1 //===- FunctionComparator.h - Function Comparator -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the FunctionComparator and GlobalNumberState classes
10 // which are used by the MergeFunctions pass for comparing functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/FunctionComparator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Metadata.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "functioncomparator"
52 
cmpNumbers(uint64_t L,uint64_t R) const53 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
54   if (L < R)
55     return -1;
56   if (L > R)
57     return 1;
58   return 0;
59 }
60 
cmpOrderings(AtomicOrdering L,AtomicOrdering R) const61 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
62   if ((int)L < (int)R)
63     return -1;
64   if ((int)L > (int)R)
65     return 1;
66   return 0;
67 }
68 
cmpAPInts(const APInt & L,const APInt & R) const69 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
70   if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
71     return Res;
72   if (L.ugt(R))
73     return 1;
74   if (R.ugt(L))
75     return -1;
76   return 0;
77 }
78 
cmpAPFloats(const APFloat & L,const APFloat & R) const79 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
80   // Floats are ordered first by semantics (i.e. float, double, half, etc.),
81   // then by value interpreted as a bitstring (aka APInt).
82   const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
83   if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
84                            APFloat::semanticsPrecision(SR)))
85     return Res;
86   if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
87                            APFloat::semanticsMaxExponent(SR)))
88     return Res;
89   if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
90                            APFloat::semanticsMinExponent(SR)))
91     return Res;
92   if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
93                            APFloat::semanticsSizeInBits(SR)))
94     return Res;
95   return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
96 }
97 
cmpMem(StringRef L,StringRef R) const98 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
99   // Prevent heavy comparison, compare sizes first.
100   if (int Res = cmpNumbers(L.size(), R.size()))
101     return Res;
102 
103   // Compare strings lexicographically only when it is necessary: only when
104   // strings are equal in size.
105   return L.compare(R);
106 }
107 
cmpAttrs(const AttributeList L,const AttributeList R) const108 int FunctionComparator::cmpAttrs(const AttributeList L,
109                                  const AttributeList R) const {
110   if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
111     return Res;
112 
113   for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) {
114     AttributeSet LAS = L.getAttributes(i);
115     AttributeSet RAS = R.getAttributes(i);
116     AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
117     AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
118     for (; LI != LE && RI != RE; ++LI, ++RI) {
119       Attribute LA = *LI;
120       Attribute RA = *RI;
121       if (LA.isTypeAttribute() && RA.isTypeAttribute()) {
122         if (LA.getKindAsEnum() != RA.getKindAsEnum())
123           return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum());
124 
125         Type *TyL = LA.getValueAsType();
126         Type *TyR = RA.getValueAsType();
127         if (TyL && TyR) {
128           if (int Res = cmpTypes(TyL, TyR))
129             return Res;
130           continue;
131         }
132 
133         // Two pointers, at least one null, so the comparison result is
134         // independent of the value of a real pointer.
135         if (int Res = cmpNumbers((uint64_t)TyL, (uint64_t)TyR))
136           return Res;
137         continue;
138       }
139       if (LA < RA)
140         return -1;
141       if (RA < LA)
142         return 1;
143     }
144     if (LI != LE)
145       return 1;
146     if (RI != RE)
147       return -1;
148   }
149   return 0;
150 }
151 
cmpRangeMetadata(const MDNode * L,const MDNode * R) const152 int FunctionComparator::cmpRangeMetadata(const MDNode *L,
153                                          const MDNode *R) const {
154   if (L == R)
155     return 0;
156   if (!L)
157     return -1;
158   if (!R)
159     return 1;
160   // Range metadata is a sequence of numbers. Make sure they are the same
161   // sequence.
162   // TODO: Note that as this is metadata, it is possible to drop and/or merge
163   // this data when considering functions to merge. Thus this comparison would
164   // return 0 (i.e. equivalent), but merging would become more complicated
165   // because the ranges would need to be unioned. It is not likely that
166   // functions differ ONLY in this metadata if they are actually the same
167   // function semantically.
