1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopAccessAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/MustExecute.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
53
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56
57 static cl::opt<bool> ForceReductionIntrinsic(
58 "force-reduction-intrinsics", cl::Hidden,
59 cl::desc("Force creating reduction intrinsics for testing."),
60 cl::init(false));
61
62 #define DEBUG_TYPE "loop-utils"
63
64 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
65 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
66 static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress";
67
formDedicatedExitBlocks(Loop * L,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)68 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
69 MemorySSAUpdater *MSSAU,
70 bool PreserveLCSSA) {
71 bool Changed = false;
72
73 // We re-use a vector for the in-loop predecesosrs.
74 SmallVector<BasicBlock *, 4> InLoopPredecessors;
75
76 auto RewriteExit = [&](BasicBlock *BB) {
77 assert(InLoopPredecessors.empty() &&
78 "Must start with an empty predecessors list!");
79 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
80
81 // See if there are any non-loop predecessors of this exit block and
82 // keep track of the in-loop predecessors.
83 bool IsDedicatedExit = true;
84 for (auto *PredBB : predecessors(BB))
85 if (L->contains(PredBB)) {
86 if (isa<IndirectBrInst>(PredBB->getTerminator()))
87 // We cannot rewrite exiting edges from an indirectbr.
88 return false;
89 if (isa<CallBrInst>(PredBB->getTerminator()))
90 // We cannot rewrite exiting edges from a callbr.
91 return false;
92
93 InLoopPredecessors.push_back(PredBB);
94 } else {
95 IsDedicatedExit = false;
96 }
97
98 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
99
100 // Nothing to do if this is already a dedicated exit.
101 if (IsDedicatedExit)
102 return false;
103
104 auto *NewExitBB = SplitBlockPredecessors(
105 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
106
107 if (!NewExitBB)
108 LLVM_DEBUG(
109 dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
110 << *L << "\n");
111 else
112 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
113 << NewExitBB->getName() << "\n");
114 return true;
115 };
116
117 // Walk the exit blocks directly rather than building up a data structure for
118 // them, but only visit each one once.
119 SmallPtrSet<BasicBlock *, 4> Visited;
120 for (auto *BB : L->blocks())
121 for (auto *SuccBB : successors(BB)) {
122 // We're looking for exit blocks so skip in-loop successors.
123 if (L->contains(SuccBB))
124 continue;
125
126 // Visit each exit block exactly once.
127 if (!Visited.insert(SuccBB).second)
128 continue;
129
130 Changed |= RewriteExit(SuccBB);
131 }
132
133 return Changed;
134 }
135
136 /// Returns the instructions that use values defined in the loop.
findDefsUsedOutsideOfLoop(Loop * L)137 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
138 SmallVector<Instruction *, 8> UsedOutside;
139
140 for (auto *Block : L->getBlocks())
141 // FIXME: I believe that this could use copy_if if the Inst reference could
142 // be adapted into a pointer.
143 for (auto &Inst : *Block) {
144 auto Users = Inst.users();
145 if (any_of(Users, [&](User *U) {
146 auto *Use = cast<Instruction>(U);
147 return !L->contains(Use->getParent());
148 }))
149 UsedOutside.push_back(&Inst);
150 }
151
152 return UsedOutside;
153 }
154
getLoopAnalysisUsage(AnalysisUsage & AU)155 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
156 // By definition, all loop passes need the LoopInfo analysis and the
157 // Dominator tree it depends on. Because they all participate in the loop
158 // pass manager, they must also preserve these.
159 AU.addRequired<DominatorTreeWrapperPass>();
160 AU.addPreserved<DominatorTreeWrapperPass>();
161 AU.addRequired<LoopInfoWrapperPass>();
162 AU.addPreserved<LoopInfoWrapperPass>();
163
164 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
165 // here because users shouldn't directly get them from this header.
166 extern char &LoopSimplifyID;
167 extern char &LCSSAID;
168 AU.addRequiredID(LoopSimplifyID);
169 AU.addPreservedID(LoopSimplifyID);
170 AU.addRequiredID(LCSSAID);
171 AU.addPreservedID(LCSSAID);
172 // This is used in the LPPassManager to perform LCSSA verification on passes
173 // which preserve lcssa form
174 AU.addRequired<LCSSAVerificationPass>();
175 AU.addPreserved<LCSSAVerificationPass>();
176
177 // Loop passes are designed to run inside of a loop pass manager which means
178 // that any function analyses they require must be required by the first loop
179 // pass in the manager (so that it is computed before the loop pass manager
180 // runs) and preserved by all loop pasess in the manager. To make this
181 // reasonably robust, the set needed for most loop passes is maintained here.
182 // If your loop pass requires an analysis not listed here, you will need to
183 // carefully audit the loop pass manager nesting structure that results.
184 AU.addRequired<AAResultsWrapperPass>();
185 AU.addPreserved<AAResultsWrapperPass>();
186 AU.addPreserved<BasicAAWrapperPass>();
187 AU.addPreserved<GlobalsAAWrapperPass>();
188 AU.addPreserved<SCEVAAWrapperPass>();
189 AU.addRequired<ScalarEvolutionWrapperPass>();
190 AU.addPreserved<ScalarEvolutionWrapperPass>();
191 // FIXME: When all loop passes preserve MemorySSA, it can be required and
192 // preserved here instead of the individual handling in each pass.
193 }
194
195 /// Manually defined generic "LoopPass" dependency initialization. This is used
196 /// to initialize the exact set of passes from above in \c
197 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
198 /// with:
199 ///
200 /// INITIALIZE_PASS_DEPENDENCY(LoopPass)
201 ///
202 /// As-if "LoopPass" were a pass.
initializeLoopPassPass(PassRegistry & Registry)203 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
204 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
205 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
206 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
207 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
208 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
209 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
210 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
211 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
212 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
213 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
214 }
215
216 /// Create MDNode for input string.
createStringMetadata(Loop * TheLoop,StringRef Name,unsigned V)217 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
218 LLVMContext &Context = TheLoop->getHeader()->getContext();
219 Metadata *MDs[] = {
220 MDString::get(Context, Name),
221 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
222 return MDNode::get(Context, MDs);
223 }
224
225 /// Set input string into loop metadata by keeping other values intact.
226 /// If the string is already in loop metadata update value if it is
227 /// different.
addStringMetadataToLoop(Loop * TheLoop,const char * StringMD,unsigned V)228 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
229 unsigned V) {
230 SmallVector<Metadata *, 4> MDs(1);
231 // If the loop already has metadata, retain it.
232 MDNode *LoopID = TheLoop->getLoopID();
233 if (LoopID) {
234 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
235 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
236 // If it is of form key = value, try to parse it.
237 if (Node->getNumOperands() == 2) {
238 MDString *S = dyn_cast<MDString>(Node->getOperand(0));
239 if (S && S->getString().equals(StringMD)) {
240 ConstantInt *IntMD =
241 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
242 if (IntMD && IntMD->getSExtValue() == V)
243 // It is already in place. Do nothing.
244 return;
245 // We need to update the value, so just skip it here and it will
246 // be added after copying other existed nodes.
247 continue;
248 }
249 }
250 MDs.push_back(Node);
251 }
252 }
253 // Add new metadata.
254 MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
255 // Replace current metadata node with new one.
256 LLVMContext &Context = TheLoop->getHeader()->getContext();
257 MDNode *NewLoopID = MDNode::get(Context, MDs);
258 // Set operand 0 to refer to the loop id itself.
