1 //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the classes used to represent and build scalar expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
15 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/ScalarEvolution.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Value.h"
25 #include "llvm/IR/ValueHandle.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <cassert>
29 #include <cstddef>
30 
31 namespace llvm {
32 
33 class APInt;
34 class Constant;
35 class ConstantRange;
36 class Loop;
37 class Type;
38 
39   enum SCEVTypes {
40     // These should be ordered in terms of increasing complexity to make the
41     // folders simpler.
42     scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
43     scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr,
44     scUnknown, scCouldNotCompute
45   };
46 
47   /// This class represents a constant integer value.
48   class SCEVConstant : public SCEV {
49     friend class ScalarEvolution;
50 
51     ConstantInt *V;
52 
SCEVConstant(const FoldingSetNodeIDRef ID,ConstantInt * v)53     SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
54       SCEV(ID, scConstant), V(v) {}
55 
56   public:
getValue()57     ConstantInt *getValue() const { return V; }
getAPInt()58     const APInt &getAPInt() const { return getValue()->getValue(); }
59 
getType()60     Type *getType() const { return V->getType(); }
61 
62     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)63     static bool classof(const SCEV *S) {
64       return S->getSCEVType() == scConstant;
65     }
66   };
67 
68   /// This is the base class for unary cast operator classes.
69   class SCEVCastExpr : public SCEV {
70   protected:
71     const SCEV *Op;
72     Type *Ty;
73 
74     SCEVCastExpr(const FoldingSetNodeIDRef ID,
75                  unsigned SCEVTy, const SCEV *op, Type *ty);
76 
77   public:
getOperand()78     const SCEV *getOperand() const { return Op; }
getType()79     Type *getType() const { return Ty; }
80 
81     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)82     static bool classof(const SCEV *S) {
83       return S->getSCEVType() == scTruncate ||
84              S->getSCEVType() == scZeroExtend ||
85              S->getSCEVType() == scSignExtend;
86     }
87   };
88 
89   /// This class represents a truncation of an integer value to a
90   /// smaller integer value.
91   class SCEVTruncateExpr : public SCEVCastExpr {
92     friend class ScalarEvolution;
93 
94     SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
95                      const SCEV *op, Type *ty);
96 
97   public:
98     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)99     static bool classof(const SCEV *S) {
100       return S->getSCEVType() == scTruncate;
101     }
102   };
103 
104   /// This class represents a zero extension of a small integer value
105   /// to a larger integer value.
106   class SCEVZeroExtendExpr : public SCEVCastExpr {
107     friend class ScalarEvolution;
108 
109     SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
110                        const SCEV *op, Type *ty);
111 
112   public:
113     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)114     static bool classof(const SCEV *S) {
115       return S->getSCEVType() == scZeroExtend;
116     }
117   };
118 
119   /// This class represents a sign extension of a small integer value
120   /// to a larger integer value.
121   class SCEVSignExtendExpr : public SCEVCastExpr {
122     friend class ScalarEvolution;
123 
124     SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
125                        const SCEV *op, Type *ty);
126 
127   public:
128     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)129     static bool classof(const SCEV *S) {
130       return S->getSCEVType() == scSignExtend;
131     }
132   };
133 
134   /// This node is a base class providing common functionality for
135   /// n'ary operators.
136   class SCEVNAryExpr : public SCEV {
137   protected:
138     // Since SCEVs are immutable, ScalarEvolution allocates operand
139     // arrays with its SCEVAllocator, so this class just needs a simple
140     // pointer rather than a more elaborate vector-like data structure.
141     // This also avoids the need for a non-trivial destructor.