168   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
169     return Res;
170   for (size_t I = 0; I < L->getNumOperands(); ++I) {
171     ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
172     ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
173     if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
174       return Res;
175   }
176   return 0;
177 }
178 
cmpOperandBundlesSchema(const CallBase & LCS,const CallBase & RCS) const179 int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS,
180                                                 const CallBase &RCS) const {
181   assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!");
182 
183   if (int Res =
184           cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
185     return Res;
186 
187   for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) {
188     auto OBL = LCS.getOperandBundleAt(I);
189     auto OBR = RCS.getOperandBundleAt(I);
190 
191     if (int Res = OBL.getTagName().compare(OBR.getTagName()))
192       return Res;
193 
194     if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
195       return Res;
196   }
197 
198   return 0;
199 }
200 
201 /// Constants comparison:
202 /// 1. Check whether type of L constant could be losslessly bitcasted to R
203 /// type.
204 /// 2. Compare constant contents.
205 /// For more details see declaration comments.
cmpConstants(const Constant * L,const Constant * R) const206 int FunctionComparator::cmpConstants(const Constant *L,
207                                      const Constant *R) const {
208   Type *TyL = L->getType();
209   Type *TyR = R->getType();
210 
211   // Check whether types are bitcastable. This part is just re-factored
212   // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
213   // we also pack into result which type is "less" for us.
214   int TypesRes = cmpTypes(TyL, TyR);
215   if (TypesRes != 0) {
216     // Types are different, but check whether we can bitcast them.
217     if (!TyL->isFirstClassType()) {
218       if (TyR->isFirstClassType())
219         return -1;
220       // Neither TyL nor TyR are values of first class type. Return the result
221       // of comparing the types
222       return TypesRes;
223     }
224     if (!TyR->isFirstClassType()) {
225       if (TyL->isFirstClassType())
226         return 1;
227       return TypesRes;
228     }
229 
230     // Vector -> Vector conversions are always lossless if the two vector types
231     // have the same size, otherwise not.
232     unsigned TyLWidth = 0;
233     unsigned TyRWidth = 0;
234 
235     if (auto *VecTyL = dyn_cast<VectorType>(TyL))
236       TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedSize();
237     if (auto *VecTyR = dyn_cast<VectorType>(TyR))
238       TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedSize();
239 
240     if (TyLWidth != TyRWidth)
241       return cmpNumbers(TyLWidth, TyRWidth);
242 
243     // Zero bit-width means neither TyL nor TyR are vectors.
244     if (!TyLWidth) {
245       PointerType *PTyL = dyn_cast<PointerType>(TyL);
246       PointerType *PTyR = dyn_cast<PointerType>(TyR);
247       if (PTyL && PTyR) {
248         unsigned AddrSpaceL = PTyL->getAddressSpace();
249         unsigned AddrSpaceR = PTyR->getAddressSpace();
250         if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
251           return Res;
252       }
253       if (PTyL)
254         return 1;
255       if (PTyR)
256         return -1;
257 
258       // TyL and TyR aren't vectors, nor pointers. We don't know how to
259       // bitcast them.
260       return TypesRes;
261     }
262   }
263 
264   // OK, types are bitcastable, now check constant contents.
265 
266   if (L->isNullValue() && R->isNullValue())
267     return TypesRes;
268   if (L->isNullValue() && !R->isNullValue())
269     return 1;
270   if (!L->isNullValue() && R->isNullValue())
271     return -1;
272 
273   auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
274   auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
275   if (GlobalValueL && GlobalValueR) {
276     return cmpGlobalValues(GlobalValueL, GlobalValueR);
277   }
278 
279   if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
280     return Res;
281 
282   if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
283     const auto *SeqR = cast<ConstantDataSequential>(R);
284     // This handles ConstantDataArray and ConstantDataVector. Note that we
285     // compare the two raw data arrays, which might differ depending on the host
286     // endianness. This isn't a problem though, because the endiness of a module
287     // will affect the order of the constants, but this order is the same
288     // for a given input module and host platform.
