1 //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a coalescing interval map for small objects.
11 //
12 // KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13 // same value are represented in a compressed form.
14 //
15 // Iterators provide ordered access to the compressed intervals rather than the
16 // individual keys, and insert and erase operations use key intervals as well.
17 //
18 // Like SmallVector, IntervalMap will store the first N intervals in the map
19 // object itself without any allocations. When space is exhausted it switches to
20 // a B+-tree representation with very small overhead for small key and value
21 // objects.
22 //
23 // A Traits class specifies how keys are compared. It also allows IntervalMap to
24 // work with both closed and half-open intervals.
25 //
26 // Keys and values are not stored next to each other in a std::pair, so we don't
27 // provide such a value_type. Dereferencing iterators only returns the mapped
28 // value. The interval bounds are accessible through the start() and stop()
29 // iterator methods.
30 //
31 // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
32 // is the optimal size. For large objects use std::map instead.
33 //
34 //===----------------------------------------------------------------------===//
35 //
36 // Synopsis:
37 //
38 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
39 // class IntervalMap {
40 // public:
41 // typedef KeyT key_type;
42 // typedef ValT mapped_type;
43 // typedef RecyclingAllocator<...> Allocator;
44 // class iterator;
45 // class const_iterator;
46 //
47 // explicit IntervalMap(Allocator&);
48 // ~IntervalMap():
49 //
50 // bool empty() const;
51 // KeyT start() const;
52 // KeyT stop() const;
53 // ValT lookup(KeyT x, Value NotFound = Value()) const;
54 //
55 // const_iterator begin() const;
56 // const_iterator end() const;
57 // iterator begin();
58 // iterator end();
59 // const_iterator find(KeyT x) const;
60 // iterator find(KeyT x);
61 //
62 // void insert(KeyT a, KeyT b, ValT y);
63 // void clear();
64 // };
65 //
66 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
67 // class IntervalMap::const_iterator :
68 // public std::iterator<std::bidirectional_iterator_tag, ValT> {
69 // public:
70 // bool operator==(const const_iterator &) const;
71 // bool operator!=(const const_iterator &) const;
72 // bool valid() const;
73 //
74 // const KeyT &start() const;
75 // const KeyT &stop() const;
76 // const ValT &value() const;
77 // const ValT &operator*() const;
78 // const ValT *operator->() const;
79 //
80 // const_iterator &operator++();
81 // const_iterator &operator++(int);
82 // const_iterator &operator--();
83 // const_iterator &operator--(int);
84 // void goToBegin();
85 // void goToEnd();
86 // void find(KeyT x);
87 // void advanceTo(KeyT x);
88 // };
89 //
90 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
91 // class IntervalMap::iterator : public const_iterator {
92 // public:
93 // void insert(KeyT a, KeyT b, Value y);
94 // void erase();
95 // };
96 //
97 //===----------------------------------------------------------------------===//
98
99 #ifndef LLVM_ADT_INTERVALMAP_H
100 #define LLVM_ADT_INTERVALMAP_H
101
102 #include "llvm/ADT/PointerIntPair.h"
103 #include "llvm/ADT/SmallVector.h"
104 #include "llvm/Support/AlignOf.h"
105 #include "llvm/Support/Allocator.h"
106 #include "llvm/Support/RecyclingAllocator.h"
107 #include <algorithm>
108 #include <cassert>
109 #include <cstdint>
110 #include <iterator>
111 #include <new>
112 #include <utility>
113
114 namespace llvm {
115
116 //===----------------------------------------------------------------------===//
117 //--- Key traits ---//
118 //===----------------------------------------------------------------------===//
119 //
120 // The IntervalMap works with closed or half-open intervals.
121 // Adjacent intervals that map to the same value are coalesced.
122 //
123 // The IntervalMapInfo traits class is used to determine if a key is contained
124 // in an interval, and if two intervals are adjacent so they can be coalesced.
125 // The provided implementation works for closed integer intervals, other keys
126 // probably need a specialized version.
127 //
128 // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
129 //
130 // It is assumed that (a;b] half-open intervals are not used, only [a;b) is
131 // allowed. This is so that stopLess(a, b) can be used to determine if two
132 // intervals overlap.
133 //
134 //===----------------------------------------------------------------------===//
135
136 template <typename T>
137 struct IntervalMapInfo {
138 /// startLess - Return true if x is not in [a;b].
139 /// This is x < a both for closed intervals and for [a;b) half-open intervals.
startLessIntervalMapInfo140 static inline bool startLess(const T &x, const T &a) {
141 return x < a;
142 }
143
144 /// stopLess - Return true if x is not in [a;b].
145 /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
stopLessIntervalMapInfo146 static inline bool stopLess(const T &b, const T &x) {
147 return b < x;
148 }
149
150 /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
151 /// This is a+1 == b for closed intervals, a == b for half-open intervals.
adjacentIntervalMapInfo152 static inline bool adjacent(const T &a, const T &b) {
153 return a+1 == b;
154 }
155
156 /// nonEmpty - Return true if [a;b] is non-empty.
157 /// This is a <= b for a closed interval, a < b for [a;b) half-open intervals.
nonEmptyIntervalMapInfo158 static inline bool nonEmpty(const T &a, const T &b) {
159 return a <= b;
160 }
161 };
162
163 template <typename T>
164 struct IntervalMapHalfOpenInfo {
165 /// startLess - Return true if x is not in [a;b).
startLessIntervalMapHalfOpenInfo166 static inline bool startLess(const T &x, const T &a) {
167 return x < a;
168 }
169
170 /// stopLess - Return true if x is not in [a;b).
stopLessIntervalMapHalfOpenInfo171 static inline bool stopLess(const T &b, const T &x) {
172 return b <= x;
173 }
174
175 /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
adjacentIntervalMapHalfOpenInfo176 static inline bool adjacent(const T &a, const T &b) {
177 return a == b;
178 }
179
180 /// nonEmpty - Return true if [a;b) is non-empty.
nonEmptyIntervalMapHalfOpenInfo181 static inline bool nonEmpty(const T &a, const T &b) {
182 return a < b;
183 }
184 };
185
186 /// IntervalMapImpl - Namespace used for IntervalMap implementation details.
187 /// It should be considered private to the implementation.
188 namespace IntervalMapImpl {
189
190 using IdxPair = std::pair<unsigned,unsigned>;
191
192 //===----------------------------------------------------------------------===//
193 //--- IntervalMapImpl::NodeBase ---//
194 //===----------------------------------------------------------------------===//
195 //
196 // Both leaf and branch nodes store vectors of pairs.
197 // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
198 //
199 // Keys and values are stored in separate arrays to avoid padding caused by
200 // different object alignments. This also helps improve locality of reference
201 // when searching the keys.
202 //
203 // The nodes don't know how many elements they contain - that information is
204 // stored elsewhere. Omitting the size field prevents padding and allows a node
205 // to fill the allocated cache lines completely.
206 //
207 // These are typical key and value sizes, the node branching factor (N), and
208 // wasted space when nodes are sized to fit in three cache lines (192 bytes):
209 //
210 // T1 T2 N Waste Used by
211 // 4 4 24 0 Branch<4> (32-bit pointers)
212 // 8 4 16 0 Leaf<4,4>, Branch<4>
213 // 8 8 12 0 Leaf<4,8>, Branch<8>
214 // 16 4 9 12 Leaf<8,4>
215 // 16 8 8 0 Leaf<8,8>
216 //
217 //===----------------------------------------------------------------------===//
218
219 template <typename T1, typename T2, unsigned N>
220 class NodeBase {
221 public:
222 enum { Capacity = N };
223
224 T1 first[N];
225 T2 second[N];
226
227 /// copy - Copy elements from another node.
228 /// @param Other Node elements are copied from.
229 /// @param i Beginning of the source range in other.
230 /// @param j Beginning of the destination range in this.
231 /// @param Count Number of elements to copy.
232 template <unsigned M>
copy(const NodeBase<T1,T2,M> & Other,unsigned i,unsigned j,unsigned Count)233 void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
234 unsigned j, unsigned Count) {
235 assert(i + Count <= M && "Invalid source range");
236 assert(j + Count <= N && "Invalid dest range");
237 for (unsigned e = i + Count; i != e; ++i, ++j) {
238 first[j] = Other.first[i];
239 second[j] = Other.second[i];
240 }
241 }
242
243 /// moveLeft - Move elements to the left.
244 /// @param i Beginning of the source range.
245 /// @param j Beginning of the destination range.
246 /// @param Count Number of elements to copy.
moveLeft(unsigned i,unsigned j,unsigned Count)247 void moveLeft(unsigned i, unsigned j, unsigned Count) {
248 assert(j <= i && "Use moveRight shift elements right");
249 copy(*this, i, j, Count);
250 }
251
252 /// moveRight - Move elements to the right.
253 /// @param i Beginning of the source range.
254 /// @param j Beginning of the destination range.
255 /// @param Count Number of elements to copy.
moveRight(unsigned i,unsigned j,unsigned Count)256 void moveRight(unsigned i, unsigned j, unsigned Count) {
257 assert(i <= j && "Use moveLeft shift elements left");
258 assert(j + Count <= N && "Invalid range");
259 while (Count--) {
260 first[j + Count] = first[i + Count];
261 second[j + Count] = second[i + Count];
262 }
263 }
264
265 /// erase - Erase elements [i;j).
266 /// @param i Beginning of the range to erase.
267 /// @param j End of the range. (Exclusive).
268 /// @param Size Number of elements in node.
erase(unsigned i,unsigned j,unsigned Size)269 void erase(unsigned i, unsigned j, unsigned Size) {
270 moveLeft(j, i, Size - j);
271 }
272
273 /// erase - Erase element at i.
274 /// @param i Index of element to erase.
