   for (auto &Src : Sources) {
7751     EVT SrcVT = Src.ShuffleVec.getValueType();
7752 
7753     uint64_t SrcVTSize = SrcVT.getFixedSizeInBits();
7754     uint64_t VTSize = VT.getFixedSizeInBits();
7755     if (SrcVTSize == VTSize)
7756       continue;
7757 
7758     // This stage of the search produces a source with the same element type as
7759     // the original, but with a total width matching the BUILD_VECTOR output.
7760     EVT EltVT = SrcVT.getVectorElementType();
7761     unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits();
7762     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
7763 
7764     if (SrcVTSize < VTSize) {
7765       if (2 * SrcVTSize != VTSize)
7766         return SDValue();
7767       // We can pad out the smaller vector for free, so if it's part of a
7768       // shuffle...
7769       Src.ShuffleVec =
7770           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
7771                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
7772       continue;
7773     }
7774 
7775     if (SrcVTSize != 2 * VTSize)
7776       return SDValue();
7777 
7778     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
7779       // Span too large for a VEXT to cope
7780       return SDValue();
7781     }
7782 
7783     if (Src.MinElt >= NumSrcElts) {
7784       // The extraction can just take the second half
7785       Src.ShuffleVec =
7786           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7787                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
7788       Src.WindowBase = -NumSrcElts;
7789     } else if (Src.MaxElt < NumSrcElts) {
7790       // The extraction can just take the first half
7791       Src.ShuffleVec =
7792           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7793                       DAG.getConstant(0, dl, MVT::i32));
7794     } else {
7795       // An actual VEXT is needed
7796       SDValue VEXTSrc1 =
7797           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7798                       DAG.getConstant(0, dl, MVT::i32));
7799       SDValue VEXTSrc2 =
7800           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7801                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
7802 
7803       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
7804                                    VEXTSrc2,
7805                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
7806       Src.WindowBase = -Src.MinElt;
7807     }
7808   }
7809 
7810   // Another possible incompatibility occurs from the vector element types. We
7811   // can fix this by bitcasting the source vectors to the same type we intend
7812   // for the shuffle.
7813   for (auto &Src : Sources) {
7814     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
7815     if (SrcEltTy == SmallestEltTy)
7816       continue;
7817     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
7818     Src.ShuffleVec = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, ShuffleVT, Src.ShuffleVec);
7819     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
7820     Src.WindowBase *= Src.WindowScale;
7821   }
7822 
7823   // Final sanity check before we try to actually produce a shuffle.
7824   LLVM_DEBUG(for (auto Src
7825                   : Sources)
7826                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
7827 
7828   // The stars all align, our next step is to produce the mask for the shuffle.
7829   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
7830   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
7831   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
7832     SDValue Entry = Op.getOperand(i);
7833     if (Entry.isUndef())
7834       continue;
7835 
7836     auto Src = llvm::find(Sources, Entry.getOperand(0));
7837     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
7838 
7839     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7840     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7841     // segment.
7842     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
7843     int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(),
7844                                VT.getScalarSizeInBits());
7845     int LanesDefined = BitsDefined / BitsPerShuffleLane;
7846 
7847     // This source is expected to fill ResMultiplier lanes of the final shuffle,
7848     // starting at the appropriate offset.
7849     int *LaneMask = &Mask[i * ResMultiplier];
7850 
7851     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
7852     ExtractBase += NumElts * (Src - Sources.begin());
7853     for (int j = 0; j < LanesDefined; ++j)
7854       LaneMask[j] = ExtractBase + j;
7855   }
7856 
7857 
7858   // We can't handle more than two sources. This should have already
7859   // been checked before this point.
7860   assert(Sources.size() <= 2 && "Too many sources!");
7861 
7862   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
7863   for (unsigned i = 0; i < Sources.size(); ++i)
7864     ShuffleOps[i] = Sources[i].ShuffleVec;
7865 
7866   SDValue Shuffle = buildLegalVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
7867                                             ShuffleOps[1], Mask, DAG);
7868   if (!Shuffle)
7869     return SDValue();
7870   return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Shuffle);
7871 }
7872 
7873 enum ShuffleOpCodes {
7874   OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7875   OP_VREV,
7876   OP_VDUP0,
7877   OP_VDUP1,
7878   OP_VDUP2,
7879   OP_VDUP3,
7880   OP_VEXT1,
7881   OP_VEXT2,
7882   OP_VEXT3,
7883   OP_VUZPL, // VUZP, left result
7884   OP_VUZPR, // VUZP, right result
7885   OP_VZIPL, // VZIP, left result
7886   OP_VZIPR, // VZIP, right result
7887   OP_VTRNL, // VTRN, left result
7888   OP_VTRNR  // VTRN, right result
7889 };
7890 
isLegalMVEShuffleOp(unsigned PFEntry)7891 static bool isLegalMVEShuffleOp(unsigned PFEntry) {
7892   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7893   switch (OpNum) {
7894   case OP_COPY:
7895   case OP_VREV:
7896   case OP_VDUP0:
7897   case OP_VDUP1:
7898   case OP_VDUP2:
7899   case OP_VDUP3:
7900     return true;
7901   }
7902   return false;
7903 }
7904 
7905 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7906 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7907 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7908 /// are assumed to be legal.
isShuffleMaskLegal(ArrayRef<int> M,EVT VT) const7909 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
7910   if (VT.getVectorNumElements() == 4 &&
7911       (VT.is128BitVector() || VT.is64BitVector())) {
7912     unsigned PFIndexes[4];
7913     for (unsigned i = 0; i != 4; ++i) {
7914       if (M[i] < 0)
7915         PFIndexes[i] = 8;
7916       else
7917         PFIndexes[i] = M[i];
7918     }
7919 
7920     // Compute the index in the perfect shuffle table.
7921     unsigned PFTableIndex =
7922       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7923     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7924     unsigned Cost = (PFEntry >> 30);
7925 
7926     if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
7927       return true;
7928   }
7929 
7930   bool ReverseVEXT, isV_UNDEF;
7931   unsigned Imm, WhichResult;
7932 
7933   unsigned EltSize = VT.getScalarSizeInBits();
7934   if (EltSize >= 32 ||
7935       ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7936       ShuffleVectorInst::isIdentityMask(M) ||
7937       isVREVMask(M, VT, 64) ||
7938       isVREVMask(M, VT, 32) ||
7939       isVREVMask(M, VT, 16))
7940     return true;
7941   else if (Subtarget->hasNEON() &&
7942            (isVEXTMask(M, VT, ReverseVEXT, Imm) ||
7943             isVTBLMask(M, VT) ||
7944             isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
7945     return true;
7946   else if (Subtarget->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) &&
7947            isReverseMask(M, VT))
7948     return true;
7949   else if (Subtarget->hasMVEIntegerOps() &&
7950            (isVMOVNMask(M, VT, 0) || isVMOVNMask(M, VT, 1)))
7951     return true;
7952   else
7953     return false;
7954 }
7955 
7956 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7957 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)7958 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7959                                       SDValue RHS, SelectionDAG &DAG,
7960                                       const SDLoc &dl) {
7961   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7962   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7963   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7964 
7965   if (OpNum == OP_COPY) {
7966     if (LHSID == (1*9+2)*9+3) return LHS;
7967     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7968     return RHS;
7969   }
7970 
7971   SDValue OpLHS, OpRHS;
7972   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7973   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7974   EVT VT = OpLHS.getValueType();
7975 
7976   switch (OpNum) {
7977   default: llvm_unreachable("Unknown shuffle opcode!");
7978   case OP_VREV:
7979     // VREV divides the vector in half and swaps within the half.
7980     if (VT.getVectorElementType() == MVT::i32 ||
7981         VT.getVectorElementType() == MVT::f32)
7982       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
7983     // vrev <4 x i16> -> VREV32
7984     if (VT.getVectorElementType() == MVT::i16)
7985       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
7986     // vrev <4 x i8> -> VREV16
7987     assert(VT.getVectorElementType() == MVT::i8);
7988     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
7989   case OP_VDUP0:
7990   case OP_VDUP1:
7991   case OP_VDUP2:
7992   case OP_VDUP3:
7993     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7994                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
7995   case OP_VEXT1:
7996   case OP_VEXT2:
7997   case OP_VEXT3:
7998     return DAG.getNode(ARMISD::VEXT, dl, VT,
7999                        OpLHS, OpRHS,
8000                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
8001   case OP_VUZPL:
8002   case OP_VUZPR:
8003     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
8004                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
8005   case OP_VZIPL:
8006   case OP_VZIPR:
8007     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
8008                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
8009   case OP_VTRNL:
8010   case OP_VTRNR:
8011     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
8012                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
8013   }
8014 }
8015 
LowerVECTOR_SHUFFLEv8i8(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)8016 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
8017                                        ArrayRef<int> ShuffleMask,
8018                                        SelectionDAG &DAG) {
8019   // Check to see if we can use the VTBL instruction.
8020   SDValue V1 = Op.getOperand(0);
8021   SDValue V2 = Op.getOperand(1);
8022   SDLoc DL(Op);
8023 
8024   SmallVector<SDValue, 8> VTBLMask;
8025   for (ArrayRef<int>::iterator
8026          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
8027     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
8028 
8029   if (V2.getNode()->isUndef())
8030     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
8031                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8032 
8033   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
8034                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8035 }
8036 
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,SelectionDAG & DAG)8037 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
8038                                                       SelectionDAG &DAG) {
8039   SDLoc DL(Op);
8040   SDValue OpLHS = Op.getOperand(0);
8041   EVT VT = OpLHS.getValueType();
8042 
8043   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
8044          "Expect an v8i16/v16i8 type");
8045   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
8046   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
8047   // extract the first 8 bytes into the top double word and the last 8 bytes
8048   // into the bottom double word. The v8i16 case is similar.
8049   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
8050   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
8051                      DAG.getConstant(ExtractNum, DL, MVT::i32));
8052 }
8053 
getVectorTyFromPredicateVector(EVT VT)8054 static EVT getVectorTyFromPredicateVector(EVT VT) {
8055   switch (VT.getSimpleVT().SimpleTy) {
8056   case MVT::v4i1:
8057     return MVT::v4i32;
8058   case MVT::v8i1:
8059     return MVT::v8i16;
8060   case MVT::v16i1:
8061     return MVT::v16i8;
8062   default:
8063     llvm_unreachable("Unexpected vector predicate type");
8064   }
8065 }
8066 
PromoteMVEPredVector(SDLoc dl,SDValue Pred,EVT VT,SelectionDAG & DAG)8067 static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT,
8068                                     SelectionDAG &DAG) {
8069   // Converting from boolean predicates to integers involves creating a vector
8070   // of all ones or all zeroes and selecting the lanes based upon the real
8071   // predicate.
8072   SDValue AllOnes =
8073       DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32);
8074   AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes);
8075 
8076   SDValue AllZeroes =
8077       DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32);
8078   AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes);
8079 
8080   // Get full vector type from predicate type
8081   EVT NewVT = getVectorTyFromPredicateVector(VT);
8082 
8083   SDValue RecastV1;
8084   // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
8085   // this to a v16i1. This cannot be done with an ordinary bitcast because the
8086   // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
8087   // since we know in hardware the sizes are really the same.
8088   if (VT != MVT::v16i1)
8089     RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred);
8090   else
8091     RecastV1 = Pred;
8092 
8093   // Select either all ones or zeroes depending upon the real predicate bits.
8094   SDValue PredAsVector =
8095       DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes);
8096 
8097   // Recast our new predicate-as-integer v16i8 vector into something
8098   // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
8099   return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector);
8100 }
8101 
LowerVECTOR_SHUFFLE_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8102 static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG,
8103                                       const ARMSubtarget *ST) {
8104   EVT VT = Op.getValueType();
8105   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8106   ArrayRef<int> ShuffleMask = SVN->getMask();
8107 
8108   assert(ST->hasMVEIntegerOps() &&
8109          "No support for vector shuffle of boolean predicates");
8110 
8111   SDValue V1 = Op.getOperand(0);
8112   SDLoc dl(Op);
8113   if (isReverseMask(ShuffleMask, VT)) {
8114     SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1);
8115     SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast);
8116     SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit,
8117                               DAG.getConstant(16, dl, MVT::i32));
8118     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl);
8119   }
8120 
8121   // Until we can come up with optimised cases for every single vector
8122   // shuffle in existence we have chosen the least painful strategy. This is
8123   // to essentially promote the boolean predicate to a 8-bit integer, where
8124   // each predicate represents a byte. Then we fall back on a normal integer
8125   // vector shuffle and convert the result back into a predicate vector. In
8126   // many cases the generated code might be even better than scalar code
8127   // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
8128   // fields in a register into 8 other arbitrary 2-bit fields!
8129   SDValue PredAsVector = PromoteMVEPredVector(dl, V1, VT, DAG);
8130   EVT NewVT = PredAsVector.getValueType();
8131 
8132   // Do the shuffle!
8133   SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector,
8134                                           DAG.getUNDEF(NewVT), ShuffleMask);
8135 
8136   // Now return the result of comparing the shuffled vector with zero,
8137   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8138   return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled,
8139                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8140 }
8141 
LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)8142 static SDValue LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,
8143                                             ArrayRef<int> ShuffleMask,
8144                                             SelectionDAG &DAG) {
8145   // Attempt to lower the vector shuffle using as many whole register movs as
8146   // possible. This is useful for types smaller than 32bits, which would
8147   // often otherwise become a series for grp movs.
8148   SDLoc dl(Op);
8149   EVT VT = Op.getValueType();
8150   if (VT.getScalarSizeInBits() >= 32)
8151     return SDValue();
8152 
8153   assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8154          "Unexpected vector type");
8155   int NumElts = VT.getVectorNumElements();
8156   int QuarterSize = NumElts / 4;
8157   // The four final parts of the vector, as i32's
8158   SDValue Parts[4];
8159 
8160   // Look for full lane vmovs like <0,1,2,3> or <u,5,6,7> etc, (but not
8161   // <u,u,u,u>), returning the vmov lane index
8162   auto getMovIdx = [](ArrayRef<int> ShuffleMask, int Start, int Length) {
8163     // Detect which mov lane this would be from the first non-undef element.
8164     int MovIdx = -1;
8165     for (int i = 0; i < Length; i++) {
8166       if (ShuffleMask[Start + i] >= 0) {
8167         if (ShuffleMask[Start + i] % Length != i)
8168           return -1;
8169         MovIdx = ShuffleMask[Start + i] / Length;
8170         break;
8171       }
8172     }
8173     // If all items are undef, leave this for other combines
8174     if (MovIdx == -1)
8175       return -1;
8176     // Check the remaining values are the correct part of the same mov
8177     for (int i = 1; i < Length; i++) {
8178       if (ShuffleMask[Start + i] >= 0 &&
8179           (ShuffleMask[Start + i] / Length != MovIdx ||
8180            ShuffleMask[Start + i] % Length != i))
8181         return -1;
8182     }
8183     return MovIdx;
8184   };
8185 
8186   for (int Part = 0; Part < 4; ++Part) {
8187     // Does this part look like a mov
8188     int Elt = getMovIdx(ShuffleMask, Part * QuarterSize, QuarterSize);
8189     if (Elt != -1) {
8190       SDValue Input = Op->getOperand(0);
8191       if (Elt >= 4) {
8192         Input = Op->getOperand(1);
8193         Elt -= 4;
8194       }
8195       SDValue BitCast = DAG.getBitcast(MVT::v4i32, Input);
8196       Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, BitCast,
8197                                 DAG.getConstant(Elt, dl, MVT::i32));
8198     }
8199   }
8200 
8201   // Nothing interesting found, just return
8202   if (!Parts[0] && !Parts[1] && !Parts[2] && !Parts[3])
8203     return SDValue();
8204 
8205   // The other parts need to be built with the old shuffle vector, cast to a
8206   // v4i32 and extract_vector_elts
8207   if (!Parts[0] || !Parts[1] || !Parts[2] || !Parts[3]) {
8208     SmallVector<int, 16> NewShuffleMask;
8209     for (int Part = 0; Part < 4; ++Part)
8210       for (int i = 0; i < QuarterSize; i++)
8211         NewShuffleMask.push_back(
8212             Parts[Part] ? -1 : ShuffleMask[Part * QuarterSize + i]);
8213     SDValue NewShuffle = DAG.getVectorShuffle(
8214         VT, dl, Op->getOperand(0), Op->getOperand(1), NewShuffleMask);
8215     SDValue BitCast = DAG.getBitcast(MVT::v4i32, NewShuffle);
8216 
8217     for (int Part = 0; Part < 4; ++Part)
8218       if (!Parts[Part])
8219         Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
8220                                   BitCast, DAG.getConstant(Part, dl, MVT::i32));
8221   }
8222   // Build a vector out of the various parts and bitcast it back to the original
8223   // type.
8224   SDValue NewVec = DAG.getBuildVector(MVT::v4i32, dl, Parts);
8225   return DAG.getBitcast(VT, NewVec);
8226 }
8227 
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8228 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
8229                                    const ARMSubtarget *ST) {
8230   SDValue V1 = Op.getOperand(0);
8231   SDValue V2 = Op.getOperand(1);
8232   SDLoc dl(Op);
8233   EVT VT = Op.getValueType();
8234   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8235   unsigned EltSize = VT.getScalarSizeInBits();
8236 
8237   if (ST->hasMVEIntegerOps() && EltSize == 1)
8238     return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST);
8239 
8240   // Convert shuffles that are directly supported on NEON to target-specific
8241   // DAG nodes, instead of keeping them as shuffles and matching them again
8242   // during code selection.  This is more efficient and avoids the possibility
8243   // of inconsistencies between legalization and selection.
8244   // FIXME: floating-point vectors should be canonicalized to integer vectors
8245   // of the same time so that they get CSEd properly.
8246   ArrayRef<int> ShuffleMask = SVN->getMask();
8247 
8248   if (EltSize <= 32) {
8249     if (SVN->isSplat()) {
8250       int Lane = SVN->getSplatIndex();
8251       // If this is undef splat, generate it via "just" vdup, if possible.
8252       if (Lane == -1) Lane = 0;
8253 
8254       // Test if V1 is a SCALAR_TO_VECTOR.
8255       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8256         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8257       }
8258       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
8259       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
8260       // reaches it).
8261       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
8262           !isa<ConstantSDNode>(V1.getOperand(0))) {
8263         bool IsScalarToVector = true;
8264         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
8265           if (!V1.getOperand(i).isUndef()) {
8266             IsScalarToVector = false;
8267             break;
8268           }
8269         if (IsScalarToVector)
8270           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8271       }
8272       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
8273                          DAG.getConstant(Lane, dl, MVT::i32));
8274     }
8275 
8276     bool ReverseVEXT = false;
8277     unsigned Imm = 0;
8278     if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
8279       if (ReverseVEXT)
8280         std::swap(V1, V2);
8281       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
8282                          DAG.getConstant(Imm, dl, MVT::i32));
8283     }
8284 
8285     if (isVREVMask(ShuffleMask, VT, 64))
8286       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
8287     if (isVREVMask(ShuffleMask, VT, 32))
8288       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
8289     if (isVREVMask(ShuffleMask, VT, 16))
8290       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
8291 
8292     if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
8293       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
8294                          DAG.getConstant(Imm, dl, MVT::i32));
8295     }
8296 
8297     // Check for Neon shuffles that modify both input vectors in place.
8298     // If both results are used, i.e., if there are two shuffles with the same
8299     // source operands and with masks corresponding to both results of one of
8300     // these operations, DAG memoization will ensure that a single node is
8301     // used for both shuffles.
8302     unsigned WhichResult = 0;
8303     bool isV_UNDEF = false;
8304     if (ST->hasNEON()) {
8305       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8306               ShuffleMask, VT, WhichResult, isV_UNDEF)) {
8307         if (isV_UNDEF)
8308           V2 = V1;
8309         return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
8310             .getValue(WhichResult);
8311       }
8312     }
8313     if (ST->hasMVEIntegerOps()) {
8314       if (isVMOVNMask(ShuffleMask, VT, 0))
8315         return DAG.getNode(ARMISD::VMOVN, dl, VT, V2, V1,
8316                            DAG.getConstant(0, dl, MVT::i32));
8317       if (isVMOVNMask(ShuffleMask, VT, 1))
8318         return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V2,
8319                            DAG.getConstant(1, dl, MVT::i32));
8320     }
8321 
8322     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
8323     // shuffles that produce a result larger than their operands with:
8324     //   shuffle(concat(v1, undef), concat(v2, undef))
8325     // ->
8326     //   shuffle(concat(v1, v2), undef)
8327     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
8328     //
8329     // This is useful in the general case, but there are special cases where
8330     // native shuffles produce larger results: the two-result ops.
8331     //
8332     // Look through the concat when lowering them:
8333     //   shuffle(concat(v1, v2), undef)
8334     // ->
8335     //   concat(VZIP(v1, v2):0, :1)
8336     //
8337     if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
8338       SDValue SubV1 = V1->getOperand(0);
8339       SDValue SubV2 = V1->getOperand(1);
8340       EVT SubVT = SubV1.getValueType();
8341 
8342       // We expect these to have been canonicalized to -1.
8343       assert(llvm::all_of(ShuffleMask, [&](int i) {
8344         return i < (int)VT.getVectorNumElements();
8345       }) && "Unexpected shuffle index into UNDEF operand!");
8346 
8347       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8348               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
8349         if (isV_UNDEF)
8350           SubV2 = SubV1;
8351         assert((WhichResult == 0) &&
8352                "In-place shuffle of concat can only have one result!");
8353         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
8354                                   SubV1, SubV2);
8355         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
8356                            Res.getValue(1));
8357       }
8358     }
8359   }
8360 
8361   // If the shuffle is not directly supported and it has 4 elements, use
8362   // the PerfectShuffle-generated table to synthesize it from other shuffles.
8363   unsigned NumElts = VT.getVectorNumElements();
8364   if (NumElts == 4) {
8365     unsigned PFIndexes[4];
8366     for (unsigned i = 0; i != 4; ++i) {
8367       if (ShuffleMask[i] < 0)
8368         PFIndexes[i] = 8;
8369       else
8370         PFIndexes[i] = ShuffleMask[i];
8371     }
8372 
8373     // Compute the index in the perfect shuffle table.
8374     unsigned PFTableIndex =
8375       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8376     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8377     unsigned Cost = (PFEntry >> 30);
8378 
8379     if (Cost <= 4) {
8380       if (ST->hasNEON())
8381         return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8382       else if (isLegalMVEShuffleOp(PFEntry)) {
8383         unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8384         unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8385         unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
8386         unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
8387         if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
8388           return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8389       }
8390     }
8391   }
8392 
8393   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
8394   if (EltSize >= 32) {
8395     // Do the expansion with floating-point types, since that is what the VFP
8396     // registers are defined to use, and since i64 is not legal.
8397     EVT EltVT = EVT::getFloatingPointVT(EltSize);
8398     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
8399     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
8400     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
8401     SmallVector<SDValue, 8> Ops;
8402     for (unsigned i = 0; i < NumElts; ++i) {
8403       if (ShuffleMask[i] < 0)
8404         Ops.push_back(DAG.getUNDEF(EltVT));
8405       else
8406         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
8407                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
8408                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
8409                                                   dl, MVT::i32)));
8410     }
8411     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
8412     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8413   }
8414 
8415   if (ST->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
8416     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
8417 
8418   if (ST->hasNEON() && VT == MVT::v8i8)
8419     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
8420       return NewOp;
8421 
8422   if (ST->hasMVEIntegerOps())
8423     if (SDValue NewOp = LowerVECTOR_SHUFFLEUsingMovs(Op, ShuffleMask, DAG))
8424       return NewOp;
8425 
8426   return SDValue();
8427 }
8428 
LowerINSERT_VECTOR_ELT_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8429 static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
8430                                          const ARMSubtarget *ST) {
8431   EVT VecVT = Op.getOperand(0).getValueType();
8432   SDLoc dl(Op);
8433 
8434   assert(ST->hasMVEIntegerOps() &&
8435          "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8436 
8437   SDValue Conv =
8438       DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
8439   unsigned Lane = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8440   unsigned LaneWidth =
8441       getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
8442   unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
8443   SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32,
8444                             Op.getOperand(1), DAG.getValueType(MVT::i1));
8445   SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext,
8446                             DAG.getConstant(~Mask, dl, MVT::i32));
8447   return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI);
8448 }
8449 
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const8450 SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
8451                                                   SelectionDAG &DAG) const {
8452   // INSERT_VECTOR_ELT is legal only for immediate indexes.
8453   SDValue Lane = Op.getOperand(2);
8454   if (!isa<ConstantSDNode>(Lane))
8455     return SDValue();
8456 
8457   SDValue Elt = Op.getOperand(1);
8458   EVT EltVT = Elt.getValueType();
8459 
8460   if (Subtarget->hasMVEIntegerOps() &&
8461       Op.getValueType().getScalarSizeInBits() == 1)
8462     return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget);
8463 
8464   if (getTypeAction(*DAG.getContext(), EltVT) ==
8465       TargetLowering::TypePromoteFloat) {
8466     // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
8467     // but the type system will try to do that if we don't intervene.
8468     // Reinterpret any such vector-element insertion as one with the
8469     // corresponding integer types.
8470 
8471     SDLoc dl(Op);
8472 
8473     EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
8474     assert(getTypeAction(*DAG.getContext(), IEltVT) !=
8475            TargetLowering::TypePromoteFloat);
8476 
8477     SDValue VecIn = Op.getOperand(0);
8478     EVT VecVT = VecIn.getValueType();
8479     EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
8480                                   VecVT.getVectorNumElements());
8481 
8482     SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
8483     SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
8484     SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
8485                                   IVecIn, IElt, Lane);
8486     return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
8487   }
8488 
8489   return Op;
8490 }
8491 
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8492 static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
8493                                           const ARMSubtarget *ST) {
8494   EVT VecVT = Op.getOperand(0).getValueType();
8495   SDLoc dl(Op);
8496 
8497   assert(ST->hasMVEIntegerOps() &&
8498          "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8499 
8500   SDValue Conv =
8501       DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
8502   unsigned Lane = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8503   unsigned LaneWidth =
8504       getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
8505   SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv,
8506                               DAG.getConstant(Lane * LaneWidth, dl, MVT::i32));
8507   return Shift;
8508 }
8509 
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8510 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG,
8511                                        const ARMSubtarget *ST) {
8512   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
8513   SDValue Lane = Op.getOperand(1);
8514   if (!isa<ConstantSDNode>(Lane))
8515     return SDValue();
8516 
8517   SDValue Vec = Op.getOperand(0);
8518   EVT VT = Vec.getValueType();
8519 
8520   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
8521     return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST);
8522 
8523   if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
8524     SDLoc dl(Op);
8525     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
8526   }
8527 
8528   return Op;
8529 }
8530 
LowerCONCAT_VECTORS_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8531 static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG,
8532                                       const ARMSubtarget *ST) {
8533   SDValue V1 = Op.getOperand(0);
8534   SDValue V2 = Op.getOperand(1);
8535   SDLoc dl(Op);
8536   EVT VT = Op.getValueType();
8537   EVT Op1VT = V1.getValueType();
8538   EVT Op2VT = V2.getValueType();
8539   unsigned NumElts = VT.getVectorNumElements();
8540 
8541   assert(Op1VT == Op2VT && "Operand types don't match!");
8542   assert(VT.getScalarSizeInBits() == 1 &&
8543          "Unexpected custom CONCAT_VECTORS lowering");
8544   assert(ST->hasMVEIntegerOps() &&
8545          "CONCAT_VECTORS lowering only supported for MVE");
8546 
8547   SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
8548   SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG);
8549 
8550   // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
8551   // promoted to v8i16, etc.
8552 
8553   MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
8554 
8555   // Extract the vector elements from Op1 and Op2 one by one and truncate them
8556   // to be the right size for the destination. For example, if Op1 is v4i1 then
8557   // the promoted vector is v4i32. The result of concatentation gives a v8i1,
8558   // which when promoted is v8i16. That means each i32 element from Op1 needs
8559   // truncating to i16 and inserting in the result.
8560   EVT ConcatVT = MVT::getVectorVT(ElType, NumElts);
8561   SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT);
8562   auto ExractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) {
8563     EVT NewVT = NewV.getValueType();
8564     EVT ConcatVT = ConVec.getValueType();
8565     for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) {
8566       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV,
8567                                 DAG.getIntPtrConstant(i, dl));
8568       ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt,
8569                            DAG.getConstant(j, dl, MVT::i32));
8570     }
8571     return ConVec;
8572   };
8573   unsigned j = 0;
8574   ConVec = ExractInto(NewV1, ConVec, j);
8575   ConVec = ExractInto(NewV2, ConVec, j);
8576 
8577   // Now return the result of comparing the subvector with zero,
8578   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8579   return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
8580                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8581 }
8582 
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8583 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
8584                                    const ARMSubtarget *ST) {
8585   EVT VT = Op->getValueType(0);
8586   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
8587     return LowerCONCAT_VECTORS_i1(Op, DAG, ST);
8588 
8589   // The only time a CONCAT_VECTORS operation can have legal types is when
8590   // two 64-bit vectors are concatenated to a 128-bit vector.
8591   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
8592          "unexpected CONCAT_VECTORS");
8593   SDLoc dl(Op);
8594   SDValue Val = DAG.getUNDEF(MVT::v2f64);
8595   SDValue Op0 = Op.getOperand(0);
8596   SDValue Op1 = Op.getOperand(1);
8597   if (!Op0.isUndef())
8598     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
8599                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
8600                       DAG.getIntPtrConstant(0, dl));
8601   if (!Op1.isUndef())
8602     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
8603                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
8604                       DAG.getIntPtrConstant(1, dl));
8605   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
8606 }
8607 
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8608 static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG,
8609                                       const ARMSubtarget *ST) {
8610   SDValue V1 = Op.getOperand(0);
8611   SDValue V2 = Op.getOperand(1);
8612   SDLoc dl(Op);
8613   EVT VT = Op.getValueType();
8614   EVT Op1VT = V1.getValueType();
8615   unsigned NumElts = VT.getVectorNumElements();
8616   unsigned Index = cast<ConstantSDNode>(V2)->getZExtValue();
8617 
8618   assert(VT.getScalarSizeInBits() == 1 &&
8619          "Unexpected custom EXTRACT_SUBVECTOR lowering");
8620   assert(ST->hasMVEIntegerOps() &&
8621          "EXTRACT_SUBVECTOR lowering only supported for MVE");
8622 
8623   SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
8624 
8625   // We now have Op1 promoted to a vector of integers, where v8i1 gets
8626   // promoted to v8i16, etc.
8627 
8628   MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
8629 
8630   EVT SubVT = MVT::getVectorVT(ElType, NumElts);
8631   SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
8632   for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
8633     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
8634                               DAG.getIntPtrConstant(i, dl));
8635     SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
8636                          DAG.getConstant(j, dl, MVT::i32));
8637   }
8638 
8639   // Now return the result of comparing the subvector with zero,
8640   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8641   return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec,
8642                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8643 }
8644 
8645 // Turn a truncate into a predicate (an i1 vector) into icmp(and(x, 1), 0).
LowerTruncatei1(SDValue N,SelectionDAG & DAG,const ARMSubtarget * ST)8646 static SDValue LowerTruncatei1(SDValue N, SelectionDAG &DAG,
8647                                const ARMSubtarget *ST) {
8648   assert(ST->hasMVEIntegerOps() && "Expected MVE!");
8649   EVT VT = N.getValueType();
8650   assert((VT == MVT::v16i1 || VT == MVT::v8i1 || VT == MVT::v4i1) &&
8651          "Expected a vector i1 type!");
8652   SDValue Op = N.getOperand(0);
8653   EVT FromVT = Op.getValueType();
8654   SDLoc DL(N);
8655 
8656   SDValue And =
8657       DAG.getNode(ISD::AND, DL, FromVT, Op, DAG.getConstant(1, DL, FromVT));
8658   return DAG.getNode(ISD::SETCC, DL, VT, And, DAG.getConstant(0, DL, FromVT),
8659                      DAG.getCondCode(ISD::SETNE));
8660 }
8661 
8662 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
8663 /// element has been zero/sign-extended, depending on the isSigned parameter,
8664 /// from an integer type half its size.
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)8665 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
8666                                    bool isSigned) {
8667   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
8668   EVT VT = N->getValueType(0);
8669   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
8670     SDNode *BVN = N->getOperand(0).getNode();
8671     if (BVN->getValueType(0) != MVT::v4i32 ||
8672         BVN->getOpcode() != ISD::BUILD_VECTOR)
8673       return false;
8674     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8675     unsigned HiElt = 1 - LoElt;
8676     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
8677     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
8678     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
8679     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
8680     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
8681       return false;
8682     if (isSigned) {
8683       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
8684           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
8685         return true;
8686     } else {
8687       if (Hi0->isNullValue() && Hi1->isNullValue())
8688         return true;
8689     }
8690     return false;
8691   }
8692 
8693   if (N->getOpcode() != ISD::BUILD_VECTOR)
8694     return false;
8695 
8696   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8697     SDNode *Elt = N->getOperand(i).getNode();
8698     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
8699       unsigned EltSize = VT.getScalarSizeInBits();
8700       unsigned HalfSize = EltSize / 2;
8701       if (isSigned) {
8702         if (!isIntN(HalfSize, C->getSExtValue()))
8703           return false;
8704       } else {
8705         if (!isUIntN(HalfSize, C->getZExtValue()))
8706           return false;
8707       }
8708       continue;
8709     }
8710     return false;
8711   }
8712 
8713   return true;
8714 }
8715 
8716 /// isSignExtended - Check if a node is a vector value that is sign-extended
8717 /// or a constant BUILD_VECTOR with sign-extended elements.
isSignExtended(SDNode * N,SelectionDAG & DAG)8718 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
8719   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
8720     return true;
8721   if (isExtendedBUILD_VECTOR(N, DAG, true))
8722     return true;
8723   return false;
8724 }
8725 
8726 /// isZeroExtended - Check if a node is a vector value that is zero-extended (or
8727 /// any-extended) or a constant BUILD_VECTOR with zero-extended elements.
isZeroExtended(SDNode * N,SelectionDAG & DAG)8728 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
8729   if (N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND ||
8730       ISD::isZEXTLoad(N))
8731     return true;
8732   if (isExtendedBUILD_VECTOR(N, DAG, false))
8733     return true;
8734   return false;
8735 }
8736 
getExtensionTo64Bits(const EVT & OrigVT)8737 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
8738   if (OrigVT.getSizeInBits() >= 64)
8739     return OrigVT;
8740 
8741   assert(OrigVT.isSimple() && "Expecting a simple value type");
8742 
8743   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
8744   switch (OrigSimpleTy) {
8745   default: llvm_unreachable("Unexpected Vector Type");
8746   case MVT::v2i8:
8747   case MVT::v2i16:
8748      return MVT::v2i32;
8749   case MVT::v4i8:
8750     return  MVT::v4i16;
8751   }
8752 }
8753 
8754 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8755 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8756 /// We insert the required extension here to get the vector to fill a D register.
AddRequiredExtensionForVMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)8757 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
8758                                             const EVT &OrigTy,
8759                                             const EVT &ExtTy,
8760                                             unsigned ExtOpcode) {
8761   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8762   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8763   // 64-bits we need to insert a new extension so that it will be 64-bits.
8764   assert(ExtTy.is128BitVector() && "Unexpected extension size");
8765   if (OrigTy.getSizeInBits() >= 64)
8766     return N;
8767 
8768   // Must extend size to at least 64 bits to be used as an operand for VMULL.
8769   EVT NewVT = getExtensionTo64Bits(OrigTy);
8770 
8771   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
8772 }
8773 
8774 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8775 /// does not do any sign/zero extension. If the original vector is less
8776 /// than 64 bits, an appropriate extension will be added after the load to
8777 /// reach a total size of 64 bits. We have to add the extension separately
8778 /// because ARM does not have a sign/zero extending load for vectors.
SkipLoadExtensionForVMULL(LoadSDNode * LD,SelectionDAG & DAG)8779 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
8780   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
8781 
8782   // The load already has the right type.
8783   if (ExtendedTy == LD->getMemoryVT())
8784     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
8785                        LD->getBasePtr(), LD->getPointerInfo(),
8786                        LD->getAlignment(), LD->getMemOperand()->getFlags());
8787 
8788   // We need to create a zextload/sextload. We cannot just create a load
8789   // followed by a zext/zext node because LowerMUL is also run during normal
8790   // operation legalization where we can't create illegal types.
8791   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
8792                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
8793                         LD->getMemoryVT(), LD->getAlignment(),
8794                         LD->getMemOperand()->getFlags());
8795 }
8796 
8797 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8798 /// ANY_EXTEND, extending load, or BUILD_VECTOR with extended elements, return
8799 /// the unextended value. The unextended vector should be 64 bits so that it can
8800 /// be used as an operand to a VMULL instruction. If the original vector size
8801 /// before extension is less than 64 bits we add a an extension to resize
8802 /// the vector to 64 bits.
SkipExtensionForVMULL(SDNode * N,SelectionDAG & DAG)8803 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
8804   if (N->getOpcode() == ISD::SIGN_EXTEND ||
8805       N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND)
8806     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
8807                                         N->getOperand(0)->getValueType(0),
8808                                         N->getValueType(0),
8809                                         N->getOpcode());
8810 
8811   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8812     assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
8813            "Expected extending load");
8814 
8815     SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
8816     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
8817     unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
8818     SDValue extLoad =
8819         DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
8820     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
8821 
8822     return newLoad;
8823   }
8824 
8825   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
8826   // have been legalized as a BITCAST from v4i32.
8827   if (N->getOpcode() == ISD::BITCAST) {
8828     SDNode *BVN = N->getOperand(0).getNode();
8829     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
8830            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
8831     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8832     return DAG.getBuildVector(
8833         MVT::v2i32, SDLoc(N),
8834         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
8835   }
8836   // Construct a new BUILD_VECTOR with elements truncated to half the size.
8837   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
8838   EVT VT = N->getValueType(0);
8839   unsigned EltSize = VT.getScalarSizeInBits() / 2;
8840   unsigned NumElts = VT.getVectorNumElements();
8841   MVT TruncVT = MVT::getIntegerVT(EltSize);
8842   SmallVector<SDValue, 8> Ops;
8843   SDLoc dl(N);
8844   for (unsigned i = 0; i != NumElts; ++i) {
8845     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
8846     const APInt &CInt = C->getAPIntValue();
8847     // Element types smaller than 32 bits are not legal, so use i32 elements.
8848     // The values are implicitly truncated so sext vs. zext doesn't matter.
8849     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
8850   }
8851   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
8852 }
8853 
isAddSubSExt(SDNode * N,SelectionDAG & DAG)8854 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
8855   unsigned Opcode = N->getOpcode();
8856   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
8857     SDNode *N0 = N->getOperand(0).getNode();
8858     SDNode *N1 = N->getOperand(1).getNode();
8859     return N0->hasOneUse() && N1->hasOneUse() &&
8860       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
8861   }
8862   return false;
8863 }
8864 
isAddSubZExt(SDNode * N,SelectionDAG & DAG)8865 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
8866   unsigned Opcode = N->getOpcode();
8867   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
8868     SDNode *N0 = N->getOperand(0).getNode();
8869     SDNode *N1 = N->getOperand(1).getNode();
8870     return N0->hasOneUse() && N1->hasOneUse() &&
8871       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
8872   }
8873   return false;
8874 }
8875 
LowerMUL(SDValue Op,SelectionDAG & DAG)8876 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
8877   // Multiplications are only custom-lowered for 128-bit vectors so that
8878   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
8879   EVT VT = Op.getValueType();
8880   assert(VT.is128BitVector() && VT.isInteger() &&
8881          "unexpected type for custom-lowering ISD::MUL");
8882   SDNode *N0 = Op.getOperand(0).getNode();
8883   SDNode *N1 = Op.getOperand(1).getNode();
8884   unsigned NewOpc = 0;
8885   bool isMLA = false;
8886   bool isN0SExt = isSignExtended(N0, DAG);
8887   bool isN1SExt = isSignExtended(N1, DAG);
8888   if (isN0SExt && isN1SExt)
8889     NewOpc = ARMISD::VMULLs;
8890   else {
8891     bool isN0ZExt = isZeroExtended(N0, DAG);
8892     bool isN1ZExt = isZeroExtended(N1, DAG);
8893     if (isN0ZExt && isN1ZExt)
8894       NewOpc = ARMISD::VMULLu;
8895     else if (isN1SExt || isN1ZExt) {
8896       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8897       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8898       if (isN1SExt && isAddSubSExt(N0, DAG)) {
8899         NewOpc = ARMISD::VMULLs;
8900         isMLA = true;
8901       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
8902         NewOpc = ARMISD::VMULLu;
8903         isMLA = true;
8904       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
8905         std::swap(N0, N1);
8906         NewOpc = ARMISD::VMULLu;
8907         isMLA = true;
8908       }
8909     }
8910 
8911     if (!NewOpc) {
8912       if (VT == MVT::v2i64)
8913         // Fall through to expand this.  It is not legal.
8914         return SDValue();
8915       else
8916         // Other vector multiplications are legal.
8917         return Op;
8918     }
8919   }
8920 
8921   // Legalize to a VMULL instruction.
8922   SDLoc DL(Op);
8923   SDValue Op0;
8924   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
8925   if (!isMLA) {
8926     Op0 = SkipExtensionForVMULL(N0, DAG);
8927     assert(Op0.getValueType().is64BitVector() &&
8928            Op1.getValueType().is64BitVector() &&
8929            "unexpected types for extended operands to VMULL");
8930     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
8931   }
8932 
8933   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8934   // isel lowering to take advantage of no-stall back to back vmul + vmla.
8935   //   vmull q0, d4, d6
8936   //   vmlal q0, d5, d6
8937   // is faster than
8938   //   vaddl q0, d4, d5
8939   //   vmovl q1, d6
8940   //   vmul  q0, q0, q1
8941   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
8942   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
8943   EVT Op1VT = Op1.getValueType();
8944   return DAG.getNode(N0->getOpcode(), DL, VT,
8945                      DAG.getNode(NewOpc, DL, VT,
8946                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
8947                      DAG.getNode(NewOpc, DL, VT,
8948                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
8949 }
8950 
LowerSDIV_v4i8(SDValue X,SDValue Y,const SDLoc & dl,SelectionDAG & DAG)8951 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
8952                               SelectionDAG &DAG) {
8953   // TODO: Should this propagate fast-math-flags?
8954 
8955   // Convert to float
8956   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8957   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8958   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
8959   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
8960   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
8961   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
8962   // Get reciprocal estimate.
8963   // float4 recip = vrecpeq_f32(yf);
8964   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8965                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
8966                    Y);
8967   // Because char has a smaller range than uchar, we can actually get away
8968   // without any newton steps.  This requires that we use a weird bias
8969   // of 0xb000, however (again, this has been exhaustively tested).
8970   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8971   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
8972   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
8973   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
8974   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
8975   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
8976   // Convert back to short.
8977   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
8978   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
8979   return X;
8980 }
8981 
LowerSDIV_v4i16(SDValue N0,SDValue N1,const SDLoc & dl,SelectionDAG & DAG)8982 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
8983                                SelectionDAG &DAG) {
8984   // TODO: Should this propagate fast-math-flags?
8985 
8986   SDValue N2;
8987   // Convert to float.
8988   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8989   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8990   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
8991   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
8992   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
8993   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
8994 
8995   // Use reciprocal estimate and one refinement step.
8996   // float4 recip = vrecpeq_f32(yf);
8997   // recip *= vrecpsq_f32(yf, recip);
8998   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8999                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9000                    N1);
9001   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9002                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9003                    N1, N2);
9004   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9005   // Because short has a smaller range than ushort, we can actually get away
9006   // with only a single newton step.  This requires that we use a weird bias
9007   // of 89, however (again, this has been exhaustively tested).
9008   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
9009   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9010   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9011   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
9012   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9013   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9014   // Convert back to integer and return.
9015   // return vmovn_s32(vcvt_s32_f32(result));
9016   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9017   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9018   return N0;
9019 }
9020 
LowerSDIV(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)9021 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG,
9022                          const ARMSubtarget *ST) {
9023   EVT VT = Op.getValueType();
9024   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9025          "unexpected type for custom-lowering ISD::SDIV");
9026 
9027   SDLoc dl(Op);
9028   SDValue N0 = Op.getOperand(0);
9029   SDValue N1 = Op.getOperand(1);
9030   SDValue N2, N3;
9031 
9032   if (VT == MVT::v8i8) {
9033     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
9034     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
9035 
9036     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9037                      DAG.getIntPtrConstant(4, dl));
9038     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9039                      DAG.getIntPtrConstant(4, dl));
9040     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9041                      DAG.getIntPtrConstant(0, dl));
9042     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9043                      DAG.getIntPtrConstant(0, dl));
9044 
9045     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
9046     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
9047 
9048     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9049     N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9050 
9051     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
9052     return N0;
9053   }
9054   return LowerSDIV_v4i16(N0, N1, dl, DAG);
9055 }
9056 
LowerUDIV(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)9057 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG,
9058                          const ARMSubtarget *ST) {
9059   // TODO: Should this propagate fast-math-flags?
9060   EVT VT = Op.getValueType();
9061   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9062          "unexpected type for custom-lowering ISD::UDIV");
9063 
9064   SDLoc dl(Op);
9065   SDValue N0 = Op.getOperand(0);
9066   SDValue N1 = Op.getOperand(1);
9067   SDValue N2, N3;
9068 
9069   if (VT == MVT::v8i8) {
9070     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
9071     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
9072 
9073     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9074                      DAG.getIntPtrConstant(4, dl));
9075     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9076                      DAG.getIntPtrConstant(4, dl));
9077     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9078                      DAG.getIntPtrConstant(0, dl));
9079     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9080                      DAG.getIntPtrConstant(0, dl));
9081 
9082     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
9083     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
9084 
9085     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9086     N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9087 
9088     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
9089                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
9090                                      MVT::i32),
9091                      N0);
9092     return N0;
9093   }
9094 
9095   // v4i16 sdiv ... Convert to float.
9096   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
9097   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
9098   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
9099   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
9100   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
9101   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
9102 
9103   // Use reciprocal estimate and two refinement steps.
9104   // float4 recip = vrecpeq_f32(yf);
9105   // recip *= vrecpsq_f32(yf, recip);
9106   // recip *= vrecpsq_f32(yf, recip);
9107   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9108                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9109                    BN1);
9110   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9111                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9112                    BN1, N2);
9113   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9114   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9115                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9116                    BN1, N2);
9117   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9118   // Simply multiplying by the reciprocal estimate can leave us a few ulps
9119   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
9120   // and that it will never cause us to return an answer too large).
9121   // float4 result = as_float4(as_int4(xf*recip) + 2);
9122   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9123   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9124   N1 = DAG.getConstant(2, dl, MVT::v4i32);
9125   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9126   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9127   // Convert back to integer and return.
9128   // return vmovn_u32(vcvt_s32_f32(result));
9129   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9130   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9131   return N0;
9132 }
9133 
LowerADDSUBCARRY(SDValue Op,SelectionDAG & DAG)9134 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
9135   SDNode *N = Op.getNode();
9136   EVT VT = N->getValueType(0);
9137   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9138 
9139   SDValue Carry = Op.getOperand(2);
9140 
9141   SDLoc DL(Op);
9142 
9143   SDValue Result;
9144   if (Op.getOpcode() == ISD::ADDCARRY) {
9145     // This converts the boolean value carry into the carry flag.
9146     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9147 
9148     // Do the addition proper using the carry flag we wanted.
9149     Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
9150                          Op.getOperand(1), Carry);
9151 
9152     // Now convert the carry flag into a boolean value.
9153     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9154   } else {
9155     // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
9156     // have to invert the carry first.
9157     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9158                         DAG.getConstant(1, DL, MVT::i32), Carry);
9159     // This converts the boolean value carry into the carry flag.
9160     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9161 
9162     // Do the subtraction proper using the carry flag we wanted.
9163     Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
9164                          Op.getOperand(1), Carry);
9165 
9166     // Now convert the carry flag into a boolean value.
9167     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9168     // But the carry returned by ARMISD::SUBE is not a borrow as expected
9169     // by ISD::SUBCARRY, so compute 1 - C.
9170     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9171                         DAG.getConstant(1, DL, MVT::i32), Carry);
9172   }
9173 
9174   // Return both values.
9175   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
9176 }
9177 
LowerFSINCOS(SDValue Op,SelectionDAG & DAG) const9178 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
9179   assert(Subtarget->isTargetDarwin());
9180 
9181   // For iOS, we want to call an alternative entry point: __sincos_stret,
9182   // return values are passed via sret.
9183   SDLoc dl(Op);
9184   SDValue Arg = Op.getOperand(0);
9185   EVT ArgVT = Arg.getValueType();
9186   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9187   auto PtrVT = getPointerTy(DAG.getDataLayout());
9188 
9189   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9190   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9191 
9192   // Pair of floats / doubles used to pass the result.
9193   Type *RetTy = StructType::get(ArgTy, ArgTy);
9194   auto &DL = DAG.getDataLayout();
9195 
9196   ArgListTy Args;
9197   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
9198   SDValue SRet;
9199   if (ShouldUseSRet) {
9200     // Create stack object for sret.
9201     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
9202     const Align StackAlign = DL.getPrefTypeAlign(RetTy);
9203     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
9204     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
9205 
9206     ArgListEntry Entry;
9207     Entry.Node = SRet;
9208     Entry.Ty = RetTy->getPointerTo();
9209     Entry.IsSExt = false;
9210     Entry.IsZExt = false;
9211     Entry.IsSRet = true;
9212     Args.push_back(Entry);
9213     RetTy = Type::getVoidTy(*DAG.getContext());
9214   }
9215 
9216   ArgListEntry Entry;
9217   Entry.Node = Arg;
9218   Entry.Ty = ArgTy;
9219   Entry.IsSExt = false;
9220   Entry.IsZExt = false;
9221   Args.push_back(Entry);
9222 
9223   RTLIB::Libcall LC =
9224       (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
9225   const char *LibcallName = getLibcallName(LC);
9226   CallingConv::ID CC = getLibcallCallingConv(LC);
9227   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
9228 
9229   TargetLowering::CallLoweringInfo CLI(DAG);
9230   CLI.setDebugLoc(dl)
9231       .setChain(DAG.getEntryNode())
9232       .setCallee(CC, RetTy, Callee, std::move(Args))
9233       .setDiscardResult(ShouldUseSRet);
9234   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
9235 
9236   if (!ShouldUseSRet)
9237     return CallResult.first;
9238 
9239   SDValue LoadSin =
9240       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
9241 
9242   // Address of cos field.
9243   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
9244                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
9245   SDValue LoadCos =
9246       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
9247 
9248   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
9249   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
9250                      LoadSin.getValue(0), LoadCos.getValue(0));
9251 }
9252 
LowerWindowsDIVLibCall(SDValue Op,SelectionDAG & DAG,bool Signed,SDValue & Chain) const9253 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
9254                                                   bool Signed,
9255                                                   SDValue &Chain) const {
9256   EVT VT = Op.getValueType();
9257   assert((VT == MVT::i32 || VT == MVT::i64) &&
9258          "unexpected type for custom lowering DIV");
9259   SDLoc dl(Op);
9260 
9261   const auto &DL = DAG.getDataLayout();
9262   const auto &TLI = DAG.getTargetLoweringInfo();
9263 
9264   const char *Name = nullptr;
9265   if (Signed)
9266     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
9267   else
9268     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
9269 
9270   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
9271 
9272   ARMTargetLowering::ArgListTy Args;
9273 
9274   for (auto AI : {1, 0}) {
9275     ArgListEntry Arg;
9276     Arg.Node = Op.getOperand(AI);
9277     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
9278     Args.push_back(Arg);
9279   }
9280 
9281   CallLoweringInfo CLI(DAG);
9282   CLI.setDebugLoc(dl)
9283     .setChain(Chain)
9284     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
9285                ES, std::move(Args));
9286 
9287   return LowerCallTo(CLI).first;
9288 }
9289 
9290 // This is a code size optimisation: return the original SDIV node to
9291 // DAGCombiner when we don't want to expand SDIV into a sequence of
9292 // instructions, and an empty node otherwise which will cause the
9293 // SDIV to be expanded in DAGCombine.
9294 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const9295 ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
9296                                  SelectionDAG &DAG,
9297                                  SmallVectorImpl<SDNode *> &Created) const {
9298   // TODO: Support SREM
9299   if (N->getOpcode() != ISD::SDIV)
9300     return SDValue();
9301 
9302   const auto &ST = static_cast<const ARMSubtarget&>(DAG.getSubtarget());
9303   const bool MinSize = ST.hasMinSize();
9304   const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
9305                                       : ST.hasDivideInARMMode();
9306 
9307   // Don't touch vector types; rewriting this may lead to scalarizing
9308   // the int divs.
9309   if (N->getOperand(0).getValueType().isVector())
9310     return SDValue();
9311 
9312   // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
9313   // hwdiv support for this to be really profitable.
9314   if (!(MinSize && HasDivide))
9315     return SDValue();
9316 
9317   // ARM mode is a bit simpler than Thumb: we can handle large power
9318   // of 2 immediates with 1 mov instruction; no further checks required,
9319   // just return the sdiv node.
9320   if (!ST.isThumb())
9321     return SDValue(N, 0);
9322 
9323   // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
9324   // and thus lose the code size benefits of a MOVS that requires only 2.
9325   // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
9326   // but as it's doing exactly this, it's not worth the trouble to get TTI.