142     const SCEV *const *Operands;
143     size_t NumOperands;
144 
SCEVNAryExpr(const FoldingSetNodeIDRef ID,enum SCEVTypes T,const SCEV * const * O,size_t N)145     SCEVNAryExpr(const FoldingSetNodeIDRef ID,
146                  enum SCEVTypes T, const SCEV *const *O, size_t N)
147       : SCEV(ID, T), Operands(O), NumOperands(N) {}
148 
149   public:
getNumOperands()150     size_t getNumOperands() const { return NumOperands; }
151 
getOperand(unsigned i)152     const SCEV *getOperand(unsigned i) const {
153       assert(i < NumOperands && "Operand index out of range!");
154       return Operands[i];
155     }
156 
157     using op_iterator = const SCEV *const *;
158     using op_range = iterator_range<op_iterator>;
159 
op_begin()160     op_iterator op_begin() const { return Operands; }
op_end()161     op_iterator op_end() const { return Operands + NumOperands; }
operands()162     op_range operands() const {
163       return make_range(op_begin(), op_end());
164     }
165 
getType()166     Type *getType() const { return getOperand(0)->getType(); }
167 
168     NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
169       return (NoWrapFlags)(SubclassData & Mask);
170     }
171 
hasNoUnsignedWrap()172     bool hasNoUnsignedWrap() const {
173       return getNoWrapFlags(FlagNUW) != FlagAnyWrap;
174     }
175 
hasNoSignedWrap()176     bool hasNoSignedWrap() const {
177       return getNoWrapFlags(FlagNSW) != FlagAnyWrap;
178     }
179 
hasNoSelfWrap()180     bool hasNoSelfWrap() const {
181       return getNoWrapFlags(FlagNW) != FlagAnyWrap;
182     }
183 
184     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)185     static bool classof(const SCEV *S) {
186       return S->getSCEVType() == scAddExpr ||
187              S->getSCEVType() == scMulExpr ||
188              S->getSCEVType() == scSMaxExpr ||
189              S->getSCEVType() == scUMaxExpr ||
190              S->getSCEVType() == scAddRecExpr;
191     }
192   };
193 
194   /// This node is the base class for n'ary commutative operators.
195   class SCEVCommutativeExpr : public SCEVNAryExpr {
196   protected:
SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,enum SCEVTypes T,const SCEV * const * O,size_t N)197     SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
198                         enum SCEVTypes T, const SCEV *const *O, size_t N)
199       : SCEVNAryExpr(ID, T, O, N) {}
200 
201   public:
202     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)203     static bool classof(const SCEV *S) {
204       return S->getSCEVType() == scAddExpr ||
205              S->getSCEVType() == scMulExpr ||
206              S->getSCEVType() == scSMaxExpr ||
207              S->getSCEVType() == scUMaxExpr;
208     }
209 
210     /// Set flags for a non-recurrence without clearing previously set flags.
setNoWrapFlags(NoWrapFlags Flags)211     void setNoWrapFlags(NoWrapFlags Flags) {
212       SubclassData |= Flags;
213     }
214   };
215 
216   /// This node represents an addition of some number of SCEVs.
217   class SCEVAddExpr : public SCEVCommutativeExpr {
218     friend class ScalarEvolution;
219 
SCEVAddExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)220     SCEVAddExpr(const FoldingSetNodeIDRef ID,
221                 const SCEV *const *O, size_t N)
222       : SCEVCommutativeExpr(ID, scAddExpr, O, N) {}
223 
224   public:
getType()225     Type *getType() const {
226       // Use the type of the last operand, which is likely to be a pointer
227       // type, if there is one. This doesn't usually matter, but it can help
228       // reduce casts when the expressions are expanded.
229       return getOperand(getNumOperands() - 1)->getType();
230     }
231 
232     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)233     static bool classof(const SCEV *S) {
234       return S->getSCEVType() == scAddExpr;
235     }
236   };
237 
238   /// This node represents multiplication of some number of SCEVs.
239   class SCEVMulExpr : public SCEVCommutativeExpr {
240     friend class ScalarEvolution;
241 
SCEVMulExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)242     SCEVMulExpr(const FoldingSetNodeIDRef ID,
243                 const SCEV *const *O, size_t N)
244       : SCEVCommutativeExpr(ID, scMulExpr, O, N) {}
245 
246   public:
247     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)248     static bool classof(const SCEV *S) {
249       return S->getSCEVType() == scMulExpr;
250     }
251   };
252 
253   /// This class represents a binary unsigned division operation.
254   class SCEVUDivExpr : public SCEV {
255     friend class ScalarEvolution;
256 
257     const SCEV *LHS;
258     const SCEV *RHS;
259 
SCEVUDivExpr(const FoldingSetNodeIDRef ID,const SCEV * lhs,const SCEV * rhs)260     SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
261       : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {}
262 
263   public:
getLHS()264     const SCEV *getLHS() const { return LHS; }
getRHS()265     const SCEV *getRHS() const { return RHS; }
266 
getType()267     Type *getType() const {
268       // In most cases the types of LHS and RHS will be the same, but in some
269       // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
270       // depend on the type for correctness, but handling types carefully can
271       // avoid extra casts in the SCEVExpander. The LHS is more likely to be
272       // a pointer type than the RHS, so use the RHS' type here.