275 /// @param Size Number of elements in node.
erase(unsigned i,unsigned Size)276 void erase(unsigned i, unsigned Size) {
277 erase(i, i+1, Size);
278 }
279
280 /// shift - Shift elements [i;size) 1 position to the right.
281 /// @param i Beginning of the range to move.
282 /// @param Size Number of elements in node.
shift(unsigned i,unsigned Size)283 void shift(unsigned i, unsigned Size) {
284 moveRight(i, i + 1, Size - i);
285 }
286
287 /// transferToLeftSib - Transfer elements to a left sibling node.
288 /// @param Size Number of elements in this.
289 /// @param Sib Left sibling node.
290 /// @param SSize Number of elements in sib.
291 /// @param Count Number of elements to transfer.
transferToLeftSib(unsigned Size,NodeBase & Sib,unsigned SSize,unsigned Count)292 void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
293 unsigned Count) {
294 Sib.copy(*this, 0, SSize, Count);
295 erase(0, Count, Size);
296 }
297
298 /// transferToRightSib - Transfer elements to a right sibling node.
299 /// @param Size Number of elements in this.
300 /// @param Sib Right sibling node.
301 /// @param SSize Number of elements in sib.
302 /// @param Count Number of elements to transfer.
transferToRightSib(unsigned Size,NodeBase & Sib,unsigned SSize,unsigned Count)303 void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
304 unsigned Count) {
305 Sib.moveRight(0, Count, SSize);
306 Sib.copy(*this, Size-Count, 0, Count);
307 }
308
309 /// adjustFromLeftSib - Adjust the number if elements in this node by moving
310 /// elements to or from a left sibling node.
311 /// @param Size Number of elements in this.
312 /// @param Sib Right sibling node.
313 /// @param SSize Number of elements in sib.
314 /// @param Add The number of elements to add to this node, possibly < 0.
315 /// @return Number of elements added to this node, possibly negative.
adjustFromLeftSib(unsigned Size,NodeBase & Sib,unsigned SSize,int Add)316 int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
317 if (Add > 0) {
318 // We want to grow, copy from sib.
319 unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
320 Sib.transferToRightSib(SSize, *this, Size, Count);
321 return Count;
322 } else {
323 // We want to shrink, copy to sib.
324 unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
325 transferToLeftSib(Size, Sib, SSize, Count);
326 return -Count;
327 }
328 }
329 };
330
331 /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
332 /// @param Node Array of pointers to sibling nodes.
333 /// @param Nodes Number of nodes.
334 /// @param CurSize Array of current node sizes, will be overwritten.
335 /// @param NewSize Array of desired node sizes.
336 template <typename NodeT>
adjustSiblingSizes(NodeT * Node[],unsigned Nodes,unsigned CurSize[],const unsigned NewSize[])337 void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
338 unsigned CurSize[], const unsigned NewSize[]) {
339 // Move elements right.
340 for (int n = Nodes - 1; n; --n) {
341 if (CurSize[n] == NewSize[n])
342 continue;
343 for (int m = n - 1; m != -1; --m) {
344 int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
345 NewSize[n] - CurSize[n]);
346 CurSize[m] -= d;
347 CurSize[n] += d;
348 // Keep going if the current node was exhausted.
349 if (CurSize[n] >= NewSize[n])
350 break;
351 }
352 }
353
354 if (Nodes == 0)
355 return;
356
357 // Move elements left.
358 for (unsigned n = 0; n != Nodes - 1; ++n) {
359 if (CurSize[n] == NewSize[n])
360 continue;
361 for (unsigned m = n + 1; m != Nodes; ++m) {
362 int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
363 CurSize[n] - NewSize[n]);
364 CurSize[m] += d;
365 CurSize[n] -= d;
366 // Keep going if the current node was exhausted.
367 if (CurSize[n] >= NewSize[n])
368 break;
369 }
370 }
371
372 #ifndef NDEBUG
373 for (unsigned n = 0; n != Nodes; n++)
374 assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
375 #endif
376 }
377
378 /// IntervalMapImpl::distribute - Compute a new distribution of node elements
379 /// after an overflow or underflow. Reserve space for a new element at Position,
380 /// and compute the node that will hold Position after redistributing node
381 /// elements.
382 ///
383 /// It is required that
384 ///
385 /// Elements == sum(CurSize), and
386 /// Elements + Grow <= Nodes * Capacity.
387 ///
388 /// NewSize[] will be filled in such that:
389 ///
390 /// sum(NewSize) == Elements, and
391 /// NewSize[i] <= Capacity.
392 ///
393 /// The returned index is the node where Position will go, so:
394 ///
395 /// sum(NewSize[0..idx-1]) <= Position
396 /// sum(NewSize[0..idx]) >= Position
397 ///
398 /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
399 /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
400 /// before the one holding the Position'th element where there is room for an
401 /// insertion.
402 ///
403 /// @param Nodes The number of nodes.
404 /// @param Elements Total elements in all nodes.
405 /// @param Capacity The capacity of each node.
406 /// @param CurSize Array[Nodes] of current node sizes, or NULL.
407 /// @param NewSize Array[Nodes] to receive the new node sizes.
408 /// @param Position Insert position.
409 /// @param Grow Reserve space for a new element at Position.
410 /// @return (node, offset) for Position.
411 IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
412 const unsigned *CurSize, unsigned NewSize[],
413 unsigned Position, bool Grow);
414
415 //===----------------------------------------------------------------------===//
416 //--- IntervalMapImpl::NodeSizer ---//
417 //===----------------------------------------------------------------------===//
418 //
419 // Compute node sizes from key and value types.
420 //
421 // The branching factors are chosen to make nodes fit in three cache lines.
422 // This may not be possible if keys or values are very large. Such large objects
423 // are handled correctly, but a std::map would probably give better performance.
424 //
425 //===----------------------------------------------------------------------===//
426
427 enum {
428 // Cache line size. Most architectures have 32 or 64 byte cache lines.
429 // We use 64 bytes here because it provides good branching factors.
430 Log2CacheLine = 6,
431 CacheLineBytes = 1 << Log2CacheLine,
432 DesiredNodeBytes = 3 * CacheLineBytes
433 };
434
435 template <typename KeyT, typename ValT>
436 struct NodeSizer {
437 enum {
438 // Compute the leaf node branching factor that makes a node fit in three
439 // cache lines. The branching factor must be at least 3, or some B+-tree
440 // balancing algorithms won't work.
441 // LeafSize can't be larger than CacheLineBytes. This is required by the
442 // PointerIntPair used by NodeRef.
443 DesiredLeafSize = DesiredNodeBytes /
444 static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
445 MinLeafSize = 3,
446 LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
447 };
448
449 using LeafBase = NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize>;
450
451 enum {
452 // Now that we have the leaf branching factor, compute the actual allocation
453 // unit size by rounding up to a whole number of cache lines.
454 AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
455
456 // Determine the branching factor for branch nodes.
457 BranchSize = AllocBytes /
458 static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
459 };
460
461 /// Allocator - The recycling allocator used for both branch and leaf nodes.
462 /// This typedef is very likely to be identical for all IntervalMaps with
463 /// reasonably sized entries, so the same allocator can be shared among
464 /// different kinds of maps.
465 using Allocator =
466 RecyclingAllocator<BumpPtrAllocator, char, AllocBytes, CacheLineBytes>;
467 };
468
469 //===----------------------------------------------------------------------===//
470 //--- IntervalMapImpl::NodeRef ---//
471 //===----------------------------------------------------------------------===//
472 //
473 // B+-tree nodes can be leaves or branches, so we need a polymorphic node
474 // pointer that can point to both kinds.
475 //
476 // All nodes are cache line aligned and the low 6 bits of a node pointer are
477 // always 0. These bits are used to store the number of elements in the
478 // referenced node. Besides saving space, placing node sizes in the parents
479 // allow tree balancing algorithms to run without faulting cache lines for nodes
480 // that may not need to be modified.
481 //
482 // A NodeRef doesn't know whether it references a leaf node or a branch node.
483 // It is the responsibility of the caller to use the correct types.
484 //
485 // Nodes are never supposed to be empty, and it is invalid to store a node size
486 // of 0 in a NodeRef. The valid range of sizes is 1-64.
487 //
488 //===----------------------------------------------------------------------===//
489
490 class NodeRef {
491 struct CacheAlignedPointerTraits {
getAsVoidPointerCacheAlignedPointerTraits492 static inline void *getAsVoidPointer(void *P) { return P; }
getFromVoidPointerCacheAlignedPointerTraits493 static inline void *getFromVoidPointer(void *P) { return P; }
494 enum { NumLowBitsAvailable = Log2CacheLine };
495 };
496 PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
497
498 public:
499 /// NodeRef - Create a null ref.
500 NodeRef() = default;
501
502 /// operator bool - Detect a null ref.
503 explicit operator bool() const { return pip.getOpaqueValue(); }
504
505 /// NodeRef - Create a reference to the node p with n elements.
506 template <typename NodeT>
NodeRef(NodeT * p,unsigned n)507 NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
508 assert(n <= NodeT::Capacity && "Size too big for node");
509 }
510
511 /// size - Return the number of elements in the referenced node.
size()512 unsigned size() const { return pip.getInt() + 1; }
513
514 /// setSize - Update the node size.
setSize(unsigned n)515 void setSize(unsigned n) { pip.setInt(n - 1); }
516
517 /// subtree - Access the i'th subtree reference in a branch node.
518 /// This depends on branch nodes storing the NodeRef array as their first
519 /// member.
subtree(unsigned i)520 NodeRef &subtree(unsigned i) const {
521 return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
522 }
523
524 /// get - Dereference as a NodeT reference.