9327   if (Divisor.sgt(128))
9328     return SDValue();
9329 
9330   return SDValue(N, 0);
9331 }
9332 
LowerDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed) const9333 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
9334                                             bool Signed) const {
9335   assert(Op.getValueType() == MVT::i32 &&
9336          "unexpected type for custom lowering DIV");
9337   SDLoc dl(Op);
9338 
9339   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
9340                                DAG.getEntryNode(), Op.getOperand(1));
9341 
9342   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
9343 }
9344 
WinDBZCheckDenominator(SelectionDAG & DAG,SDNode * N,SDValue InChain)9345 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
9346   SDLoc DL(N);
9347   SDValue Op = N->getOperand(1);
9348   if (N->getValueType(0) == MVT::i32)
9349     return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
9350   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
9351                            DAG.getConstant(0, DL, MVT::i32));
9352   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
9353                            DAG.getConstant(1, DL, MVT::i32));
9354   return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
9355                      DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
9356 }
9357 
ExpandDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed,SmallVectorImpl<SDValue> & Results) const9358 void ARMTargetLowering::ExpandDIV_Windows(
9359     SDValue Op, SelectionDAG &DAG, bool Signed,
9360     SmallVectorImpl<SDValue> &Results) const {
9361   const auto &DL = DAG.getDataLayout();
9362   const auto &TLI = DAG.getTargetLoweringInfo();
9363 
9364   assert(Op.getValueType() == MVT::i64 &&
9365          "unexpected type for custom lowering DIV");
9366   SDLoc dl(Op);
9367 
9368   SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
9369 
9370   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
9371 
9372   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
9373   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
9374                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
9375   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
9376 
9377   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lower, Upper));
9378 }
9379 
LowerPredicateLoad(SDValue Op,SelectionDAG & DAG)9380 static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG) {
9381   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
9382   EVT MemVT = LD->getMemoryVT();
9383   assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
9384          "Expected a predicate type!");
9385   assert(MemVT == Op.getValueType());
9386   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
9387          "Expected a non-extending load");
9388   assert(LD->isUnindexed() && "Expected a unindexed load");
9389 
9390   // The basic MVE VLDR on a v4i1/v8i1 actually loads the entire 16bit
9391   // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
9392   // need to make sure that 8/4 bits are actually loaded into the correct
9393   // place, which means loading the value and then shuffling the values into
9394   // the bottom bits of the predicate.
9395   // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
9396   // for BE).
9397 
9398   SDLoc dl(Op);
9399   SDValue Load = DAG.getExtLoad(
9400       ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(),
9401       EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
9402       LD->getMemOperand());
9403   SDValue Pred = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Load);
9404   if (MemVT != MVT::v16i1)
9405     Pred = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Pred,
9406                        DAG.getConstant(0, dl, MVT::i32));
9407   return DAG.getMergeValues({Pred, Load.getValue(1)}, dl);
9408 }
9409 
LowerLOAD(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const9410 void ARMTargetLowering::LowerLOAD(SDNode *N, SmallVectorImpl<SDValue> &Results,
9411                                   SelectionDAG &DAG) const {
9412   LoadSDNode *LD = cast<LoadSDNode>(N);
9413   EVT MemVT = LD->getMemoryVT();
9414   assert(LD->isUnindexed() && "Loads should be unindexed at this point.");
9415 
9416   if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
9417       !Subtarget->isThumb1Only() && LD->isVolatile()) {
9418     SDLoc dl(N);
9419     SDValue Result = DAG.getMemIntrinsicNode(
9420         ARMISD::LDRD, dl, DAG.getVTList({MVT::i32, MVT::i32, MVT::Other}),
9421         {LD->getChain(), LD->getBasePtr()}, MemVT, LD->getMemOperand());
9422     SDValue Lo = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 0 : 1);
9423     SDValue Hi = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 1 : 0);
9424     SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
9425     Results.append({Pair, Result.getValue(2)});
9426   }
9427 }
9428 
LowerPredicateStore(SDValue Op,SelectionDAG & DAG)9429 static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG) {
9430   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
9431   EVT MemVT = ST->getMemoryVT();
9432   assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
9433          "Expected a predicate type!");
9434   assert(MemVT == ST->getValue().getValueType());
9435   assert(!ST->isTruncatingStore() && "Expected a non-extending store");
9436   assert(ST->isUnindexed() && "Expected a unindexed store");
9437 
9438   // Only store the v4i1 or v8i1 worth of bits, via a buildvector with top bits
9439   // unset and a scalar store.
9440   SDLoc dl(Op);
9441   SDValue Build = ST->getValue();
9442   if (MemVT != MVT::v16i1) {
9443     SmallVector<SDValue, 16> Ops;
9444     for (unsigned I = 0; I < MemVT.getVectorNumElements(); I++)
9445       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Build,
9446                                 DAG.getConstant(I, dl, MVT::i32)));
9447     for (unsigned I = MemVT.getVectorNumElements(); I < 16; I++)
9448       Ops.push_back(DAG.getUNDEF(MVT::i32));
9449     Build = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i1, Ops);
9450   }
9451   SDValue GRP = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Build);
9452   return DAG.getTruncStore(
9453       ST->getChain(), dl, GRP, ST->getBasePtr(),
9454       EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
9455       ST->getMemOperand());
9456 }
9457 
LowerSTORE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)9458 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG,
9459                           const ARMSubtarget *Subtarget) {
9460   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
9461   EVT MemVT = ST->getMemoryVT();
9462   assert(ST->isUnindexed() && "Stores should be unindexed at this point.");
9463 
9464   if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
9465       !Subtarget->isThumb1Only() && ST->isVolatile()) {
9466     SDNode *N = Op.getNode();
9467     SDLoc dl(N);
9468 
9469     SDValue Lo = DAG.getNode(
9470         ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
9471         DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 0 : 1, dl,
9472                               MVT::i32));
9473     SDValue Hi = DAG.getNode(
9474         ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
9475         DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 1 : 0, dl,
9476                               MVT::i32));
9477 
9478     return DAG.getMemIntrinsicNode(ARMISD::STRD, dl, DAG.getVTList(MVT::Other),
9479                                    {ST->getChain(), Lo, Hi, ST->getBasePtr()},
9480                                    MemVT, ST->getMemOperand());
9481   } else if (Subtarget->hasMVEIntegerOps() &&
9482              ((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
9483                MemVT == MVT::v16i1))) {
9484     return LowerPredicateStore(Op, DAG);
9485   }
9486 
9487   return SDValue();
9488 }
9489 
isZeroVector(SDValue N)9490 static bool isZeroVector(SDValue N) {
9491   return (ISD::isBuildVectorAllZeros(N.getNode()) ||
9492           (N->getOpcode() == ARMISD::VMOVIMM &&
9493            isNullConstant(N->getOperand(0))));
9494 }
9495 
LowerMLOAD(SDValue Op,SelectionDAG & DAG)9496 static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) {
9497   MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
9498   MVT VT = Op.getSimpleValueType();
9499   SDValue Mask = N->getMask();
9500   SDValue PassThru = N->getPassThru();
9501   SDLoc dl(Op);
9502 
9503   if (isZeroVector(PassThru))
9504     return Op;
9505 
9506   // MVE Masked loads use zero as the passthru value. Here we convert undef to
9507   // zero too, and other values are lowered to a select.
9508   SDValue ZeroVec = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
9509                                 DAG.getTargetConstant(0, dl, MVT::i32));
9510   SDValue NewLoad = DAG.getMaskedLoad(
9511       VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask, ZeroVec,
9512       N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(),
9513       N->getExtensionType(), N->isExpandingLoad());
9514   SDValue Combo = NewLoad;
9515   bool PassThruIsCastZero = (PassThru.getOpcode() == ISD::BITCAST ||
9516                              PassThru.getOpcode() == ARMISD::VECTOR_REG_CAST) &&
9517                             isZeroVector(PassThru->getOperand(0));
9518   if (!PassThru.isUndef() && !PassThruIsCastZero)
9519     Combo = DAG.getNode(ISD::VSELECT, dl, VT, Mask, NewLoad, PassThru);
9520   return DAG.getMergeValues({Combo, NewLoad.getValue(1)}, dl);
9521 }
9522 
LowerVecReduce(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)9523 static SDValue LowerVecReduce(SDValue Op, SelectionDAG &DAG,
9524                               const ARMSubtarget *ST) {
9525   if (!ST->hasMVEIntegerOps())
9526     return SDValue();
9527 
9528   SDLoc dl(Op);
9529   unsigned BaseOpcode = 0;
9530   switch (Op->getOpcode()) {
9531   default: llvm_unreachable("Expected VECREDUCE opcode");
9532   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
9533   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
9534   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
9535   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
9536   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
9537   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
9538   case ISD::VECREDUCE_FMAX: BaseOpcode = ISD::FMAXNUM; break;
9539   case ISD::VECREDUCE_FMIN: BaseOpcode = ISD::FMINNUM; break;
9540   }
9541 
9542   SDValue Op0 = Op->getOperand(0);
9543   EVT VT = Op0.getValueType();
9544   EVT EltVT = VT.getVectorElementType();
9545   unsigned NumElts = VT.getVectorNumElements();
9546   unsigned NumActiveLanes = NumElts;
9547 
9548   assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 ||
9549           NumActiveLanes == 2) &&
9550          "Only expected a power 2 vector size");
9551 
9552   // Use Mul(X, Rev(X)) until 4 items remain. Going down to 4 vector elements
9553   // allows us to easily extract vector elements from the lanes.
9554   while (NumActiveLanes > 4) {
9555     unsigned RevOpcode = NumActiveLanes == 16 ? ARMISD::VREV16 : ARMISD::VREV32;
9556     SDValue Rev = DAG.getNode(RevOpcode, dl, VT, Op0);
9557     Op0 = DAG.getNode(BaseOpcode, dl, VT, Op0, Rev);
9558     NumActiveLanes /= 2;
9559   }
9560 
9561   SDValue Res;
9562   if (NumActiveLanes == 4) {
9563     // The remaining 4 elements are summed sequentially
9564     SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9565                               DAG.getConstant(0 * NumElts / 4, dl, MVT::i32));
9566     SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9567                               DAG.getConstant(1 * NumElts / 4, dl, MVT::i32));
9568     SDValue Ext2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9569                               DAG.getConstant(2 * NumElts / 4, dl, MVT::i32));
9570     SDValue Ext3 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9571                               DAG.getConstant(3 * NumElts / 4, dl, MVT::i32));
9572     SDValue Res0 = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
9573     SDValue Res1 = DAG.getNode(BaseOpcode, dl, EltVT, Ext2, Ext3, Op->getFlags());
9574     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res0, Res1, Op->getFlags());
9575   } else {
9576     SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9577                               DAG.getConstant(0, dl, MVT::i32));
9578     SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9579                               DAG.getConstant(1, dl, MVT::i32));
9580     Res = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
9581   }
9582 
9583   // Result type may be wider than element type.
9584   if (EltVT != Op->getValueType(0))
9585     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Op->getValueType(0), Res);
9586   return Res;
9587 }
9588 
LowerVecReduceF(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)9589 static SDValue LowerVecReduceF(SDValue Op, SelectionDAG &DAG,
9590                                const ARMSubtarget *ST) {
9591   if (!ST->hasMVEFloatOps())
9592     return SDValue();
9593   return LowerVecReduce(Op, DAG, ST);
9594 }
9595 
LowerAtomicLoadStore(SDValue Op,SelectionDAG & DAG)9596 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
9597   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
9598     // Acquire/Release load/store is not legal for targets without a dmb or
9599     // equivalent available.
9600     return SDValue();
9601 
9602   // Monotonic load/store is legal for all targets.
9603   return Op;
9604 }
9605 
ReplaceREADCYCLECOUNTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,const ARMSubtarget * Subtarget)9606 static void ReplaceREADCYCLECOUNTER(SDNode *N,
9607                                     SmallVectorImpl<SDValue> &Results,
9608                                     SelectionDAG &DAG,
9609                                     const ARMSubtarget *Subtarget) {
9610   SDLoc DL(N);
9611   // Under Power Management extensions, the cycle-count is:
9612   //    mrc p15, #0, <Rt>, c9, c13, #0
9613   SDValue Ops[] = { N->getOperand(0), // Chain
9614                     DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
9615                     DAG.getTargetConstant(15, DL, MVT::i32),
9616                     DAG.getTargetConstant(0, DL, MVT::i32),
9617                     DAG.getTargetConstant(9, DL, MVT::i32),
9618                     DAG.getTargetConstant(13, DL, MVT::i32),
9619                     DAG.getTargetConstant(0, DL, MVT::i32)
9620   };
9621 
9622   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
9623                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
9624   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
9625                                 DAG.getConstant(0, DL, MVT::i32)));
9626   Results.push_back(Cycles32.getValue(1));
9627 }
9628 
createGPRPairNode(SelectionDAG & DAG,SDValue V)9629 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
9630   SDLoc dl(V.getNode());
9631   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
9632   SDValue VHi = DAG.getAnyExtOrTrunc(
9633       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
9634       dl, MVT::i32);
9635   bool isBigEndian = DAG.getDataLayout().isBigEndian();
9636   if (isBigEndian)
9637     std::swap (VLo, VHi);
9638   SDValue RegClass =
9639       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
9640   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
9641   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
9642   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
9643   return SDValue(
9644       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
9645 }
9646 
ReplaceCMP_SWAP_64Results(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)9647 static void ReplaceCMP_SWAP_64Results(SDNode *N,
9648                                        SmallVectorImpl<SDValue> & Results,
9649                                        SelectionDAG &DAG) {
9650   assert(N->getValueType(0) == MVT::i64 &&
9651          "AtomicCmpSwap on types less than 64 should be legal");
9652   SDValue Ops[] = {N->getOperand(1),
9653                    createGPRPairNode(DAG, N->getOperand(2)),
9654                    createGPRPairNode(DAG, N->getOperand(3)),
9655                    N->getOperand(0)};
9656   SDNode *CmpSwap = DAG.getMachineNode(
9657       ARM::CMP_SWAP_64, SDLoc(N),
9658       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
9659 
9660   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
9661   DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
9662 
9663   bool isBigEndian = DAG.getDataLayout().isBigEndian();
9664 
9665   SDValue Lo =
9666       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
9667                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
9668   SDValue Hi =
9669       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
9670                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
9671   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i64, Lo, Hi));
9672   Results.push_back(SDValue(CmpSwap, 2));
9673 }
9674 
LowerFSETCC(SDValue Op,SelectionDAG & DAG) const9675 SDValue ARMTargetLowering::LowerFSETCC(SDValue Op, SelectionDAG &DAG) const {
9676   SDLoc dl(Op);
9677   EVT VT = Op.getValueType();
9678   SDValue Chain = Op.getOperand(0);
9679   SDValue LHS = Op.getOperand(1);
9680   SDValue RHS = Op.getOperand(2);
9681   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
9682   bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
9683 
9684   // If we don't have instructions of this float type then soften to a libcall
9685   // and use SETCC instead.
9686   if (isUnsupportedFloatingType(LHS.getValueType())) {
9687     DAG.getTargetLoweringInfo().softenSetCCOperands(
9688       DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS, Chain, IsSignaling);
9689     if (!RHS.getNode()) {
9690       RHS = DAG.getConstant(0, dl, LHS.getValueType());
9691       CC = ISD::SETNE;
9692     }
9693     SDValue Result = DAG.getNode(ISD::SETCC, dl, VT, LHS, RHS,
9694                                  DAG.getCondCode(CC));
9695     return DAG.getMergeValues({Result, Chain}, dl);
9696   }
9697 
9698   ARMCC::CondCodes CondCode, CondCode2;
9699   FPCCToARMCC(CC, CondCode, CondCode2);
9700 
9701   // FIXME: Chain is not handled correctly here. Currently the FPSCR is implicit
9702   // in CMPFP and CMPFPE, but instead it should be made explicit by these
9703   // instructions using a chain instead of glue. This would also fix the problem
9704   // here (and also in LowerSELECT_CC) where we generate two comparisons when
9705   // CondCode2 != AL.
9706   SDValue True = DAG.getConstant(1, dl, VT);
9707   SDValue False =  DAG.getConstant(0, dl, VT);
9708   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
9709   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
9710   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
9711   SDValue Result = getCMOV(dl, VT, False, True, ARMcc, CCR, Cmp, DAG);
9712   if (CondCode2 != ARMCC::AL) {
9713     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
9714     Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
9715     Result = getCMOV(dl, VT, Result, True, ARMcc, CCR, Cmp, DAG);
9716   }
9717   return DAG.getMergeValues({Result, Chain}, dl);
9718 }
9719 
LowerOperation(SDValue Op,SelectionDAG & DAG) const9720 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9721   LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
9722   switch (Op.getOpcode()) {
9723   default: llvm_unreachable("Don't know how to custom lower this!");
9724   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
9725   case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
9726   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
9727   case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
9728   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
9729   case ISD::SELECT:        return LowerSELECT(Op, DAG);
9730   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
9731   case ISD::BRCOND:        return LowerBRCOND(Op, DAG);
9732   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
9733   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
9734   case ISD::VASTART:       return LowerVASTART(Op, DAG);
9735   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
9736   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
9737   case ISD::SINT_TO_FP:
9738   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
9739   case ISD::STRICT_FP_TO_SINT:
9740   case ISD::STRICT_FP_TO_UINT:
9741   case ISD::FP_TO_SINT:
9742   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
9743   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
9744   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
9745   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
9746   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
9747   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
9748   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
9749   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG, Subtarget);
9750   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
9751                                                                Subtarget);
9752   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
9753   case ISD::SHL:
9754   case ISD::SRL:
9755   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
9756   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
9757   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
9758   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
9759   case ISD::SRL_PARTS:
9760   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
9761   case ISD::CTTZ:
9762   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
9763   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
9764   case ISD::SETCC:         return LowerVSETCC(Op, DAG, Subtarget);
9765   case ISD::SETCCCARRY:    return LowerSETCCCARRY(Op, DAG);
9766   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
9767   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
9768   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
9769   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget);
9770   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
9771   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget);
9772   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget);
9773   case ISD::TRUNCATE:      return LowerTruncatei1(Op, DAG, Subtarget);
9774   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
9775   case ISD::MUL:           return LowerMUL(Op, DAG);
9776   case ISD::SDIV:
9777     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
9778       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
9779     return LowerSDIV(Op, DAG, Subtarget);
9780   case ISD::UDIV:
9781     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
9782       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
9783     return LowerUDIV(Op, DAG, Subtarget);
9784   case ISD::ADDCARRY:
9785   case ISD::SUBCARRY:      return LowerADDSUBCARRY(Op, DAG);
9786   case ISD::SADDO:
9787   case ISD::SSUBO:
9788     return LowerSignedALUO(Op, DAG);
9789   case ISD::UADDO:
9790   case ISD::USUBO:
9791     return LowerUnsignedALUO(Op, DAG);
9792   case ISD::SADDSAT:
9793   case ISD::SSUBSAT:
9794     return LowerSADDSUBSAT(Op, DAG, Subtarget);
9795   case ISD::LOAD:
9796     return LowerPredicateLoad(Op, DAG);
9797   case ISD::STORE:
9798     return LowerSTORE(Op, DAG, Subtarget);
9799   case ISD::MLOAD:
9800     return LowerMLOAD(Op, DAG);
9801   case ISD::VECREDUCE_MUL:
9802   case ISD::VECREDUCE_AND:
9803   case ISD::VECREDUCE_OR:
9804   case ISD::VECREDUCE_XOR:
9805     return LowerVecReduce(Op, DAG, Subtarget);
9806   case ISD::VECREDUCE_FADD:
9807   case ISD::VECREDUCE_FMUL:
9808   case ISD::VECREDUCE_FMIN:
9809   case ISD::VECREDUCE_FMAX:
9810     return LowerVecReduceF(Op, DAG, Subtarget);
9811   case ISD::ATOMIC_LOAD:
9812   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
9813   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
9814   case ISD::SDIVREM:
9815   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
9816   case ISD::DYNAMIC_STACKALLOC:
9817     if (Subtarget->isTargetWindows())
9818       return LowerDYNAMIC_STACKALLOC(Op, DAG);
9819     llvm_unreachable("Don't know how to custom lower this!");
9820   case ISD::STRICT_FP_ROUND:
9821   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
9822   case ISD::STRICT_FP_EXTEND:
9823   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
9824   case ISD::STRICT_FSETCC:
9825   case ISD::STRICT_FSETCCS: return LowerFSETCC(Op, DAG);
9826   case ARMISD::WIN__DBZCHK: return SDValue();
9827   }
9828 }
9829 
ReplaceLongIntrinsic(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)9830 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
9831                                  SelectionDAG &DAG) {
9832   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
9833   unsigned Opc = 0;
9834   if (IntNo == Intrinsic::arm_smlald)
9835     Opc = ARMISD::SMLALD;
9836   else if (IntNo == Intrinsic::arm_smlaldx)
9837     Opc = ARMISD::SMLALDX;
9838   else if (IntNo == Intrinsic::arm_smlsld)
9839     Opc = ARMISD::SMLSLD;
9840   else if (IntNo == Intrinsic::arm_smlsldx)
9841     Opc = ARMISD::SMLSLDX;
9842   else
9843     return;
9844 
9845   SDLoc dl(N);
9846   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9847                            N->getOperand(3),
9848                            DAG.getConstant(0, dl, MVT::i32));
9849   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9850                            N->getOperand(3),
9851                            DAG.getConstant(1, dl, MVT::i32));
9852 
9853   SDValue LongMul = DAG.getNode(Opc, dl,
9854                                 DAG.getVTList(MVT::i32, MVT::i32),
9855                                 N->getOperand(1), N->getOperand(2),
9856                                 Lo, Hi);
9857   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64,
9858                                 LongMul.getValue(0), LongMul.getValue(1)));
9859 }
9860 
9861 /// ReplaceNodeResults - Replace the results of node with an illegal result
9862 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const9863 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
9864                                            SmallVectorImpl<SDValue> &Results,
9865                                            SelectionDAG &DAG) const {
9866   SDValue Res;
9867   switch (N->getOpcode()) {
9868   default:
9869     llvm_unreachable("Don't know how to custom expand this!");
9870   case ISD::READ_REGISTER:
9871     ExpandREAD_REGISTER(N, Results, DAG);
9872     break;
9873   case ISD::BITCAST:
9874     Res = ExpandBITCAST(N, DAG, Subtarget);
9875     break;
9876   case ISD::SRL:
9877   case ISD::SRA:
9878   case ISD::SHL:
9879     Res = Expand64BitShift(N, DAG, Subtarget);
9880     break;
9881   case ISD::SREM:
9882   case ISD::UREM:
9883     Res = LowerREM(N, DAG);
9884     break;
9885   case ISD::SDIVREM:
9886   case ISD::UDIVREM:
9887     Res = LowerDivRem(SDValue(N, 0), DAG);
9888     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
9889     Results.push_back(Res.getValue(0));
9890     Results.push_back(Res.getValue(1));
9891     return;
9892   case ISD::SADDSAT:
9893   case ISD::SSUBSAT:
9894     Res = LowerSADDSUBSAT(SDValue(N, 0), DAG, Subtarget);
9895     break;
9896   case ISD::READCYCLECOUNTER:
9897     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
9898     return;
9899   case ISD::UDIV:
9900   case ISD::SDIV:
9901     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
9902     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
9903                              Results);
9904   case ISD::ATOMIC_CMP_SWAP:
9905     ReplaceCMP_SWAP_64Results(N, Results, DAG);
9906     return;
9907   case ISD::INTRINSIC_WO_CHAIN:
9908     return ReplaceLongIntrinsic(N, Results, DAG);
9909   case ISD::ABS:
9910      lowerABS(N, Results, DAG);
9911      return ;
9912   case ISD::LOAD:
9913     LowerLOAD(N, Results, DAG);
9914     break;
9915   }
9916   if (Res.getNode())
9917     Results.push_back(Res);
9918 }
9919 
9920 //===----------------------------------------------------------------------===//
9921 //                           ARM Scheduler Hooks
9922 //===----------------------------------------------------------------------===//
9923 
9924 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
9925 /// registers the function context.
SetupEntryBlockForSjLj(MachineInstr & MI,MachineBasicBlock * MBB,MachineBasicBlock * DispatchBB,int FI) const9926 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
9927                                                MachineBasicBlock *MBB,
9928                                                MachineBasicBlock *DispatchBB,
9929                                                int FI) const {
9930   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
9931          "ROPI/RWPI not currently supported with SjLj");
9932   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9933   DebugLoc dl = MI.getDebugLoc();
9934   MachineFunction *MF = MBB->getParent();
9935   MachineRegisterInfo *MRI = &MF->getRegInfo();
9936   MachineConstantPool *MCP = MF->getConstantPool();
9937   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
9938   const Function &F = MF->getFunction();
9939 
9940   bool isThumb = Subtarget->isThumb();
9941   bool isThumb2 = Subtarget->isThumb2();
9942 
9943   unsigned PCLabelId = AFI->createPICLabelUId();
9944   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
9945   ARMConstantPoolValue *CPV =
9946     ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
9947   unsigned CPI = MCP->getConstantPoolIndex(CPV, Align(4));
9948 
9949   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
9950                                            : &ARM::GPRRegClass;
9951 
9952   // Grab constant pool and fixed stack memory operands.
9953   MachineMemOperand *CPMMO =
9954       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
9955                                MachineMemOperand::MOLoad, 4, Align(4));
9956 
9957   MachineMemOperand *FIMMOSt =
9958       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
9959                                MachineMemOperand::MOStore, 4, Align(4));
9960 
9961   // Load the address of the dispatch MBB into the jump buffer.
9962   if (isThumb2) {
9963     // Incoming value: jbuf
9964     //   ldr.n  r5, LCPI1_1
9965     //   orr    r5, r5, #1
9966     //   add    r5, pc
9967     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
9968     Register NewVReg1 = MRI->createVirtualRegister(TRC);
9969     BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
9970         .addConstantPoolIndex(CPI)
9971         .addMemOperand(CPMMO)
9972         .add(predOps(ARMCC::AL));
9973     // Set the low bit because of thumb mode.
9974     Register NewVReg2 = MRI->createVirtualRegister(TRC);
9975     BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
9976         .addReg(NewVReg1, RegState::Kill)
9977         .addImm(0x01)
9978         .add(predOps(ARMCC::AL))
9979         .add(condCodeOp());
9980     Register NewVReg3 = MRI->createVirtualRegister(TRC);
9981     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
9982       .addReg(NewVReg2, RegState::Kill)
9983       .addImm(PCLabelId);
9984     BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
9985         .addReg(NewVReg3, RegState::Kill)
9986         .addFrameIndex(FI)
9987         .addImm(36) // &jbuf[1] :: pc
9988         .addMemOperand(FIMMOSt)
9989         .add(predOps(ARMCC::AL));
9990   } else if (isThumb) {
9991     // Incoming value: jbuf
9992     //   ldr.n  r1, LCPI1_4
9993     //   add    r1, pc
9994     //   mov    r2, #1
9995     //   orrs   r1, r2
9996     //   add    r2, $jbuf, #+4 ; &jbuf[1]
9997     //   str    r1, [r2]
9998     Register NewVReg1 = MRI->createVirtualRegister(TRC);
9999     BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
10000         .addConstantPoolIndex(CPI)
10001         .addMemOperand(CPMMO)
10002         .add(predOps(ARMCC::AL));
10003     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10004     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
10005       .addReg(NewVReg1, RegState::Kill)
10006       .addImm(PCLabelId);
10007     // Set the low bit because of thumb mode.
10008     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10009     BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
10010         .addReg(ARM::CPSR, RegState::Define)
10011         .addImm(1)
10012         .add(predOps(ARMCC::AL));
10013     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10014     BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
10015         .addReg(ARM::CPSR, RegState::Define)
10016         .addReg(NewVReg2, RegState::Kill)
10017         .addReg(NewVReg3, RegState::Kill)
10018         .add(predOps(ARMCC::AL));
10019     Register NewVReg5 = MRI->createVirtualRegister(TRC);
10020     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
10021             .addFrameIndex(FI)
10022             .addImm(36); // &jbuf[1] :: pc
10023     BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
10024         .addReg(NewVReg4, RegState::Kill)
10025         .addReg(NewVReg5, RegState::Kill)
10026         .addImm(0)
10027         .addMemOperand(FIMMOSt)
10028         .add(predOps(ARMCC::AL));
10029   } else {
10030     // Incoming value: jbuf
10031     //   ldr  r1, LCPI1_1
10032     //   add  r1, pc, r1
10033     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
10034     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10035     BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
10036         .addConstantPoolIndex(CPI)
10037         .addImm(0)
10038         .addMemOperand(CPMMO)
10039         .add(predOps(ARMCC::AL));
10040     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10041     BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
10042         .addReg(NewVReg1, RegState::Kill)
10043         .addImm(PCLabelId)
10044         .add(predOps(ARMCC::AL));
10045     BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
10046         .addReg(NewVReg2, RegState::Kill)
10047         .addFrameIndex(FI)
10048         .addImm(36) // &jbuf[1] :: pc
10049         .addMemOperand(FIMMOSt)
10050         .add(predOps(ARMCC::AL));
10051   }
10052 }
10053 
EmitSjLjDispatchBlock(MachineInstr & MI,MachineBasicBlock * MBB) const10054 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
10055                                               MachineBasicBlock *MBB) const {
10056   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10057   DebugLoc dl = MI.getDebugLoc();
10058   MachineFunction *MF = MBB->getParent();
10059   MachineRegisterInfo *MRI = &MF->getRegInfo();
10060   MachineFrameInfo &MFI = MF->getFrameInfo();
10061   int FI = MFI.getFunctionContextIndex();
10062 
10063   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
10064                                                         : &ARM::GPRnopcRegClass;
10065 
10066   // Get a mapping of the call site numbers to all of the landing pads they're
10067   // associated with.
10068   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
10069   unsigned MaxCSNum = 0;
10070   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
10071        ++BB) {
10072     if (!BB->isEHPad()) continue;
10073 
10074     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
10075     // pad.
10076     for (MachineBasicBlock::iterator
10077            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
10078       if (!II->isEHLabel()) continue;
10079 
10080       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
10081       if (!MF->hasCallSiteLandingPad(Sym)) continue;
10082 
10083       SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
10084       for (SmallVectorImpl<unsigned>::iterator
10085              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
10086            CSI != CSE; ++CSI) {
10087         CallSiteNumToLPad[*CSI].push_back(&*BB);
10088         MaxCSNum = std::max(MaxCSNum, *CSI);
10089       }
10090       break;
10091     }
10092   }
10093 
10094   // Get an ordered list of the machine basic blocks for the jump table.
10095   std::vector<MachineBasicBlock*> LPadList;
10096   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
10097   LPadList.reserve(CallSiteNumToLPad.size());
10098   for (unsigned I = 1; I <= MaxCSNum; ++I) {
10099     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
10100     for (SmallVectorImpl<MachineBasicBlock*>::iterator
10101            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
10102       LPadList.push_back(*II);
10103       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
10104     }
10105   }
10106 
10107   assert(!LPadList.empty() &&
10108          "No landing pad destinations for the dispatch jump table!");
10109 
10110   // Create the jump table and associated information.
10111   MachineJumpTableInfo *JTI =
10112     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
10113   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
10114 
10115   // Create the MBBs for the dispatch code.
10116 
10117   // Shove the dispatch's address into the return slot in the function context.
10118   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
10119   DispatchBB->setIsEHPad();
10120 
10121   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
10122   unsigned trap_opcode;
10123   if (Subtarget->isThumb())
10124     trap_opcode = ARM::tTRAP;
10125   else
10126     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
10127 
10128   BuildMI(TrapBB, dl, TII->get(trap_opcode));
10129   DispatchBB->addSuccessor(TrapBB);
10130 
10131   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
10132   DispatchBB->addSuccessor(DispContBB);
10133 
10134   // Insert and MBBs.
10135   MF->insert(MF->end(), DispatchBB);
10136   MF->insert(MF->end(), DispContBB);
10137   MF->insert(MF->end(), TrapBB);
10138 
10139   // Insert code into the entry block that creates and registers the function
10140   // context.
10141   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
10142 
10143   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
10144       MachinePointerInfo::getFixedStack(*MF, FI),
10145       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, Align(4));
10146 
10147   MachineInstrBuilder MIB;
10148   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
10149 
10150   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
10151   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
10152 
10153   // Add a register mask with no preserved registers.  This results in all
10154   // registers being marked as clobbered. This can't work if the dispatch block
10155   // is in a Thumb1 function and is linked with ARM code which uses the FP
10156   // registers, as there is no way to preserve the FP registers in Thumb1 mode.
10157   MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
10158 
10159   bool IsPositionIndependent = isPositionIndependent();
10160   unsigned NumLPads = LPadList.size();
10161   if (Subtarget->isThumb2()) {
10162     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10163     BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
10164         .addFrameIndex(FI)
10165         .addImm(4)
10166         .addMemOperand(FIMMOLd)
10167         .add(predOps(ARMCC::AL));
10168 
10169     if (NumLPads < 256) {
10170       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
10171           .addReg(NewVReg1)
10172           .addImm(LPadList.size())
10173           .add(predOps(ARMCC::AL));
10174     } else {
10175       Register VReg1 = MRI->createVirtualRegister(TRC);
10176       BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
10177           .addImm(NumLPads & 0xFFFF)
10178           .add(predOps(ARMCC::AL));
10179 
10180       unsigned VReg2 = VReg1;
10181       if ((NumLPads & 0xFFFF0000) != 0) {
10182         VReg2 = MRI->createVirtualRegister(TRC);
10183         BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
10184             .addReg(VReg1)
10185             .addImm(NumLPads >> 16)
10186             .add(predOps(ARMCC::AL));
10187       }
10188 
10189       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
10190           .addReg(NewVReg1)
10191           .addReg(VReg2)
10192           .add(predOps(ARMCC::AL));
10193     }
10194 
10195     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
10196       .addMBB(TrapBB)
10197       .addImm(ARMCC::HI)
10198       .addReg(ARM::CPSR);
10199 
10200     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10201     BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
10202         .addJumpTableIndex(MJTI)
10203         .add(predOps(ARMCC::AL));
10204 
10205     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10206     BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
10207         .addReg(NewVReg3, RegState::Kill)
10208         .addReg(NewVReg1)
10209         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
10210         .add(predOps(ARMCC::AL))
10211         .add(condCodeOp());
10212 
10213     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
10214       .addReg(NewVReg4, RegState::Kill)
10215       .addReg(NewVReg1)
10216       .addJumpTableIndex(MJTI);
10217   } else if (Subtarget->isThumb()) {
10218     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10219     BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
10220         .addFrameIndex(FI)
10221         .addImm(1)
10222         .addMemOperand(FIMMOLd)
10223         .add(predOps(ARMCC::AL));
10224 
10225     if (NumLPads < 256) {
10226       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
10227           .addReg(NewVReg1)
10228           .addImm(NumLPads)
10229           .add(predOps(ARMCC::AL));
10230     } else {
10231       MachineConstantPool *ConstantPool = MF->getConstantPool();
10232       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
10233       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
10234 
10235       // MachineConstantPool wants an explicit alignment.
10236       Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
10237       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
10238 
10239       Register VReg1 = MRI->createVirtualRegister(TRC);
10240       BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
10241           .addReg(VReg1, RegState::Define)
10242           .addConstantPoolIndex(Idx)
10243           .add(predOps(ARMCC::AL));
10244       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
10245           .addReg(NewVReg1)
10246           .addReg(VReg1)
10247           .add(predOps(ARMCC::AL));
10248     }
10249 
10250     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
10251       .addMBB(TrapBB)
10252       .addImm(ARMCC::HI)
10253       .addReg(ARM::CPSR);
10254 
10255     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10256     BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
10257         .addReg(ARM::CPSR, RegState::Define)
10258         .addReg(NewVReg1)
10259         .addImm(2)
10260         .add(predOps(ARMCC::AL));
10261 
10262     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10263     BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
10264         .addJumpTableIndex(MJTI)
10265         .add(predOps(ARMCC::AL));
10266 
10267     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10268     BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
10269         .addReg(ARM::CPSR, RegState::Define)
10270         .addReg(NewVReg2, RegState::Kill)
10271         .addReg(NewVReg3)
10272         .add(predOps(ARMCC::AL));
10273 
10274     MachineMemOperand *JTMMOLd =
10275         MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
10276                                  MachineMemOperand::MOLoad, 4, Align(4));
10277 
10278     Register NewVReg5 = MRI->createVirtualRegister(TRC);
10279     BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
10280         .addReg(NewVReg4, RegState::Kill)
10281         .addImm(0)
10282         .addMemOperand(JTMMOLd)
10283         .add(predOps(ARMCC::AL));
10284 
10285     unsigned NewVReg6 = NewVReg5;
10286     if (IsPositionIndependent) {
10287       NewVReg6 = MRI->createVirtualRegister(TRC);
10288       BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
10289           .addReg(ARM::CPSR, RegState::Define)
10290           .addReg(NewVReg5, RegState::Kill)
10291           .addReg(NewVReg3)
10292           .add(predOps(ARMCC::AL));
10293     }
10294 
10295     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
10296       .addReg(NewVReg6, RegState::Kill)
10297       .addJumpTableIndex(MJTI);
10298   } else {
10299     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10300     BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
10301         .addFrameIndex(FI)
10302         .addImm(4)
10303         .addMemOperand(FIMMOLd)
10304         .add(predOps(ARMCC::AL));
10305 
10306     if (NumLPads < 256) {
10307       BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
10308           .addReg(NewVReg1)
10309           .addImm(NumLPads)
10310           .add(predOps(ARMCC::AL));
10311     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
10312       Register VReg1 = MRI->createVirtualRegister(TRC);
10313       BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
10314           .addImm(NumLPads & 0xFFFF)
10315           .add(predOps(ARMCC::AL));
10316 
10317       unsigned VReg2 = VReg1;
10318       if ((NumLPads & 0xFFFF0000) != 0) {
10319         VReg2 = MRI->createVirtualRegister(TRC);
10320         BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
10321             .addReg(VReg1)
10322             .addImm(NumLPads >> 16)
10323             .add(predOps(ARMCC::AL));
10324       }
10325 
10326       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
10327           .addReg(NewVReg1)
10328           .addReg(VReg2)
10329           .add(predOps(ARMCC::AL));
10330     } else {
10331       MachineConstantPool *ConstantPool = MF->getConstantPool();
10332       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
10333       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
10334 
10335       // MachineConstantPool wants an explicit alignment.
10336       Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
10337       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
10338 
10339       Register VReg1 = MRI->createVirtualRegister(TRC);
10340       BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
10341           .addReg(VReg1, RegState::Define)
10342           .addConstantPoolIndex(Idx)
10343           .addImm(0)
10344           .add(predOps(ARMCC::AL));
10345       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
10346           .addReg(NewVReg1)
10347           .addReg(VReg1, RegState::Kill)
10348           .add(predOps(ARMCC::AL));
10349     }
10350 
10351     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
10352       .addMBB(TrapBB)
10353       .addImm(ARMCC::HI)
10354       .addReg(ARM::CPSR);
10355 
10356     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10357     BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
10358         .addReg(NewVReg1)
10359         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
10360         .add(predOps(ARMCC::AL))
10361         .add(condCodeOp());
10362     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10363     BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
10364         .addJumpTableIndex(MJTI)
10365         .add(predOps(ARMCC::AL));
10366 
10367     MachineMemOperand *JTMMOLd =
10368         MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
10369                                  MachineMemOperand::MOLoad, 4, Align(4));
10370     Register NewVReg5 = MRI->createVirtualRegister(TRC);
10371     BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
10372         .addReg(NewVReg3, RegState::Kill)
10373         .addReg(NewVReg4)
10374         .addImm(0)
10375         .addMemOperand(JTMMOLd)
10376         .add(predOps(ARMCC::AL));
10377 
10378     if (IsPositionIndependent) {
10379       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
10380         .addReg(NewVReg5, RegState::Kill)
10381         .addReg(NewVReg4)
10382         .addJumpTableIndex(MJTI);
10383     } else {
10384       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
10385         .addReg(NewVReg5, RegState::Kill)
10386         .addJumpTableIndex(MJTI);
10387     }
10388   }
10389 
10390   // Add the jump table entries as successors to the MBB.
10391   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
10392   for (std::vector<MachineBasicBlock*>::iterator
10393          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
10394     MachineBasicBlock *CurMBB = *I;
10395     if (SeenMBBs.insert(CurMBB).second)
10396       DispContBB->addSuccessor(CurMBB);
10397   }
10398 
10399   // N.B. the order the invoke BBs are processed in doesn't matter here.
10400   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
10401   SmallVector<MachineBasicBlock*, 64> MBBLPads;
10402   for (MachineBasicBlock *BB : InvokeBBs) {
10403 
10404     // Remove the landing pad successor from the invoke block and replace it
10405     // with the new dispatch block.
10406     SmallVector<MachineBasicBlock*, 4> Successors(BB->successors());
10407     while (!Successors.empty()) {
10408       MachineBasicBlock *SMBB = Successors.pop_back_val();
10409       if (SMBB->isEHPad()) {
10410         BB->removeSuccessor(SMBB);
10411         MBBLPads.push_back(SMBB);
10412       }
10413     }
10414 
10415     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
10416     BB->normalizeSuccProbs();
10417 
10418     // Find the invoke call and mark all of the callee-saved registers as
10419     // 'implicit defined' so that they're spilled. This prevents code from
10420     // moving instructions to before the EH block, where they will never be
10421     // executed.
10422     for (MachineBasicBlock::reverse_iterator
10423            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
10424       if (!II->isCall()) continue;
10425 
10426       DenseMap<unsigned, bool> DefRegs;
10427       for (MachineInstr::mop_iterator
10428              OI = II->operands_begin(), OE = II->operands_end();
10429            OI != OE; ++OI) {
10430         if (!OI->isReg()) continue;
10431         DefRegs[OI->getReg()] = true;
10432       }
10433 
10434       MachineInstrBuilder MIB(*MF, &*II);
10435 
10436       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
10437         unsigned Reg = SavedRegs[i];
10438         if (Subtarget->isThumb2() &&
10439             !ARM::tGPRRegClass.contains(Reg) &&
10440             !ARM::hGPRRegClass.contains(Reg))
10441           continue;
10442         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
10443           continue;
10444         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
10445           continue;
10446         if (!DefRegs[Reg])
10447           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
10448       }
10449 
10450       break;
10451     }
10452   }
10453 
10454   // Mark all former landing pads as non-landing pads. The dispatch is the only
10455   // landing pad now.
10456   for (SmallVectorImpl<MachineBasicBlock*>::iterator
10457          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
10458     (*I)->setIsEHPad(false);
10459 
10460   // The instruction is gone now.
10461   MI.eraseFromParent();
10462 }
10463 
10464 static
OtherSucc(MachineBasicBlock * MBB,MachineBasicBlock * Succ)10465 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
10466   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
10467        E = MBB->succ_end(); I != E; ++I)
10468     if (*I != Succ)
10469       return *I;
10470   llvm_unreachable("Expecting a BB with two successors!");
10471 }
10472 
10473 /// Return the load opcode for a given load size. If load size >= 8,
10474 /// neon opcode will be returned.
getLdOpcode(unsigned LdSize,bool IsThumb1,bool IsThumb2)10475 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
10476   if (LdSize >= 8)
10477     return LdSize == 16 ? ARM::VLD1q32wb_fixed
10478                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
10479   if (IsThumb1)
10480     return LdSize == 4 ? ARM::tLDRi
10481                        : LdSize == 2 ? ARM::tLDRHi
10482                                      : LdSize == 1 ? ARM::tLDRBi : 0;
10483   if (IsThumb2)
10484     return LdSize == 4 ? ARM::t2LDR_POST
10485                        : LdSize == 2 ? ARM::t2LDRH_POST
10486                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
10487   return LdSize == 4 ? ARM::LDR_POST_IMM
10488                      : LdSize == 2 ? ARM::LDRH_POST
10489                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
10490 }
10491 
10492 /// Return the store opcode for a given store size. If store size >= 8,
10493 /// neon opcode will be returned.
getStOpcode(unsigned StSize,bool IsThumb1,bool IsThumb2)10494 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
10495   if (StSize >= 8)
10496     return StSize == 16 ? ARM::VST1q32wb_fixed
10497                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
10498   if (IsThumb1)
10499     return StSize == 4 ? ARM::tSTRi
10500                        : StSize == 2 ? ARM::tSTRHi
10501                                      : StSize == 1 ? ARM::tSTRBi : 0;
10502   if (IsThumb2)
10503     return StSize == 4 ? ARM::t2STR_POST
10504                        : StSize == 2 ? ARM::t2STRH_POST
10505                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
10506   return StSize == 4 ? ARM::STR_POST_IMM
10507                      : StSize == 2 ? ARM::STRH_POST
10508                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
10509 }
10510 
10511 /// Emit a post-increment load operation with given size. The instructions
10512 /// will be added to BB at Pos.
emitPostLd(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned LdSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)10513 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
10514                        const TargetInstrInfo *TII, const DebugLoc &dl,
10515                        unsigned LdSize, unsigned Data, unsigned AddrIn,
10516                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
10517   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
10518   assert(LdOpc != 0 && "Should have a load opcode");
10519   if (LdSize >= 8) {
10520     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10521         .addReg(AddrOut, RegState::Define)
10522         .addReg(AddrIn)
10523         .addImm(0)
10524         .add(predOps(ARMCC::AL));
10525   } else if (IsThumb1) {
10526     // load + update AddrIn
10527     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10528         .addReg(AddrIn)
10529         .addImm(0)
10530         .add(predOps(ARMCC::AL));
10531     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
10532         .add(t1CondCodeOp())
10533         .addReg(AddrIn)
10534         .addImm(LdSize)
10535         .add(predOps(ARMCC::AL));
10536   } else if (IsThumb2) {
10537     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10538         .addReg(AddrOut, RegState::Define)
10539         .addReg(AddrIn)
10540         .addImm(LdSize)
10541         .add(predOps(ARMCC::AL));
10542   } else { // arm
10543     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10544         .addReg(AddrOut, RegState::Define)
10545         .addReg(AddrIn)
10546         .addReg(0)
10547         .addImm(LdSize)
10548         .add(predOps(ARMCC::AL));
10549   }
10550 }
10551 
10552 /// Emit a post-increment store operation with given size. The instructions
10553 /// will be added to BB at Pos.
emitPostSt(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned StSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)10554 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
10555                        const TargetInstrInfo *TII, const DebugLoc &dl,
10556                        unsigned StSize, unsigned Data, unsigned AddrIn,
10557                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
10558   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
10559   assert(StOpc != 0 && "Should have a store opcode");
10560   if (StSize >= 8) {
10561     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
10562         .addReg(AddrIn)
10563         .addImm(0)
10564         .addReg(Data)
10565         .add(predOps(ARMCC::AL));
10566   } else if (IsThumb1) {
10567     // store + update AddrIn
10568     BuildMI(*BB, Pos, dl, TII->get(StOpc))
10569         .addReg(Data)
10570         .addReg(AddrIn)
10571         .addImm(0)
10572         .add(predOps(ARMCC::AL));
10573     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
10574         .add(t1CondCodeOp())
10575         .addReg(AddrIn)
10576         .addImm(StSize)
10577         .add(predOps(ARMCC::AL));
10578   } else if (IsThumb2) {
10579     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
10580         .addReg(Data)
10581         .addReg(AddrIn)
10582         .addImm(StSize)
10583         .add(predOps(ARMCC::AL));
10584   } else { // arm
10585     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
10586         .addReg(Data)
10587         .addReg(AddrIn)
10588         .addReg(0)
10589         .addImm(StSize)
10590         .add(predOps(ARMCC::AL));
10591   }
10592 }
10593 
10594 MachineBasicBlock *
EmitStructByval(MachineInstr & MI,MachineBasicBlock * BB) const10595 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
10596                                    MachineBasicBlock *BB) const {
10597   // This pseudo instruction has 3 operands: dst, src, size
10598   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
10599   // Otherwise, we will generate unrolled scalar copies.
10600   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10601   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10602   MachineFunction::iterator It = ++BB->getIterator();
10603 
10604   Register dest = MI.getOperand(0).getReg();
10605   Register src = MI.getOperand(1).getReg();
10606   unsigned SizeVal = MI.getOperand(2).getImm();
10607   unsigned Alignment = MI.getOperand(3).getImm();
10608   DebugLoc dl = MI.getDebugLoc();
10609 
10610   MachineFunction *MF = BB->getParent();
10611   MachineRegisterInfo &MRI = MF->getRegInfo();
10612   unsigned UnitSize = 0;
10613   const TargetRegisterClass *TRC = nullptr;
10614   const TargetRegisterClass *VecTRC = nullptr;
10615 
10616   bool IsThumb1 = Subtarget->isThumb1Only();
10617   bool IsThumb2 = Subtarget->isThumb2();
10618   bool IsThumb = Subtarget->isThumb();
10619 
10620   if (Alignment & 1) {
10621     UnitSize = 1;
10622   } else if (Alignment & 2) {
10623     UnitSize = 2;
10624   } else {
10625     // Check whether we can use NEON instructions.
10626     if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
10627         Subtarget->hasNEON()) {
10628       if ((Alignment % 16 == 0) && SizeVal >= 16)
10629         UnitSize = 16;
10630       else if ((Alignment % 8 == 0) && SizeVal >= 8)
10631         UnitSize = 8;
10632     }
10633     // Can't use NEON instructions.
10634     if (UnitSize == 0)
10635       UnitSize = 4;
10636   }
10637 
10638   // Select the correct opcode and register class for unit size load/store
10639   bool IsNeon = UnitSize >= 8;
10640   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
10641   if (IsNeon)
10642     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
10643                             : UnitSize == 8 ? &ARM::DPRRegClass
10644                                             : nullptr;
10645 
10646   unsigned BytesLeft = SizeVal % UnitSize;
10647   unsigned LoopSize = SizeVal - BytesLeft;
10648 
10649   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
10650     // Use LDR and STR to copy.
10651     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
10652     // [destOut] = STR_POST(scratch, destIn, UnitSize)
10653     unsigned srcIn = src;
10654     unsigned destIn = dest;
10655     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
10656       Register srcOut = MRI.createVirtualRegister(TRC);
10657       Register destOut = MRI.createVirtualRegister(TRC);
10658       Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
10659       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
10660                  IsThumb1, IsThumb2);
10661       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
10662                  IsThumb1, IsThumb2);
10663       srcIn = srcOut;
10664       destIn = destOut;
10665     }
10666 
10667     // Handle the leftover bytes with LDRB and STRB.
10668     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
10669     // [destOut] = STRB_POST(scratch, destIn, 1)
10670     for (unsigned i = 0; i < BytesLeft; i++) {
10671       Register srcOut = MRI.createVirtualRegister(TRC);
10672       Register destOut = MRI.createVirtualRegister(TRC);
10673       Register scratch = MRI.createVirtualRegister(TRC);
10674       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
10675                  IsThumb1, IsThumb2);
10676       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
10677                  IsThumb1, IsThumb2);
10678       srcIn = srcOut;
10679       destIn = destOut;
10680     }
10681     MI.eraseFromParent(); // The instruction is gone now.
10682     return BB;
10683   }
10684 
10685   // Expand the pseudo op to a loop.
10686   // thisMBB:
10687   //   ...
10688   //   movw varEnd, # --> with thumb2
10689   //   movt varEnd, #
10690   //   ldrcp varEnd, idx --> without thumb2
10691   //   fallthrough --> loopMBB
10692   // loopMBB:
10693   //   PHI varPhi, varEnd, varLoop
10694   //   PHI srcPhi, src, srcLoop
10695   //   PHI destPhi, dst, destLoop
10696   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10697   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
10698   //   subs varLoop, varPhi, #UnitSize
10699   //   bne loopMBB
10700   //   fallthrough --> exitMBB
10701   // exitMBB:
10702   //   epilogue to handle left-over bytes
10703   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10704   //   [destOut] = STRB_POST(scratch, destLoop, 1)
10705   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10706   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10707   MF->insert(It, loopMBB);
10708   MF->insert(It, exitMBB);
10709 
10710   // Transfer the remainder of BB and its successor edges to exitMBB.
10711   exitMBB->splice(exitMBB->begin(), BB,
10712                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10713   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10714 
10715   // Load an immediate to varEnd.
10716   Register varEnd = MRI.createVirtualRegister(TRC);
10717   if (Subtarget->useMovt()) {
10718     unsigned Vtmp = varEnd;
10719     if ((LoopSize & 0xFFFF0000) != 0)
10720       Vtmp = MRI.createVirtualRegister(TRC);
10721     BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
10722         .addImm(LoopSize & 0xFFFF)
10723         .add(predOps(ARMCC::AL));
10724 
10725     if ((LoopSize & 0xFFFF0000) != 0)
10726       BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
10727           .addReg(Vtmp)
10728           .addImm(LoopSize >> 16)
10729           .add(predOps(ARMCC::AL));
10730   } else {
10731     MachineConstantPool *ConstantPool = MF->getConstantPool();
10732     Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
10733     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
10734 
10735     // MachineConstantPool wants an explicit alignment.