273       return getRHS()->getType();
274     }
275 
276     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)277     static bool classof(const SCEV *S) {
278       return S->getSCEVType() == scUDivExpr;
279     }
280   };
281 
282   /// This node represents a polynomial recurrence on the trip count
283   /// of the specified loop.  This is the primary focus of the
284   /// ScalarEvolution framework; all the other SCEV subclasses are
285   /// mostly just supporting infrastructure to allow SCEVAddRecExpr
286   /// expressions to be created and analyzed.
287   ///
288   /// All operands of an AddRec are required to be loop invariant.
289   ///
290   class SCEVAddRecExpr : public SCEVNAryExpr {
291     friend class ScalarEvolution;
292 
293     const Loop *L;
294 
SCEVAddRecExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N,const Loop * l)295     SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
296                    const SCEV *const *O, size_t N, const Loop *l)
297       : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
298 
299   public:
getStart()300     const SCEV *getStart() const { return Operands[0]; }
getLoop()301     const Loop *getLoop() const { return L; }
302 
303     /// Constructs and returns the recurrence indicating how much this
304     /// expression steps by.  If this is a polynomial of degree N, it
305     /// returns a chrec of degree N-1.  We cannot determine whether
306     /// the step recurrence has self-wraparound.
getStepRecurrence(ScalarEvolution & SE)307     const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
308       if (isAffine()) return getOperand(1);
309       return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
310                                                            op_end()),
311                               getLoop(), FlagAnyWrap);
312     }
313 
314     /// Return true if this represents an expression A + B*x where A
315     /// and B are loop invariant values.
isAffine()316     bool isAffine() const {
317       // We know that the start value is invariant.  This expression is thus
318       // affine iff the step is also invariant.
319       return getNumOperands() == 2;
320     }
321 
322     /// Return true if this represents an expression A + B*x + C*x^2
323     /// where A, B and C are loop invariant values.  This corresponds
324     /// to an addrec of the form {L,+,M,+,N}
isQuadratic()325     bool isQuadratic() const {
326       return getNumOperands() == 3;
327     }
328 
329     /// Set flags for a recurrence without clearing any previously set flags.
330     /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
331     /// to make it easier to propagate flags.
setNoWrapFlags(NoWrapFlags Flags)332     void setNoWrapFlags(NoWrapFlags Flags) {
333       if (Flags & (FlagNUW | FlagNSW))
334         Flags = ScalarEvolution::setFlags(Flags, FlagNW);
335       SubclassData |= Flags;
336     }
337 
338     /// Return the value of this chain of recurrences at the specified
339     /// iteration number.
340     const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
341 
342     /// Return the number of iterations of this loop that produce
343     /// values in the specified constant range.  Another way of
344     /// looking at this is that it returns the first iteration number
345     /// where the value is not in the condition, thus computing the
346     /// exit count.  If the iteration count can't be computed, an
347     /// instance of SCEVCouldNotCompute is returned.
348     const SCEV *getNumIterationsInRange(const ConstantRange &Range,
349                                         ScalarEvolution &SE) const;
350 
351     /// Return an expression representing the value of this expression
352     /// one iteration of the loop ahead.
353     const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const;
354 
355     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)356     static bool classof(const SCEV *S) {
357       return S->getSCEVType() == scAddRecExpr;
358     }
359   };
360 
361   /// This class represents a signed maximum selection.
362   class SCEVSMaxExpr : public SCEVCommutativeExpr {
363     friend class ScalarEvolution;
364 
SCEVSMaxExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)365     SCEVSMaxExpr(const FoldingSetNodeIDRef ID,
366                  const SCEV *const *O, size_t N)
367       : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) {
368       // Max never overflows.
369       setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
370     }
371 
372   public:
373     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)374     static bool classof(const SCEV *S) {
375       return S->getSCEVType() == scSMaxExpr;
376     }
377   };
378 
379   /// This class represents an unsigned maximum selection.
380   class SCEVUMaxExpr : public SCEVCommutativeExpr {
381     friend class ScalarEvolution;
382 
SCEVUMaxExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)383     SCEVUMaxExpr(const FoldingSetNodeIDRef ID,
384                  const SCEV *const *O, size_t N)
385       : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) {
386       // Max never overflows.