259 NewLoopID->replaceOperandWith(0, NewLoopID);
260 TheLoop->setLoopID(NewLoopID);
261 }
262
263 /// Find string metadata for loop
264 ///
265 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
266 /// operand or null otherwise. If the string metadata is not found return
267 /// Optional's not-a-value.
findStringMetadataForLoop(const Loop * TheLoop,StringRef Name)268 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
269 StringRef Name) {
270 MDNode *MD = findOptionMDForLoop(TheLoop, Name);
271 if (!MD)
272 return None;
273 switch (MD->getNumOperands()) {
274 case 1:
275 return nullptr;
276 case 2:
277 return &MD->getOperand(1);
278 default:
279 llvm_unreachable("loop metadata has 0 or 1 operand");
280 }
281 }
282
getOptionalBoolLoopAttribute(const Loop * TheLoop,StringRef Name)283 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
284 StringRef Name) {
285 MDNode *MD = findOptionMDForLoop(TheLoop, Name);
286 if (!MD)
287 return None;
288 switch (MD->getNumOperands()) {
289 case 1:
290 // When the value is absent it is interpreted as 'attribute set'.
291 return true;
292 case 2:
293 if (ConstantInt *IntMD =
294 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
295 return IntMD->getZExtValue();
296 return true;
297 }
298 llvm_unreachable("unexpected number of options");
299 }
300
getBooleanLoopAttribute(const Loop * TheLoop,StringRef Name)301 bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
302 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
303 }
304
305 Optional<ElementCount>
getOptionalElementCountLoopAttribute(Loop * TheLoop)306 llvm::getOptionalElementCountLoopAttribute(Loop *TheLoop) {
307 Optional<int> Width =
308 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
309
310 if (Width.hasValue()) {
311 Optional<int> IsScalable = getOptionalIntLoopAttribute(
312 TheLoop, "llvm.loop.vectorize.scalable.enable");
313 return ElementCount::get(*Width, IsScalable.getValueOr(false));
314 }
315
316 return None;
317 }
318
getOptionalIntLoopAttribute(Loop * TheLoop,StringRef Name)319 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
320 StringRef Name) {
321 const MDOperand *AttrMD =
322 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
323 if (!AttrMD)
324 return None;
325
326 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
327 if (!IntMD)
328 return None;
329
330 return IntMD->getSExtValue();
331 }
332
makeFollowupLoopID(MDNode * OrigLoopID,ArrayRef<StringRef> FollowupOptions,const char * InheritOptionsExceptPrefix,bool AlwaysNew)333 Optional<MDNode *> llvm::makeFollowupLoopID(
334 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
335 const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
336 if (!OrigLoopID) {
337 if (AlwaysNew)
338 return nullptr;
339 return None;
340 }
341
342 assert(OrigLoopID->getOperand(0) == OrigLoopID);
343
344 bool InheritAllAttrs = !InheritOptionsExceptPrefix;
345 bool InheritSomeAttrs =
346 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
347 SmallVector<Metadata *, 8> MDs;
348 MDs.push_back(nullptr);
349
350 bool Changed = false;
351 if (InheritAllAttrs || InheritSomeAttrs) {
352 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
353 MDNode *Op = cast<MDNode>(Existing.get());
354
355 auto InheritThisAttribute = [InheritSomeAttrs,
356 InheritOptionsExceptPrefix](MDNode *Op) {
357 if (!InheritSomeAttrs)
358 return false;
359
360 // Skip malformatted attribute metadata nodes.
361 if (Op->getNumOperands() == 0)
362 return true;
363 Metadata *NameMD = Op->getOperand(0).get();
364 if (!isa<MDString>(NameMD))
365 return true;
366 StringRef AttrName = cast<MDString>(NameMD)->getString();
367
368 // Do not inherit excluded attributes.
369 return !AttrName.startswith(InheritOptionsExceptPrefix);
370 };
371
372 if (InheritThisAttribute(Op))
373 MDs.push_back(Op);
374 else
375 Changed = true;
376 }
377 } else {
378 // Modified if we dropped at least one attribute.
379 Changed = OrigLoopID->getNumOperands() > 1;
380 }
381
382 bool HasAnyFollowup = false;
383 for (StringRef OptionName : FollowupOptions) {
384 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
385 if (!FollowupNode)
386 continue;
387
388 HasAnyFollowup = true;
389 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
390 MDs.push_back(Option.get());
391 Changed = true;
392 }
393 }
394
395 // Attributes of the followup loop not specified explicity, so signal to the
396 // transformation pass to add suitable attributes.
397 if (!AlwaysNew && !HasAnyFollowup)
398 return None;
399
400 // If no attributes were added or remove, the previous loop Id can be reused.
401 if (!AlwaysNew && !Changed)
402 return OrigLoopID;
403
404 // No attributes is equivalent to having no !llvm.loop metadata at all.
405 if (MDs.size() == 1)
406 return nullptr;
407
408 // Build the new loop ID.
409 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
410 FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
411 return FollowupLoopID;
412 }
413
hasDisableAllTransformsHint(const Loop * L)414 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
415 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
416 }
417
hasDisableLICMTransformsHint(const Loop * L)418 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
419 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
420 }
421
hasMustProgress(const Loop * L)422 bool llvm::hasMustProgress(const Loop *L) {
423 return getBooleanLoopAttribute(L, LLVMLoopMustProgress);
424 }
425
hasUnrollTransformation(Loop * L)426 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
427 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
428 return TM_SuppressedByUser;
429
430 Optional<int> Count =
431 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
432 if (Count.hasValue())
433 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
434
435 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
436 return TM_ForcedByUser;
437
438 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
439 return TM_ForcedByUser;
440
441 if (hasDisableAllTransformsHint(L))
442 return TM_Disable;
443
444 return TM_Unspecified;
445 }
446
hasUnrollAndJamTransformation(Loop * L)447 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
448 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
449 return TM_SuppressedByUser;
450
451 Optional<int> Count =
452 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
453 if (Count.hasValue())
454 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
455
456 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
457 return TM_ForcedByUser;
458
459 if (hasDisableAllTransformsHint(L))
460 return TM_Disable;
461
462 return TM_Unspecified;
463 }
464
hasVectorizeTransformation(Loop * L)465 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
466 Optional<bool> Enable =
467 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
468
469 if (Enable == false)
470 return TM_SuppressedByUser;
471
472 Optional<ElementCount> VectorizeWidth =
473 getOptionalElementCountLoopAttribute(L);
474 Optional<int> InterleaveCount =
475 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
476
477 // 'Forcing' vector width and interleave count to one effectively disables
478 // this tranformation.
479 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
480 InterleaveCount == 1)
481 return TM_SuppressedByUser;
482
483 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
484 return TM_Disable;
485
486 if (Enable == true)
487 return TM_ForcedByUser;
488
489 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
490 return TM_Disable;
491
492 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
493 return TM_Enable;
494
495 if (hasDisableAllTransformsHint(L))
496 return TM_Disable;
497
498 return TM_Unspecified;
499 }
500
hasDistributeTransformation(Loop * L)501 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
502 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
503 return TM_ForcedByUser;
504
505 if (hasDisableAllTransformsHint(L))
506 return TM_Disable;
507
508 return TM_Unspecified;
509 }
510
hasLICMVersioningTransformation(Loop * L)511 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
512 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
513 return TM_SuppressedByUser;
514
515 if (hasDisableAllTransformsHint(L))
516 return TM_Disable;
517
518 return TM_Unspecified;
519 }
520
521 /// Does a BFS from a given node to all of its children inside a given loop.
522 /// The returned vector of nodes includes the starting point.
