1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Subclass of MipsDAGToDAGISel specialized for mips32/64. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MipsSEISelDAGToDAG.h" 15 #include "MCTargetDesc/MipsBaseInfo.h" 16 #include "Mips.h" 17 #include "MipsAnalyzeImmediate.h" 18 #include "MipsMachineFunction.h" 19 #include "MipsRegisterInfo.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAGNodes.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/GlobalValue.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "mips-isel" 39 40 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 41 Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget()); 42 if (Subtarget->inMips16Mode()) 43 return false; 44 return MipsDAGToDAGISel::runOnMachineFunction(MF); 45 } 46 47 void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 48 AU.addRequired<DominatorTreeWrapperPass>(); 49 SelectionDAGISel::getAnalysisUsage(AU); 50 } 51 52 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI, 53 MachineFunction &MF) { 54 MachineInstrBuilder MIB(MF, &MI); 55 unsigned Mask = MI.getOperand(1).getImm(); 56 unsigned Flag = 57 IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef; 58 59 if (Mask & 1) 60 MIB.addReg(Mips::DSPPos, Flag); 61 62 if (Mask & 2) 63 MIB.addReg(Mips::DSPSCount, Flag); 64 65 if (Mask & 4) 66 MIB.addReg(Mips::DSPCarry, Flag); 67 68 if (Mask & 8) 69 MIB.addReg(Mips::DSPOutFlag, Flag); 70 71 if (Mask & 16) 72 MIB.addReg(Mips::DSPCCond, Flag); 73 74 if (Mask & 32) 75 MIB.addReg(Mips::DSPEFI, Flag); 76 } 77 78 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const { 79 switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) { 80 default: 81 llvm_unreachable("Could not map int to register"); 82 case 0: return Mips::MSAIR; 83 case 1: return Mips::MSACSR; 84 case 2: return Mips::MSAAccess; 85 case 3: return Mips::MSASave; 86 case 4: return Mips::MSAModify; 87 case 5: return Mips::MSARequest; 88 case 6: return Mips::MSAMap; 89 case 7: return Mips::MSAUnmap; 90 } 91 } 92 93 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI, 94 const MachineInstr& MI) { 95 unsigned DstReg = 0, ZeroReg = 0; 96 97 // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0". 98 if ((MI.getOpcode() == Mips::ADDiu) && 99 (MI.getOperand(1).getReg() == Mips::ZERO) && 100 (MI.getOperand(2).isImm()) && 101 (MI.getOperand(2).getImm() == 0)) { 102 DstReg = MI.getOperand(0).getReg(); 103 ZeroReg = Mips::ZERO; 104 } else if ((MI.getOpcode() == Mips::DADDiu) && 105 (MI.getOperand(1).getReg() == Mips::ZERO_64) && 106 (MI.getOperand(2).isImm()) && 107 (MI.getOperand(2).getImm() == 0)) { 108 DstReg = MI.getOperand(0).getReg(); 109 ZeroReg = Mips::ZERO_64; 110 } 111 112 if (!DstReg) 113 return false; 114 115 // Replace uses with ZeroReg. 116 for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg), 117 E = MRI->use_end(); U != E;) { 118 MachineOperand &MO = *U; 119 unsigned OpNo = U.getOperandNo(); 120 MachineInstr *MI = MO.getParent(); 121 ++U; 122 123 // Do not replace if it is a phi's operand or is tied to def operand. 124 if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo()) 125 continue; 126 127 // Also, we have to check that the register class of the operand 128 // contains the zero register. 129 if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg)) 130 continue; 131 132 MO.setReg(ZeroReg); 133 } 134 135 return true; 136 } 137 138 void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) { 139 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 140 141 if (!MipsFI->globalBaseRegSet()) 142 return; 143 144 MachineBasicBlock &MBB = MF.front(); 145 MachineBasicBlock::iterator I = MBB.begin(); 146 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 147 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 148 DebugLoc DL; 149 unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg(); 150 const TargetRegisterClass *RC; 151 const MipsABIInfo &ABI = static_cast<const MipsTargetMachine &>(TM).getABI(); 152 RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; 153 154 V0 = RegInfo.createVirtualRegister(RC); 155 V1 = RegInfo.createVirtualRegister(RC); 156 157 if (ABI.IsN64()) { 158 MF.getRegInfo().addLiveIn(Mips::T9_64); 159 MBB.addLiveIn(Mips::T9_64); 160 161 // lui $v0, %hi(%neg(%gp_rel(fname))) 162 // daddu $v1, $v0, $t9 163 // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) 164 const GlobalValue *FName = &MF.getFunction(); 165 BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0) 166 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); 167 BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0) 168 .addReg(Mips::T9_64); 169 BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1) 170 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); 171 return; 172 } 173 174 if (!MF.getTarget().isPositionIndependent()) { 175 // Set global register to __gnu_local_gp. 176 // 177 // lui $v0, %hi(__gnu_local_gp) 178 // addiu $globalbasereg, $v0, %lo(__gnu_local_gp) 179 BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) 180 .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI); 181 BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0) 182 .