1 //===- StructurizeCFG.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/StructurizeCFG.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/MapVector.h"
12 #include "llvm/ADT/SCCIterator.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
18 #include "llvm/Analysis/RegionInfo.h"
19 #include "llvm/Analysis/RegionIterator.h"
20 #include "llvm/Analysis/RegionPass.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PassManager.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Use.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils.h"
48 #include "llvm/Transforms/Utils/Local.h"
49 #include "llvm/Transforms/Utils/SSAUpdater.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <utility>
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 #define DEBUG_TYPE "structurizecfg"
58 
59 // The name for newly created blocks.
60 const char FlowBlockName[] = "Flow";
61 
62 namespace {
63 
64 static cl::opt<bool> ForceSkipUniformRegions(
65   "structurizecfg-skip-uniform-regions",
66   cl::Hidden,
67   cl::desc("Force whether the StructurizeCFG pass skips uniform regions"),
68   cl::init(false));
69 
70 static cl::opt<bool>
71     RelaxedUniformRegions("structurizecfg-relaxed-uniform-regions", cl::Hidden,
72                           cl::desc("Allow relaxed uniform region checks"),
73                           cl::init(true));
74 
75 // Definition of the complex types used in this pass.
76 
77 using BBValuePair = std::pair<BasicBlock *, Value *>;
78 
79 using RNVector = SmallVector<RegionNode *, 8>;
80 using BBVector = SmallVector<BasicBlock *, 8>;
81 using BranchVector = SmallVector<BranchInst *, 8>;
82 using BBValueVector = SmallVector<BBValuePair, 2>;
83 
84 using BBSet = SmallPtrSet<BasicBlock *, 8>;
85 
86 using PhiMap = MapVector<PHINode *, BBValueVector>;
87 using BB2BBVecMap = MapVector<BasicBlock *, BBVector>;
88 
89 using BBPhiMap = DenseMap<BasicBlock *, PhiMap>;
90 using BBPredicates = DenseMap<BasicBlock *, Value *>;
91 using PredMap = DenseMap<BasicBlock *, BBPredicates>;
92 using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>;
93 
94 // A traits type that is intended to be used in graph algorithms. The graph
95 // traits starts at an entry node, and traverses the RegionNodes that are in
96 // the Nodes set.
97 struct SubGraphTraits {
98   using NodeRef = std::pair<RegionNode *, SmallDenseSet<RegionNode *> *>;
99   using BaseSuccIterator = GraphTraits<RegionNode *>::ChildIteratorType;
100 
101   // This wraps a set of Nodes into the iterator, so we know which edges to
102   // filter out.
103   class WrappedSuccIterator
104       : public iterator_adaptor_base<
105             WrappedSuccIterator, BaseSuccIterator,
106             typename std::iterator_traits<BaseSuccIterator>::iterator_category,
107             NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> {
108     SmallDenseSet<RegionNode *> *Nodes;
109 
110   public:
WrappedSuccIterator(BaseSuccIterator It,SmallDenseSet<RegionNode * > * Nodes)111     WrappedSuccIterator(BaseSuccIterator It, SmallDenseSet<RegionNode *> *Nodes)
112         : iterator_adaptor_base(It), Nodes(Nodes) {}
113 
operator *() const114     NodeRef operator*() const { return {*I, Nodes}; }
115   };
116 
filterAll__anonce99b46f0111::SubGraphTraits117   static bool filterAll(const NodeRef &N) { return true; }
filterSet__anonce99b46f0111::SubGraphTraits118   static bool filterSet(const NodeRef &N) { return N.second->count(N.first); }
119 
120   using ChildIteratorType =
121       filter_iterator<WrappedSuccIterator, bool (*)(const NodeRef &)>;
122 
getEntryNode__anonce99b46f0111::SubGraphTraits123   static NodeRef getEntryNode(Region *R) {
124     return {GraphTraits<Region *>::getEntryNode(R), nullptr};
125   }
126 
getEntryNode__anonce99b46f0111::SubGraphTraits127   static NodeRef getEntryNode(NodeRef N) { return N; }
128 
children__anonce99b46f0111::SubGraphTraits129   static iterator_range<ChildIteratorType> children(const NodeRef &N) {
130     auto *filter = N.second ? &filterSet : &filterAll;
131     return make_filter_range(
132         make_range<WrappedSuccIterator>(
133             {GraphTraits<RegionNode *>::child_begin(N.first), N.second},
134             {GraphTraits<RegionNode *>::child_end(N.first), N.second}),
135         filter);
136   }
137 
child_begin__anonce99b46f0111::SubGraphTraits138   static ChildIteratorType child_begin(const NodeRef &N) {
139     return children(N).begin();
140   }
141 
child_end__anonce99b46f0111::SubGraphTraits142   static ChildIteratorType child_end(const NodeRef &N) {
143     return children(N).end();
144   }
145 };
146 
147 /// Finds the nearest common dominator of a set of BasicBlocks.
148 ///
149 /// For every BB you add to the set, you can specify whether we "remember" the
150 /// block.  When you get the common dominator, you can also ask whether it's one
151 /// of the blocks we remembered.