10736     Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
10737     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
10738     MachineMemOperand *CPMMO =
10739         MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
10740                                  MachineMemOperand::MOLoad, 4, Align(4));
10741 
10742     if (IsThumb)
10743       BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
10744           .addReg(varEnd, RegState::Define)
10745           .addConstantPoolIndex(Idx)
10746           .add(predOps(ARMCC::AL))
10747           .addMemOperand(CPMMO);
10748     else
10749       BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
10750           .addReg(varEnd, RegState::Define)
10751           .addConstantPoolIndex(Idx)
10752           .addImm(0)
10753           .add(predOps(ARMCC::AL))
10754           .addMemOperand(CPMMO);
10755   }
10756   BB->addSuccessor(loopMBB);
10757 
10758   // Generate the loop body:
10759   //   varPhi = PHI(varLoop, varEnd)
10760   //   srcPhi = PHI(srcLoop, src)
10761   //   destPhi = PHI(destLoop, dst)
10762   MachineBasicBlock *entryBB = BB;
10763   BB = loopMBB;
10764   Register varLoop = MRI.createVirtualRegister(TRC);
10765   Register varPhi = MRI.createVirtualRegister(TRC);
10766   Register srcLoop = MRI.createVirtualRegister(TRC);
10767   Register srcPhi = MRI.createVirtualRegister(TRC);
10768   Register destLoop = MRI.createVirtualRegister(TRC);
10769   Register destPhi = MRI.createVirtualRegister(TRC);
10770 
10771   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
10772     .addReg(varLoop).addMBB(loopMBB)
10773     .addReg(varEnd).addMBB(entryBB);
10774   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
10775     .addReg(srcLoop).addMBB(loopMBB)
10776     .addReg(src).addMBB(entryBB);
10777   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
10778     .addReg(destLoop).addMBB(loopMBB)
10779     .addReg(dest).addMBB(entryBB);
10780 
10781   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10782   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
10783   Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
10784   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
10785              IsThumb1, IsThumb2);
10786   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
10787              IsThumb1, IsThumb2);
10788 
10789   // Decrement loop variable by UnitSize.
10790   if (IsThumb1) {
10791     BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
10792         .add(t1CondCodeOp())
10793         .addReg(varPhi)
10794         .addImm(UnitSize)
10795         .add(predOps(ARMCC::AL));
10796   } else {
10797     MachineInstrBuilder MIB =
10798         BuildMI(*BB, BB->end(), dl,
10799                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
10800     MIB.addReg(varPhi)
10801         .addImm(UnitSize)
10802         .add(predOps(ARMCC::AL))
10803         .add(condCodeOp());
10804     MIB->getOperand(5).setReg(ARM::CPSR);
10805     MIB->getOperand(5).setIsDef(true);
10806   }
10807   BuildMI(*BB, BB->end(), dl,
10808           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
10809       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
10810 
10811   // loopMBB can loop back to loopMBB or fall through to exitMBB.
10812   BB->addSuccessor(loopMBB);
10813   BB->addSuccessor(exitMBB);
10814 
10815   // Add epilogue to handle BytesLeft.
10816   BB = exitMBB;
10817   auto StartOfExit = exitMBB->begin();
10818 
10819   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10820   //   [destOut] = STRB_POST(scratch, destLoop, 1)
10821   unsigned srcIn = srcLoop;
10822   unsigned destIn = destLoop;
10823   for (unsigned i = 0; i < BytesLeft; i++) {
10824     Register srcOut = MRI.createVirtualRegister(TRC);
10825     Register destOut = MRI.createVirtualRegister(TRC);
10826     Register scratch = MRI.createVirtualRegister(TRC);
10827     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
10828                IsThumb1, IsThumb2);
10829     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
10830                IsThumb1, IsThumb2);
10831     srcIn = srcOut;
10832     destIn = destOut;
10833   }
10834 
10835   MI.eraseFromParent(); // The instruction is gone now.
10836   return BB;
10837 }
10838 
10839 MachineBasicBlock *
EmitLowered__chkstk(MachineInstr & MI,MachineBasicBlock * MBB) const10840 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
10841                                        MachineBasicBlock *MBB) const {
10842   const TargetMachine &TM = getTargetMachine();
10843   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
10844   DebugLoc DL = MI.getDebugLoc();
10845 
10846   assert(Subtarget->isTargetWindows() &&
10847          "__chkstk is only supported on Windows");
10848   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
10849 
10850   // __chkstk takes the number of words to allocate on the stack in R4, and
10851   // returns the stack adjustment in number of bytes in R4.  This will not
10852   // clober any other registers (other than the obvious lr).
10853   //
10854   // Although, technically, IP should be considered a register which may be
10855   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
10856   // thumb-2 environment, so there is no interworking required.  As a result, we
10857   // do not expect a veneer to be emitted by the linker, clobbering IP.
10858   //
10859   // Each module receives its own copy of __chkstk, so no import thunk is
10860   // required, again, ensuring that IP is not clobbered.
10861   //
10862   // Finally, although some linkers may theoretically provide a trampoline for
10863   // out of range calls (which is quite common due to a 32M range limitation of
10864   // branches for Thumb), we can generate the long-call version via
10865   // -mcmodel=large, alleviating the need for the trampoline which may clobber
10866   // IP.
10867 
10868   switch (TM.getCodeModel()) {
10869   case CodeModel::Tiny:
10870     llvm_unreachable("Tiny code model not available on ARM.");
10871   case CodeModel::Small:
10872   case CodeModel::Medium:
10873   case CodeModel::Kernel:
10874     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
10875         .add(predOps(ARMCC::AL))
10876         .addExternalSymbol("__chkstk")
10877         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
10878         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
10879         .addReg(ARM::R12,
10880                 RegState::Implicit | RegState::Define | RegState::Dead)
10881         .addReg(ARM::CPSR,
10882                 RegState::Implicit | RegState::Define | RegState::Dead);
10883     break;
10884   case CodeModel::Large: {
10885     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10886     Register Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
10887 
10888     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
10889       .addExternalSymbol("__chkstk");
10890     BuildMI(*MBB, MI, DL, TII.get(gettBLXrOpcode(*MBB->getParent())))
10891         .add(predOps(ARMCC::AL))
10892         .addReg(Reg, RegState::Kill)
10893         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
10894         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
10895         .addReg(ARM::R12,
10896                 RegState::Implicit | RegState::Define | RegState::Dead)
10897         .addReg(ARM::CPSR,
10898                 RegState::Implicit | RegState::Define | RegState::Dead);
10899     break;
10900   }
10901   }
10902 
10903   BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
10904       .addReg(ARM::SP, RegState::Kill)
10905       .addReg(ARM::R4, RegState::Kill)
10906       .setMIFlags(MachineInstr::FrameSetup)
10907       .add(predOps(ARMCC::AL))
10908       .add(condCodeOp());
10909 
10910   MI.eraseFromParent();
10911   return MBB;
10912 }
10913 
10914 MachineBasicBlock *
EmitLowered__dbzchk(MachineInstr & MI,MachineBasicBlock * MBB) const10915 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
10916                                        MachineBasicBlock *MBB) const {
10917   DebugLoc DL = MI.getDebugLoc();
10918   MachineFunction *MF = MBB->getParent();
10919   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10920 
10921   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
10922   MF->insert(++MBB->getIterator(), ContBB);
10923   ContBB->splice(ContBB->begin(), MBB,
10924                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10925   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
10926   MBB->addSuccessor(ContBB);
10927 
10928   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
10929   BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
10930   MF->push_back(TrapBB);
10931   MBB->addSuccessor(TrapBB);
10932 
10933   BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
10934       .addReg(MI.getOperand(0).getReg())
10935       .addImm(0)
10936       .add(predOps(ARMCC::AL));
10937   BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
10938       .addMBB(TrapBB)
10939       .addImm(ARMCC::EQ)
10940       .addReg(ARM::CPSR);
10941 
10942   MI.eraseFromParent();
10943   return ContBB;
10944 }
10945 
10946 // The CPSR operand of SelectItr might be missing a kill marker
10947 // because there were multiple uses of CPSR, and ISel didn't know
10948 // which to mark. Figure out whether SelectItr should have had a
10949 // kill marker, and set it if it should. Returns the correct kill
10950 // marker value.
checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,MachineBasicBlock * BB,const TargetRegisterInfo * TRI)10951 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
10952                                    MachineBasicBlock* BB,
10953                                    const TargetRegisterInfo* TRI) {
10954   // Scan forward through BB for a use/def of CPSR.
10955   MachineBasicBlock::iterator miI(std::next(SelectItr));
10956   for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
10957     const MachineInstr& mi = *miI;
10958     if (mi.readsRegister(ARM::CPSR))
10959       return false;
10960     if (mi.definesRegister(ARM::CPSR))
10961       break; // Should have kill-flag - update below.
10962   }
10963 
10964   // If we hit the end of the block, check whether CPSR is live into a
10965   // successor.
10966   if (miI == BB->end()) {
10967     for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
10968                                           sEnd = BB->succ_end();
10969          sItr != sEnd; ++sItr) {
10970       MachineBasicBlock* succ = *sItr;
10971       if (succ->isLiveIn(ARM::CPSR))
10972         return false;
10973     }
10974   }
10975 
10976   // We found a def, or hit the end of the basic block and CPSR wasn't live
10977   // out. SelectMI should have a kill flag on CPSR.
10978   SelectItr->addRegisterKilled(ARM::CPSR, TRI);
10979   return true;
10980 }
10981 
10982 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const10983 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10984                                                MachineBasicBlock *BB) const {
10985   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10986   DebugLoc dl = MI.getDebugLoc();
10987   bool isThumb2 = Subtarget->isThumb2();
10988   switch (MI.getOpcode()) {
10989   default: {
10990     MI.print(errs());
10991     llvm_unreachable("Unexpected instr type to insert");
10992   }
10993 
10994   // Thumb1 post-indexed loads are really just single-register LDMs.
10995   case ARM::tLDR_postidx: {
10996     MachineOperand Def(MI.getOperand(1));
10997     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
10998         .add(Def)  // Rn_wb
10999         .add(MI.getOperand(2))  // Rn
11000         .add(MI.getOperand(3))  // PredImm
11001         .add(MI.getOperand(4))  // PredReg
11002         .add(MI.getOperand(0))  // Rt
11003         .cloneMemRefs(MI);
11004     MI.eraseFromParent();
11005     return BB;
11006   }
11007 
11008   // The Thumb2 pre-indexed stores have the same MI operands, they just
11009   // define them differently in the .td files from the isel patterns, so
11010   // they need pseudos.
11011   case ARM::t2STR_preidx:
11012     MI.setDesc(TII->get(ARM::t2STR_PRE));
11013     return BB;
11014   case ARM::t2STRB_preidx:
11015     MI.setDesc(TII->get(ARM::t2STRB_PRE));
11016     return BB;
11017   case ARM::t2STRH_preidx:
11018     MI.setDesc(TII->get(ARM::t2STRH_PRE));
11019     return BB;
11020 
11021   case ARM::STRi_preidx:
11022   case ARM::STRBi_preidx: {
11023     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
11024                                                          : ARM::STRB_PRE_IMM;
11025     // Decode the offset.
11026     unsigned Offset = MI.getOperand(4).getImm();
11027     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
11028     Offset = ARM_AM::getAM2Offset(Offset);
11029     if (isSub)
11030       Offset = -Offset;
11031 
11032     MachineMemOperand *MMO = *MI.memoperands_begin();
11033     BuildMI(*BB, MI, dl, TII->get(NewOpc))
11034         .add(MI.getOperand(0)) // Rn_wb
11035         .add(MI.getOperand(1)) // Rt
11036         .add(MI.getOperand(2)) // Rn
11037         .addImm(Offset)        // offset (skip GPR==zero_reg)
11038         .add(MI.getOperand(5)) // pred
11039         .add(MI.getOperand(6))
11040         .addMemOperand(MMO);
11041     MI.eraseFromParent();
11042     return BB;
11043   }
11044   case ARM::STRr_preidx:
11045   case ARM::STRBr_preidx:
11046   case ARM::STRH_preidx: {
11047     unsigned NewOpc;
11048     switch (MI.getOpcode()) {
11049     default: llvm_unreachable("unexpected opcode!");
11050     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
11051     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
11052     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
11053     }
11054     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
11055     for (unsigned i = 0; i < MI.getNumOperands(); ++i)
11056       MIB.add(MI.getOperand(i));
11057     MI.eraseFromParent();
11058     return BB;
11059   }
11060 
11061   case ARM::tMOVCCr_pseudo: {
11062     // To "insert" a SELECT_CC instruction, we actually have to insert the
11063     // diamond control-flow pattern.  The incoming instruction knows the
11064     // destination vreg to set, the condition code register to branch on, the
11065     // true/false values to select between, and a branch opcode to use.
11066     const BasicBlock *LLVM_BB = BB->getBasicBlock();
11067     MachineFunction::iterator It = ++BB->getIterator();
11068 
11069     //  thisMBB:
11070     //  ...
11071     //   TrueVal = ...
11072     //   cmpTY ccX, r1, r2
11073     //   bCC copy1MBB
11074     //   fallthrough --> copy0MBB
11075     MachineBasicBlock *thisMBB  = BB;
11076     MachineFunction *F = BB->getParent();
11077     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11078     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
11079     F->insert(It, copy0MBB);
11080     F->insert(It, sinkMBB);
11081 
11082     // Check whether CPSR is live past the tMOVCCr_pseudo.
11083     const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
11084     if (!MI.killsRegister(ARM::CPSR) &&
11085         !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
11086       copy0MBB->addLiveIn(ARM::CPSR);
11087       sinkMBB->addLiveIn(ARM::CPSR);
11088     }
11089 
11090     // Transfer the remainder of BB and its successor edges to sinkMBB.
11091     sinkMBB->splice(sinkMBB->begin(), BB,
11092                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11093     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11094 
11095     BB->addSuccessor(copy0MBB);
11096     BB->addSuccessor(sinkMBB);
11097 
11098     BuildMI(BB, dl, TII->get(ARM::tBcc))
11099         .addMBB(sinkMBB)
11100         .addImm(MI.getOperand(3).getImm())
11101         .addReg(MI.getOperand(4).getReg());
11102 
11103     //  copy0MBB:
11104     //   %FalseValue = ...
11105     //   # fallthrough to sinkMBB
11106     BB = copy0MBB;
11107 
11108     // Update machine-CFG edges
11109     BB->addSuccessor(sinkMBB);
11110 
11111     //  sinkMBB:
11112     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11113     //  ...
11114     BB = sinkMBB;
11115     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
11116         .addReg(MI.getOperand(1).getReg())
11117         .addMBB(copy0MBB)
11118         .addReg(MI.getOperand(2).getReg())
11119         .addMBB(thisMBB);
11120 
11121     MI.eraseFromParent(); // The pseudo instruction is gone now.
11122     return BB;
11123   }
11124 
11125   case ARM::BCCi64:
11126   case ARM::BCCZi64: {
11127     // If there is an unconditional branch to the other successor, remove it.
11128     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
11129 
11130     // Compare both parts that make up the double comparison separately for
11131     // equality.
11132     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
11133 
11134     Register LHS1 = MI.getOperand(1).getReg();
11135     Register LHS2 = MI.getOperand(2).getReg();
11136     if (RHSisZero) {
11137       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
11138           .addReg(LHS1)
11139           .addImm(0)
11140           .add(predOps(ARMCC::AL));
11141       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
11142         .addReg(LHS2).addImm(0)
11143         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
11144     } else {
11145       Register RHS1 = MI.getOperand(3).getReg();
11146       Register RHS2 = MI.getOperand(4).getReg();
11147       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
11148           .addReg(LHS1)
11149           .addReg(RHS1)
11150           .add(predOps(ARMCC::AL));
11151       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
11152         .addReg(LHS2).addReg(RHS2)
11153         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
11154     }
11155 
11156     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
11157     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
11158     if (MI.getOperand(0).getImm() == ARMCC::NE)
11159       std::swap(destMBB, exitMBB);
11160 
11161     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
11162       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
11163     if (isThumb2)
11164       BuildMI(BB, dl, TII->get(ARM::t2B))
11165           .addMBB(exitMBB)
11166           .add(predOps(ARMCC::AL));
11167     else
11168       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
11169 
11170     MI.eraseFromParent(); // The pseudo instruction is gone now.
11171     return BB;
11172   }
11173 
11174   case ARM::Int_eh_sjlj_setjmp:
11175   case ARM::Int_eh_sjlj_setjmp_nofp:
11176   case ARM::tInt_eh_sjlj_setjmp:
11177   case ARM::t2Int_eh_sjlj_setjmp:
11178   case ARM::t2Int_eh_sjlj_setjmp_nofp:
11179     return BB;
11180 
11181   case ARM::Int_eh_sjlj_setup_dispatch:
11182     EmitSjLjDispatchBlock(MI, BB);
11183     return BB;
11184 
11185   case ARM::ABS:
11186   case ARM::t2ABS: {
11187     // To insert an ABS instruction, we have to insert the
11188     // diamond control-flow pattern.  The incoming instruction knows the
11189     // source vreg to test against 0, the destination vreg to set,
11190     // the condition code register to branch on, the
11191     // true/false values to select between, and a branch opcode to use.
11192     // It transforms
11193     //     V1 = ABS V0
11194     // into
11195     //     V2 = MOVS V0
11196     //     BCC                      (branch to SinkBB if V0 >= 0)
11197     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
11198     //     SinkBB: V1 = PHI(V2, V3)
11199     const BasicBlock *LLVM_BB = BB->getBasicBlock();
11200     MachineFunction::iterator BBI = ++BB->getIterator();
11201     MachineFunction *Fn = BB->getParent();
11202     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
11203     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
11204     Fn->insert(BBI, RSBBB);
11205     Fn->insert(BBI, SinkBB);
11206 
11207     Register ABSSrcReg = MI.getOperand(1).getReg();
11208     Register ABSDstReg = MI.getOperand(0).getReg();
11209     bool ABSSrcKIll = MI.getOperand(1).isKill();
11210     bool isThumb2 = Subtarget->isThumb2();
11211     MachineRegisterInfo &MRI = Fn->getRegInfo();
11212     // In Thumb mode S must not be specified if source register is the SP or
11213     // PC and if destination register is the SP, so restrict register class
11214     Register NewRsbDstReg = MRI.createVirtualRegister(
11215         isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
11216 
11217     // Transfer the remainder of BB and its successor edges to sinkMBB.
11218     SinkBB->splice(SinkBB->begin(), BB,
11219                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
11220     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
11221 
11222     BB->addSuccessor(RSBBB);
11223     BB->addSuccessor(SinkBB);
11224 
11225     // fall through to SinkMBB
11226     RSBBB->addSuccessor(SinkBB);
11227 
11228     // insert a cmp at the end of BB
11229     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
11230         .addReg(ABSSrcReg)
11231         .addImm(0)
11232         .add(predOps(ARMCC::AL));
11233 
11234     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
11235     BuildMI(BB, dl,
11236       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
11237       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
11238 
11239     // insert rsbri in RSBBB
11240     // Note: BCC and rsbri will be converted into predicated rsbmi
11241     // by if-conversion pass
11242     BuildMI(*RSBBB, RSBBB->begin(), dl,
11243             TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
11244         .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
11245         .addImm(0)
11246         .add(predOps(ARMCC::AL))
11247         .add(condCodeOp());
11248 
11249     // insert PHI in SinkBB,
11250     // reuse ABSDstReg to not change uses of ABS instruction
11251     BuildMI(*SinkBB, SinkBB->begin(), dl,
11252       TII->get(ARM::PHI), ABSDstReg)
11253       .addReg(NewRsbDstReg).addMBB(RSBBB)
11254       .addReg(ABSSrcReg).addMBB(BB);
11255 
11256     // remove ABS instruction
11257     MI.eraseFromParent();
11258 
11259     // return last added BB
11260     return SinkBB;
11261   }
11262   case ARM::COPY_STRUCT_BYVAL_I32:
11263     ++NumLoopByVals;
11264     return EmitStructByval(MI, BB);
11265   case ARM::WIN__CHKSTK:
11266     return EmitLowered__chkstk(MI, BB);
11267   case ARM::WIN__DBZCHK:
11268     return EmitLowered__dbzchk(MI, BB);
11269   case ARM::t2DoLoopStart:
11270     // We are just here to set a register allocation hint, prefering lr for the
11271     // input register to make it more likely to be movable and removable, later
11272     // in the pipeline.
11273     Register R = MI.getOperand(1).getReg();
11274     MachineFunction *MF = MI.getParent()->getParent();
11275     MF->getRegInfo().setRegAllocationHint(R, ARMRI::RegLR, 0);
11276     return BB;
11277   }
11278 }
11279 
11280 /// Attaches vregs to MEMCPY that it will use as scratch registers
11281 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
11282 /// instead of as a custom inserter because we need the use list from the SDNode.
attachMEMCPYScratchRegs(const ARMSubtarget * Subtarget,MachineInstr & MI,const SDNode * Node)11283 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
11284                                     MachineInstr &MI, const SDNode *Node) {
11285   bool isThumb1 = Subtarget->isThumb1Only();
11286 
11287   DebugLoc DL = MI.getDebugLoc();
11288   MachineFunction *MF = MI.getParent()->getParent();
11289   MachineRegisterInfo &MRI = MF->getRegInfo();
11290   MachineInstrBuilder MIB(*MF, MI);
11291 
11292   // If the new dst/src is unused mark it as dead.
11293   if (!Node->hasAnyUseOfValue(0)) {
11294     MI.getOperand(0).setIsDead(true);
11295   }
11296   if (!Node->hasAnyUseOfValue(1)) {
11297     MI.getOperand(1).setIsDead(true);
11298   }
11299 
11300   // The MEMCPY both defines and kills the scratch registers.
11301   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
11302     Register TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
11303                                                          : &ARM::GPRRegClass);
11304     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
11305   }
11306 }
11307 
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const11308 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11309                                                       SDNode *Node) const {
11310   if (MI.getOpcode() == ARM::MEMCPY) {
11311     attachMEMCPYScratchRegs(Subtarget, MI, Node);
11312     return;
11313   }
11314 
11315   const MCInstrDesc *MCID = &MI.getDesc();
11316   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
11317   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
11318   // operand is still set to noreg. If needed, set the optional operand's
11319   // register to CPSR, and remove the redundant implicit def.
11320   //
11321   // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
11322 
11323   // Rename pseudo opcodes.
11324   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
11325   unsigned ccOutIdx;
11326   if (NewOpc) {
11327     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
11328     MCID = &TII->get(NewOpc);
11329 
11330     assert(MCID->getNumOperands() ==
11331            MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
11332         && "converted opcode should be the same except for cc_out"
11333            " (and, on Thumb1, pred)");
11334 
11335     MI.setDesc(*MCID);
11336 
11337     // Add the optional cc_out operand
11338     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
11339 
11340     // On Thumb1, move all input operands to the end, then add the predicate
11341     if (Subtarget->isThumb1Only()) {
11342       for (unsigned c = MCID->getNumOperands() - 4; c--;) {
11343         MI.addOperand(MI.getOperand(1));
11344         MI.RemoveOperand(1);
11345       }
11346 
11347       // Restore the ties
11348       for (unsigned i = MI.getNumOperands(); i--;) {
11349         const MachineOperand& op = MI.getOperand(i);
11350         if (op.isReg() && op.isUse()) {
11351           int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
11352           if (DefIdx != -1)
11353             MI.tieOperands(DefIdx, i);
11354         }
11355       }
11356 
11357       MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
11358       MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
11359       ccOutIdx = 1;
11360     } else
11361       ccOutIdx = MCID->getNumOperands() - 1;
11362   } else
11363     ccOutIdx = MCID->getNumOperands() - 1;
11364 
11365   // Any ARM instruction that sets the 's' bit should specify an optional
11366   // "cc_out" operand in the last operand position.
11367   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
11368     assert(!NewOpc && "Optional cc_out operand required");
11369     return;
11370   }
11371   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
11372   // since we already have an optional CPSR def.
11373   bool definesCPSR = false;
11374   bool deadCPSR = false;
11375   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
11376        ++i) {
11377     const MachineOperand &MO = MI.getOperand(i);
11378     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
11379       definesCPSR = true;
11380       if (MO.isDead())
11381         deadCPSR = true;
11382       MI.RemoveOperand(i);
11383       break;
11384     }
11385   }
11386   if (!definesCPSR) {
11387     assert(!NewOpc && "Optional cc_out operand required");
11388     return;
11389   }
11390   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
11391   if (deadCPSR) {
11392     assert(!MI.getOperand(ccOutIdx).getReg() &&
11393            "expect uninitialized optional cc_out operand");
11394     // Thumb1 instructions must have the S bit even if the CPSR is dead.
11395     if (!Subtarget->isThumb1Only())
11396       return;
11397   }
11398 
11399   // If this instruction was defined with an optional CPSR def and its dag node
11400   // had a live implicit CPSR def, then activate the optional CPSR def.
11401   MachineOperand &MO = MI.getOperand(ccOutIdx);
11402   MO.setReg(ARM::CPSR);
11403   MO.setIsDef(true);
11404 }
11405 
11406 //===----------------------------------------------------------------------===//
11407 //                           ARM Optimization Hooks
11408 //===----------------------------------------------------------------------===//
11409 
11410 // Helper function that checks if N is a null or all ones constant.
isZeroOrAllOnes(SDValue N,bool AllOnes)11411 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
11412   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
11413 }
11414 
11415 // Return true if N is conditionally 0 or all ones.
11416 // Detects these expressions where cc is an i1 value:
11417 //
11418 //   (select cc 0, y)   [AllOnes=0]
11419 //   (select cc y, 0)   [AllOnes=0]
11420 //   (zext cc)          [AllOnes=0]
11421 //   (sext cc)          [AllOnes=0/1]
11422 //   (select cc -1, y)  [AllOnes=1]
11423 //   (select cc y, -1)  [AllOnes=1]
11424 //
11425 // Invert is set when N is the null/all ones constant when CC is false.
11426 // OtherOp is set to the alternative value of N.
isConditionalZeroOrAllOnes(SDNode * N,bool AllOnes,SDValue & CC,bool & Invert,SDValue & OtherOp,SelectionDAG & DAG)11427 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
11428                                        SDValue &CC, bool &Invert,
11429                                        SDValue &OtherOp,
11430                                        SelectionDAG &DAG) {
11431   switch (N->getOpcode()) {
11432   default: return false;
11433   case ISD::SELECT: {
11434     CC = N->getOperand(0);
11435     SDValue N1 = N->getOperand(1);
11436     SDValue N2 = N->getOperand(2);
11437     if (isZeroOrAllOnes(N1, AllOnes)) {
11438       Invert = false;
11439       OtherOp = N2;
11440       return true;
11441     }
11442     if (isZeroOrAllOnes(N2, AllOnes)) {
11443       Invert = true;
11444       OtherOp = N1;
11445       return true;
11446     }
11447     return false;
11448   }
11449   case ISD::ZERO_EXTEND:
11450     // (zext cc) can never be the all ones value.
11451     if (AllOnes)
11452       return false;
11453     LLVM_FALLTHROUGH;
11454   case ISD::SIGN_EXTEND: {
11455     SDLoc dl(N);
11456     EVT VT = N->getValueType(0);
11457     CC = N->getOperand(0);
11458     if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
11459       return false;
11460     Invert = !AllOnes;
11461     if (AllOnes)
11462       // When looking for an AllOnes constant, N is an sext, and the 'other'
11463       // value is 0.
11464       OtherOp = DAG.getConstant(0, dl, VT);
11465     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11466       // When looking for a 0 constant, N can be zext or sext.
11467       OtherOp = DAG.getConstant(1, dl, VT);
11468     else
11469       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
11470                                 VT);
11471     return true;
11472   }
11473   }
11474 }
11475 
11476 // Combine a constant select operand into its use:
11477 //
11478 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
11479 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
11480 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
11481 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
11482 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
11483 //
11484 // The transform is rejected if the select doesn't have a constant operand that
11485 // is null, or all ones when AllOnes is set.
11486 //
11487 // Also recognize sext/zext from i1:
11488 //
11489 //   (add (zext cc), x) -> (select cc (add x, 1), x)
11490 //   (add (sext cc), x) -> (select cc (add x, -1), x)
11491 //
11492 // These transformations eventually create predicated instructions.
11493 //
11494 // @param N       The node to transform.
11495 // @param Slct    The N operand that is a select.
11496 // @param OtherOp The other N operand (x above).
11497 // @param DCI     Context.
11498 // @param AllOnes Require the select constant to be all ones instead of null.
11499 // @returns The new node, or SDValue() on failure.
11500 static
combineSelectAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,TargetLowering::DAGCombinerInfo & DCI,bool AllOnes=false)11501 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
11502                             TargetLowering::DAGCombinerInfo &DCI,
11503                             bool AllOnes = false) {
11504   SelectionDAG &DAG = DCI.DAG;
11505   EVT VT = N->getValueType(0);
11506   SDValue NonConstantVal;
11507   SDValue CCOp;
11508   bool SwapSelectOps;
11509   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
11510                                   NonConstantVal, DAG))
11511     return SDValue();
11512 
11513   // Slct is now know to be the desired identity constant when CC is true.
11514   SDValue TrueVal = OtherOp;
11515   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
11516                                  OtherOp, NonConstantVal);
11517   // Unless SwapSelectOps says CC should be false.
11518   if (SwapSelectOps)
11519     std::swap(TrueVal, FalseVal);
11520 
11521   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
11522                      CCOp, TrueVal, FalseVal);
11523 }
11524 
11525 // Attempt combineSelectAndUse on each operand of a commutative operator N.
11526 static
combineSelectAndUseCommutative(SDNode * N,bool AllOnes,TargetLowering::DAGCombinerInfo & DCI)11527 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
11528                                        TargetLowering::DAGCombinerInfo &DCI) {
11529   SDValue N0 = N->getOperand(0);
11530   SDValue N1 = N->getOperand(1);
11531   if (N0.getNode()->hasOneUse())
11532     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
11533       return Result;
11534   if (N1.getNode()->hasOneUse())
11535     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
11536       return Result;
11537   return SDValue();
11538 }
11539 
IsVUZPShuffleNode(SDNode * N)11540 static bool IsVUZPShuffleNode(SDNode *N) {
11541   // VUZP shuffle node.
11542   if (N->getOpcode() == ARMISD::VUZP)
11543     return true;
11544 
11545   // "VUZP" on i32 is an alias for VTRN.
11546   if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
11547     return true;
11548 
11549   return false;
11550 }
11551 
AddCombineToVPADD(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11552 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
11553                                  TargetLowering::DAGCombinerInfo &DCI,
11554                                  const ARMSubtarget *Subtarget) {
11555   // Look for ADD(VUZP.0, VUZP.1).
11556   if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
11557       N0 == N1)
11558    return SDValue();
11559 
11560   // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
11561   if (!N->getValueType(0).is64BitVector())
11562     return SDValue();
11563 
11564   // Generate vpadd.
11565   SelectionDAG &DAG = DCI.DAG;
11566   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11567   SDLoc dl(N);
11568   SDNode *Unzip = N0.getNode();
11569   EVT VT = N->getValueType(0);
11570 
11571   SmallVector<SDValue, 8> Ops;
11572   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
11573                                 TLI.getPointerTy(DAG.getDataLayout())));
11574   Ops.push_back(Unzip->getOperand(0));
11575   Ops.push_back(Unzip->getOperand(1));
11576 
11577   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
11578 }
11579 
AddCombineVUZPToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11580 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
11581                                       TargetLowering::DAGCombinerInfo &DCI,
11582                                       const ARMSubtarget *Subtarget) {
11583   // Check for two extended operands.
11584   if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
11585         N1.getOpcode() == ISD::SIGN_EXTEND) &&
11586       !(N0.getOpcode() == ISD::ZERO_EXTEND &&
11587         N1.getOpcode() == ISD::ZERO_EXTEND))
11588     return SDValue();
11589 
11590   SDValue N00 = N0.getOperand(0);
11591   SDValue N10 = N1.getOperand(0);
11592 
11593   // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
11594   if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
11595       N00 == N10)
11596     return SDValue();
11597 
11598   // We only recognize Q register paddl here; this can't be reached until
11599   // after type legalization.
11600   if (!N00.getValueType().is64BitVector() ||
11601       !N0.getValueType().is128BitVector())
11602     return SDValue();
11603 
11604   // Generate vpaddl.
11605   SelectionDAG &DAG = DCI.DAG;
11606   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11607   SDLoc dl(N);
11608   EVT VT = N->getValueType(0);
11609 
11610   SmallVector<SDValue, 8> Ops;
11611   // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
11612   unsigned Opcode;
11613   if (N0.getOpcode() == ISD::SIGN_EXTEND)
11614     Opcode = Intrinsic::arm_neon_vpaddls;
11615   else
11616     Opcode = Intrinsic::arm_neon_vpaddlu;
11617   Ops.push_back(DAG.getConstant(Opcode, dl,
11618                                 TLI.getPointerTy(DAG.getDataLayout())));
11619   EVT ElemTy = N00.getValueType().getVectorElementType();
11620   unsigned NumElts = VT.getVectorNumElements();
11621   EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
11622   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
11623                                N00.getOperand(0), N00.getOperand(1));
11624   Ops.push_back(Concat);
11625 
11626   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
11627 }
11628 
11629 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
11630 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
11631 // much easier to match.
11632 static SDValue
AddCombineBUILD_VECTORToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11633 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
11634                                TargetLowering::DAGCombinerInfo &DCI,
11635                                const ARMSubtarget *Subtarget) {
11636   // Only perform optimization if after legalize, and if NEON is available. We
11637   // also expected both operands to be BUILD_VECTORs.
11638   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
11639       || N0.getOpcode() != ISD::BUILD_VECTOR
11640       || N1.getOpcode() != ISD::BUILD_VECTOR)
11641     return SDValue();
11642 
11643   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
11644   EVT VT = N->getValueType(0);
11645   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
11646     return SDValue();
11647 
11648   // Check that the vector operands are of the right form.
11649   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
11650   // operands, where N is the size of the formed vector.
11651   // Each EXTRACT_VECTOR should have the same input vector and odd or even
11652   // index such that we have a pair wise add pattern.
11653 
11654   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
11655   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11656     return SDValue();
11657   SDValue Vec = N0->getOperand(0)->getOperand(0);
11658   SDNode *V = Vec.getNode();
11659   unsigned nextIndex = 0;
11660 
11661   // For each operands to the ADD which are BUILD_VECTORs,
11662   // check to see if each of their operands are an EXTRACT_VECTOR with
11663   // the same vector and appropriate index.
11664   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
11665     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
11666         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
11667 
11668       SDValue ExtVec0 = N0->getOperand(i);
11669       SDValue ExtVec1 = N1->getOperand(i);
11670 
11671       // First operand is the vector, verify its the same.
11672       if (V != ExtVec0->getOperand(0).getNode() ||
11673           V != ExtVec1->getOperand(0).getNode())
11674         return SDValue();
11675 
11676       // Second is the constant, verify its correct.
11677       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
11678       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
11679 
11680       // For the constant, we want to see all the even or all the odd.
11681       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
11682           || C1->getZExtValue() != nextIndex+1)
11683         return SDValue();
11684 
11685       // Increment index.
11686       nextIndex+=2;
11687     } else
11688       return SDValue();
11689   }
11690 
11691   // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
11692   // we're using the entire input vector, otherwise there's a size/legality
11693   // mismatch somewhere.
11694   if (nextIndex != Vec.getValueType().getVectorNumElements() ||
11695       Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
11696     return SDValue();
11697 
11698   // Create VPADDL node.
11699   SelectionDAG &DAG = DCI.DAG;
11700   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11701 
11702   SDLoc dl(N);
11703 
11704   // Build operand list.
11705   SmallVector<SDValue, 8> Ops;
11706   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
11707                                 TLI.getPointerTy(DAG.getDataLayout())));
11708 
11709   // Input is the vector.
11710   Ops.push_back(Vec);
11711 
11712   // Get widened type and narrowed type.
11713   MVT widenType;
11714   unsigned numElem = VT.getVectorNumElements();
11715 
11716   EVT inputLaneType = Vec.getValueType().getVectorElementType();
11717   switch (inputLaneType.getSimpleVT().SimpleTy) {
11718     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
11719     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
11720     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
11721     default:
11722       llvm_unreachable("Invalid vector element type for padd optimization.");
11723   }
11724 
11725   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
11726   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
11727   return DAG.getNode(ExtOp, dl, VT, tmp);
11728 }
11729 
findMUL_LOHI(SDValue V)11730 static SDValue findMUL_LOHI(SDValue V) {
11731   if (V->getOpcode() == ISD::UMUL_LOHI ||
11732       V->getOpcode() == ISD::SMUL_LOHI)
11733     return V;
11734   return SDValue();
11735 }
11736 
AddCombineTo64BitSMLAL16(SDNode * AddcNode,SDNode * AddeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11737 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
11738                                         TargetLowering::DAGCombinerInfo &DCI,
11739                                         const ARMSubtarget *Subtarget) {
11740   if (!Subtarget->hasBaseDSP())
11741     return SDValue();
11742 
11743   // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
11744   // accumulates the product into a 64-bit value. The 16-bit values will
11745   // be sign extended somehow or SRA'd into 32-bit values
11746   // (addc (adde (mul 16bit, 16bit), lo), hi)
11747   SDValue Mul = AddcNode->getOperand(0);
11748   SDValue Lo = AddcNode->getOperand(1);
11749   if (Mul.getOpcode() != ISD::MUL) {
11750     Lo = AddcNode->getOperand(0);
11751     Mul = AddcNode->getOperand(1);
11752     if (Mul.getOpcode() != ISD::MUL)
11753       return SDValue();
11754   }
11755 
11756   SDValue SRA = AddeNode->getOperand(0);
11757   SDValue Hi = AddeNode->getOperand(1);
11758   if (SRA.getOpcode() != ISD::SRA) {
11759     SRA = AddeNode->getOperand(1);
11760     Hi = AddeNode->getOperand(0);
11761     if (SRA.getOpcode() != ISD::SRA)
11762       return SDValue();
11763   }
11764   if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
11765     if (Const->getZExtValue() != 31)
11766       return SDValue();
11767   } else
11768     return SDValue();
11769 
11770   if (SRA.getOperand(0) != Mul)
11771     return SDValue();
11772 
11773   SelectionDAG &DAG = DCI.DAG;
11774   SDLoc dl(AddcNode);
11775   unsigned Opcode = 0;
11776   SDValue Op0;
11777   SDValue Op1;
11778 
11779   if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
11780     Opcode = ARMISD::SMLALBB;
11781     Op0 = Mul.getOperand(0);
11782     Op1 = Mul.getOperand(1);
11783   } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
11784     Opcode = ARMISD::SMLALBT;
11785     Op0 = Mul.getOperand(0);
11786     Op1 = Mul.getOperand(1).getOperand(0);
11787   } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
11788     Opcode = ARMISD::SMLALTB;
11789     Op0 = Mul.getOperand(0).getOperand(0);
11790     Op1 = Mul.getOperand(1);
11791   } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
11792     Opcode = ARMISD::SMLALTT;
11793     Op0 = Mul->getOperand(0).getOperand(0);
11794     Op1 = Mul->getOperand(1).getOperand(0);
11795   }
11796 
11797   if (!Op0 || !Op1)
11798     return SDValue();
11799 
11800   SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
11801                               Op0, Op1, Lo, Hi);
11802   // Replace the ADDs' nodes uses by the MLA node's values.
11803   SDValue HiMLALResult(SMLAL.getNode(), 1);
11804   SDValue LoMLALResult(SMLAL.getNode(), 0);
11805 
11806   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
11807   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
11808 
11809   // Return original node to notify the driver to stop replacing.
11810   SDValue resNode(AddcNode, 0);
11811   return resNode;
11812 }
11813 
AddCombineTo64bitMLAL(SDNode * AddeSubeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11814 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
11815                                      TargetLowering::DAGCombinerInfo &DCI,
11816                                      const ARMSubtarget *Subtarget) {
11817   // Look for multiply add opportunities.
11818   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
11819   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
11820   // a glue link from the first add to the second add.
11821   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
11822   // a S/UMLAL instruction.
11823   //                  UMUL_LOHI
11824   //                 / :lo    \ :hi
11825   //                V          \          [no multiline comment]
11826   //    loAdd ->  ADDC         |
11827   //                 \ :carry /
11828   //                  V      V
11829   //                    ADDE   <- hiAdd
11830   //
11831   // In the special case where only the higher part of a signed result is used
11832   // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
11833   // a constant with the exact value of 0x80000000, we recognize we are dealing
11834   // with a "rounded multiply and add" (or subtract) and transform it into
11835   // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
11836 
11837   assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
11838           AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
11839          "Expect an ADDE or SUBE");
11840 
11841   assert(AddeSubeNode->getNumOperands() == 3 &&
11842          AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
11843          "ADDE node has the wrong inputs");
11844 
11845   // Check that we are chained to the right ADDC or SUBC node.
11846   SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
11847   if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
11848        AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
11849       (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
11850        AddcSubcNode->getOpcode() != ARMISD::SUBC))
11851     return SDValue();
11852 
11853   SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
11854   SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
11855 
11856   // Check if the two operands are from the same mul_lohi node.
11857   if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
11858     return SDValue();
11859 
11860   assert(AddcSubcNode->getNumValues() == 2 &&
11861          AddcSubcNode->getValueType(0) == MVT::i32 &&
11862          "Expect ADDC with two result values. First: i32");
11863 
11864   // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
11865   // maybe a SMLAL which multiplies two 16-bit values.
11866   if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
11867       AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
11868       AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
11869       AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
11870       AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
11871     return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
11872 
11873   // Check for the triangle shape.
11874   SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
11875   SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
11876 
11877   // Make sure that the ADDE/SUBE operands are not coming from the same node.
11878   if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
11879     return SDValue();
11880 
11881   // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
11882   bool IsLeftOperandMUL = false;
11883   SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
11884   if (MULOp == SDValue())
11885     MULOp = findMUL_LOHI(AddeSubeOp1);
11886   else
11887     IsLeftOperandMUL = true;
11888   if (MULOp == SDValue())
11889     return SDValue();
11890 
11891   // Figure out the right opcode.
11892   unsigned Opc = MULOp->getOpcode();
11893   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
11894 
11895   // Figure out the high and low input values to the MLAL node.
11896   SDValue *HiAddSub = nullptr;
11897   SDValue *LoMul = nullptr;
11898   SDValue *LowAddSub = nullptr;
11899 
11900   // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
11901   if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
11902     return SDValue();
11903 
11904   if (IsLeftOperandMUL)
11905     HiAddSub = &AddeSubeOp1;
11906   else
11907     HiAddSub = &AddeSubeOp0;
11908 
11909   // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
11910   // whose low result is fed to the ADDC/SUBC we are checking.
11911 
11912   if (AddcSubcOp0 == MULOp.getValue(0)) {
11913     LoMul = &AddcSubcOp0;
11914     LowAddSub = &AddcSubcOp1;
11915   }
11916   if (AddcSubcOp1 == MULOp.getValue(0)) {
11917     LoMul = &AddcSubcOp1;
11918     LowAddSub = &AddcSubcOp0;
11919   }
11920 
11921   if (!LoMul)
11922     return SDValue();
11923 
11924   // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
11925   // the replacement below will create a cycle.
11926   if (AddcSubcNode == HiAddSub->getNode() ||
11927       AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
11928     return SDValue();
11929 
11930   // Create the merged node.
11931   SelectionDAG &DAG = DCI.DAG;
11932 
11933   // Start building operand list.
11934   SmallVector<SDValue, 8> Ops;
11935   Ops.push_back(LoMul->getOperand(0));
11936   Ops.push_back(LoMul->getOperand(1));
11937 
11938   // Check whether we can use SMMLAR, SMMLSR or SMMULR instead.  For this to be
11939   // the case, we must be doing signed multiplication and only use the higher
11940   // part of the result of the MLAL, furthermore the LowAddSub must be a constant
11941   // addition or subtraction with the value of 0x800000.
11942   if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
11943       FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
11944       LowAddSub->getNode()->getOpcode() == ISD::Constant &&
11945       static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
11946           0x80000000) {
11947     Ops.push_back(*HiAddSub);
11948     if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
11949       FinalOpc = ARMISD::SMMLSR;
11950     } else {
11951       FinalOpc = ARMISD::SMMLAR;
11952     }
11953     SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
11954     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
11955 
11956     return SDValue(AddeSubeNode, 0);
11957   } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
11958     // SMMLS is generated during instruction selection and the rest of this
11959     // function can not handle the case where AddcSubcNode is a SUBC.
11960     return SDValue();
11961 
11962   // Finish building the operand list for {U/S}MLAL
11963   Ops.push_back(*LowAddSub);
11964   Ops.push_back(*HiAddSub);
11965 
11966   SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
11967                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
11968 
11969   // Replace the ADDs' nodes uses by the MLA node's values.
11970   SDValue HiMLALResult(MLALNode.getNode(), 1);
11971   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
11972 
11973   SDValue LoMLALResult(MLALNode.getNode(), 0);
11974   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
11975 
11976   // Return original node to notify the driver to stop replacing.
11977   return SDValue(AddeSubeNode, 0);
11978 }
11979 
AddCombineTo64bitUMAAL(SDNode * AddeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11980 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
11981                                       TargetLowering::DAGCombinerInfo &DCI,
11982                                       const ARMSubtarget *Subtarget) {
11983   // UMAAL is similar to UMLAL except that it adds two unsigned values.
11984   // While trying to combine for the other MLAL nodes, first search for the
11985   // chance to use UMAAL. Check if Addc uses a node which has already
11986   // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11987   // as the addend, and it's handled in PerformUMLALCombine.
11988 
11989   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
11990     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
11991 
11992   // Check that we have a glued ADDC node.
11993   SDNode* AddcNode = AddeNode->getOperand(2).getNode();
11994   if (AddcNode->getOpcode() != ARMISD::ADDC)
11995     return SDValue();
11996 
11997   // Find the converted UMAAL or quit if it doesn't exist.
11998   SDNode *UmlalNode = nullptr;
11999   SDValue AddHi;
12000   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
12001     UmlalNode = AddcNode->getOperand(0).getNode();
12002     AddHi = AddcNode->getOperand(1);
12003   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
12004     UmlalNode = AddcNode->getOperand(1).getNode();
12005     AddHi = AddcNode->getOperand(0);
12006   } else {
12007     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
12008   }
12009 
12010   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
12011   // the ADDC as well as Zero.
12012   if (!isNullConstant(UmlalNode->getOperand(3)))
12013     return SDValue();
12014 
12015   if ((isNullConstant(AddeNode->getOperand(0)) &&
12016        AddeNode->getOperand(1).getNode() == UmlalNode) ||
12017       (AddeNode->getOperand(0).getNode() == UmlalNode &&
12018        isNullConstant(AddeNode->getOperand(1)))) {
12019     SelectionDAG &DAG = DCI.DAG;
12020     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
12021                       UmlalNode->getOperand(2), AddHi };
12022     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
12023                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
12024 
12025     // Replace the ADDs' nodes uses by the UMAAL node's values.
12026     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
12027     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
12028 
12029     // Return original node to notify the driver to stop replacing.
12030     return SDValue(AddeNode, 0);
12031   }
12032   return SDValue();
12033 }
12034 
PerformUMLALCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)12035 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
12036                                    const ARMSubtarget *Subtarget) {
12037   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
12038     return SDValue();
12039 
12040   // Check that we have a pair of ADDC and ADDE as operands.
12041   // Both addends of the ADDE must be zero.
12042   SDNode* AddcNode = N->getOperand(2).getNode();
12043   SDNode* AddeNode = N->getOperand(3).getNode();
12044   if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
12045       (AddeNode->getOpcode() == ARMISD::ADDE) &&
12046       isNullConstant(AddeNode->getOperand(0)) &&
12047       isNullConstant(AddeNode->getOperand(1)) &&
12048       (AddeNode->getOperand(2).getNode() == AddcNode))
12049     return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
12050                        DAG.getVTList(MVT::i32, MVT::i32),
12051                        {N->getOperand(0), N->getOperand(1),
12052                         AddcNode->getOperand(0), AddcNode->getOperand(1)});
12053   else
12054     return SDValue();
12055 }
12056 
PerformAddcSubcCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12057 static SDValue PerformAddcSubcCombine(SDNode *N,
12058                                       TargetLowering::DAGCombinerInfo &DCI,
12059                                       const ARMSubtarget *Subtarget) {
12060   SelectionDAG &DAG(DCI.DAG);
12061 
12062   if (N->getOpcode() == ARMISD::SUBC) {
12063     // (SUBC (ADDE 0, 0, C), 1) -> C
12064     SDValue LHS = N->getOperand(0);
12065     SDValue RHS = N->getOperand(1);
12066     if (LHS->getOpcode() == ARMISD::ADDE &&
12067         isNullConstant(LHS->getOperand(0)) &&
12068         isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
12069       return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
12070     }
12071   }
12072 
12073   if (Subtarget->isThumb1Only()) {
12074     SDValue RHS = N->getOperand(1);
12075     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
12076       int32_t imm = C->getSExtValue();
12077       if (imm < 0 && imm > std::numeric_limits<int>::min()) {
12078         SDLoc DL(N);
12079         RHS = DAG.getConstant(-imm, DL, MVT::i32);
12080         unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
12081                                                            : ARMISD::ADDC;
12082         return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
12083       }
12084     }
12085   }
12086 
12087   return SDValue();
12088 }
12089 
PerformAddeSubeCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12090 static SDValue PerformAddeSubeCombine(SDNode *N,
12091                                       TargetLowering::DAGCombinerInfo &DCI,
12092                                       const ARMSubtarget *Subtarget) {
12093   if (Subtarget->isThumb1Only()) {
12094     SelectionDAG &DAG = DCI.DAG;
12095     SDValue RHS = N->getOperand(1);
12096     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
12097       int64_t imm = C->getSExtValue();
12098       if (imm < 0) {
12099         SDLoc DL(N);
12100 
12101         // The with-carry-in form matches bitwise not instead of the negation.
12102         // Effectively, the inverse interpretation of the carry flag already
12103         // accounts for part of the negation.
12104         RHS = DAG.getConstant(~imm, DL, MVT::i32);
12105 
12106         unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
12107                                                            : ARMISD::ADDE;
12108         return DAG.getNode(Opcode, DL, N->getVTList(),
12109                            N->getOperand(0), RHS, N->getOperand(2));
12110       }
12111     }
12112   } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
12113     return AddCombineTo64bitMLAL(N, DCI, Subtarget);
12114   }
12115   return SDValue();
12116 }
12117 
PerformSELECTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12118 static SDValue PerformSELECTCombine(SDNode *N,
12119                                     TargetLowering::DAGCombinerInfo &DCI,
12120                                     const ARMSubtarget *Subtarget) {
12121   if (!Subtarget->hasMVEIntegerOps())
12122     return SDValue();
12123 
12124   SDLoc dl(N);
12125   SDValue SetCC;
12126   SDValue LHS;
12127   SDValue RHS;
12128   ISD::CondCode CC;
12129   SDValue TrueVal;
12130   SDValue FalseVal;
12131 
12132   if (N->getOpcode() == ISD::SELECT &&
12133       N->getOperand(0)->getOpcode() == ISD::SETCC) {
12134     SetCC = N->getOperand(0);
12135     LHS = SetCC->getOperand(0);
12136     RHS = SetCC->getOperand(1);
12137     CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
12138     TrueVal = N->getOperand(1);
12139     FalseVal = N->getOperand(2);
12140   } else if (N->getOpcode() == ISD::SELECT_CC) {
12141     LHS = N->getOperand(0);
12142     RHS = N->getOperand(1);
12143     CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
12144     TrueVal = N->getOperand(2);
12145     FalseVal = N->getOperand(3);
12146   } else {
12147     return SDValue();
12148   }
12149 
12150   unsigned int Opcode = 0;
12151   if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMIN ||
12152        FalseVal->getOpcode() == ISD::VECREDUCE_UMIN) &&
12153       (CC == ISD::SETULT || CC == ISD::SETUGT)) {
12154     Opcode = ARMISD::VMINVu;
12155     if (CC == ISD::SETUGT)
12156       std::swap(TrueVal, FalseVal);
12157   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMIN ||
12158               FalseVal->getOpcode() == ISD::VECREDUCE_SMIN) &&
12159              (CC == ISD::SETLT || CC == ISD::SETGT)) {
12160     Opcode = ARMISD::VMINVs;
12161     if (CC == ISD::SETGT)
12162       std::swap(TrueVal, FalseVal);
12163   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMAX ||
12164               FalseVal->getOpcode() == ISD::VECREDUCE_UMAX) &&
12165              (CC == ISD::SETUGT || CC == ISD::SETULT)) {
12166     Opcode = ARMISD::VMAXVu;
12167     if (CC == ISD::SETULT)
12168       std::swap(TrueVal, FalseVal);
12169   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMAX ||
12170               FalseVal->getOpcode() == ISD::VECREDUCE_SMAX) &&
12171              (CC == ISD::SETGT || CC == ISD::SETLT)) {
12172     Opcode = ARMISD::VMAXVs;
12173     if (CC == ISD::SETLT)
12174       std::swap(TrueVal, FalseVal);
12175   } else
12176     return SDValue();
12177 
12178   // Normalise to the right hand side being the vector reduction
12179   switch (TrueVal->getOpcode()) {
12180   case ISD::VECREDUCE_UMIN:
12181   case ISD::VECREDUCE_SMIN:
12182   case ISD::VECREDUCE_UMAX:
12183   case ISD::VECREDUCE_SMAX:
12184     std::swap(LHS, RHS);
12185     std::swap(TrueVal, FalseVal);
12186     break;
12187   }
12188 
12189   EVT VectorType = FalseVal->getOperand(0).getValueType();
12190 
12191   if (VectorType != MVT::v16i8 && VectorType != MVT::v8i16 &&
12192       VectorType != MVT::v4i32)
12193     return SDValue();
12194 
12195   EVT VectorScalarType = VectorType.getVectorElementType();
12196 
12197   // The values being selected must also be the ones being compared
12198   if (TrueVal != LHS || FalseVal != RHS)
12199     return SDValue();
12200 
12201   EVT LeftType = LHS->getValueType(0);
12202   EVT RightType = RHS->getValueType(0);
12203 
12204   // The types must match the reduced type too
12205   if (LeftType != VectorScalarType || RightType != VectorScalarType)
12206     return SDValue();
12207 
12208   // Legalise the scalar to an i32
12209   if (VectorScalarType != MVT::i32)
12210     LHS = DCI.DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
12211 
12212   // Generate the reduction as an i32 for legalisation purposes
12213   auto Reduction =
12214       DCI.DAG.getNode(Opcode, dl, MVT::i32, LHS, RHS->getOperand(0));
12215 
12216   // The result isn't actually an i32 so truncate it back to its original type
12217   if (VectorScalarType != MVT::i32)
12218     Reduction = DCI.DAG.getNode(ISD::TRUNCATE, dl, VectorScalarType, Reduction);
12219 
12220   return Reduction;
12221 }
12222 
12223 // A special combine for the vqdmulh family of instructions. This is one of the
12224 // potential set of patterns that could patch this instruction. The base pattern
12225 // you would expect to be min(max(ashr(mul(mul(sext(x), 2), sext(y)), 16))).