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO); 183 return; 184 } 185 186 MF.getRegInfo().addLiveIn(Mips::T9); 187 MBB.addLiveIn(Mips::T9); 188 189 if (ABI.IsN32()) { 190 // lui $v0, %hi(%neg(%gp_rel(fname))) 191 // addu $v1, $v0, $t9 192 // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) 193 const GlobalValue *FName = &MF.getFunction(); 194 BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) 195 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); 196 BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9); 197 BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1) 198 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); 199 return; 200 } 201 202 assert(ABI.IsO32()); 203 204 // For O32 ABI, the following instruction sequence is emitted to initialize 205 // the global base register: 206 // 207 // 0. lui $2, %hi(_gp_disp) 208 // 1. addiu $2, $2, %lo(_gp_disp) 209 // 2. addu $globalbasereg, $2, $t9 210 // 211 // We emit only the last instruction here. 212 // 213 // GNU linker requires that the first two instructions appear at the beginning 214 // of a function and no instructions be inserted before or between them. 215 // The two instructions are emitted during lowering to MC layer in order to 216 // avoid any reordering. 217 // 218 // Register $2 (Mips::V0) is added to the list of live-in registers to ensure 219 // the value instruction 1 (addiu) defines is valid when instruction 2 (addu) 220 // reads it. 221 MF.getRegInfo().addLiveIn(Mips::V0); 222 MBB.addLiveIn(Mips::V0); 223 BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg) 224 .addReg(Mips::V0).addReg(Mips::T9); 225 } 226 227 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) { 228 initGlobalBaseReg(MF); 229 230 MachineRegisterInfo *MRI = &MF.getRegInfo(); 231 232 for (auto &MBB: MF) { 233 for (auto &MI: MBB) { 234 switch (MI.getOpcode()) { 235 case Mips::RDDSP: 236 addDSPCtrlRegOperands(false, MI, MF); 237 break; 238 case Mips::WRDSP: 239 addDSPCtrlRegOperands(true, MI, MF); 240 break; 241 case Mips::BuildPairF64_64: 242 case Mips::ExtractElementF64_64: 243 if (!Subtarget->useOddSPReg()) { 244 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true)); 245 break; 246 } 247 // fallthrough 248 case Mips::BuildPairF64: 249 case Mips::ExtractElementF64: 250 if (Subtarget->isABI_FPXX() && !Subtarget->hasMTHC1()) 251 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true)); 252 break; 253 default: 254 replaceUsesWithZeroReg(MRI, MI); 255 } 256 } 257 } 258 } 259 260 void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const { 261 SDValue InFlag = Node->getOperand(2); 262 unsigned Opc = InFlag.getOpcode(); 263 SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1); 264 EVT VT = LHS.getValueType(); 265 266 // In the base case, we can rely on the carry bit from the addsc 267 // instruction. 268 if (Opc == ISD::ADDC) { 269 SDValue Ops[3] = {LHS, RHS, InFlag}; 270 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops); 271 return; 272 } 273 274 assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!"); 275 276 // The more complex case is when there is a chain of ISD::ADDE nodes like: 277 // (adde (adde (adde (addc a b) c) d) e). 278 // 279 // The addwc instruction does not write to the carry bit, instead it writes 280 // to bit 20 of the dsp control register. To match this series of nodes, each 281 // intermediate adde node must be expanded to write the carry bit before the 282 // addition. 283 284 // Start by reading the overflow field for addsc and moving the value to the 285 // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP 286 // corresponds to reading/writing the entire control register to/from a GPR. 287 288 SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32); 289 290 SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32); 291 292 SDNode *DSPCtrlField = 293 CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32, MVT::Glue, CstOne, InFlag); 294 295 SDNode *Carry = CurDAG->getMachineNode( 296 Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne); 297 298 SDValue Ops[4] = {SDValue(DSPCtrlField, 0), 299 CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne, 300 SDValue(Carry, 0)}; 301 SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops); 302 303 // My reading of the MIPS DSP 3.01 specification isn't as clear as I 304 // would like about whether bit 20 always gets overwritten by addwc. 305 // Hence take an extremely conservative view and presume it's sticky. We 306 // therefore need to clear it. 307 308 SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32); 309 310 SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)}; 311 SDNode *DSPCtrlFinal = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps); 312 313 SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue, 314 SDValue(DSPCtrlFinal, 0), CstOne); 315 316 SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)}; 317 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands); 318 } 319 320 /// Match frameindex 321 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base, 322 SDValue &Offset) const { 323 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { 324 EVT ValTy = Addr.getValueType(); 325 326 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); 327 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy); 328 return true; 329 } 330 return false; 331 } 332 333 /// Match frameindex+offset and frameindex|offset 334 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset( 335 SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits, 336 unsigned ShiftAmount = 0) const { 337 if (CurDAG->isBaseWithConstantOffset(Addr)) { 338 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); 339 if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) { 340 EVT ValTy = Addr.getValueType(); 341 342 // If the first operand is a FI, get the TargetFI Node 343 if (FrameIndexSDNode *FIN = 344 dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) 345 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); 346 else { 347 Base = Addr.getOperand(0); 348 // If base is a FI, additional offset calculation is done in 349 // eliminateFrameIndex, otherwise we need to check the alignment 350 if (OffsetToAlignment(CN->getZExtValue(), 1ull << ShiftAmount) != 0) 351 return false; 352 } 353 354 Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr), 355 ValTy); 356 return true; 357 } 358 } 359 return false; 360 } 361 362 /// ComplexPattern used on MipsInstrInfo 363 /// Used on Mips Load/Store instructions 364 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base, 365 SDValue &Offset) const { 366 // if Address is FI, get the TargetFrameIndex. 