387       setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
388     }
389 
390   public:
391     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)392     static bool classof(const SCEV *S) {
393       return S->getSCEVType() == scUMaxExpr;
394     }
395   };
396 
397   /// This means that we are dealing with an entirely unknown SCEV
398   /// value, and only represent it as its LLVM Value.  This is the
399   /// "bottom" value for the analysis.
400   class SCEVUnknown final : public SCEV, private CallbackVH {
401     friend class ScalarEvolution;
402 
403     /// The parent ScalarEvolution value. This is used to update the
404     /// parent's maps when the value associated with a SCEVUnknown is
405     /// deleted or RAUW'd.
406     ScalarEvolution *SE;
407 
408     /// The next pointer in the linked list of all SCEVUnknown
409     /// instances owned by a ScalarEvolution.
410     SCEVUnknown *Next;
411 
SCEVUnknown(const FoldingSetNodeIDRef ID,Value * V,ScalarEvolution * se,SCEVUnknown * next)412     SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
413                 ScalarEvolution *se, SCEVUnknown *next) :
414       SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {}
415 
416     // Implement CallbackVH.
417     void deleted() override;
418     void allUsesReplacedWith(Value *New) override;
419 
420   public:
getValue()421     Value *getValue() const { return getValPtr(); }
422 
423     /// @{
424     /// Test whether this is a special constant representing a type
425     /// size, alignment, or field offset in a target-independent
426     /// manner, and hasn't happened to have been folded with other
427     /// operations into something unrecognizable. This is mainly only
428     /// useful for pretty-printing and other situations where it isn't
429     /// absolutely required for these to succeed.
430     bool isSizeOf(Type *&AllocTy) const;
431     bool isAlignOf(Type *&AllocTy) const;
432     bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
433     /// @}
434 
getType()435     Type *getType() const { return getValPtr()->getType(); }
436 
437     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)438     static bool classof(const SCEV *S) {
439       return S->getSCEVType() == scUnknown;
440     }
441   };
442 
443   /// This class defines a simple visitor class that may be used for
444   /// various SCEV analysis purposes.
445   template<typename SC, typename RetVal=void>
446   struct SCEVVisitor {
visitSCEVVisitor447     RetVal visit(const SCEV *S) {
448       switch (S->getSCEVType()) {
449       case scConstant:
450         return ((SC*)this)->visitConstant((const SCEVConstant*)S);
451       case scTruncate:
452         return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
453       case scZeroExtend:
454         return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
455       case scSignExtend:
456         return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
457       case scAddExpr:
458         return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
459       case scMulExpr:
460         return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
461       case scUDivExpr:
462         return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
463       case scAddRecExpr:
464         return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
465       case scSMaxExpr:
466         return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
467       case scUMaxExpr:
468         return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
469       case scUnknown:
470         return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
471       case scCouldNotCompute:
472         return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
473       default:
474         llvm_unreachable("Unknown SCEV type!");
475       }
476     }
477 
visitCouldNotComputeSCEVVisitor478     RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
479       llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
480     }
481   };
482 
483   /// Visit all nodes in the expression tree using worklist traversal.
484   ///
485   /// Visitor implements:
486   ///   // return true to follow this node.
487   ///   bool follow(const SCEV *S);
488   ///   // return true to terminate the search.
489   ///   bool isDone();
490   template<typename SV>
491   class SCEVTraversal {
492     SV &Visitor;
493     SmallVector<const SCEV *, 8> Worklist;
494     SmallPtrSet<const SCEV *, 8> Visited;
495 
push(const SCEV * S)496     void push(const SCEV *S) {
497       if (Visited.insert(S).second && Visitor.follow(S))
498         Worklist.push_back(S);
499     }
500 
501   public:
SCEVTraversal(SV & V)502     SCEVTraversal(SV& V): Visitor(V) {}
503 
visitAll(const SCEV * Root)504     void visitAll(const SCEV *Root) {
505       push(Root);
506       while (!Worklist.empty() && !Visitor.isDone()) {
507         const SCEV *S = Worklist.pop_back_val();
508 
509         switch (S->getSCEVType()) {
510         case scConstant:
511         case scUnknown:
512           break;
513         case scTruncate:
514         case scZeroExtend:
515         case scSignExtend:
516           push(cast<SCEVCastExpr>(S)->getOperand());
517           break;
518         case scAddExpr:
519         case scMulExpr:
520         case scSMaxExpr:
521         case scUMaxExpr:
522         case scAddRecExpr:
523           for (const auto *Op : cast<SCEVNAryExpr>(S)->operands())
524             push(Op);
525           break;
526         case scUDivExpr: {
527           const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
528           push(UDiv->getLHS());
529           push(UDiv->getRHS());
530           break;
531         }
532         case scCouldNotCompute:
533           llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
534         default:
535           llvm_unreachable("Unknown SCEV kind!");
536         }
537       }
538     }
539   };
540 
541   /// Use SCEVTraversal to visit all nodes in the given expression tree.