525 template <typename NodeT>
get()526 NodeT &get() const {
527 return *reinterpret_cast<NodeT*>(pip.getPointer());
528 }
529
530 bool operator==(const NodeRef &RHS) const {
531 if (pip == RHS.pip)
532 return true;
533 assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
534 return false;
535 }
536
537 bool operator!=(const NodeRef &RHS) const {
538 return !operator==(RHS);
539 }
540 };
541
542 //===----------------------------------------------------------------------===//
543 //--- IntervalMapImpl::LeafNode ---//
544 //===----------------------------------------------------------------------===//
545 //
546 // Leaf nodes store up to N disjoint intervals with corresponding values.
547 //
548 // The intervals are kept sorted and fully coalesced so there are no adjacent
549 // intervals mapping to the same value.
550 //
551 // These constraints are always satisfied:
552 //
553 // - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals.
554 //
555 // - Traits::stopLess(stop(i), start(i + 1) - Sorted.
556 //
557 // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
558 // - Fully coalesced.
559 //
560 //===----------------------------------------------------------------------===//
561
562 template <typename KeyT, typename ValT, unsigned N, typename Traits>
563 class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
564 public:
start(unsigned i)565 const KeyT &start(unsigned i) const { return this->first[i].first; }
stop(unsigned i)566 const KeyT &stop(unsigned i) const { return this->first[i].second; }
value(unsigned i)567 const ValT &value(unsigned i) const { return this->second[i]; }
568
start(unsigned i)569 KeyT &start(unsigned i) { return this->first[i].first; }
stop(unsigned i)570 KeyT &stop(unsigned i) { return this->first[i].second; }
value(unsigned i)571 ValT &value(unsigned i) { return this->second[i]; }
572
573 /// findFrom - Find the first interval after i that may contain x.
574 /// @param i Starting index for the search.
575 /// @param Size Number of elements in node.
576 /// @param x Key to search for.
577 /// @return First index with !stopLess(key[i].stop, x), or size.
578 /// This is the first interval that can possibly contain x.
findFrom(unsigned i,unsigned Size,KeyT x)579 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
580 assert(i <= Size && Size <= N && "Bad indices");
581 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
582 "Index is past the needed point");
583 while (i != Size && Traits::stopLess(stop(i), x)) ++i;
584 return i;
585 }
586
587 /// safeFind - Find an interval that is known to exist. This is the same as
588 /// findFrom except is it assumed that x is at least within range of the last
589 /// interval.
590 /// @param i Starting index for the search.
591 /// @param x Key to search for.
592 /// @return First index with !stopLess(key[i].stop, x), never size.
593 /// This is the first interval that can possibly contain x.
safeFind(unsigned i,KeyT x)594 unsigned safeFind(unsigned i, KeyT x) const {
595 assert(i < N && "Bad index");
596 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
597 "Index is past the needed point");
598 while (Traits::stopLess(stop(i), x)) ++i;
599 assert(i < N && "Unsafe intervals");
600 return i;
601 }
602
603 /// safeLookup - Lookup mapped value for a safe key.
604 /// It is assumed that x is within range of the last entry.
605 /// @param x Key to search for.
606 /// @param NotFound Value to return if x is not in any interval.
607 /// @return The mapped value at x or NotFound.
safeLookup(KeyT x,ValT NotFound)608 ValT safeLookup(KeyT x, ValT NotFound) const {
609 unsigned i = safeFind(0, x);
610 return Traits::startLess(x, start(i)) ? NotFound : value(i);
611 }
612
613 unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
614 };
615
616 /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
617 /// possible. This may cause the node to grow by 1, or it may cause the node
618 /// to shrink because of coalescing.
619 /// @param Pos Starting index = insertFrom(0, size, a)
620 /// @param Size Number of elements in node.
621 /// @param a Interval start.
622 /// @param b Interval stop.
623 /// @param y Value be mapped.
624 /// @return (insert position, new size), or (i, Capacity+1) on overflow.
625 template <typename KeyT, typename ValT, unsigned N, typename Traits>
626 unsigned LeafNode<KeyT, ValT, N, Traits>::
insertFrom(unsigned & Pos,unsigned Size,KeyT a,KeyT b,ValT y)627 insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
628 unsigned i = Pos;
629 assert(i <= Size && Size <= N && "Invalid index");
630 assert(!Traits::stopLess(b, a) && "Invalid interval");
631
632 // Verify the findFrom invariant.
633 assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
634 assert((i == Size || !Traits::stopLess(stop(i), a)));
635 assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
636
637 // Coalesce with previous interval.
638 if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
639 Pos = i - 1;
640 // Also coalesce with next interval?
641 if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
642 stop(i - 1) = stop(i);
643 this->erase(i, Size);
644 return Size - 1;
645 }
646 stop(i - 1) = b;
647 return Size;
648 }
649
650 // Detect overflow.
651 if (i == N)
652 return N + 1;
653
654 // Add new interval at end.
655 if (i == Size) {
656 start(i) = a;
657 stop(i) = b;
658 value(i) = y;
659 return Size + 1;
660 }
661
662 // Try to coalesce with following interval.
663 if (value(i) == y && Traits::adjacent(b, start(i))) {
664 start(i) = a;
665 return Size;
666 }
667
668 // We must insert before i. Detect overflow.
669 if (Size == N)
670 return N + 1;
671
672 // Insert before i.
673 this->shift(i, Size);
674 start(i) = a;
675 stop(i) = b;
676 value(i) = y;
677 return Size + 1;
678 }
679
680 //===----------------------------------------------------------------------===//
681 //--- IntervalMapImpl::BranchNode ---//
682 //===----------------------------------------------------------------------===//
683 //
684 // A branch node stores references to 1--N subtrees all of the same height.
685 //
686 // The key array in a branch node holds the rightmost stop key of each subtree.
687 // It is redundant to store the last stop key since it can be found in the
688 // parent node, but doing so makes tree balancing a lot simpler.
689 //
690 // It is unusual for a branch node to only have one subtree, but it can happen
691 // in the root node if it is smaller than the normal nodes.
692 //
693 // When all of the leaf nodes from all the subtrees are concatenated, they must
694 // satisfy the same constraints as a single leaf node. They must be sorted,
695 // sane, and fully coalesced.
696 //
697 //===----------------------------------------------------------------------===//
698
699 template <typename KeyT, typename ValT, unsigned N, typename Traits>
700 class BranchNode : public NodeBase<NodeRef, KeyT, N> {
701 public:
stop(unsigned i)702 const KeyT &stop(unsigned i) const { return this->second[i]; }
subtree(unsigned i)703 const NodeRef &subtree(unsigned i) const { return this->first[i]; }
704
stop(unsigned i)705 KeyT &stop(unsigned i) { return this->second[i]; }
subtree(unsigned i)706 NodeRef &subtree(unsigned i) { return this->first[i]; }
707
708 /// findFrom - Find the first subtree after i that may contain x.
709 /// @param i Starting index for the search.
710 /// @param Size Number of elements in node.
711 /// @param x Key to search for.
712 /// @return First index with !stopLess(key[i], x), or size.
713 /// This is the first subtree that can possibly contain x.
findFrom(unsigned i,unsigned Size,KeyT x)714 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
715 assert(i <= Size && Size <= N && "Bad indices");
716 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
717 "Index to findFrom is past the needed point");
718 while (i != Size && Traits::stopLess(stop(i), x)) ++i;
719 return i;
720 }
721
722 /// safeFind - Find a subtree that is known to exist. This is the same as
723 /// findFrom except is it assumed that x is in range.
724 /// @param i Starting index for the search.
725 /// @param x Key to search for.
726 /// @return First index with !stopLess(key[i], x), never size.
727 /// This is the first subtree that can possibly contain x.
safeFind(unsigned i,KeyT x)728 unsigned safeFind(unsigned i, KeyT x) const {
729 assert(i < N && "Bad index");
730 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
731 "Index is past the needed point");
732 while (Traits::stopLess(stop(i), x)) ++i;
733 assert(i < N && "Unsafe intervals");
734 return i;
735 }
736
737 /// safeLookup - Get the subtree containing x, Assuming that x is in range.
738 /// @param x Key to search for.
739 /// @return Subtree containing x
safeLookup(KeyT x)740 NodeRef safeLookup(KeyT x) const {
741 return subtree(safeFind(0, x));
742 }
743
744 /// insert - Insert a new (subtree, stop) pair.
745 /// @param i Insert position, following entries will be shifted.
746 /// @param Size Number of elements in node.
747 /// @param Node Subtree to insert.
748 /// @param Stop Last key in subtree.
insert(unsigned i,unsigned Size,NodeRef Node,KeyT Stop)749 void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
750 assert(Size < N && "branch node overflow");
751 assert(i <= Size && "Bad insert position");
752 this->shift(i, Size);
753 subtree(i) = Node;
754 stop(i) = Stop;
755 }
756 };
757
758 //===----------------------------------------------------------------------===//
759 //--- IntervalMapImpl::Path ---//
760 //===----------------------------------------------------------------------===//
761 //
762 // A Path is used by iterators to represent a position in a B+-tree, and the
763 // path to get there from the root.
764 //
765 // The Path class also contains the tree navigation code that doesn't have to
766 // be templatized.
767 //
768 //===----------------------------------------------------------------------===//
769
770 class Path {
771 /// Entry - Each step in the path is a node pointer and an offset into that
772 /// node.
773 struct Entry {
774 void *node;
775 unsigned size;
776 unsigned offset;
777
EntryEntry778 Entry(void *Node, unsigned Size, unsigned Offset)
779 : node(Node), size(Size), offset(Offset) {}
780
EntryEntry781 Entry(NodeRef Node, unsigned Offset)
782 : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
783
subtreeEntry784 NodeRef &subtree(unsigned i) const {
785 return reinterpret_cast<NodeRef*>(node)[i];
786 }
787 };
788
789 /// path - The path entries, path[0] is the root node, path.back() is a leaf.