12226 // This matches the different min(max(ashr(mul(mul(sext(x), sext(y)), 2), 16))),
12227 // which llvm will have optimized to min(ashr(mul(sext(x), sext(y)), 15))) as
12228 // the max is unnecessary.
PerformVQDMULHCombine(SDNode * N,SelectionDAG & DAG)12229 static SDValue PerformVQDMULHCombine(SDNode *N, SelectionDAG &DAG) {
12230   EVT VT = N->getValueType(0);
12231   SDValue Shft;
12232   ConstantSDNode *Clamp;
12233 
12234   if (N->getOpcode() == ISD::SMIN) {
12235     Shft = N->getOperand(0);
12236     Clamp = isConstOrConstSplat(N->getOperand(1));
12237   } else if (N->getOpcode() == ISD::VSELECT) {
12238     // Detect a SMIN, which for an i64 node will be a vselect/setcc, not a smin.
12239     SDValue Cmp = N->getOperand(0);
12240     if (Cmp.getOpcode() != ISD::SETCC ||
12241         cast<CondCodeSDNode>(Cmp.getOperand(2))->get() != ISD::SETLT ||
12242         Cmp.getOperand(0) != N->getOperand(1) ||
12243         Cmp.getOperand(1) != N->getOperand(2))
12244       return SDValue();
12245     Shft = N->getOperand(1);
12246     Clamp = isConstOrConstSplat(N->getOperand(2));
12247   } else
12248     return SDValue();
12249 
12250   if (!Clamp)
12251     return SDValue();
12252 
12253   MVT ScalarType;
12254   int ShftAmt = 0;
12255   switch (Clamp->getSExtValue()) {
12256   case (1 << 7) - 1:
12257     ScalarType = MVT::i8;
12258     ShftAmt = 7;
12259     break;
12260   case (1 << 15) - 1:
12261     ScalarType = MVT::i16;
12262     ShftAmt = 15;
12263     break;
12264   case (1ULL << 31) - 1:
12265     ScalarType = MVT::i32;
12266     ShftAmt = 31;
12267     break;
12268   default:
12269     return SDValue();
12270   }
12271 
12272   if (Shft.getOpcode() != ISD::SRA)
12273     return SDValue();
12274   ConstantSDNode *N1 = isConstOrConstSplat(Shft.getOperand(1));
12275   if (!N1 || N1->getSExtValue() != ShftAmt)
12276     return SDValue();
12277 
12278   SDValue Mul = Shft.getOperand(0);
12279   if (Mul.getOpcode() != ISD::MUL)
12280     return SDValue();
12281 
12282   SDValue Ext0 = Mul.getOperand(0);
12283   SDValue Ext1 = Mul.getOperand(1);
12284   if (Ext0.getOpcode() != ISD::SIGN_EXTEND ||
12285       Ext1.getOpcode() != ISD::SIGN_EXTEND)
12286     return SDValue();
12287   EVT VecVT = Ext0.getOperand(0).getValueType();
12288   if (VecVT != MVT::v4i32 && VecVT != MVT::v8i16 && VecVT != MVT::v16i8)
12289     return SDValue();
12290   if (Ext1.getOperand(0).getValueType() != VecVT ||
12291       VecVT.getScalarType() != ScalarType ||
12292       VT.getScalarSizeInBits() < ScalarType.getScalarSizeInBits() * 2)
12293     return SDValue();
12294 
12295   SDLoc DL(Mul);
12296   SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, VecVT, Ext0.getOperand(0),
12297                                 Ext1.getOperand(0));
12298   return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, VQDMULH);
12299 }
12300 
PerformVSELECTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12301 static SDValue PerformVSELECTCombine(SDNode *N,
12302                                      TargetLowering::DAGCombinerInfo &DCI,
12303                                      const ARMSubtarget *Subtarget) {
12304   if (!Subtarget->hasMVEIntegerOps())
12305     return SDValue();
12306 
12307   if (SDValue V = PerformVQDMULHCombine(N, DCI.DAG))
12308     return V;
12309 
12310   // Transforms vselect(not(cond), lhs, rhs) into vselect(cond, rhs, lhs).
12311   //
12312   // We need to re-implement this optimization here as the implementation in the
12313   // Target-Independent DAGCombiner does not handle the kind of constant we make
12314   // (it calls isConstOrConstSplat with AllowTruncation set to false - and for
12315   // good reason, allowing truncation there would break other targets).
12316   //
12317   // Currently, this is only done for MVE, as it's the only target that benefits
12318   // from this transformation (e.g. VPNOT+VPSEL becomes a single VPSEL).
12319   if (N->getOperand(0).getOpcode() != ISD::XOR)
12320     return SDValue();
12321   SDValue XOR = N->getOperand(0);
12322 
12323   // Check if the XOR's RHS is either a 1, or a BUILD_VECTOR of 1s.
12324   // It is important to check with truncation allowed as the BUILD_VECTORs we
12325   // generate in those situations will truncate their operands.
12326   ConstantSDNode *Const =
12327       isConstOrConstSplat(XOR->getOperand(1), /*AllowUndefs*/ false,
12328                           /*AllowTruncation*/ true);
12329   if (!Const || !Const->isOne())
12330     return SDValue();
12331 
12332   // Rewrite into vselect(cond, rhs, lhs).
12333   SDValue Cond = XOR->getOperand(0);
12334   SDValue LHS = N->getOperand(1);
12335   SDValue RHS = N->getOperand(2);
12336   EVT Type = N->getValueType(0);
12337   return DCI.DAG.getNode(ISD::VSELECT, SDLoc(N), Type, Cond, RHS, LHS);
12338 }
12339 
PerformABSCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12340 static SDValue PerformABSCombine(SDNode *N,
12341                                   TargetLowering::DAGCombinerInfo &DCI,
12342                                   const ARMSubtarget *Subtarget) {
12343   SDValue res;
12344   SelectionDAG &DAG = DCI.DAG;
12345   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12346 
12347   if (TLI.isOperationLegal(N->getOpcode(), N->getValueType(0)))
12348     return SDValue();
12349 
12350   if (!TLI.expandABS(N, res, DAG))
12351       return SDValue();
12352 
12353   return res;
12354 }
12355 
12356 /// PerformADDECombine - Target-specific dag combine transform from
12357 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
12358 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
PerformADDECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12359 static SDValue PerformADDECombine(SDNode *N,
12360                                   TargetLowering::DAGCombinerInfo &DCI,
12361                                   const ARMSubtarget *Subtarget) {
12362   // Only ARM and Thumb2 support UMLAL/SMLAL.
12363   if (Subtarget->isThumb1Only())
12364     return PerformAddeSubeCombine(N, DCI, Subtarget);
12365 
12366   // Only perform the checks after legalize when the pattern is available.
12367   if (DCI.isBeforeLegalize()) return SDValue();
12368 
12369   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
12370 }
12371 
12372 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
12373 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
12374 /// called with the default operands, and if that fails, with commuted
12375 /// operands.
PerformADDCombineWithOperands(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12376 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
12377                                           TargetLowering::DAGCombinerInfo &DCI,
12378                                           const ARMSubtarget *Subtarget){
12379   // Attempt to create vpadd for this add.
12380   if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
12381     return Result;
12382 
12383   // Attempt to create vpaddl for this add.
12384   if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
12385     return Result;
12386   if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
12387                                                       Subtarget))
12388     return Result;
12389 
12390   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
12391   if (N0.getNode()->hasOneUse())
12392     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
12393       return Result;
12394   return SDValue();
12395 }
12396 
PerformADDVecReduce(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12397 static SDValue PerformADDVecReduce(SDNode *N,
12398                                    TargetLowering::DAGCombinerInfo &DCI,
12399                                    const ARMSubtarget *Subtarget) {
12400   if (!Subtarget->hasMVEIntegerOps() || N->getValueType(0) != MVT::i64)
12401     return SDValue();
12402 
12403   SDValue N0 = N->getOperand(0);
12404   SDValue N1 = N->getOperand(1);
12405 
12406   // We are looking for a i64 add of a VADDLVx. Due to these being i64's, this
12407   // will look like:
12408   //   t1: i32,i32 = ARMISD::VADDLVs x
12409   //   t2: i64 = build_pair t1, t1:1
12410   //   t3: i64 = add t2, y
12411   // We also need to check for sext / zext and commutitive adds.
12412   auto MakeVecReduce = [&](unsigned Opcode, unsigned OpcodeA, SDValue NA,
12413                            SDValue NB) {
12414     if (NB->getOpcode() != ISD::BUILD_PAIR)
12415       return SDValue();
12416     SDValue VecRed = NB->getOperand(0);
12417     if (VecRed->getOpcode() != Opcode || VecRed.getResNo() != 0 ||
12418         NB->getOperand(1) != SDValue(VecRed.getNode(), 1))
12419       return SDValue();
12420 
12421     SDLoc dl(N);
12422     SmallVector<SDValue, 4> Ops;
12423     Ops.push_back(DCI.DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, NA,
12424                                   DCI.DAG.getConstant(0, dl, MVT::i32)));
12425     Ops.push_back(DCI.DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, NA,
12426                                   DCI.DAG.getConstant(1, dl, MVT::i32)));
12427     for (unsigned i = 0, e = VecRed.getNumOperands(); i < e; i++)
12428       Ops.push_back(VecRed->getOperand(i));
12429     SDValue Red = DCI.DAG.getNode(OpcodeA, dl,
12430                                   DCI.DAG.getVTList({MVT::i32, MVT::i32}), Ops);
12431     return DCI.DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Red,
12432                            SDValue(Red.getNode(), 1));
12433   };
12434 
12435   if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N0, N1))
12436     return M;
12437   if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N0, N1))
12438     return M;
12439   if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N1, N0))
12440     return M;
12441   if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N1, N0))
12442     return M;
12443   if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N0, N1))
12444     return M;
12445   if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N0, N1))
12446     return M;
12447   if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N1, N0))
12448     return M;
12449   if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N1, N0))
12450     return M;
12451   if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N0, N1))
12452     return M;
12453   if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N0, N1))
12454     return M;
12455   if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N1, N0))
12456     return M;
12457   if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N1, N0))
12458     return M;
12459   if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N0, N1))
12460     return M;
12461   if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N0, N1))
12462     return M;
12463   if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N1, N0))
12464     return M;
12465   if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N1, N0))
12466     return M;
12467   return SDValue();
12468 }
12469 
12470 bool
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level) const12471 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
12472                                                  CombineLevel Level) const {
12473   if (Level == BeforeLegalizeTypes)
12474     return true;
12475 
12476   if (N->getOpcode() != ISD::SHL)
12477     return true;
12478 
12479   if (Subtarget->isThumb1Only()) {
12480     // Avoid making expensive immediates by commuting shifts. (This logic
12481     // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
12482     // for free.)
12483     if (N->getOpcode() != ISD::SHL)
12484       return true;
12485     SDValue N1 = N->getOperand(0);
12486     if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
12487         N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
12488       return true;
12489     if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
12490       if (Const->getAPIntValue().ult(256))
12491         return false;
12492       if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
12493           Const->getAPIntValue().sgt(-256))
12494         return false;
12495     }
12496     return true;
12497   }
12498 
12499   // Turn off commute-with-shift transform after legalization, so it doesn't
12500   // conflict with PerformSHLSimplify.  (We could try to detect when
12501   // PerformSHLSimplify would trigger more precisely, but it isn't
12502   // really necessary.)
12503   return false;
12504 }
12505 
shouldFoldConstantShiftPairToMask(const SDNode * N,CombineLevel Level) const12506 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
12507     const SDNode *N, CombineLevel Level) const {
12508   if (!Subtarget->isThumb1Only())
12509     return true;
12510 
12511   if (Level == BeforeLegalizeTypes)
12512     return true;
12513 
12514   return false;
12515 }
12516 
preferIncOfAddToSubOfNot(EVT VT) const12517 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
12518   if (!Subtarget->hasNEON()) {
12519     if (Subtarget->isThumb1Only())
12520       return VT.getScalarSizeInBits() <= 32;
12521     return true;
12522   }
12523   return VT.isScalarInteger();
12524 }
12525 
PerformSHLSimplify(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)12526 static SDValue PerformSHLSimplify(SDNode *N,
12527                                 TargetLowering::DAGCombinerInfo &DCI,
12528                                 const ARMSubtarget *ST) {
12529   // Allow the generic combiner to identify potential bswaps.
12530   if (DCI.isBeforeLegalize())
12531     return SDValue();
12532 
12533   // DAG combiner will fold:
12534   // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
12535   // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
12536   // Other code patterns that can be also be modified have the following form:
12537   // b + ((a << 1) | 510)
12538   // b + ((a << 1) & 510)
12539   // b + ((a << 1) ^ 510)
12540   // b + ((a << 1) + 510)
12541 
12542   // Many instructions can  perform the shift for free, but it requires both
12543   // the operands to be registers. If c1 << c2 is too large, a mov immediate
12544   // instruction will needed. So, unfold back to the original pattern if:
12545   // - if c1 and c2 are small enough that they don't require mov imms.
12546   // - the user(s) of the node can perform an shl
12547 
12548   // No shifted operands for 16-bit instructions.
12549   if (ST->isThumb() && ST->isThumb1Only())
12550     return SDValue();
12551 
12552   // Check that all the users could perform the shl themselves.
12553   for (auto U : N->uses()) {
12554     switch(U->getOpcode()) {
12555     default:
12556       return SDValue();
12557     case ISD::SUB:
12558     case ISD::ADD:
12559     case ISD::AND:
12560     case ISD::OR:
12561     case ISD::XOR:
12562     case ISD::SETCC:
12563     case ARMISD::CMP:
12564       // Check that the user isn't already using a constant because there
12565       // aren't any instructions that support an immediate operand and a
12566       // shifted operand.
12567       if (isa<ConstantSDNode>(U->getOperand(0)) ||
12568           isa<ConstantSDNode>(U->getOperand(1)))
12569         return SDValue();
12570 
12571       // Check that it's not already using a shift.
12572       if (U->getOperand(0).getOpcode() == ISD::SHL ||
12573           U->getOperand(1).getOpcode() == ISD::SHL)
12574         return SDValue();
12575       break;
12576     }
12577   }
12578 
12579   if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
12580       N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
12581     return SDValue();
12582 
12583   if (N->getOperand(0).getOpcode() != ISD::SHL)
12584     return SDValue();
12585 
12586   SDValue SHL = N->getOperand(0);
12587 
12588   auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
12589   auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
12590   if (!C1ShlC2 || !C2)
12591     return SDValue();
12592 
12593   APInt C2Int = C2->getAPIntValue();
12594   APInt C1Int = C1ShlC2->getAPIntValue();
12595 
12596   // Check that performing a lshr will not lose any information.
12597   APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
12598                                      C2Int.getBitWidth() - C2->getZExtValue());
12599   if ((C1Int & Mask) != C1Int)
12600     return SDValue();
12601 
12602   // Shift the first constant.
12603   C1Int.lshrInPlace(C2Int);
12604 
12605   // The immediates are encoded as an 8-bit value that can be rotated.
12606   auto LargeImm = [](const APInt &Imm) {
12607     unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
12608     return Imm.getBitWidth() - Zeros > 8;
12609   };
12610 
12611   if (LargeImm(C1Int) || LargeImm(C2Int))
12612     return SDValue();
12613 
12614   SelectionDAG &DAG = DCI.DAG;
12615   SDLoc dl(N);
12616   SDValue X = SHL.getOperand(0);
12617   SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
12618                               DAG.getConstant(C1Int, dl, MVT::i32));
12619   // Shift left to compensate for the lshr of C1Int.
12620   SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
12621 
12622   LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
12623              SHL.dump(); N->dump());
12624   LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
12625   return Res;
12626 }
12627 
12628 
12629 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
12630 ///
PerformADDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12631 static SDValue PerformADDCombine(SDNode *N,
12632                                  TargetLowering::DAGCombinerInfo &DCI,
12633                                  const ARMSubtarget *Subtarget) {
12634   SDValue N0 = N->getOperand(0);
12635   SDValue N1 = N->getOperand(1);
12636 
12637   // Only works one way, because it needs an immediate operand.
12638   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
12639     return Result;
12640 
12641   if (SDValue Result = PerformADDVecReduce(N, DCI, Subtarget))
12642     return Result;
12643 
12644   // First try with the default operand order.
12645   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
12646     return Result;
12647 
12648   // If that didn't work, try again with the operands commuted.
12649   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
12650 }
12651 
12652 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
12653 ///
PerformSUBCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12654 static SDValue PerformSUBCombine(SDNode *N,
12655                                  TargetLowering::DAGCombinerInfo &DCI,
12656                                  const ARMSubtarget *Subtarget) {
12657   SDValue N0 = N->getOperand(0);
12658   SDValue N1 = N->getOperand(1);
12659 
12660   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
12661   if (N1.getNode()->hasOneUse())
12662     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
12663       return Result;
12664 
12665   if (!Subtarget->hasMVEIntegerOps() || !N->getValueType(0).isVector())
12666     return SDValue();
12667 
12668   // Fold (sub (ARMvmovImm 0), (ARMvdup x)) -> (ARMvdup (sub 0, x))
12669   // so that we can readily pattern match more mve instructions which can use
12670   // a scalar operand.
12671   SDValue VDup = N->getOperand(1);
12672   if (VDup->getOpcode() != ARMISD::VDUP)
12673     return SDValue();
12674 
12675   SDValue VMov = N->getOperand(0);
12676   if (VMov->getOpcode() == ISD::BITCAST)
12677     VMov = VMov->getOperand(0);
12678 
12679   if (VMov->getOpcode() != ARMISD::VMOVIMM || !isZeroVector(VMov))
12680     return SDValue();
12681 
12682   SDLoc dl(N);
12683   SDValue Negate = DCI.DAG.getNode(ISD::SUB, dl, MVT::i32,
12684                                    DCI.DAG.getConstant(0, dl, MVT::i32),
12685                                    VDup->getOperand(0));
12686   return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), Negate);
12687 }
12688 
12689 /// PerformVMULCombine
12690 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
12691 /// special multiplier accumulator forwarding.
12692 ///   vmul d3, d0, d2
12693 ///   vmla d3, d1, d2
12694 /// is faster than
12695 ///   vadd d3, d0, d1
12696 ///   vmul d3, d3, d2
12697 //  However, for (A + B) * (A + B),
12698 //    vadd d2, d0, d1
12699 //    vmul d3, d0, d2
12700 //    vmla d3, d1, d2
12701 //  is slower than
12702 //    vadd d2, d0, d1
12703 //    vmul d3, d2, d2
PerformVMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12704 static SDValue PerformVMULCombine(SDNode *N,
12705                                   TargetLowering::DAGCombinerInfo &DCI,
12706                                   const ARMSubtarget *Subtarget) {
12707   if (!Subtarget->hasVMLxForwarding())
12708     return SDValue();
12709 
12710   SelectionDAG &DAG = DCI.DAG;
12711   SDValue N0 = N->getOperand(0);
12712   SDValue N1 = N->getOperand(1);
12713   unsigned Opcode = N0.getOpcode();
12714   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
12715       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
12716     Opcode = N1.getOpcode();
12717     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
12718         Opcode != ISD::FADD && Opcode != ISD::FSUB)
12719       return SDValue();
12720     std::swap(N0, N1);
12721   }
12722 
12723   if (N0 == N1)
12724     return SDValue();
12725 
12726   EVT VT = N->getValueType(0);
12727   SDLoc DL(N);
12728   SDValue N00 = N0->getOperand(0);
12729   SDValue N01 = N0->getOperand(1);
12730   return DAG.getNode(Opcode, DL, VT,
12731                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
12732                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
12733 }
12734 
PerformMVEVMULLCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)12735 static SDValue PerformMVEVMULLCombine(SDNode *N, SelectionDAG &DAG,
12736                                       const ARMSubtarget *Subtarget) {
12737   EVT VT = N->getValueType(0);
12738   if (VT != MVT::v2i64)
12739     return SDValue();
12740 
12741   SDValue N0 = N->getOperand(0);
12742   SDValue N1 = N->getOperand(1);
12743 
12744   auto IsSignExt = [&](SDValue Op) {
12745     if (Op->getOpcode() != ISD::SIGN_EXTEND_INREG)
12746       return SDValue();
12747     EVT VT = cast<VTSDNode>(Op->getOperand(1))->getVT();
12748     if (VT.getScalarSizeInBits() == 32)
12749       return Op->getOperand(0);
12750     return SDValue();
12751   };
12752   auto IsZeroExt = [&](SDValue Op) {
12753     // Zero extends are a little more awkward. At the point we are matching
12754     // this, we are looking for an AND with a (-1, 0, -1, 0) buildvector mask.
12755     // That might be before of after a bitcast depending on how the and is
12756     // placed. Because this has to look through bitcasts, it is currently only
12757     // supported on LE.
12758     if (!Subtarget->isLittle())
12759       return SDValue();
12760 
12761     SDValue And = Op;
12762     if (And->getOpcode() == ISD::BITCAST)
12763       And = And->getOperand(0);
12764     if (And->getOpcode() != ISD::AND)
12765       return SDValue();
12766     SDValue Mask = And->getOperand(1);
12767     if (Mask->getOpcode() == ISD::BITCAST)
12768       Mask = Mask->getOperand(0);
12769 
12770     if (Mask->getOpcode() != ISD::BUILD_VECTOR ||
12771         Mask.getValueType() != MVT::v4i32)
12772       return SDValue();
12773     if (isAllOnesConstant(Mask->getOperand(0)) &&
12774         isNullConstant(Mask->getOperand(1)) &&
12775         isAllOnesConstant(Mask->getOperand(2)) &&
12776         isNullConstant(Mask->getOperand(3)))
12777       return And->getOperand(0);
12778     return SDValue();
12779   };
12780 
12781   SDLoc dl(N);
12782   if (SDValue Op0 = IsSignExt(N0)) {
12783     if (SDValue Op1 = IsSignExt(N1)) {
12784       SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
12785       SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
12786       return DAG.getNode(ARMISD::VMULLs, dl, VT, New0a, New1a);
12787     }
12788   }
12789   if (SDValue Op0 = IsZeroExt(N0)) {
12790     if (SDValue Op1 = IsZeroExt(N1)) {
12791       SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
12792       SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
12793       return DAG.getNode(ARMISD::VMULLu, dl, VT, New0a, New1a);
12794     }
12795   }
12796 
12797   return SDValue();
12798 }
12799 
PerformMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12800 static SDValue PerformMULCombine(SDNode *N,
12801                                  TargetLowering::DAGCombinerInfo &DCI,
12802                                  const ARMSubtarget *Subtarget) {
12803   SelectionDAG &DAG = DCI.DAG;
12804 
12805   EVT VT = N->getValueType(0);
12806   if (Subtarget->hasMVEIntegerOps() && VT == MVT::v2i64)
12807     return PerformMVEVMULLCombine(N, DAG, Subtarget);
12808 
12809   if (Subtarget->isThumb1Only())
12810     return SDValue();
12811 
12812   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12813     return SDValue();
12814 
12815   if (VT.is64BitVector() || VT.is128BitVector())
12816     return PerformVMULCombine(N, DCI, Subtarget);
12817   if (VT != MVT::i32)
12818     return SDValue();
12819 
12820   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12821   if (!C)
12822     return SDValue();
12823 
12824   int64_t MulAmt = C->getSExtValue();
12825   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
12826 
12827   ShiftAmt = ShiftAmt & (32 - 1);
12828   SDValue V = N->getOperand(0);
12829   SDLoc DL(N);
12830 
12831   SDValue Res;
12832   MulAmt >>= ShiftAmt;
12833 
12834   if (MulAmt >= 0) {
12835     if (isPowerOf2_32(MulAmt - 1)) {
12836       // (mul x, 2^N + 1) => (add (shl x, N), x)
12837       Res = DAG.getNode(ISD::ADD, DL, VT,
12838                         V,
12839                         DAG.getNode(ISD::SHL, DL, VT,
12840                                     V,
12841                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
12842                                                     MVT::i32)));
12843     } else if (isPowerOf2_32(MulAmt + 1)) {
12844       // (mul x, 2^N - 1) => (sub (shl x, N), x)
12845       Res = DAG.getNode(ISD::SUB, DL, VT,
12846                         DAG.getNode(ISD::SHL, DL, VT,
12847                                     V,
12848                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
12849                                                     MVT::i32)),
12850                         V);
12851     } else
12852       return SDValue();
12853   } else {
12854     uint64_t MulAmtAbs = -MulAmt;
12855     if (isPowerOf2_32(MulAmtAbs + 1)) {
12856       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
12857       Res = DAG.getNode(ISD::SUB, DL, VT,
12858                         V,
12859                         DAG.getNode(ISD::SHL, DL, VT,
12860                                     V,
12861                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
12862                                                     MVT::i32)));
12863     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
12864       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
12865       Res = DAG.getNode(ISD::ADD, DL, VT,
12866                         V,
12867                         DAG.getNode(ISD::SHL, DL, VT,
12868                                     V,
12869                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
12870                                                     MVT::i32)));
12871       Res = DAG.getNode(ISD::SUB, DL, VT,
12872                         DAG.getConstant(0, DL, MVT::i32), Res);
12873     } else
12874       return SDValue();
12875   }
12876 
12877   if (ShiftAmt != 0)
12878     Res = DAG.getNode(ISD::SHL, DL, VT,
12879                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
12880 
12881   // Do not add new nodes to DAG combiner worklist.
12882   DCI.CombineTo(N, Res, false);
12883   return SDValue();
12884 }
12885 
CombineANDShift(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12886 static SDValue CombineANDShift(SDNode *N,
12887                                TargetLowering::DAGCombinerInfo &DCI,
12888                                const ARMSubtarget *Subtarget) {
12889   // Allow DAGCombine to pattern-match before we touch the canonical form.
12890   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12891     return SDValue();
12892 
12893   if (N->getValueType(0) != MVT::i32)
12894     return SDValue();
12895 
12896   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12897   if (!N1C)
12898     return SDValue();
12899 
12900   uint32_t C1 = (uint32_t)N1C->getZExtValue();
12901   // Don't transform uxtb/uxth.
12902   if (C1 == 255 || C1 == 65535)
12903     return SDValue();
12904 
12905   SDNode *N0 = N->getOperand(0).getNode();
12906   if (!N0->hasOneUse())
12907     return SDValue();
12908 
12909   if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
12910     return SDValue();
12911 
12912   bool LeftShift = N0->getOpcode() == ISD::SHL;
12913 
12914   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
12915   if (!N01C)
12916     return SDValue();
12917 
12918   uint32_t C2 = (uint32_t)N01C->getZExtValue();
12919   if (!C2 || C2 >= 32)
12920     return SDValue();
12921 
12922   // Clear irrelevant bits in the mask.
12923   if (LeftShift)
12924     C1 &= (-1U << C2);
12925   else
12926     C1 &= (-1U >> C2);
12927 
12928   SelectionDAG &DAG = DCI.DAG;
12929   SDLoc DL(N);
12930 
12931   // We have a pattern of the form "(and (shl x, c2) c1)" or
12932   // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
12933   // transform to a pair of shifts, to save materializing c1.
12934 
12935   // First pattern: right shift, then mask off leading bits.
12936   // FIXME: Use demanded bits?
12937   if (!LeftShift && isMask_32(C1)) {
12938     uint32_t C3 = countLeadingZeros(C1);
12939     if (C2 < C3) {
12940       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
12941                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
12942       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
12943                          DAG.getConstant(C3, DL, MVT::i32));
12944     }
12945   }
12946 
12947   // First pattern, reversed: left shift, then mask off trailing bits.
12948   if (LeftShift && isMask_32(~C1)) {
12949     uint32_t C3 = countTrailingZeros(C1);
12950     if (C2 < C3) {
12951       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
12952                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
12953       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
12954                          DAG.getConstant(C3, DL, MVT::i32));
12955     }
12956   }
12957 
12958   // Second pattern: left shift, then mask off leading bits.
12959   // FIXME: Use demanded bits?
12960   if (LeftShift && isShiftedMask_32(C1)) {
12961     uint32_t Trailing = countTrailingZeros(C1);
12962     uint32_t C3 = countLeadingZeros(C1);
12963     if (Trailing == C2 && C2 + C3 < 32) {
12964       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
12965                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
12966       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
12967                         DAG.getConstant(C3, DL, MVT::i32));
12968     }
12969   }
12970 
12971   // Second pattern, reversed: right shift, then mask off trailing bits.
12972   // FIXME: Handle other patterns of known/demanded bits.
12973   if (!LeftShift && isShiftedMask_32(C1)) {
12974     uint32_t Leading = countLeadingZeros(C1);
12975     uint32_t C3 = countTrailingZeros(C1);
12976     if (Leading == C2 && C2 + C3 < 32) {
12977       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
12978                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
12979       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
12980                          DAG.getConstant(C3, DL, MVT::i32));
12981     }
12982   }
12983 
12984   // FIXME: Transform "(and (shl x, c2) c1)" ->
12985   // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
12986   // c1.
12987   return SDValue();
12988 }
12989 
PerformANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12990 static SDValue PerformANDCombine(SDNode *N,
12991                                  TargetLowering::DAGCombinerInfo &DCI,
12992                                  const ARMSubtarget *Subtarget) {
12993   // Attempt to use immediate-form VBIC
12994   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
12995   SDLoc dl(N);
12996   EVT VT = N->getValueType(0);
12997   SelectionDAG &DAG = DCI.DAG;
12998 
12999   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT) || VT == MVT::v4i1 ||
13000       VT == MVT::v8i1 || VT == MVT::v16i1)
13001     return SDValue();
13002 
13003   APInt SplatBits, SplatUndef;
13004   unsigned SplatBitSize;
13005   bool HasAnyUndefs;
13006   if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
13007       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
13008     if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
13009         SplatBitSize == 64) {
13010       EVT VbicVT;
13011       SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(),
13012                                       SplatUndef.getZExtValue(), SplatBitSize,
13013                                       DAG, dl, VbicVT, VT, OtherModImm);
13014       if (Val.getNode()) {
13015         SDValue Input =
13016           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
13017         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
13018         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
13019       }
13020     }
13021   }
13022 
13023   if (!Subtarget->isThumb1Only()) {
13024     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
13025     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
13026       return Result;
13027 
13028     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
13029       return Result;
13030   }
13031 
13032   if (Subtarget->isThumb1Only())
13033     if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
13034       return Result;
13035 
13036   return SDValue();
13037 }
13038 
13039 // Try combining OR nodes to SMULWB, SMULWT.
PerformORCombineToSMULWBT(SDNode * OR,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13040 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
13041                                          TargetLowering::DAGCombinerInfo &DCI,
13042                                          const ARMSubtarget *Subtarget) {
13043   if (!Subtarget->hasV6Ops() ||
13044       (Subtarget->isThumb() &&
13045        (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
13046     return SDValue();
13047 
13048   SDValue SRL = OR->getOperand(0);
13049   SDValue SHL = OR->getOperand(1);
13050 
13051   if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
13052     SRL = OR->getOperand(1);
13053     SHL = OR->getOperand(0);
13054   }
13055   if (!isSRL16(SRL) || !isSHL16(SHL))
13056     return SDValue();
13057 
13058   // The first operands to the shifts need to be the two results from the
13059   // same smul_lohi node.
13060   if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
13061        SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
13062     return SDValue();
13063 
13064   SDNode *SMULLOHI = SRL.getOperand(0).getNode();
13065   if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
13066       SHL.getOperand(0) != SDValue(SMULLOHI, 1))
13067     return SDValue();
13068 
13069   // Now we have:
13070   // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
13071   // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
13072   // For SMUWB the 16-bit value will signed extended somehow.
13073   // For SMULWT only the SRA is required.
13074   // Check both sides of SMUL_LOHI
13075   SDValue OpS16 = SMULLOHI->getOperand(0);
13076   SDValue OpS32 = SMULLOHI->getOperand(1);
13077 
13078   SelectionDAG &DAG = DCI.DAG;
13079   if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
13080     OpS16 = OpS32;
13081     OpS32 = SMULLOHI->getOperand(0);
13082   }
13083 
13084   SDLoc dl(OR);
13085   unsigned Opcode = 0;
13086   if (isS16(OpS16, DAG))
13087     Opcode = ARMISD::SMULWB;
13088   else if (isSRA16(OpS16)) {
13089     Opcode = ARMISD::SMULWT;
13090     OpS16 = OpS16->getOperand(0);
13091   }
13092   else
13093     return SDValue();
13094 
13095   SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
13096   DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
13097   return SDValue(OR, 0);
13098 }
13099 
PerformORCombineToBFI(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13100 static SDValue PerformORCombineToBFI(SDNode *N,
13101                                      TargetLowering::DAGCombinerInfo &DCI,
13102                                      const ARMSubtarget *Subtarget) {
13103   // BFI is only available on V6T2+
13104   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
13105     return SDValue();
13106 
13107   EVT VT = N->getValueType(0);
13108   SDValue N0 = N->getOperand(0);
13109   SDValue N1 = N->getOperand(1);
13110   SelectionDAG &DAG = DCI.DAG;
13111   SDLoc DL(N);
13112   // 1) or (and A, mask), val => ARMbfi A, val, mask
13113   //      iff (val & mask) == val
13114   //
13115   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
13116   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
13117   //          && mask == ~mask2
13118   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
13119   //          && ~mask == mask2
13120   //  (i.e., copy a bitfield value into another bitfield of the same width)
13121 
13122   if (VT != MVT::i32)
13123     return SDValue();
13124 
13125   SDValue N00 = N0.getOperand(0);
13126 
13127   // The value and the mask need to be constants so we can verify this is
13128   // actually a bitfield set. If the mask is 0xffff, we can do better
13129   // via a movt instruction, so don't use BFI in that case.
13130   SDValue MaskOp = N0.getOperand(1);
13131   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
13132   if (!MaskC)
13133     return SDValue();
13134   unsigned Mask = MaskC->getZExtValue();
13135   if (Mask == 0xffff)
13136     return SDValue();
13137   SDValue Res;
13138   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
13139   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13140   if (N1C) {
13141     unsigned Val = N1C->getZExtValue();
13142     if ((Val & ~Mask) != Val)
13143       return SDValue();
13144 
13145     if (ARM::isBitFieldInvertedMask(Mask)) {
13146       Val >>= countTrailingZeros(~Mask);
13147 
13148       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
13149                         DAG.getConstant(Val, DL, MVT::i32),
13150                         DAG.getConstant(Mask, DL, MVT::i32));
13151 
13152       DCI.CombineTo(N, Res, false);
13153       // Return value from the original node to inform the combiner than N is
13154       // now dead.
13155       return SDValue(N, 0);
13156     }
13157   } else if (N1.getOpcode() == ISD::AND) {
13158     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
13159     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
13160     if (!N11C)
13161       return SDValue();
13162     unsigned Mask2 = N11C->getZExtValue();
13163 
13164     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
13165     // as is to match.
13166     if (ARM::isBitFieldInvertedMask(Mask) &&
13167         (Mask == ~Mask2)) {
13168       // The pack halfword instruction works better for masks that fit it,
13169       // so use that when it's available.
13170       if (Subtarget->hasDSP() &&
13171           (Mask == 0xffff || Mask == 0xffff0000))
13172         return SDValue();
13173       // 2a
13174       unsigned amt = countTrailingZeros(Mask2);
13175       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
13176                         DAG.getConstant(amt, DL, MVT::i32));
13177       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
13178                         DAG.getConstant(Mask, DL, MVT::i32));
13179       DCI.CombineTo(N, Res, false);
13180       // Return value from the original node to inform the combiner than N is
13181       // now dead.
13182       return SDValue(N, 0);
13183     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
13184                (~Mask == Mask2)) {
13185       // The pack halfword instruction works better for masks that fit it,
13186       // so use that when it's available.
13187       if (Subtarget->hasDSP() &&
13188           (Mask2 == 0xffff || Mask2 == 0xffff0000))
13189         return SDValue();
13190       // 2b
13191       unsigned lsb = countTrailingZeros(Mask);
13192       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
13193                         DAG.getConstant(lsb, DL, MVT::i32));
13194       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
13195                         DAG.getConstant(Mask2, DL, MVT::i32));
13196       DCI.CombineTo(N, Res, false);
13197       // Return value from the original node to inform the combiner than N is
13198       // now dead.
13199       return SDValue(N, 0);
13200     }
13201   }
13202 
13203   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
13204       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
13205       ARM::isBitFieldInvertedMask(~Mask)) {
13206     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
13207     // where lsb(mask) == #shamt and masked bits of B are known zero.
13208     SDValue ShAmt = N00.getOperand(1);
13209     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
13210     unsigned LSB = countTrailingZeros(Mask);
13211     if (ShAmtC != LSB)
13212       return SDValue();
13213 
13214     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
13215                       DAG.getConstant(~Mask, DL, MVT::i32));
13216 
13217     DCI.CombineTo(N, Res, false);
13218     // Return value from the original node to inform the combiner than N is
13219     // now dead.
13220     return SDValue(N, 0);
13221   }
13222 
13223   return SDValue();
13224 }
13225 
isValidMVECond(unsigned CC,bool IsFloat)13226 static bool isValidMVECond(unsigned CC, bool IsFloat) {
13227   switch (CC) {
13228   case ARMCC::EQ:
13229   case ARMCC::NE:
13230   case ARMCC::LE:
13231   case ARMCC::GT:
13232   case ARMCC::GE:
13233   case ARMCC::LT:
13234     return true;
13235   case ARMCC::HS:
13236   case ARMCC::HI:
13237     return !IsFloat;
13238   default:
13239     return false;
13240   };
13241 }
13242 
getVCMPCondCode(SDValue N)13243 static ARMCC::CondCodes getVCMPCondCode(SDValue N) {
13244   if (N->getOpcode() == ARMISD::VCMP)
13245     return (ARMCC::CondCodes)N->getConstantOperandVal(2);
13246   else if (N->getOpcode() == ARMISD::VCMPZ)
13247     return (ARMCC::CondCodes)N->getConstantOperandVal(1);
13248   else
13249     llvm_unreachable("Not a VCMP/VCMPZ!");
13250 }
13251 
CanInvertMVEVCMP(SDValue N)13252 static bool CanInvertMVEVCMP(SDValue N) {
13253   ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N));
13254   return isValidMVECond(CC, N->getOperand(0).getValueType().isFloatingPoint());
13255 }
13256 
PerformORCombine_i1(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13257 static SDValue PerformORCombine_i1(SDNode *N,
13258                                    TargetLowering::DAGCombinerInfo &DCI,
13259                                    const ARMSubtarget *Subtarget) {
13260   // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
13261   // together with predicates
13262   EVT VT = N->getValueType(0);
13263   SDLoc DL(N);
13264   SDValue N0 = N->getOperand(0);
13265   SDValue N1 = N->getOperand(1);
13266 
13267   auto IsFreelyInvertable = [&](SDValue V) {
13268     if (V->getOpcode() == ARMISD::VCMP || V->getOpcode() == ARMISD::VCMPZ)
13269       return CanInvertMVEVCMP(V);
13270     return false;
13271   };
13272 
13273   // At least one operand must be freely invertable.
13274   if (!(IsFreelyInvertable(N0) || IsFreelyInvertable(N1)))
13275     return SDValue();
13276 
13277   SDValue NewN0 = DCI.DAG.getLogicalNOT(DL, N0, VT);
13278   SDValue NewN1 = DCI.DAG.getLogicalNOT(DL, N1, VT);
13279   SDValue And = DCI.DAG.getNode(ISD::AND, DL, VT, NewN0, NewN1);
13280   return DCI.DAG.getLogicalNOT(DL, And, VT);
13281 }
13282 
13283 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
PerformORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13284 static SDValue PerformORCombine(SDNode *N,
13285                                 TargetLowering::DAGCombinerInfo &DCI,
13286                                 const ARMSubtarget *Subtarget) {
13287   // Attempt to use immediate-form VORR
13288   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
13289   SDLoc dl(N);
13290   EVT VT = N->getValueType(0);
13291   SelectionDAG &DAG = DCI.DAG;
13292 
13293   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
13294     return SDValue();
13295 
13296   if (Subtarget->hasMVEIntegerOps() &&
13297       (VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1))
13298     return PerformORCombine_i1(N, DCI, Subtarget);
13299 
13300   APInt SplatBits, SplatUndef;
13301   unsigned SplatBitSize;
13302   bool HasAnyUndefs;
13303   if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
13304       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
13305     if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
13306         SplatBitSize == 64) {
13307       EVT VorrVT;
13308       SDValue Val =
13309           isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
13310                             SplatBitSize, DAG, dl, VorrVT, VT, OtherModImm);
13311       if (Val.getNode()) {
13312         SDValue Input =
13313           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
13314         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
13315         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
13316       }
13317     }
13318   }
13319 
13320   if (!Subtarget->isThumb1Only()) {
13321     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
13322     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
13323       return Result;
13324     if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
13325       return Result;
13326   }
13327 
13328   SDValue N0 = N->getOperand(0);
13329   SDValue N1 = N->getOperand(1);
13330 
13331   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
13332   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
13333       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
13334 
13335     // The code below optimizes (or (and X, Y), Z).
13336     // The AND operand needs to have a single user to make these optimizations
13337     // profitable.
13338     if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
13339       return SDValue();
13340 
13341     APInt SplatUndef;
13342     unsigned SplatBitSize;
13343     bool HasAnyUndefs;
13344 
13345     APInt SplatBits0, SplatBits1;
13346     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
13347     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
13348     // Ensure that the second operand of both ands are constants
13349     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
13350                                       HasAnyUndefs) && !HasAnyUndefs) {
13351         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
13352                                           HasAnyUndefs) && !HasAnyUndefs) {
13353             // Ensure that the bit width of the constants are the same and that
13354             // the splat arguments are logical inverses as per the pattern we
13355             // are trying to simplify.
13356             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
13357                 SplatBits0 == ~SplatBits1) {
13358                 // Canonicalize the vector type to make instruction selection
13359                 // simpler.
13360                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
13361                 SDValue Result = DAG.getNode(ARMISD::VBSP, dl, CanonicalVT,
13362                                              N0->getOperand(1),
13363                                              N0->getOperand(0),
13364                                              N1->getOperand(0));
13365                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
13366             }
13367         }
13368     }
13369   }
13370 
13371   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
13372   // reasonable.
13373   if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
13374     if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
13375       return Res;
13376   }
13377 
13378   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
13379     return Result;
13380 
13381   return SDValue();
13382 }
13383 
PerformXORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13384 static SDValue PerformXORCombine(SDNode *N,
13385                                  TargetLowering::DAGCombinerInfo &DCI,
13386                                  const ARMSubtarget *Subtarget) {
13387   EVT VT = N->getValueType(0);
13388   SelectionDAG &DAG = DCI.DAG;
13389 
13390   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
13391     return SDValue();
13392 
13393   if (!Subtarget->isThumb1Only()) {
13394     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
13395     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
13396       return Result;
13397 
13398     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
13399       return Result;
13400   }
13401 
13402   if (Subtarget->hasMVEIntegerOps()) {
13403     // fold (xor(vcmp/z, 1)) into a vcmp with the opposite condition.
13404     SDValue N0 = N->getOperand(0);
13405     SDValue N1 = N->getOperand(1);
13406     const TargetLowering *TLI = Subtarget->getTargetLowering();
13407     if (TLI->isConstTrueVal(N1.getNode()) &&
13408         (N0->getOpcode() == ARMISD::VCMP || N0->getOpcode() == ARMISD::VCMPZ)) {
13409       if (CanInvertMVEVCMP(N0)) {
13410         SDLoc DL(N0);
13411         ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N0));
13412 
13413         SmallVector<SDValue, 4> Ops;
13414         Ops.push_back(N0->getOperand(0));
13415         if (N0->getOpcode() == ARMISD::VCMP)
13416           Ops.push_back(N0->getOperand(1));
13417         Ops.push_back(DCI.DAG.getConstant(CC, DL, MVT::i32));
13418         return DCI.DAG.getNode(N0->getOpcode(), DL, N0->getValueType(0), Ops);
13419       }
13420     }
13421   }
13422 
13423   return SDValue();
13424 }
13425 
13426 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
13427 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
13428 // their position in "to" (Rd).
ParseBFI(SDNode * N,APInt & ToMask,APInt & FromMask)13429 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
13430   assert(N->getOpcode() == ARMISD::BFI);
13431 
13432   SDValue From = N->getOperand(1);
13433   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
13434   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
13435 
13436   // If the Base came from a SHR #C, we can deduce that it is really testing bit
13437   // #C in the base of the SHR.
13438   if (From->getOpcode() == ISD::SRL &&
13439       isa<ConstantSDNode>(From->getOperand(1))) {
13440     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
13441     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
13442     FromMask <<= Shift.getLimitedValue(31);
13443     From = From->getOperand(0);
13444   }
13445 
13446   return From;
13447 }
13448 
13449 // If A and B contain one contiguous set of bits, does A | B == A . B?
13450 //
13451 // Neither A nor B must be zero.
BitsProperlyConcatenate(const APInt & A,const APInt & B)13452 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
13453   unsigned LastActiveBitInA =  A.countTrailingZeros();
13454   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
13455   return LastActiveBitInA - 1 == FirstActiveBitInB;
13456 }
13457 
FindBFIToCombineWith(SDNode * N)13458 static SDValue FindBFIToCombineWith(SDNode *N) {
13459   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
13460   // if one exists.
13461   APInt ToMask, FromMask;
13462   SDValue From = ParseBFI(N, ToMask, FromMask);
13463   SDValue To = N->getOperand(0);
13464 
13465   // Now check for a compatible BFI to merge with. We can pass through BFIs that
13466   // aren't compatible, but not if they set the same bit in their destination as
13467   // we do (or that of any BFI we're going to combine with).
13468   SDValue V = To;
13469   APInt CombinedToMask = ToMask;
13470   while (V.getOpcode() == ARMISD::BFI) {
13471     APInt NewToMask, NewFromMask;
13472     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
13473     if (NewFrom != From) {
13474       // This BFI has a different base. Keep going.
13475       CombinedToMask |= NewToMask;
13476       V = V.getOperand(0);
13477       continue;
13478     }
13479 
13480     // Do the written bits conflict with any we've seen so far?
13481     if ((NewToMask & CombinedToMask).getBoolValue())
13482       // Conflicting bits - bail out because going further is unsafe.
13483       return SDValue();
13484 
13485     // Are the new bits contiguous when combined with the old bits?
13486     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
13487         BitsProperlyConcatenate(FromMask, NewFromMask))
13488       return V;
13489     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
13490         BitsProperlyConcatenate(NewFromMask, FromMask))
13491       return V;
13492 
13493     // We've seen a write to some bits, so track it.
13494     CombinedToMask |= NewToMask;
13495     // Keep going...
13496     V = V.getOperand(0);
13497   }
13498 
13499   return SDValue();
13500 }
13501 
PerformBFICombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13502 static SDValue PerformBFICombine(SDNode *N,
13503                                  TargetLowering::DAGCombinerInfo &DCI) {
13504   SDValue N1 = N->getOperand(1);
13505   if (N1.getOpcode() == ISD::AND) {
13506     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
13507     // the bits being cleared by the AND are not demanded by the BFI.
13508     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
13509     if (!N11C)
13510       return SDValue();
13511     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
13512     unsigned LSB = countTrailingZeros(~InvMask);
13513     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
13514     assert(Width <
13515                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
13516            "undefined behavior");
13517     unsigned Mask = (1u << Width) - 1;
13518     unsigned Mask2 = N11C->getZExtValue();
13519     if ((Mask & (~Mask2)) == 0)
13520       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
13521                              N->getOperand(0), N1.getOperand(0),
13522                              N->getOperand(2));
13523   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
13524     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
13525     // Keep track of any consecutive bits set that all come from the same base
13526     // value. We can combine these together into a single BFI.
13527     SDValue CombineBFI = FindBFIToCombineWith(N);
13528     if (CombineBFI == SDValue())
13529       return SDValue();
13530 
13531     // We've found a BFI.
13532     APInt ToMask1, FromMask1;
13533     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
13534 
13535     APInt ToMask2, FromMask2;
13536     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
13537     assert(From1 == From2);
13538     (void)From2;
13539 
13540     // First, unlink CombineBFI.
13541     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
13542     // Then create a new BFI, combining the two together.
13543     APInt NewFromMask = FromMask1 | FromMask2;
13544     APInt NewToMask = ToMask1 | ToMask2;
13545 
13546     EVT VT = N->getValueType(0);
13547     SDLoc dl(N);
13548 
13549     if (NewFromMask[0] == 0)
13550       From1 = DCI.DAG.getNode(
13551         ISD::SRL, dl, VT, From1,
13552         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
13553     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
13554                            DCI.DAG.getConstant(~NewToMask, dl, VT));
13555   }
13556   return SDValue();
13557 }
13558 
13559 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
13560 /// ARMISD::VMOVRRD.
PerformVMOVRRDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13561 static SDValue PerformVMOVRRDCombine(SDNode *N,
13562                                      TargetLowering::DAGCombinerInfo &DCI,
13563                                      const ARMSubtarget *Subtarget) {
13564   // vmovrrd(vmovdrr x, y) -> x,y
13565   SDValue InDouble = N->getOperand(0);
13566   if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
13567     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
13568 
13569   // vmovrrd(load f64) -> (load i32), (load i32)
13570   SDNode *InNode = InDouble.getNode();
13571   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
13572       InNode->getValueType(0) == MVT::f64 &&
13573       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
13574       !cast<LoadSDNode>(InNode)->isVolatile()) {
13575     // TODO: Should this be done for non-FrameIndex operands?
13576     LoadSDNode *LD = cast<LoadSDNode>(InNode);
13577 
13578     SelectionDAG &DAG = DCI.DAG;
13579     SDLoc DL(LD);
13580     SDValue BasePtr = LD->getBasePtr();
13581     SDValue NewLD1 =
13582         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
13583                     LD->getAlignment(), LD->getMemOperand()->getFlags());
13584 
13585     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
13586                                     DAG.getConstant(4, DL, MVT::i32));
13587 
13588     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr,
13589                                  LD->getPointerInfo().getWithOffset(4),
13590                                  std::min(4U, LD->getAlignment()),
13591                                  LD->getMemOperand()->getFlags());
13592 
13593     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
13594     if (DCI.DAG.getDataLayout().isBigEndian())
13595       std::swap (NewLD1, NewLD2);
13596     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
13597     return Result;
13598   }
13599 
13600   return SDValue();
13601 }
13602 
13603 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
13604 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
PerformVMOVDRRCombine(SDNode * N,SelectionDAG & DAG)13605 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
13606   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
13607   SDValue Op0 = N->getOperand(0);
13608   SDValue Op1 = N->getOperand(1);
13609   if (Op0.getOpcode() == ISD::BITCAST)
13610     Op0 = Op0.getOperand(0);
13611   if (Op1.getOpcode() == ISD::BITCAST)
13612     Op1 = Op1.getOperand(0);
13613   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
13614       Op0.getNode() == Op1.getNode() &&
13615       Op0.getResNo() == 0 && Op1.getResNo() == 1)
13616     return DAG.getNode(ISD::BITCAST, SDLoc(N),
13617                        N->getValueType(0), Op0.getOperand(0));
13618   return SDValue();
13619 }
13620 
PerformVMOVhrCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13621 static SDValue PerformVMOVhrCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
13622   SDValue Op0 = N->getOperand(0);
13623 
13624   // VMOVhr (VMOVrh (X)) -> X
13625   if (Op0->getOpcode() == ARMISD::VMOVrh)
13626     return Op0->getOperand(0);
13627 
13628   // FullFP16: half values are passed in S-registers, and we don't
13629   // need any of the bitcast and moves:
13630   //
13631   //     t2: f32,ch = CopyFromReg t0, Register:f32 %0
13632   //   t5: i32 = bitcast t2
13633   // t18: f16 = ARMISD::VMOVhr t5
13634   if (Op0->getOpcode() == ISD::BITCAST) {
13635     SDValue Copy = Op0->getOperand(0);
13636     if (Copy.getValueType() == MVT::f32 &&
13637         Copy->getOpcode() == ISD::CopyFromReg) {
13638       SDValue Ops[] = {Copy->getOperand(0), Copy->getOperand(1)};
13639       SDValue NewCopy =
13640           DCI.DAG.getNode(ISD::CopyFromReg, SDLoc(N), N->getValueType(0), Ops);
13641       return NewCopy;
13642     }
13643   }
13644 
13645   // fold (VMOVhr (load x)) -> (load (f16*)x)
13646   if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(Op0)) {
13647     if (LN0->hasOneUse() && LN0->isUnindexed() &&
13648         LN0->getMemoryVT() == MVT::i16) {
13649       SDValue Load =
13650           DCI.DAG.getLoad(N->getValueType(0), SDLoc(N), LN0->getChain(),
13651                           LN0->getBasePtr(), LN0->getMemOperand());
13652       DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
13653       DCI.DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), Load.getValue(1));
13654       return Load;
13655     }
13656   }
13657 
13658   // Only the bottom 16 bits of the source register are used.