523 SmallVector<DomTreeNode *, 16>
collectChildrenInLoop(DomTreeNode * N,const Loop * CurLoop)524 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
525 SmallVector<DomTreeNode *, 16> Worklist;
526 auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
527 // Only include subregions in the top level loop.
528 BasicBlock *BB = DTN->getBlock();
529 if (CurLoop->contains(BB))
530 Worklist.push_back(DTN);
531 };
532
533 AddRegionToWorklist(N);
534
535 for (size_t I = 0; I < Worklist.size(); I++) {
536 for (DomTreeNode *Child : Worklist[I]->children())
537 AddRegionToWorklist(Child);
538 }
539
540 return Worklist;
541 }
542
deleteDeadLoop(Loop * L,DominatorTree * DT,ScalarEvolution * SE,LoopInfo * LI,MemorySSA * MSSA)543 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
544 LoopInfo *LI, MemorySSA *MSSA) {
545 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
546 auto *Preheader = L->getLoopPreheader();
547 assert(Preheader && "Preheader should exist!");
548
549 std::unique_ptr<MemorySSAUpdater> MSSAU;
550 if (MSSA)
551 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
552
553 // Now that we know the removal is safe, remove the loop by changing the
554 // branch from the preheader to go to the single exit block.
555 //
556 // Because we're deleting a large chunk of code at once, the sequence in which
557 // we remove things is very important to avoid invalidation issues.
558
559 // Tell ScalarEvolution that the loop is deleted. Do this before
560 // deleting the loop so that ScalarEvolution can look at the loop
561 // to determine what it needs to clean up.
562 if (SE)
563 SE->forgetLoop(L);
564
565 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
566 assert(OldBr && "Preheader must end with a branch");
567 assert(OldBr->isUnconditional() && "Preheader must have a single successor");
568 // Connect the preheader to the exit block. Keep the old edge to the header
569 // around to perform the dominator tree update in two separate steps
570 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
571 // preheader -> header.
572 //
573 //
574 // 0. Preheader 1. Preheader 2. Preheader
575 // | | | |
576 // V | V |
577 // Header <--\ | Header <--\ | Header <--\
578 // | | | | | | | | | | |
579 // | V | | | V | | | V |
580 // | Body --/ | | Body --/ | | Body --/
581 // V V V V V
582 // Exit Exit Exit
583 //
584 // By doing this is two separate steps we can perform the dominator tree
585 // update without using the batch update API.
586 //
587 // Even when the loop is never executed, we cannot remove the edge from the
588 // source block to the exit block. Consider the case where the unexecuted loop
589 // branches back to an outer loop. If we deleted the loop and removed the edge
590 // coming to this inner loop, this will break the outer loop structure (by
591 // deleting the backedge of the outer loop). If the outer loop is indeed a
592 // non-loop, it will be deleted in a future iteration of loop deletion pass.
593 IRBuilder<> Builder(OldBr);
594
595 auto *ExitBlock = L->getUniqueExitBlock();
596 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
597 if (ExitBlock) {
598 assert(ExitBlock && "Should have a unique exit block!");
599 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
600
601 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
602 // Remove the old branch. The conditional branch becomes a new terminator.
603 OldBr->eraseFromParent();
604
605 // Rewrite phis in the exit block to get their inputs from the Preheader
606 // instead of the exiting block.
607 for (PHINode &P : ExitBlock->phis()) {
608 // Set the zero'th element of Phi to be from the preheader and remove all
609 // other incoming values. Given the loop has dedicated exits, all other
610 // incoming values must be from the exiting blocks.
611 int PredIndex = 0;
612 P.setIncomingBlock(PredIndex, Preheader);
613 // Removes all incoming values from all other exiting blocks (including
614 // duplicate values from an exiting block).
615 // Nuke all entries except the zero'th entry which is the preheader entry.
616 // NOTE! We need to remove Incoming Values in the reverse order as done
617 // below, to keep the indices valid for deletion (removeIncomingValues
618 // updates getNumIncomingValues and shifts all values down into the
619 // operand being deleted).
620 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
621 P.removeIncomingValue(e - i, false);
622
623 assert((P.getNumIncomingValues() == 1 &&
624 P.getIncomingBlock(PredIndex) == Preheader) &&
625 "Should have exactly one value and that's from the preheader!");
626 }
627
628 if (DT) {
629 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
630 if (MSSA) {
631 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
632 *DT);
633 if (VerifyMemorySSA)
634 MSSA->verifyMemorySSA();
635 }
636 }
637
638 // Disconnect the loop body by branching directly to its exit.
639 Builder.SetInsertPoint(Preheader->getTerminator());
640 Builder.CreateBr(ExitBlock);
641 // Remove the old branch.
642 Preheader->getTerminator()->eraseFromParent();
643 } else {
644 assert(L->hasNoExitBlocks() &&
645 "Loop should have either zero or one exit blocks.");
646
647 Builder.SetInsertPoint(OldBr);
648 Builder.CreateUnreachable();
649 Preheader->getTerminator()->eraseFromParent();
650 }
651
652 if (DT) {
653 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
654 if (MSSA) {
655 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
656 *DT);
657 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
658 L->block_end());
659 MSSAU->removeBlocks(DeadBlockSet);
660 if (VerifyMemorySSA)
661 MSSA->verifyMemorySSA();
662 }
663 }
664
665 // Use a map to unique and a vector to guarantee deterministic ordering.
666 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
667 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
668
669 if (ExitBlock) {
670 // Given LCSSA form is satisfied, we should not have users of instructions
671 // within the dead loop outside of the loop. However, LCSSA doesn't take
672 // unreachable uses into account. We handle them here.
673 // We could do it after drop all references (in this case all users in the
674 // loop will be already eliminated and we have less work to do but according
675 // to API doc of User::dropAllReferences only valid operation after dropping
676 // references, is deletion. So let's substitute all usages of
677 // instruction from the loop with undef value of corresponding type first.
678 for (auto *Block : L->blocks())
679 for (Instruction &I : *Block) {
680 auto *Undef = UndefValue::get(I.getType());
681 for (Value::use_iterator UI = I.use_begin(), E = I.use_end();
682 UI != E;) {
683 Use &U = *UI;
684 ++UI;
685 if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
686 if (L->contains(Usr->getParent()))
687 continue;
688 // If we have a DT then we can check that uses outside a loop only in
689 // unreachable block.
690 if (DT)
691 assert(!DT->isReachableFromEntry(U) &&
692 "Unexpected user in reachable block");
693 U.set(Undef);
694 }
695 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
696 if (!DVI)
697 continue;
698 auto Key =
699 DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
700 if (Key != DeadDebugSet.end())
701 continue;
702 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
703 DeadDebugInst.push_back(DVI);
704 }
705
706 // After the loop has been deleted all the values defined and modified
707 // inside the loop are going to be unavailable.
708 // Since debug values in the loop have been deleted, inserting an undef
709 // dbg.value truncates the range of any dbg.value before the loop where the
710 // loop used to be. This is particularly important for constant values.
711 DIBuilder DIB(*ExitBlock->getModule());
712 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
713 assert(InsertDbgValueBefore &&
714 "There should be a non-PHI instruction in exit block, else these "
715 "instructions will have no parent.");
716 for (auto *DVI : DeadDebugInst)
717 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
718 DVI->getVariable(), DVI->getExpression(),
719 DVI->getDebugLoc(), InsertDbgValueBefore);
720 }
721
722 // Remove the block from the reference counting scheme, so that we can
723 // delete it freely later.