289     return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
290   }
291 
292   switch (L->getValueID()) {
293   case Value::UndefValueVal:
294   case Value::PoisonValueVal:
295   case Value::ConstantTokenNoneVal:
296     return TypesRes;
297   case Value::ConstantIntVal: {
298     const APInt &LInt = cast<ConstantInt>(L)->getValue();
299     const APInt &RInt = cast<ConstantInt>(R)->getValue();
300     return cmpAPInts(LInt, RInt);
301   }
302   case Value::ConstantFPVal: {
303     const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
304     const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
305     return cmpAPFloats(LAPF, RAPF);
306   }
307   case Value::ConstantArrayVal: {
308     const ConstantArray *LA = cast<ConstantArray>(L);
309     const ConstantArray *RA = cast<ConstantArray>(R);
310     uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
311     uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
312     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
313       return Res;
314     for (uint64_t i = 0; i < NumElementsL; ++i) {
315       if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
316                                  cast<Constant>(RA->getOperand(i))))
317         return Res;
318     }
319     return 0;
320   }
321   case Value::ConstantStructVal: {
322     const ConstantStruct *LS = cast<ConstantStruct>(L);
323     const ConstantStruct *RS = cast<ConstantStruct>(R);
324     unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
325     unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
326     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
327       return Res;
328     for (unsigned i = 0; i != NumElementsL; ++i) {
329       if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
330                                  cast<Constant>(RS->getOperand(i))))
331         return Res;
332     }
333     return 0;
334   }
335   case Value::ConstantVectorVal: {
336     const ConstantVector *LV = cast<ConstantVector>(L);
337     const ConstantVector *RV = cast<ConstantVector>(R);
338     unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements();
339     unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements();
340     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
341       return Res;
342     for (uint64_t i = 0; i < NumElementsL; ++i) {
343       if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
344                                  cast<Constant>(RV->getOperand(i))))
345         return Res;
346     }
347     return 0;
348   }
349   case Value::ConstantExprVal: {
350     const ConstantExpr *LE = cast<ConstantExpr>(L);
351     const ConstantExpr *RE = cast<ConstantExpr>(R);
352     unsigned NumOperandsL = LE->getNumOperands();
353     unsigned NumOperandsR = RE->getNumOperands();
354     if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
355       return Res;
356     for (unsigned i = 0; i < NumOperandsL; ++i) {
357       if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
358                                  cast<Constant>(RE->getOperand(i))))
359         return Res;
360     }
361     return 0;
362   }
363   case Value::BlockAddressVal: {
364     const BlockAddress *LBA = cast<BlockAddress>(L);
365     const BlockAddress *RBA = cast<BlockAddress>(R);
366     if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
367       return Res;
368     if (LBA->getFunction() == RBA->getFunction()) {
369       // They are BBs in the same function. Order by which comes first in the
370       // BB order of the function. This order is deterministic.
371       Function *F = LBA->getFunction();
372       BasicBlock *LBB = LBA->getBasicBlock();
373       BasicBlock *RBB = RBA->getBasicBlock();
374       if (LBB == RBB)
375         return 0;
376       for (BasicBlock &BB : F->getBasicBlockList()) {
377         if (&BB == LBB) {
378           assert(&BB != RBB);
379           return -1;
380         }
381         if (&BB == RBB)
382           return 1;
383       }
384       llvm_unreachable("Basic Block Address does not point to a basic block in "
385                        "its function.");
386       return -1;
387     } else {
388       // cmpValues said the functions are the same. So because they aren't
389       // literally the same pointer, they must respectively be the left and
390       // right functions.
391       assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
392       // cmpValues will tell us if these are equivalent BasicBlocks, in the
393       // context of their respective functions.
394       return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
395     }
396   }
397   default: // Unknown constant, abort.
398     LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
399     llvm_unreachable("Constant ValueID not recognized.");
400     return -1;
401   }
402 }
403 
cmpGlobalValues(GlobalValue * L,GlobalValue * R) const404 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
405   uint64_t LNumber = GlobalNumbers->getNumber(L);
406   uint64_t RNumber = GlobalNumbers->getNumber(R);
407   return cmpNumbers(LNumber, RNumber);
408 }
409 
410 /// cmpType - compares two types,
411 /// defines total ordering among the types set.
412 /// See method declaration comments for more details.
cmpTypes(Type * TyL,Type * TyR) const413 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
414   PointerType *PTyL = dyn_cast<PointerType>(TyL);
415   PointerType *PTyR = dyn_cast<PointerType>(TyR);
416 
417   const DataLayout &DL = FnL->getParent()->getDataLayout();
418   if (PTyL && PTyL->getAddressSpace() == 0)
419     TyL = DL.getIntPtrType(TyL);
420   if (PTyR && PTyR->getAddressSpace() == 0)
421     TyR = DL.getIntPtrType(TyR);
422 
423   if (TyL == TyR)
424     return 0;
425 
426   if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
427     return Res;
428 
429   switch (TyL->getTypeID()) {
430   default:
431     llvm_unreachable("Unknown type!");
432   case Type::IntegerTyID:
433     return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
434                       cast<IntegerType>(TyR)->getBitWidth());
435   // TyL == TyR would have returned true earlier, because types are uniqued.