367 if (selectAddrFrameIndex(Addr, Base, Offset)) 368 return true; 369 370 // on PIC code Load GA 371 if (Addr.getOpcode() == MipsISD::Wrapper) { 372 Base = Addr.getOperand(0); 373 Offset = Addr.getOperand(1); 374 return true; 375 } 376 377 if (!TM.isPositionIndependent()) { 378 if ((Addr.getOpcode() == ISD::TargetExternalSymbol || 379 Addr.getOpcode() == ISD::TargetGlobalAddress)) 380 return false; 381 } 382 383 // Addresses of the form FI+const or FI|const 384 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) 385 return true; 386 387 // Operand is a result from an ADD. 388 if (Addr.getOpcode() == ISD::ADD) { 389 // When loading from constant pools, load the lower address part in 390 // the instruction itself. Example, instead of: 391 // lui $2, %hi($CPI1_0) 392 // addiu $2, $2, %lo($CPI1_0) 393 // lwc1 $f0, 0($2) 394 // Generate: 395 // lui $2, %hi($CPI1_0) 396 // lwc1 $f0, %lo($CPI1_0)($2) 397 if (Addr.getOperand(1).getOpcode() == MipsISD::Lo || 398 Addr.getOperand(1).getOpcode() == MipsISD::GPRel) { 399 SDValue Opnd0 = Addr.getOperand(1).getOperand(0); 400 if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) || 401 isa<JumpTableSDNode>(Opnd0)) { 402 Base = Addr.getOperand(0); 403 Offset = Opnd0; 404 return true; 405 } 406 } 407 } 408 409 return false; 410 } 411 412 /// ComplexPattern used on MipsInstrInfo 413 /// Used on Mips Load/Store instructions 414 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base, 415 SDValue &Offset) const { 416 Base = Addr; 417 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType()); 418 return true; 419 } 420 421 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base, 422 SDValue &Offset) const { 423 return selectAddrRegImm(Addr, Base, Offset) || 424 selectAddrDefault(Addr, Base, Offset); 425 } 426 427 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base, 428 SDValue &Offset) const { 429 if (selectAddrFrameIndex(Addr, Base, Offset)) 430 return true; 431 432 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9)) 433 return true; 434 435 return false; 436 } 437 438 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset) 439 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base, 440 SDValue &Offset) const { 441 if (selectAddrFrameIndex(Addr, Base, Offset)) 442 return true; 443 444 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11)) 445 return true; 446 447 return false; 448 } 449 450 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset) 451 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base, 452 SDValue &Offset) const { 453 if (selectAddrFrameIndex(Addr, Base, Offset)) 454 return true; 455 456 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12)) 457 return true; 458 459 return false; 460 } 461 462 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base, 463 SDValue &Offset) const { 464 if (selectAddrFrameIndex(Addr, Base, Offset)) 465 return true; 466 467 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) 468 return true; 469 470 return false; 471 } 472 473 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base, 474 SDValue &Offset) const { 475 return selectAddrRegImm11(Addr, Base, Offset) || 476 selectAddrDefault(Addr, Base, Offset); 477 } 478 479 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base, 480 SDValue &Offset) const { 481 return selectAddrRegImm12(Addr, Base, Offset) || 482 selectAddrDefault(Addr, Base, Offset); 483 } 484 485 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base, 486 SDValue &Offset) const { 487 return selectAddrRegImm16(Addr, Base, Offset) || 488 selectAddrDefault(Addr, Base, Offset); 489 } 490 491 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base, 492 SDValue &Offset) const { 493 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) { 494 if (isa<FrameIndexSDNode>(Base)) 495 return false; 496 497 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) { 498 unsigned CnstOff = CN->getZExtValue(); 499 return (CnstOff == (CnstOff & 0x3c)); 500 } 501 502 return false; 503 } 504 505 // For all other cases where "lw" would be selected, don't select "lw16" 506 // because it would result in additional instructions to prepare operands. 