724 for (auto *Block : L->blocks())
725 Block->dropAllReferences();
726
727 if (MSSA && VerifyMemorySSA)
728 MSSA->verifyMemorySSA();
729
730 if (LI) {
731 // Erase the instructions and the blocks without having to worry
732 // about ordering because we already dropped the references.
733 // NOTE: This iteration is safe because erasing the block does not remove
734 // its entry from the loop's block list. We do that in the next section.
735 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
736 LpI != LpE; ++LpI)
737 (*LpI)->eraseFromParent();
738
739 // Finally, the blocks from loopinfo. This has to happen late because
740 // otherwise our loop iterators won't work.
741
742 SmallPtrSet<BasicBlock *, 8> blocks;
743 blocks.insert(L->block_begin(), L->block_end());
744 for (BasicBlock *BB : blocks)
745 LI->removeBlock(BB);
746
747 // The last step is to update LoopInfo now that we've eliminated this loop.
748 // Note: LoopInfo::erase remove the given loop and relink its subloops with
749 // its parent. While removeLoop/removeChildLoop remove the given loop but
750 // not relink its subloops, which is what we want.
751 if (Loop *ParentLoop = L->getParentLoop()) {
752 Loop::iterator I = find(*ParentLoop, L);
753 assert(I != ParentLoop->end() && "Couldn't find loop");
754 ParentLoop->removeChildLoop(I);
755 } else {
756 Loop::iterator I = find(*LI, L);
757 assert(I != LI->end() && "Couldn't find loop");
758 LI->removeLoop(I);
759 }
760 LI->destroy(L);
761 }
762 }
763
getOutermostLoop(Loop * L)764 static Loop *getOutermostLoop(Loop *L) {
765 while (Loop *Parent = L->getParentLoop())
766 L = Parent;
767 return L;
768 }
769
breakLoopBackedge(Loop * L,DominatorTree & DT,ScalarEvolution & SE,LoopInfo & LI,MemorySSA * MSSA)770 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
771 LoopInfo &LI, MemorySSA *MSSA) {
772 auto *Latch = L->getLoopLatch();
773 assert(Latch && "multiple latches not yet supported");
774 auto *Header = L->getHeader();
775 Loop *OutermostLoop = getOutermostLoop(L);
776
777 SE.forgetLoop(L);
778
779 // Note: By splitting the backedge, and then explicitly making it unreachable
780 // we gracefully handle corner cases such as non-bottom tested loops and the
781 // like. We also have the benefit of being able to reuse existing well tested
782 // code. It might be worth special casing the common bottom tested case at
783 // some point to avoid code churn.
784
785 std::unique_ptr<MemorySSAUpdater> MSSAU;
786 if (MSSA)
787 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
788
789 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
790
791 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
792 (void)changeToUnreachable(BackedgeBB->getTerminator(), /*UseTrap*/false,
793 /*PreserveLCSSA*/true, &DTU, MSSAU.get());
794
795 // Erase (and destroy) this loop instance. Handles relinking sub-loops
796 // and blocks within the loop as needed.
797 LI.erase(L);
798
799 // If the loop we broke had a parent, then changeToUnreachable might have
800 // caused a block to be removed from the parent loop (see loop_nest_lcssa
801 // test case in zero-btc.ll for an example), thus changing the parent's
802 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost
803 // loop which might have a had a block removed.
804 if (OutermostLoop != L)
805 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
806 }
807
808
809 /// Checks if \p L has single exit through latch block except possibly
810 /// "deoptimizing" exits. Returns branch instruction terminating the loop
811 /// latch if above check is successful, nullptr otherwise.
getExpectedExitLoopLatchBranch(Loop * L)812 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
813 BasicBlock *Latch = L->getLoopLatch();
814 if (!Latch)
815 return nullptr;
816
817 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
818 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
819 return nullptr;
820
821 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
822 LatchBR->getSuccessor(1) == L->getHeader()) &&
823 "At least one edge out of the latch must go to the header");
824
825 SmallVector<BasicBlock *, 4> ExitBlocks;
826 L->getUniqueNonLatchExitBlocks(ExitBlocks);
827 if (any_of(ExitBlocks, [](const BasicBlock *EB) {
828 return !EB->getTerminatingDeoptimizeCall();
829 }))
830 return nullptr;
831
832 return LatchBR;
833 }
834
835 Optional<unsigned>
getLoopEstimatedTripCount(Loop * L,unsigned * EstimatedLoopInvocationWeight)836 llvm::getLoopEstimatedTripCount(Loop *L,
837 unsigned *EstimatedLoopInvocationWeight) {
838 // Support loops with an exiting latch and other existing exists only
839 // deoptimize.
840 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
841 if (!LatchBranch)
842 return None;
843
844 // To estimate the number of times the loop body was executed, we want to
845 // know the number of times the backedge was taken, vs. the number of times
846 // we exited the loop.
847 uint64_t BackedgeTakenWeight, LatchExitWeight;
848 if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
849 return None;
850
851 if (LatchBranch->getSuccessor(0) != L->getHeader())
852 std::swap(BackedgeTakenWeight, LatchExitWeight);
853
854 if (!LatchExitWeight)
855 return None;
856
857 if (EstimatedLoopInvocationWeight)
858 *EstimatedLoopInvocationWeight = LatchExitWeight;
859
860 // Estimated backedge taken count is a ratio of the backedge taken weight by
861 // the weight of the edge exiting the loop, rounded to nearest.
862 uint64_t BackedgeTakenCount =
863 llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
864 // Estimated trip count is one plus estimated backedge taken count.
865 return BackedgeTakenCount + 1;
866 }
867
setLoopEstimatedTripCount(Loop * L,unsigned EstimatedTripCount,unsigned EstimatedloopInvocationWeight)868 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
869 unsigned EstimatedloopInvocationWeight) {
870 // Support loops with an exiting latch and other existing exists only
871 // deoptimize.
872 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
873 if (!LatchBranch)
874 return false;
875
876 // Calculate taken and exit weights.
877 unsigned LatchExitWeight = 0;
878 unsigned BackedgeTakenWeight = 0;
879
880 if (EstimatedTripCount > 0) {
881 LatchExitWeight = EstimatedloopInvocationWeight;
882 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
883 }
884
885 // Make a swap if back edge is taken when condition is "false".
886 if (LatchBranch->getSuccessor(0) != L->getHeader())
887 std::swap(BackedgeTakenWeight, LatchExitWeight);
888
889 MDBuilder MDB(LatchBranch->getContext());
890
891 // Set/Update profile metadata.
892 LatchBranch->setMetadata(
893 LLVMContext::MD_prof,
894 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
895
896 return true;
897 }
898
hasIterationCountInvariantInParent(Loop * InnerLoop,ScalarEvolution & SE)899 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
900 ScalarEvolution &SE) {
901 Loop *OuterL = InnerLoop->getParentLoop();
902 if (!OuterL)
903 return true;
904
905 // Get the backedge taken count for the inner loop
906 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
907 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
908 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
909 !InnerLoopBECountSC->getType()->isIntegerTy())
910 return false;
911
912 // Get whether count is invariant to the outer loop
913 ScalarEvolution::LoopDisposition LD =
914 SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
915 if (LD != ScalarEvolution::LoopInvariant)
916 return false;
917
918 return true;
919 }
920
createMinMaxOp(IRBuilderBase & Builder,RecurKind RK,Value * Left,Value * Right)921 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
922 Value *Right) {
923 CmpInst::Predicate Pred;
924 switch (RK) {
925 default:
926 llvm_unreachable("Unknown min/max recurrence kind");
927 case RecurKind::UMin:
928 Pred = CmpInst::ICMP_ULT;
929 break;
930 case RecurKind::UMax:
931 Pred = CmpInst::ICMP_UGT;
932 break;
933 case RecurKind::SMin:
934 Pred = CmpInst::ICMP_SLT;
935 break;
936 case RecurKind::SMax:
937 Pred = CmpInst::ICMP_SGT;
938 break;
939 case RecurKind::FMin:
940 Pred = CmpInst::FCMP_OLT;
941 break;
942 case RecurKind::FMax:
943 Pred = CmpInst::FCMP_OGT;
944 break;
945 }
946
947 // We only match FP sequences that are 'fast', so we can unconditionally
948 // set it on any generated instructions.