436   case Type::VoidTyID:
437   case Type::FloatTyID:
438   case Type::DoubleTyID:
439   case Type::X86_FP80TyID:
440   case Type::FP128TyID:
441   case Type::PPC_FP128TyID:
442   case Type::LabelTyID:
443   case Type::MetadataTyID:
444   case Type::TokenTyID:
445     return 0;
446 
447   case Type::PointerTyID:
448     assert(PTyL && PTyR && "Both types must be pointers here.");
449     return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
450 
451   case Type::StructTyID: {
452     StructType *STyL = cast<StructType>(TyL);
453     StructType *STyR = cast<StructType>(TyR);
454     if (STyL->getNumElements() != STyR->getNumElements())
455       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
456 
457     if (STyL->isPacked() != STyR->isPacked())
458       return cmpNumbers(STyL->isPacked(), STyR->isPacked());
459 
460     for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
461       if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
462         return Res;
463     }
464     return 0;
465   }
466 
467   case Type::FunctionTyID: {
468     FunctionType *FTyL = cast<FunctionType>(TyL);
469     FunctionType *FTyR = cast<FunctionType>(TyR);
470     if (FTyL->getNumParams() != FTyR->getNumParams())
471       return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
472 
473     if (FTyL->isVarArg() != FTyR->isVarArg())
474       return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
475 
476     if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
477       return Res;
478 
479     for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
480       if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
481         return Res;
482     }
483     return 0;
484   }
485 
486   case Type::ArrayTyID: {
487     auto *STyL = cast<ArrayType>(TyL);
488     auto *STyR = cast<ArrayType>(TyR);
489     if (STyL->getNumElements() != STyR->getNumElements())
490       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
491     return cmpTypes(STyL->getElementType(), STyR->getElementType());
492   }
493   case Type::FixedVectorTyID:
494   case Type::ScalableVectorTyID: {
495     auto *STyL = cast<VectorType>(TyL);
496     auto *STyR = cast<VectorType>(TyR);
497     if (STyL->getElementCount().isScalable() !=
498         STyR->getElementCount().isScalable())
499       return cmpNumbers(STyL->getElementCount().isScalable(),
500                         STyR->getElementCount().isScalable());
501     if (STyL->getElementCount() != STyR->getElementCount())
502       return cmpNumbers(STyL->getElementCount().getKnownMinValue(),
503                         STyR->getElementCount().getKnownMinValue());
504     return cmpTypes(STyL->getElementType(), STyR->getElementType());
505   }
506   }
507 }
508 
509 // Determine whether the two operations are the same except that pointer-to-A
510 // and pointer-to-B are equivalent. This should be kept in sync with
511 // Instruction::isSameOperationAs.
512 // Read method declaration comments for more details.
cmpOperations(const Instruction * L,const Instruction * R,bool & needToCmpOperands) const513 int FunctionComparator::cmpOperations(const Instruction *L,
514                                       const Instruction *R,
515                                       bool &needToCmpOperands) const {
516   needToCmpOperands = true;
517   if (int Res = cmpValues(L, R))
518     return Res;
519 
520   // Differences from Instruction::isSameOperationAs:
521   //  * replace type comparison with calls to cmpTypes.
522   //  * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
523   //  * because of the above, we don't test for the tail bit on calls later on.
524   if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
525     return Res;
526 
527   if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
528     needToCmpOperands = false;
529     const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
530     if (int Res =
531             cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
532       return Res;
533     return cmpGEPs(GEPL, GEPR);
534   }
535 
536   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
537     return Res;
538 
539   if (int Res = cmpTypes(L->getType(), R->getType()))
540     return Res;
541 
542   if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
543                            R->getRawSubclassOptionalData()))
544     return Res;
545 
546   // We have two instructions of identical opcode and #operands.  Check to see
547   // if all operands are the same type
548   for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
549     if (int Res =
550             cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
551       return Res;
552   }
553 
554   // Check special state that is a part of some instructions.