152 class NearestCommonDominator {
153   DominatorTree *DT;
154   BasicBlock *Result = nullptr;
155   bool ResultIsRemembered = false;
156 
157   /// Add BB to the resulting dominator.
addBlock(BasicBlock * BB,bool Remember)158   void addBlock(BasicBlock *BB, bool Remember) {
159     if (!Result) {
160       Result = BB;
161       ResultIsRemembered = Remember;
162       return;
163     }
164 
165     BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB);
166     if (NewResult != Result)
167       ResultIsRemembered = false;
168     if (NewResult == BB)
169       ResultIsRemembered |= Remember;
170     Result = NewResult;
171   }
172 
173 public:
NearestCommonDominator(DominatorTree * DomTree)174   explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {}
175 
addBlock(BasicBlock * BB)176   void addBlock(BasicBlock *BB) {
177     addBlock(BB, /* Remember = */ false);
178   }
179 
addAndRememberBlock(BasicBlock * BB)180   void addAndRememberBlock(BasicBlock *BB) {
181     addBlock(BB, /* Remember = */ true);
182   }
183 
184   /// Get the nearest common dominator of all the BBs added via addBlock() and
185   /// addAndRememberBlock().
result()186   BasicBlock *result() { return Result; }
187 
188   /// Is the BB returned by getResult() one of the blocks we added to the set
189   /// with addAndRememberBlock()?
resultIsRememberedBlock()190   bool resultIsRememberedBlock() { return ResultIsRemembered; }
191 };
192 
193 /// Transforms the control flow graph on one single entry/exit region
194 /// at a time.
195 ///
196 /// After the transform all "If"/"Then"/"Else" style control flow looks like
197 /// this:
198 ///
199 /// \verbatim
200 /// 1
201 /// ||
202 /// | |
203 /// 2 |
204 /// | /
205 /// |/
206 /// 3
207 /// ||   Where:
208 /// | |  1 = "If" block, calculates the condition
209 /// 4 |  2 = "Then" subregion, runs if the condition is true
210 /// | /  3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
211 /// |/   4 = "Else" optional subregion, runs if the condition is false
212 /// 5    5 = "End" block, also rejoins the control flow
213 /// \endverbatim
214 ///
215 /// Control flow is expressed as a branch where the true exit goes into the
216 /// "Then"/"Else" region, while the false exit skips the region
217 /// The condition for the optional "Else" region is expressed as a PHI node.
218 /// The incoming values of the PHI node are true for the "If" edge and false
219 /// for the "Then" edge.
220 ///
221 /// Additionally to that even complicated loops look like this:
222 ///
223 /// \verbatim
224 /// 1
225 /// ||
226 /// | |
227 /// 2 ^  Where:
228 /// | /  1 = "Entry" block
229 /// |/   2 = "Loop" optional subregion, with all exits at "Flow" block
230 /// 3    3 = "Flow" block, with back edge to entry block
231 /// |
232 /// \endverbatim
233 ///
234 /// The back edge of the "Flow" block is always on the false side of the branch
235 /// while the true side continues the general flow. So the loop condition
236 /// consist of a network of PHI nodes where the true incoming values expresses
237 /// breaks and the false values expresses continue states.
238 
239 class StructurizeCFG {
240   Type *Boolean;
241   ConstantInt *BoolTrue;
242   ConstantInt *BoolFalse;
243   UndefValue *BoolUndef;
244 
245   Function *Func;
246   Region *ParentRegion;
247 
248   LegacyDivergenceAnalysis *DA = nullptr;
249   DominatorTree *DT;
250 
251   SmallVector<RegionNode *, 8> Order;
252   BBSet Visited;
253 
254   SmallVector<WeakVH, 8> AffectedPhis;
255   BBPhiMap DeletedPhis;
256   BB2BBVecMap AddedPhis;
257 
258   PredMap Predicates;
259   BranchVector Conditions;
260 
261   BB2BBMap Loops;
262   PredMap LoopPreds;
263   BranchVector LoopConds;
264 
265   RegionNode *PrevNode;
266 
267   void orderNodes();
268 
269   void analyzeLoops(RegionNode *N);
270 
271   Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert);
272 
273   void gatherPredicates(RegionNode *N);
274 
275   void collectInfos();
276 
277   void insertConditions(bool Loops);
278 
279   void delPhiValues(BasicBlock *From, BasicBlock *To);
280 
281   void addPhiValues(BasicBlock *From, BasicBlock *To);
282 
283   void setPhiValues();
284 
285   void simplifyAffectedPhis();
286 
287   void killTerminator(BasicBlock *BB);
288 
289   void changeExit(RegionNode *Node, BasicBlock *NewExit,
290                   bool IncludeDominator);
291 
292   BasicBlock *getNextFlow(BasicBlock *Dominator);
293 
294   BasicBlock *needPrefix(bool NeedEmpty);
295 
296   BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed);
297 
298   void setPrevNode(BasicBlock *BB);
299 
300   bool dominatesPredicates(BasicBlock *BB, RegionNode *Node);
301 
302   bool isPredictableTrue(RegionNode *Node);