949 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
950 FastMathFlags FMF;
951 FMF.setFast();
952 Builder.setFastMathFlags(FMF);
953 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
954 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
955 return Select;
956 }
957
958 // Helper to generate an ordered reduction.
getOrderedReduction(IRBuilderBase & Builder,Value * Acc,Value * Src,unsigned Op,RecurKind RdxKind,ArrayRef<Value * > RedOps)959 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
960 unsigned Op, RecurKind RdxKind,
961 ArrayRef<Value *> RedOps) {
962 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
963
964 // Extract and apply reduction ops in ascending order:
965 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
966 Value *Result = Acc;
967 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
968 Value *Ext =
969 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
970
971 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
972 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
973 "bin.rdx");
974 } else {
975 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
976 "Invalid min/max");
977 Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
978 }
979
980 if (!RedOps.empty())
981 propagateIRFlags(Result, RedOps);
982 }
983
984 return Result;
985 }
986
987 // Helper to generate a log2 shuffle reduction.
getShuffleReduction(IRBuilderBase & Builder,Value * Src,unsigned Op,RecurKind RdxKind,ArrayRef<Value * > RedOps)988 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
989 unsigned Op, RecurKind RdxKind,
990 ArrayRef<Value *> RedOps) {
991 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
992 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
993 // and vector ops, reducing the set of values being computed by half each
994 // round.
995 assert(isPowerOf2_32(VF) &&
996 "Reduction emission only supported for pow2 vectors!");
997 Value *TmpVec = Src;
998 SmallVector<int, 32> ShuffleMask(VF);
999 for (unsigned i = VF; i != 1; i >>= 1) {
1000 // Move the upper half of the vector to the lower half.
1001 for (unsigned j = 0; j != i / 2; ++j)
1002 ShuffleMask[j] = i / 2 + j;
1003
1004 // Fill the rest of the mask with undef.
1005 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
1006
1007 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
1008
1009 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1010 // The builder propagates its fast-math-flags setting.
1011 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
1012 "bin.rdx");
1013 } else {
1014 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
1015 "Invalid min/max");
1016 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
1017 }
1018 if (!RedOps.empty())
1019 propagateIRFlags(TmpVec, RedOps);
1020
1021 // We may compute the reassociated scalar ops in a way that does not
1022 // preserve nsw/nuw etc. Conservatively, drop those flags.
1023 if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
1024 ReductionInst->dropPoisonGeneratingFlags();
1025 }
1026 // The result is in the first element of the vector.
1027 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1028 }
1029
createSimpleTargetReduction(IRBuilderBase & Builder,const TargetTransformInfo * TTI,Value * Src,RecurKind RdxKind,ArrayRef<Value * > RedOps)1030 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder,
1031 const TargetTransformInfo *TTI,
1032 Value *Src, RecurKind RdxKind,
1033 ArrayRef<Value *> RedOps) {
1034 unsigned Opcode = RecurrenceDescriptor::getOpcode(RdxKind);
1035 TargetTransformInfo::ReductionFlags RdxFlags;
1036 RdxFlags.IsMaxOp = RdxKind == RecurKind::SMax || RdxKind == RecurKind::UMax ||
1037 RdxKind == RecurKind::FMax;
1038 RdxFlags.IsSigned = RdxKind == RecurKind::SMax || RdxKind == RecurKind::SMin;
1039 if (!ForceReductionIntrinsic &&
1040 !TTI->useReductionIntrinsic(Opcode, Src->getType(), RdxFlags))
1041 return getShuffleReduction(Builder, Src, Opcode, RdxKind, RedOps);
1042
1043 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1044 switch (RdxKind) {
1045 case RecurKind::Add:
1046 return Builder.CreateAddReduce(Src);
1047 case RecurKind::Mul:
1048 return Builder.CreateMulReduce(Src);
1049 case RecurKind::And:
1050 return Builder.CreateAndReduce(Src);
1051 case RecurKind::Or:
1052 return Builder.CreateOrReduce(Src);
1053 case RecurKind::Xor:
1054 return Builder.CreateXorReduce(Src);
1055 case RecurKind::FAdd:
1056 return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
1057 Src);
1058 case RecurKind::FMul:
1059 return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
1060 case RecurKind::SMax:
1061 return Builder.CreateIntMaxReduce(Src, true);
1062 case RecurKind::SMin:
1063 return Builder.CreateIntMinReduce(Src, true);
1064 case RecurKind::UMax:
1065 return Builder.CreateIntMaxReduce(Src, false);
1066 case RecurKind::UMin:
1067 return Builder.CreateIntMinReduce(Src, false);
1068 case RecurKind::FMax:
1069 return Builder.CreateFPMaxReduce(Src);
1070 case RecurKind::FMin:
1071 return Builder.CreateFPMinReduce(Src);
1072 default:
1073 llvm_unreachable("Unhandled opcode");
1074 }
1075 }
1076
createTargetReduction(IRBuilderBase & B,const TargetTransformInfo * TTI,RecurrenceDescriptor & Desc,Value * Src)1077 Value *llvm::createTargetReduction(IRBuilderBase &B,
1078 const TargetTransformInfo *TTI,
1079 RecurrenceDescriptor &Desc, Value *Src) {
1080 // TODO: Support in-order reductions based on the recurrence descriptor.
1081 // All ops in the reduction inherit fast-math-flags from the recurrence
1082 // descriptor.
1083 IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1084 B.setFastMathFlags(Desc.getFastMathFlags());
1085 return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind());
1086 }
1087
propagateIRFlags(Value * I,ArrayRef<Value * > VL,Value * OpValue)1088 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1089 auto *VecOp = dyn_cast<Instruction>(I);
1090 if (!VecOp)
1091 return;
1092 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1093 : dyn_cast<Instruction>(OpValue);
1094 if (!Intersection)
1095 return;
1096 const unsigned Opcode = Intersection->getOpcode();
1097 VecOp->copyIRFlags(Intersection);
1098 for (auto *V : VL) {
1099 auto *Instr = dyn_cast<Instruction>(V);
1100 if (!Instr)
1101 continue;
1102 if (OpValue == nullptr || Opcode == Instr->getOpcode())
1103 VecOp->andIRFlags(V);
1104 }
1105 }
1106
isKnownNegativeInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE)1107 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1108 ScalarEvolution &SE) {
1109 const SCEV *Zero = SE.getZero(S->getType());
1110 return SE.isAvailableAtLoopEntry(S, L) &&
1111 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1112 }
1113
isKnownNonNegativeInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE)1114 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1115 ScalarEvolution &SE) {
1116 const SCEV *Zero = SE.getZero(S->getType());
1117 return SE.isAvailableAtLoopEntry(S, L) &&
1118 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1119 }
1120
cannotBeMinInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool Signed)1121 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1122 bool Signed) {
1123 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1124 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1125 APInt::getMinValue(BitWidth);
1126 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1127 return SE.isAvailableAtLoopEntry(S, L) &&
1128 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1129 SE.getConstant(Min));
1130 }
1131
cannotBeMaxInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool Signed)1132 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1133 bool Signed) {
1134 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1135 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1136 APInt::getMaxValue(BitWidth);
1137 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1138 return SE.isAvailableAtLoopEntry(S, L) &&
1139 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1140 SE.getConstant(Max));
1141 }
1142
1143 //===----------------------------------------------------------------------===//
1144 // rewriteLoopExitValues - Optimize IV users outside the loop.