507 if (selectAddrRegImm(Addr, Base, Offset)) 508 return false; 509 510 return selectAddrDefault(Addr, Base, Offset); 511 } 512 513 bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base, 514 SDValue &Offset) const { 515 516 if (selectAddrFrameIndex(Addr, Base, Offset)) 517 return true; 518 519 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10)) 520 return true; 521 522 return selectAddrDefault(Addr, Base, Offset); 523 } 524 525 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base, 526 SDValue &Offset) const { 527 if (selectAddrFrameIndex(Addr, Base, Offset)) 528 return true; 529 530 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1)) 531 return true; 532 533 return selectAddrDefault(Addr, Base, Offset); 534 } 535 536 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base, 537 SDValue &Offset) const { 538 if (selectAddrFrameIndex(Addr, Base, Offset)) 539 return true; 540 541 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2)) 542 return true; 543 544 return selectAddrDefault(Addr, Base, Offset); 545 } 546 547 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base, 548 SDValue &Offset) const { 549 if (selectAddrFrameIndex(Addr, Base, Offset)) 550 return true; 551 552 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3)) 553 return true; 554 555 return selectAddrDefault(Addr, Base, Offset); 556 } 557 558 // Select constant vector splats. 559 // 560 // Returns true and sets Imm if: 561 // * MSA is enabled 562 // * N is a ISD::BUILD_VECTOR representing a constant splat 563 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm, 564 unsigned MinSizeInBits) const { 565 if (!Subtarget->hasMSA()) 566 return false; 567 568 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N); 569 570 if (!Node) 571 return false; 572 573 APInt SplatValue, SplatUndef; 574 unsigned SplatBitSize; 575 bool HasAnyUndefs; 576 577 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, 578 MinSizeInBits, !Subtarget->isLittle())) 579 return false; 580 581 Imm = SplatValue; 582 583 return true; 584 } 585 586 // Select constant vector splats. 587 // 588 // In addition to the requirements of selectVSplat(), this function returns 589 // true and sets Imm if: 590 // * The splat value is the same width as the elements of the vector 591 // * The splat value fits in an integer with the specified signed-ness and 592 // width. 593 // 594 // This function looks through ISD::BITCAST nodes. 595 // TODO: This might not be appropriate for big-endian MSA since BITCAST is 596 // sometimes a shuffle in big-endian mode. 597 // 598 // It's worth noting that this function is not used as part of the selection 599 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd] 600 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in 601 // MipsSEDAGToDAGISel::selectNode. 602 bool MipsSEDAGToDAGISel:: 603 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed, 604 unsigned ImmBitSize) const { 605 APInt ImmValue; 606 EVT EltTy = N->getValueType(0).getVectorElementType(); 607 608 if (N->getOpcode() == ISD::BITCAST) 609 N = N->getOperand(0); 610 611 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && 612 ImmValue.getBitWidth() == EltTy.getSizeInBits()) { 613 614 if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) || 615 (!Signed && ImmValue.isIntN(ImmBitSize))) { 616 Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy); 617 return true; 618 } 619 } 620 621 return false; 622 } 623 624 // Select constant vector splats. 625 bool MipsSEDAGToDAGISel:: 626 selectVSplatUimm1(SDValue N, SDValue &Imm) const { 627 return selectVSplatCommon(N, Imm, false, 1); 628 } 629 630 bool MipsSEDAGToDAGISel:: 631 selectVSplatUimm2(SDValue N, SDValue &Imm) const { 632 return selectVSplatCommon(N, Imm, false, 2); 633 } 634 635 bool MipsSEDAGToDAGISel:: 636 selectVSplatUimm3(SDValue N, SDValue &Imm) const { 637 return selectVSplatCommon(N, Imm, false, 3); 638 } 639 640 // Select constant vector splats. 641 bool MipsSEDAGToDAGISel:: 642 selectVSplatUimm4(SDValue N, SDValue &Imm) const { 643 return selectVSplatCommon(N, Imm, false, 4); 644 } 645 646 // Select constant vector splats. 647 bool MipsSEDAGToDAGISel:: 648 selectVSplatUimm5(SDValue N, SDValue &Imm) const { 649 return selectVSplatCommon(N, Imm, false, 5); 650 } 651 652 // Select constant vector splats. 653 bool MipsSEDAGToDAGISel:: 654 selectVSplatUimm6(SDValue N, SDValue &Imm) const { 655 return selectVSplatCommon(N, Imm, false, 6); 656 } 657 658 // Select constant vector splats. 659 bool MipsSEDAGToDAGISel:: 660 selectVSplatUimm8(SDValue N, SDValue &Imm) const { 661 return selectVSplatCommon(N, Imm, false, 8); 662 } 663 664 // Select constant vector splats. 665 bool MipsSEDAGToDAGISel:: 666 selectVSplatSimm5(SDValue N, SDValue &Imm) const { 667 return selectVSplatCommon(N, Imm, true, 5); 668 } 669 670 // Select constant vector splats whose value is a power of 2. 671 // 672 // In addition to the requirements of selectVSplat(), this function returns 673 // true and sets Imm if: 674 // * The splat value is the same width as the elements of the vector 675 // * The splat value is a power of two. 676 // 677 // This function looks through ISD::BITCAST nodes. 678 // TODO: This might not be appropriate for big-endian MSA since BITCAST is 679 // sometimes a shuffle in big-endian mode. 680 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const { 681 APInt ImmValue; 682 EVT EltTy = N->getValueType(0).getVectorElementType(); 683 684 if (N->getOpcode() == ISD::BITCAST) 685 N = N->getOperand(0); 686 687 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && 688 ImmValue.getBitWidth() == EltTy.getSizeInBits()) { 689 int32_t Log2 = ImmValue.exactLogBase2(); 690 691 if (Log2 != -1) { 692 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy); 693 return true; 694 } 695 } 696 697 return false; 698 } 699 700 // Select constant vector splats whose value only has a consecutive sequence 701 // of left-most bits set (e.g. 0b11...1100...00). 