13659   APInt DemandedMask = APInt::getLowBitsSet(32, 16);
13660   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
13661   if (TLI.SimplifyDemandedBits(Op0, DemandedMask, DCI))
13662     return SDValue(N, 0);
13663 
13664   return SDValue();
13665 }
13666 
PerformVMOVrhCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13667 static SDValue PerformVMOVrhCombine(SDNode *N,
13668                                     TargetLowering::DAGCombinerInfo &DCI) {
13669   SDValue N0 = N->getOperand(0);
13670   EVT VT = N->getValueType(0);
13671 
13672   // fold (VMOVrh (fpconst x)) -> const x
13673   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N0)) {
13674     APFloat V = C->getValueAPF();
13675     return DCI.DAG.getConstant(V.bitcastToAPInt().getZExtValue(), SDLoc(N), VT);
13676   }
13677 
13678   // fold (VMOVrh (load x)) -> (zextload (i16*)x)
13679   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse()) {
13680     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
13681 
13682     SDValue Load =
13683         DCI.DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, LN0->getChain(),
13684                            LN0->getBasePtr(), MVT::i16, LN0->getMemOperand());
13685     DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
13686     DCI.DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
13687     return Load;
13688   }
13689 
13690   // Fold VMOVrh(extract(x, n)) -> vgetlaneu(x, n)
13691   if (N0->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
13692       isa<ConstantSDNode>(N0->getOperand(1)))
13693     return DCI.DAG.getNode(ARMISD::VGETLANEu, SDLoc(N), VT, N0->getOperand(0),
13694                            N0->getOperand(1));
13695 
13696   return SDValue();
13697 }
13698 
13699 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
13700 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
13701 /// i64 vector to have f64 elements, since the value can then be loaded
13702 /// directly into a VFP register.
hasNormalLoadOperand(SDNode * N)13703 static bool hasNormalLoadOperand(SDNode *N) {
13704   unsigned NumElts = N->getValueType(0).getVectorNumElements();
13705   for (unsigned i = 0; i < NumElts; ++i) {
13706     SDNode *Elt = N->getOperand(i).getNode();
13707     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
13708       return true;
13709   }
13710   return false;
13711 }
13712 
13713 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
13714 /// ISD::BUILD_VECTOR.
PerformBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13715 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
13716                                           TargetLowering::DAGCombinerInfo &DCI,
13717                                           const ARMSubtarget *Subtarget) {
13718   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
13719   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
13720   // into a pair of GPRs, which is fine when the value is used as a scalar,
13721   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
13722   SelectionDAG &DAG = DCI.DAG;
13723   if (N->getNumOperands() == 2)
13724     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
13725       return RV;
13726 
13727   // Load i64 elements as f64 values so that type legalization does not split
13728   // them up into i32 values.
13729   EVT VT = N->getValueType(0);
13730   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
13731     return SDValue();
13732   SDLoc dl(N);
13733   SmallVector<SDValue, 8> Ops;
13734   unsigned NumElts = VT.getVectorNumElements();
13735   for (unsigned i = 0; i < NumElts; ++i) {
13736     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
13737     Ops.push_back(V);
13738     // Make the DAGCombiner fold the bitcast.
13739     DCI.AddToWorklist(V.getNode());
13740   }
13741   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
13742   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
13743   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
13744 }
13745 
13746 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
13747 static SDValue
PerformARMBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13748 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
13749   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
13750   // At that time, we may have inserted bitcasts from integer to float.
13751   // If these bitcasts have survived DAGCombine, change the lowering of this
13752   // BUILD_VECTOR in something more vector friendly, i.e., that does not
13753   // force to use floating point types.
13754 
13755   // Make sure we can change the type of the vector.
13756   // This is possible iff:
13757   // 1. The vector is only used in a bitcast to a integer type. I.e.,
13758   //    1.1. Vector is used only once.
13759   //    1.2. Use is a bit convert to an integer type.
13760   // 2. The size of its operands are 32-bits (64-bits are not legal).
13761   EVT VT = N->getValueType(0);
13762   EVT EltVT = VT.getVectorElementType();
13763 
13764   // Check 1.1. and 2.
13765   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
13766     return SDValue();
13767 
13768   // By construction, the input type must be float.
13769   assert(EltVT == MVT::f32 && "Unexpected type!");
13770 
13771   // Check 1.2.
13772   SDNode *Use = *N->use_begin();
13773   if (Use->getOpcode() != ISD::BITCAST ||
13774       Use->getValueType(0).isFloatingPoint())
13775     return SDValue();
13776 
13777   // Check profitability.
13778   // Model is, if more than half of the relevant operands are bitcast from
13779   // i32, turn the build_vector into a sequence of insert_vector_elt.
13780   // Relevant operands are everything that is not statically
13781   // (i.e., at compile time) bitcasted.
13782   unsigned NumOfBitCastedElts = 0;
13783   unsigned NumElts = VT.getVectorNumElements();
13784   unsigned NumOfRelevantElts = NumElts;
13785   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
13786     SDValue Elt = N->getOperand(Idx);
13787     if (Elt->getOpcode() == ISD::BITCAST) {
13788       // Assume only bit cast to i32 will go away.
13789       if (Elt->getOperand(0).getValueType() == MVT::i32)
13790         ++NumOfBitCastedElts;
13791     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
13792       // Constants are statically casted, thus do not count them as
13793       // relevant operands.
13794       --NumOfRelevantElts;
13795   }
13796 
13797   // Check if more than half of the elements require a non-free bitcast.
13798   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
13799     return SDValue();
13800 
13801   SelectionDAG &DAG = DCI.DAG;
13802   // Create the new vector type.
13803   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
13804   // Check if the type is legal.
13805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13806   if (!TLI.isTypeLegal(VecVT))
13807     return SDValue();
13808 
13809   // Combine:
13810   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
13811   // => BITCAST INSERT_VECTOR_ELT
13812   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
13813   //                      (BITCAST EN), N.
13814   SDValue Vec = DAG.getUNDEF(VecVT);
13815   SDLoc dl(N);
13816   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
13817     SDValue V = N->getOperand(Idx);
13818     if (V.isUndef())
13819       continue;
13820     if (V.getOpcode() == ISD::BITCAST &&
13821         V->getOperand(0).getValueType() == MVT::i32)
13822       // Fold obvious case.
13823       V = V.getOperand(0);
13824     else {
13825       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
13826       // Make the DAGCombiner fold the bitcasts.
13827       DCI.AddToWorklist(V.getNode());
13828     }
13829     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
13830     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
13831   }
13832   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
13833   // Make the DAGCombiner fold the bitcasts.
13834   DCI.AddToWorklist(Vec.getNode());
13835   return Vec;
13836 }
13837 
13838 static SDValue
PerformPREDICATE_CASTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13839 PerformPREDICATE_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
13840   EVT VT = N->getValueType(0);
13841   SDValue Op = N->getOperand(0);
13842   SDLoc dl(N);
13843 
13844   // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
13845   if (Op->getOpcode() == ARMISD::PREDICATE_CAST) {
13846     // If the valuetypes are the same, we can remove the cast entirely.
13847     if (Op->getOperand(0).getValueType() == VT)
13848       return Op->getOperand(0);
13849     return DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
13850   }
13851 
13852   // Turn pred_cast(xor x, -1) into xor(pred_cast x, -1), in order to produce
13853   // more VPNOT which might get folded as else predicates.
13854   if (Op.getValueType() == MVT::i32 && isBitwiseNot(Op)) {
13855     SDValue X =
13856         DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
13857     SDValue C = DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
13858                                 DCI.DAG.getConstant(65535, dl, MVT::i32));
13859     return DCI.DAG.getNode(ISD::XOR, dl, VT, X, C);
13860   }
13861 
13862   // Only the bottom 16 bits of the source register are used.
13863   if (Op.getValueType() == MVT::i32) {
13864     APInt DemandedMask = APInt::getLowBitsSet(32, 16);
13865     const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
13866     if (TLI.SimplifyDemandedBits(Op, DemandedMask, DCI))
13867       return SDValue(N, 0);
13868   }
13869   return SDValue();
13870 }
13871 
13872 static SDValue
PerformVECTOR_REG_CASTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)13873 PerformVECTOR_REG_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
13874                               const ARMSubtarget *ST) {
13875   EVT VT = N->getValueType(0);
13876   SDValue Op = N->getOperand(0);
13877   SDLoc dl(N);
13878 
13879   // Under Little endian, a VECTOR_REG_CAST is equivalent to a BITCAST
13880   if (ST->isLittle())
13881     return DCI.DAG.getNode(ISD::BITCAST, dl, VT, Op);
13882 
13883   // VECTOR_REG_CAST(VECTOR_REG_CAST(x)) == VECTOR_REG_CAST(x)
13884   if (Op->getOpcode() == ARMISD::VECTOR_REG_CAST) {
13885     // If the valuetypes are the same, we can remove the cast entirely.
13886     if (Op->getOperand(0).getValueType() == VT)
13887       return Op->getOperand(0);
13888     return DCI.DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Op->getOperand(0));
13889   }
13890 
13891   return SDValue();
13892 }
13893 
PerformVCMPCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13894 static SDValue PerformVCMPCombine(SDNode *N,
13895                                   TargetLowering::DAGCombinerInfo &DCI,
13896                                   const ARMSubtarget *Subtarget) {
13897   if (!Subtarget->hasMVEIntegerOps())
13898     return SDValue();
13899 
13900   EVT VT = N->getValueType(0);
13901   SDValue Op0 = N->getOperand(0);
13902   SDValue Op1 = N->getOperand(1);
13903   ARMCC::CondCodes Cond =
13904       (ARMCC::CondCodes)cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
13905   SDLoc dl(N);
13906 
13907   // vcmp X, 0, cc -> vcmpz X, cc
13908   if (isZeroVector(Op1))
13909     return DCI.DAG.getNode(ARMISD::VCMPZ, dl, VT, Op0,
13910                            N->getOperand(2));
13911 
13912   unsigned SwappedCond = getSwappedCondition(Cond);
13913   if (isValidMVECond(SwappedCond, VT.isFloatingPoint())) {
13914     // vcmp 0, X, cc -> vcmpz X, reversed(cc)
13915     if (isZeroVector(Op0))
13916       return DCI.DAG.getNode(ARMISD::VCMPZ, dl, VT, Op1,
13917                              DCI.DAG.getConstant(SwappedCond, dl, MVT::i32));
13918     // vcmp vdup(Y), X, cc -> vcmp X, vdup(Y), reversed(cc)
13919     if (Op0->getOpcode() == ARMISD::VDUP && Op1->getOpcode() != ARMISD::VDUP)
13920       return DCI.DAG.getNode(ARMISD::VCMP, dl, VT, Op1, Op0,
13921                              DCI.DAG.getConstant(SwappedCond, dl, MVT::i32));
13922   }
13923 
13924   return SDValue();
13925 }
13926 
13927 /// PerformInsertEltCombine - Target-specific dag combine xforms for
13928 /// ISD::INSERT_VECTOR_ELT.
PerformInsertEltCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13929 static SDValue PerformInsertEltCombine(SDNode *N,
13930                                        TargetLowering::DAGCombinerInfo &DCI) {
13931   // Bitcast an i64 load inserted into a vector to f64.
13932   // Otherwise, the i64 value will be legalized to a pair of i32 values.
13933   EVT VT = N->getValueType(0);
13934   SDNode *Elt = N->getOperand(1).getNode();
13935   if (VT.getVectorElementType() != MVT::i64 ||
13936       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
13937     return SDValue();
13938 
13939   SelectionDAG &DAG = DCI.DAG;
13940   SDLoc dl(N);
13941   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
13942                                  VT.getVectorNumElements());
13943   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
13944   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
13945   // Make the DAGCombiner fold the bitcasts.
13946   DCI.AddToWorklist(Vec.getNode());
13947   DCI.AddToWorklist(V.getNode());
13948   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
13949                                Vec, V, N->getOperand(2));
13950   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
13951 }
13952 
PerformExtractEltCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13953 static SDValue PerformExtractEltCombine(SDNode *N,
13954                                         TargetLowering::DAGCombinerInfo &DCI) {
13955   SDValue Op0 = N->getOperand(0);
13956   EVT VT = N->getValueType(0);
13957   SDLoc dl(N);
13958 
13959   // extract (vdup x) -> x
13960   if (Op0->getOpcode() == ARMISD::VDUP) {
13961     SDValue X = Op0->getOperand(0);
13962     if (VT == MVT::f16 && X.getValueType() == MVT::i32)
13963       return DCI.DAG.getNode(ARMISD::VMOVhr, dl, VT, X);
13964     if (VT == MVT::i32 && X.getValueType() == MVT::f16)
13965       return DCI.DAG.getNode(ARMISD::VMOVrh, dl, VT, X);
13966 
13967     while (X.getValueType() != VT && X->getOpcode() == ISD::BITCAST)
13968       X = X->getOperand(0);
13969     if (X.getValueType() == VT)
13970       return X;
13971   }
13972 
13973   return SDValue();
13974 }
13975 
13976 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
13977 /// ISD::VECTOR_SHUFFLE.
PerformVECTOR_SHUFFLECombine(SDNode * N,SelectionDAG & DAG)13978 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
13979   // The LLVM shufflevector instruction does not require the shuffle mask
13980   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
13981   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
13982   // operands do not match the mask length, they are extended by concatenating
13983   // them with undef vectors.  That is probably the right thing for other
13984   // targets, but for NEON it is better to concatenate two double-register
13985   // size vector operands into a single quad-register size vector.  Do that
13986   // transformation here:
13987   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
13988   //   shuffle(concat(v1, v2), undef)
13989   SDValue Op0 = N->getOperand(0);
13990   SDValue Op1 = N->getOperand(1);
13991   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
13992       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
13993       Op0.getNumOperands() != 2 ||
13994       Op1.getNumOperands() != 2)
13995     return SDValue();
13996   SDValue Concat0Op1 = Op0.getOperand(1);
13997   SDValue Concat1Op1 = Op1.getOperand(1);
13998   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
13999     return SDValue();
14000   // Skip the transformation if any of the types are illegal.
14001   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14002   EVT VT = N->getValueType(0);
14003   if (!TLI.isTypeLegal(VT) ||
14004       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
14005       !TLI.isTypeLegal(Concat1Op1.getValueType()))
14006     return SDValue();
14007 
14008   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
14009                                   Op0.getOperand(0), Op1.getOperand(0));
14010   // Translate the shuffle mask.
14011   SmallVector<int, 16> NewMask;
14012   unsigned NumElts = VT.getVectorNumElements();
14013   unsigned HalfElts = NumElts/2;
14014   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
14015   for (unsigned n = 0; n < NumElts; ++n) {
14016     int MaskElt = SVN->getMaskElt(n);
14017     int NewElt = -1;
14018     if (MaskElt < (int)HalfElts)
14019       NewElt = MaskElt;
14020     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
14021       NewElt = HalfElts + MaskElt - NumElts;
14022     NewMask.push_back(NewElt);
14023   }
14024   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
14025                               DAG.getUNDEF(VT), NewMask);
14026 }
14027 
14028 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
14029 /// NEON load/store intrinsics, and generic vector load/stores, to merge
14030 /// base address updates.
14031 /// For generic load/stores, the memory type is assumed to be a vector.
14032 /// The caller is assumed to have checked legality.
CombineBaseUpdate(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14033 static SDValue CombineBaseUpdate(SDNode *N,
14034                                  TargetLowering::DAGCombinerInfo &DCI) {
14035   SelectionDAG &DAG = DCI.DAG;
14036   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
14037                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
14038   const bool isStore = N->getOpcode() == ISD::STORE;
14039   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
14040   SDValue Addr = N->getOperand(AddrOpIdx);
14041   MemSDNode *MemN = cast<MemSDNode>(N);
14042   SDLoc dl(N);
14043 
14044   // Search for a use of the address operand that is an increment.
14045   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
14046          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
14047     SDNode *User = *UI;
14048     if (User->getOpcode() != ISD::ADD ||
14049         UI.getUse().getResNo() != Addr.getResNo())
14050       continue;
14051 
14052     // Check that the add is independent of the load/store.  Otherwise, folding
14053     // it would create a cycle. We can avoid searching through Addr as it's a
14054     // predecessor to both.
14055     SmallPtrSet<const SDNode *, 32> Visited;
14056     SmallVector<const SDNode *, 16> Worklist;
14057     Visited.insert(Addr.getNode());
14058     Worklist.push_back(N);
14059     Worklist.push_back(User);
14060     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
14061         SDNode::hasPredecessorHelper(User, Visited, Worklist))
14062       continue;
14063 
14064     // Find the new opcode for the updating load/store.
14065     bool isLoadOp = true;
14066     bool isLaneOp = false;
14067     unsigned NewOpc = 0;
14068     unsigned NumVecs = 0;
14069     if (isIntrinsic) {
14070       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
14071       switch (IntNo) {
14072       default: llvm_unreachable("unexpected intrinsic for Neon base update");
14073       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
14074         NumVecs = 1; break;
14075       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
14076         NumVecs = 2; break;
14077       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
14078         NumVecs = 3; break;
14079       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
14080         NumVecs = 4; break;
14081       case Intrinsic::arm_neon_vld1x2:
14082       case Intrinsic::arm_neon_vld1x3:
14083       case Intrinsic::arm_neon_vld1x4:
14084       case Intrinsic::arm_neon_vld2dup:
14085       case Intrinsic::arm_neon_vld3dup:
14086       case Intrinsic::arm_neon_vld4dup:
14087         // TODO: Support updating VLD1x and VLDxDUP nodes. For now, we just skip
14088         // combining base updates for such intrinsics.
14089         continue;
14090       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
14091         NumVecs = 2; isLaneOp = true; break;
14092       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
14093         NumVecs = 3; isLaneOp = true; break;
14094       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
14095         NumVecs = 4; isLaneOp = true; break;
14096       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
14097         NumVecs = 1; isLoadOp = false; break;
14098       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
14099         NumVecs = 2; isLoadOp = false; break;
14100       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
14101         NumVecs = 3; isLoadOp = false; break;
14102       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
14103         NumVecs = 4; isLoadOp = false; break;
14104       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
14105         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
14106       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
14107         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
14108       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
14109         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
14110       }
14111     } else {
14112       isLaneOp = true;
14113       switch (N->getOpcode()) {
14114       default: llvm_unreachable("unexpected opcode for Neon base update");
14115       case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
14116       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
14117       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
14118       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
14119       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
14120         NumVecs = 1; isLaneOp = false; break;
14121       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
14122         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
14123       }
14124     }
14125 
14126     // Find the size of memory referenced by the load/store.
14127     EVT VecTy;
14128     if (isLoadOp) {
14129       VecTy = N->getValueType(0);
14130     } else if (isIntrinsic) {
14131       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
14132     } else {
14133       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
14134       VecTy = N->getOperand(1).getValueType();
14135     }
14136 
14137     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
14138     if (isLaneOp)
14139       NumBytes /= VecTy.getVectorNumElements();
14140 
14141     // If the increment is a constant, it must match the memory ref size.
14142     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
14143     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
14144     if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
14145       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
14146       // separate instructions that make it harder to use a non-constant update.
14147       continue;
14148     }
14149 
14150     // OK, we found an ADD we can fold into the base update.
14151     // Now, create a _UPD node, taking care of not breaking alignment.
14152 
14153     EVT AlignedVecTy = VecTy;
14154     unsigned Alignment = MemN->getAlignment();
14155 
14156     // If this is a less-than-standard-aligned load/store, change the type to
14157     // match the standard alignment.
14158     // The alignment is overlooked when selecting _UPD variants; and it's
14159     // easier to introduce bitcasts here than fix that.
14160     // There are 3 ways to get to this base-update combine:
14161     // - intrinsics: they are assumed to be properly aligned (to the standard
14162     //   alignment of the memory type), so we don't need to do anything.
14163     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
14164     //   intrinsics, so, likewise, there's nothing to do.
14165     // - generic load/store instructions: the alignment is specified as an
14166     //   explicit operand, rather than implicitly as the standard alignment
14167     //   of the memory type (like the intrisics).  We need to change the
14168     //   memory type to match the explicit alignment.  That way, we don't
14169     //   generate non-standard-aligned ARMISD::VLDx nodes.
14170     if (isa<LSBaseSDNode>(N)) {
14171       if (Alignment == 0)
14172         Alignment = 1;
14173       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
14174         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
14175         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
14176         assert(!isLaneOp && "Unexpected generic load/store lane.");
14177         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
14178         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
14179       }
14180       // Don't set an explicit alignment on regular load/stores that we want
14181       // to transform to VLD/VST 1_UPD nodes.
14182       // This matches the behavior of regular load/stores, which only get an
14183       // explicit alignment if the MMO alignment is larger than the standard
14184       // alignment of the memory type.
14185       // Intrinsics, however, always get an explicit alignment, set to the
14186       // alignment of the MMO.
14187       Alignment = 1;
14188     }
14189 
14190     // Create the new updating load/store node.
14191     // First, create an SDVTList for the new updating node's results.
14192     EVT Tys[6];
14193     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
14194     unsigned n;
14195     for (n = 0; n < NumResultVecs; ++n)
14196       Tys[n] = AlignedVecTy;
14197     Tys[n++] = MVT::i32;
14198     Tys[n] = MVT::Other;
14199     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
14200 
14201     // Then, gather the new node's operands.
14202     SmallVector<SDValue, 8> Ops;
14203     Ops.push_back(N->getOperand(0)); // incoming chain
14204     Ops.push_back(N->getOperand(AddrOpIdx));
14205     Ops.push_back(Inc);
14206 
14207     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
14208       // Try to match the intrinsic's signature
14209       Ops.push_back(StN->getValue());
14210     } else {
14211       // Loads (and of course intrinsics) match the intrinsics' signature,
14212       // so just add all but the alignment operand.
14213       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
14214         Ops.push_back(N->getOperand(i));
14215     }
14216 
14217     // For all node types, the alignment operand is always the last one.
14218     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
14219 
14220     // If this is a non-standard-aligned STORE, the penultimate operand is the
14221     // stored value.  Bitcast it to the aligned type.
14222     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
14223       SDValue &StVal = Ops[Ops.size()-2];
14224       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
14225     }
14226 
14227     EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
14228     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
14229                                            MemN->getMemOperand());
14230 
14231     // Update the uses.
14232     SmallVector<SDValue, 5> NewResults;
14233     for (unsigned i = 0; i < NumResultVecs; ++i)
14234       NewResults.push_back(SDValue(UpdN.getNode(), i));
14235 
14236     // If this is an non-standard-aligned LOAD, the first result is the loaded
14237     // value.  Bitcast it to the expected result type.
14238     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
14239       SDValue &LdVal = NewResults[0];
14240       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
14241     }
14242 
14243     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
14244     DCI.CombineTo(N, NewResults);
14245     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
14246 
14247     break;
14248   }
14249   return SDValue();
14250 }
14251 
PerformVLDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14252 static SDValue PerformVLDCombine(SDNode *N,
14253                                  TargetLowering::DAGCombinerInfo &DCI) {
14254   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14255     return SDValue();
14256 
14257   return CombineBaseUpdate(N, DCI);
14258 }
14259 
PerformMVEVLDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14260 static SDValue PerformMVEVLDCombine(SDNode *N,
14261                                     TargetLowering::DAGCombinerInfo &DCI) {
14262   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14263     return SDValue();
14264 
14265   SelectionDAG &DAG = DCI.DAG;
14266   SDValue Addr = N->getOperand(2);
14267   MemSDNode *MemN = cast<MemSDNode>(N);
14268   SDLoc dl(N);
14269 
14270   // For the stores, where there are multiple intrinsics we only actually want
14271   // to post-inc the last of the them.
14272   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
14273   if (IntNo == Intrinsic::arm_mve_vst2q &&
14274       cast<ConstantSDNode>(N->getOperand(5))->getZExtValue() != 1)
14275     return SDValue();
14276   if (IntNo == Intrinsic::arm_mve_vst4q &&
14277       cast<ConstantSDNode>(N->getOperand(7))->getZExtValue() != 3)
14278     return SDValue();
14279 
14280   // Search for a use of the address operand that is an increment.
14281   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
14282                             UE = Addr.getNode()->use_end();
14283        UI != UE; ++UI) {
14284     SDNode *User = *UI;
14285     if (User->getOpcode() != ISD::ADD ||
14286         UI.getUse().getResNo() != Addr.getResNo())
14287       continue;
14288 
14289     // Check that the add is independent of the load/store.  Otherwise, folding
14290     // it would create a cycle. We can avoid searching through Addr as it's a
14291     // predecessor to both.
14292     SmallPtrSet<const SDNode *, 32> Visited;
14293     SmallVector<const SDNode *, 16> Worklist;
14294     Visited.insert(Addr.getNode());
14295     Worklist.push_back(N);
14296     Worklist.push_back(User);
14297     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
14298         SDNode::hasPredecessorHelper(User, Visited, Worklist))
14299       continue;
14300 
14301     // Find the new opcode for the updating load/store.
14302     bool isLoadOp = true;
14303     unsigned NewOpc = 0;
14304     unsigned NumVecs = 0;
14305     switch (IntNo) {
14306     default:
14307       llvm_unreachable("unexpected intrinsic for MVE VLDn combine");
14308     case Intrinsic::arm_mve_vld2q:
14309       NewOpc = ARMISD::VLD2_UPD;
14310       NumVecs = 2;
14311       break;
14312     case Intrinsic::arm_mve_vld4q:
14313       NewOpc = ARMISD::VLD4_UPD;
14314       NumVecs = 4;
14315       break;
14316     case Intrinsic::arm_mve_vst2q:
14317       NewOpc = ARMISD::VST2_UPD;
14318       NumVecs = 2;
14319       isLoadOp = false;
14320       break;
14321     case Intrinsic::arm_mve_vst4q:
14322       NewOpc = ARMISD::VST4_UPD;
14323       NumVecs = 4;
14324       isLoadOp = false;
14325       break;
14326     }
14327 
14328     // Find the size of memory referenced by the load/store.
14329     EVT VecTy;
14330     if (isLoadOp) {
14331       VecTy = N->getValueType(0);
14332     } else {
14333       VecTy = N->getOperand(3).getValueType();
14334     }
14335 
14336     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
14337 
14338     // If the increment is a constant, it must match the memory ref size.
14339     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
14340     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
14341     if (!CInc || CInc->getZExtValue() != NumBytes)
14342       continue;
14343 
14344     // Create the new updating load/store node.
14345     // First, create an SDVTList for the new updating node's results.
14346     EVT Tys[6];
14347     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
14348     unsigned n;
14349     for (n = 0; n < NumResultVecs; ++n)
14350       Tys[n] = VecTy;
14351     Tys[n++] = MVT::i32;
14352     Tys[n] = MVT::Other;
14353     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
14354 
14355     // Then, gather the new node's operands.
14356     SmallVector<SDValue, 8> Ops;
14357     Ops.push_back(N->getOperand(0)); // incoming chain
14358     Ops.push_back(N->getOperand(2)); // ptr
14359     Ops.push_back(Inc);
14360 
14361     for (unsigned i = 3; i < N->getNumOperands(); ++i)
14362       Ops.push_back(N->getOperand(i));
14363 
14364     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, VecTy,
14365                                            MemN->getMemOperand());
14366 
14367     // Update the uses.
14368     SmallVector<SDValue, 5> NewResults;
14369     for (unsigned i = 0; i < NumResultVecs; ++i)
14370       NewResults.push_back(SDValue(UpdN.getNode(), i));
14371 
14372     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
14373     DCI.CombineTo(N, NewResults);
14374     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
14375 
14376     break;
14377   }
14378 
14379   return SDValue();
14380 }
14381 
14382 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
14383 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
14384 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
14385 /// return true.
CombineVLDDUP(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14386 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
14387   SelectionDAG &DAG = DCI.DAG;
14388   EVT VT = N->getValueType(0);
14389   // vldN-dup instructions only support 64-bit vectors for N > 1.
14390   if (!VT.is64BitVector())
14391     return false;
14392 
14393   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
14394   SDNode *VLD = N->getOperand(0).getNode();
14395   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
14396     return false;
14397   unsigned NumVecs = 0;
14398   unsigned NewOpc = 0;
14399   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
14400   if (IntNo == Intrinsic::arm_neon_vld2lane) {
14401     NumVecs = 2;
14402     NewOpc = ARMISD::VLD2DUP;
14403   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
14404     NumVecs = 3;
14405     NewOpc = ARMISD::VLD3DUP;
14406   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
14407     NumVecs = 4;
14408     NewOpc = ARMISD::VLD4DUP;
14409   } else {
14410     return false;
14411   }
14412 
14413   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
14414   // numbers match the load.
14415   unsigned VLDLaneNo =
14416     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
14417   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
14418        UI != UE; ++UI) {
14419     // Ignore uses of the chain result.
14420     if (UI.getUse().getResNo() == NumVecs)
14421       continue;
14422     SDNode *User = *UI;
14423     if (User->getOpcode() != ARMISD::VDUPLANE ||
14424         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
14425       return false;
14426   }
14427 
14428   // Create the vldN-dup node.
14429   EVT Tys[5];
14430   unsigned n;
14431   for (n = 0; n < NumVecs; ++n)
14432     Tys[n] = VT;
14433   Tys[n] = MVT::Other;
14434   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
14435   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
14436   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
14437   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
14438                                            Ops, VLDMemInt->getMemoryVT(),
14439                                            VLDMemInt->getMemOperand());
14440 
14441   // Update the uses.
14442   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
14443        UI != UE; ++UI) {
14444     unsigned ResNo = UI.getUse().getResNo();
14445     // Ignore uses of the chain result.
14446     if (ResNo == NumVecs)
14447       continue;
14448     SDNode *User = *UI;
14449     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
14450   }
14451 
14452   // Now the vldN-lane intrinsic is dead except for its chain result.
14453   // Update uses of the chain.
14454   std::vector<SDValue> VLDDupResults;
14455   for (unsigned n = 0; n < NumVecs; ++n)
14456     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
14457   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
14458   DCI.CombineTo(VLD, VLDDupResults);
14459 
14460   return true;
14461 }
14462 
14463 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
14464 /// ARMISD::VDUPLANE.
PerformVDUPLANECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)14465 static SDValue PerformVDUPLANECombine(SDNode *N,
14466                                       TargetLowering::DAGCombinerInfo &DCI,
14467                                       const ARMSubtarget *Subtarget) {
14468   SDValue Op = N->getOperand(0);
14469   EVT VT = N->getValueType(0);
14470 
14471   // On MVE, we just convert the VDUPLANE to a VDUP with an extract.
14472   if (Subtarget->hasMVEIntegerOps()) {
14473     EVT ExtractVT = VT.getVectorElementType();
14474     // We need to ensure we are creating a legal type.
14475     if (!DCI.DAG.getTargetLoweringInfo().isTypeLegal(ExtractVT))
14476       ExtractVT = MVT::i32;
14477     SDValue Extract = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), ExtractVT,
14478                               N->getOperand(0), N->getOperand(1));
14479     return DCI.DAG.getNode(ARMISD::VDUP, SDLoc(N), VT, Extract);
14480   }
14481 
14482   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
14483   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
14484   if (CombineVLDDUP(N, DCI))
14485     return SDValue(N, 0);
14486 
14487   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
14488   // redundant.  Ignore bit_converts for now; element sizes are checked below.
14489   while (Op.getOpcode() == ISD::BITCAST)
14490     Op = Op.getOperand(0);
14491   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
14492     return SDValue();
14493 
14494   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
14495   unsigned EltSize = Op.getScalarValueSizeInBits();
14496   // The canonical VMOV for a zero vector uses a 32-bit element size.
14497   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14498   unsigned EltBits;
14499   if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0)
14500     EltSize = 8;
14501   if (EltSize > VT.getScalarSizeInBits())
14502     return SDValue();
14503 
14504   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
14505 }
14506 
14507 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
PerformVDUPCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)14508 static SDValue PerformVDUPCombine(SDNode *N,
14509                                   TargetLowering::DAGCombinerInfo &DCI,
14510                                   const ARMSubtarget *Subtarget) {
14511   SelectionDAG &DAG = DCI.DAG;
14512   SDValue Op = N->getOperand(0);
14513   SDLoc dl(N);
14514 
14515   if (Subtarget->hasMVEIntegerOps()) {
14516     // Convert VDUP f32 -> VDUP BITCAST i32 under MVE, as we know the value will
14517     // need to come from a GPR.
14518     if (Op.getValueType() == MVT::f32)
14519       return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
14520                              DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op));
14521     else if (Op.getValueType() == MVT::f16)
14522       return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
14523                              DAG.getNode(ARMISD::VMOVrh, dl, MVT::i32, Op));
14524   }
14525 
14526   if (!Subtarget->hasNEON())
14527     return SDValue();
14528 
14529   // Match VDUP(LOAD) -> VLD1DUP.
14530   // We match this pattern here rather than waiting for isel because the
14531   // transform is only legal for unindexed loads.
14532   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
14533   if (LD && Op.hasOneUse() && LD->isUnindexed() &&
14534       LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
14535     SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
14536                       DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
14537     SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
14538     SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
14539                                              Ops, LD->getMemoryVT(),
14540                                              LD->getMemOperand());
14541     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
14542     return VLDDup;
14543   }
14544 
14545   return SDValue();
14546 }
14547 
PerformLOADCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14548 static SDValue PerformLOADCombine(SDNode *N,
14549                                   TargetLowering::DAGCombinerInfo &DCI) {
14550   EVT VT = N->getValueType(0);
14551 
14552   // If this is a legal vector load, try to combine it into a VLD1_UPD.
14553   if (ISD::isNormalLoad(N) && VT.isVector() &&
14554       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
14555     return CombineBaseUpdate(N, DCI);
14556 
14557   return SDValue();
14558 }
14559 
14560 // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
14561 // pack all of the elements in one place.  Next, store to memory in fewer
14562 // chunks.
PerformTruncatingStoreCombine(StoreSDNode * St,SelectionDAG & DAG)14563 static SDValue PerformTruncatingStoreCombine(StoreSDNode *St,
14564                                              SelectionDAG &DAG) {
14565   SDValue StVal = St->getValue();
14566   EVT VT = StVal.getValueType();
14567   if (!St->isTruncatingStore() || !VT.isVector())
14568     return SDValue();
14569   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14570   EVT StVT = St->getMemoryVT();
14571   unsigned NumElems = VT.getVectorNumElements();
14572   assert(StVT != VT && "Cannot truncate to the same type");
14573   unsigned FromEltSz = VT.getScalarSizeInBits();
14574   unsigned ToEltSz = StVT.getScalarSizeInBits();
14575 
14576   // From, To sizes and ElemCount must be pow of two
14577   if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz))
14578     return SDValue();
14579 
14580   // We are going to use the original vector elt for storing.
14581   // Accumulated smaller vector elements must be a multiple of the store size.
14582   if (0 != (NumElems * FromEltSz) % ToEltSz)
14583     return SDValue();
14584 
14585   unsigned SizeRatio = FromEltSz / ToEltSz;
14586   assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
14587 
14588   // Create a type on which we perform the shuffle.
14589   EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
14590                                    NumElems * SizeRatio);
14591   assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14592 
14593   SDLoc DL(St);
14594   SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
14595   SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14596   for (unsigned i = 0; i < NumElems; ++i)
14597     ShuffleVec[i] = DAG.getDataLayout().isBigEndian() ? (i + 1) * SizeRatio - 1
14598                                                       : i * SizeRatio;
14599 
14600   // Can't shuffle using an illegal type.
14601   if (!TLI.isTypeLegal(WideVecVT))
14602     return SDValue();
14603 
14604   SDValue Shuff = DAG.getVectorShuffle(
14605       WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec);
14606   // At this point all of the data is stored at the bottom of the
14607   // register. We now need to save it to mem.
14608 
14609   // Find the largest store unit
14610   MVT StoreType = MVT::i8;
14611   for (MVT Tp : MVT::integer_valuetypes()) {
14612     if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
14613       StoreType = Tp;
14614   }
14615   // Didn't find a legal store type.
14616   if (!TLI.isTypeLegal(StoreType))
14617     return SDValue();
14618 
14619   // Bitcast the original vector into a vector of store-size units
14620   EVT StoreVecVT =
14621       EVT::getVectorVT(*DAG.getContext(), StoreType,
14622                        VT.getSizeInBits() / EVT(StoreType).getSizeInBits());
14623   assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14624   SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
14625   SmallVector<SDValue, 8> Chains;
14626   SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
14627                                       TLI.getPointerTy(DAG.getDataLayout()));
14628   SDValue BasePtr = St->getBasePtr();
14629 
14630   // Perform one or more big stores into memory.
14631   unsigned E = (ToEltSz * NumElems) / StoreType.getSizeInBits();
14632   for (unsigned I = 0; I < E; I++) {
14633     SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType,
14634                                  ShuffWide, DAG.getIntPtrConstant(I, DL));
14635     SDValue Ch =
14636         DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(),
14637                      St->getAlignment(), St->getMemOperand()->getFlags());
14638     BasePtr =
14639         DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment);
14640     Chains.push_back(Ch);
14641   }
14642   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
14643 }
14644 
14645 // Try taking a single vector store from an truncate (which would otherwise turn
14646 // into an expensive buildvector) and splitting it into a series of narrowing
14647 // stores.
PerformSplittingToNarrowingStores(StoreSDNode * St,SelectionDAG & DAG)14648 static SDValue PerformSplittingToNarrowingStores(StoreSDNode *St,
14649                                                  SelectionDAG &DAG) {
14650   if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
14651     return SDValue();
14652   SDValue Trunc = St->getValue();
14653   if (Trunc->getOpcode() != ISD::TRUNCATE && Trunc->getOpcode() != ISD::FP_ROUND)
14654     return SDValue();
14655   EVT FromVT = Trunc->getOperand(0).getValueType();
14656   EVT ToVT = Trunc.getValueType();
14657   if (!ToVT.isVector())
14658     return SDValue();
14659   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
14660   EVT ToEltVT = ToVT.getVectorElementType();
14661   EVT FromEltVT = FromVT.getVectorElementType();
14662 
14663   unsigned NumElements = 0;
14664   if (FromEltVT == MVT::i32 && (ToEltVT == MVT::i16 || ToEltVT == MVT::i8))
14665     NumElements = 4;
14666   if (FromEltVT == MVT::i16 && ToEltVT == MVT::i8)
14667     NumElements = 8;
14668   if (FromEltVT == MVT::f32 && ToEltVT == MVT::f16)
14669     NumElements = 4;
14670   if (NumElements == 0 ||
14671       (FromEltVT != MVT::f32 && FromVT.getVectorNumElements() == NumElements) ||
14672       FromVT.getVectorNumElements() % NumElements != 0)
14673     return SDValue();
14674 
14675   // Test if the Trunc will be convertable to a VMOVN with a shuffle, and if so
14676   // use the VMOVN over splitting the store. We are looking for patterns of:
14677   // !rev: 0 N 1 N+1 2 N+2 ...
14678   //  rev: N 0 N+1 1 N+2 2 ...
14679   // The shuffle may either be a single source (in which case N = NumElts/2) or
14680   // two inputs extended with concat to the same size (in which case N =
14681   // NumElts).
14682   auto isVMOVNShuffle = [&](ShuffleVectorSDNode *SVN, bool Rev) {
14683     ArrayRef<int> M = SVN->getMask();
14684     unsigned NumElts = ToVT.getVectorNumElements();
14685     if (SVN->getOperand(1).isUndef())
14686       NumElts /= 2;
14687 
14688     unsigned Off0 = Rev ? NumElts : 0;
14689     unsigned Off1 = Rev ? 0 : NumElts;
14690 
14691     for (unsigned I = 0; I < NumElts; I += 2) {
14692       if (M[I] >= 0 && M[I] != (int)(Off0 + I / 2))
14693         return false;
14694       if (M[I + 1] >= 0 && M[I + 1] != (int)(Off1 + I / 2))
14695         return false;
14696     }
14697 
14698     return true;
14699   };
14700 
14701   // It may be preferable to keep the store unsplit as the trunc may end up
14702   // being removed. Check that here.
14703   if (Trunc.getOperand(0).getOpcode() == ISD::SMIN) {
14704     if (SDValue U = PerformVQDMULHCombine(Trunc.getOperand(0).getNode(), DAG)) {
14705       DAG.ReplaceAllUsesWith(Trunc.getOperand(0), U);
14706       return SDValue();
14707     }
14708   }
14709   if (auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(Trunc.getOperand(0)))
14710     if (isVMOVNShuffle(Shuffle, false) || isVMOVNShuffle(Shuffle, true))
14711       return SDValue();
14712 
14713   LLVMContext &C = *DAG.getContext();
14714   SDLoc DL(St);
14715   // Details about the old store
14716   SDValue Ch = St->getChain();
14717   SDValue BasePtr = St->getBasePtr();
14718   Align Alignment = St->getOriginalAlign();
14719   MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
14720   AAMDNodes AAInfo = St->getAAInfo();
14721 
14722   // We split the store into slices of NumElements. fp16 trunc stores are vcvt
14723   // and then stored as truncating integer stores.
14724   EVT NewFromVT = EVT::getVectorVT(C, FromEltVT, NumElements);
14725   EVT NewToVT = EVT::getVectorVT(
14726       C, EVT::getIntegerVT(C, ToEltVT.getSizeInBits()), NumElements);
14727 
14728   SmallVector<SDValue, 4> Stores;
14729   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
14730     unsigned NewOffset = i * NumElements * ToEltVT.getSizeInBits() / 8;
14731     SDValue NewPtr =
14732         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset));
14733 
14734     SDValue Extract =
14735         DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewFromVT, Trunc.getOperand(0),
14736                     DAG.getConstant(i * NumElements, DL, MVT::i32));
14737 
14738     if (ToEltVT == MVT::f16) {
14739       SDValue FPTrunc =
14740           DAG.getNode(ARMISD::VCVTN, DL, MVT::v8f16, DAG.getUNDEF(MVT::v8f16),
14741                       Extract, DAG.getConstant(0, DL, MVT::i32));
14742       Extract = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v4i32, FPTrunc);
14743     }
14744 
14745     SDValue Store = DAG.getTruncStore(
14746         Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
14747         NewToVT, Alignment.value(), MMOFlags, AAInfo);
14748     Stores.push_back(Store);
14749   }
14750   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
14751 }
14752 
14753 /// PerformSTORECombine - Target-specific dag combine xforms for
14754 /// ISD::STORE.
PerformSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)14755 static SDValue PerformSTORECombine(SDNode *N,
14756                                    TargetLowering::DAGCombinerInfo &DCI,
14757                                    const ARMSubtarget *Subtarget) {
14758   StoreSDNode *St = cast<StoreSDNode>(N);
14759   if (St->isVolatile())
14760     return SDValue();
14761   SDValue StVal = St->getValue();
14762   EVT VT = StVal.getValueType();
14763 
14764   if (Subtarget->hasNEON())
14765     if (SDValue Store = PerformTruncatingStoreCombine(St, DCI.DAG))
14766       return Store;
14767 
14768   if (Subtarget->hasMVEIntegerOps())
14769     if (SDValue NewToken = PerformSplittingToNarrowingStores(St, DCI.DAG))
14770       return NewToken;
14771 
14772   if (!ISD::isNormalStore(St))
14773     return SDValue();
14774 
14775   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
14776   // ARM stores of arguments in the same cache line.
14777   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
14778       StVal.getNode()->hasOneUse()) {
14779     SelectionDAG  &DAG = DCI.DAG;
14780     bool isBigEndian = DAG.getDataLayout().isBigEndian();
14781     SDLoc DL(St);
14782     SDValue BasePtr = St->getBasePtr();
14783     SDValue NewST1 = DAG.getStore(
14784         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
14785         BasePtr, St->getPointerInfo(), St->getOriginalAlign(),
14786         St->getMemOperand()->getFlags());
14787 
14788     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
14789                                     DAG.getConstant(4, DL, MVT::i32));
14790     return DAG.getStore(NewST1.getValue(0), DL,
14791                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
14792                         OffsetPtr, St->getPointerInfo().getWithOffset(4),
14793                         St->getOriginalAlign(),
14794                         St->getMemOperand()->getFlags());
14795   }
14796 
14797   if (StVal.getValueType() == MVT::i64 &&
14798       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14799 
14800     // Bitcast an i64 store extracted from a vector to f64.
14801     // Otherwise, the i64 value will be legalized to a pair of i32 values.
14802     SelectionDAG &DAG = DCI.DAG;
14803     SDLoc dl(StVal);
14804     SDValue IntVec = StVal.getOperand(0);
14805     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
14806                                    IntVec.getValueType().getVectorNumElements());
14807     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
14808     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
14809                                  Vec, StVal.getOperand(1));
14810     dl = SDLoc(N);
14811     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
14812     // Make the DAGCombiner fold the bitcasts.
14813     DCI.AddToWorklist(Vec.getNode());
14814     DCI.AddToWorklist(ExtElt.getNode());
14815     DCI.AddToWorklist(V.getNode());
14816     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
14817                         St->getPointerInfo(), St->getAlignment(),
14818                         St->getMemOperand()->getFlags(), St->getAAInfo());
14819   }
14820 
14821   // If this is a legal vector store, try to combine it into a VST1_UPD.
14822   if (Subtarget->hasNEON() && ISD::isNormalStore(N) && VT.isVector() &&
14823       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
14824     return CombineBaseUpdate(N, DCI);
14825 
14826   return SDValue();
14827 }
14828 
14829 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
14830 /// can replace combinations of VMUL and VCVT (floating-point to integer)
14831 /// when the VMUL has a constant operand that is a power of 2.
14832 ///
14833 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
14834 ///  vmul.f32        d16, d17, d16
14835 ///  vcvt.s32.f32    d16, d16
14836 /// becomes:
14837 ///  vcvt.s32.f32    d16, d16, #3
PerformVCVTCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)14838 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
14839                                   const ARMSubtarget *Subtarget) {
14840   if (!Subtarget->hasNEON())
14841     return SDValue();
14842 
14843   SDValue Op = N->getOperand(0);
14844   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
14845       Op.getOpcode() != ISD::FMUL)
14846     return SDValue();
14847 
14848   SDValue ConstVec = Op->getOperand(1);
14849   if (!isa<BuildVectorSDNode>(ConstVec))
14850     return SDValue();
14851 
14852   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
14853   uint32_t FloatBits = FloatTy.getSizeInBits();
14854   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
14855   uint32_t IntBits = IntTy.getSizeInBits();
14856   unsigned NumLanes = Op.getValueType().getVectorNumElements();
14857   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
14858     // These instructions only exist converting from f32 to i32. We can handle
14859     // smaller integers by generating an extra truncate, but larger ones would
14860     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
14861     // these intructions only support v2i32/v4i32 types.
14862     return SDValue();
14863   }
14864 
14865   BitVector UndefElements;
14866   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
14867   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
14868   if (C == -1 || C == 0 || C > 32)
14869     return SDValue();
14870 
14871   SDLoc dl(N);
14872   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
14873   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
14874     Intrinsic::arm_neon_vcvtfp2fxu;
14875   SDValue FixConv = DAG.getNode(
14876       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
14877       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
14878       DAG.getConstant(C, dl, MVT::i32));
14879 
14880   if (IntBits < FloatBits)
14881     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
14882 
14883   return FixConv;
14884 }
14885 
14886 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
14887 /// can replace combinations of VCVT (integer to floating-point) and VDIV
14888 /// when the VDIV has a constant operand that is a power of 2.
14889 ///
14890 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
14891 ///  vcvt.f32.s32    d16, d16
14892 ///  vdiv.f32        d16, d17, d16
14893 /// becomes:
14894 ///  vcvt.f32.s32    d16, d16, #3
PerformVDIVCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)14895 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
14896                                   const ARMSubtarget *Subtarget) {
14897   if (!Subtarget->hasNEON())
14898     return SDValue();
14899 
14900   SDValue Op = N->getOperand(0);
14901   unsigned OpOpcode = Op.getNode()->getOpcode();
14902   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
14903       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
14904     return SDValue();
14905 
14906   SDValue ConstVec = N->getOperand(1);
14907   if (!isa<BuildVectorSDNode>(ConstVec))
14908     return SDValue();
14909 
14910   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
14911   uint32_t FloatBits = FloatTy.getSizeInBits();
14912   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
14913   uint32_t IntBits = IntTy.getSizeInBits();
14914   unsigned NumLanes = Op.getValueType().getVectorNumElements();
14915   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
14916     // These instructions only exist converting from i32 to f32. We can handle
14917     // smaller integers by generating an extra extend, but larger ones would
14918     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
14919     // these intructions only support v2i32/v4i32 types.
14920     return SDValue();
14921   }
14922 
14923   BitVector UndefElements;
14924   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
14925   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
14926   if (C == -1 || C == 0 || C > 32)
14927     return SDValue();
14928 
14929   SDLoc dl(N);
14930   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
14931   SDValue ConvInput = Op.getOperand(0);
14932   if (IntBits < FloatBits)
14933     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
14934                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
14935                             ConvInput);
14936 
14937   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
14938     Intrinsic::arm_neon_vcvtfxu2fp;
14939   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
14940                      Op.getValueType(),
14941                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
14942                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
14943 }
14944 
PerformVECREDUCE_ADDCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)14945 static SDValue PerformVECREDUCE_ADDCombine(SDNode *N, SelectionDAG &DAG,
14946                                            const ARMSubtarget *ST) {
14947   if (!ST->hasMVEIntegerOps())
14948     return SDValue();
14949 
14950   assert(N->getOpcode() == ISD::VECREDUCE_ADD);
14951   EVT ResVT = N->getValueType(0);
14952   SDValue N0 = N->getOperand(0);
14953   SDLoc dl(N);
14954 
14955   // We are looking for something that will have illegal types if left alone,
14956   // but that we can convert to a single instruction undef MVE. For example
14957   // vecreduce_add(sext(A, v8i32)) => VADDV.s16 A
14958   // or
14959   // vecreduce_add(mul(zext(A, v16i32), zext(B, v16i32))) => VMLADAV.u8 A, B
14960 
14961   // Cases:
14962   //   VADDV u/s 8/16/32
14963   //   VMLAV u/s 8/16/32
14964   //   VADDLV u/s 32
14965   //   VMLALV u/s 16/32
14966 
14967   // If the input vector is smaller than legal (v4i8/v4i16 for example) we can
14968   // extend it and use v4i32 instead.
14969   auto ExtendIfNeeded = [&](SDValue A, unsigned ExtendCode) {
14970     EVT AVT = A.getValueType();
14971     if (!AVT.is128BitVector())
14972       A = DAG.getNode(ExtendCode, dl,
14973                       AVT.changeVectorElementType(MVT::getIntegerVT(
14974                           128 / AVT.getVectorMinNumElements())),
14975                       A);
14976     return A;
14977   };
14978   auto IsVADDV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes) {
14979     if (ResVT != RetTy || N0->getOpcode() != ExtendCode)
14980       return SDValue();
14981     SDValue A = N0->getOperand(0);
14982     if (llvm::any_of(ExtTypes, [&A](MVT Ty) { return A.getValueType() == Ty; }))
14983       return ExtendIfNeeded(A, ExtendCode);
14984     return SDValue();
14985   };
14986   auto IsPredVADDV = [&](MVT RetTy, unsigned ExtendCode,
14987                          ArrayRef<MVT> ExtTypes, SDValue &Mask) {
14988     if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
14989         !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
14990       return SDValue();
14991     Mask = N0->getOperand(0);
14992     SDValue Ext = N0->getOperand(1);
14993     if (Ext->getOpcode() != ExtendCode)
14994       return SDValue();
14995     SDValue A = Ext->getOperand(0);
14996     if (llvm::any_of(ExtTypes, [&A](MVT Ty) { return A.getValueType() == Ty; }))
14997       return ExtendIfNeeded(A, ExtendCode);
14998     return SDValue();
14999   };
15000   auto IsVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
15001                      SDValue &A, SDValue &B) {
15002     // For a vmla we are trying to match a larger pattern:
15003     // ExtA = sext/zext A
15004     // ExtB = sext/zext B
15005     // Mul = mul ExtA, ExtB
15006     // vecreduce.add Mul
15007     // There might also be en extra extend between the mul and the addreduce, so
15008     // long as the bitwidth is high enough to make them equivalent (for example
15009     // original v8i16 might be mul at v8i32 and the reduce happens at v8i64).