555   if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
556     if (int Res = cmpTypes(AI->getAllocatedType(),
557                            cast<AllocaInst>(R)->getAllocatedType()))
558       return Res;
559     return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
560   }
561   if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
562     if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
563       return Res;
564     if (int Res =
565             cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
566       return Res;
567     if (int Res =
568             cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
569       return Res;
570     if (int Res = cmpNumbers(LI->getSyncScopeID(),
571                              cast<LoadInst>(R)->getSyncScopeID()))
572       return Res;
573     return cmpRangeMetadata(
574         LI->getMetadata(LLVMContext::MD_range),
575         cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
576   }
577   if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
578     if (int Res =
579             cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
580       return Res;
581     if (int Res =
582             cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
583       return Res;
584     if (int Res =
585             cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
586       return Res;
587     return cmpNumbers(SI->getSyncScopeID(),
588                       cast<StoreInst>(R)->getSyncScopeID());
589   }
590   if (const CmpInst *CI = dyn_cast<CmpInst>(L))
591     return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
592   if (auto *CBL = dyn_cast<CallBase>(L)) {
593     auto *CBR = cast<CallBase>(R);
594     if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv()))
595       return Res;
596     if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes()))
597       return Res;
598     if (int Res = cmpOperandBundlesSchema(*CBL, *CBR))
599       return Res;
600     if (const CallInst *CI = dyn_cast<CallInst>(L))
601       if (int Res = cmpNumbers(CI->getTailCallKind(),
602                                cast<CallInst>(R)->getTailCallKind()))
603         return Res;
604     return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range),
605                             R->getMetadata(LLVMContext::MD_range));
606   }
607   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
608     ArrayRef<unsigned> LIndices = IVI->getIndices();
609     ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
610     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
611       return Res;
612     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
613       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
614         return Res;
615     }
616     return 0;
617   }
618   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
619     ArrayRef<unsigned> LIndices = EVI->getIndices();
620     ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
621     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
622       return Res;
623     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
624       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
625         return Res;
626     }
627   }
628   if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
629     if (int Res =
630             cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
631       return Res;
632     return cmpNumbers(FI->getSyncScopeID(),
633                       cast<FenceInst>(R)->getSyncScopeID());
634   }
635   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
636     if (int Res = cmpNumbers(CXI->isVolatile(),
637                              cast<AtomicCmpXchgInst>(R)->isVolatile()))
638       return Res;
639     if (int Res =
640             cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak()))
641       return Res;
642     if (int Res =
643             cmpOrderings(CXI->getSuccessOrdering(),
644                          cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
645       return Res;
646     if (int Res =
647             cmpOrderings(CXI->getFailureOrdering(),
648                          cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
649       return Res;
650     return cmpNumbers(CXI->getSyncScopeID(),
651                       cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
652   }
653   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
654     if (int Res = cmpNumbers(RMWI->getOperation(),
655                              cast<AtomicRMWInst>(R)->getOperation()))
656       return Res;
657     if (int Res = cmpNumbers(RMWI->isVolatile(),
658                              cast<AtomicRMWInst>(R)->isVolatile()))
659       return Res;
660     if (int Res = cmpOrderings(RMWI->getOrdering(),
661                                cast<AtomicRMWInst>(R)->getOrdering()))
662       return Res;
663     return cmpNumbers(RMWI->getSyncScopeID(),
664                       cast<AtomicRMWInst>(R)->getSyncScopeID());
665   }
666   if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) {
667     ArrayRef<int> LMask = SVI->getShuffleMask();
668     ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask();
669     if (int Res = cmpNumbers(LMask.size(), RMask.size()))
670       return Res;
671     for (size_t i = 0, e = LMask.size(); i != e; ++i) {
672       if (int Res = cmpNumbers(LMask[i], RMask[i]))
673         return Res;
674     }
675   }
676   if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
677     const PHINode *PNR = cast<PHINode>(R);
678     // Ensure that in addition to the incoming values being identical
679     // (checked by the caller of this function), the incoming blocks
680     // are also identical.
681     for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
682       if (int Res =
683               cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
684         return Res;
685     }
686   }
687   return 0;
688 }
689 
690 // Determine whether two GEP operations perform the same underlying arithmetic.