702 // 703 // In addition to the requirements of selectVSplat(), this function returns 704 // true and sets Imm if: 705 // * The splat value is the same width as the elements of the vector 706 // * The splat value is a consecutive sequence of left-most bits. 707 // 708 // This function looks through ISD::BITCAST nodes. 709 // TODO: This might not be appropriate for big-endian MSA since BITCAST is 710 // sometimes a shuffle in big-endian mode. 711 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const { 712 APInt ImmValue; 713 EVT EltTy = N->getValueType(0).getVectorElementType(); 714 715 if (N->getOpcode() == ISD::BITCAST) 716 N = N->getOperand(0); 717 718 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && 719 ImmValue.getBitWidth() == EltTy.getSizeInBits()) { 720 // Extract the run of set bits starting with bit zero from the bitwise 721 // inverse of ImmValue, and test that the inverse of this is the same 722 // as the original value. 723 if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) { 724 725 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N), 726 EltTy); 727 return true; 728 } 729 } 730 731 return false; 732 } 733 734 // Select constant vector splats whose value only has a consecutive sequence 735 // of right-most bits set (e.g. 0b00...0011...11). 736 // 737 // In addition to the requirements of selectVSplat(), this function returns 738 // true and sets Imm if: 739 // * The splat value is the same width as the elements of the vector 740 // * The splat value is a consecutive sequence of right-most bits. 741 // 742 // This function looks through ISD::BITCAST nodes. 743 // TODO: This might not be appropriate for big-endian MSA since BITCAST is 744 // sometimes a shuffle in big-endian mode. 745 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const { 746 APInt ImmValue; 747 EVT EltTy = N->getValueType(0).getVectorElementType(); 748 749 if (N->getOpcode() == ISD::BITCAST) 750 N = N->getOperand(0); 751 752 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && 753 ImmValue.getBitWidth() == EltTy.getSizeInBits()) { 754 // Extract the run of set bits starting with bit zero, and test that the 755 // result is the same as the original value 756 if (ImmValue == (ImmValue & ~(ImmValue + 1))) { 757 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N), 758 EltTy); 759 return true; 760 } 761 } 762 763 return false; 764 } 765 766 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N, 767 SDValue &Imm) const { 768 APInt ImmValue; 769 EVT EltTy = N->getValueType(0).getVectorElementType(); 770 771 if (N->getOpcode() == ISD::BITCAST) 772 N = N->getOperand(0); 773 774 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && 775 ImmValue.getBitWidth() == EltTy.getSizeInBits()) { 776 int32_t Log2 = (~ImmValue).exactLogBase2(); 777 778 if (Log2 != -1) { 779 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy); 780 return true; 781 } 782 } 783 784 return false; 785 } 786 787 bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) { 788 unsigned Opcode = Node->getOpcode(); 789 SDLoc DL(Node); 790 791 /// 792 // Instruction Selection not handled by the auto-generated 793 // tablegen selection should be handled here. 794 /// 795 switch(Opcode) { 796 default: break; 797 798 case ISD::ADDE: { 799 selectAddE(Node, DL); 800 return true; 801 } 802 803 case ISD::ConstantFP: { 804 ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node); 805 if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) { 806 if (Subtarget->isGP64bit()) { 807 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, 808 Mips::ZERO_64, MVT::i64); 809 ReplaceNode(Node, 810 CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero)); 811 } else if (Subtarget->isFP64bit()) { 812 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, 813 Mips::ZERO, MVT::i32); 814 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, 815 MVT::f64, Zero, Zero)); 816 } else { 817 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, 818 Mips::ZERO, MVT::i32); 819 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL, 820 MVT::f64, Zero, Zero)); 821 } 822 return true; 823 } 824 break; 825 } 826 827 case ISD::Constant: { 828 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node); 829 int64_t Imm = CN->getSExtValue(); 830 unsigned Size = CN->getValueSizeInBits(0); 831 832 if (isInt<32>(Imm)) 833 break; 834 835 MipsAnalyzeImmediate AnalyzeImm; 836 837 const MipsAnalyzeImmediate::InstSeq &Seq = 838 AnalyzeImm.Analyze(Imm, Size, false); 839 840 MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin(); 841 SDLoc DL(CN); 842 SDNode *RegOpnd; 843 SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), 844 DL, MVT::i64); 845 846 // The first instruction can be a LUi which is different from other 847 // instructions (ADDiu, ORI and SLL) in that it does not have a register 848 // operand. 849 if (Inst->Opc == Mips::LUi64) 850 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd); 851 else 852 RegOpnd = 853 CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, 854 CurDAG->getRegister(Mips::ZERO_64, MVT::i64), 855 ImmOpnd); 856 857 // The remaining instructions in the sequence are handled here. 858 for (++Inst; Inst != Seq.end(); ++Inst) { 859 ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL, 860 MVT::i64); 861 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, 862 SDValue(RegOpnd, 0), ImmOpnd); 863 } 864 865 ReplaceNode(Node, RegOpnd); 866 return true; 867 } 868 869 case ISD::INTRINSIC_W_CHAIN: { 870 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 871 default: 872 break; 873 874 case Intrinsic::mips_cfcmsa: { 875 SDValue ChainIn = Node->getOperand(0); 876 SDValue RegIdx = Node->getOperand(2); 877 SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL, 878 getMSACtrlReg(RegIdx), MVT::i32); 879 ReplaceNode(Node, Reg.getNode()); 880 return true; 881 } 882 } 883 break; 884 } 885 886 case ISD::INTRINSIC_WO_CHAIN: { 887 switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) { 888 default: 889 break; 890 891 case Intrinsic::mips_move_v: 892 // Like an assignment but will always produce a move.v even if 893 // unnecessary. 