303 
304   void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd);
305 
306   void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd);
307 
308   void createFlow();
309 
310   void rebuildSSA();
311 
312 public:
313   void init(Region *R);
314   bool run(Region *R, DominatorTree *DT);
315   bool makeUniformRegion(Region *R, LegacyDivergenceAnalysis *DA);
316 };
317 
318 class StructurizeCFGLegacyPass : public RegionPass {
319   bool SkipUniformRegions;
320 
321 public:
322   static char ID;
323 
StructurizeCFGLegacyPass(bool SkipUniformRegions_=false)324   explicit StructurizeCFGLegacyPass(bool SkipUniformRegions_ = false)
325       : RegionPass(ID), SkipUniformRegions(SkipUniformRegions_) {
326     if (ForceSkipUniformRegions.getNumOccurrences())
327       SkipUniformRegions = ForceSkipUniformRegions.getValue();
328     initializeStructurizeCFGLegacyPassPass(*PassRegistry::getPassRegistry());
329   }
330 
runOnRegion(Region * R,RGPassManager & RGM)331   bool runOnRegion(Region *R, RGPassManager &RGM) override {
332     StructurizeCFG SCFG;
333     SCFG.init(R);
334     if (SkipUniformRegions) {
335       LegacyDivergenceAnalysis *DA = &getAnalysis<LegacyDivergenceAnalysis>();
336       if (SCFG.makeUniformRegion(R, DA))
337         return false;
338     }
339     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
340     return SCFG.run(R, DT);
341   }
342 
getPassName() const343   StringRef getPassName() const override { return "Structurize control flow"; }
344 
getAnalysisUsage(AnalysisUsage & AU) const345   void getAnalysisUsage(AnalysisUsage &AU) const override {
346     if (SkipUniformRegions)
347       AU.addRequired<LegacyDivergenceAnalysis>();
348     AU.addRequiredID(LowerSwitchID);
349     AU.addRequired<DominatorTreeWrapperPass>();
350 
351     AU.addPreserved<DominatorTreeWrapperPass>();
352     RegionPass::getAnalysisUsage(AU);
353   }
354 };
355 
356 } // end anonymous namespace
357 
358 char StructurizeCFGLegacyPass::ID = 0;
359 
360 INITIALIZE_PASS_BEGIN(StructurizeCFGLegacyPass, "structurizecfg",
361                       "Structurize the CFG", false, false)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)362 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
363 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
364 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
365 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass)
366 INITIALIZE_PASS_END(StructurizeCFGLegacyPass, "structurizecfg",
367                     "Structurize the CFG", false, false)
368 
369 /// Build up the general order of nodes, by performing a topological sort of the
370 /// parent region's nodes, while ensuring that there is no outer cycle node
371 /// between any two inner cycle nodes.
372 void StructurizeCFG::orderNodes() {
373   Order.resize(std::distance(GraphTraits<Region *>::nodes_begin(ParentRegion),
374                              GraphTraits<Region *>::nodes_end(ParentRegion)));
375   if (Order.empty())
376     return;
377 
378   SmallDenseSet<RegionNode *> Nodes;
379   auto EntryNode = SubGraphTraits::getEntryNode(ParentRegion);
380 
381   // A list of range indices of SCCs in Order, to be processed.
382   SmallVector<std::pair<unsigned, unsigned>, 8> WorkList;
383   unsigned I = 0, E = Order.size();
384   while (true) {
385     // Run through all the SCCs in the subgraph starting with Entry.
386     for (auto SCCI =
387              scc_iterator<SubGraphTraits::NodeRef, SubGraphTraits>::begin(
388                  EntryNode);
389          !SCCI.isAtEnd(); ++SCCI) {
390       auto &SCC = *SCCI;
391 
392       // An SCC up to the size of 2, can be reduced to an entry (the last node),
393       // and a possible additional node. Therefore, it is already in order, and
394       // there is no need to add it to the work-list.
395       unsigned Size = SCC.size();
396       if (Size > 2)
397         WorkList.emplace_back(I, I + Size);
398 
399       // Add the SCC nodes to the Order array.
400       for (auto &N : SCC) {
401         assert(I < E && "SCC size mismatch!");
402         Order[I++] = N.first;
403       }
404     }
405     assert(I == E && "SCC size mismatch!");
406 
407     // If there are no more SCCs to order, then we are done.
408     if (WorkList.empty())
409       break;
410 
411     std::tie(I, E) = WorkList.pop_back_val();
412 
413     // Collect the set of nodes in the SCC's subgraph. These are only the
414     // possible child nodes; we do not add the entry (last node) otherwise we
415     // will have the same exact SCC all over again.
416     Nodes.clear();
417     Nodes.insert(Order.begin() + I, Order.begin() + E - 1);
418 
419     // Update the entry node.