15010     if (ResVT != RetTy)
15011       return false;
15012     SDValue Mul = N0;
15013     if (Mul->getOpcode() == ExtendCode &&
15014         Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
15015             ResVT.getScalarSizeInBits())
15016       Mul = Mul->getOperand(0);
15017     if (Mul->getOpcode() != ISD::MUL)
15018       return false;
15019     SDValue ExtA = Mul->getOperand(0);
15020     SDValue ExtB = Mul->getOperand(1);
15021     if (ExtA->getOpcode() != ExtendCode && ExtB->getOpcode() != ExtendCode)
15022       return false;
15023     A = ExtA->getOperand(0);
15024     B = ExtB->getOperand(0);
15025     if (A.getValueType() == B.getValueType() &&
15026         llvm::any_of(ExtTypes,
15027                      [&A](MVT Ty) { return A.getValueType() == Ty; })) {
15028       A = ExtendIfNeeded(A, ExtendCode);
15029       B = ExtendIfNeeded(B, ExtendCode);
15030       return true;
15031     }
15032     return false;
15033   };
15034   auto IsPredVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
15035                      SDValue &A, SDValue &B, SDValue &Mask) {
15036     // Same as the pattern above with a select for the zero predicated lanes
15037     // ExtA = sext/zext A
15038     // ExtB = sext/zext B
15039     // Mul = mul ExtA, ExtB
15040     // N0 = select Mask, Mul, 0
15041     // vecreduce.add N0
15042     if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
15043         !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
15044       return false;
15045     Mask = N0->getOperand(0);
15046     SDValue Mul = N0->getOperand(1);
15047     if (Mul->getOpcode() == ExtendCode &&
15048         Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
15049             ResVT.getScalarSizeInBits())
15050       Mul = Mul->getOperand(0);
15051     if (Mul->getOpcode() != ISD::MUL)
15052       return false;
15053     SDValue ExtA = Mul->getOperand(0);
15054     SDValue ExtB = Mul->getOperand(1);
15055     if (ExtA->getOpcode() != ExtendCode && ExtB->getOpcode() != ExtendCode)
15056       return false;
15057     A = ExtA->getOperand(0);
15058     B = ExtB->getOperand(0);
15059     if (A.getValueType() == B.getValueType() &&
15060         llvm::any_of(ExtTypes,
15061                      [&A](MVT Ty) { return A.getValueType() == Ty; })) {
15062       A = ExtendIfNeeded(A, ExtendCode);
15063       B = ExtendIfNeeded(B, ExtendCode);
15064       return true;
15065     }
15066     return false;
15067   };
15068   auto Create64bitNode = [&](unsigned Opcode, ArrayRef<SDValue> Ops) {
15069     SDValue Node = DAG.getNode(Opcode, dl, {MVT::i32, MVT::i32}, Ops);
15070     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Node,
15071                        SDValue(Node.getNode(), 1));
15072   };
15073 
15074   if (SDValue A = IsVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}))
15075     return DAG.getNode(ARMISD::VADDVs, dl, ResVT, A);
15076   if (SDValue A = IsVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}))
15077     return DAG.getNode(ARMISD::VADDVu, dl, ResVT, A);
15078   if (SDValue A = IsVADDV(MVT::i64, ISD::SIGN_EXTEND,
15079                           {MVT::v4i8, MVT::v4i16, MVT::v4i32}))
15080     return Create64bitNode(ARMISD::VADDLVs, {A});
15081   if (SDValue A = IsVADDV(MVT::i64, ISD::ZERO_EXTEND,
15082                           {MVT::v4i8, MVT::v4i16, MVT::v4i32}))
15083     return Create64bitNode(ARMISD::VADDLVu, {A});
15084   if (SDValue A = IsVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}))
15085     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15086                        DAG.getNode(ARMISD::VADDVs, dl, MVT::i32, A));
15087   if (SDValue A = IsVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}))
15088     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15089                        DAG.getNode(ARMISD::VADDVu, dl, MVT::i32, A));
15090 
15091   SDValue Mask;
15092   if (SDValue A = IsPredVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
15093     return DAG.getNode(ARMISD::VADDVps, dl, ResVT, A, Mask);
15094   if (SDValue A = IsPredVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
15095     return DAG.getNode(ARMISD::VADDVpu, dl, ResVT, A, Mask);
15096   if (SDValue A = IsPredVADDV(MVT::i64, ISD::SIGN_EXTEND,
15097                               {MVT::v4i8, MVT::v4i16, MVT::v4i32}, Mask))
15098     return Create64bitNode(ARMISD::VADDLVps, {A, Mask});
15099   if (SDValue A = IsPredVADDV(MVT::i64, ISD::ZERO_EXTEND,
15100                               {MVT::v4i8, MVT::v4i16, MVT::v4i32}, Mask))
15101     return Create64bitNode(ARMISD::VADDLVpu, {A, Mask});
15102   if (SDValue A = IsPredVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, Mask))
15103     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15104                        DAG.getNode(ARMISD::VADDVps, dl, MVT::i32, A, Mask));
15105   if (SDValue A = IsPredVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, Mask))
15106     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15107                        DAG.getNode(ARMISD::VADDVpu, dl, MVT::i32, A, Mask));
15108 
15109   SDValue A, B;
15110   if (IsVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
15111     return DAG.getNode(ARMISD::VMLAVs, dl, ResVT, A, B);
15112   if (IsVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
15113     return DAG.getNode(ARMISD::VMLAVu, dl, ResVT, A, B);
15114   if (IsVMLAV(MVT::i64, ISD::SIGN_EXTEND,
15115               {MVT::v8i8, MVT::v8i16, MVT::v4i8, MVT::v4i16, MVT::v4i32}, A, B))
15116     return Create64bitNode(ARMISD::VMLALVs, {A, B});
15117   if (IsVMLAV(MVT::i64, ISD::ZERO_EXTEND,
15118               {MVT::v8i8, MVT::v8i16, MVT::v4i8, MVT::v4i16, MVT::v4i32}, A, B))
15119     return Create64bitNode(ARMISD::VMLALVu, {A, B});
15120   if (IsVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B))
15121     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15122                        DAG.getNode(ARMISD::VMLAVs, dl, MVT::i32, A, B));
15123   if (IsVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B))
15124     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15125                        DAG.getNode(ARMISD::VMLAVu, dl, MVT::i32, A, B));
15126 
15127   if (IsPredVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B, Mask))
15128     return DAG.getNode(ARMISD::VMLAVps, dl, ResVT, A, B, Mask);
15129   if (IsPredVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B, Mask))
15130     return DAG.getNode(ARMISD::VMLAVpu, dl, ResVT, A, B, Mask);
15131   if (IsPredVMLAV(MVT::i64, ISD::SIGN_EXTEND,
15132                   {MVT::v8i8, MVT::v8i16, MVT::v4i8, MVT::v4i16, MVT::v4i32}, A,
15133                   B, Mask))
15134     return Create64bitNode(ARMISD::VMLALVps, {A, B, Mask});
15135   if (IsPredVMLAV(MVT::i64, ISD::ZERO_EXTEND,
15136                   {MVT::v8i8, MVT::v8i16, MVT::v4i8, MVT::v4i16, MVT::v4i32}, A,
15137                   B, Mask))
15138     return Create64bitNode(ARMISD::VMLALVpu, {A, B, Mask});
15139   if (IsPredVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B, Mask))
15140     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15141                        DAG.getNode(ARMISD::VMLAVps, dl, MVT::i32, A, B, Mask));
15142   if (IsPredVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B, Mask))
15143     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15144                        DAG.getNode(ARMISD::VMLAVpu, dl, MVT::i32, A, B, Mask));
15145 
15146   // Some complications. We can get a case where the two inputs of the mul are
15147   // the same, then the output sext will have been helpfully converted to a
15148   // zext. Turn it back.
15149   SDValue Op = N0;
15150   if (Op->getOpcode() == ISD::VSELECT)
15151     Op = Op->getOperand(1);
15152   if (Op->getOpcode() == ISD::ZERO_EXTEND &&
15153       Op->getOperand(0)->getOpcode() == ISD::MUL) {
15154     SDValue Mul = Op->getOperand(0);
15155     if (Mul->getOperand(0) == Mul->getOperand(1) &&
15156         Mul->getOperand(0)->getOpcode() == ISD::SIGN_EXTEND) {
15157       SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, N0->getValueType(0), Mul);
15158       if (Op != N0)
15159         Ext = DAG.getNode(ISD::VSELECT, dl, N0->getValueType(0),
15160                           N0->getOperand(0), Ext, N0->getOperand(2));
15161       return DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, Ext);
15162     }
15163   }
15164 
15165   return SDValue();
15166 }
15167 
PerformVMOVNCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)15168 static SDValue PerformVMOVNCombine(SDNode *N,
15169                                    TargetLowering::DAGCombinerInfo &DCI) {
15170   SDValue Op0 = N->getOperand(0);
15171   SDValue Op1 = N->getOperand(1);
15172   unsigned IsTop = N->getConstantOperandVal(2);
15173 
15174   // VMOVNt(c, VQMOVNb(a, b)) => VQMOVNt(c, b)
15175   // VMOVNb(c, VQMOVNb(a, b)) => VQMOVNb(c, b)
15176   if ((Op1->getOpcode() == ARMISD::VQMOVNs ||
15177        Op1->getOpcode() == ARMISD::VQMOVNu) &&
15178       Op1->getConstantOperandVal(2) == 0)
15179     return DCI.DAG.getNode(Op1->getOpcode(), SDLoc(Op1), N->getValueType(0),
15180                            Op0, Op1->getOperand(1), N->getOperand(2));
15181 
15182   // Only the bottom lanes from Qm (Op1) and either the top or bottom lanes from
15183   // Qd (Op0) are demanded from a VMOVN, depending on whether we are inserting
15184   // into the top or bottom lanes.
15185   unsigned NumElts = N->getValueType(0).getVectorNumElements();
15186   APInt Op1DemandedElts = APInt::getSplat(NumElts, APInt::getLowBitsSet(2, 1));
15187   APInt Op0DemandedElts =
15188       IsTop ? Op1DemandedElts
15189             : APInt::getSplat(NumElts, APInt::getHighBitsSet(2, 1));
15190 
15191   APInt KnownUndef, KnownZero;
15192   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
15193   if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, KnownUndef,
15194                                      KnownZero, DCI))
15195     return SDValue(N, 0);
15196   if (TLI.SimplifyDemandedVectorElts(Op1, Op1DemandedElts, KnownUndef,
15197                                      KnownZero, DCI))
15198     return SDValue(N, 0);
15199 
15200   return SDValue();
15201 }
15202 
PerformVQMOVNCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)15203 static SDValue PerformVQMOVNCombine(SDNode *N,
15204                                     TargetLowering::DAGCombinerInfo &DCI) {
15205   SDValue Op0 = N->getOperand(0);
15206   unsigned IsTop = N->getConstantOperandVal(2);
15207 
15208   unsigned NumElts = N->getValueType(0).getVectorNumElements();
15209   APInt Op0DemandedElts =
15210       APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
15211                                      : APInt::getHighBitsSet(2, 1));
15212 
15213   APInt KnownUndef, KnownZero;
15214   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
15215   if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, KnownUndef,
15216                                      KnownZero, DCI))
15217     return SDValue(N, 0);
15218   return SDValue();
15219 }
15220 
PerformLongShiftCombine(SDNode * N,SelectionDAG & DAG)15221 static SDValue PerformLongShiftCombine(SDNode *N, SelectionDAG &DAG) {
15222   SDLoc DL(N);
15223   SDValue Op0 = N->getOperand(0);
15224   SDValue Op1 = N->getOperand(1);
15225 
15226   // Turn X << -C -> X >> C and viceversa. The negative shifts can come up from
15227   // uses of the intrinsics.
15228   if (auto C = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
15229     int ShiftAmt = C->getSExtValue();
15230     if (ShiftAmt == 0) {
15231       SDValue Merge = DAG.getMergeValues({Op0, Op1}, DL);
15232       DAG.ReplaceAllUsesWith(N, Merge.getNode());
15233       return SDValue();
15234     }
15235 
15236     if (ShiftAmt >= -32 && ShiftAmt < 0) {
15237       unsigned NewOpcode =
15238           N->getOpcode() == ARMISD::LSLL ? ARMISD::LSRL : ARMISD::LSLL;
15239       SDValue NewShift = DAG.getNode(NewOpcode, DL, N->getVTList(), Op0, Op1,
15240                                      DAG.getConstant(-ShiftAmt, DL, MVT::i32));
15241       DAG.ReplaceAllUsesWith(N, NewShift.getNode());
15242       return NewShift;
15243     }
15244   }
15245 
15246   return SDValue();
15247 }
15248 
15249 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
PerformIntrinsicCombine(SDNode * N,DAGCombinerInfo & DCI) const15250 SDValue ARMTargetLowering::PerformIntrinsicCombine(SDNode *N,
15251                                                    DAGCombinerInfo &DCI) const {
15252   SelectionDAG &DAG = DCI.DAG;
15253   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15254   switch (IntNo) {
15255   default:
15256     // Don't do anything for most intrinsics.
15257     break;
15258 
15259   // Vector shifts: check for immediate versions and lower them.
15260   // Note: This is done during DAG combining instead of DAG legalizing because
15261   // the build_vectors for 64-bit vector element shift counts are generally
15262   // not legal, and it is hard to see their values after they get legalized to
15263   // loads from a constant pool.
15264   case Intrinsic::arm_neon_vshifts:
15265   case Intrinsic::arm_neon_vshiftu:
15266   case Intrinsic::arm_neon_vrshifts:
15267   case Intrinsic::arm_neon_vrshiftu:
15268   case Intrinsic::arm_neon_vrshiftn:
15269   case Intrinsic::arm_neon_vqshifts:
15270   case Intrinsic::arm_neon_vqshiftu:
15271   case Intrinsic::arm_neon_vqshiftsu:
15272   case Intrinsic::arm_neon_vqshiftns:
15273   case Intrinsic::arm_neon_vqshiftnu:
15274   case Intrinsic::arm_neon_vqshiftnsu:
15275   case Intrinsic::arm_neon_vqrshiftns:
15276   case Intrinsic::arm_neon_vqrshiftnu:
15277   case Intrinsic::arm_neon_vqrshiftnsu: {
15278     EVT VT = N->getOperand(1).getValueType();
15279     int64_t Cnt;
15280     unsigned VShiftOpc = 0;
15281 
15282     switch (IntNo) {
15283     case Intrinsic::arm_neon_vshifts:
15284     case Intrinsic::arm_neon_vshiftu:
15285       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
15286         VShiftOpc = ARMISD::VSHLIMM;
15287         break;
15288       }
15289       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
15290         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM
15291                                                           : ARMISD::VSHRuIMM);
15292         break;
15293       }
15294       return SDValue();
15295 
15296     case Intrinsic::arm_neon_vrshifts:
15297     case Intrinsic::arm_neon_vrshiftu:
15298       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
15299         break;
15300       return SDValue();
15301 
15302     case Intrinsic::arm_neon_vqshifts:
15303     case Intrinsic::arm_neon_vqshiftu:
15304       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
15305         break;
15306       return SDValue();
15307 
15308     case Intrinsic::arm_neon_vqshiftsu:
15309       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
15310         break;
15311       llvm_unreachable("invalid shift count for vqshlu intrinsic");
15312 
15313     case Intrinsic::arm_neon_vrshiftn:
15314     case Intrinsic::arm_neon_vqshiftns:
15315     case Intrinsic::arm_neon_vqshiftnu:
15316     case Intrinsic::arm_neon_vqshiftnsu:
15317     case Intrinsic::arm_neon_vqrshiftns:
15318     case Intrinsic::arm_neon_vqrshiftnu:
15319     case Intrinsic::arm_neon_vqrshiftnsu:
15320       // Narrowing shifts require an immediate right shift.
15321       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
15322         break;
15323       llvm_unreachable("invalid shift count for narrowing vector shift "
15324                        "intrinsic");
15325 
15326     default:
15327       llvm_unreachable("unhandled vector shift");
15328     }
15329 
15330     switch (IntNo) {
15331     case Intrinsic::arm_neon_vshifts:
15332     case Intrinsic::arm_neon_vshiftu:
15333       // Opcode already set above.
15334       break;
15335     case Intrinsic::arm_neon_vrshifts:
15336       VShiftOpc = ARMISD::VRSHRsIMM;
15337       break;
15338     case Intrinsic::arm_neon_vrshiftu:
15339       VShiftOpc = ARMISD::VRSHRuIMM;
15340       break;
15341     case Intrinsic::arm_neon_vrshiftn:
15342       VShiftOpc = ARMISD::VRSHRNIMM;
15343       break;
15344     case Intrinsic::arm_neon_vqshifts:
15345       VShiftOpc = ARMISD::VQSHLsIMM;
15346       break;
15347     case Intrinsic::arm_neon_vqshiftu:
15348       VShiftOpc = ARMISD::VQSHLuIMM;
15349       break;
15350     case Intrinsic::arm_neon_vqshiftsu:
15351       VShiftOpc = ARMISD::VQSHLsuIMM;
15352       break;
15353     case Intrinsic::arm_neon_vqshiftns:
15354       VShiftOpc = ARMISD::VQSHRNsIMM;
15355       break;
15356     case Intrinsic::arm_neon_vqshiftnu:
15357       VShiftOpc = ARMISD::VQSHRNuIMM;
15358       break;
15359     case Intrinsic::arm_neon_vqshiftnsu:
15360       VShiftOpc = ARMISD::VQSHRNsuIMM;
15361       break;
15362     case Intrinsic::arm_neon_vqrshiftns:
15363       VShiftOpc = ARMISD::VQRSHRNsIMM;
15364       break;
15365     case Intrinsic::arm_neon_vqrshiftnu:
15366       VShiftOpc = ARMISD::VQRSHRNuIMM;
15367       break;
15368     case Intrinsic::arm_neon_vqrshiftnsu:
15369       VShiftOpc = ARMISD::VQRSHRNsuIMM;
15370       break;
15371     }
15372 
15373     SDLoc dl(N);
15374     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
15375                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
15376   }
15377 
15378   case Intrinsic::arm_neon_vshiftins: {
15379     EVT VT = N->getOperand(1).getValueType();
15380     int64_t Cnt;
15381     unsigned VShiftOpc = 0;
15382 
15383     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
15384       VShiftOpc = ARMISD::VSLIIMM;
15385     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
15386       VShiftOpc = ARMISD::VSRIIMM;
15387     else {
15388       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
15389     }
15390 
15391     SDLoc dl(N);
15392     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
15393                        N->getOperand(1), N->getOperand(2),
15394                        DAG.getConstant(Cnt, dl, MVT::i32));
15395   }
15396 
15397   case Intrinsic::arm_neon_vqrshifts:
15398   case Intrinsic::arm_neon_vqrshiftu:
15399     // No immediate versions of these to check for.
15400     break;
15401 
15402   case Intrinsic::arm_mve_vqdmlah:
15403   case Intrinsic::arm_mve_vqdmlash:
15404   case Intrinsic::arm_mve_vqrdmlah:
15405   case Intrinsic::arm_mve_vqrdmlash:
15406   case Intrinsic::arm_mve_vmla_n_predicated:
15407   case Intrinsic::arm_mve_vmlas_n_predicated:
15408   case Intrinsic::arm_mve_vqdmlah_predicated:
15409   case Intrinsic::arm_mve_vqdmlash_predicated:
15410   case Intrinsic::arm_mve_vqrdmlah_predicated:
15411   case Intrinsic::arm_mve_vqrdmlash_predicated: {
15412     // These intrinsics all take an i32 scalar operand which is narrowed to the
15413     // size of a single lane of the vector type they return. So we don't need
15414     // any bits of that operand above that point, which allows us to eliminate
15415     // uxth/sxth.
15416     unsigned BitWidth = N->getValueType(0).getScalarSizeInBits();
15417     APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
15418     if (SimplifyDemandedBits(N->getOperand(3), DemandedMask, DCI))
15419       return SDValue();
15420     break;
15421   }
15422 
15423   case Intrinsic::arm_mve_minv:
15424   case Intrinsic::arm_mve_maxv:
15425   case Intrinsic::arm_mve_minav:
15426   case Intrinsic::arm_mve_maxav:
15427   case Intrinsic::arm_mve_minv_predicated:
15428   case Intrinsic::arm_mve_maxv_predicated:
15429   case Intrinsic::arm_mve_minav_predicated:
15430   case Intrinsic::arm_mve_maxav_predicated: {
15431     // These intrinsics all take an i32 scalar operand which is narrowed to the
15432     // size of a single lane of the vector type they take as the other input.
15433     unsigned BitWidth = N->getOperand(2)->getValueType(0).getScalarSizeInBits();
15434     APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
15435     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
15436       return SDValue();
15437     break;
15438   }
15439 
15440   case Intrinsic::arm_mve_addv: {
15441     // Turn this intrinsic straight into the appropriate ARMISD::VADDV node,
15442     // which allow PerformADDVecReduce to turn it into VADDLV when possible.
15443     bool Unsigned = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
15444     unsigned Opc = Unsigned ? ARMISD::VADDVu : ARMISD::VADDVs;
15445     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), N->getOperand(1));
15446   }
15447 
15448   case Intrinsic::arm_mve_addlv:
15449   case Intrinsic::arm_mve_addlv_predicated: {
15450     // Same for these, but ARMISD::VADDLV has to be followed by a BUILD_PAIR
15451     // which recombines the two outputs into an i64
15452     bool Unsigned = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
15453     unsigned Opc = IntNo == Intrinsic::arm_mve_addlv ?
15454                     (Unsigned ? ARMISD::VADDLVu : ARMISD::VADDLVs) :
15455                     (Unsigned ? ARMISD::VADDLVpu : ARMISD::VADDLVps);
15456 
15457     SmallVector<SDValue, 4> Ops;
15458     for (unsigned i = 1, e = N->getNumOperands(); i < e; i++)
15459       if (i != 2)                      // skip the unsigned flag
15460         Ops.push_back(N->getOperand(i));
15461 
15462     SDLoc dl(N);
15463     SDValue val = DAG.getNode(Opc, dl, {MVT::i32, MVT::i32}, Ops);
15464     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, val.getValue(0),
15465                        val.getValue(1));
15466   }
15467   }
15468 
15469   return SDValue();
15470 }
15471 
15472 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
15473 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
15474 /// combining instead of DAG legalizing because the build_vectors for 64-bit
15475 /// vector element shift counts are generally not legal, and it is hard to see
15476 /// their values after they get legalized to loads from a constant pool.
PerformShiftCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)15477 static SDValue PerformShiftCombine(SDNode *N,
15478                                    TargetLowering::DAGCombinerInfo &DCI,
15479                                    const ARMSubtarget *ST) {
15480   SelectionDAG &DAG = DCI.DAG;
15481   EVT VT = N->getValueType(0);
15482   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
15483     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
15484     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
15485     SDValue N1 = N->getOperand(1);
15486     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
15487       SDValue N0 = N->getOperand(0);
15488       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
15489           DAG.MaskedValueIsZero(N0.getOperand(0),
15490                                 APInt::getHighBitsSet(32, 16)))
15491         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
15492     }
15493   }
15494 
15495   if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
15496       N->getOperand(0)->getOpcode() == ISD::AND &&
15497       N->getOperand(0)->hasOneUse()) {
15498     if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
15499       return SDValue();
15500     // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
15501     // usually show up because instcombine prefers to canonicalize it to
15502     // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
15503     // out of GEP lowering in some cases.
15504     SDValue N0 = N->getOperand(0);
15505     ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
15506     if (!ShiftAmtNode)
15507       return SDValue();
15508     uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
15509     ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
15510     if (!AndMaskNode)
15511       return SDValue();
15512     uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
15513     // Don't transform uxtb/uxth.
15514     if (AndMask == 255 || AndMask == 65535)
15515       return SDValue();
15516     if (isMask_32(AndMask)) {
15517       uint32_t MaskedBits = countLeadingZeros(AndMask);
15518       if (MaskedBits > ShiftAmt) {
15519         SDLoc DL(N);
15520         SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
15521                                   DAG.getConstant(MaskedBits, DL, MVT::i32));
15522         return DAG.getNode(
15523             ISD::SRL, DL, MVT::i32, SHL,
15524             DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
15525       }
15526     }
15527   }
15528 
15529   // Nothing to be done for scalar shifts.
15530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15531   if (!VT.isVector() || !TLI.isTypeLegal(VT))
15532     return SDValue();
15533   if (ST->hasMVEIntegerOps() && VT == MVT::v2i64)
15534     return SDValue();
15535 
15536   int64_t Cnt;
15537 
15538   switch (N->getOpcode()) {
15539   default: llvm_unreachable("unexpected shift opcode");
15540 
15541   case ISD::SHL:
15542     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
15543       SDLoc dl(N);
15544       return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
15545                          DAG.getConstant(Cnt, dl, MVT::i32));
15546     }
15547     break;
15548 
15549   case ISD::SRA:
15550   case ISD::SRL:
15551     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
15552       unsigned VShiftOpc =
15553           (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
15554       SDLoc dl(N);
15555       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
15556                          DAG.getConstant(Cnt, dl, MVT::i32));
15557     }
15558   }
15559   return SDValue();
15560 }
15561 
15562 // Look for a sign/zero/fpextend extend of a larger than legal load. This can be
15563 // split into multiple extending loads, which are simpler to deal with than an
15564 // arbitrary extend. For fp extends we use an integer extending load and a VCVTL
15565 // to convert the type to an f32.
PerformSplittingToWideningLoad(SDNode * N,SelectionDAG & DAG)15566 static SDValue PerformSplittingToWideningLoad(SDNode *N, SelectionDAG &DAG) {
15567   SDValue N0 = N->getOperand(0);
15568   if (N0.getOpcode() != ISD::LOAD)
15569     return SDValue();
15570   LoadSDNode *LD = cast<LoadSDNode>(N0.getNode());
15571   if (!LD->isSimple() || !N0.hasOneUse() || LD->isIndexed() ||
15572       LD->getExtensionType() != ISD::NON_EXTLOAD)
15573     return SDValue();
15574   EVT FromVT = LD->getValueType(0);
15575   EVT ToVT = N->getValueType(0);
15576   if (!ToVT.isVector())
15577     return SDValue();
15578   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
15579   EVT ToEltVT = ToVT.getVectorElementType();
15580   EVT FromEltVT = FromVT.getVectorElementType();
15581 
15582   unsigned NumElements = 0;
15583   if (ToEltVT == MVT::i32 && (FromEltVT == MVT::i16 || FromEltVT == MVT::i8))
15584     NumElements = 4;
15585   if (ToEltVT == MVT::i16 && FromEltVT == MVT::i8)
15586     NumElements = 8;
15587   if (ToEltVT == MVT::f32 && FromEltVT == MVT::f16)
15588     NumElements = 4;
15589   if (NumElements == 0 ||
15590       (FromEltVT != MVT::f16 && FromVT.getVectorNumElements() == NumElements) ||
15591       FromVT.getVectorNumElements() % NumElements != 0 ||
15592       !isPowerOf2_32(NumElements))
15593     return SDValue();
15594 
15595   LLVMContext &C = *DAG.getContext();
15596   SDLoc DL(LD);
15597   // Details about the old load
15598   SDValue Ch = LD->getChain();
15599   SDValue BasePtr = LD->getBasePtr();
15600   Align Alignment = LD->getOriginalAlign();
15601   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
15602   AAMDNodes AAInfo = LD->getAAInfo();
15603 
15604   ISD::LoadExtType NewExtType =
15605       N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
15606   SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
15607   EVT NewFromVT = EVT::getVectorVT(
15608       C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements);
15609   EVT NewToVT = EVT::getVectorVT(
15610       C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements);
15611 
15612   SmallVector<SDValue, 4> Loads;
15613   SmallVector<SDValue, 4> Chains;
15614   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
15615     unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8;
15616     SDValue NewPtr =
15617         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset));
15618 
15619     SDValue NewLoad =
15620         DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
15621                     LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
15622                     Alignment, MMOFlags, AAInfo);
15623     Loads.push_back(NewLoad);
15624     Chains.push_back(SDValue(NewLoad.getNode(), 1));
15625   }
15626 
15627   // Float truncs need to extended with VCVTB's into their floating point types.
15628   if (FromEltVT == MVT::f16) {
15629     SmallVector<SDValue, 4> Extends;
15630 
15631     for (unsigned i = 0; i < Loads.size(); i++) {
15632       SDValue LoadBC =
15633           DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v8f16, Loads[i]);
15634       SDValue FPExt = DAG.getNode(ARMISD::VCVTL, DL, MVT::v4f32, LoadBC,
15635                                   DAG.getConstant(0, DL, MVT::i32));
15636       Extends.push_back(FPExt);
15637     }
15638 
15639     Loads = Extends;
15640   }
15641 
15642   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
15643   DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
15644   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Loads);
15645 }
15646 
15647 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
15648 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
PerformExtendCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)15649 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
15650                                     const ARMSubtarget *ST) {
15651   SDValue N0 = N->getOperand(0);
15652 
15653   // Check for sign- and zero-extensions of vector extract operations of 8- and
15654   // 16-bit vector elements. NEON and MVE support these directly. They are
15655   // handled during DAG combining because type legalization will promote them
15656   // to 32-bit types and it is messy to recognize the operations after that.
15657   if ((ST->hasNEON() || ST->hasMVEIntegerOps()) &&
15658       N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
15659     SDValue Vec = N0.getOperand(0);
15660     SDValue Lane = N0.getOperand(1);
15661     EVT VT = N->getValueType(0);
15662     EVT EltVT = N0.getValueType();
15663     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15664 
15665     if (VT == MVT::i32 &&
15666         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
15667         TLI.isTypeLegal(Vec.getValueType()) &&
15668         isa<ConstantSDNode>(Lane)) {
15669 
15670       unsigned Opc = 0;
15671       switch (N->getOpcode()) {
15672       default: llvm_unreachable("unexpected opcode");
15673       case ISD::SIGN_EXTEND:
15674         Opc = ARMISD::VGETLANEs;
15675         break;
15676       case ISD::ZERO_EXTEND:
15677       case ISD::ANY_EXTEND:
15678         Opc = ARMISD::VGETLANEu;
15679         break;
15680       }
15681       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
15682     }
15683   }
15684 
15685   if (ST->hasMVEIntegerOps())
15686     if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
15687       return NewLoad;
15688 
15689   return SDValue();
15690 }
15691 
PerformFPExtendCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)15692 static SDValue PerformFPExtendCombine(SDNode *N, SelectionDAG &DAG,
15693                                       const ARMSubtarget *ST) {
15694   if (ST->hasMVEFloatOps())
15695     if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
15696       return NewLoad;
15697 
15698   return SDValue();
15699 }
15700 
15701 /// PerformMinMaxCombine - Target-specific DAG combining for creating truncating
15702 /// saturates.
PerformMinMaxCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)15703 static SDValue PerformMinMaxCombine(SDNode *N, SelectionDAG &DAG,
15704                                     const ARMSubtarget *ST) {
15705   EVT VT = N->getValueType(0);
15706   SDValue N0 = N->getOperand(0);
15707   if (!ST->hasMVEIntegerOps())
15708     return SDValue();
15709 
15710   if (SDValue V = PerformVQDMULHCombine(N, DAG))
15711     return V;
15712 
15713   if (VT != MVT::v4i32 && VT != MVT::v8i16)
15714     return SDValue();
15715 
15716   auto IsSignedSaturate = [&](SDNode *Min, SDNode *Max) {
15717     // Check one is a smin and the other is a smax
15718     if (Min->getOpcode() != ISD::SMIN)
15719       std::swap(Min, Max);
15720     if (Min->getOpcode() != ISD::SMIN || Max->getOpcode() != ISD::SMAX)
15721       return false;
15722 
15723     APInt SaturateC;
15724     if (VT == MVT::v4i32)
15725       SaturateC = APInt(32, (1 << 15) - 1, true);
15726     else //if (VT == MVT::v8i16)
15727       SaturateC = APInt(16, (1 << 7) - 1, true);
15728 
15729     APInt MinC, MaxC;
15730     if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
15731         MinC != SaturateC)
15732       return false;
15733     if (!ISD::isConstantSplatVector(Max->getOperand(1).getNode(), MaxC) ||
15734         MaxC != ~SaturateC)
15735       return false;
15736     return true;
15737   };
15738 
15739   if (IsSignedSaturate(N, N0.getNode())) {
15740     SDLoc DL(N);
15741     MVT ExtVT, HalfVT;
15742     if (VT == MVT::v4i32) {
15743       HalfVT = MVT::v8i16;
15744       ExtVT = MVT::v4i16;
15745     } else { // if (VT == MVT::v8i16)
15746       HalfVT = MVT::v16i8;
15747       ExtVT = MVT::v8i8;
15748     }
15749 
15750     // Create a VQMOVNB with undef top lanes, then signed extended into the top
15751     // half. That extend will hopefully be removed if only the bottom bits are
15752     // demanded (though a truncating store, for example).
15753     SDValue VQMOVN =
15754         DAG.getNode(ARMISD::VQMOVNs, DL, HalfVT, DAG.getUNDEF(HalfVT),
15755                     N0->getOperand(0), DAG.getConstant(0, DL, MVT::i32));
15756     SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
15757     return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Bitcast,
15758                        DAG.getValueType(ExtVT));
15759   }
15760 
15761   auto IsUnsignedSaturate = [&](SDNode *Min) {
15762     // For unsigned, we just need to check for <= 0xffff
15763     if (Min->getOpcode() != ISD::UMIN)
15764       return false;
15765 
15766     APInt SaturateC;
15767     if (VT == MVT::v4i32)
15768       SaturateC = APInt(32, (1 << 16) - 1, true);
15769     else //if (VT == MVT::v8i16)
15770       SaturateC = APInt(16, (1 << 8) - 1, true);
15771 
15772     APInt MinC;
15773     if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
15774         MinC != SaturateC)
15775       return false;
15776     return true;
15777   };
15778 
15779   if (IsUnsignedSaturate(N)) {
15780     SDLoc DL(N);
15781     MVT HalfVT;
15782     unsigned ExtConst;
15783     if (VT == MVT::v4i32) {
15784       HalfVT = MVT::v8i16;
15785       ExtConst = 0x0000FFFF;
15786     } else { //if (VT == MVT::v8i16)
15787       HalfVT = MVT::v16i8;
15788       ExtConst = 0x00FF;
15789     }
15790 
15791     // Create a VQMOVNB with undef top lanes, then ZExt into the top half with
15792     // an AND. That extend will hopefully be removed if only the bottom bits are
15793     // demanded (though a truncating store, for example).
15794     SDValue VQMOVN =
15795         DAG.getNode(ARMISD::VQMOVNu, DL, HalfVT, DAG.getUNDEF(HalfVT), N0,
15796                     DAG.getConstant(0, DL, MVT::i32));
15797     SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
15798     return DAG.getNode(ISD::AND, DL, VT, Bitcast,
15799                        DAG.getConstant(ExtConst, DL, VT));
15800   }
15801 
15802   return SDValue();
15803 }
15804 
isPowerOf2Constant(SDValue V)15805 static const APInt *isPowerOf2Constant(SDValue V) {
15806   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
15807   if (!C)
15808     return nullptr;
15809   const APInt *CV = &C->getAPIntValue();
15810   return CV->isPowerOf2() ? CV : nullptr;
15811 }
15812 
PerformCMOVToBFICombine(SDNode * CMOV,SelectionDAG & DAG) const15813 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
15814   // If we have a CMOV, OR and AND combination such as:
15815   //   if (x & CN)
15816   //     y |= CM;
15817   //
15818   // And:
15819   //   * CN is a single bit;
15820   //   * All bits covered by CM are known zero in y
15821   //
15822   // Then we can convert this into a sequence of BFI instructions. This will
15823   // always be a win if CM is a single bit, will always be no worse than the
15824   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
15825   // three bits (due to the extra IT instruction).
15826 
15827   SDValue Op0 = CMOV->getOperand(0);
15828   SDValue Op1 = CMOV->getOperand(1);
15829   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
15830   auto CC = CCNode->getAPIntValue().getLimitedValue();
15831   SDValue CmpZ = CMOV->getOperand(4);
15832 
15833   // The compare must be against zero.
15834   if (!isNullConstant(CmpZ->getOperand(1)))
15835     return SDValue();
15836 
15837   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
15838   SDValue And = CmpZ->getOperand(0);
15839   if (And->getOpcode() != ISD::AND)
15840     return SDValue();
15841   const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
15842   if (!AndC)
15843     return SDValue();
15844   SDValue X = And->getOperand(0);
15845 
15846   if (CC == ARMCC::EQ) {
15847     // We're performing an "equal to zero" compare. Swap the operands so we
15848     // canonicalize on a "not equal to zero" compare.
15849     std::swap(Op0, Op1);
15850   } else {
15851     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
15852   }
15853 
15854   if (Op1->getOpcode() != ISD::OR)
15855     return SDValue();
15856 
15857   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
15858   if (!OrC)
15859     return SDValue();
15860   SDValue Y = Op1->getOperand(0);
15861 
15862   if (Op0 != Y)
15863     return SDValue();
15864 
15865   // Now, is it profitable to continue?
15866   APInt OrCI = OrC->getAPIntValue();
15867   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
15868   if (OrCI.countPopulation() > Heuristic)
15869     return SDValue();
15870 
15871   // Lastly, can we determine that the bits defined by OrCI
15872   // are zero in Y?
15873   KnownBits Known = DAG.computeKnownBits(Y);
15874   if ((OrCI & Known.Zero) != OrCI)
15875     return SDValue();
15876 
15877   // OK, we can do the combine.
15878   SDValue V = Y;
15879   SDLoc dl(X);
15880   EVT VT = X.getValueType();
15881   unsigned BitInX = AndC->logBase2();
15882 
15883   if (BitInX != 0) {
15884     // We must shift X first.
15885     X = DAG.getNode(ISD::SRL, dl, VT, X,
15886                     DAG.getConstant(BitInX, dl, VT));
15887   }
15888 
15889   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
15890        BitInY < NumActiveBits; ++BitInY) {
15891     if (OrCI[BitInY] == 0)
15892       continue;
15893     APInt Mask(VT.getSizeInBits(), 0);
15894     Mask.setBit(BitInY);
15895     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
15896                     // Confusingly, the operand is an *inverted* mask.
15897                     DAG.getConstant(~Mask, dl, VT));
15898   }
15899 
15900   return V;
15901 }
15902 
15903 // Given N, the value controlling the conditional branch, search for the loop
15904 // intrinsic, returning it, along with how the value is used. We need to handle
15905 // patterns such as the following:
15906 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
15907 // (brcond (setcc (loop.decrement), 0, eq), exit)
15908 // (brcond (setcc (loop.decrement), 0, ne), header)
SearchLoopIntrinsic(SDValue N,ISD::CondCode & CC,int & Imm,bool & Negate)15909 static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm,
15910                                    bool &Negate) {
15911   switch (N->getOpcode()) {
15912   default:
15913     break;
15914   case ISD::XOR: {
15915     if (!isa<ConstantSDNode>(N.getOperand(1)))
15916       return SDValue();
15917     if (!cast<ConstantSDNode>(N.getOperand(1))->isOne())
15918       return SDValue();
15919     Negate = !Negate;
15920     return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate);
15921   }
15922   case ISD::SETCC: {
15923     auto *Const = dyn_cast<ConstantSDNode>(N.getOperand(1));
15924     if (!Const)
15925       return SDValue();
15926     if (Const->isNullValue())
15927       Imm = 0;
15928     else if (Const->isOne())
15929       Imm = 1;
15930     else
15931       return SDValue();
15932     CC = cast<CondCodeSDNode>(N.getOperand(2))->get();
15933     return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate);
15934   }
15935   case ISD::INTRINSIC_W_CHAIN: {
15936     unsigned IntOp = cast<ConstantSDNode>(N.getOperand(1))->getZExtValue();
15937     if (IntOp != Intrinsic::test_set_loop_iterations &&
15938         IntOp != Intrinsic::loop_decrement_reg)
15939       return SDValue();
15940     return N;
15941   }
15942   }
15943   return SDValue();
15944 }
15945 
PerformHWLoopCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)15946 static SDValue PerformHWLoopCombine(SDNode *N,
15947                                     TargetLowering::DAGCombinerInfo &DCI,
15948                                     const ARMSubtarget *ST) {
15949 
15950   // The hwloop intrinsics that we're interested are used for control-flow,
15951   // either for entering or exiting the loop:
15952   // - test.set.loop.iterations will test whether its operand is zero. If it
15953   //   is zero, the proceeding branch should not enter the loop.
15954   // - loop.decrement.reg also tests whether its operand is zero. If it is
15955   //   zero, the proceeding branch should not branch back to the beginning of
15956   //   the loop.
15957   // So here, we need to check that how the brcond is using the result of each
15958   // of the intrinsics to ensure that we're branching to the right place at the
15959   // right time.
15960 
15961   ISD::CondCode CC;
15962   SDValue Cond;
15963   int Imm = 1;
15964   bool Negate = false;
15965   SDValue Chain = N->getOperand(0);
15966   SDValue Dest;
15967 
15968   if (N->getOpcode() == ISD::BRCOND) {
15969     CC = ISD::SETEQ;
15970     Cond = N->getOperand(1);
15971     Dest = N->getOperand(2);
15972   } else {
15973     assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!");
15974     CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15975     Cond = N->getOperand(2);
15976     Dest = N->getOperand(4);
15977     if (auto *Const = dyn_cast<ConstantSDNode>(N->getOperand(3))) {
15978       if (!Const->isOne() && !Const->isNullValue())
15979         return SDValue();
15980       Imm = Const->getZExtValue();
15981     } else
15982       return SDValue();
15983   }
15984 
15985   SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate);
15986   if (!Int)
15987     return SDValue();
15988 
15989   if (Negate)
15990     CC = ISD::getSetCCInverse(CC, /* Integer inverse */ MVT::i32);
15991 
15992   auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) {
15993     return (CC == ISD::SETEQ && Imm == 0) ||
15994            (CC == ISD::SETNE && Imm == 1) ||
15995            (CC == ISD::SETLT && Imm == 1) ||
15996            (CC == ISD::SETULT && Imm == 1);
15997   };
15998 
15999   auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) {
16000     return (CC == ISD::SETEQ && Imm == 1) ||
16001            (CC == ISD::SETNE && Imm == 0) ||
16002            (CC == ISD::SETGT && Imm == 0) ||
16003            (CC == ISD::SETUGT && Imm == 0) ||
16004            (CC == ISD::SETGE && Imm == 1) ||
16005            (CC == ISD::SETUGE && Imm == 1);
16006   };
16007 
16008   assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) &&
16009          "unsupported condition");
16010 
16011   SDLoc dl(Int);
16012   SelectionDAG &DAG = DCI.DAG;
16013   SDValue Elements = Int.getOperand(2);
16014   unsigned IntOp = cast<ConstantSDNode>(Int->getOperand(1))->getZExtValue();
16015   assert((N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BR)
16016           && "expected single br user");
16017   SDNode *Br = *N->use_begin();
16018   SDValue OtherTarget = Br->getOperand(1);
16019 
16020   // Update the unconditional branch to branch to the given Dest.
16021   auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) {
16022     SDValue NewBrOps[] = { Br->getOperand(0), Dest };
16023     SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps);
16024     DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr);
16025   };
16026 
16027   if (IntOp == Intrinsic::test_set_loop_iterations) {
16028     SDValue Res;
16029     // We expect this 'instruction' to branch when the counter is zero.
16030     if (IsTrueIfZero(CC, Imm)) {
16031       SDValue Ops[] = { Chain, Elements, Dest };
16032       Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
16033     } else {
16034       // The logic is the reverse of what we need for WLS, so find the other
16035       // basic block target: the target of the proceeding br.
16036       UpdateUncondBr(Br, Dest, DAG);
16037 
16038       SDValue Ops[] = { Chain, Elements, OtherTarget };
16039       Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
16040     }
16041     DAG.ReplaceAllUsesOfValueWith(Int.getValue(1), Int.getOperand(0));
16042     return Res;
16043   } else {
16044     SDValue Size = DAG.getTargetConstant(
16045       cast<ConstantSDNode>(Int.getOperand(3))->getZExtValue(), dl, MVT::i32);
16046     SDValue Args[] = { Int.getOperand(0), Elements, Size, };
16047     SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl,
16048                                   DAG.getVTList(MVT::i32, MVT::Other), Args);
16049     DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode());
16050 
16051     // We expect this instruction to branch when the count is not zero.
16052     SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget;
16053 
16054     // Update the unconditional branch to target the loop preheader if we've
16055     // found the condition has been reversed.
16056     if (Target == OtherTarget)
16057       UpdateUncondBr(Br, Dest, DAG);
16058 
16059     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16060                         SDValue(LoopDec.getNode(), 1), Chain);
16061 
16062     SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target };
16063     return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs);
16064   }
16065   return SDValue();
16066 }
16067 
16068 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
16069 SDValue
PerformBRCONDCombine(SDNode * N,SelectionDAG & DAG) const16070 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
16071   SDValue Cmp = N->getOperand(4);
16072   if (Cmp.getOpcode() != ARMISD::CMPZ)
16073     // Only looking at NE cases.
16074     return SDValue();
16075 
16076   EVT VT = N->getValueType(0);
16077   SDLoc dl(N);
16078   SDValue LHS = Cmp.getOperand(0);
16079   SDValue RHS = Cmp.getOperand(1);
16080   SDValue Chain = N->getOperand(0);
16081   SDValue BB = N->getOperand(1);
16082   SDValue ARMcc = N->getOperand(2);
16083   ARMCC::CondCodes CC =
16084     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
16085 
16086   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
16087   // -> (brcond Chain BB CC CPSR Cmp)
16088   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
16089       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
16090       LHS->getOperand(0)->hasOneUse()) {
16091     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
16092     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
16093     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
16094     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
16095     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
16096         (LHS01C && LHS01C->getZExtValue() == 1) &&
16097         (LHS1C && LHS1C->getZExtValue() == 1) &&
16098         (RHSC && RHSC->getZExtValue() == 0)) {
16099       return DAG.getNode(
16100           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
16101           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
16102     }
16103   }
16104 
16105   return SDValue();
16106 }
16107 
16108 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
16109 SDValue
PerformCMOVCombine(SDNode * N,SelectionDAG & DAG) const16110 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
16111   SDValue Cmp = N->getOperand(4);
16112   if (Cmp.getOpcode() != ARMISD::CMPZ)
16113     // Only looking at EQ and NE cases.
16114     return SDValue();
16115 
16116   EVT VT = N->getValueType(0);
16117   SDLoc dl(N);
16118   SDValue LHS = Cmp.getOperand(0);
16119   SDValue RHS = Cmp.getOperand(1);
16120   SDValue FalseVal = N->getOperand(0);
16121   SDValue TrueVal = N->getOperand(1);
16122   SDValue ARMcc = N->getOperand(2);
16123   ARMCC::CondCodes CC =
16124     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
16125 
16126   // BFI is only available on V6T2+.
16127   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
16128     SDValue R = PerformCMOVToBFICombine(N, DAG);
16129     if (R)
16130       return R;
16131   }
16132 
16133   // Simplify
16134   //   mov     r1, r0
16135   //   cmp     r1, x
16136   //   mov     r0, y
16137   //   moveq   r0, x
16138   // to
16139   //   cmp     r0, x
16140   //   movne   r0, y
16141   //
16142   //   mov     r1, r0
16143   //   cmp     r1, x
16144   //   mov     r0, x
16145   //   movne   r0, y
16146   // to
16147   //   cmp     r0, x
16148   //   movne   r0, y
16149   /// FIXME: Turn this into a target neutral optimization?
16150   SDValue Res;
16151   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
16152     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
16153                       N->getOperand(3), Cmp);
16154   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
16155     SDValue ARMcc;
16156     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
16157     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
16158                       N->getOperand(3), NewCmp);
16159   }
16160 
16161   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
16162   // -> (cmov F T CC CPSR Cmp)
16163   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
16164     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
16165     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
16166     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
16167     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
16168         (LHS1C && LHS1C->getZExtValue() == 1) &&
16169         (RHSC && RHSC->getZExtValue() == 0)) {
16170       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
16171                          LHS->getOperand(2), LHS->getOperand(3),
16172                          LHS->getOperand(4));
16173     }
16174   }
16175 
16176   if (!VT.isInteger())
16177       return SDValue();
16178 
16179   // Materialize a boolean comparison for integers so we can avoid branching.
16180   if (isNullConstant(FalseVal)) {
16181     if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
16182       if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
16183         // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
16184         // right 5 bits will make that 32 be 1, otherwise it will be 0.
16185         // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
16186         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
16187         Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
16188                           DAG.getConstant(5, dl, MVT::i32));
16189       } else {
16190         // CMOV 0, 1, ==, (CMPZ x, y) ->
16191         //     (ADDCARRY (SUB x, y), t:0, t:1)
16192         // where t = (SUBCARRY 0, (SUB x, y), 0)
16193         //
16194         // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
16195         // x != y. In other words, a carry C == 1 when x == y, C == 0
16196         // otherwise.
16197         // The final ADDCARRY computes
16198         //     x - y + (0 - (x - y)) + C == C
16199         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
16200         SDVTList VTs = DAG.getVTList(VT, MVT::i32);
16201         SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
16202         // ISD::SUBCARRY returns a borrow but we want the carry here
16203         // actually.
16204         SDValue Carry =
16205             DAG.getNode(ISD::SUB, dl, MVT::i32,
16206                         DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
16207         Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
16208       }
16209     } else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
16210                (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
16211       // This seems pointless but will allow us to combine it further below.
16212       // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
16213       SDValue Sub =
16214           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
16215       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
16216                                           Sub.getValue(1), SDValue());
16217       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
16218                         N->getOperand(3), CPSRGlue.getValue(1));
16219       FalseVal = Sub;
16220     }
16221   } else if (isNullConstant(TrueVal)) {
16222     if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
16223         (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
16224       // This seems pointless but will allow us to combine it further below
16225       // Note that we change == for != as this is the dual for the case above.
16226       // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
16227       SDValue Sub =
16228           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
16229       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
16230                                           Sub.getValue(1), SDValue());
16231       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
16232                         DAG.getConstant(ARMCC::NE, dl, MVT::i32),
16233                         N->getOperand(3), CPSRGlue.getValue(1));
16234       FalseVal = Sub;
16235     }
16236   }
16237 
16238   // On Thumb1, the DAG above may be further combined if z is a power of 2
16239   // (z == 2 ^ K).
16240   // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
16241   // t1 = (USUBO (SUB x, y), 1)
16242   // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
16243   // Result = if K != 0 then (SHL t2:0, K) else t2:0
16244   //
16245   // This also handles the special case of comparing against zero; it's
16246   // essentially, the same pattern, except there's no SUBS:
16247   // CMOV x, z, !=, (CMPZ x, 0) ->
16248   // t1 = (USUBO x, 1)
16249   // t2 = (SUBCARRY x, t1:0, t1:1)
16250   // Result = if K != 0 then (SHL t2:0, K) else t2:0
16251   const APInt *TrueConst;
16252   if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
16253       ((FalseVal.getOpcode() == ARMISD::SUBS &&
16254         FalseVal.getOperand(0) == LHS && FalseVal.getOperand(1) == RHS) ||
16255        (FalseVal == LHS && isNullConstant(RHS))) &&
16256       (TrueConst = isPowerOf2Constant(TrueVal))) {
16257     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
16258     unsigned ShiftAmount = TrueConst->logBase2();
16259     if (ShiftAmount)
16260       TrueVal = DAG.getConstant(1, dl, VT);
16261     SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
16262     Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
16263 
16264     if (ShiftAmount)
16265       Res = DAG.getNode(ISD::SHL, dl, VT, Res,
16266                         DAG.getConstant(ShiftAmount, dl, MVT::i32));
16267   }
16268 
16269   if (Res.getNode()) {
16270     KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
16271     // Capture demanded bits information that would be otherwise lost.
16272     if (Known.Zero == 0xfffffffe)
16273       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
16274                         DAG.getValueType(MVT::i1));
16275     else if (Known.Zero == 0xffffff00)
16276       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
16277                         DAG.getValueType(MVT::i8));
16278     else if (Known.Zero == 0xffff0000)
16279       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
16280                         DAG.getValueType(MVT::i16));
16281   }
16282 
16283   return Res;
16284 }
16285 
PerformBITCASTCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)16286 static SDValue PerformBITCASTCombine(SDNode *N, SelectionDAG &DAG,
16287                                     const ARMSubtarget *ST) {
16288   SDValue Src = N->getOperand(0);
16289   EVT DstVT = N->getValueType(0);
16290 
16291   // Convert v4f32 bitcast (v4i32 vdup (i32)) -> v4f32 vdup (i32) under MVE.
16292   if (ST->hasMVEIntegerOps() && Src.getOpcode() == ARMISD::VDUP) {
16293     EVT SrcVT = Src.getValueType();
16294     if (SrcVT.getScalarSizeInBits() == DstVT.getScalarSizeInBits())
16295       return DAG.getNode(ARMISD::VDUP, SDLoc(N), DstVT, Src.getOperand(0));
16296   }
16297 
16298   // We may have a bitcast of something that has already had this bitcast
16299   // combine performed on it, so skip past any VECTOR_REG_CASTs.
16300   while (Src.getOpcode() == ARMISD::VECTOR_REG_CAST)
16301     Src = Src.getOperand(0);
16302 
16303   // Bitcast from element-wise VMOV or VMVN doesn't need VREV if the VREV that
16304   // would be generated is at least the width of the element type.
