1/*
2 * Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
21 */
22
23#include <clc/clc.h>
24
25#include "math.h"
26#include "tables.h"
27#include "../clcmacro.h"
28
29_CLC_OVERLOAD _CLC_DEF float cosh(float x) {
30
31    // After dealing with special cases the computation is split into regions as follows.
32    // abs(x) >= max_cosh_arg:
33    // cosh(x) = sign(x)*Inf
34    // abs(x) >= small_threshold:
35    // cosh(x) = sign(x)*exp(abs(x))/2 computed using the
36    // splitexp and scaleDouble functions as for exp_amd().
37    // abs(x) < small_threshold:
38    // compute p = exp(y) - 1 and then z = 0.5*(p+(p/(p+1.0)))
39    // cosh(x) is then z.
40
41    const float max_cosh_arg = 0x1.65a9fap+6f;
42    const float small_threshold = 0x1.0a2b24p+3f;
43
44    uint ux = as_uint(x);
45    uint aux = ux & EXSIGNBIT_SP32;
46    float y = as_float(aux);
47
48    // Find the integer part y0 of y and the increment dy = y - y0. We then compute
49    // z = sinh(y) = sinh(y0)cosh(dy) + cosh(y0)sinh(dy)
50    // z = cosh(y) = cosh(y0)cosh(dy) + sinh(y0)sinh(dy)
51    // where sinh(y0) and cosh(y0) are tabulated above.
52
53    int ind = (int)y;
54    ind = (uint)ind > 36U ? 0 : ind;
55
56    float dy = y - ind;
57    float dy2 = dy * dy;
58
59    float sdy = mad(dy2,
60                    mad(dy2,
61                        mad(dy2,
62                            mad(dy2,
63                                mad(dy2,
64                                    mad(dy2, 0.7746188980094184251527126e-12f, 0.160576793121939886190847e-9f),
65                                    0.250521176994133472333666e-7f),
66                                0.275573191913636406057211e-5f),
67                            0.198412698413242405162014e-3f),
68                        0.833333333333329931873097e-2f),
69                    0.166666666666666667013899e0f);
70    sdy = mad(sdy, dy*dy2, dy);
71
72    float cdy = mad(dy2,
73                    mad(dy2,
74                        mad(dy2,
75                            mad(dy2,
76                                mad(dy2,
77                                    mad(dy2, 0.1163921388172173692062032e-10f, 0.208744349831471353536305e-8f),
78                                    0.275573350756016588011357e-6f),
79                                0.248015872460622433115785e-4f),
80                            0.138888888889814854814536e-2f),
81                        0.416666666666660876512776e-1f),
82                    0.500000000000000005911074e0f);
83    cdy = mad(cdy, dy2, 1.0f);
84
85    float2 tv = USE_TABLE(sinhcosh_tbl, ind);
86    float z = mad(tv.s0, sdy, tv.s1 * cdy);
87
88    // When exp(-x) is insignificant compared to exp(x), return exp(x)/2
89    float t = exp(y - 0x1.62e500p-1f);
90    float zsmall = mad(0x1.a0210ep-18f, t, t);
91    z = y >= small_threshold ? zsmall : z;
92
93    // Corner cases
94    z = y >= max_cosh_arg ? as_float(PINFBITPATT_SP32) : z;
95    z = aux > PINFBITPATT_SP32 ? as_float(QNANBITPATT_SP32) : z;
96    z = aux < 0x38800000 ? 1.0f : z;
97
98    return z;
99}
100
101_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, cosh, float);
102
103#ifdef cl_khr_fp64
104#pragma OPENCL EXTENSION cl_khr_fp64 : enable
105
106_CLC_OVERLOAD _CLC_DEF double cosh(double x) {
107
108    // After dealing with special cases the computation is split into
109    // regions as follows:
110    //
111    // abs(x) >= max_cosh_arg:
112    // cosh(x) = sign(x)*Inf
113    //
114    // abs(x) >= small_threshold:
115    // cosh(x) = sign(x)*exp(abs(x))/2 computed using the
116    // splitexp and scaleDouble functions as for exp_amd().
117    //
118    // abs(x) < small_threshold:
119    // compute p = exp(y) - 1 and then z = 0.5*(p+(p/(p+1.0)))
120    // cosh(x) is then sign(x)*z.
121
122    // This is ln(2^1025)
123    const double max_cosh_arg = 7.10475860073943977113e+02;      // 0x408633ce8fb9f87e
124
125    // This is where exp(-x) is insignificant compared to exp(x) = ln(2^27)
126    const double small_threshold = 0x1.2b708872320e2p+4;
127
128    double y = fabs(x);
129
130    // In this range we find the integer part y0 of y
131    // and the increment dy = y - y0. We then compute
132    // z = cosh(y) = cosh(y0)cosh(dy) + sinh(y0)sinh(dy)
133    // where sinh(y0) and cosh(y0) are tabulated above.
134
135    int ind = min((int)y, 36);
136    double dy = y - ind;
137    double dy2 = dy * dy;
138
139    double sdy = dy * dy2 *
140	         fma(dy2,
141		     fma(dy2,
142			 fma(dy2,
143			     fma(dy2,
144				 fma(dy2,
145				     fma(dy2, 0.7746188980094184251527126e-12, 0.160576793121939886190847e-9),
146				     0.250521176994133472333666e-7),
147				 0.275573191913636406057211e-5),
148			     0.198412698413242405162014e-3),
149			 0.833333333333329931873097e-2),
150		     0.166666666666666667013899e0);
151
152    double cdy = dy2 * fma(dy2,
153	                   fma(dy2,
154			       fma(dy2,
155				   fma(dy2,
156				       fma(dy2,
157					   fma(dy2, 0.1163921388172173692062032e-10, 0.208744349831471353536305e-8),
158					   0.275573350756016588011357e-6),
159				       0.248015872460622433115785e-4),
160				   0.138888888889814854814536e-2),
161			       0.416666666666660876512776e-1),
162			   0.500000000000000005911074e0);
163
164    // At this point sinh(dy) is approximated by dy + sdy,
165    // and cosh(dy) is approximated by 1 + cdy.
166    double2 tv = USE_TABLE(cosh_tbl, ind);
167    double cl = tv.s0;
168    double ct = tv.s1;
169    tv = USE_TABLE(sinh_tbl, ind);
170    double sl = tv.s0;
171    double st = tv.s1;
172
173    double z = fma(sl, dy, fma(sl, sdy, fma(cl, cdy, fma(st, dy, fma(st, sdy, ct*cdy)) + ct))) + cl;
174
175    // Other cases
176    z = y < 0x1.0p-28 ? 1.0 : z;
177
178    double t = exp(y - 0x1.62e42fefa3800p-1);
179    t =  fma(t, -0x1.ef35793c76641p-45, t);
180    z = y >= small_threshold ? t : z;
181
182    z = y >= max_cosh_arg ? as_double(PINFBITPATT_DP64) : z;
183
184    z = isinf(x) | isnan(x) ? y : z;
185
186    return z;
187
188}
189
190_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, cosh, double)
191
192#endif
193