790 SmallVector<Entry, 4> path;
791
792 public:
793 // Node accessors.
node(unsigned Level)794 template <typename NodeT> NodeT &node(unsigned Level) const {
795 return *reinterpret_cast<NodeT*>(path[Level].node);
796 }
size(unsigned Level)797 unsigned size(unsigned Level) const { return path[Level].size; }
offset(unsigned Level)798 unsigned offset(unsigned Level) const { return path[Level].offset; }
offset(unsigned Level)799 unsigned &offset(unsigned Level) { return path[Level].offset; }
800
801 // Leaf accessors.
leaf()802 template <typename NodeT> NodeT &leaf() const {
803 return *reinterpret_cast<NodeT*>(path.back().node);
804 }
leafSize()805 unsigned leafSize() const { return path.back().size; }
leafOffset()806 unsigned leafOffset() const { return path.back().offset; }
leafOffset()807 unsigned &leafOffset() { return path.back().offset; }
808
809 /// valid - Return true if path is at a valid node, not at end().
valid()810 bool valid() const {
811 return !path.empty() && path.front().offset < path.front().size;
812 }
813
814 /// height - Return the height of the tree corresponding to this path.
815 /// This matches map->height in a full path.
height()816 unsigned height() const { return path.size() - 1; }
817
818 /// subtree - Get the subtree referenced from Level. When the path is
819 /// consistent, node(Level + 1) == subtree(Level).
820 /// @param Level 0..height-1. The leaves have no subtrees.
subtree(unsigned Level)821 NodeRef &subtree(unsigned Level) const {
822 return path[Level].subtree(path[Level].offset);
823 }
824
825 /// reset - Reset cached information about node(Level) from subtree(Level -1).
826 /// @param Level 1..height. THe node to update after parent node changed.
reset(unsigned Level)827 void reset(unsigned Level) {
828 path[Level] = Entry(subtree(Level - 1), offset(Level));
829 }
830
831 /// push - Add entry to path.
832 /// @param Node Node to add, should be subtree(path.size()-1).
833 /// @param Offset Offset into Node.
push(NodeRef Node,unsigned Offset)834 void push(NodeRef Node, unsigned Offset) {
835 path.push_back(Entry(Node, Offset));
836 }
837
838 /// pop - Remove the last path entry.
pop()839 void pop() {
840 path.pop_back();
841 }
842
843 /// setSize - Set the size of a node both in the path and in the tree.
844 /// @param Level 0..height. Note that setting the root size won't change
845 /// map->rootSize.
846 /// @param Size New node size.
setSize(unsigned Level,unsigned Size)847 void setSize(unsigned Level, unsigned Size) {
848 path[Level].size = Size;
849 if (Level)
850 subtree(Level - 1).setSize(Size);
851 }
852
853 /// setRoot - Clear the path and set a new root node.
854 /// @param Node New root node.
855 /// @param Size New root size.
856 /// @param Offset Offset into root node.
setRoot(void * Node,unsigned Size,unsigned Offset)857 void setRoot(void *Node, unsigned Size, unsigned Offset) {
858 path.clear();
859 path.push_back(Entry(Node, Size, Offset));
860 }
861
862 /// replaceRoot - Replace the current root node with two new entries after the
863 /// tree height has increased.
864 /// @param Root The new root node.
865 /// @param Size Number of entries in the new root.
866 /// @param Offsets Offsets into the root and first branch nodes.
867 void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
868
869 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
870 /// @param Level Get the sibling to node(Level).
871 /// @return Left sibling, or NodeRef().
872 NodeRef getLeftSibling(unsigned Level) const;
873
874 /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
875 /// unaltered.
876 /// @param Level Move node(Level).
877 void moveLeft(unsigned Level);
878
879 /// fillLeft - Grow path to Height by taking leftmost branches.
880 /// @param Height The target height.
fillLeft(unsigned Height)881 void fillLeft(unsigned Height) {
882 while (height() < Height)
883 push(subtree(height()), 0);
884 }
885
886 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
887 /// @param Level Get the sinbling to node(Level).
888 /// @return Left sibling, or NodeRef().
889 NodeRef getRightSibling(unsigned Level) const;
890
891 /// moveRight - Move path to the left sibling at Level. Leave nodes below
892 /// Level unaltered.
893 /// @param Level Move node(Level).
894 void moveRight(unsigned Level);
895
896 /// atBegin - Return true if path is at begin().
atBegin()897 bool atBegin() const {
898 for (unsigned i = 0, e = path.size(); i != e; ++i)
899 if (path[i].offset != 0)
900 return false;
901 return true;
902 }
903
904 /// atLastEntry - Return true if the path is at the last entry of the node at
905 /// Level.
906 /// @param Level Node to examine.
atLastEntry(unsigned Level)907 bool atLastEntry(unsigned Level) const {
908 return path[Level].offset == path[Level].size - 1;
909 }
910
911 /// legalizeForInsert - Prepare the path for an insertion at Level. When the
912 /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
913 /// ensures that node(Level) is real by moving back to the last node at Level,
914 /// and setting offset(Level) to size(Level) if required.
915 /// @param Level The level where an insertion is about to take place.
legalizeForInsert(unsigned Level)916 void legalizeForInsert(unsigned Level) {
917 if (valid())
918 return;
919 moveLeft(Level);
920 ++path[Level].offset;
921 }
922 };
923
924 } // end namespace IntervalMapImpl
925
926 //===----------------------------------------------------------------------===//
927 //--- IntervalMap ----//
928 //===----------------------------------------------------------------------===//
929
930 template <typename KeyT, typename ValT,
931 unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
932 typename Traits = IntervalMapInfo<KeyT>>
933 class IntervalMap {
934 using Sizer = IntervalMapImpl::NodeSizer<KeyT, ValT>;
935 using Leaf = IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits>;
936 using Branch =
937 IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>;
938 using RootLeaf = IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits>;
939 using IdxPair = IntervalMapImpl::IdxPair;
940
941 // The RootLeaf capacity is given as a template parameter. We must compute the
942 // corresponding RootBranch capacity.
943 enum {
944 DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
945 (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
946 RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
947 };
948
949 using RootBranch =
950 IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>;
951
952 // When branched, we store a global start key as well as the branch node.
953 struct RootBranchData {
954 KeyT start;
955 RootBranch node;
956 };
957
958 public:
959 using Allocator = typename Sizer::Allocator;
960 using KeyType = KeyT;
961 using ValueType = ValT;
962 using KeyTraits = Traits;
963
964 private:
965 // The root data is either a RootLeaf or a RootBranchData instance.
966 AlignedCharArrayUnion<RootLeaf, RootBranchData> data;
967
968 // Tree height.
969 // 0: Leaves in root.
970 // 1: Root points to leaf.
971 // 2: root->branch->leaf ...
972 unsigned height;
973
974 // Number of entries in the root node.
975 unsigned rootSize;
976
977 // Allocator used for creating external nodes.
978 Allocator &allocator;
979
980 /// dataAs - Represent data as a node type without breaking aliasing rules.
981 template <typename T>
dataAs()982 T &dataAs() const {
983 union {
984 const char *d;
985 T *t;
986 } u;
987 u.d = data.buffer;
988 return *u.t;
989 }
990
rootLeaf()991 const RootLeaf &rootLeaf() const {
992 assert(!branched() && "Cannot acces leaf data in branched root");
993 return dataAs<RootLeaf>();
994 }
rootLeaf()995 RootLeaf &rootLeaf() {
996 assert(!branched() && "Cannot acces leaf data in branched root");
997 return dataAs<RootLeaf>();
998 }
999
rootBranchData()1000 RootBranchData &rootBranchData() const {
1001 assert(branched() && "Cannot access branch data in non-branched root");
1002 return dataAs<RootBranchData>();
1003 }
rootBranchData()1004 RootBranchData &rootBranchData() {
1005 assert(branched() && "Cannot access branch data in non-branched root");
1006 return dataAs<RootBranchData>();
1007 }
1008
rootBranch()1009 const RootBranch &rootBranch() const { return rootBranchData().node; }
rootBranch()1010 RootBranch &rootBranch() { return rootBranchData().node; }
rootBranchStart()1011 KeyT rootBranchStart() const { return rootBranchData().start; }
rootBranchStart()1012 KeyT &rootBranchStart() { return rootBranchData().start; }
1013
newNode()1014 template <typename NodeT> NodeT *newNode() {
1015 return new(allocator.template Allocate<NodeT>()) NodeT();
1016 }
1017
deleteNode(NodeT * P)1018 template <typename NodeT> void deleteNode(NodeT *P) {
1019 P->~NodeT();
1020 allocator.Deallocate(P);
1021 }
1022
1023 IdxPair branchRoot(unsigned Position);
1024 IdxPair splitRoot(unsigned Position);
1025
switchRootToBranch()1026 void switchRootToBranch() {
1027 rootLeaf().~RootLeaf();
1028 height = 1;
1029 new (&rootBranchData()) RootBranchData();
1030 }
1031
switchRootToLeaf()1032 void switchRootToLeaf() {
1033 rootBranchData().~RootBranchData();
1034 height = 0;
1035 new(&rootLeaf()) RootLeaf();
1036 }
1037
branched()1038 bool branched() const { return height > 0; }
1039
1040 ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1041 void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1042 unsigned Level));
1043 void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1044
1045 public:
IntervalMap(Allocator & a)1046 explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
1047 assert((uintptr_t(data.buffer) & (alignof(RootLeaf) - 1)) == 0 &&
1048 "Insufficient alignment");
1049 new(&rootLeaf()) RootLeaf();
1050 }
1051
~IntervalMap()1052 ~IntervalMap() {
1053 clear();
1054 rootLeaf().~RootLeaf();
1055 }
1056
1057 /// empty - Return true when no intervals are mapped.
empty()1058 bool empty() const {
1059 return rootSize == 0;
1060 }
1061
1062 /// start - Return the smallest mapped key in a non-empty map.
start()1063 KeyT start() const {
1064 assert(!empty() && "Empty IntervalMap has no start");
1065 return !branched() ? rootLeaf().start(0) : rootBranchStart();
1066 }
1067
1068 /// stop - Return the largest mapped key in a non-empty map.
stop()1069 KeyT stop() const {
1070 assert(!empty() && "Empty IntervalMap has no stop");
1071 return !branched() ? rootLeaf().stop(rootSize - 1) :
1072 rootBranch().stop(rootSize - 1);
1073 }
1074
1075 /// lookup - Return the mapped value at x or NotFound.