1145 // As a side effect, reduces the amount of IV processing within the loop.
1146 //===----------------------------------------------------------------------===//
1147
1148 // Return true if the SCEV expansion generated by the rewriter can replace the
1149 // original value. SCEV guarantees that it produces the same value, but the way
1150 // it is produced may be illegal IR. Ideally, this function will only be
1151 // called for verification.
isValidRewrite(ScalarEvolution * SE,Value * FromVal,Value * ToVal)1152 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
1153 // If an SCEV expression subsumed multiple pointers, its expansion could
1154 // reassociate the GEP changing the base pointer. This is illegal because the
1155 // final address produced by a GEP chain must be inbounds relative to its
1156 // underlying object. Otherwise basic alias analysis, among other things,
1157 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
1158 // producing an expression involving multiple pointers. Until then, we must
1159 // bail out here.
1160 //
1161 // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject
1162 // because it understands lcssa phis while SCEV does not.
1163 Value *FromPtr = FromVal;
1164 Value *ToPtr = ToVal;
1165 if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
1166 FromPtr = GEP->getPointerOperand();
1167
1168 if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
1169 ToPtr = GEP->getPointerOperand();
1170
1171 if (FromPtr != FromVal || ToPtr != ToVal) {
1172 // Quickly check the common case
1173 if (FromPtr == ToPtr)
1174 return true;
1175
1176 // SCEV may have rewritten an expression that produces the GEP's pointer
1177 // operand. That's ok as long as the pointer operand has the same base
1178 // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the
1179 // base of a recurrence. This handles the case in which SCEV expansion
1180 // converts a pointer type recurrence into a nonrecurrent pointer base
1181 // indexed by an integer recurrence.
1182
1183 // If the GEP base pointer is a vector of pointers, abort.
1184 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
1185 return false;
1186
1187 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
1188 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
1189 if (FromBase == ToBase)
1190 return true;
1191
1192 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
1193 << *FromBase << " != " << *ToBase << "\n");
1194
1195 return false;
1196 }
1197 return true;
1198 }
1199
hasHardUserWithinLoop(const Loop * L,const Instruction * I)1200 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1201 SmallPtrSet<const Instruction *, 8> Visited;
1202 SmallVector<const Instruction *, 8> WorkList;
1203 Visited.insert(I);
1204 WorkList.push_back(I);
1205 while (!WorkList.empty()) {
1206 const Instruction *Curr = WorkList.pop_back_val();
1207 // This use is outside the loop, nothing to do.
1208 if (!L->contains(Curr))
1209 continue;
1210 // Do we assume it is a "hard" use which will not be eliminated easily?
1211 if (Curr->mayHaveSideEffects())
1212 return true;
1213 // Otherwise, add all its users to worklist.
1214 for (auto U : Curr->users()) {
1215 auto *UI = cast<Instruction>(U);
1216 if (Visited.insert(UI).second)
1217 WorkList.push_back(UI);
1218 }
1219 }
1220 return false;
1221 }
1222
1223 // Collect information about PHI nodes which can be transformed in
1224 // rewriteLoopExitValues.
1225 struct RewritePhi {
1226 PHINode *PN; // For which PHI node is this replacement?
1227 unsigned Ith; // For which incoming value?
1228 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1229 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1230 bool HighCost; // Is this expansion a high-cost?
1231
1232 Value *Expansion = nullptr;
1233 bool ValidRewrite = false;
1234
RewritePhiRewritePhi1235 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1236 bool H)
1237 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1238 HighCost(H) {}
1239 };
1240
1241 // Check whether it is possible to delete the loop after rewriting exit
1242 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1243 // aggressively.
canLoopBeDeleted(Loop * L,SmallVector<RewritePhi,8> & RewritePhiSet)1244 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1245 BasicBlock *Preheader = L->getLoopPreheader();
1246 // If there is no preheader, the loop will not be deleted.
1247 if (!Preheader)
1248 return false;
1249
1250 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1251 // We obviate multiple ExitingBlocks case for simplicity.
1252 // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1253 // after exit value rewriting, we can enhance the logic here.
1254 SmallVector<BasicBlock *, 4> ExitingBlocks;
1255 L->getExitingBlocks(ExitingBlocks);
1256 SmallVector<BasicBlock *, 8> ExitBlocks;
1257 L->getUniqueExitBlocks(ExitBlocks);
1258 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1259 return false;
1260
1261 BasicBlock *ExitBlock = ExitBlocks[0];
1262 BasicBlock::iterator BI = ExitBlock->begin();
1263 while (PHINode *P = dyn_cast<PHINode>(BI)) {
1264 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1265
1266 // If the Incoming value of P is found in RewritePhiSet, we know it
1267 // could be rewritten to use a loop invariant value in transformation
1268 // phase later. Skip it in the loop invariant check below.
1269 bool found = false;
1270 for (const RewritePhi &Phi : RewritePhiSet) {
1271 if (!Phi.ValidRewrite)
1272 continue;
1273 unsigned i = Phi.Ith;
1274 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1275 found = true;
1276 break;
1277 }
1278 }
1279
1280 Instruction *I;
1281 if (!found && (I = dyn_cast<Instruction>(Incoming)))
1282 if (!L->hasLoopInvariantOperands(I))
1283 return false;
1284
1285 ++BI;
1286 }
1287
1288 for (auto *BB : L->blocks())
1289 if (llvm::any_of(*BB, [](Instruction &I) {
1290 return I.mayHaveSideEffects();
1291 }))
1292 return false;
1293
1294 return true;
1295 }
1296
rewriteLoopExitValues(Loop * L,LoopInfo * LI,TargetLibraryInfo * TLI,ScalarEvolution * SE,const TargetTransformInfo * TTI,SCEVExpander & Rewriter,DominatorTree * DT,ReplaceExitVal ReplaceExitValue,SmallVector<WeakTrackingVH,16> & DeadInsts)1297 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1298 ScalarEvolution *SE,
1299 const TargetTransformInfo *TTI,
1300 SCEVExpander &Rewriter, DominatorTree *DT,
1301 ReplaceExitVal ReplaceExitValue,
1302 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1303 // Check a pre-condition.
1304 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1305 "Indvars did not preserve LCSSA!");
1306
1307 SmallVector<BasicBlock*, 8> ExitBlocks;
1308 L->getUniqueExitBlocks(ExitBlocks);
1309
1310 SmallVector<RewritePhi, 8> RewritePhiSet;
1311 // Find all values that are computed inside the loop, but used outside of it.
1312 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
1313 // the exit blocks of the loop to find them.
1314 for (BasicBlock *ExitBB : ExitBlocks) {
1315 // If there are no PHI nodes in this exit block, then no values defined
1316 // inside the loop are used on this path, skip it.
1317 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1318 if (!PN) continue;
1319
1320 unsigned NumPreds = PN->getNumIncomingValues();
1321
1322 // Iterate over all of the PHI nodes.