420     EntryNode.first = Order[E - 1];
421     EntryNode.second = &Nodes;
422   }
423 }
424 
425 /// Determine the end of the loops
analyzeLoops(RegionNode * N)426 void StructurizeCFG::analyzeLoops(RegionNode *N) {
427   if (N->isSubRegion()) {
428     // Test for exit as back edge
429     BasicBlock *Exit = N->getNodeAs<Region>()->getExit();
430     if (Visited.count(Exit))
431       Loops[Exit] = N->getEntry();
432 
433   } else {
434     // Test for successors as back edge
435     BasicBlock *BB = N->getNodeAs<BasicBlock>();
436     BranchInst *Term = cast<BranchInst>(BB->getTerminator());
437 
438     for (BasicBlock *Succ : Term->successors())
439       if (Visited.count(Succ))
440         Loops[Succ] = BB;
441   }
442 }
443 
444 /// Build the condition for one edge
buildCondition(BranchInst * Term,unsigned Idx,bool Invert)445 Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
446                                       bool Invert) {
447   Value *Cond = Invert ? BoolFalse : BoolTrue;
448   if (Term->isConditional()) {
449     Cond = Term->getCondition();
450 
451     if (Idx != (unsigned)Invert)
452       Cond = invertCondition(Cond);
453   }
454   return Cond;
455 }
456 
457 /// Analyze the predecessors of each block and build up predicates
gatherPredicates(RegionNode * N)458 void StructurizeCFG::gatherPredicates(RegionNode *N) {
459   RegionInfo *RI = ParentRegion->getRegionInfo();
460   BasicBlock *BB = N->getEntry();
461   BBPredicates &Pred = Predicates[BB];
462   BBPredicates &LPred = LoopPreds[BB];
463 
464   for (BasicBlock *P : predecessors(BB)) {
465     // Ignore it if it's a branch from outside into our region entry
466     if (!ParentRegion->contains(P))
467       continue;
468 
469     Region *R = RI->getRegionFor(P);
470     if (R == ParentRegion) {
471       // It's a top level block in our region
472       BranchInst *Term = cast<BranchInst>(P->getTerminator());
473       for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
474         BasicBlock *Succ = Term->getSuccessor(i);
475         if (Succ != BB)
476           continue;
477 
478         if (Visited.count(P)) {
479           // Normal forward edge
480           if (Term->isConditional()) {
481             // Try to treat it like an ELSE block
482             BasicBlock *Other = Term->getSuccessor(!i);
483             if (Visited.count(Other) && !Loops.count(Other) &&
484                 !Pred.count(Other) && !Pred.count(P)) {
485 
486               Pred[Other] = BoolFalse;
487               Pred[P] = BoolTrue;
488               continue;
489             }
490           }
491           Pred[P] = buildCondition(Term, i, false);
492         } else {
493           // Back edge
494           LPred[P] = buildCondition(Term, i, true);
495         }
496       }
497     } else {
498       // It's an exit from a sub region
499       while (R->getParent() != ParentRegion)
500         R = R->getParent();
501 
502       // Edge from inside a subregion to its entry, ignore it
503       if (*R == *N)
504         continue;
505 
506       BasicBlock *Entry = R->getEntry();
507       if (Visited.count(Entry))
508         Pred[Entry] = BoolTrue;
509       else
510         LPred[Entry] = BoolFalse;
511     }
512   }
513 }
514 
515 /// Collect various loop and predicate infos
collectInfos()516 void StructurizeCFG::collectInfos() {
517   // Reset predicate
518   Predicates.clear();
519 
520   // and loop infos
521   Loops.clear();
522   LoopPreds.clear();
523 
524   // Reset the visited nodes
525   Visited.clear();
526 
527   for (RegionNode *RN : reverse(Order)) {
528     LLVM_DEBUG(dbgs() << "Visiting: "
529                       << (RN->isSubRegion() ? "SubRegion with entry: " : "")
530                       << RN->getEntry()->getName() << "\n");
531 
532     // Analyze all the conditions leading to a node
533     gatherPredicates(RN);
534 
535     // Remember that we've seen this node
536     Visited.insert(RN->getEntry());
537 
538     // Find the last back edges
539     analyzeLoops(RN);
540   }
541 }
542 
543 /// Insert the missing branch conditions
insertConditions(bool Loops)544 void StructurizeCFG::insertConditions(bool Loops) {
545   BranchVector &Conds = Loops ? LoopConds : Conditions;
546   Value *Default = Loops ? BoolTrue : BoolFalse;
547   SSAUpdater PhiInserter;
548 
549   for (BranchInst *Term : Conds) {
550     assert(Term->isConditional());
551 
552     BasicBlock *Parent = Term->getParent();
553     BasicBlock *SuccTrue = Term->getSuccessor(0);
554     BasicBlock *SuccFalse = Term->getSuccessor(1);
555 
556     PhiInserter.Initialize(Boolean, "");
557     PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default);
558     PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default);
559 
560     BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue];
561 
562     NearestCommonDominator Dominator(DT);