1076 ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1077 if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1078 return NotFound;
1079 return branched() ? treeSafeLookup(x, NotFound) :
1080 rootLeaf().safeLookup(x, NotFound);
1081 }
1082
1083 /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1084 /// It is assumed that no key in the interval is mapped to another value, but
1085 /// overlapping intervals already mapped to y will be coalesced.
insert(KeyT a,KeyT b,ValT y)1086 void insert(KeyT a, KeyT b, ValT y) {
1087 if (branched() || rootSize == RootLeaf::Capacity)
1088 return find(a).insert(a, b, y);
1089
1090 // Easy insert into root leaf.
1091 unsigned p = rootLeaf().findFrom(0, rootSize, a);
1092 rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
1093 }
1094
1095 /// clear - Remove all entries.
1096 void clear();
1097
1098 class const_iterator;
1099 class iterator;
1100 friend class const_iterator;
1101 friend class iterator;
1102
begin()1103 const_iterator begin() const {
1104 const_iterator I(*this);
1105 I.goToBegin();
1106 return I;
1107 }
1108
begin()1109 iterator begin() {
1110 iterator I(*this);
1111 I.goToBegin();
1112 return I;
1113 }
1114
end()1115 const_iterator end() const {
1116 const_iterator I(*this);
1117 I.goToEnd();
1118 return I;
1119 }
1120
end()1121 iterator end() {
1122 iterator I(*this);
1123 I.goToEnd();
1124 return I;
1125 }
1126
1127 /// find - Return an iterator pointing to the first interval ending at or
1128 /// after x, or end().
find(KeyT x)1129 const_iterator find(KeyT x) const {
1130 const_iterator I(*this);
1131 I.find(x);
1132 return I;
1133 }
1134
find(KeyT x)1135 iterator find(KeyT x) {
1136 iterator I(*this);
1137 I.find(x);
1138 return I;
1139 }
1140 };
1141
1142 /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1143 /// branched root.
1144 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1145 ValT IntervalMap<KeyT, ValT, N, Traits>::
treeSafeLookup(KeyT x,ValT NotFound)1146 treeSafeLookup(KeyT x, ValT NotFound) const {
1147 assert(branched() && "treeLookup assumes a branched root");
1148
1149 IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1150 for (unsigned h = height-1; h; --h)
1151 NR = NR.get<Branch>().safeLookup(x);
1152 return NR.get<Leaf>().safeLookup(x, NotFound);
1153 }
1154
1155 // branchRoot - Switch from a leaf root to a branched root.
1156 // Return the new (root offset, node offset) corresponding to Position.
1157 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1158 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
branchRoot(unsigned Position)1159 branchRoot(unsigned Position) {
1160 using namespace IntervalMapImpl;
1161 // How many external leaf nodes to hold RootLeaf+1?
1162 const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1163
1164 // Compute element distribution among new nodes.
1165 unsigned size[Nodes];
1166 IdxPair NewOffset(0, Position);
1167
1168 // Is is very common for the root node to be smaller than external nodes.
1169 if (Nodes == 1)
1170 size[0] = rootSize;
1171 else
1172 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, size,
1173 Position, true);
1174
1175 // Allocate new nodes.
1176 unsigned pos = 0;
1177 NodeRef node[Nodes];
1178 for (unsigned n = 0; n != Nodes; ++n) {
1179 Leaf *L = newNode<Leaf>();
1180 L->copy(rootLeaf(), pos, 0, size[n]);
1181 node[n] = NodeRef(L, size[n]);
1182 pos += size[n];
1183 }
1184
1185 // Destroy the old leaf node, construct branch node instead.
1186 switchRootToBranch();
1187 for (unsigned n = 0; n != Nodes; ++n) {
1188 rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1189 rootBranch().subtree(n) = node[n];
1190 }
1191 rootBranchStart() = node[0].template get<Leaf>().start(0);
1192 rootSize = Nodes;
1193 return NewOffset;
1194 }
1195
1196 // splitRoot - Split the current BranchRoot into multiple Branch nodes.
1197 // Return the new (root offset, node offset) corresponding to Position.
1198 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1199 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
splitRoot(unsigned Position)1200 splitRoot(unsigned Position) {
1201 using namespace IntervalMapImpl;
1202 // How many external leaf nodes to hold RootBranch+1?
1203 const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1204
1205 // Compute element distribution among new nodes.
1206 unsigned Size[Nodes];
1207 IdxPair NewOffset(0, Position);
1208
1209 // Is is very common for the root node to be smaller than external nodes.
1210 if (Nodes == 1)
1211 Size[0] = rootSize;
1212 else
1213 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, Size,
1214 Position, true);
1215
1216 // Allocate new nodes.
1217 unsigned Pos = 0;
1218 NodeRef Node[Nodes];
1219 for (unsigned n = 0; n != Nodes; ++n) {
1220 Branch *B = newNode<Branch>();
1221 B->copy(rootBranch(), Pos, 0, Size[n]);
1222 Node[n] = NodeRef(B, Size[n]);
1223 Pos += Size[n];
1224 }
1225
1226 for (unsigned n = 0; n != Nodes; ++n) {
1227 rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1228 rootBranch().subtree(n) = Node[n];
1229 }
1230 rootSize = Nodes;
1231 ++height;
1232 return NewOffset;
1233 }
1234
1235 /// visitNodes - Visit each external node.
1236 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1237 void IntervalMap<KeyT, ValT, N, Traits>::
visitNodes(void (IntervalMap::* f)(IntervalMapImpl::NodeRef,unsigned Height))1238 visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1239 if (!branched())
1240 return;
1241 SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1242
1243 // Collect level 0 nodes from the root.
1244 for (unsigned i = 0; i != rootSize; ++i)
1245 Refs.push_back(rootBranch().subtree(i));
1246
1247 // Visit all branch nodes.
1248 for (unsigned h = height - 1; h; --h) {
1249 for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1250 for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1251 NextRefs.push_back(Refs[i].subtree(j));
1252 (this->*f)(Refs[i], h);
1253 }
1254 Refs.clear();
1255 Refs.swap(NextRefs);
1256 }
1257
1258 // Visit all leaf nodes.
1259 for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1260 (this->*f)(Refs[i], 0);
1261 }
1262
1263 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1264 void IntervalMap<KeyT, ValT, N, Traits>::
deleteNode(IntervalMapImpl::NodeRef Node,unsigned Level)1265 deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1266 if (Level)
1267 deleteNode(&Node.get<Branch>());
1268 else
1269 deleteNode(&Node.get<Leaf>());
1270 }
1271
1272 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1273 void IntervalMap<KeyT, ValT, N, Traits>::
clear()1274 clear() {
1275 if (branched()) {
1276 visitNodes(&IntervalMap::deleteNode);
1277 switchRootToLeaf();
1278 }
1279 rootSize = 0;
1280 }
1281
1282 //===----------------------------------------------------------------------===//
1283 //--- IntervalMap::const_iterator ----//
1284 //===----------------------------------------------------------------------===//
1285
1286 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1287 class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
1288 public std::iterator<std::bidirectional_iterator_tag, ValT> {
1289
1290 protected:
1291 friend class IntervalMap;
1292
1293 // The map referred to.
1294 IntervalMap *map = nullptr;
1295
1296 // We store a full path from the root to the current position.
1297 // The path may be partially filled, but never between iterator calls.
1298 IntervalMapImpl::Path path;
1299
const_iterator(const IntervalMap & map)1300 explicit const_iterator(const IntervalMap &map) :
1301 map(const_cast<IntervalMap*>(&map)) {}
1302
branched()1303 bool branched() const {
1304 assert(map && "Invalid iterator");
1305 return map->branched();
1306 }
1307
setRoot(unsigned Offset)1308 void setRoot(unsigned Offset) {
1309 if (branched())
1310 path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1311 else
1312 path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1313 }
1314
1315 void pathFillFind(KeyT x);
1316 void treeFind(KeyT x);
1317 void treeAdvanceTo(KeyT x);
1318
1319 /// unsafeStart - Writable access to start() for iterator.
unsafeStart()1320 KeyT &unsafeStart() const {
1321 assert(valid() && "Cannot access invalid iterator");
1322 return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1323 path.leaf<RootLeaf>().start(path.leafOffset());
1324 }
1325
1326 /// unsafeStop - Writable access to stop() for iterator.
unsafeStop()1327 KeyT &unsafeStop() const {
1328 assert(valid() && "Cannot access invalid iterator");
1329 return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1330 path.leaf<RootLeaf>().stop(path.leafOffset());
1331 }
1332
1333 /// unsafeValue - Writable access to value() for iterator.
unsafeValue()1334 ValT &unsafeValue() const {
1335 assert(valid() && "Cannot access invalid iterator");
1336 return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1337 path.leaf<RootLeaf>().value(path.leafOffset());
1338 }
1339
1340 public:
1341 /// const_iterator - Create an iterator that isn't pointing anywhere.