691 // Read method declaration comments for more details.
cmpGEPs(const GEPOperator * GEPL,const GEPOperator * GEPR) const692 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
693                                 const GEPOperator *GEPR) const {
694   unsigned int ASL = GEPL->getPointerAddressSpace();
695   unsigned int ASR = GEPR->getPointerAddressSpace();
696 
697   if (int Res = cmpNumbers(ASL, ASR))
698     return Res;
699 
700   // When we have target data, we can reduce the GEP down to the value in bytes
701   // added to the address.
702   const DataLayout &DL = FnL->getParent()->getDataLayout();
703   unsigned BitWidth = DL.getPointerSizeInBits(ASL);
704   APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
705   if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
706       GEPR->accumulateConstantOffset(DL, OffsetR))
707     return cmpAPInts(OffsetL, OffsetR);
708   if (int Res =
709           cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType()))
710     return Res;
711 
712   if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
713     return Res;
714 
715   for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
716     if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
717       return Res;
718   }
719 
720   return 0;
721 }
722 
cmpInlineAsm(const InlineAsm * L,const InlineAsm * R) const723 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
724                                      const InlineAsm *R) const {
725   // InlineAsm's are uniqued. If they are the same pointer, obviously they are
726   // the same, otherwise compare the fields.
727   if (L == R)
728     return 0;
729   if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
730     return Res;
731   if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
732     return Res;
733   if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
734     return Res;
735   if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
736     return Res;
737   if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
738     return Res;
739   if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
740     return Res;
741   assert(L->getFunctionType() != R->getFunctionType());
742   return 0;
743 }
744 
745 /// Compare two values used by the two functions under pair-wise comparison. If
746 /// this is the first time the values are seen, they're added to the mapping so
747 /// that we will detect mismatches on next use.
748 /// See comments in declaration for more details.
cmpValues(const Value * L,const Value * R) const749 int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
750   // Catch self-reference case.
751   if (L == FnL) {
752     if (R == FnR)
753       return 0;
754     return -1;
755   }
756   if (R == FnR) {
757     if (L == FnL)
758       return 0;
759     return 1;
760   }
761 
762   const Constant *ConstL = dyn_cast<Constant>(L);
763   const Constant *ConstR = dyn_cast<Constant>(R);
764   if (ConstL && ConstR) {
765     if (L == R)
766       return 0;
767     return cmpConstants(ConstL, ConstR);
768   }
769 
770   if (ConstL)
771     return 1;
772   if (ConstR)
773     return -1;
774 
775   const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
776   const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
777 
778   if (InlineAsmL && InlineAsmR)
779     return cmpInlineAsm(InlineAsmL, InlineAsmR);
780   if (InlineAsmL)
781     return 1;
782   if (InlineAsmR)
783     return -1;
784 
785   auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
786        RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
787 
788   return cmpNumbers(LeftSN.first->second, RightSN.first->second);
789 }
790 
791 // Test whether two basic blocks have equivalent behaviour.
cmpBasicBlocks(const BasicBlock * BBL,const BasicBlock * BBR) const792 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
793                                        const BasicBlock *BBR) const {
794   BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
795   BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
796 
797   do {
798     bool needToCmpOperands = true;
799     if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
800       return Res;
801     if (needToCmpOperands) {
802       assert(InstL->getNumOperands() == InstR->getNumOperands());
803 
804       for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
805         Value *OpL = InstL->getOperand(i);
806         Value *OpR = InstR->getOperand(i);
807         if (int Res = cmpValues(OpL, OpR))
808           return Res;
809         // cmpValues should ensure this is true.
810         assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
811       }
812     }
813 
814     ++InstL;
815     ++InstR;
816   } while (InstL != InstLE && InstR != InstRE);
817 
818   if (InstL != InstLE && InstR == InstRE)
819     return 1;
820   if (InstL == InstLE && InstR != InstRE)
821     return -1;
822   return 0;
823 }
824 
compareSignature() const825 int FunctionComparator::compareSignature() const {
826   if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
827     return Res;
828 
829   if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
830     return Res;
831 
832   if (FnL->hasGC()) {
833     if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
834       return Res;
835   }
836 
837   if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
838     return Res;
839 
840   if (FnL->hasSection()) {
841     if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
842       return Res;
843   }
844 
845   if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
846     return Res;
847 
848   // TODO: if it's internal and only used in direct calls, we could handle this
849   // case too.