563     Dominator.addBlock(Parent);
564 
565     Value *ParentValue = nullptr;
566     for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) {
567       BasicBlock *BB = BBAndPred.first;
568       Value *Pred = BBAndPred.second;
569 
570       if (BB == Parent) {
571         ParentValue = Pred;
572         break;
573       }
574       PhiInserter.AddAvailableValue(BB, Pred);
575       Dominator.addAndRememberBlock(BB);
576     }
577 
578     if (ParentValue) {
579       Term->setCondition(ParentValue);
580     } else {
581       if (!Dominator.resultIsRememberedBlock())
582         PhiInserter.AddAvailableValue(Dominator.result(), Default);
583 
584       Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent));
585     }
586   }
587 }
588 
589 /// Remove all PHI values coming from "From" into "To" and remember
590 /// them in DeletedPhis
delPhiValues(BasicBlock * From,BasicBlock * To)591 void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
592   PhiMap &Map = DeletedPhis[To];
593   for (PHINode &Phi : To->phis()) {
594     bool Recorded = false;
595     while (Phi.getBasicBlockIndex(From) != -1) {
596       Value *Deleted = Phi.removeIncomingValue(From, false);
597       Map[&Phi].push_back(std::make_pair(From, Deleted));
598       if (!Recorded) {
599         AffectedPhis.push_back(&Phi);
600         Recorded = true;
601       }
602     }
603   }
604 }
605 
606 /// Add a dummy PHI value as soon as we knew the new predecessor
addPhiValues(BasicBlock * From,BasicBlock * To)607 void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
608   for (PHINode &Phi : To->phis()) {
609     Value *Undef = UndefValue::get(Phi.getType());
610     Phi.addIncoming(Undef, From);
611   }
612   AddedPhis[To].push_back(From);
613 }
614 
615 /// Add the real PHI value as soon as everything is set up
setPhiValues()616 void StructurizeCFG::setPhiValues() {
617   SmallVector<PHINode *, 8> InsertedPhis;
618   SSAUpdater Updater(&InsertedPhis);
619   for (const auto &AddedPhi : AddedPhis) {
620     BasicBlock *To = AddedPhi.first;
621     const BBVector &From = AddedPhi.second;
622 
623     if (!DeletedPhis.count(To))
624       continue;
625 
626     PhiMap &Map = DeletedPhis[To];
627     for (const auto &PI : Map) {
628       PHINode *Phi = PI.first;
629       Value *Undef = UndefValue::get(Phi->getType());
630       Updater.Initialize(Phi->getType(), "");
631       Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
632       Updater.AddAvailableValue(To, Undef);
633 
634       NearestCommonDominator Dominator(DT);
635       Dominator.addBlock(To);
636       for (const auto &VI : PI.second) {
637         Updater.AddAvailableValue(VI.first, VI.second);
638         Dominator.addAndRememberBlock(VI.first);
639       }
640 
641       if (!Dominator.resultIsRememberedBlock())
642         Updater.AddAvailableValue(Dominator.result(), Undef);
643 
644       for (BasicBlock *FI : From)
645         Phi->setIncomingValueForBlock(FI, Updater.GetValueAtEndOfBlock(FI));
646       AffectedPhis.push_back(Phi);
647     }
648 
649     DeletedPhis.erase(To);
650   }
651   assert(DeletedPhis.empty());
652 
653   AffectedPhis.append(InsertedPhis.begin(), InsertedPhis.end());
654 }
655 
simplifyAffectedPhis()656 void StructurizeCFG::simplifyAffectedPhis() {
657   bool Changed;
658   do {
659     Changed = false;
660     SimplifyQuery Q(Func->getParent()->getDataLayout());
661     Q.DT = DT;
662     for (WeakVH VH : AffectedPhis) {
663       if (auto Phi = dyn_cast_or_null<PHINode>(VH)) {
664         if (auto NewValue = SimplifyInstruction(Phi, Q)) {
665           Phi->replaceAllUsesWith(NewValue);
666           Phi->eraseFromParent();
667           Changed = true;
668         }
669       }
670     }
671   } while (Changed);
672 }
673 
674 /// Remove phi values from all successors and then remove the terminator.
killTerminator(BasicBlock * BB)675 void StructurizeCFG::killTerminator(BasicBlock *BB) {
676   Instruction *Term = BB->getTerminator();
677   if (!Term)
678     return;
679 
680   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
681        SI != SE; ++SI)
682     delPhiValues(BB, *SI);
683 
684   if (DA)
685     DA->removeValue(Term);
686   Term->eraseFromParent();
687 }
688 
689 /// Let node exit(s) point to NewExit
changeExit(RegionNode * Node,BasicBlock * NewExit,bool IncludeDominator)690 void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit,
691                                 bool IncludeDominator) {
692   if (Node->isSubRegion()) {
693     Region *SubRegion = Node->getNodeAs<Region>();
694     BasicBlock *OldExit = SubRegion->getExit();
695     BasicBlock *Dominator = nullptr;
696 
697     // Find all the edges from the sub region to the exit
698     for (auto BBI = pred_begin(OldExit), E = pred_end(OldExit); BBI != E;) {
699       // Incrememt BBI before mucking with BB's terminator.