1323 BasicBlock::iterator BBI = ExitBB->begin();
1324 while ((PN = dyn_cast<PHINode>(BBI++))) {
1325 if (PN->use_empty())
1326 continue; // dead use, don't replace it
1327
1328 if (!SE->isSCEVable(PN->getType()))
1329 continue;
1330
1331 // It's necessary to tell ScalarEvolution about this explicitly so that
1332 // it can walk the def-use list and forget all SCEVs, as it may not be
1333 // watching the PHI itself. Once the new exit value is in place, there
1334 // may not be a def-use connection between the loop and every instruction
1335 // which got a SCEVAddRecExpr for that loop.
1336 SE->forgetValue(PN);
1337
1338 // Iterate over all of the values in all the PHI nodes.
1339 for (unsigned i = 0; i != NumPreds; ++i) {
1340 // If the value being merged in is not integer or is not defined
1341 // in the loop, skip it.
1342 Value *InVal = PN->getIncomingValue(i);
1343 if (!isa<Instruction>(InVal))
1344 continue;
1345
1346 // If this pred is for a subloop, not L itself, skip it.
1347 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1348 continue; // The Block is in a subloop, skip it.
1349
1350 // Check that InVal is defined in the loop.
1351 Instruction *Inst = cast<Instruction>(InVal);
1352 if (!L->contains(Inst))
1353 continue;
1354
1355 // Okay, this instruction has a user outside of the current loop
1356 // and varies predictably *inside* the loop. Evaluate the value it
1357 // contains when the loop exits, if possible. We prefer to start with
1358 // expressions which are true for all exits (so as to maximize
1359 // expression reuse by the SCEVExpander), but resort to per-exit
1360 // evaluation if that fails.
1361 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1362 if (isa<SCEVCouldNotCompute>(ExitValue) ||
1363 !SE->isLoopInvariant(ExitValue, L) ||
1364 !isSafeToExpand(ExitValue, *SE)) {
1365 // TODO: This should probably be sunk into SCEV in some way; maybe a
1366 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for
1367 // most SCEV expressions and other recurrence types (e.g. shift
1368 // recurrences). Is there existing code we can reuse?
1369 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1370 if (isa<SCEVCouldNotCompute>(ExitCount))
1371 continue;
1372 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1373 if (AddRec->getLoop() == L)
1374 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1375 if (isa<SCEVCouldNotCompute>(ExitValue) ||
1376 !SE->isLoopInvariant(ExitValue, L) ||
1377 !isSafeToExpand(ExitValue, *SE))
1378 continue;
1379 }
1380
1381 // Computing the value outside of the loop brings no benefit if it is
1382 // definitely used inside the loop in a way which can not be optimized
1383 // away. Avoid doing so unless we know we have a value which computes
1384 // the ExitValue already. TODO: This should be merged into SCEV
1385 // expander to leverage its knowledge of existing expressions.
1386 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1387 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1388 continue;
1389
1390 // Check if expansions of this SCEV would count as being high cost.
1391 bool HighCost = Rewriter.isHighCostExpansion(
1392 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1393
1394 // Note that we must not perform expansions until after
1395 // we query *all* the costs, because if we perform temporary expansion
1396 // inbetween, one that we might not intend to keep, said expansion
1397 // *may* affect cost calculation of the the next SCEV's we'll query,
1398 // and next SCEV may errneously get smaller cost.
1399
1400 // Collect all the candidate PHINodes to be rewritten.
1401 RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
1402 }
1403 }
1404 }
1405
1406 // Now that we've done preliminary filtering and billed all the SCEV's,
1407 // we can perform the last sanity check - the expansion must be valid.
1408 for (RewritePhi &Phi : RewritePhiSet) {
1409 Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
1410 Phi.ExpansionPoint);
1411
1412 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
1413 << *(Phi.Expansion) << '\n'
1414 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1415
1416 // FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
1417 Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
1418 if (!Phi.ValidRewrite) {
1419 DeadInsts.push_back(Phi.Expansion);
1420 continue;
1421 }
1422
1423 #ifndef NDEBUG
1424 // If we reuse an instruction from a loop which is neither L nor one of
1425 // its containing loops, we end up breaking LCSSA form for this loop by
1426 // creating a new use of its instruction.
1427 if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
1428 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1429 if (EVL != L)
1430 assert(EVL->contains(L) && "LCSSA breach detected!");
1431 #endif
1432 }
1433
1434 // TODO: after isValidRewrite() is an assertion, evaluate whether
1435 // it is beneficial to change how we calculate high-cost:
1436 // if we have SCEV 'A' which we know we will expand, should we calculate
1437 // the cost of other SCEV's after expanding SCEV 'A',
1438 // thus potentially giving cost bonus to those other SCEV's?
1439
1440 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1441 int NumReplaced = 0;
1442
1443 // Transformation.
1444 for (const RewritePhi &Phi : RewritePhiSet) {
1445 if (!Phi.ValidRewrite)
1446 continue;
1447
1448 PHINode *PN = Phi.PN;
1449 Value *ExitVal = Phi.Expansion;
1450
1451 // Only do the rewrite when the ExitValue can be expanded cheaply.
1452 // If LoopCanBeDel is true, rewrite exit value aggressively.
1453 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
1454 DeadInsts.push_back(ExitVal);
1455 continue;
1456 }
1457
1458 NumReplaced++;
1459 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1460 PN->setIncomingValue(Phi.Ith, ExitVal);
1461
1462 // If this instruction is dead now, delete it. Don't do it now to avoid
1463 // invalidating iterators.
1464 if (isInstructionTriviallyDead(Inst, TLI))
1465 DeadInsts.push_back(Inst);
1466
1467 // Replace PN with ExitVal if that is legal and does not break LCSSA.
1468 if (PN->getNumIncomingValues() == 1 &&
1469 LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1470 PN->replaceAllUsesWith(ExitVal);
1471 PN->eraseFromParent();
1472 }
1473 }
1474
1475 // The insertion point instruction may have been deleted; clear it out
1476 // so that the rewriter doesn't trip over it later.
1477 Rewriter.clearInsertPoint();
1478 return NumReplaced;
1479 }
1480
1481 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1482 /// \p OrigLoop.
setProfileInfoAfterUnrolling(Loop * OrigLoop,Loop * UnrolledLoop,Loop * RemainderLoop,uint64_t UF)1483 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1484 Loop *RemainderLoop, uint64_t UF) {
1485 assert(UF > 0 && "Zero unrolled factor is not supported");
1486 assert(UnrolledLoop != RemainderLoop &&
1487 "Unrolled and Remainder loops are expected to distinct");
1488
1489 // Get number of iterations in the original scalar loop.
1490 unsigned OrigLoopInvocationWeight = 0;
1491 Optional<unsigned> OrigAverageTripCount =
1492 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1493 if (!OrigAverageTripCount)
1494 return;
1495
1496 // Calculate number of iterations in unrolled loop.
1497 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1498 // Calculate number of iterations for remainder loop.
1499 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1500
1501 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1502 OrigLoopInvocationWeight);
1503 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1504 OrigLoopInvocationWeight);
1505 }
1506
1507 /// Utility that implements appending of loops onto a worklist.
1508 /// Loops are added in preorder (analogous for reverse postorder for trees),
1509 /// and the worklist is processed LIFO.
1510 template <typename RangeT>
appendReversedLoopsToWorklist(RangeT && Loops,SmallPriorityWorklist<Loop *,4> & Worklist)1511 void llvm::appendReversedLoopsToWorklist(
1512 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1513 // We use an internal worklist to build up the preorder traversal without
1514 // recursion.
1515 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1516
1517 // We walk the initial sequence of loops in reverse because we generally want
1518 // to visit defs before uses and the worklist is LIFO.