542   template<typename SV>
visitAll(const SCEV * Root,SV & Visitor)543   void visitAll(const SCEV *Root, SV& Visitor) {
544     SCEVTraversal<SV> T(Visitor);
545     T.visitAll(Root);
546   }
547 
548   /// Return true if any node in \p Root satisfies the predicate \p Pred.
549   template <typename PredTy>
SCEVExprContains(const SCEV * Root,PredTy Pred)550   bool SCEVExprContains(const SCEV *Root, PredTy Pred) {
551     struct FindClosure {
552       bool Found = false;
553       PredTy Pred;
554 
555       FindClosure(PredTy Pred) : Pred(Pred) {}
556 
557       bool follow(const SCEV *S) {
558         if (!Pred(S))
559           return true;
560 
561         Found = true;
562         return false;
563       }
564 
565       bool isDone() const { return Found; }
566     };
567 
568     FindClosure FC(Pred);
569     visitAll(Root, FC);
570     return FC.Found;
571   }
572 
573   /// This visitor recursively visits a SCEV expression and re-writes it.
574   /// The result from each visit is cached, so it will return the same
575   /// SCEV for the same input.
576   template<typename SC>
577   class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> {
578   protected:
579     ScalarEvolution &SE;
580     // Memoize the result of each visit so that we only compute once for
581     // the same input SCEV. This is to avoid redundant computations when
582     // a SCEV is referenced by multiple SCEVs. Without memoization, this
583     // visit algorithm would have exponential time complexity in the worst
584     // case, causing the compiler to hang on certain tests.
585     DenseMap<const SCEV *, const SCEV *> RewriteResults;
586 
587   public:
SCEVRewriteVisitor(ScalarEvolution & SE)588     SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {}
589 
visit(const SCEV * S)590     const SCEV *visit(const SCEV *S) {
591       auto It = RewriteResults.find(S);
592       if (It != RewriteResults.end())
593         return It->second;
594       auto* Visited = SCEVVisitor<SC, const SCEV *>::visit(S);
595       auto Result = RewriteResults.try_emplace(S, Visited);
596       assert(Result.second && "Should insert a new entry");
597       return Result.first->second;
598     }
599 
visitConstant(const SCEVConstant * Constant)600     const SCEV *visitConstant(const SCEVConstant *Constant) {
601       return Constant;
602     }
603 
visitTruncateExpr(const SCEVTruncateExpr * Expr)604     const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
605       const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
606       return Operand == Expr->getOperand()
607                  ? Expr
608                  : SE.getTruncateExpr(Operand, Expr->getType());
609     }
610 
visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr)611     const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
612       const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
613       return Operand == Expr->getOperand()
614                  ? Expr
615                  : SE.getZeroExtendExpr(Operand, Expr->getType());
616     }
617 
visitSignExtendExpr(const SCEVSignExtendExpr * Expr)618     const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
619       const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
620       return Operand == Expr->getOperand()
621                  ? Expr
622                  : SE.getSignExtendExpr(Operand, Expr->getType());
623     }
624 
visitAddExpr(const SCEVAddExpr * Expr)625     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
626       SmallVector<const SCEV *, 2> Operands;
627       bool Changed = false;
628       for (auto *Op : Expr->operands()) {
629         Operands.push_back(((SC*)this)->visit(Op));
630         Changed |= Op != Operands.back();
631       }
632       return !Changed ? Expr : SE.getAddExpr(Operands);
633     }
634 
visitMulExpr(const SCEVMulExpr * Expr)635     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
636       SmallVector<const SCEV *, 2> Operands;
637       bool Changed = false;
638       for (auto *Op : Expr->operands()) {
639         Operands.push_back(((SC*)this)->visit(Op));
640         Changed |= Op != Operands.back();
641       }
642       return !Changed ? Expr : SE.getMulExpr(Operands);
643     }
644 
visitUDivExpr(const SCEVUDivExpr * Expr)645     const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
646       auto *LHS = ((SC *)this)->visit(Expr->getLHS());
647       auto *RHS = ((SC *)this)->visit(Expr->getRHS());
648       bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS();
649       return !Changed ? Expr : SE.getUDivExpr(LHS, RHS);