850   if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
851     return Res;
852 
853   if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
854     return Res;
855 
856   assert(FnL->arg_size() == FnR->arg_size() &&
857          "Identically typed functions have different numbers of args!");
858 
859   // Visit the arguments so that they get enumerated in the order they're
860   // passed in.
861   for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
862                                     ArgRI = FnR->arg_begin(),
863                                     ArgLE = FnL->arg_end();
864        ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
865     if (cmpValues(&*ArgLI, &*ArgRI) != 0)
866       llvm_unreachable("Arguments repeat!");
867   }
868   return 0;
869 }
870 
871 // Test whether the two functions have equivalent behaviour.
compare()872 int FunctionComparator::compare() {
873   beginCompare();
874 
875   if (int Res = compareSignature())
876     return Res;
877 
878   // We do a CFG-ordered walk since the actual ordering of the blocks in the
879   // linked list is immaterial. Our walk starts at the entry block for both
880   // functions, then takes each block from each terminator in order. As an
881   // artifact, this also means that unreachable blocks are ignored.
882   SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
883   SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
884 
885   FnLBBs.push_back(&FnL->getEntryBlock());
886   FnRBBs.push_back(&FnR->getEntryBlock());
887 
888   VisitedBBs.insert(FnLBBs[0]);
889   while (!FnLBBs.empty()) {
890     const BasicBlock *BBL = FnLBBs.pop_back_val();
891     const BasicBlock *BBR = FnRBBs.pop_back_val();
892 
893     if (int Res = cmpValues(BBL, BBR))
894       return Res;
895 
896     if (int Res = cmpBasicBlocks(BBL, BBR))
897       return Res;
898 
899     const Instruction *TermL = BBL->getTerminator();
900     const Instruction *TermR = BBR->getTerminator();
901 
902     assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
903     for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
904       if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
905         continue;
906 
907       FnLBBs.push_back(TermL->getSuccessor(i));
908       FnRBBs.push_back(TermR->getSuccessor(i));
909     }
910   }
911   return 0;
912 }
913 
914 namespace {
915 
916 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
917 // hash of a sequence of 64bit ints, but the entire input does not need to be
918 // available at once. This interface is necessary for functionHash because it
919 // needs to accumulate the hash as the structure of the function is traversed
920 // without saving these values to an intermediate buffer. This form of hashing
921 // is not often needed, as usually the object to hash is just read from a
922 // buffer.
923 class HashAccumulator64 {
924   uint64_t Hash;
925 
926 public:
927   // Initialize to random constant, so the state isn't zero.
HashAccumulator64()928   HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
929 
add(uint64_t V)930   void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); }
931 
932   // No finishing is required, because the entire hash value is used.
getHash()933   uint64_t getHash() { return Hash; }
934 };
935 
936 } // end anonymous namespace
937 
938 // A function hash is calculated by considering only the number of arguments and
939 // whether a function is varargs, the order of basic blocks (given by the
940 // successors of each basic block in depth first order), and the order of
941 // opcodes of each instruction within each of these basic blocks. This mirrors
942 // the strategy compare() uses to compare functions by walking the BBs in depth
943 // first order and comparing each instruction in sequence. Because this hash
944 // does not look at the operands, it is insensitive to things such as the
945 // target of calls and the constants used in the function, which makes it useful
946 // when possibly merging functions which are the same modulo constants and call
947 // targets.
functionHash(Function & F)948 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
949   HashAccumulator64 H;
950   H.add(F.isVarArg());
951   H.add(F.arg_size());
952 
953   SmallVector<const BasicBlock *, 8> BBs;
954   SmallPtrSet<const BasicBlock *, 16> VisitedBBs;
955 
956   // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
957   // accumulating the hash of the function "structure." (BB and opcode sequence)
958   BBs.push_back(&F.getEntryBlock());
959   VisitedBBs.insert(BBs[0]);
960   while (!BBs.empty()) {
961     const BasicBlock *BB = BBs.pop_back_val();
962     // This random value acts as a block header, as otherwise the partition of
963     // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
964     H.add(45798);
965     for (auto &Inst : *BB) {
966       H.add(Inst.getOpcode());
967     }
968     const Instruction *Term = BB->getTerminator();
969     for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
970       if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
971         continue;
972       BBs.push_back(Term->getSuccessor(i));
973     }
974   }
975   return H.getHash();
976 }
977