700       BasicBlock *BB = *BBI++;
701 
702       if (!SubRegion->contains(BB))
703         continue;
704 
705       // Modify the edges to point to the new exit
706       delPhiValues(BB, OldExit);
707       BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit);
708       addPhiValues(BB, NewExit);
709 
710       // Find the new dominator (if requested)
711       if (IncludeDominator) {
712         if (!Dominator)
713           Dominator = BB;
714         else
715           Dominator = DT->findNearestCommonDominator(Dominator, BB);
716       }
717     }
718 
719     // Change the dominator (if requested)
720     if (Dominator)
721       DT->changeImmediateDominator(NewExit, Dominator);
722 
723     // Update the region info
724     SubRegion->replaceExit(NewExit);
725   } else {
726     BasicBlock *BB = Node->getNodeAs<BasicBlock>();
727     killTerminator(BB);
728     BranchInst::Create(NewExit, BB);
729     addPhiValues(BB, NewExit);
730     if (IncludeDominator)
731       DT->changeImmediateDominator(NewExit, BB);
732   }
733 }
734 
735 /// Create a new flow node and update dominator tree and region info
getNextFlow(BasicBlock * Dominator)736 BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) {
737   LLVMContext &Context = Func->getContext();
738   BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
739                        Order.back()->getEntry();
740   BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
741                                         Func, Insert);
742   DT->addNewBlock(Flow, Dominator);
743   ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
744   return Flow;
745 }
746 
747 /// Create a new or reuse the previous node as flow node
needPrefix(bool NeedEmpty)748 BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) {
749   BasicBlock *Entry = PrevNode->getEntry();
750 
751   if (!PrevNode->isSubRegion()) {
752     killTerminator(Entry);
753     if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end())
754       return Entry;
755   }
756 
757   // create a new flow node
758   BasicBlock *Flow = getNextFlow(Entry);
759 
760   // and wire it up
761   changeExit(PrevNode, Flow, true);
762   PrevNode = ParentRegion->getBBNode(Flow);
763   return Flow;
764 }
765 
766 /// Returns the region exit if possible, otherwise just a new flow node
needPostfix(BasicBlock * Flow,bool ExitUseAllowed)767 BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow,
768                                         bool ExitUseAllowed) {
769   if (!Order.empty() || !ExitUseAllowed)
770     return getNextFlow(Flow);
771 
772   BasicBlock *Exit = ParentRegion->getExit();
773   DT->changeImmediateDominator(Exit, Flow);
774   addPhiValues(Flow, Exit);
775   return Exit;
776 }
777 
778 /// Set the previous node
setPrevNode(BasicBlock * BB)779 void StructurizeCFG::setPrevNode(BasicBlock *BB) {
780   PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB)
781                                         : nullptr;
782 }
783 
784 /// Does BB dominate all the predicates of Node?
dominatesPredicates(BasicBlock * BB,RegionNode * Node)785 bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) {
786   BBPredicates &Preds = Predicates[Node->getEntry()];
787   return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) {
788     return DT->dominates(BB, Pred.first);
789   });
790 }
791 
792 /// Can we predict that this node will always be called?
isPredictableTrue(RegionNode * Node)793 bool StructurizeCFG::isPredictableTrue(RegionNode *Node) {
794   BBPredicates &Preds = Predicates[Node->getEntry()];
795   bool Dominated = false;
796 
797   // Regionentry is always true
798   if (!PrevNode)
799     return true;
800 
801   for (std::pair<BasicBlock*, Value*> Pred : Preds) {
802     BasicBlock *BB = Pred.first;
803     Value *V = Pred.second;
804 
805     if (V != BoolTrue)
806       return false;
807 
808     if (!Dominated && DT->dominates(BB, PrevNode->getEntry()))
809       Dominated = true;
810   }
811 
812   // TODO: The dominator check is too strict
813   return Dominated;
814 }
815 
816 /// Take one node from the order vector and wire it up
wireFlow(bool ExitUseAllowed,BasicBlock * LoopEnd)817 void StructurizeCFG::wireFlow(bool ExitUseAllowed,
818                               BasicBlock *LoopEnd) {
819   RegionNode *Node = Order.pop_back_val();
820   Visited.insert(Node->getEntry());
821 
822   if (isPredictableTrue(Node)) {
823     // Just a linear flow
824     if (PrevNode) {
825       changeExit(PrevNode, Node->getEntry(), true);
826     }
827     PrevNode = Node;
828   } else {
829     // Insert extra prefix node (or reuse last one)
830     BasicBlock *Flow = needPrefix(false);
831 
832     // Insert extra postfix node (or use exit instead)
833     BasicBlock *Entry = Node->getEntry();
834     BasicBlock *Next = needPostfix(Flow, ExitUseAllowed);
835 
836     // let it point to entry and next block
837     Conditions.push_back(BranchInst::Create(Entry, Next, BoolUndef, Flow));
838     addPhiValues(Flow, Entry);
839     DT->changeImmediateDominator(Entry, Flow);
840 
841     PrevNode = Node;
842     while (!Order.empty() && !Visited.count(LoopEnd) &&
843            dominatesPredicates(Entry, Order.back())) {
844       handleLoops(false, LoopEnd);
845     }
846 
847     changeExit(PrevNode, Next, false);
848     setPrevNode(Next);
849   }
850 }
851 
handleLoops(bool ExitUseAllowed,BasicBlock * LoopEnd)852 void StructurizeCFG::handleLoops(bool ExitUseAllowed,
853                                  BasicBlock *LoopEnd) {
854   RegionNode *Node = Order.back();
855   BasicBlock *LoopStart = Node->getEntry();
856 
857   if (!Loops.count(LoopStart)) {
858     wireFlow(ExitUseAllowed, LoopEnd);
859     return;
860   }
861 
862   if (!isPredictableTrue(Node))
863     LoopStart = needPrefix(true);
864 
865   LoopEnd = Loops[Node->getEntry()];
866   wireFlow(false, LoopEnd);
867   while (!Visited.count(LoopEnd)) {
868     handleLoops(false, LoopEnd);
869   }
870 
871   // If the start of the loop is the entry block, we can't branch to it so
872   // insert a new dummy entry block.