16305   EVT SrcVT = Src.getValueType();
16306   if ((Src.getOpcode() == ARMISD::VMOVIMM ||
16307        Src.getOpcode() == ARMISD::VMVNIMM ||
16308        Src.getOpcode() == ARMISD::VMOVFPIMM) &&
16309       SrcVT.getScalarSizeInBits() <= DstVT.getScalarSizeInBits() &&
16310       DAG.getDataLayout().isBigEndian())
16311     return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(N), DstVT, Src);
16312 
16313   return SDValue();
16314 }
16315 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const16316 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
16317                                              DAGCombinerInfo &DCI) const {
16318   switch (N->getOpcode()) {
16319   default: break;
16320   case ISD::SELECT_CC:
16321   case ISD::SELECT:     return PerformSELECTCombine(N, DCI, Subtarget);
16322   case ISD::VSELECT:    return PerformVSELECTCombine(N, DCI, Subtarget);
16323   case ISD::ABS:        return PerformABSCombine(N, DCI, Subtarget);
16324   case ARMISD::ADDE:    return PerformADDECombine(N, DCI, Subtarget);
16325   case ARMISD::UMLAL:   return PerformUMLALCombine(N, DCI.DAG, Subtarget);
16326   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
16327   case ISD::SUB:        return PerformSUBCombine(N, DCI, Subtarget);
16328   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
16329   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
16330   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
16331   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
16332   case ISD::BRCOND:
16333   case ISD::BR_CC:      return PerformHWLoopCombine(N, DCI, Subtarget);
16334   case ARMISD::ADDC:
16335   case ARMISD::SUBC:    return PerformAddcSubcCombine(N, DCI, Subtarget);
16336   case ARMISD::SUBE:    return PerformAddeSubeCombine(N, DCI, Subtarget);
16337   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
16338   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
16339   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
16340   case ARMISD::VMOVhr:  return PerformVMOVhrCombine(N, DCI);
16341   case ARMISD::VMOVrh:  return PerformVMOVrhCombine(N, DCI);
16342   case ISD::STORE:      return PerformSTORECombine(N, DCI, Subtarget);
16343   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
16344   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
16345   case ISD::EXTRACT_VECTOR_ELT: return PerformExtractEltCombine(N, DCI);
16346   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
16347   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI, Subtarget);
16348   case ARMISD::VDUP: return PerformVDUPCombine(N, DCI, Subtarget);
16349   case ISD::FP_TO_SINT:
16350   case ISD::FP_TO_UINT:
16351     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
16352   case ISD::FDIV:
16353     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
16354   case ISD::INTRINSIC_WO_CHAIN:
16355     return PerformIntrinsicCombine(N, DCI);
16356   case ISD::SHL:
16357   case ISD::SRA:
16358   case ISD::SRL:
16359     return PerformShiftCombine(N, DCI, Subtarget);
16360   case ISD::SIGN_EXTEND:
16361   case ISD::ZERO_EXTEND:
16362   case ISD::ANY_EXTEND:
16363     return PerformExtendCombine(N, DCI.DAG, Subtarget);
16364   case ISD::FP_EXTEND:
16365     return PerformFPExtendCombine(N, DCI.DAG, Subtarget);
16366   case ISD::SMIN:
16367   case ISD::UMIN:
16368   case ISD::SMAX:
16369   case ISD::UMAX:
16370     return PerformMinMaxCombine(N, DCI.DAG, Subtarget);
16371   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
16372   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
16373   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
16374   case ARMISD::VLD1DUP:
16375   case ARMISD::VLD2DUP:
16376   case ARMISD::VLD3DUP:
16377   case ARMISD::VLD4DUP:
16378     return PerformVLDCombine(N, DCI);
16379   case ARMISD::BUILD_VECTOR:
16380     return PerformARMBUILD_VECTORCombine(N, DCI);
16381   case ISD::BITCAST:
16382     return PerformBITCASTCombine(N, DCI.DAG, Subtarget);
16383   case ARMISD::PREDICATE_CAST:
16384     return PerformPREDICATE_CASTCombine(N, DCI);
16385   case ARMISD::VECTOR_REG_CAST:
16386     return PerformVECTOR_REG_CASTCombine(N, DCI, Subtarget);
16387   case ARMISD::VCMP:
16388     return PerformVCMPCombine(N, DCI, Subtarget);
16389   case ISD::VECREDUCE_ADD:
16390     return PerformVECREDUCE_ADDCombine(N, DCI.DAG, Subtarget);
16391   case ARMISD::VMOVN:
16392     return PerformVMOVNCombine(N, DCI);
16393   case ARMISD::VQMOVNs:
16394   case ARMISD::VQMOVNu:
16395     return PerformVQMOVNCombine(N, DCI);
16396   case ARMISD::ASRL:
16397   case ARMISD::LSRL:
16398   case ARMISD::LSLL:
16399     return PerformLongShiftCombine(N, DCI.DAG);
16400   case ARMISD::SMULWB: {
16401     unsigned BitWidth = N->getValueType(0).getSizeInBits();
16402     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
16403     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
16404       return SDValue();
16405     break;
16406   }
16407   case ARMISD::SMULWT: {
16408     unsigned BitWidth = N->getValueType(0).getSizeInBits();
16409     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
16410     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
16411       return SDValue();
16412     break;
16413   }
16414   case ARMISD::SMLALBB:
16415   case ARMISD::QADD16b:
16416   case ARMISD::QSUB16b: {
16417     unsigned BitWidth = N->getValueType(0).getSizeInBits();
16418     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
16419     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
16420         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
16421       return SDValue();
16422     break;
16423   }
16424   case ARMISD::SMLALBT: {
16425     unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
16426     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
16427     unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
16428     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
16429     if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
16430         (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
16431       return SDValue();
16432     break;
16433   }
16434   case ARMISD::SMLALTB: {
16435     unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
16436     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
16437     unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
16438     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
16439     if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
16440         (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
16441       return SDValue();
16442     break;
16443   }
16444   case ARMISD::SMLALTT: {
16445     unsigned BitWidth = N->getValueType(0).getSizeInBits();
16446     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
16447     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
16448         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
16449       return SDValue();
16450     break;
16451   }
16452   case ARMISD::QADD8b:
16453   case ARMISD::QSUB8b: {
16454     unsigned BitWidth = N->getValueType(0).getSizeInBits();
16455     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
16456     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
16457         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
16458       return SDValue();
16459     break;
16460   }
16461   case ISD::INTRINSIC_VOID:
16462   case ISD::INTRINSIC_W_CHAIN:
16463     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
16464     case Intrinsic::arm_neon_vld1:
16465     case Intrinsic::arm_neon_vld1x2:
16466     case Intrinsic::arm_neon_vld1x3:
16467     case Intrinsic::arm_neon_vld1x4:
16468     case Intrinsic::arm_neon_vld2:
16469     case Intrinsic::arm_neon_vld3:
16470     case Intrinsic::arm_neon_vld4:
16471     case Intrinsic::arm_neon_vld2lane:
16472     case Intrinsic::arm_neon_vld3lane:
16473     case Intrinsic::arm_neon_vld4lane:
16474     case Intrinsic::arm_neon_vld2dup:
16475     case Intrinsic::arm_neon_vld3dup:
16476     case Intrinsic::arm_neon_vld4dup:
16477     case Intrinsic::arm_neon_vst1:
16478     case Intrinsic::arm_neon_vst1x2:
16479     case Intrinsic::arm_neon_vst1x3:
16480     case Intrinsic::arm_neon_vst1x4:
16481     case Intrinsic::arm_neon_vst2:
16482     case Intrinsic::arm_neon_vst3:
16483     case Intrinsic::arm_neon_vst4:
16484     case Intrinsic::arm_neon_vst2lane:
16485     case Intrinsic::arm_neon_vst3lane:
16486     case Intrinsic::arm_neon_vst4lane:
16487       return PerformVLDCombine(N, DCI);
16488     case Intrinsic::arm_mve_vld2q:
16489     case Intrinsic::arm_mve_vld4q:
16490     case Intrinsic::arm_mve_vst2q:
16491     case Intrinsic::arm_mve_vst4q:
16492       return PerformMVEVLDCombine(N, DCI);
16493     default: break;
16494     }
16495     break;
16496   }
16497   return SDValue();
16498 }
16499 
isDesirableToTransformToIntegerOp(unsigned Opc,EVT VT) const16500 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
16501                                                           EVT VT) const {
16502   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
16503 }
16504 
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned Alignment,MachineMemOperand::Flags,bool * Fast) const16505 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
16506                                                        unsigned Alignment,
16507                                                        MachineMemOperand::Flags,
16508                                                        bool *Fast) const {
16509   // Depends what it gets converted into if the type is weird.
16510   if (!VT.isSimple())
16511     return false;
16512 
16513   // The AllowsUnaligned flag models the SCTLR.A setting in ARM cpus
16514   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
16515   auto Ty = VT.getSimpleVT().SimpleTy;
16516 
16517   if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
16518     // Unaligned access can use (for example) LRDB, LRDH, LDR
16519     if (AllowsUnaligned) {
16520       if (Fast)
16521         *Fast = Subtarget->hasV7Ops();
16522       return true;
16523     }
16524   }
16525 
16526   if (Ty == MVT::f64 || Ty == MVT::v2f64) {
16527     // For any little-endian targets with neon, we can support unaligned ld/st
16528     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
16529     // A big-endian target may also explicitly support unaligned accesses
16530     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
16531       if (Fast)
16532         *Fast = true;
16533       return true;
16534     }
16535   }
16536 
16537   if (!Subtarget->hasMVEIntegerOps())
16538     return false;
16539 
16540   // These are for predicates
16541   if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1)) {
16542     if (Fast)
16543       *Fast = true;
16544     return true;
16545   }
16546 
16547   // These are for truncated stores/narrowing loads. They are fine so long as
16548   // the alignment is at least the size of the item being loaded
16549   if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) &&
16550       Alignment >= VT.getScalarSizeInBits() / 8) {
16551     if (Fast)
16552       *Fast = true;
16553     return true;
16554   }
16555 
16556   // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
16557   // VSTRW.U32 all store the vector register in exactly the same format, and
16558   // differ only in the range of their immediate offset field and the required
16559   // alignment. So there is always a store that can be used, regardless of
16560   // actual type.
16561   //
16562   // For big endian, that is not the case. But can still emit a (VSTRB.U8;
16563   // VREV64.8) pair and get the same effect. This will likely be better than
16564   // aligning the vector through the stack.
16565   if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 ||
16566       Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 ||
16567       Ty == MVT::v2f64) {
16568     if (Fast)
16569       *Fast = true;
16570     return true;
16571   }
16572 
16573   return false;
16574 }
16575 
16576 
getOptimalMemOpType(const MemOp & Op,const AttributeList & FuncAttributes) const16577 EVT ARMTargetLowering::getOptimalMemOpType(
16578     const MemOp &Op, const AttributeList &FuncAttributes) const {
16579   // See if we can use NEON instructions for this...
16580   if ((Op.isMemcpy() || Op.isZeroMemset()) && Subtarget->hasNEON() &&
16581       !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
16582     bool Fast;
16583     if (Op.size() >= 16 &&
16584         (Op.isAligned(Align(16)) ||
16585          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1,
16586                                          MachineMemOperand::MONone, &Fast) &&
16587           Fast))) {
16588       return MVT::v2f64;
16589     } else if (Op.size() >= 8 &&
16590                (Op.isAligned(Align(8)) ||
16591                 (allowsMisalignedMemoryAccesses(
16592                      MVT::f64, 0, 1, MachineMemOperand::MONone, &Fast) &&
16593                  Fast))) {
16594       return MVT::f64;
16595     }
16596   }
16597 
16598   // Let the target-independent logic figure it out.
16599   return MVT::Other;
16600 }
16601 
16602 // 64-bit integers are split into their high and low parts and held in two
16603 // different registers, so the trunc is free since the low register can just
16604 // be used.
isTruncateFree(Type * SrcTy,Type * DstTy) const16605 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
16606   if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
16607     return false;
16608   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
16609   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
16610   return (SrcBits == 64 && DestBits == 32);
16611 }
16612 
isTruncateFree(EVT SrcVT,EVT DstVT) const16613 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
16614   if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
16615       !DstVT.isInteger())
16616     return false;
16617   unsigned SrcBits = SrcVT.getSizeInBits();
16618   unsigned DestBits = DstVT.getSizeInBits();
16619   return (SrcBits == 64 && DestBits == 32);
16620 }
16621 
isZExtFree(SDValue Val,EVT VT2) const16622 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16623   if (Val.getOpcode() != ISD::LOAD)
16624     return false;
16625 
16626   EVT VT1 = Val.getValueType();
16627   if (!VT1.isSimple() || !VT1.isInteger() ||
16628       !VT2.isSimple() || !VT2.isInteger())
16629     return false;
16630 
16631   switch (VT1.getSimpleVT().SimpleTy) {
16632   default: break;
16633   case MVT::i1:
16634   case MVT::i8:
16635   case MVT::i16:
16636     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
16637     return true;
16638   }
16639 
16640   return false;
16641 }
16642 
isFNegFree(EVT VT) const16643 bool ARMTargetLowering::isFNegFree(EVT VT) const {
16644   if (!VT.isSimple())
16645     return false;
16646 
16647   // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
16648   // negate values directly (fneg is free). So, we don't want to let the DAG
16649   // combiner rewrite fneg into xors and some other instructions.  For f16 and
16650   // FullFP16 argument passing, some bitcast nodes may be introduced,
16651   // triggering this DAG combine rewrite, so we are avoiding that with this.
16652   switch (VT.getSimpleVT().SimpleTy) {
16653   default: break;
16654   case MVT::f16:
16655     return Subtarget->hasFullFP16();
16656   }
16657 
16658   return false;
16659 }
16660 
16661 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
16662 /// of the vector elements.
areExtractExts(Value * Ext1,Value * Ext2)16663 static bool areExtractExts(Value *Ext1, Value *Ext2) {
16664   auto areExtDoubled = [](Instruction *Ext) {
16665     return Ext->getType()->getScalarSizeInBits() ==
16666            2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
16667   };
16668 
16669   if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
16670       !match(Ext2, m_ZExtOrSExt(m_Value())) ||
16671       !areExtDoubled(cast<Instruction>(Ext1)) ||
16672       !areExtDoubled(cast<Instruction>(Ext2)))
16673     return false;
16674 
16675   return true;
16676 }
16677 
16678 /// Check if sinking \p I's operands to I's basic block is profitable, because
16679 /// the operands can be folded into a target instruction, e.g.
16680 /// sext/zext can be folded into vsubl.
shouldSinkOperands(Instruction * I,SmallVectorImpl<Use * > & Ops) const16681 bool ARMTargetLowering::shouldSinkOperands(Instruction *I,
16682                                            SmallVectorImpl<Use *> &Ops) const {
16683   if (!I->getType()->isVectorTy())
16684     return false;
16685 
16686   if (Subtarget->hasNEON()) {
16687     switch (I->getOpcode()) {
16688     case Instruction::Sub:
16689     case Instruction::Add: {
16690       if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
16691         return false;
16692       Ops.push_back(&I->getOperandUse(0));
16693       Ops.push_back(&I->getOperandUse(1));
16694       return true;
16695     }
16696     default:
16697       return false;
16698     }
16699   }
16700 
16701   if (!Subtarget->hasMVEIntegerOps())
16702     return false;
16703 
16704   auto IsFMSMul = [&](Instruction *I) {
16705     if (!I->hasOneUse())
16706       return false;
16707     auto *Sub = cast<Instruction>(*I->users().begin());
16708     return Sub->getOpcode() == Instruction::FSub && Sub->getOperand(1) == I;
16709   };
16710   auto IsFMS = [&](Instruction *I) {
16711     if (match(I->getOperand(0), m_FNeg(m_Value())) ||
16712         match(I->getOperand(1), m_FNeg(m_Value())))
16713       return true;
16714     return false;
16715   };
16716 
16717   auto IsSinker = [&](Instruction *I, int Operand) {
16718     switch (I->getOpcode()) {
16719     case Instruction::Add:
16720     case Instruction::Mul:
16721     case Instruction::FAdd:
16722     case Instruction::ICmp:
16723     case Instruction::FCmp:
16724       return true;
16725     case Instruction::FMul:
16726       return !IsFMSMul(I);
16727     case Instruction::Sub:
16728     case Instruction::FSub:
16729     case Instruction::Shl:
16730     case Instruction::LShr:
16731     case Instruction::AShr:
16732       return Operand == 1;
16733     case Instruction::Call:
16734       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
16735         switch (II->getIntrinsicID()) {
16736         case Intrinsic::fma:
16737           return !IsFMS(I);
16738         case Intrinsic::arm_mve_add_predicated:
16739         case Intrinsic::arm_mve_mul_predicated:
16740         case Intrinsic::arm_mve_qadd_predicated:
16741         case Intrinsic::arm_mve_hadd_predicated:
16742         case Intrinsic::arm_mve_vqdmull_predicated:
16743         case Intrinsic::arm_mve_qdmulh_predicated:
16744         case Intrinsic::arm_mve_qrdmulh_predicated:
16745         case Intrinsic::arm_mve_fma_predicated:
16746           return true;
16747         case Intrinsic::arm_mve_sub_predicated:
16748         case Intrinsic::arm_mve_qsub_predicated:
16749         case Intrinsic::arm_mve_hsub_predicated:
16750           return Operand == 1;
16751         default:
16752           return false;
16753         }
16754       }
16755       return false;
16756     default:
16757       return false;
16758     }
16759   };
16760 
16761   for (auto OpIdx : enumerate(I->operands())) {
16762     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
16763     // Make sure we are not already sinking this operand
16764     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
16765       continue;
16766 
16767     Instruction *Shuffle = Op;
16768     if (Shuffle->getOpcode() == Instruction::BitCast)
16769       Shuffle = dyn_cast<Instruction>(Shuffle->getOperand(0));
16770     // We are looking for a splat that can be sunk.
16771     if (!Shuffle ||
16772         !match(Shuffle, m_Shuffle(
16773                             m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
16774                             m_Undef(), m_ZeroMask())))
16775       continue;
16776     if (!IsSinker(I, OpIdx.index()))
16777       continue;
16778 
16779     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
16780     // and vector registers
16781     for (Use &U : Op->uses()) {
16782       Instruction *Insn = cast<Instruction>(U.getUser());
16783       if (!IsSinker(Insn, U.getOperandNo()))
16784         return false;
16785     }
16786 
16787     Ops.push_back(&Shuffle->getOperandUse(0));
16788     if (Shuffle != Op)
16789       Ops.push_back(&Op->getOperandUse(0));
16790     Ops.push_back(&OpIdx.value());
16791   }
16792   return true;
16793 }
16794 
shouldConvertSplatType(ShuffleVectorInst * SVI) const16795 Type *ARMTargetLowering::shouldConvertSplatType(ShuffleVectorInst *SVI) const {
16796   if (!Subtarget->hasMVEIntegerOps())
16797     return nullptr;
16798   Type *SVIType = SVI->getType();
16799   Type *ScalarType = SVIType->getScalarType();
16800 
16801   if (ScalarType->isFloatTy())
16802     return Type::getInt32Ty(SVIType->getContext());
16803   if (ScalarType->isHalfTy())
16804     return Type::getInt16Ty(SVIType->getContext());
16805   return nullptr;
16806 }
16807 
isVectorLoadExtDesirable(SDValue ExtVal) const16808 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
16809   EVT VT = ExtVal.getValueType();
16810 
16811   if (!isTypeLegal(VT))
16812     return false;
16813 
16814   if (auto *Ld = dyn_cast<MaskedLoadSDNode>(ExtVal.getOperand(0))) {
16815     if (Ld->isExpandingLoad())
16816       return false;
16817   }
16818 
16819   if (Subtarget->hasMVEIntegerOps())
16820     return true;
16821 
16822   // Don't create a loadext if we can fold the extension into a wide/long
16823   // instruction.
16824   // If there's more than one user instruction, the loadext is desirable no
16825   // matter what.  There can be two uses by the same instruction.
16826   if (ExtVal->use_empty() ||
16827       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
16828     return true;
16829 
16830   SDNode *U = *ExtVal->use_begin();
16831   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
16832        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM))
16833     return false;
16834 
16835   return true;
16836 }
16837 
allowTruncateForTailCall(Type * Ty1,Type * Ty2) const16838 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
16839   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16840     return false;
16841 
16842   if (!isTypeLegal(EVT::getEVT(Ty1)))
16843     return false;
16844 
16845   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
16846 
16847   // Assuming the caller doesn't have a zeroext or signext return parameter,
16848   // truncation all the way down to i1 is valid.
16849   return true;
16850 }
16851 
getScalingFactorCost(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const16852 int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
16853                                                 const AddrMode &AM, Type *Ty,
16854                                                 unsigned AS) const {
16855   if (isLegalAddressingMode(DL, AM, Ty, AS)) {
16856     if (Subtarget->hasFPAO())
16857       return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
16858     return 0;
16859   }
16860   return -1;
16861 }
16862 
16863 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
16864 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
16865 /// expanded to FMAs when this method returns true, otherwise fmuladd is
16866 /// expanded to fmul + fadd.
16867 ///
16868 /// ARM supports both fused and unfused multiply-add operations; we already
16869 /// lower a pair of fmul and fadd to the latter so it's not clear that there
16870 /// would be a gain or that the gain would be worthwhile enough to risk
16871 /// correctness bugs.
16872 ///
16873 /// For MVE, we set this to true as it helps simplify the need for some
16874 /// patterns (and we don't have the non-fused floating point instruction).
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const16875 bool ARMTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16876                                                    EVT VT) const {
16877   if (!VT.isSimple())
16878     return false;
16879 
16880   switch (VT.getSimpleVT().SimpleTy) {
16881   case MVT::v4f32:
16882   case MVT::v8f16:
16883     return Subtarget->hasMVEFloatOps();
16884   case MVT::f16:
16885     return Subtarget->useFPVFMx16();
16886   case MVT::f32:
16887     return Subtarget->useFPVFMx();
16888   case MVT::f64:
16889     return Subtarget->useFPVFMx64();
16890   default:
16891     break;
16892   }
16893 
16894   return false;
16895 }
16896 
isLegalT1AddressImmediate(int64_t V,EVT VT)16897 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
16898   if (V < 0)
16899     return false;
16900 
16901   unsigned Scale = 1;
16902   switch (VT.getSimpleVT().SimpleTy) {
16903   case MVT::i1:
16904   case MVT::i8:
16905     // Scale == 1;
16906     break;
16907   case MVT::i16:
16908     // Scale == 2;
16909     Scale = 2;
16910     break;
16911   default:
16912     // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
16913     // Scale == 4;
16914     Scale = 4;
16915     break;
16916   }
16917 
16918   if ((V & (Scale - 1)) != 0)
16919     return false;
16920   return isUInt<5>(V / Scale);
16921 }
16922 
isLegalT2AddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)16923 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
16924                                       const ARMSubtarget *Subtarget) {
16925   if (!VT.isInteger() && !VT.isFloatingPoint())
16926     return false;
16927   if (VT.isVector() && Subtarget->hasNEON())
16928     return false;
16929   if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
16930       !Subtarget->hasMVEFloatOps())
16931     return false;
16932 
16933   bool IsNeg = false;
16934   if (V < 0) {
16935     IsNeg = true;
16936     V = -V;
16937   }
16938 
16939   unsigned NumBytes = std::max((unsigned)VT.getSizeInBits() / 8, 1U);
16940 
16941   // MVE: size * imm7
16942   if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
16943     switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
16944     case MVT::i32:
16945     case MVT::f32:
16946       return isShiftedUInt<7,2>(V);
16947     case MVT::i16:
16948     case MVT::f16:
16949       return isShiftedUInt<7,1>(V);
16950     case MVT::i8:
16951       return isUInt<7>(V);
16952     default:
16953       return false;
16954     }
16955   }
16956 
16957   // half VLDR: 2 * imm8
16958   if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
16959     return isShiftedUInt<8, 1>(V);
16960   // VLDR and LDRD: 4 * imm8
16961   if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
16962     return isShiftedUInt<8, 2>(V);
16963 
16964   if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
16965     // + imm12 or - imm8
16966     if (IsNeg)
16967       return isUInt<8>(V);
16968     return isUInt<12>(V);
16969   }
16970 
16971   return false;
16972 }
16973 
16974 /// isLegalAddressImmediate - Return true if the integer value can be used
16975 /// as the offset of the target addressing mode for load / store of the
16976 /// given type.
isLegalAddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)16977 static bool isLegalAddressImmediate(int64_t V, EVT VT,
16978                                     const ARMSubtarget *Subtarget) {
16979   if (V == 0)
16980     return true;
16981 
16982   if (!VT.isSimple())
16983     return false;
16984 
16985   if (Subtarget->isThumb1Only())
16986     return isLegalT1AddressImmediate(V, VT);
16987   else if (Subtarget->isThumb2())
16988     return isLegalT2AddressImmediate(V, VT, Subtarget);
16989 
16990   // ARM mode.
16991   if (V < 0)
16992     V = - V;
16993   switch (VT.getSimpleVT().SimpleTy) {
16994   default: return false;
16995   case MVT::i1:
16996   case MVT::i8:
16997   case MVT::i32:
16998     // +- imm12
16999     return isUInt<12>(V);
17000   case MVT::i16:
17001     // +- imm8
17002     return isUInt<8>(V);
17003   case MVT::f32:
17004   case MVT::f64:
17005     if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
17006       return false;
17007     return isShiftedUInt<8, 2>(V);
17008   }
17009 }
17010 
isLegalT2ScaledAddressingMode(const AddrMode & AM,EVT VT) const17011 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
17012                                                       EVT VT) const {
17013   int Scale = AM.Scale;
17014   if (Scale < 0)
17015     return false;
17016 
17017   switch (VT.getSimpleVT().SimpleTy) {
17018   default: return false;
17019   case MVT::i1:
17020   case MVT::i8:
17021   case MVT::i16:
17022   case MVT::i32:
17023     if (Scale == 1)
17024       return true;
17025     // r + r << imm
17026     Scale = Scale & ~1;
17027     return Scale == 2 || Scale == 4 || Scale == 8;
17028   case MVT::i64:
17029     // FIXME: What are we trying to model here? ldrd doesn't have an r + r
17030     // version in Thumb mode.
17031     // r + r
17032     if (Scale == 1)
17033       return true;
17034     // r * 2 (this can be lowered to r + r).
17035     if (!AM.HasBaseReg && Scale == 2)
17036       return true;
17037     return false;
17038   case MVT::isVoid:
17039     // Note, we allow "void" uses (basically, uses that aren't loads or
17040     // stores), because arm allows folding a scale into many arithmetic
17041     // operations.  This should be made more precise and revisited later.
17042 
17043     // Allow r << imm, but the imm has to be a multiple of two.
17044     if (Scale & 1) return false;
17045     return isPowerOf2_32(Scale);
17046   }
17047 }
17048 
isLegalT1ScaledAddressingMode(const AddrMode & AM,EVT VT) const17049 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
17050                                                       EVT VT) const {
17051   const int Scale = AM.Scale;
17052 
17053   // Negative scales are not supported in Thumb1.
17054   if (Scale < 0)
17055     return false;
17056 
17057   // Thumb1 addressing modes do not support register scaling excepting the
17058   // following cases:
17059   // 1. Scale == 1 means no scaling.
17060   // 2. Scale == 2 this can be lowered to r + r if there is no base register.
17061   return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
17062 }
17063 
17064 /// isLegalAddressingMode - Return true if the addressing mode represented
17065 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const17066 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
17067                                               const AddrMode &AM, Type *Ty,
17068                                               unsigned AS, Instruction *I) const {
17069   EVT VT = getValueType(DL, Ty, true);
17070   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
17071     return false;
17072 
17073   // Can never fold addr of global into load/store.
17074   if (AM.BaseGV)
17075     return false;
17076 
17077   switch (AM.Scale) {
17078   case 0:  // no scale reg, must be "r+i" or "r", or "i".
17079     break;
17080   default:
17081     // ARM doesn't support any R+R*scale+imm addr modes.
17082     if (AM.BaseOffs)
17083       return false;
17084 
17085     if (!VT.isSimple())
17086       return false;
17087 
17088     if (Subtarget->isThumb1Only())
17089       return isLegalT1ScaledAddressingMode(AM, VT);
17090 
17091     if (Subtarget->isThumb2())
17092       return isLegalT2ScaledAddressingMode(AM, VT);
17093 
17094     int Scale = AM.Scale;
17095     switch (VT.getSimpleVT().SimpleTy) {
17096     default: return false;
17097     case MVT::i1:
17098     case MVT::i8:
17099     case MVT::i32:
17100       if (Scale < 0) Scale = -Scale;
17101       if (Scale == 1)
17102         return true;
17103       // r + r << imm
17104       return isPowerOf2_32(Scale & ~1);
17105     case MVT::i16:
17106     case MVT::i64:
17107       // r +/- r
17108       if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
17109         return true;
17110       // r * 2 (this can be lowered to r + r).
17111       if (!AM.HasBaseReg && Scale == 2)
17112         return true;
17113       return false;
17114 
17115     case MVT::isVoid:
17116       // Note, we allow "void" uses (basically, uses that aren't loads or
17117       // stores), because arm allows folding a scale into many arithmetic
17118       // operations.  This should be made more precise and revisited later.
17119 
17120       // Allow r << imm, but the imm has to be a multiple of two.
17121       if (Scale & 1) return false;
17122       return isPowerOf2_32(Scale);
17123     }
17124   }
17125   return true;
17126 }
17127 
17128 /// isLegalICmpImmediate - Return true if the specified immediate is legal
17129 /// icmp immediate, that is the target has icmp instructions which can compare
17130 /// a register against the immediate without having to materialize the
17131 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const17132 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
17133   // Thumb2 and ARM modes can use cmn for negative immediates.
17134   if (!Subtarget->isThumb())
17135     return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
17136            ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
17137   if (Subtarget->isThumb2())
17138     return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
17139            ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
17140   // Thumb1 doesn't have cmn, and only 8-bit immediates.
17141   return Imm >= 0 && Imm <= 255;
17142 }
17143 
17144 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
17145 /// *or sub* immediate, that is the target has add or sub instructions which can
17146 /// add a register with the immediate without having to materialize the
17147 /// immediate into a register.
isLegalAddImmediate(int64_t Imm) const17148 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
17149   // Same encoding for add/sub, just flip the sign.
17150   int64_t AbsImm = std::abs(Imm);
17151   if (!Subtarget->isThumb())
17152     return ARM_AM::getSOImmVal(AbsImm) != -1;
17153   if (Subtarget->isThumb2())
17154     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
17155   // Thumb1 only has 8-bit unsigned immediate.
17156   return AbsImm >= 0 && AbsImm <= 255;
17157 }
17158 
getARMIndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)17159 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
17160                                       bool isSEXTLoad, SDValue &Base,
17161                                       SDValue &Offset, bool &isInc,
17162                                       SelectionDAG &DAG) {
17163   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
17164     return false;
17165 
17166   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
17167     // AddressingMode 3
17168     Base = Ptr->getOperand(0);
17169     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
17170       int RHSC = (int)RHS->getZExtValue();
17171       if (RHSC < 0 && RHSC > -256) {
17172         assert(Ptr->getOpcode() == ISD::ADD);
17173         isInc = false;
17174         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
17175         return true;
17176       }
17177     }
17178     isInc = (Ptr->getOpcode() == ISD::ADD);
17179     Offset = Ptr->getOperand(1);
17180     return true;
17181   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
17182     // AddressingMode 2
17183     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
17184       int RHSC = (int)RHS->getZExtValue();
17185       if (RHSC < 0 && RHSC > -0x1000) {
17186         assert(Ptr->getOpcode() == ISD::ADD);
17187         isInc = false;
17188         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
17189         Base = Ptr->getOperand(0);
17190         return true;
17191       }
17192     }
17193 
17194     if (Ptr->getOpcode() == ISD::ADD) {
17195       isInc = true;
17196       ARM_AM::ShiftOpc ShOpcVal=
17197         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
17198       if (ShOpcVal != ARM_AM::no_shift) {
17199         Base = Ptr->getOperand(1);
17200         Offset = Ptr->getOperand(0);
17201       } else {
17202         Base = Ptr->getOperand(0);
17203         Offset = Ptr->getOperand(1);
17204       }
17205       return true;
17206     }
17207 
17208     isInc = (Ptr->getOpcode() == ISD::ADD);
17209     Base = Ptr->getOperand(0);
17210     Offset = Ptr->getOperand(1);
17211     return true;
17212   }
17213 
17214   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
17215   return false;
17216 }
17217 
getT2IndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)17218 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
17219                                      bool isSEXTLoad, SDValue &Base,
17220                                      SDValue &Offset, bool &isInc,
17221                                      SelectionDAG &DAG) {
17222   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
17223     return false;
17224 
17225   Base = Ptr->getOperand(0);
17226   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
17227     int RHSC = (int)RHS->getZExtValue();
17228     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
17229       assert(Ptr->getOpcode() == ISD::ADD);
17230       isInc = false;
17231       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
17232       return true;
17233     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
17234       isInc = Ptr->getOpcode() == ISD::ADD;
17235       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
17236       return true;
17237     }
17238   }
17239 
17240   return false;
17241 }
17242 
getMVEIndexedAddressParts(SDNode * Ptr,EVT VT,Align Alignment,bool isSEXTLoad,bool IsMasked,bool isLE,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)17243 static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, Align Alignment,
17244                                       bool isSEXTLoad, bool IsMasked, bool isLE,
17245                                       SDValue &Base, SDValue &Offset,
17246                                       bool &isInc, SelectionDAG &DAG) {
17247   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
17248     return false;
17249   if (!isa<ConstantSDNode>(Ptr->getOperand(1)))
17250     return false;
17251 
17252   // We allow LE non-masked loads to change the type (for example use a vldrb.8
17253   // as opposed to a vldrw.32). This can allow extra addressing modes or
17254   // alignments for what is otherwise an equivalent instruction.
17255   bool CanChangeType = isLE && !IsMasked;
17256 
17257   ConstantSDNode *RHS = cast<ConstantSDNode>(Ptr->getOperand(1));
17258   int RHSC = (int)RHS->getZExtValue();
17259 
17260   auto IsInRange = [&](int RHSC, int Limit, int Scale) {
17261     if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) {
17262       assert(Ptr->getOpcode() == ISD::ADD);
17263       isInc = false;
17264       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
17265       return true;
17266     } else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) {
17267       isInc = Ptr->getOpcode() == ISD::ADD;
17268       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
17269       return true;
17270     }
17271     return false;
17272   };
17273 
17274   // Try to find a matching instruction based on s/zext, Alignment, Offset and
17275   // (in BE/masked) type.
17276   Base = Ptr->getOperand(0);
17277   if (VT == MVT::v4i16) {
17278     if (Alignment >= 2 && IsInRange(RHSC, 0x80, 2))
17279       return true;
17280   } else if (VT == MVT::v4i8 || VT == MVT::v8i8) {
17281     if (IsInRange(RHSC, 0x80, 1))
17282       return true;
17283   } else if (Alignment >= 4 &&
17284              (CanChangeType || VT == MVT::v4i32 || VT == MVT::v4f32) &&
17285              IsInRange(RHSC, 0x80, 4))
17286     return true;
17287   else if (Alignment >= 2 &&
17288            (CanChangeType || VT == MVT::v8i16 || VT == MVT::v8f16) &&
17289            IsInRange(RHSC, 0x80, 2))
17290     return true;
17291   else if ((CanChangeType || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1))
17292     return true;
17293   return false;
17294 }
17295 
17296 /// getPreIndexedAddressParts - returns true by value, base pointer and
17297 /// offset pointer and addressing mode by reference if the node's address
17298 /// can be legally represented as pre-indexed load / store address.
17299 bool
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const17300 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
17301                                              SDValue &Offset,
17302                                              ISD::MemIndexedMode &AM,
17303                                              SelectionDAG &DAG) const {
17304   if (Subtarget->isThumb1Only())
17305     return false;
17306 
17307   EVT VT;
17308   SDValue Ptr;
17309   Align Alignment;
17310   bool isSEXTLoad = false;
17311   bool IsMasked = false;
17312   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
17313     Ptr = LD->getBasePtr();
17314     VT = LD->getMemoryVT();
17315     Alignment = LD->getAlign();
17316     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
17317   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
17318     Ptr = ST->getBasePtr();
17319     VT = ST->getMemoryVT();
17320     Alignment = ST->getAlign();
17321   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
17322     Ptr = LD->getBasePtr();
17323     VT = LD->getMemoryVT();
17324     Alignment = LD->getAlign();
17325     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
17326     IsMasked = true;
17327   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
17328     Ptr = ST->getBasePtr();
17329     VT = ST->getMemoryVT();
17330     Alignment = ST->getAlign();
17331     IsMasked = true;
17332   } else
17333     return false;
17334 
17335   bool isInc;
17336   bool isLegal = false;
17337   if (VT.isVector())
17338     isLegal = Subtarget->hasMVEIntegerOps() &&
17339               getMVEIndexedAddressParts(
17340                   Ptr.getNode(), VT, Alignment, isSEXTLoad, IsMasked,
17341                   Subtarget->isLittle(), Base, Offset, isInc, DAG);
17342   else {
17343     if (Subtarget->isThumb2())
17344       isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
17345                                          Offset, isInc, DAG);
17346     else
17347       isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
17348                                           Offset, isInc, DAG);
17349   }
17350   if (!isLegal)
17351     return false;
17352 
17353   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
17354   return true;
17355 }
17356 
17357 /// getPostIndexedAddressParts - returns true by value, base pointer and
17358 /// offset pointer and addressing mode by reference if this node can be
17359 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const17360 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
17361                                                    SDValue &Base,
17362                                                    SDValue &Offset,
17363                                                    ISD::MemIndexedMode &AM,
17364                                                    SelectionDAG &DAG) const {
17365   EVT VT;
17366   SDValue Ptr;
17367   Align Alignment;
17368   bool isSEXTLoad = false, isNonExt;
17369   bool IsMasked = false;
17370   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
17371     VT = LD->getMemoryVT();
17372     Ptr = LD->getBasePtr();
17373     Alignment = LD->getAlign();
17374     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
17375     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
17376   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
17377     VT = ST->getMemoryVT();
17378     Ptr = ST->getBasePtr();
17379     Alignment = ST->getAlign();
17380     isNonExt = !ST->isTruncatingStore();
17381   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
17382     VT = LD->getMemoryVT();
17383     Ptr = LD->getBasePtr();
17384     Alignment = LD->getAlign();
17385     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
17386     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
17387     IsMasked = true;
17388   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
17389     VT = ST->getMemoryVT();
17390     Ptr = ST->getBasePtr();
17391     Alignment = ST->getAlign();
17392     isNonExt = !ST->isTruncatingStore();
17393     IsMasked = true;
17394   } else
17395     return false;
17396 
17397   if (Subtarget->isThumb1Only()) {
17398     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
17399     // must be non-extending/truncating, i32, with an offset of 4.
17400     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
17401     if (Op->getOpcode() != ISD::ADD || !isNonExt)
17402       return false;
17403     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
17404     if (!RHS || RHS->getZExtValue() != 4)
17405       return false;
17406 
17407     Offset = Op->getOperand(1);
17408     Base = Op->getOperand(0);
17409     AM = ISD::POST_INC;
17410     return true;
17411   }
17412 
17413   bool isInc;
17414   bool isLegal = false;
17415   if (VT.isVector())
17416     isLegal = Subtarget->hasMVEIntegerOps() &&
17417               getMVEIndexedAddressParts(Op, VT, Alignment, isSEXTLoad, IsMasked,
17418                                         Subtarget->isLittle(), Base, Offset,
17419                                         isInc, DAG);
17420   else {
17421     if (Subtarget->isThumb2())
17422       isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
17423                                          isInc, DAG);
17424     else
17425       isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
17426                                           isInc, DAG);
17427   }
17428   if (!isLegal)
17429     return false;
17430 
17431   if (Ptr != Base) {
17432     // Swap base ptr and offset to catch more post-index load / store when
17433     // it's legal. In Thumb2 mode, offset must be an immediate.
17434     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
17435         !Subtarget->isThumb2())
17436       std::swap(Base, Offset);
17437 
17438     // Post-indexed load / store update the base pointer.
17439     if (Ptr != Base)
17440       return false;
17441   }
17442 
17443   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
17444   return true;
17445 }
17446 
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const17447 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
17448                                                       KnownBits &Known,
17449                                                       const APInt &DemandedElts,
17450                                                       const SelectionDAG &DAG,
17451                                                       unsigned Depth) const {
17452   unsigned BitWidth = Known.getBitWidth();
17453   Known.resetAll();
17454   switch (Op.getOpcode()) {
17455   default: break;
17456   case ARMISD::ADDC:
17457   case ARMISD::ADDE:
17458   case ARMISD::SUBC:
17459   case ARMISD::SUBE:
17460     // Special cases when we convert a carry to a boolean.
17461     if (Op.getResNo() == 0) {
17462       SDValue LHS = Op.getOperand(0);
17463       SDValue RHS = Op.getOperand(1);
17464       // (ADDE 0, 0, C) will give us a single bit.
17465       if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
17466           isNullConstant(RHS)) {
17467         Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
17468         return;
17469       }
17470     }
17471     break;
17472   case ARMISD::CMOV: {
17473     // Bits are known zero/one if known on the LHS and RHS.
17474     Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
17475     if (Known.isUnknown())
17476       return;
17477 
17478     KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
17479     Known = KnownBits::commonBits(Known, KnownRHS);
17480     return;
17481   }
17482   case ISD::INTRINSIC_W_CHAIN: {
17483     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
17484     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
17485     switch (IntID) {
17486     default: return;
17487     case Intrinsic::arm_ldaex:
17488     case Intrinsic::arm_ldrex: {
17489       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
17490       unsigned MemBits = VT.getScalarSizeInBits();
17491       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
17492       return;
17493     }
17494     }
17495   }
17496   case ARMISD::BFI: {
17497     // Conservatively, we can recurse down the first operand
17498     // and just mask out all affected bits.
17499     Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
17500 
17501     // The operand to BFI is already a mask suitable for removing the bits it
17502     // sets.
17503     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
17504     const APInt &Mask = CI->getAPIntValue();
17505     Known.Zero &= Mask;
17506     Known.One &= Mask;
17507     return;
17508   }
17509   case ARMISD::VGETLANEs:
17510   case ARMISD::VGETLANEu: {
17511     const SDValue &SrcSV = Op.getOperand(0);
17512     EVT VecVT = SrcSV.getValueType();
17513     assert(VecVT.isVector() && "VGETLANE expected a vector type");
17514     const unsigned NumSrcElts = VecVT.getVectorNumElements();
17515     ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
17516     assert(Pos->getAPIntValue().ult(NumSrcElts) &&
17517            "VGETLANE index out of bounds");
17518     unsigned Idx = Pos->getZExtValue();
17519     APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
17520     Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
17521 
17522     EVT VT = Op.getValueType();
17523     const unsigned DstSz = VT.getScalarSizeInBits();
17524     const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
17525     (void)SrcSz;
17526     assert(SrcSz == Known.getBitWidth());
17527     assert(DstSz > SrcSz);
17528     if (Op.getOpcode() == ARMISD::VGETLANEs)
17529       Known = Known.sext(DstSz);
17530     else {
17531       Known = Known.zext(DstSz);
17532     }
17533     assert(DstSz == Known.getBitWidth());
17534     break;
17535   }
17536   case ARMISD::VMOVrh: {
17537     KnownBits KnownOp = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
17538     assert(KnownOp.getBitWidth() == 16);
17539     Known = KnownOp.zext(32);
17540     break;
17541   }
17542   }
17543 }
17544 
targetShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO) const17545 bool ARMTargetLowering::targetShrinkDemandedConstant(
17546     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
17547     TargetLoweringOpt &TLO) const {
17548   // Delay optimization, so we don't have to deal with illegal types, or block
17549   // optimizations.
17550   if (!TLO.LegalOps)
17551     return false;
17552 
17553   // Only optimize AND for now.
17554   if (Op.getOpcode() != ISD::AND)
17555     return false;
17556 
17557   EVT VT = Op.getValueType();
17558 
17559   // Ignore vectors.
17560   if (VT.isVector())
17561     return false;
17562 
17563   assert(VT == MVT::i32 && "Unexpected integer type");
17564 
17565   // Make sure the RHS really is a constant.
17566   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
17567   if (!C)
17568     return false;
17569 
17570   unsigned Mask = C->getZExtValue();
17571 
17572   unsigned Demanded = DemandedBits.getZExtValue();
17573   unsigned ShrunkMask = Mask & Demanded;
17574   unsigned ExpandedMask = Mask | ~Demanded;
17575 
17576   // If the mask is all zeros, let the target-independent code replace the
17577   // result with zero.
17578   if (ShrunkMask == 0)
17579     return false;
17580 
17581   // If the mask is all ones, erase the AND. (Currently, the target-independent
17582   // code won't do this, so we have to do it explicitly to avoid an infinite
17583   // loop in obscure cases.)
17584   if (ExpandedMask == ~0U)
17585     return TLO.CombineTo(Op, Op.getOperand(0));
17586 
17587   auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
17588     return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
17589   };
17590   auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
17591     if (NewMask == Mask)
17592       return true;
17593     SDLoc DL(Op);
17594     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
17595     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
17596     return TLO.CombineTo(Op, NewOp);
17597   };
17598 
17599   // Prefer uxtb mask.
17600   if (IsLegalMask(0xFF))
17601     return UseMask(0xFF);
17602 
17603   // Prefer uxth mask.
17604   if (IsLegalMask(0xFFFF))
17605     return UseMask(0xFFFF);
17606 
17607   // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
17608   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
17609   if (ShrunkMask < 256)
17610     return UseMask(ShrunkMask);
17611 
17612   // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
17613   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
17614   if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
17615     return UseMask(ExpandedMask);
17616 
17617   // Potential improvements:
17618   //
17619   // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
17620   // We could try to prefer Thumb1 immediates which can be lowered to a
17621   // two-instruction sequence.
17622   // We could try to recognize more legal ARM/Thumb2 immediates here.
17623 
17624   return false;
17625 }
17626 
SimplifyDemandedBitsForTargetNode(SDValue Op,const APInt & OriginalDemandedBits,const APInt & OriginalDemandedElts,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth) const17627 bool ARMTargetLowering::SimplifyDemandedBitsForTargetNode(
17628     SDValue Op, const APInt &OriginalDemandedBits,
17629     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
17630     unsigned Depth) const {
17631   unsigned Opc = Op.getOpcode();
17632 
17633   switch (Opc) {
17634   case ARMISD::ASRL:
17635   case ARMISD::LSRL: {
17636     // If this is result 0 and the other result is unused, see if the demand
17637     // bits allow us to shrink this long shift into a standard small shift in
17638     // the opposite direction.
17639     if (Op.getResNo() == 0 && !Op->hasAnyUseOfValue(1) &&
17640         isa<ConstantSDNode>(Op->getOperand(2))) {
17641       unsigned ShAmt = Op->getConstantOperandVal(2);
17642       if (ShAmt < 32 && OriginalDemandedBits.isSubsetOf(
17643                             APInt::getAllOnesValue(32) << (32 - ShAmt)))
17644         return TLO.CombineTo(
17645             Op, TLO.DAG.getNode(
17646                     ISD::SHL, SDLoc(Op), MVT::i32, Op.getOperand(1),
17647                     TLO.DAG.getConstant(32 - ShAmt, SDLoc(Op), MVT::i32)));
17648     }
17649     break;
17650   }
17651   }
17652 
17653   return TargetLowering::SimplifyDemandedBitsForTargetNode(
17654       Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth);
17655 }
17656 
17657 //===----------------------------------------------------------------------===//
17658 //                           ARM Inline Assembly Support
17659 //===----------------------------------------------------------------------===//
17660 
ExpandInlineAsm(CallInst * CI) const17661 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
17662   // Looking for "rev" which is V6+.
17663   if (!Subtarget->hasV6Ops())
17664     return false;
17665 
17666   InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand());
17667   std::string AsmStr = IA->getAsmString();
17668   SmallVector<StringRef, 4> AsmPieces;
17669   SplitString(AsmStr, AsmPieces, ";\n");
17670 
17671   switch (AsmPieces.size()) {
17672   default: return false;
17673   case 1:
17674     AsmStr = std::string(AsmPieces[0]);
17675     AsmPieces.clear();
17676     SplitString(AsmStr, AsmPieces, " \t,");
17677 
17678     // rev $0, $1
17679     if (AsmPieces.size() == 3 &&
17680         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
17681         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
17682       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
17683       if (Ty && Ty->getBitWidth() == 32)
17684         return IntrinsicLowering::LowerToByteSwap(CI);
17685     }
17686     break;
17687   }
17688 
17689   return false;
17690 }
17691 
LowerXConstraint(EVT ConstraintVT) const17692 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
17693   // At this point, we have to lower this constraint to something else, so we
17694   // lower it to an "r" or "w". However, by doing this we will force the result
17695   // to be in register, while the X constraint is much more permissive.
17696   //
17697   // Although we are correct (we are free to emit anything, without
17698   // constraints), we might break use cases that would expect us to be more
17699   // efficient and emit something else.
17700   if (!Subtarget->hasVFP2Base())
17701     return "r";
17702   if (ConstraintVT.isFloatingPoint())
17703     return "w";
17704   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
17705      (ConstraintVT.getSizeInBits() == 64 ||
17706       ConstraintVT.getSizeInBits() == 128))
17707     return "w";
17708 
17709   return "r";
17710 }
17711 
17712 /// getConstraintType - Given a constraint letter, return the type of
17713 /// constraint it is for this target.
17714 ARMTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const17715 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
17716   unsigned S = Constraint.size();
17717   if (S == 1) {
17718     switch (Constraint[0]) {
17719     default:  break;
17720     case 'l': return C_RegisterClass;
17721     case 'w': return C_RegisterClass;
17722     case 'h': return C_RegisterClass;
17723     case 'x': return C_RegisterClass;
17724     case 't': return C_RegisterClass;
17725     case 'j': return C_Immediate; // Constant for movw.
17726     // An address with a single base register. Due to the way we
17727     // currently handle addresses it is the same as an 'r' memory constraint.
17728     case 'Q': return C_Memory;
17729     }
17730   } else if (S == 2) {
17731     switch (Constraint[0]) {
17732     default: break;
17733     case 'T': return C_RegisterClass;
17734     // All 'U+' constraints are addresses.
17735     case 'U': return C_Memory;
17736     }
17737   }
17738   return TargetLowering::getConstraintType(Constraint);
17739 }
17740 
17741 /// Examine constraint type and operand type and determine a weight value.
17742 /// This object must already have been set up with the operand type
17743 /// and the current alternative constraint selected.
17744 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const17745 ARMTargetLowering::getSingleConstraintMatchWeight(
17746     AsmOperandInfo &info, const char *constraint) const {
17747   ConstraintWeight weight = CW_Invalid;
17748   Value *CallOperandVal = info.CallOperandVal;
17749     // If we don't have a value, we can't do a match,
17750     // but allow it at the lowest weight.
17751   if (!CallOperandVal)
17752     return CW_Default;
17753   Type *type = CallOperandVal->getType();
17754   // Look at the constraint type.
17755   switch (*constraint) {
17756   default:
17757     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
17758     break;
17759   case 'l':
17760     if (type->isIntegerTy()) {
17761       if (Subtarget->isThumb())
17762         weight = CW_SpecificReg;
17763       else
17764         weight = CW_Register;
17765     }
17766     break;
17767   case 'w':
17768     if (type->isFloatingPointTy())
17769       weight = CW_Register;
17770     break;
17771   }
17772   return weight;
17773 }
17774 
17775 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
17776 
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const17777 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
17778     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
17779   switch (Constraint.size()) {
17780   case 1:
17781     // GCC ARM Constraint Letters
17782     switch (Constraint[0]) {
17783     case 'l': // Low regs or general regs.
17784       if (Subtarget->isThumb())
17785         return RCPair(0U, &ARM::tGPRRegClass);
17786       return RCPair(0U, &ARM::GPRRegClass);
17787     case 'h': // High regs or no regs.
17788       if (Subtarget->isThumb())
17789         return RCPair(0U, &ARM::hGPRRegClass);
17790       break;
17791     case 'r':
17792       if (Subtarget->isThumb1Only())
17793         return RCPair(0U, &ARM::tGPRRegClass);
17794       return RCPair(0U, &ARM::GPRRegClass);
17795     case 'w':
17796       if (VT == MVT::Other)
17797         break;
17798       if (VT == MVT::f32)
17799         return RCPair(0U, &ARM::SPRRegClass);
17800       if (VT.getSizeInBits() == 64)
17801         return RCPair(0U, &ARM::DPRRegClass);
17802       if (VT.getSizeInBits() == 128)
17803         return RCPair(0U, &ARM::QPRRegClass);
17804       break;
17805     case 'x':
17806       if (VT == MVT::Other)
17807         break;
17808       if (VT == MVT::f32)
17809         return RCPair(0U, &ARM::SPR_8RegClass);
17810       if (VT.getSizeInBits() == 64)
17811         return RCPair(0U, &ARM::DPR_8RegClass);
17812       if (VT.getSizeInBits() == 128)
17813         return RCPair(0U, &ARM::QPR_8RegClass);
17814       break;
17815     case 't':
17816       if (VT == MVT::Other)
17817         break;
17818       if (VT == MVT::f32 || VT == MVT::i32)
17819         return RCPair(0U, &ARM::SPRRegClass);
17820       if (VT.getSizeInBits() == 64)
17821         return RCPair(0U, &ARM::DPR_VFP2RegClass);
17822       if (VT.getSizeInBits() == 128)
17823         return RCPair(0U, &ARM::QPR_VFP2RegClass);
17824       break;
17825     }
17826     break;
17827 
17828   case 2:
17829     if (Constraint[0] == 'T') {
17830       switch (Constraint[1]) {
17831       default:
17832         break;
17833       case 'e':
17834         return RCPair(0U, &ARM::tGPREvenRegClass);
17835       case 'o':
17836         return RCPair(0U, &ARM::tGPROddRegClass);
17837       }
17838     }
17839     break;
17840 
17841   default:
17842     break;
17843   }
17844 
17845   if (StringRef("{cc}").equals_lower(Constraint))
17846     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
17847 
17848   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
17849 }
17850 
17851 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
17852 /// vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const17853 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
17854                                                      std::string &Constraint,
17855                                                      std::vector<SDValue>&Ops,
17856                                                      SelectionDAG &DAG) const {
17857   SDValue Result;
17858 
17859   // Currently only support length 1 constraints.
17860   if (Constraint.length() != 1) return;
17861 
17862   char ConstraintLetter = Constraint[0];
17863   switch (ConstraintLetter) {
17864   default: break;
17865   case 'j':
17866   case 'I': case 'J': case 'K': case 'L':
17867   case 'M': case 'N': case 'O':
17868     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
17869     if (!C)
17870       return;
17871 
17872     int64_t CVal64 = C->getSExtValue();
17873     int CVal = (int) CVal64;
17874     // None of these constraints allow values larger than 32 bits.  Check
17875     // that the value fits in an int.
17876     if (CVal != CVal64)
17877       return;
17878 
17879     switch (ConstraintLetter) {
17880       case 'j':
17881         // Constant suitable for movw, must be between 0 and
17882         // 65535.
17883         if (Subtarget->hasV6T2Ops() || (Subtarget->hasV8MBaselineOps()))
17884           if (CVal >= 0 && CVal <= 65535)
17885             break;
17886         return;
17887       case 'I':
17888         if (Subtarget->isThumb1Only()) {
17889           // This must be a constant between 0 and 255, for ADD
17890           // immediates.
17891           if (CVal >= 0 && CVal <= 255)
17892             break;
17893         } else if (Subtarget->isThumb2()) {
17894           // A constant that can be used as an immediate value in a
17895           // data-processing instruction.