1342 const_iterator() = default;
1343
1344 /// setMap - Change the map iterated over. This call must be followed by a
1345 /// call to goToBegin(), goToEnd(), or find()
setMap(const IntervalMap & m)1346 void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
1347
1348 /// valid - Return true if the current position is valid, false for end().
valid()1349 bool valid() const { return path.valid(); }
1350
1351 /// atBegin - Return true if the current position is the first map entry.
atBegin()1352 bool atBegin() const { return path.atBegin(); }
1353
1354 /// start - Return the beginning of the current interval.
start()1355 const KeyT &start() const { return unsafeStart(); }
1356
1357 /// stop - Return the end of the current interval.
stop()1358 const KeyT &stop() const { return unsafeStop(); }
1359
1360 /// value - Return the mapped value at the current interval.
value()1361 const ValT &value() const { return unsafeValue(); }
1362
1363 const ValT &operator*() const { return value(); }
1364
1365 bool operator==(const const_iterator &RHS) const {
1366 assert(map == RHS.map && "Cannot compare iterators from different maps");
1367 if (!valid())
1368 return !RHS.valid();
1369 if (path.leafOffset() != RHS.path.leafOffset())
1370 return false;
1371 return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1372 }
1373
1374 bool operator!=(const const_iterator &RHS) const {
1375 return !operator==(RHS);
1376 }
1377
1378 /// goToBegin - Move to the first interval in map.
goToBegin()1379 void goToBegin() {
1380 setRoot(0);
1381 if (branched())
1382 path.fillLeft(map->height);
1383 }
1384
1385 /// goToEnd - Move beyond the last interval in map.
goToEnd()1386 void goToEnd() {
1387 setRoot(map->rootSize);
1388 }
1389
1390 /// preincrement - move to the next interval.
1391 const_iterator &operator++() {
1392 assert(valid() && "Cannot increment end()");
1393 if (++path.leafOffset() == path.leafSize() && branched())
1394 path.moveRight(map->height);
1395 return *this;
1396 }
1397
1398 /// postincrement - Dont do that!
1399 const_iterator operator++(int) {
1400 const_iterator tmp = *this;
1401 operator++();
1402 return tmp;
1403 }
1404
1405 /// predecrement - move to the previous interval.
1406 const_iterator &operator--() {
1407 if (path.leafOffset() && (valid() || !branched()))
1408 --path.leafOffset();
1409 else
1410 path.moveLeft(map->height);
1411 return *this;
1412 }
1413
1414 /// postdecrement - Dont do that!
1415 const_iterator operator--(int) {
1416 const_iterator tmp = *this;
1417 operator--();
1418 return tmp;
1419 }
1420
1421 /// find - Move to the first interval with stop >= x, or end().
1422 /// This is a full search from the root, the current position is ignored.
find(KeyT x)1423 void find(KeyT x) {
1424 if (branched())
1425 treeFind(x);
1426 else
1427 setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1428 }
1429
1430 /// advanceTo - Move to the first interval with stop >= x, or end().
1431 /// The search is started from the current position, and no earlier positions
1432 /// can be found. This is much faster than find() for small moves.
advanceTo(KeyT x)1433 void advanceTo(KeyT x) {
1434 if (!valid())
1435 return;
1436 if (branched())
1437 treeAdvanceTo(x);
1438 else
1439 path.leafOffset() =
1440 map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1441 }
1442 };
1443
1444 /// pathFillFind - Complete path by searching for x.
1445 /// @param x Key to search for.
1446 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1447 void IntervalMap<KeyT, ValT, N, Traits>::
pathFillFind(KeyT x)1448 const_iterator::pathFillFind(KeyT x) {
1449 IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1450 for (unsigned i = map->height - path.height() - 1; i; --i) {
1451 unsigned p = NR.get<Branch>().safeFind(0, x);
1452 path.push(NR, p);
1453 NR = NR.subtree(p);
1454 }
1455 path.push(NR, NR.get<Leaf>().safeFind(0, x));
1456 }
1457
1458 /// treeFind - Find in a branched tree.
1459 /// @param x Key to search for.
1460 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1461 void IntervalMap<KeyT, ValT, N, Traits>::
treeFind(KeyT x)1462 const_iterator::treeFind(KeyT x) {
1463 setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1464 if (valid())
1465 pathFillFind(x);
1466 }
1467
1468 /// treeAdvanceTo - Find position after the current one.
1469 /// @param x Key to search for.
1470 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1471 void IntervalMap<KeyT, ValT, N, Traits>::
treeAdvanceTo(KeyT x)1472 const_iterator::treeAdvanceTo(KeyT x) {
1473 // Can we stay on the same leaf node?
1474 if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1475 path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1476 return;
1477 }
1478
1479 // Drop the current leaf.
1480 path.pop();
1481
1482 // Search towards the root for a usable subtree.
1483 if (path.height()) {
1484 for (unsigned l = path.height() - 1; l; --l) {
1485 if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1486 // The branch node at l+1 is usable
1487 path.offset(l + 1) =
1488 path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1489 return pathFillFind(x);
1490 }
1491 path.pop();
1492 }
1493 // Is the level-1 Branch usable?
1494 if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1495 path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1496 return pathFillFind(x);
1497 }
1498 }
1499
1500 // We reached the root.
1501 setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1502 if (valid())
1503 pathFillFind(x);
1504 }
1505
1506 //===----------------------------------------------------------------------===//
1507 //--- IntervalMap::iterator ----//
1508 //===----------------------------------------------------------------------===//
1509
1510 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1511 class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1512 friend class IntervalMap;
1513
1514 using IdxPair = IntervalMapImpl::IdxPair;
1515
iterator(IntervalMap & map)1516 explicit iterator(IntervalMap &map) : const_iterator(map) {}
1517
1518 void setNodeStop(unsigned Level, KeyT Stop);
1519 bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1520 template <typename NodeT> bool overflow(unsigned Level);
1521 void treeInsert(KeyT a, KeyT b, ValT y);
1522 void eraseNode(unsigned Level);
1523 void treeErase(bool UpdateRoot = true);
1524 bool canCoalesceLeft(KeyT Start, ValT x);
1525 bool canCoalesceRight(KeyT Stop, ValT x);
1526
1527 public:
1528 /// iterator - Create null iterator.
1529 iterator() = default;
1530
1531 /// setStart - Move the start of the current interval.
1532 /// This may cause coalescing with the previous interval.
1533 /// @param a New start key, must not overlap the previous interval.
1534 void setStart(KeyT a);
1535
1536 /// setStop - Move the end of the current interval.
1537 /// This may cause coalescing with the following interval.
1538 /// @param b New stop key, must not overlap the following interval.
1539 void setStop(KeyT b);
1540
1541 /// setValue - Change the mapped value of the current interval.
1542 /// This may cause coalescing with the previous and following intervals.
1543 /// @param x New value.
1544 void setValue(ValT x);
1545
1546 /// setStartUnchecked - Move the start of the current interval without
1547 /// checking for coalescing or overlaps.
1548 /// This should only be used when it is known that coalescing is not required.
1549 /// @param a New start key.
setStartUnchecked(KeyT a)1550 void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
1551
1552 /// setStopUnchecked - Move the end of the current interval without checking
1553 /// for coalescing or overlaps.
1554 /// This should only be used when it is known that coalescing is not required.
1555 /// @param b New stop key.
setStopUnchecked(KeyT b)1556 void setStopUnchecked(KeyT b) {
1557 this->unsafeStop() = b;
1558 // Update keys in branch nodes as well.
1559 if (this->path.atLastEntry(this->path.height()))
1560 setNodeStop(this->path.height(), b);
1561 }
1562
1563 /// setValueUnchecked - Change the mapped value of the current interval
1564 /// without checking for coalescing.
1565 /// @param x New value.
setValueUnchecked(ValT x)1566 void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
1567
1568 /// insert - Insert mapping [a;b] -> y before the current position.
1569 void insert(KeyT a, KeyT b, ValT y);
1570
1571 /// erase - Erase the current interval.
1572 void erase();
1573
1574 iterator &operator++() {
1575 const_iterator::operator++();
1576 return *this;
1577 }
1578
1579 iterator operator++(int) {
1580 iterator tmp = *this;
1581 operator++();
1582 return tmp;
1583 }
1584
1585 iterator &operator--() {
1586 const_iterator::operator--();
1587 return *this;
1588 }
1589
1590 iterator operator--(int) {
1591 iterator tmp = *this;
1592 operator--();
1593 return tmp;
1594 }
1595 };
1596
1597 /// canCoalesceLeft - Can the current interval coalesce to the left after
1598 /// changing start or value?
1599 /// @param Start New start of current interval.
1600 /// @param Value New value for current interval.
1601 /// @return True when updating the current interval would enable coalescing.
1602 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1603 bool IntervalMap<KeyT, ValT, N, Traits>::
canCoalesceLeft(KeyT Start,ValT Value)1604 iterator::canCoalesceLeft(KeyT Start, ValT Value) {
1605 using namespace IntervalMapImpl;
1606 Path &P = this->path;
1607 if (!this->branched()) {
1608 unsigned i = P.leafOffset();
1609 RootLeaf &Node = P.leaf<RootLeaf>();
1610 return i && Node.value(i-1) == Value &&
1611 Traits::adjacent(Node.stop(i-1), Start);
1612 }
1613 // Branched.
1614 if (unsigned i = P.leafOffset()) {
1615 Leaf &Node = P.leaf<Leaf>();
1616 return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
1617 } else if (NodeRef NR = P.getLeftSibling(P.height())) {
1618 unsigned i = NR.size() - 1;
1619 Leaf &Node = NR.get<Leaf>();
1620 return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
1621 }
1622 return false;
1623 }
1624
1625 /// canCoalesceRight - Can the current interval coalesce to the right after
1626 /// changing stop or value?
1627 /// @param Stop New stop of current interval.