894 ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL, 895 Node->getValueType(0), 896 Node->getOperand(1))); 897 return true; 898 } 899 break; 900 } 901 902 case ISD::INTRINSIC_VOID: { 903 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 904 default: 905 break; 906 907 case Intrinsic::mips_ctcmsa: { 908 SDValue ChainIn = Node->getOperand(0); 909 SDValue RegIdx = Node->getOperand(2); 910 SDValue Value = Node->getOperand(3); 911 SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL, 912 getMSACtrlReg(RegIdx), Value); 913 ReplaceNode(Node, ChainOut.getNode()); 914 return true; 915 } 916 } 917 break; 918 } 919 920 // Manually match MipsISD::Ins nodes to get the correct instruction. It has 921 // to be done in this fashion so that we respect the differences between 922 // dins and dinsm, as the difference is that the size operand has the range 923 // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which 924 // means SelectionDAGISel would have to test all the operands at once to 925 // match the instruction. 926 case MipsISD::Ins: { 927 928 // Sanity checking for the node operands. 929 if (Node->getValueType(0) != MVT::i32 && Node->getValueType(0) != MVT::i64) 930 return false; 931 932 if (Node->getNumOperands() != 4) 933 return false; 934 935 if (Node->getOperand(1)->getOpcode() != ISD::Constant || 936 Node->getOperand(2)->getOpcode() != ISD::Constant) 937 return false; 938 939 MVT ResTy = Node->getSimpleValueType(0); 940 uint64_t Pos = Node->getConstantOperandVal(1); 941 uint64_t Size = Node->getConstantOperandVal(2); 942 943 // Size has to be >0 for 'ins', 'dins' and 'dinsu'. 944 if (!Size) 945 return false; 946 947 if (Pos + Size > 64) 948 return false; 949 950 if (ResTy != MVT::i32 && ResTy != MVT::i64) 951 return false; 952 953 unsigned Opcode = 0; 954 if (ResTy == MVT::i32) { 955 if (Pos + Size <= 32) 956 Opcode = Mips::INS; 957 } else { 958 if (Pos + Size <= 32) 959 Opcode = Mips::DINS; 960 else if (Pos < 32 && 1 < Size) 961 Opcode = Mips::DINSM; 962 else 963 Opcode = Mips::DINSU; 964 } 965 966 if (Opcode) { 967 SDValue Ops[4] = { 968 Node->getOperand(0), CurDAG->getTargetConstant(Pos, DL, MVT::i32), 969 CurDAG->getTargetConstant(Size, DL, MVT::i32), Node->getOperand(3)}; 970 971 ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, ResTy, Ops)); 972 return true; 973 } 974 975 return false; 976 } 977 978 case MipsISD::ThreadPointer: { 979 EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout()); 980 unsigned RdhwrOpc, DestReg; 981 982 if (PtrVT == MVT::i32) { 983 RdhwrOpc = Mips::RDHWR; 984 DestReg = Mips::V1; 985 } else { 986 RdhwrOpc = Mips::RDHWR64; 987 DestReg = Mips::V1_64; 988 } 989 990 SDNode *Rdhwr = 991 CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0), 992 CurDAG->getRegister(Mips::HWR29, MVT::i32), 993 CurDAG->getTargetConstant(0, DL, MVT::i32)); 994 SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg, 995 SDValue(Rdhwr, 0)); 996 SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT); 997 ReplaceNode(Node, ResNode.getNode()); 998 return true; 999 } 1000 1001 case ISD::BUILD_VECTOR: { 1002 // Select appropriate ldi.[bhwd] instructions for constant splats of 1003 // 128-bit when MSA is enabled. Fixup any register class mismatches that 1004 // occur as a result. 1005 // 1006 // This allows the compiler to use a wider range of immediates than would 1007 // otherwise be allowed. If, for example, v4i32 could only use ldi.h then 1008 // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101, 1009 // 0x01010101 } without using a constant pool. This would be sub-optimal 1010 // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the 1011 // same set/ of registers. Similarly, ldi.h isn't capable of producing { 1012 // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can. 1013 1014 const MipsABIInfo &ABI = 1015 static_cast<const MipsTargetMachine &>(TM).getABI(); 1016 1017 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node); 1018 APInt SplatValue, SplatUndef; 1019 unsigned SplatBitSize; 1020 bool HasAnyUndefs; 1021 unsigned LdiOp; 1022 EVT ResVecTy = BVN->getValueType(0); 1023 EVT ViaVecTy; 1024 1025 if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector()) 1026 return false; 1027 1028 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 1029 HasAnyUndefs, 8, 1030 !Subtarget->isLittle())) 1031 return false; 1032 1033 switch (SplatBitSize) { 1034 default: 1035 return false; 1036 case 8: 1037 LdiOp = Mips::LDI_B; 1038 ViaVecTy = MVT::v16i8; 1039 break; 1040 case 16: 1041 LdiOp = Mips::LDI_H; 1042 ViaVecTy = MVT::v8i16; 1043 break; 1044 case 32: 1045 LdiOp = Mips::LDI_W; 1046 ViaVecTy = MVT::v4i32; 1047 break; 1048 case 64: 1049 LdiOp = Mips::LDI_D; 1050 ViaVecTy = MVT::v2i64; 1051 break; 1052 } 1053 1054 SDNode *Res; 1055 1056 // If we have a signed 10 bit integer, we can splat it directly. 1057 // 1058 // If we have something bigger we can synthesize the value into a GPR and 1059 // splat from there. 