17896           if (ARM_AM::getT2SOImmVal(CVal) != -1)
17897             break;
17898         } else {
17899           // A constant that can be used as an immediate value in a
17900           // data-processing instruction.
17901           if (ARM_AM::getSOImmVal(CVal) != -1)
17902             break;
17903         }
17904         return;
17905 
17906       case 'J':
17907         if (Subtarget->isThumb1Only()) {
17908           // This must be a constant between -255 and -1, for negated ADD
17909           // immediates. This can be used in GCC with an "n" modifier that
17910           // prints the negated value, for use with SUB instructions. It is
17911           // not useful otherwise but is implemented for compatibility.
17912           if (CVal >= -255 && CVal <= -1)
17913             break;
17914         } else {
17915           // This must be a constant between -4095 and 4095. It is not clear
17916           // what this constraint is intended for. Implemented for
17917           // compatibility with GCC.
17918           if (CVal >= -4095 && CVal <= 4095)
17919             break;
17920         }
17921         return;
17922 
17923       case 'K':
17924         if (Subtarget->isThumb1Only()) {
17925           // A 32-bit value where only one byte has a nonzero value. Exclude
17926           // zero to match GCC. This constraint is used by GCC internally for
17927           // constants that can be loaded with a move/shift combination.
17928           // It is not useful otherwise but is implemented for compatibility.
17929           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
17930             break;
17931         } else if (Subtarget->isThumb2()) {
17932           // A constant whose bitwise inverse can be used as an immediate
17933           // value in a data-processing instruction. This can be used in GCC
17934           // with a "B" modifier that prints the inverted value, for use with
17935           // BIC and MVN instructions. It is not useful otherwise but is
17936           // implemented for compatibility.
17937           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
17938             break;
17939         } else {
17940           // A constant whose bitwise inverse can be used as an immediate
17941           // value in a data-processing instruction. This can be used in GCC
17942           // with a "B" modifier that prints the inverted value, for use with
17943           // BIC and MVN instructions. It is not useful otherwise but is
17944           // implemented for compatibility.
17945           if (ARM_AM::getSOImmVal(~CVal) != -1)
17946             break;
17947         }
17948         return;
17949 
17950       case 'L':
17951         if (Subtarget->isThumb1Only()) {
17952           // This must be a constant between -7 and 7,
17953           // for 3-operand ADD/SUB immediate instructions.
17954           if (CVal >= -7 && CVal < 7)
17955             break;
17956         } else if (Subtarget->isThumb2()) {
17957           // A constant whose negation can be used as an immediate value in a
17958           // data-processing instruction. This can be used in GCC with an "n"
17959           // modifier that prints the negated value, for use with SUB
17960           // instructions. It is not useful otherwise but is implemented for
17961           // compatibility.
17962           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
17963             break;
17964         } else {
17965           // A constant whose negation can be used as an immediate value in a
17966           // data-processing instruction. This can be used in GCC with an "n"
17967           // modifier that prints the negated value, for use with SUB
17968           // instructions. It is not useful otherwise but is implemented for
17969           // compatibility.
17970           if (ARM_AM::getSOImmVal(-CVal) != -1)
17971             break;
17972         }
17973         return;
17974 
17975       case 'M':
17976         if (Subtarget->isThumb1Only()) {
17977           // This must be a multiple of 4 between 0 and 1020, for
17978           // ADD sp + immediate.
17979           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
17980             break;
17981         } else {
17982           // A power of two or a constant between 0 and 32.  This is used in
17983           // GCC for the shift amount on shifted register operands, but it is
17984           // useful in general for any shift amounts.
17985           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
17986             break;
17987         }
17988         return;
17989 
17990       case 'N':
17991         if (Subtarget->isThumb1Only()) {
17992           // This must be a constant between 0 and 31, for shift amounts.
17993           if (CVal >= 0 && CVal <= 31)
17994             break;
17995         }
17996         return;
17997 
17998       case 'O':
17999         if (Subtarget->isThumb1Only()) {
18000           // This must be a multiple of 4 between -508 and 508, for
18001           // ADD/SUB sp = sp + immediate.
18002           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
18003             break;
18004         }
18005         return;
18006     }
18007     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
18008     break;
18009   }
18010 
18011   if (Result.getNode()) {
18012     Ops.push_back(Result);
18013     return;
18014   }
18015   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
18016 }
18017 
getDivRemLibcall(const SDNode * N,MVT::SimpleValueType SVT)18018 static RTLIB::Libcall getDivRemLibcall(
18019     const SDNode *N, MVT::SimpleValueType SVT) {
18020   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
18021           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
18022          "Unhandled Opcode in getDivRemLibcall");
18023   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
18024                   N->getOpcode() == ISD::SREM;
18025   RTLIB::Libcall LC;
18026   switch (SVT) {
18027   default: llvm_unreachable("Unexpected request for libcall!");
18028   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
18029   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
18030   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
18031   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
18032   }
18033   return LC;
18034 }
18035 
getDivRemArgList(const SDNode * N,LLVMContext * Context,const ARMSubtarget * Subtarget)18036 static TargetLowering::ArgListTy getDivRemArgList(
18037     const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
18038   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
18039           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
18040          "Unhandled Opcode in getDivRemArgList");
18041   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
18042                   N->getOpcode() == ISD::SREM;
18043   TargetLowering::ArgListTy Args;
18044   TargetLowering::ArgListEntry Entry;
18045   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
18046     EVT ArgVT = N->getOperand(i).getValueType();
18047     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
18048     Entry.Node = N->getOperand(i);
18049     Entry.Ty = ArgTy;
18050     Entry.IsSExt = isSigned;
18051     Entry.IsZExt = !isSigned;
18052     Args.push_back(Entry);
18053   }
18054   if (Subtarget->isTargetWindows() && Args.size() >= 2)
18055     std::swap(Args[0], Args[1]);
18056   return Args;
18057 }
18058 
LowerDivRem(SDValue Op,SelectionDAG & DAG) const18059 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
18060   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
18061           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
18062           Subtarget->isTargetWindows()) &&
18063          "Register-based DivRem lowering only");
18064   unsigned Opcode = Op->getOpcode();
18065   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
18066          "Invalid opcode for Div/Rem lowering");
18067   bool isSigned = (Opcode == ISD::SDIVREM);
18068   EVT VT = Op->getValueType(0);
18069   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
18070   SDLoc dl(Op);
18071 
18072   // If the target has hardware divide, use divide + multiply + subtract:
18073   //     div = a / b
18074   //     rem = a - b * div
18075   //     return {div, rem}
18076   // This should be lowered into UDIV/SDIV + MLS later on.
18077   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
18078                                         : Subtarget->hasDivideInARMMode();
18079   if (hasDivide && Op->getValueType(0).isSimple() &&
18080       Op->getSimpleValueType(0) == MVT::i32) {
18081     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
18082     const SDValue Dividend = Op->getOperand(0);
18083     const SDValue Divisor = Op->getOperand(1);
18084     SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
18085     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
18086     SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
18087 
18088     SDValue Values[2] = {Div, Rem};
18089     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
18090   }
18091 
18092   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
18093                                        VT.getSimpleVT().SimpleTy);
18094   SDValue InChain = DAG.getEntryNode();
18095 
18096   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
18097                                                     DAG.getContext(),
18098                                                     Subtarget);
18099 
18100   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
18101                                          getPointerTy(DAG.getDataLayout()));
18102 
18103   Type *RetTy = StructType::get(Ty, Ty);
18104 
18105   if (Subtarget->isTargetWindows())
18106     InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
18107 
18108   TargetLowering::CallLoweringInfo CLI(DAG);
18109   CLI.setDebugLoc(dl).setChain(InChain)
18110     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
18111     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
18112 
18113   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
18114   return CallInfo.first;
18115 }
18116 
18117 // Lowers REM using divmod helpers
18118 // see RTABI section 4.2/4.3
LowerREM(SDNode * N,SelectionDAG & DAG) const18119 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
18120   // Build return types (div and rem)
18121   std::vector<Type*> RetTyParams;
18122   Type *RetTyElement;
18123 
18124   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
18125   default: llvm_unreachable("Unexpected request for libcall!");
18126   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
18127   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
18128   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
18129   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
18130   }
18131 
18132   RetTyParams.push_back(RetTyElement);
18133   RetTyParams.push_back(RetTyElement);
18134   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
18135   Type *RetTy = StructType::get(*DAG.getContext(), ret);
18136 
18137   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
18138                                                              SimpleTy);
18139   SDValue InChain = DAG.getEntryNode();
18140   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
18141                                                     Subtarget);
18142   bool isSigned = N->getOpcode() == ISD::SREM;
18143   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
18144                                          getPointerTy(DAG.getDataLayout()));
18145 
18146   if (Subtarget->isTargetWindows())
18147     InChain = WinDBZCheckDenominator(DAG, N, InChain);
18148 
18149   // Lower call
18150   CallLoweringInfo CLI(DAG);
18151   CLI.setChain(InChain)
18152      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
18153      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
18154   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
18155 
18156   // Return second (rem) result operand (first contains div)
18157   SDNode *ResNode = CallResult.first.getNode();
18158   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
18159   return ResNode->getOperand(1);
18160 }
18161 
18162 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const18163 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
18164   assert(Subtarget->isTargetWindows() && "unsupported target platform");
18165   SDLoc DL(Op);
18166 
18167   // Get the inputs.
18168   SDValue Chain = Op.getOperand(0);
18169   SDValue Size  = Op.getOperand(1);
18170 
18171   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
18172           "no-stack-arg-probe")) {
18173     MaybeAlign Align =
18174         cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
18175     SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
18176     Chain = SP.getValue(1);
18177     SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
18178     if (Align)
18179       SP =
18180           DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
18181                       DAG.getConstant(-(uint64_t)Align->value(), DL, MVT::i32));
18182     Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
18183     SDValue Ops[2] = { SP, Chain };
18184     return DAG.getMergeValues(Ops, DL);
18185   }
18186 
18187   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
18188                               DAG.getConstant(2, DL, MVT::i32));
18189 
18190   SDValue Flag;
18191   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
18192   Flag = Chain.getValue(1);
18193 
18194   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
18195   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
18196 
18197   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
18198   Chain = NewSP.getValue(1);
18199 
18200   SDValue Ops[2] = { NewSP, Chain };
18201   return DAG.getMergeValues(Ops, DL);
18202 }
18203 
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const18204 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
18205   bool IsStrict = Op->isStrictFPOpcode();
18206   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
18207   const unsigned DstSz = Op.getValueType().getSizeInBits();
18208   const unsigned SrcSz = SrcVal.getValueType().getSizeInBits();
18209   assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
18210          "Unexpected type for custom-lowering FP_EXTEND");
18211 
18212   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
18213          "With both FP DP and 16, any FP conversion is legal!");
18214 
18215   assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
18216          "With FP16, 16 to 32 conversion is legal!");
18217 
18218   // Converting from 32 -> 64 is valid if we have FP64.
18219   if (SrcSz == 32 && DstSz == 64 && Subtarget->hasFP64()) {
18220     // FIXME: Remove this when we have strict fp instruction selection patterns
18221     if (IsStrict) {
18222       SDLoc Loc(Op);
18223       SDValue Result = DAG.getNode(ISD::FP_EXTEND,
18224                                    Loc, Op.getValueType(), SrcVal);
18225       return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
18226     }
18227     return Op;
18228   }
18229 
18230   // Either we are converting from 16 -> 64, without FP16 and/or
18231   // FP.double-precision or without Armv8-fp. So we must do it in two
18232   // steps.
18233   // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
18234   // without FP16. So we must do a function call.
18235   SDLoc Loc(Op);
18236   RTLIB::Libcall LC;
18237   MakeLibCallOptions CallOptions;
18238   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
18239   for (unsigned Sz = SrcSz; Sz <= 32 && Sz < DstSz; Sz *= 2) {
18240     bool Supported = (Sz == 16 ? Subtarget->hasFP16() : Subtarget->hasFP64());
18241     MVT SrcVT = (Sz == 16 ? MVT::f16 : MVT::f32);
18242     MVT DstVT = (Sz == 16 ? MVT::f32 : MVT::f64);
18243     if (Supported) {
18244       if (IsStrict) {
18245         SrcVal = DAG.getNode(ISD::STRICT_FP_EXTEND, Loc,
18246                              {DstVT, MVT::Other}, {Chain, SrcVal});
18247         Chain = SrcVal.getValue(1);
18248       } else {
18249         SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, DstVT, SrcVal);
18250       }
18251     } else {
18252       LC = RTLIB::getFPEXT(SrcVT, DstVT);
18253       assert(LC != RTLIB::UNKNOWN_LIBCALL &&
18254              "Unexpected type for custom-lowering FP_EXTEND");
18255       std::tie(SrcVal, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
18256                                             Loc, Chain);
18257     }
18258   }
18259 
18260   return IsStrict ? DAG.getMergeValues({SrcVal, Chain}, Loc) : SrcVal;
18261 }
18262 
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const18263 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
18264   bool IsStrict = Op->isStrictFPOpcode();
18265 
18266   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
18267   EVT SrcVT = SrcVal.getValueType();
18268   EVT DstVT = Op.getValueType();
18269   const unsigned DstSz = Op.getValueType().getSizeInBits();
18270   const unsigned SrcSz = SrcVT.getSizeInBits();
18271   (void)DstSz;
18272   assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
18273          "Unexpected type for custom-lowering FP_ROUND");
18274 
18275   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
18276          "With both FP DP and 16, any FP conversion is legal!");
18277 
18278   SDLoc Loc(Op);
18279 
18280   // Instruction from 32 -> 16 if hasFP16 is valid
18281   if (SrcSz == 32 && Subtarget->hasFP16())
18282     return Op;
18283 
18284   // Lib call from 32 -> 16 / 64 -> [32, 16]
18285   RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT);
18286   assert(LC != RTLIB::UNKNOWN_LIBCALL &&
18287          "Unexpected type for custom-lowering FP_ROUND");
18288   MakeLibCallOptions CallOptions;
18289   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
18290   SDValue Result;
18291   std::tie(Result, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
18292                                         Loc, Chain);
18293   return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
18294 }
18295 
lowerABS(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const18296 void ARMTargetLowering::lowerABS(SDNode *N, SmallVectorImpl<SDValue> &Results,
18297                                  SelectionDAG &DAG) const {
18298   assert(N->getValueType(0) == MVT::i64 && "Unexpected type (!= i64) on ABS.");
18299   MVT HalfT = MVT::i32;
18300   SDLoc dl(N);
18301   SDValue Hi, Lo, Tmp;
18302 
18303   if (!isOperationLegalOrCustom(ISD::ADDCARRY, HalfT) ||
18304       !isOperationLegalOrCustom(ISD::UADDO, HalfT))
18305     return ;
18306 
18307   unsigned OpTypeBits = HalfT.getScalarSizeInBits();
18308   SDVTList VTList = DAG.getVTList(HalfT, MVT::i1);
18309 
18310   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
18311                    DAG.getConstant(0, dl, HalfT));
18312   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
18313                    DAG.getConstant(1, dl, HalfT));
18314 
18315   Tmp = DAG.getNode(ISD::SRA, dl, HalfT, Hi,
18316                     DAG.getConstant(OpTypeBits - 1, dl,
18317                     getShiftAmountTy(HalfT, DAG.getDataLayout())));
18318   Lo = DAG.getNode(ISD::UADDO, dl, VTList, Tmp, Lo);
18319   Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, Tmp, Hi,
18320                    SDValue(Lo.getNode(), 1));
18321   Hi = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Hi);
18322   Lo = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Lo);
18323 
18324   Results.push_back(Lo);
18325   Results.push_back(Hi);
18326 }
18327 
18328 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const18329 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
18330   // The ARM target isn't yet aware of offsets.
18331   return false;
18332 }
18333 
isBitFieldInvertedMask(unsigned v)18334 bool ARM::isBitFieldInvertedMask(unsigned v) {
18335   if (v == 0xffffffff)
18336     return false;
18337 
18338   // there can be 1's on either or both "outsides", all the "inside"
18339   // bits must be 0's
18340   return isShiftedMask_32(~v);
18341 }
18342 
18343 /// isFPImmLegal - Returns true if the target can instruction select the
18344 /// specified FP immediate natively. If false, the legalizer will
18345 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const18346 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
18347                                      bool ForCodeSize) const {
18348   if (!Subtarget->hasVFP3Base())
18349     return false;
18350   if (VT == MVT::f16 && Subtarget->hasFullFP16())
18351     return ARM_AM::getFP16Imm(Imm) != -1;
18352   if (VT == MVT::f32 && Subtarget->hasFullFP16() &&
18353       ARM_AM::getFP32FP16Imm(Imm) != -1)
18354     return true;
18355   if (VT == MVT::f32)
18356     return ARM_AM::getFP32Imm(Imm) != -1;
18357   if (VT == MVT::f64 && Subtarget->hasFP64())
18358     return ARM_AM::getFP64Imm(Imm) != -1;
18359   return false;
18360 }
18361 
18362 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
18363 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
18364 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const18365 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
18366                                            const CallInst &I,
18367                                            MachineFunction &MF,
18368                                            unsigned Intrinsic) const {
18369   switch (Intrinsic) {
18370   case Intrinsic::arm_neon_vld1:
18371   case Intrinsic::arm_neon_vld2:
18372   case Intrinsic::arm_neon_vld3:
18373   case Intrinsic::arm_neon_vld4:
18374   case Intrinsic::arm_neon_vld2lane:
18375   case Intrinsic::arm_neon_vld3lane:
18376   case Intrinsic::arm_neon_vld4lane:
18377   case Intrinsic::arm_neon_vld2dup:
18378   case Intrinsic::arm_neon_vld3dup:
18379   case Intrinsic::arm_neon_vld4dup: {
18380     Info.opc = ISD::INTRINSIC_W_CHAIN;
18381     // Conservatively set memVT to the entire set of vectors loaded.
18382     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
18383     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
18384     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
18385     Info.ptrVal = I.getArgOperand(0);
18386     Info.offset = 0;
18387     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
18388     Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
18389     // volatile loads with NEON intrinsics not supported
18390     Info.flags = MachineMemOperand::MOLoad;
18391     return true;
18392   }
18393   case Intrinsic::arm_neon_vld1x2:
18394   case Intrinsic::arm_neon_vld1x3:
18395   case Intrinsic::arm_neon_vld1x4: {
18396     Info.opc = ISD::INTRINSIC_W_CHAIN;
18397     // Conservatively set memVT to the entire set of vectors loaded.
18398     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
18399     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
18400     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
18401     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
18402     Info.offset = 0;
18403     Info.align.reset();
18404     // volatile loads with NEON intrinsics not supported
18405     Info.flags = MachineMemOperand::MOLoad;
18406     return true;
18407   }
18408   case Intrinsic::arm_neon_vst1:
18409   case Intrinsic::arm_neon_vst2:
18410   case Intrinsic::arm_neon_vst3:
18411   case Intrinsic::arm_neon_vst4:
18412   case Intrinsic::arm_neon_vst2lane:
18413   case Intrinsic::arm_neon_vst3lane:
18414   case Intrinsic::arm_neon_vst4lane: {
18415     Info.opc = ISD::INTRINSIC_VOID;
18416     // Conservatively set memVT to the entire set of vectors stored.
18417     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
18418     unsigned NumElts = 0;
18419     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
18420       Type *ArgTy = I.getArgOperand(ArgI)->getType();
18421       if (!ArgTy->isVectorTy())
18422         break;
18423       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
18424     }
18425     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
18426     Info.ptrVal = I.getArgOperand(0);
18427     Info.offset = 0;
18428     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
18429     Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
18430     // volatile stores with NEON intrinsics not supported
18431     Info.flags = MachineMemOperand::MOStore;
18432     return true;
18433   }
18434   case Intrinsic::arm_neon_vst1x2:
18435   case Intrinsic::arm_neon_vst1x3:
18436   case Intrinsic::arm_neon_vst1x4: {
18437     Info.opc = ISD::INTRINSIC_VOID;
18438     // Conservatively set memVT to the entire set of vectors stored.
18439     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
18440     unsigned NumElts = 0;
18441     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
18442       Type *ArgTy = I.getArgOperand(ArgI)->getType();
18443       if (!ArgTy->isVectorTy())
18444         break;
18445       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
18446     }
18447     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
18448     Info.ptrVal = I.getArgOperand(0);
18449     Info.offset = 0;
18450     Info.align.reset();
18451     // volatile stores with NEON intrinsics not supported
18452     Info.flags = MachineMemOperand::MOStore;
18453     return true;
18454   }
18455   case Intrinsic::arm_mve_vld2q:
18456   case Intrinsic::arm_mve_vld4q: {
18457     Info.opc = ISD::INTRINSIC_W_CHAIN;
18458     // Conservatively set memVT to the entire set of vectors loaded.
18459     Type *VecTy = cast<StructType>(I.getType())->getElementType(1);
18460     unsigned Factor = Intrinsic == Intrinsic::arm_mve_vld2q ? 2 : 4;
18461     Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
18462     Info.ptrVal = I.getArgOperand(0);
18463     Info.offset = 0;
18464     Info.align = Align(VecTy->getScalarSizeInBits() / 8);
18465     // volatile loads with MVE intrinsics not supported
18466     Info.flags = MachineMemOperand::MOLoad;
18467     return true;
18468   }
18469   case Intrinsic::arm_mve_vst2q:
18470   case Intrinsic::arm_mve_vst4q: {
18471     Info.opc = ISD::INTRINSIC_VOID;
18472     // Conservatively set memVT to the entire set of vectors stored.
18473     Type *VecTy = I.getArgOperand(1)->getType();
18474     unsigned Factor = Intrinsic == Intrinsic::arm_mve_vst2q ? 2 : 4;
18475     Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
18476     Info.ptrVal = I.getArgOperand(0);
18477     Info.offset = 0;
18478     Info.align = Align(VecTy->getScalarSizeInBits() / 8);
18479     // volatile stores with MVE intrinsics not supported
18480     Info.flags = MachineMemOperand::MOStore;
18481     return true;
18482   }
18483   case Intrinsic::arm_ldaex:
18484   case Intrinsic::arm_ldrex: {
18485     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
18486     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
18487     Info.opc = ISD::INTRINSIC_W_CHAIN;
18488     Info.memVT = MVT::getVT(PtrTy->getElementType());
18489     Info.ptrVal = I.getArgOperand(0);
18490     Info.offset = 0;
18491     Info.align = DL.getABITypeAlign(PtrTy->getElementType());
18492     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
18493     return true;
18494   }
18495   case Intrinsic::arm_stlex:
18496   case Intrinsic::arm_strex: {
18497     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
18498     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
18499     Info.opc = ISD::INTRINSIC_W_CHAIN;
18500     Info.memVT = MVT::getVT(PtrTy->getElementType());
18501     Info.ptrVal = I.getArgOperand(1);
18502     Info.offset = 0;
18503     Info.align = DL.getABITypeAlign(PtrTy->getElementType());
18504     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
18505     return true;
18506   }
18507   case Intrinsic::arm_stlexd:
18508   case Intrinsic::arm_strexd:
18509     Info.opc = ISD::INTRINSIC_W_CHAIN;
18510     Info.memVT = MVT::i64;
18511     Info.ptrVal = I.getArgOperand(2);
18512     Info.offset = 0;
18513     Info.align = Align(8);
18514     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
18515     return true;
18516 
18517   case Intrinsic::arm_ldaexd:
18518   case Intrinsic::arm_ldrexd:
18519     Info.opc = ISD::INTRINSIC_W_CHAIN;
18520     Info.memVT = MVT::i64;
18521     Info.ptrVal = I.getArgOperand(0);
18522     Info.offset = 0;
18523     Info.align = Align(8);
18524     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
18525     return true;
18526 
18527   default:
18528     break;
18529   }
18530 
18531   return false;
18532 }
18533 
18534 /// Returns true if it is beneficial to convert a load of a constant
18535 /// to just the constant itself.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const18536 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
18537                                                           Type *Ty) const {
18538   assert(Ty->isIntegerTy());
18539 
18540   unsigned Bits = Ty->getPrimitiveSizeInBits();
18541   if (Bits == 0 || Bits > 32)
18542     return false;
18543   return true;
18544 }
18545 
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index) const18546 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
18547                                                 unsigned Index) const {
18548   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
18549     return false;
18550 
18551   return (Index == 0 || Index == ResVT.getVectorNumElements());
18552 }
18553 
makeDMB(IRBuilder<> & Builder,ARM_MB::MemBOpt Domain) const18554 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
18555                                         ARM_MB::MemBOpt Domain) const {
18556   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18557 
18558   // First, if the target has no DMB, see what fallback we can use.
18559   if (!Subtarget->hasDataBarrier()) {
18560     // Some ARMv6 cpus can support data barriers with an mcr instruction.
18561     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
18562     // here.
18563     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
18564       Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
18565       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
18566                         Builder.getInt32(0), Builder.getInt32(7),
18567                         Builder.getInt32(10), Builder.getInt32(5)};
18568       return Builder.CreateCall(MCR, args);
18569     } else {
18570       // Instead of using barriers, atomic accesses on these subtargets use
18571       // libcalls.
18572       llvm_unreachable("makeDMB on a target so old that it has no barriers");
18573     }
18574   } else {
18575     Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
18576     // Only a full system barrier exists in the M-class architectures.
18577     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
18578     Constant *CDomain = Builder.getInt32(Domain);
18579     return Builder.CreateCall(DMB, CDomain);
18580   }
18581 }
18582 
18583 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
emitLeadingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const18584 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
18585                                                  Instruction *Inst,
18586                                                  AtomicOrdering Ord) const {
18587   switch (Ord) {
18588   case AtomicOrdering::NotAtomic:
18589   case AtomicOrdering::Unordered:
18590     llvm_unreachable("Invalid fence: unordered/non-atomic");
18591   case AtomicOrdering::Monotonic:
18592   case AtomicOrdering::Acquire:
18593     return nullptr; // Nothing to do
18594   case AtomicOrdering::SequentiallyConsistent:
18595     if (!Inst->hasAtomicStore())
18596       return nullptr; // Nothing to do
18597     LLVM_FALLTHROUGH;
18598   case AtomicOrdering::Release:
18599   case AtomicOrdering::AcquireRelease:
18600     if (Subtarget->preferISHSTBarriers())
18601       return makeDMB(Builder, ARM_MB::ISHST);
18602     // FIXME: add a comment with a link to documentation justifying this.
18603     else
18604       return makeDMB(Builder, ARM_MB::ISH);
18605   }
18606   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
18607 }
18608 
emitTrailingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const18609 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
18610                                                   Instruction *Inst,
18611                                                   AtomicOrdering Ord) const {
18612   switch (Ord) {
18613   case AtomicOrdering::NotAtomic:
18614   case AtomicOrdering::Unordered:
18615     llvm_unreachable("Invalid fence: unordered/not-atomic");
18616   case AtomicOrdering::Monotonic:
18617   case AtomicOrdering::Release:
18618     return nullptr; // Nothing to do
18619   case AtomicOrdering::Acquire:
18620   case AtomicOrdering::AcquireRelease:
18621   case AtomicOrdering::SequentiallyConsistent:
18622     return makeDMB(Builder, ARM_MB::ISH);
18623   }
18624   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
18625 }
18626 
18627 // Loads and stores less than 64-bits are already atomic; ones above that
18628 // are doomed anyway, so defer to the default libcall and blame the OS when
18629 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
18630 // anything for those.
shouldExpandAtomicStoreInIR(StoreInst * SI) const18631 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
18632   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
18633   return (Size == 64) && !Subtarget->isMClass();
18634 }
18635 
18636 // Loads and stores less than 64-bits are already atomic; ones above that
18637 // are doomed anyway, so defer to the default libcall and blame the OS when
18638 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
18639 // anything for those.
18640 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
18641 // guarantee, see DDI0406C ARM architecture reference manual,
18642 // sections A8.8.72-74 LDRD)
18643 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const18644 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
18645   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
18646   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
18647                                                   : AtomicExpansionKind::None;
18648 }
18649 
18650 // For the real atomic operations, we have ldrex/strex up to 32 bits,
18651 // and up to 64 bits on the non-M profiles
18652 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const18653 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
18654   if (AI->isFloatingPointOperation())
18655     return AtomicExpansionKind::CmpXChg;
18656 
18657   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
18658   bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
18659   return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
18660              ? AtomicExpansionKind::LLSC
18661              : AtomicExpansionKind::None;
18662 }
18663 
18664 // Similar to shouldExpandAtomicRMWInIR, ldrex/strex can be used  up to 32
18665 // bits, and up to 64 bits on the non-M profiles.
18666 TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const18667 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
18668   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
18669   // implement cmpxchg without spilling. If the address being exchanged is also
18670   // on the stack and close enough to the spill slot, this can lead to a
18671   // situation where the monitor always gets cleared and the atomic operation
18672   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
18673   unsigned Size = AI->getOperand(1)->getType()->getPrimitiveSizeInBits();
18674   bool HasAtomicCmpXchg =
18675       !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
18676   if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg &&
18677       Size <= (Subtarget->isMClass() ? 32U : 64U))
18678     return AtomicExpansionKind::LLSC;
18679   return AtomicExpansionKind::None;
18680 }
18681 
shouldInsertFencesForAtomic(const Instruction * I) const18682 bool ARMTargetLowering::shouldInsertFencesForAtomic(
18683     const Instruction *I) const {
18684   return InsertFencesForAtomic;
18685 }
18686 
18687 // This has so far only been implemented for MachO.
useLoadStackGuardNode() const18688 bool ARMTargetLowering::useLoadStackGuardNode() const {
18689   return Subtarget->isTargetMachO();
18690 }
18691 
insertSSPDeclarations(Module & M) const18692 void ARMTargetLowering::insertSSPDeclarations(Module &M) const {
18693   if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
18694     return TargetLowering::insertSSPDeclarations(M);
18695 
18696   // MSVC CRT has a global variable holding security cookie.
18697   M.getOrInsertGlobal("__security_cookie",
18698                       Type::getInt8PtrTy(M.getContext()));
18699 
18700   // MSVC CRT has a function to validate security cookie.
18701   FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
18702       "__security_check_cookie", Type::getVoidTy(M.getContext()),
18703       Type::getInt8PtrTy(M.getContext()));
18704   if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee()))
18705     F->addAttribute(1, Attribute::AttrKind::InReg);
18706 }
18707 
getSDagStackGuard(const Module & M) const18708 Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const {
18709   // MSVC CRT has a global variable holding security cookie.
18710   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
18711     return M.getGlobalVariable("__security_cookie");
18712   return TargetLowering::getSDagStackGuard(M);
18713 }
18714 
getSSPStackGuardCheck(const Module & M) const18715 Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const {
18716   // MSVC CRT has a function to validate security cookie.
18717   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
18718     return M.getFunction("__security_check_cookie");
18719   return TargetLowering::getSSPStackGuardCheck(M);
18720 }
18721 
canCombineStoreAndExtract(Type * VectorTy,Value * Idx,unsigned & Cost) const18722 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
18723                                                   unsigned &Cost) const {
18724   // If we do not have NEON, vector types are not natively supported.
18725   if (!Subtarget->hasNEON())
18726     return false;
18727 
18728   // Floating point values and vector values map to the same register file.
18729   // Therefore, although we could do a store extract of a vector type, this is
18730   // better to leave at float as we have more freedom in the addressing mode for
18731   // those.
18732   if (VectorTy->isFPOrFPVectorTy())
18733     return false;
18734 
18735   // If the index is unknown at compile time, this is very expensive to lower
18736   // and it is not possible to combine the store with the extract.
18737   if (!isa<ConstantInt>(Idx))
18738     return false;
18739 
18740   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
18741   unsigned BitWidth = VectorTy->getPrimitiveSizeInBits().getFixedSize();
18742   // We can do a store + vector extract on any vector that fits perfectly in a D
18743   // or Q register.
18744   if (BitWidth == 64 || BitWidth == 128) {
18745     Cost = 0;
18746     return true;
18747   }
18748   return false;
18749 }
18750 
isCheapToSpeculateCttz() const18751 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
18752   return Subtarget->hasV6T2Ops();
18753 }
18754 
isCheapToSpeculateCtlz() const18755 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
18756   return Subtarget->hasV6T2Ops();
18757 }
18758 
shouldExpandShift(SelectionDAG & DAG,SDNode * N) const18759 bool ARMTargetLowering::shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
18760   return !Subtarget->hasMinSize() || Subtarget->isTargetWindows();
18761 }
18762 
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const18763 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
18764                                          AtomicOrdering Ord) const {
18765   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18766   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
18767   bool IsAcquire = isAcquireOrStronger(Ord);
18768 
18769   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
18770   // intrinsic must return {i32, i32} and we have to recombine them into a
18771   // single i64 here.
18772   if (ValTy->getPrimitiveSizeInBits() == 64) {
18773     Intrinsic::ID Int =
18774         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
18775     Function *Ldrex = Intrinsic::getDeclaration(M, Int);
18776 
18777     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
18778     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
18779 
18780     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
18781     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
18782     if (!Subtarget->isLittle())
18783       std::swap (Lo, Hi);
18784     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
18785     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
18786     return Builder.CreateOr(
18787         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
18788   }
18789 
18790   Type *Tys[] = { Addr->getType() };
18791   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
18792   Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
18793 
18794   return Builder.CreateTruncOrBitCast(
18795       Builder.CreateCall(Ldrex, Addr),
18796       cast<PointerType>(Addr->getType())->getElementType());
18797 }
18798 
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder) const18799 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
18800     IRBuilder<> &Builder) const {
18801   if (!Subtarget->hasV7Ops())
18802     return;
18803   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18804   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
18805 }
18806 
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const18807 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
18808                                                Value *Addr,
18809                                                AtomicOrdering Ord) const {
18810   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18811   bool IsRelease = isReleaseOrStronger(Ord);
18812 
18813   // Since the intrinsics must have legal type, the i64 intrinsics take two
18814   // parameters: "i32, i32". We must marshal Val into the appropriate form
18815   // before the call.
18816   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
18817     Intrinsic::ID Int =
18818         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
18819     Function *Strex = Intrinsic::getDeclaration(M, Int);
18820     Type *Int32Ty = Type::getInt32Ty(M->getContext());
18821 
18822     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
18823     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
18824     if (!Subtarget->isLittle())
18825       std::swap(Lo, Hi);
18826     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
18827     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
18828   }
18829 
18830   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
18831   Type *Tys[] = { Addr->getType() };
18832   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
18833 
18834   return Builder.CreateCall(
18835       Strex, {Builder.CreateZExtOrBitCast(
18836                   Val, Strex->getFunctionType()->getParamType(0)),
18837               Addr});
18838 }
18839 
18840 
alignLoopsWithOptSize() const18841 bool ARMTargetLowering::alignLoopsWithOptSize() const {
18842   return Subtarget->isMClass();
18843 }
18844 
18845 /// A helper function for determining the number of interleaved accesses we
18846 /// will generate when lowering accesses of the given type.
18847 unsigned
getNumInterleavedAccesses(VectorType * VecTy,const DataLayout & DL) const18848 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
18849                                              const DataLayout &DL) const {
18850   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
18851 }
18852 
isLegalInterleavedAccessType(unsigned Factor,FixedVectorType * VecTy,const DataLayout & DL) const18853 bool ARMTargetLowering::isLegalInterleavedAccessType(
18854     unsigned Factor, FixedVectorType *VecTy, const DataLayout &DL) const {
18855 
18856   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
18857   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
18858 
18859   if (!Subtarget->hasNEON() && !Subtarget->hasMVEIntegerOps())
18860     return false;
18861 
18862   // Ensure the vector doesn't have f16 elements. Even though we could do an
18863   // i16 vldN, we can't hold the f16 vectors and will end up converting via
18864   // f32.
18865   if (Subtarget->hasNEON() && VecTy->getElementType()->isHalfTy())
18866     return false;
18867   if (Subtarget->hasMVEIntegerOps() && Factor == 3)
18868     return false;
18869 
18870   // Ensure the number of vector elements is greater than 1.
18871   if (VecTy->getNumElements() < 2)
18872     return false;
18873 
18874   // Ensure the element type is legal.
18875   if (ElSize != 8 && ElSize != 16 && ElSize != 32)
18876     return false;
18877 
18878   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
18879   // 128 will be split into multiple interleaved accesses.
18880   if (Subtarget->hasNEON() && VecSize == 64)
18881     return true;
18882   return VecSize % 128 == 0;
18883 }
18884 
getMaxSupportedInterleaveFactor() const18885 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
18886   if (Subtarget->hasNEON())
18887     return 4;
18888   if (Subtarget->hasMVEIntegerOps())
18889     return MVEMaxSupportedInterleaveFactor;
18890   return TargetLoweringBase::getMaxSupportedInterleaveFactor();
18891 }
18892 
18893 /// Lower an interleaved load into a vldN intrinsic.
18894 ///
18895 /// E.g. Lower an interleaved load (Factor = 2):
18896 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
18897 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
18898 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
18899 ///
18900 ///      Into:
18901 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
18902 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
18903 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor) const18904 bool ARMTargetLowering::lowerInterleavedLoad(
18905     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
18906     ArrayRef<unsigned> Indices, unsigned Factor) const {
18907   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
18908          "Invalid interleave factor");
18909   assert(!Shuffles.empty() && "Empty shufflevector input");
18910   assert(Shuffles.size() == Indices.size() &&
18911          "Unmatched number of shufflevectors and indices");
18912 
18913   auto *VecTy = cast<FixedVectorType>(Shuffles[0]->getType());
18914   Type *EltTy = VecTy->getElementType();
18915 
18916   const DataLayout &DL = LI->getModule()->getDataLayout();
18917 
18918   // Skip if we do not have NEON and skip illegal vector types. We can
18919   // "legalize" wide vector types into multiple interleaved accesses as long as
18920   // the vector types are divisible by 128.
18921   if (!isLegalInterleavedAccessType(Factor, VecTy, DL))
18922     return false;
18923 
18924   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
18925 
18926   // A pointer vector can not be the return type of the ldN intrinsics. Need to
18927   // load integer vectors first and then convert to pointer vectors.
18928   if (EltTy->isPointerTy())
18929     VecTy = FixedVectorType::get(DL.getIntPtrType(EltTy), VecTy);
18930 
18931   IRBuilder<> Builder(LI);
18932 
18933   // The base address of the load.
18934   Value *BaseAddr = LI->getPointerOperand();
18935 
18936   if (NumLoads > 1) {
18937     // If we're going to generate more than one load, reset the sub-vector type
18938     // to something legal.
18939     VecTy = FixedVectorType::get(VecTy->getElementType(),
18940                                  VecTy->getNumElements() / NumLoads);
18941 
18942     // We will compute the pointer operand of each load from the original base
18943     // address using GEPs. Cast the base address to a pointer to the scalar
18944     // element type.
18945     BaseAddr = Builder.CreateBitCast(
18946         BaseAddr,
18947         VecTy->getElementType()->getPointerTo(LI->getPointerAddressSpace()));
18948   }
18949 
18950   assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
18951 
18952   auto createLoadIntrinsic = [&](Value *BaseAddr) {
18953     if (Subtarget->hasNEON()) {
18954       Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
18955       Type *Tys[] = {VecTy, Int8Ptr};
18956       static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
18957                                                 Intrinsic::arm_neon_vld3,
18958                                                 Intrinsic::arm_neon_vld4};
18959       Function *VldnFunc =
18960           Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
18961 
18962       SmallVector<Value *, 2> Ops;
18963       Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
18964       Ops.push_back(Builder.getInt32(LI->getAlignment()));
18965 
18966       return Builder.CreateCall(VldnFunc, Ops, "vldN");
18967     } else {
18968       assert((Factor == 2 || Factor == 4) &&
18969              "expected interleave factor of 2 or 4 for MVE");
18970       Intrinsic::ID LoadInts =
18971           Factor == 2 ? Intrinsic::arm_mve_vld2q : Intrinsic::arm_mve_vld4q;
18972       Type *VecEltTy =
18973           VecTy->getElementType()->getPointerTo(LI->getPointerAddressSpace());
18974       Type *Tys[] = {VecTy, VecEltTy};
18975       Function *VldnFunc =
18976           Intrinsic::getDeclaration(LI->getModule(), LoadInts, Tys);
18977 
18978       SmallVector<Value *, 2> Ops;
18979       Ops.push_back(Builder.CreateBitCast(BaseAddr, VecEltTy));
18980       return Builder.CreateCall(VldnFunc, Ops, "vldN");
18981     }
18982   };
18983 
18984   // Holds sub-vectors extracted from the load intrinsic return values. The
18985   // sub-vectors are associated with the shufflevector instructions they will
18986   // replace.
18987   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
18988 
18989   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
18990     // If we're generating more than one load, compute the base address of
18991     // subsequent loads as an offset from the previous.
18992     if (LoadCount > 0)
18993       BaseAddr = Builder.CreateConstGEP1_32(VecTy->getElementType(), BaseAddr,
18994                                             VecTy->getNumElements() * Factor);
18995 
18996     CallInst *VldN = createLoadIntrinsic(BaseAddr);
18997 
18998     // Replace uses of each shufflevector with the corresponding vector loaded
18999     // by ldN.
19000     for (unsigned i = 0; i < Shuffles.size(); i++) {
19001       ShuffleVectorInst *SV = Shuffles[i];
19002       unsigned Index = Indices[i];
19003 
19004       Value *SubVec = Builder.CreateExtractValue(VldN, Index);
19005 
19006       // Convert the integer vector to pointer vector if the element is pointer.
19007       if (EltTy->isPointerTy())
19008         SubVec = Builder.CreateIntToPtr(
19009             SubVec,
19010             FixedVectorType::get(SV->getType()->getElementType(), VecTy));
19011 
19012       SubVecs[SV].push_back(SubVec);
19013     }
19014   }
19015 
19016   // Replace uses of the shufflevector instructions with the sub-vectors
19017   // returned by the load intrinsic. If a shufflevector instruction is
19018   // associated with more than one sub-vector, those sub-vectors will be
19019   // concatenated into a single wide vector.
19020   for (ShuffleVectorInst *SVI : Shuffles) {
19021     auto &SubVec = SubVecs[SVI];
19022     auto *WideVec =
19023         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
19024     SVI->replaceAllUsesWith(WideVec);
19025   }
19026 
19027   return true;
19028 }
19029 
19030 /// Lower an interleaved store into a vstN intrinsic.
19031 ///
19032 /// E.g. Lower an interleaved store (Factor = 3):
19033 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
19034 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
19035 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
19036 ///
19037 ///      Into:
19038 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
19039 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
19040 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
19041 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
19042 ///
19043 /// Note that the new shufflevectors will be removed and we'll only generate one
19044 /// vst3 instruction in CodeGen.
19045 ///
19046 /// Example for a more general valid mask (Factor 3). Lower:
19047 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
19048 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
19049 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
19050 ///
19051 ///      Into:
19052 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
19053 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
19054 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
19055 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor) const19056 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
19057                                               ShuffleVectorInst *SVI,
19058                                               unsigned Factor) const {
19059   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
19060          "Invalid interleave factor");
19061 
19062   auto *VecTy = cast<FixedVectorType>(SVI->getType());
19063   assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store");
19064 
19065   unsigned LaneLen = VecTy->getNumElements() / Factor;
19066   Type *EltTy = VecTy->getElementType();
19067   auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen);
19068 
19069   const DataLayout &DL = SI->getModule()->getDataLayout();
19070 
19071   // Skip if we do not have NEON and skip illegal vector types. We can
19072   // "legalize" wide vector types into multiple interleaved accesses as long as
19073   // the vector types are divisible by 128.
19074   if (!isLegalInterleavedAccessType(Factor, SubVecTy, DL))
19075     return false;
19076 
19077   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
19078 
19079   Value *Op0 = SVI->getOperand(0);
19080   Value *Op1 = SVI->getOperand(1);
19081   IRBuilder<> Builder(SI);
19082 
19083   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
19084   // vectors to integer vectors.
19085   if (EltTy->isPointerTy()) {
19086     Type *IntTy = DL.getIntPtrType(EltTy);
19087 
19088     // Convert to the corresponding integer vector.
19089     auto *IntVecTy =
19090         FixedVectorType::get(IntTy, cast<FixedVectorType>(Op0->getType()));
19091     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
19092     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
19093 
19094     SubVecTy = FixedVectorType::get(IntTy, LaneLen);
19095   }
19096 
19097   // The base address of the store.
19098   Value *BaseAddr = SI->getPointerOperand();
19099 
19100   if (NumStores > 1) {
19101     // If we're going to generate more than one store, reset the lane length
19102     // and sub-vector type to something legal.
19103     LaneLen /= NumStores;
19104     SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen);
19105 
19106     // We will compute the pointer operand of each store from the original base
19107     // address using GEPs. Cast the base address to a pointer to the scalar
19108     // element type.
19109     BaseAddr = Builder.CreateBitCast(
19110         BaseAddr,
19111         SubVecTy->getElementType()->getPointerTo(SI->getPointerAddressSpace()));
19112   }
19113 
19114   assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
19115 
19116   auto Mask = SVI->getShuffleMask();
19117 
19118   auto createStoreIntrinsic = [&](Value *BaseAddr,
19119                                   SmallVectorImpl<Value *> &Shuffles) {
19120     if (Subtarget->hasNEON()) {
19121       static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
19122                                                  Intrinsic::arm_neon_vst3,
19123                                                  Intrinsic::arm_neon_vst4};
19124       Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
19125       Type *Tys[] = {Int8Ptr, SubVecTy};
19126 
19127       Function *VstNFunc = Intrinsic::getDeclaration(
19128           SI->getModule(), StoreInts[Factor - 2], Tys);
19129 
19130       SmallVector<Value *, 6> Ops;
19131       Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
19132       append_range(Ops, Shuffles);
19133       Ops.push_back(Builder.getInt32(SI->getAlignment()));
19134       Builder.CreateCall(VstNFunc, Ops);
19135     } else {
19136       assert((Factor == 2 || Factor == 4) &&
19137              "expected interleave factor of 2 or 4 for MVE");
19138       Intrinsic::ID StoreInts =
19139           Factor == 2 ? Intrinsic::arm_mve_vst2q : Intrinsic::arm_mve_vst4q;
19140       Type *EltPtrTy = SubVecTy->getElementType()->getPointerTo(
19141           SI->getPointerAddressSpace());
19142       Type *Tys[] = {EltPtrTy, SubVecTy};
19143       Function *VstNFunc =
19144           Intrinsic::getDeclaration(SI->getModule(), StoreInts, Tys);
19145 
19146       SmallVector<Value *, 6> Ops;
19147       Ops.push_back(Builder.CreateBitCast(BaseAddr, EltPtrTy));
19148       append_range(Ops, Shuffles);
19149       for (unsigned F = 0; F < Factor; F++) {
19150         Ops.push_back(Builder.getInt32(F));
19151         Builder.CreateCall(VstNFunc, Ops);
19152         Ops.pop_back();
19153       }
19154     }
19155   };
19156 
19157   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
19158     // If we generating more than one store, we compute the base address of
19159     // subsequent stores as an offset from the previous.
19160     if (StoreCount > 0)
19161       BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(),
19162                                             BaseAddr, LaneLen * Factor);
19163 
19164     SmallVector<Value *, 4> Shuffles;
19165 
19166     // Split the shufflevector operands into sub vectors for the new vstN call.
19167     for (unsigned i = 0; i < Factor; i++) {
19168       unsigned IdxI = StoreCount * LaneLen * Factor + i;
19169       if (Mask[IdxI] >= 0) {
19170         Shuffles.push_back(Builder.CreateShuffleVector(
19171             Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0)));
19172       } else {
19173         unsigned StartMask = 0;
19174         for (unsigned j = 1; j < LaneLen; j++) {
19175           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
19176           if (Mask[IdxJ * Factor + IdxI] >= 0) {
19177             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
19178             break;
19179           }
19180         }
19181         // Note: If all elements in a chunk are undefs, StartMask=0!
19182         // Note: Filling undef gaps with random elements is ok, since
19183         // those elements were being written anyway (with undefs).
19184         // In the case of all undefs we're defaulting to using elems from 0
19185         // Note: StartMask cannot be negative, it's checked in
19186         // isReInterleaveMask
19187         Shuffles.push_back(Builder.CreateShuffleVector(
19188             Op0, Op1, createSequentialMask(StartMask, LaneLen, 0)));
19189       }
19190     }
19191 
19192     createStoreIntrinsic(BaseAddr, Shuffles);
19193   }
19194   return true;
19195 }
19196 
19197 enum HABaseType {
19198   HA_UNKNOWN = 0,
19199   HA_FLOAT,
19200   HA_DOUBLE,
19201   HA_VECT64,
19202   HA_VECT128
19203 };
19204 
isHomogeneousAggregate(Type * Ty,HABaseType & Base,uint64_t & Members)19205 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
19206                                    uint64_t &Members) {
19207   if (auto *ST = dyn_cast<StructType>(Ty)) {
19208     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
19209       uint64_t SubMembers = 0;
19210       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
19211         return false;
19212       Members += SubMembers;
19213     }
19214   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
19215     uint64_t SubMembers = 0;
19216     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
19217       return false;
19218     Members += SubMembers * AT->getNumElements();
19219   } else if (Ty->isFloatTy()) {
19220     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
19221       return false;
19222     Members = 1;
19223     Base = HA_FLOAT;
19224   } else if (Ty->isDoubleTy()) {
19225     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
19226       return false;
19227     Members = 1;
19228     Base = HA_DOUBLE;
19229   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
19230     Members = 1;
19231     switch (Base) {
19232     case HA_FLOAT:
19233     case HA_DOUBLE:
19234       return false;
19235     case HA_VECT64:
19236       return VT->getPrimitiveSizeInBits().getFixedSize() == 64;
19237     case HA_VECT128:
19238       return VT->getPrimitiveSizeInBits().getFixedSize() == 128;
19239     case HA_UNKNOWN:
19240       switch (VT->getPrimitiveSizeInBits().getFixedSize()) {
19241       case 64:
19242         Base = HA_VECT64;
19243         return true;
19244       case 128:
19245         Base = HA_VECT128;
19246         return true;
19247       default:
19248         return false;
19249       }
19250     }
19251   }
19252 
19253   return (Members > 0 && Members <= 4);
19254 }
19255 
19256 /// Return the correct alignment for the current calling convention.
getABIAlignmentForCallingConv(Type * ArgTy,DataLayout DL) const19257 Align ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
19258                                                        DataLayout DL) const {
19259   const Align ABITypeAlign = DL.getABITypeAlign(ArgTy);
19260   if (!ArgTy->isVectorTy())
19261     return ABITypeAlign;
19262 
19263   // Avoid over-aligning vector parameters. It would require realigning the
19264   // stack and waste space for no real benefit.
19265   return std::min(ABITypeAlign, DL.getStackAlignment());
19266 }
19267 
19268 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
19269 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
19270 /// passing according to AAPCS rules.
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg) const19271 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
19272     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
19273   if (getEffectiveCallingConv(CallConv, isVarArg) !=
19274       CallingConv::ARM_AAPCS_VFP)
19275     return false;
19276 
19277   HABaseType Base = HA_UNKNOWN;
19278   uint64_t Members = 0;
19279   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
19280   LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
19281 
19282   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
19283   return IsHA || IsIntArray;
19284 }
19285 
getExceptionPointerRegister(const Constant * PersonalityFn) const19286 Register ARMTargetLowering::getExceptionPointerRegister(
19287     const Constant *PersonalityFn) const {
19288   // Platforms which do not use SjLj EH may return values in these registers
19289   // via the personality function.
19290   return Subtarget->useSjLjEH() ? Register() : ARM::R0;
19291 }
19292 
getExceptionSelectorRegister(const Constant * PersonalityFn) const19293 Register ARMTargetLowering::getExceptionSelectorRegister(
19294     const Constant *PersonalityFn) const {
19295   // Platforms which do not use SjLj EH may return values in these registers
19296   // via the personality function.
19297   return Subtarget->useSjLjEH() ? Register() : ARM::R1;
19298 }
19299 
initializeSplitCSR(MachineBasicBlock * Entry) const19300 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
19301   // Update IsSplitCSR in ARMFunctionInfo.
19302   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
19303   AFI->setIsSplitCSR(true);
19304 }
19305 
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const19306 void ARMTargetLowering::insertCopiesSplitCSR(
19307     MachineBasicBlock *Entry,
19308     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
19309   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
19310   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
19311   if (!IStart)
19312     return;
19313 
19314   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
19315   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
19316   MachineBasicBlock::iterator MBBI = Entry->begin();
19317   for (const MCPhysReg *I = IStart; *I; ++I) {
19318     const TargetRegisterClass *RC = nullptr;
19319     if (ARM::GPRRegClass.contains(*I))
19320       RC = &ARM::GPRRegClass;
19321     else if (ARM::DPRRegClass.contains(*I))
19322       RC = &ARM::DPRRegClass;
19323     else
19324       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
19325 
19326     Register NewVR = MRI->createVirtualRegister(RC);
19327     // Create copy from CSR to a virtual register.
19328     // FIXME: this currently does not emit CFI pseudo-instructions, it works
19329     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
19330     // nounwind. If we want to generalize this later, we may need to emit
19331     // CFI pseudo-instructions.
19332     assert(Entry->getParent()->getFunction().hasFnAttribute(
19333                Attribute::NoUnwind) &&
19334            "Function should be nounwind in insertCopiesSplitCSR!");
19335     Entry->addLiveIn(*I);
19336     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
19337         .addReg(*I);
19338 
19339     // Insert the copy-back instructions right before the terminator.
19340     for (auto *Exit : Exits)
19341       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
19342               TII->get(TargetOpcode::COPY), *I)
19343           .addReg(NewVR);
19344   }
19345 }
19346 
finalizeLowering(MachineFunction & MF) const19347 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
19348   MF.getFrameInfo().computeMaxCallFrameSize(MF);
19349   TargetLoweringBase::finalizeLowering(MF);
19350 }
19351