1628 /// @param Value New value for current interval.
1629 /// @return True when updating the current interval would enable coalescing.
1630 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1631 bool IntervalMap<KeyT, ValT, N, Traits>::
canCoalesceRight(KeyT Stop,ValT Value)1632 iterator::canCoalesceRight(KeyT Stop, ValT Value) {
1633 using namespace IntervalMapImpl;
1634 Path &P = this->path;
1635 unsigned i = P.leafOffset() + 1;
1636 if (!this->branched()) {
1637 if (i >= P.leafSize())
1638 return false;
1639 RootLeaf &Node = P.leaf<RootLeaf>();
1640 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1641 }
1642 // Branched.
1643 if (i < P.leafSize()) {
1644 Leaf &Node = P.leaf<Leaf>();
1645 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1646 } else if (NodeRef NR = P.getRightSibling(P.height())) {
1647 Leaf &Node = NR.get<Leaf>();
1648 return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
1649 }
1650 return false;
1651 }
1652
1653 /// setNodeStop - Update the stop key of the current node at level and above.
1654 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1655 void IntervalMap<KeyT, ValT, N, Traits>::
setNodeStop(unsigned Level,KeyT Stop)1656 iterator::setNodeStop(unsigned Level, KeyT Stop) {
1657 // There are no references to the root node, so nothing to update.
1658 if (!Level)
1659 return;
1660 IntervalMapImpl::Path &P = this->path;
1661 // Update nodes pointing to the current node.
1662 while (--Level) {
1663 P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1664 if (!P.atLastEntry(Level))
1665 return;
1666 }
1667 // Update root separately since it has a different layout.
1668 P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1669 }
1670
1671 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1672 void IntervalMap<KeyT, ValT, N, Traits>::
setStart(KeyT a)1673 iterator::setStart(KeyT a) {
1674 assert(Traits::nonEmpty(a, this->stop()) && "Cannot move start beyond stop");
1675 KeyT &CurStart = this->unsafeStart();
1676 if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
1677 CurStart = a;
1678 return;
1679 }
1680 // Coalesce with the interval to the left.
1681 --*this;
1682 a = this->start();
1683 erase();
1684 setStartUnchecked(a);
1685 }
1686
1687 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1688 void IntervalMap<KeyT, ValT, N, Traits>::
setStop(KeyT b)1689 iterator::setStop(KeyT b) {
1690 assert(Traits::nonEmpty(this->start(), b) && "Cannot move stop beyond start");
1691 if (Traits::startLess(b, this->stop()) ||
1692 !canCoalesceRight(b, this->value())) {
1693 setStopUnchecked(b);
1694 return;
1695 }
1696 // Coalesce with interval to the right.
1697 KeyT a = this->start();
1698 erase();
1699 setStartUnchecked(a);
1700 }
1701
1702 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1703 void IntervalMap<KeyT, ValT, N, Traits>::
setValue(ValT x)1704 iterator::setValue(ValT x) {
1705 setValueUnchecked(x);
1706 if (canCoalesceRight(this->stop(), x)) {
1707 KeyT a = this->start();
1708 erase();
1709 setStartUnchecked(a);
1710 }
1711 if (canCoalesceLeft(this->start(), x)) {
1712 --*this;
1713 KeyT a = this->start();
1714 erase();
1715 setStartUnchecked(a);
1716 }
1717 }
1718
1719 /// insertNode - insert a node before the current path at level.
1720 /// Leave the current path pointing at the new node.
1721 /// @param Level path index of the node to be inserted.
1722 /// @param Node The node to be inserted.
1723 /// @param Stop The last index in the new node.
1724 /// @return True if the tree height was increased.
1725 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1726 bool IntervalMap<KeyT, ValT, N, Traits>::
insertNode(unsigned Level,IntervalMapImpl::NodeRef Node,KeyT Stop)1727 iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1728 assert(Level && "Cannot insert next to the root");
1729 bool SplitRoot = false;
1730 IntervalMap &IM = *this->map;
1731 IntervalMapImpl::Path &P = this->path;
1732
1733 if (Level == 1) {
1734 // Insert into the root branch node.
1735 if (IM.rootSize < RootBranch::Capacity) {
1736 IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1737 P.setSize(0, ++IM.rootSize);
1738 P.reset(Level);
1739 return SplitRoot;
1740 }
1741
1742 // We need to split the root while keeping our position.
1743 SplitRoot = true;
1744 IdxPair Offset = IM.splitRoot(P.offset(0));
1745 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1746
1747 // Fall through to insert at the new higher level.
1748 ++Level;
1749 }
1750
1751 // When inserting before end(), make sure we have a valid path.
1752 P.legalizeForInsert(--Level);
1753
1754 // Insert into the branch node at Level-1.
1755 if (P.size(Level) == Branch::Capacity) {
1756 // Branch node is full, handle handle the overflow.
1757 assert(!SplitRoot && "Cannot overflow after splitting the root");
1758 SplitRoot = overflow<Branch>(Level);
1759 Level += SplitRoot;
1760 }
1761 P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1762 P.setSize(Level, P.size(Level) + 1);
1763 if (P.atLastEntry(Level))
1764 setNodeStop(Level, Stop);
1765 P.reset(Level + 1);
1766 return SplitRoot;
1767 }
1768
1769 // insert
1770 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1771 void IntervalMap<KeyT, ValT, N, Traits>::
insert(KeyT a,KeyT b,ValT y)1772 iterator::insert(KeyT a, KeyT b, ValT y) {
1773 if (this->branched())
1774 return treeInsert(a, b, y);
1775 IntervalMap &IM = *this->map;
1776 IntervalMapImpl::Path &P = this->path;
1777
1778 // Try simple root leaf insert.
1779 unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1780
1781 // Was the root node insert successful?
1782 if (Size <= RootLeaf::Capacity) {
1783 P.setSize(0, IM.rootSize = Size);
1784 return;
1785 }
1786
1787 // Root leaf node is full, we must branch.
1788 IdxPair Offset = IM.branchRoot(P.leafOffset());
1789 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1790
1791 // Now it fits in the new leaf.
1792 treeInsert(a, b, y);
1793 }
1794
1795 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1796 void IntervalMap<KeyT, ValT, N, Traits>::
treeInsert(KeyT a,KeyT b,ValT y)1797 iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1798 using namespace IntervalMapImpl;
1799 Path &P = this->path;
1800
1801 if (!P.valid())
1802 P.legalizeForInsert(this->map->height);
1803
1804 // Check if this insertion will extend the node to the left.
1805 if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1806 // Node is growing to the left, will it affect a left sibling node?
1807 if (NodeRef Sib = P.getLeftSibling(P.height())) {
1808 Leaf &SibLeaf = Sib.get<Leaf>();
1809 unsigned SibOfs = Sib.size() - 1;
1810 if (SibLeaf.value(SibOfs) == y &&
1811 Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1812 // This insertion will coalesce with the last entry in SibLeaf. We can
1813 // handle it in two ways:
1814 // 1. Extend SibLeaf.stop to b and be done, or
1815 // 2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1816 // We prefer 1., but need 2 when coalescing to the right as well.
1817 Leaf &CurLeaf = P.leaf<Leaf>();
1818 P.moveLeft(P.height());
1819 if (Traits::stopLess(b, CurLeaf.start(0)) &&
1820 (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1821 // Easy, just extend SibLeaf and we're done.
1822 setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
1823 return;
1824 } else {
1825 // We have both left and right coalescing. Erase the old SibLeaf entry
1826 // and continue inserting the larger interval.
1827 a = SibLeaf.start(SibOfs);
1828 treeErase(/* UpdateRoot= */false);
1829 }
1830 }
1831 } else {
1832 // No left sibling means we are at begin(). Update cached bound.
1833 this->map->rootBranchStart() = a;
1834 }
1835 }
1836
1837 // When we are inserting at the end of a leaf node, we must update stops.
1838 unsigned Size = P.leafSize();
1839 bool Grow = P.leafOffset() == Size;
1840 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
1841
1842 // Leaf insertion unsuccessful? Overflow and try again.
1843 if (Size > Leaf::Capacity) {
1844 overflow<Leaf>(P.height());
1845 Grow = P.leafOffset() == P.leafSize();
1846 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1847 assert(Size <= Leaf::Capacity && "overflow() didn't make room");
1848 }
1849
1850 // Inserted, update offset and leaf size.
1851 P.setSize(P.height(), Size);
1852
1853 // Insert was the last node entry, update stops.
1854 if (Grow)
1855 setNodeStop(P.height(), b);
1856 }
1857
1858 /// erase - erase the current interval and move to the next position.
1859 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1860 void IntervalMap<KeyT, ValT, N, Traits>::
erase()1861 iterator::erase() {
1862 IntervalMap &IM = *this->map;
1863 IntervalMapImpl::Path &P = this->path;
1864 assert(P.valid() && "Cannot erase end()");
1865 if (this->branched())
1866 return treeErase();
1867 IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1868 P.setSize(0, --IM.rootSize);
1869 }
1870
1871 /// treeErase - erase() for a branched tree.
1872 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1873 void IntervalMap<KeyT, ValT, N, Traits>::
treeErase(bool UpdateRoot)1874 iterator::treeErase(bool UpdateRoot) {
1875 IntervalMap &IM = *this->map;
1876 IntervalMapImpl::Path &P = this->path;
1877 Leaf &Node = P.leaf<Leaf>();
1878
1879 // Nodes are not allowed to become empty.
1880 if (P.leafSize() == 1) {
1881 IM.deleteNode(&Node);
1882 eraseNode(IM.height);
1883 // Update rootBranchStart if we erased begin().
1884 if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1885 IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1886 return;
1887 }
1888
1889 // Erase current entry.