1060 if (SplatValue.isSignedIntN(10)) { 1061 SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL, 1062 ViaVecTy.getVectorElementType()); 1063 1064 Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm); 1065 } else if (SplatValue.isSignedIntN(16) && 1066 ((ABI.IsO32() && SplatBitSize < 64) || 1067 (ABI.IsN32() || ABI.IsN64()))) { 1068 // Only handle signed 16 bit values when the element size is GPR width. 1069 // MIPS64 can handle all the cases but MIPS32 would need to handle 1070 // negative cases specifically here. Instead, handle those cases as 1071 // 64bit values. 1072 1073 bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64; 1074 const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu; 1075 const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64; 1076 SDValue ZeroVal = CurDAG->getRegister( 1077 Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT); 1078 1079 const unsigned FILLOp = 1080 SplatBitSize == 16 1081 ? Mips::FILL_H 1082 : (SplatBitSize == 32 ? Mips::FILL_W 1083 : (SplatBitSize == 64 ? Mips::FILL_D : 0)); 1084 1085 assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!"); 1086 assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) && 1087 "Attempting to use fill.d on MIPS32!"); 1088 1089 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); 1090 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT); 1091 1092 Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal); 1093 Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0)); 1094 1095 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) { 1096 // Only handle the cases where the splat size agrees with the size 1097 // of the SplatValue here. 1098 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); 1099 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue(); 1100 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32); 1101 1102 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32); 1103 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32); 1104 1105 if (Hi) 1106 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal); 1107 1108 if (Lo) 1109 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, 1110 Hi ? SDValue(Res, 0) : ZeroVal, LoVal); 1111 1112 assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!"); 1113 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0)); 1114 1115 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 && 1116 (ABI.IsN32() || ABI.IsN64())) { 1117 // N32 and N64 can perform some tricks that O32 can't for signed 32 bit 1118 // integers due to having 64bit registers. lui will cause the necessary 1119 // zero/sign extension. 1120 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); 1121 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue(); 1122 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32); 1123 1124 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32); 1125 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32); 1126 1127 if (Hi) 1128 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal); 1129 1130 if (Lo) 1131 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, 1132 Hi ? SDValue(Res, 0) : ZeroVal, LoVal); 1133 1134 Res = CurDAG->getMachineNode( 1135 Mips::SUBREG_TO_REG, DL, MVT::i64, 1136 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64), 1137 SDValue(Res, 0), 1138 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64)); 1139 1140 Res = 1141 CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0)); 1142 1143 } else if (SplatValue.isSignedIntN(64)) { 1144 // If we have a 64 bit Splat value, we perform a similar sequence to the 1145 // above: 1146 // 1147 // MIPS32: MIPS64: 1148 // lui $res, %highest(val) lui $res, %highest(val) 1149 // ori $res, $res, %higher(val) ori $res, $res, %higher(val) 1150 // lui $res2, %hi(val) lui $res2, %hi(val) 1151 // ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val) 1152 // $res3 = fill $res2 dinsu $res, $res2, 0, 32 1153 // $res4 = insert.w $res3[1], $res fill.d $res 1154 // splat.d $res4, 0 1155 // 1156 // The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves 1157 // having to materialize the value by shifts and ors. 1158 // 1159 // FIXME: Implement the preferred sequence for MIPS64R6: 1160 // 1161 // MIPS64R6: 1162 // ori $res, $zero, %lo(val) 1163 // daui $res, $res, %hi(val) 1164 // dahi $res, $res, %higher(val) 1165 // dati $res, $res, %highest(cal) 1166 // fill.d $res 1167 // 1168 1169 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); 1170 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue(); 1171 const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue(); 1172 const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue(); 1173 1174 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32); 1175 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32); 1176 SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32); 1177 SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32); 1178 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32); 1179 1180 // Independent of whether we're targeting MIPS64 or not, the basic 1181 // operations are the same. Also, directly use the $zero register if 1182 // the 16 bit chunk is zero. 1183 // 1184 // For optimization purposes we always synthesize the splat value as 1185 // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG 1186 // just before combining the values with dinsu to produce an i64. This 1187 // enables SelectionDAG to aggressively share components of splat values 1188 // where possible. 