650     }
651 
visitAddRecExpr(const SCEVAddRecExpr * Expr)652     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
653       SmallVector<const SCEV *, 2> Operands;
654       bool Changed = false;
655       for (auto *Op : Expr->operands()) {
656         Operands.push_back(((SC*)this)->visit(Op));
657         Changed |= Op != Operands.back();
658       }
659       return !Changed ? Expr
660                       : SE.getAddRecExpr(Operands, Expr->getLoop(),
661                                          Expr->getNoWrapFlags());
662     }
663 
visitSMaxExpr(const SCEVSMaxExpr * Expr)664     const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
665       SmallVector<const SCEV *, 2> Operands;
666       bool Changed = false;
667       for (auto *Op : Expr->operands()) {
668         Operands.push_back(((SC *)this)->visit(Op));
669         Changed |= Op != Operands.back();
670       }
671       return !Changed ? Expr : SE.getSMaxExpr(Operands);
672     }
673 
visitUMaxExpr(const SCEVUMaxExpr * Expr)674     const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
675       SmallVector<const SCEV *, 2> Operands;
676       bool Changed = false;
677       for (auto *Op : Expr->operands()) {
678         Operands.push_back(((SC*)this)->visit(Op));
679         Changed |= Op != Operands.back();
680       }
681       return !Changed ? Expr : SE.getUMaxExpr(Operands);
682     }
683 
visitUnknown(const SCEVUnknown * Expr)684     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
685       return Expr;
686     }
687 
visitCouldNotCompute(const SCEVCouldNotCompute * Expr)688     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
689       return Expr;
690     }
691   };
692 
693   using ValueToValueMap = DenseMap<const Value *, Value *>;
694 
695   /// The SCEVParameterRewriter takes a scalar evolution expression and updates
696   /// the SCEVUnknown components following the Map (Value -> Value).
697   class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> {
698   public:
699     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
700                                ValueToValueMap &Map,
701                                bool InterpretConsts = false) {
702       SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts);
703       return Rewriter.visit(Scev);
704     }
705 
SCEVParameterRewriter(ScalarEvolution & SE,ValueToValueMap & M,bool C)706     SCEVParameterRewriter(ScalarEvolution &SE, ValueToValueMap &M, bool C)
707       : SCEVRewriteVisitor(SE), Map(M), InterpretConsts(C) {}
708 
visitUnknown(const SCEVUnknown * Expr)709     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
710       Value *V = Expr->getValue();
711       if (Map.count(V)) {
712         Value *NV = Map[V];
713         if (InterpretConsts && isa<ConstantInt>(NV))
714           return SE.getConstant(cast<ConstantInt>(NV));
715         return SE.getUnknown(NV);
716       }
717       return Expr;
718     }
719 
720   private:
721     ValueToValueMap &Map;
722     bool InterpretConsts;
723   };
724 
725   using LoopToScevMapT = DenseMap<const Loop *, const SCEV *>;
726 
727   /// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies
728   /// the Map (Loop -> SCEV) to all AddRecExprs.
729   class SCEVLoopAddRecRewriter
730       : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> {
731   public:
SCEVLoopAddRecRewriter(ScalarEvolution & SE,LoopToScevMapT & M)732     SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M)
733         : SCEVRewriteVisitor(SE), Map(M) {}
734 
rewrite(const SCEV * Scev,LoopToScevMapT & Map,ScalarEvolution & SE)735     static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
736                                ScalarEvolution &SE) {
737       SCEVLoopAddRecRewriter Rewriter(SE, Map);
738       return Rewriter.visit(Scev);
739     }
740 
visitAddRecExpr(const SCEVAddRecExpr * Expr)741     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
742       SmallVector<const SCEV *, 2> Operands;
743       for (const SCEV *Op : Expr->operands())
744         Operands.push_back(visit(Op));
745 
746       const Loop *L = Expr->getLoop();
747       const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
748 
749       if (0 == Map.count(L))
750         return Res;
751 
752       const SCEVAddRecExpr *Rec = cast<SCEVAddRecExpr>(Res);
753       return Rec->evaluateAtIteration(Map[L], SE);
754     }
755 
756   private:
757     LoopToScevMapT &Map;
758   };
759 
760 } // end namespace llvm
761 
762 #endif // LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
763