1890 Node.erase(P.leafOffset(), P.leafSize());
1891 unsigned NewSize = P.leafSize() - 1;
1892 P.setSize(IM.height, NewSize);
1893 // When we erase the last entry, update stop and move to a legal position.
1894 if (P.leafOffset() == NewSize) {
1895 setNodeStop(IM.height, Node.stop(NewSize - 1));
1896 P.moveRight(IM.height);
1897 } else if (UpdateRoot && P.atBegin())
1898 IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1899 }
1900
1901 /// eraseNode - Erase the current node at Level from its parent and move path to
1902 /// the first entry of the next sibling node.
1903 /// The node must be deallocated by the caller.
1904 /// @param Level 1..height, the root node cannot be erased.
1905 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1906 void IntervalMap<KeyT, ValT, N, Traits>::
eraseNode(unsigned Level)1907 iterator::eraseNode(unsigned Level) {
1908 assert(Level && "Cannot erase root node");
1909 IntervalMap &IM = *this->map;
1910 IntervalMapImpl::Path &P = this->path;
1911
1912 if (--Level == 0) {
1913 IM.rootBranch().erase(P.offset(0), IM.rootSize);
1914 P.setSize(0, --IM.rootSize);
1915 // If this cleared the root, switch to height=0.
1916 if (IM.empty()) {
1917 IM.switchRootToLeaf();
1918 this->setRoot(0);
1919 return;
1920 }
1921 } else {
1922 // Remove node ref from branch node at Level.
1923 Branch &Parent = P.node<Branch>(Level);
1924 if (P.size(Level) == 1) {
1925 // Branch node became empty, remove it recursively.
1926 IM.deleteNode(&Parent);
1927 eraseNode(Level);
1928 } else {
1929 // Branch node won't become empty.
1930 Parent.erase(P.offset(Level), P.size(Level));
1931 unsigned NewSize = P.size(Level) - 1;
1932 P.setSize(Level, NewSize);
1933 // If we removed the last branch, update stop and move to a legal pos.
1934 if (P.offset(Level) == NewSize) {
1935 setNodeStop(Level, Parent.stop(NewSize - 1));
1936 P.moveRight(Level);
1937 }
1938 }
1939 }
1940 // Update path cache for the new right sibling position.
1941 if (P.valid()) {
1942 P.reset(Level + 1);
1943 P.offset(Level + 1) = 0;
1944 }
1945 }
1946
1947 /// overflow - Distribute entries of the current node evenly among
1948 /// its siblings and ensure that the current node is not full.
1949 /// This may require allocating a new node.
1950 /// @tparam NodeT The type of node at Level (Leaf or Branch).
1951 /// @param Level path index of the overflowing node.
1952 /// @return True when the tree height was changed.
1953 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1954 template <typename NodeT>
1955 bool IntervalMap<KeyT, ValT, N, Traits>::
overflow(unsigned Level)1956 iterator::overflow(unsigned Level) {
1957 using namespace IntervalMapImpl;
1958 Path &P = this->path;
1959 unsigned CurSize[4];
1960 NodeT *Node[4];
1961 unsigned Nodes = 0;
1962 unsigned Elements = 0;
1963 unsigned Offset = P.offset(Level);
1964
1965 // Do we have a left sibling?
1966 NodeRef LeftSib = P.getLeftSibling(Level);
1967 if (LeftSib) {
1968 Offset += Elements = CurSize[Nodes] = LeftSib.size();
1969 Node[Nodes++] = &LeftSib.get<NodeT>();
1970 }
1971
1972 // Current node.
1973 Elements += CurSize[Nodes] = P.size(Level);
1974 Node[Nodes++] = &P.node<NodeT>(Level);
1975
1976 // Do we have a right sibling?
1977 NodeRef RightSib = P.getRightSibling(Level);
1978 if (RightSib) {
1979 Elements += CurSize[Nodes] = RightSib.size();
1980 Node[Nodes++] = &RightSib.get<NodeT>();
1981 }
1982
1983 // Do we need to allocate a new node?
1984 unsigned NewNode = 0;
1985 if (Elements + 1 > Nodes * NodeT::Capacity) {
1986 // Insert NewNode at the penultimate position, or after a single node.
1987 NewNode = Nodes == 1 ? 1 : Nodes - 1;
1988 CurSize[Nodes] = CurSize[NewNode];
1989 Node[Nodes] = Node[NewNode];
1990 CurSize[NewNode] = 0;
1991 Node[NewNode] = this->map->template newNode<NodeT>();
1992 ++Nodes;
1993 }
1994
1995 // Compute the new element distribution.
1996 unsigned NewSize[4];
1997 IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
1998 CurSize, NewSize, Offset, true);
1999 adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
2000
2001 // Move current location to the leftmost node.
2002 if (LeftSib)
2003 P.moveLeft(Level);
2004
2005 // Elements have been rearranged, now update node sizes and stops.
2006 bool SplitRoot = false;
2007 unsigned Pos = 0;
2008 while (true) {
2009 KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
2010 if (NewNode && Pos == NewNode) {
2011 SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
2012 Level += SplitRoot;
2013 } else {
2014 P.setSize(Level, NewSize[Pos]);
2015 setNodeStop(Level, Stop);
2016 }
2017 if (Pos + 1 == Nodes)
2018 break;
2019 P.moveRight(Level);
2020 ++Pos;
2021 }
2022
2023 // Where was I? Find NewOffset.
2024 while(Pos != NewOffset.first) {
2025 P.moveLeft(Level);
2026 --Pos;
2027 }
2028 P.offset(Level) = NewOffset.second;
2029 return SplitRoot;
2030 }
2031
2032 //===----------------------------------------------------------------------===//
2033 //--- IntervalMapOverlaps ----//
2034 //===----------------------------------------------------------------------===//
2035
2036 /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
2037 /// IntervalMaps. The maps may be different, but the KeyT and Traits types
2038 /// should be the same.
2039 ///
2040 /// Typical uses:
2041 ///
2042 /// 1. Test for overlap:
2043 /// bool overlap = IntervalMapOverlaps(a, b).valid();
2044 ///
2045 /// 2. Enumerate overlaps:
2046 /// for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
2047 ///
2048 template <typename MapA, typename MapB>
2049 class IntervalMapOverlaps {
2050 using KeyType = typename MapA::KeyType;
2051 using Traits = typename MapA::KeyTraits;
2052
2053 typename MapA::const_iterator posA;
2054 typename MapB::const_iterator posB;
2055
2056 /// advance - Move posA and posB forward until reaching an overlap, or until
2057 /// either meets end.
2058 /// Don't move the iterators if they are already overlapping.
advance()2059 void advance() {
2060 if (!valid())
2061 return;
2062
2063 if (Traits::stopLess(posA.stop(), posB.start())) {
2064 // A ends before B begins. Catch up.
2065 posA.advanceTo(posB.start());
2066 if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2067 return;
2068 } else if (Traits::stopLess(posB.stop(), posA.start())) {
2069 // B ends before A begins. Catch up.
2070 posB.advanceTo(posA.start());
2071 if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2072 return;
2073 } else
2074 // Already overlapping.
2075 return;
2076
2077 while (true) {
2078 // Make a.end > b.start.
2079 posA.advanceTo(posB.start());
2080 if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2081 return;
2082 // Make b.end > a.start.
2083 posB.advanceTo(posA.start());
2084 if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2085 return;
2086 }
2087 }
2088
2089 public:
2090 /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
IntervalMapOverlaps(const MapA & a,const MapB & b)2091 IntervalMapOverlaps(const MapA &a, const MapB &b)
2092 : posA(b.empty() ? a.end() : a.find(b.start())),
2093 posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
2094
2095 /// valid - Return true if iterator is at an overlap.
valid()2096 bool valid() const {
2097 return posA.valid() && posB.valid();
2098 }
2099
2100 /// a - access the left hand side in the overlap.
a()2101 const typename MapA::const_iterator &a() const { return posA; }
2102
2103 /// b - access the right hand side in the overlap.
b()2104 const typename MapB::const_iterator &b() const { return posB; }
2105
2106 /// start - Beginning of the overlapping interval.
start()2107 KeyType start() const {
2108 KeyType ak = a().start();
2109 KeyType bk = b().start();
2110 return Traits::startLess(ak, bk) ? bk : ak;
2111 }
2112
2113 /// stop - End of the overlapping interval.
stop()2114 KeyType stop() const {
2115 KeyType ak = a().stop();
2116 KeyType bk = b().stop();
2117 return Traits::startLess(ak, bk) ? ak : bk;
2118 }
2119
2120 /// skipA - Move to the next overlap that doesn't involve a().
skipA()2121 void skipA() {
2122 ++posA;
2123 advance();
2124 }
2125
2126 /// skipB - Move to the next overlap that doesn't involve b().
skipB()2127 void skipB() {
2128 ++posB;
2129 advance();
2130 }
2131
2132 /// Preincrement - Move to the next overlap.
2133 IntervalMapOverlaps &operator++() {
2134 // Bump the iterator that ends first. The other one may have more overlaps.
2135 if (Traits::startLess(posB.stop(), posA.stop()))
2136 skipB();
2137 else
2138 skipA();
2139 return *this;
2140 }
2141
2142 /// advanceTo - Move to the first overlapping interval with
2143 /// stopLess(x, stop()).
advanceTo(KeyType x)2144 void advanceTo(KeyType x) {
2145 if (!valid())
2146 return;
2147 // Make sure advanceTo sees monotonic keys.
2148 if (Traits::stopLess(posA.stop(), x))
2149 posA.advanceTo(x);
2150 if (Traits::stopLess(posB.stop(), x))
2151 posB.advanceTo(x);
2152 advance();
2153 }
2154 };
2155
2156 } // end namespace llvm
2157
2158 #endif // LLVM_ADT_INTERVALMAP_H
2159