1519 for (Loop *RootL : Loops) {
1520 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1521 assert(PreOrderWorklist.empty() &&
1522 "Must start with an empty preorder walk worklist.");
1523 PreOrderWorklist.push_back(RootL);
1524 do {
1525 Loop *L = PreOrderWorklist.pop_back_val();
1526 PreOrderWorklist.append(L->begin(), L->end());
1527 PreOrderLoops.push_back(L);
1528 } while (!PreOrderWorklist.empty());
1529
1530 Worklist.insert(std::move(PreOrderLoops));
1531 PreOrderLoops.clear();
1532 }
1533 }
1534
1535 template <typename RangeT>
appendLoopsToWorklist(RangeT && Loops,SmallPriorityWorklist<Loop *,4> & Worklist)1536 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1537 SmallPriorityWorklist<Loop *, 4> &Worklist) {
1538 appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1539 }
1540
1541 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1542 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1543
1544 template void
1545 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1546 SmallPriorityWorklist<Loop *, 4> &Worklist);
1547
appendLoopsToWorklist(LoopInfo & LI,SmallPriorityWorklist<Loop *,4> & Worklist)1548 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1549 SmallPriorityWorklist<Loop *, 4> &Worklist) {
1550 appendReversedLoopsToWorklist(LI, Worklist);
1551 }
1552
cloneLoop(Loop * L,Loop * PL,ValueToValueMapTy & VM,LoopInfo * LI,LPPassManager * LPM)1553 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1554 LoopInfo *LI, LPPassManager *LPM) {
1555 Loop &New = *LI->AllocateLoop();
1556 if (PL)
1557 PL->addChildLoop(&New);
1558 else
1559 LI->addTopLevelLoop(&New);
1560
1561 if (LPM)
1562 LPM->addLoop(New);
1563
1564 // Add all of the blocks in L to the new loop.
1565 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
1566 I != E; ++I)
1567 if (LI->getLoopFor(*I) == L)
1568 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
1569
1570 // Add all of the subloops to the new loop.
1571 for (Loop *I : *L)
1572 cloneLoop(I, &New, VM, LI, LPM);
1573
1574 return &New;
1575 }
1576
1577 /// IR Values for the lower and upper bounds of a pointer evolution. We
1578 /// need to use value-handles because SCEV expansion can invalidate previously
1579 /// expanded values. Thus expansion of a pointer can invalidate the bounds for
1580 /// a previous one.
1581 struct PointerBounds {
1582 TrackingVH<Value> Start;
1583 TrackingVH<Value> End;
1584 };
1585
1586 /// Expand code for the lower and upper bound of the pointer group \p CG
1587 /// in \p TheLoop. \return the values for the bounds.
expandBounds(const RuntimeCheckingPtrGroup * CG,Loop * TheLoop,Instruction * Loc,SCEVExpander & Exp,ScalarEvolution * SE)1588 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1589 Loop *TheLoop, Instruction *Loc,
1590 SCEVExpander &Exp, ScalarEvolution *SE) {
1591 // TODO: Add helper to retrieve pointers to CG.
1592 Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue;
1593 const SCEV *Sc = SE->getSCEV(Ptr);
1594
1595 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1596 LLVMContext &Ctx = Loc->getContext();
1597
1598 // Use this type for pointer arithmetic.
1599 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1600
1601 if (SE->isLoopInvariant(Sc, TheLoop)) {
1602 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
1603 << *Ptr << "\n");
1604 // Ptr could be in the loop body. If so, expand a new one at the correct
1605 // location.
1606 Instruction *Inst = dyn_cast<Instruction>(Ptr);
1607 Value *NewPtr = (Inst && TheLoop->contains(Inst))
1608 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1609 : Ptr;
1610 // We must return a half-open range, which means incrementing Sc.
1611 const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
1612 Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
1613 return {NewPtr, NewPtrPlusOne};
1614 } else {
1615 Value *Start = nullptr, *End = nullptr;
1616 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1617 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1618 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1619 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
1620 << "\n");
1621 return {Start, End};
1622 }
1623 }
1624
1625 /// Turns a collection of checks into a collection of expanded upper and
1626 /// lower bounds for both pointers in the check.
1627 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
expandBounds(const SmallVectorImpl<RuntimePointerCheck> & PointerChecks,Loop * L,Instruction * Loc,ScalarEvolution * SE,SCEVExpander & Exp)1628 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1629 Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp) {
1630 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1631
1632 // Here we're relying on the SCEV Expander's cache to only emit code for the
1633 // same bounds once.
1634 transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1635 [&](const RuntimePointerCheck &Check) {
1636 PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE),
1637 Second =
1638 expandBounds(Check.second, L, Loc, Exp, SE);
1639 return std::make_pair(First, Second);
1640 });
1641
1642 return ChecksWithBounds;
1643 }
1644
addRuntimeChecks(Instruction * Loc,Loop * TheLoop,const SmallVectorImpl<RuntimePointerCheck> & PointerChecks,ScalarEvolution * SE)1645 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
1646 Instruction *Loc, Loop *TheLoop,
1647 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1648 ScalarEvolution *SE) {
1649 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1650 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible
1651 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1652 SCEVExpander Exp(*SE, DL, "induction");
1653 auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp);
1654
1655 LLVMContext &Ctx = Loc->getContext();
1656 Instruction *FirstInst = nullptr;
1657 IRBuilder<> ChkBuilder(Loc);
1658 // Our instructions might fold to a constant.
1659 Value *MemoryRuntimeCheck = nullptr;
1660
1661 // FIXME: this helper is currently a duplicate of the one in
1662 // LoopVectorize.cpp.
1663 auto GetFirstInst = [](Instruction *FirstInst, Value *V,
1664 Instruction *Loc) -> Instruction * {
1665 if (FirstInst)
1666 return FirstInst;
1667 if (Instruction *I = dyn_cast<Instruction>(V))
1668 return I->getParent() == Loc->getParent() ? I : nullptr;
1669 return nullptr;
1670 };
1671
1672 for (const auto &Check : ExpandedChecks) {
1673 const PointerBounds &A = Check.first, &B = Check.second;
1674 // Check if two pointers (A and B) conflict where conflict is computed as:
1675 // start(A) <= end(B) && start(B) <= end(A)
1676 unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1677 unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1678
1679 assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1680 (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1681 "Trying to bounds check pointers with different address spaces");
1682
1683 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1684 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1685
1686 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1687 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1688 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1689 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1690
1691 // [A|B].Start points to the first accessed byte under base [A|B].
1692 // [A|B].End points to the last accessed byte, plus one.
1693 // There is no conflict when the intervals are disjoint:
1694 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1695 //
1696 // bound0 = (B.Start < A.End)
1697 // bound1 = (A.Start < B.End)
1698 // IsConflict = bound0 & bound1
1699 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1700 FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
1701 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1702 FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
1703 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1704 FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1705 if (MemoryRuntimeCheck) {
1706 IsConflict =
1707 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1708 FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1709 }
1710 MemoryRuntimeCheck = IsConflict;
1711 }
1712
1713 if (!MemoryRuntimeCheck)
1714 return std::make_pair(nullptr, nullptr);
1715
1716 // We have to do this trickery because the IRBuilder might fold the check to a
1717 // constant expression in which case there is no Instruction anchored in a
1718 // the block.
1719 Instruction *Check =
1720 BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
1721 ChkBuilder.Insert(Check, "memcheck.conflict");
1722 FirstInst = GetFirstInst(FirstInst, Check, Loc);
1723 return std::make_pair(FirstInst, Check);
1724 }
1725