873   Function *LoopFunc = LoopStart->getParent();
874   if (LoopStart == &LoopFunc->getEntryBlock()) {
875     LoopStart->setName("entry.orig");
876 
877     BasicBlock *NewEntry =
878       BasicBlock::Create(LoopStart->getContext(),
879                          "entry",
880                          LoopFunc,
881                          LoopStart);
882     BranchInst::Create(LoopStart, NewEntry);
883     DT->setNewRoot(NewEntry);
884   }
885 
886   // Create an extra loop end node
887   LoopEnd = needPrefix(false);
888   BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed);
889   LoopConds.push_back(BranchInst::Create(Next, LoopStart,
890                                          BoolUndef, LoopEnd));
891   addPhiValues(LoopEnd, LoopStart);
892   setPrevNode(Next);
893 }
894 
895 /// After this function control flow looks like it should be, but
896 /// branches and PHI nodes only have undefined conditions.
createFlow()897 void StructurizeCFG::createFlow() {
898   BasicBlock *Exit = ParentRegion->getExit();
899   bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit);
900 
901   AffectedPhis.clear();
902   DeletedPhis.clear();
903   AddedPhis.clear();
904   Conditions.clear();
905   LoopConds.clear();
906 
907   PrevNode = nullptr;
908   Visited.clear();
909 
910   while (!Order.empty()) {
911     handleLoops(EntryDominatesExit, nullptr);
912   }
913 
914   if (PrevNode)
915     changeExit(PrevNode, Exit, EntryDominatesExit);
916   else
917     assert(EntryDominatesExit);
918 }
919 
920 /// Handle a rare case where the disintegrated nodes instructions
921 /// no longer dominate all their uses. Not sure if this is really necessary
rebuildSSA()922 void StructurizeCFG::rebuildSSA() {
923   SSAUpdater Updater;
924   for (BasicBlock *BB : ParentRegion->blocks())
925     for (Instruction &I : *BB) {
926       bool Initialized = false;
927       // We may modify the use list as we iterate over it, so be careful to
928       // compute the next element in the use list at the top of the loop.
929       for (auto UI = I.use_begin(), E = I.use_end(); UI != E;) {
930         Use &U = *UI++;
931         Instruction *User = cast<Instruction>(U.getUser());
932         if (User->getParent() == BB) {
933           continue;
934         } else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
935           if (UserPN->getIncomingBlock(U) == BB)
936             continue;
937         }
938 
939         if (DT->dominates(&I, User))
940           continue;
941 
942         if (!Initialized) {
943           Value *Undef = UndefValue::get(I.getType());
944           Updater.Initialize(I.getType(), "");
945           Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
946           Updater.AddAvailableValue(BB, &I);
947           Initialized = true;
948         }
949         Updater.RewriteUseAfterInsertions(U);
950       }
951     }
952 }
953 
hasOnlyUniformBranches(Region * R,unsigned UniformMDKindID,const LegacyDivergenceAnalysis & DA)954 static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID,
955                                    const LegacyDivergenceAnalysis &DA) {
956   // Bool for if all sub-regions are uniform.
957   bool SubRegionsAreUniform = true;
958   // Count of how many direct children are conditional.
959   unsigned ConditionalDirectChildren = 0;
960 
961   for (auto E : R->elements()) {
962     if (!E->isSubRegion()) {
963       auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator());
964       if (!Br || !Br->isConditional())
965         continue;
966 
967       if (!DA.isUniform(Br))
968         return false;
969 
970       // One of our direct children is conditional.
971       ConditionalDirectChildren++;
972 
973       LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName()
974                         << " has uniform terminator\n");
975     } else {
976       // Explicitly refuse to treat regions as uniform if they have non-uniform
977       // subregions. We cannot rely on DivergenceAnalysis for branches in
978       // subregions because those branches may have been removed and re-created,
979       // so we look for our metadata instead.
980       //
981       // Warning: It would be nice to treat regions as uniform based only on
982       // their direct child basic blocks' terminators, regardless of whether
983       // subregions are uniform or not. However, this requires a very careful
984       // look at SIAnnotateControlFlow to make sure nothing breaks there.
985       for (auto BB : E->getNodeAs<Region>()->blocks()) {
986         auto Br = dyn_cast<BranchInst>(BB->getTerminator());
987         if (!Br || !Br->isConditional())
988           continue;
989 
990         if (!Br->getMetadata(UniformMDKindID)) {
991           // Early exit if we cannot have relaxed uniform regions.
992           if (!RelaxedUniformRegions)
993             return false;
994 
995           SubRegionsAreUniform = false;
996           break;
997         }
998       }
999     }
1000   }
1001 
1002   // Our region is uniform if:
1003   // 1. All conditional branches that are direct children are uniform (checked
1004   // above).
1005   // 2. And either:
1006   //   a. All sub-regions are uniform.
1007   //   b. There is one or less conditional branches among the direct children.
1008   return SubRegionsAreUniform || (ConditionalDirectChildren <= 1);
1009 }
1010 
init(Region * R)1011 void StructurizeCFG::init(Region *R) {
1012   LLVMContext &Context = R->getEntry()->getContext();
1013 
1014   Boolean = Type::getInt1Ty(Context);
1015   BoolTrue = ConstantInt::getTrue(Context);
1016   BoolFalse = ConstantInt::getFalse(Context);
1017   BoolUndef = UndefValue::get(Boolean);
1018 
1019   this->DA = nullptr;
1020 }
1021 
makeUniformRegion(Region * R,LegacyDivergenceAnalysis * DA)1022 bool StructurizeCFG::makeUniformRegion(Region *R,
1023                                        LegacyDivergenceAnalysis *DA) {
1024   if (R->isTopLevelRegion())
1025     return false;
1026 
1027   this->DA = DA;
1028   // TODO: We could probably be smarter here with how we handle sub-regions.
1029   // We currently rely on the fact that metadata is set by earlier invocations
1030   // of the pass on sub-regions, and that this metadata doesn't get lost --
1031   // but we shouldn't rely on metadata for correctness!
1032   unsigned UniformMDKindID =
1033       R->getEntry()->getContext().getMDKindID("structurizecfg.uniform");
1034 
1035   if (hasOnlyUniformBranches(R, UniformMDKindID, *DA)) {
1036     LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R
1037                       << '\n');
1038 
1039     // Mark all direct child block terminators as having been treated as
1040     // uniform. To account for a possible future in which non-uniform
1041     // sub-regions are treated more cleverly, indirect children are not
1042     // marked as uniform.
1043     MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {});
1044     for (RegionNode *E : R->elements()) {
1045       if (E->isSubRegion())
1046         continue;
1047 
1048       if (Instruction *Term = E->getEntry()->getTerminator())
1049         Term->setMetadata(UniformMDKindID, MD);
1050     }
1051 
1052     return true;
1053   }
1054   return false;
1055 }
1056 
1057 /// Run the transformation for each region found
run(Region * R,DominatorTree * DT)1058 bool StructurizeCFG::run(Region *R, DominatorTree *DT) {
1059   if (R->isTopLevelRegion())
1060     return false;
1061 
1062   this->DT = DT;
1063 
1064   Func = R->getEntry()->getParent();
1065   ParentRegion = R;
1066 
1067   orderNodes();
1068   collectInfos();
1069   createFlow();
1070   insertConditions(false);
1071   insertConditions(true);
1072   setPhiValues();
1073   simplifyAffectedPhis();
1074   rebuildSSA();
1075 
1076   // Cleanup
1077   Order.clear();
1078   Visited.clear();
1079   DeletedPhis.clear();
1080   AddedPhis.clear();
1081   Predicates.clear();
1082   Conditions.clear();
1083   Loops.clear();
1084   LoopPreds.clear();
1085   LoopConds.clear();
1086 
1087   return true;
1088 }
1089 
createStructurizeCFGPass(bool SkipUniformRegions)1090 Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) {
1091   return new StructurizeCFGLegacyPass(SkipUniformRegions);
1092 }
1093 
addRegionIntoQueue(Region & R,std::vector<Region * > & Regions)1094 static void addRegionIntoQueue(Region &R, std::vector<Region *> &Regions) {
1095   Regions.push_back(&R);
1096   for (const auto &E : R)
1097     addRegionIntoQueue(*E, Regions);
1098 }
1099 
run(Function & F,FunctionAnalysisManager & AM)1100 PreservedAnalyses StructurizeCFGPass::run(Function &F,
1101                                           FunctionAnalysisManager &AM) {
1102 
1103   bool Changed = false;
1104   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1105   auto &RI = AM.getResult<RegionInfoAnalysis>(F);
1106   std::vector<Region *> Regions;
1107   addRegionIntoQueue(*RI.getTopLevelRegion(), Regions);
1108   while (!Regions.empty()) {
1109     Region *R = Regions.back();
1110     StructurizeCFG SCFG;
1111     SCFG.init(R);
1112     Changed |= SCFG.run(R, DT);
1113     Regions.pop_back();
1114   }
1115   if (!Changed)
1116     return PreservedAnalyses::all();
1117   PreservedAnalyses PA;
1118   PA.preserve<DominatorTreeAnalysis>();
1119   return PA;
1120 }
1121