1189 // 1190 // FIXME: This is the general constant synthesis problem. This code 1191 // should be factored out into a class shared between all the 1192 // classes that need it. Specifically, for a splat size of 64 1193 // bits that's a negative number we can do better than LUi/ORi 1194 // for the upper 32bits. 1195 1196 if (Hi) 1197 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal); 1198 1199 if (Lo) 1200 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, 1201 Hi ? SDValue(Res, 0) : ZeroVal, LoVal); 1202 1203 SDNode *HiRes; 1204 if (Highest) 1205 HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal); 1206 1207 if (Higher) 1208 HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, 1209 Highest ? SDValue(HiRes, 0) : ZeroVal, 1210 HigherVal); 1211 1212 1213 if (ABI.IsO32()) { 1214 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, 1215 (Hi || Lo) ? SDValue(Res, 0) : ZeroVal); 1216 1217 Res = CurDAG->getMachineNode( 1218 Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0), 1219 (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal, 1220 CurDAG->getTargetConstant(1, DL, MVT::i32)); 1221 1222 const TargetLowering *TLI = getTargetLowering(); 1223 const TargetRegisterClass *RC = 1224 TLI->getRegClassFor(ViaVecTy.getSimpleVT()); 1225 1226 Res = CurDAG->getMachineNode( 1227 Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0), 1228 CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32)); 1229 1230 Res = CurDAG->getMachineNode( 1231 Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0), 1232 CurDAG->getTargetConstant(0, DL, MVT::i32)); 1233 } else if (ABI.IsN64() || ABI.IsN32()) { 1234 1235 SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64); 1236 const bool HiResNonZero = Highest || Higher; 1237 const bool ResNonZero = Hi || Lo; 1238 1239 if (HiResNonZero) 1240 HiRes = CurDAG->getMachineNode( 1241 Mips::SUBREG_TO_REG, DL, MVT::i64, 1242 CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64), 1243 SDValue(HiRes, 0), 1244 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64)); 1245 1246 if (ResNonZero) 1247 Res = CurDAG->getMachineNode( 1248 Mips::SUBREG_TO_REG, DL, MVT::i64, 1249 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64), 1250 SDValue(Res, 0), 1251 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64)); 1252 1253 // We have 3 cases: 1254 // The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0 1255 // The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32 1256 // Both are non zero => dinsu Res, HiRes, 32, 32 1257 // 1258 // The obvious "missing" case is when both are zero, but that case is 1259 // handled by the ldi case. 1260 if (ResNonZero) { 1261 IntegerType *Int32Ty = 1262 IntegerType::get(MF->getFunction().getContext(), 32); 1263 const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32); 1264 SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val, 1265 CurDAG->getConstant(*Const32, DL, MVT::i32), 1266 CurDAG->getConstant(*Const32, DL, MVT::i32), 1267 SDValue(Res, 0)}; 1268 1269 Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops); 1270 } else if (HiResNonZero) { 1271 Res = CurDAG->getMachineNode( 1272 Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0), 1273 CurDAG->getTargetConstant(0, DL, MVT::i32)); 1274 } else 1275 llvm_unreachable( 1276 "Zero splat value handled by non-zero 64bit splat synthesis!"); 1277 1278 Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0)); 1279 } else 1280 llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!"); 1281 1282 } else 1283 return false; 1284 1285 if (ResVecTy != ViaVecTy) { 1286 // If LdiOp is writing to a different register class to ResVecTy, then 1287 // fix it up here. This COPY_TO_REGCLASS should never cause a move.v 1288 // since the source and destination register sets contain the same 1289 // registers. 1290 const TargetLowering *TLI = getTargetLowering(); 1291 MVT ResVecTySimple = ResVecTy.getSimpleVT(); 1292 const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple); 1293 Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL, 1294 ResVecTy, SDValue(Res, 0), 1295 CurDAG->getTargetConstant(RC->getID(), DL, 1296 MVT::i32)); 1297 } 1298 1299 ReplaceNode(Node, Res); 1300 return true; 1301 } 1302 1303 } 1304 1305 return false; 1306 } 1307 1308 bool MipsSEDAGToDAGISel:: 1309 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, 1310 std::vector<SDValue> &OutOps) { 1311 SDValue Base, Offset; 1312 1313 switch(ConstraintID) { 1314 default: 1315 llvm_unreachable("Unexpected asm memory constraint"); 1316 // All memory constraints can at least accept raw pointers. 1317 case InlineAsm::Constraint_i: 1318 OutOps.push_back(Op); 1319 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 1320 return false; 1321 case InlineAsm::Constraint_m: 1322 if (selectAddrRegImm16(Op, Base, Offset)) { 1323 OutOps.push_back(Base); 1324 OutOps.push_back(Offset); 1325 return false; 1326 } 1327 OutOps.push_back(Op); 1328 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 1329 return false; 1330 case InlineAsm::Constraint_R: 1331 // The 'R' constraint is supposed to be much more complicated than this. 1332 // However, it's becoming less useful due to architectural changes and 1333 // ought to be replaced by other constraints such as 'ZC'. 1334 // For now, support 9-bit signed offsets which is supportable by all 1335 // subtargets for all instructions. 1336 if (selectAddrRegImm9(Op, Base, Offset)) { 1337 OutOps.push_back(Base); 1338 OutOps.push_back(Offset); 1339 return false; 1340 } 1341 OutOps.push_back(Op); 1342 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 1343 return false; 1344 case InlineAsm::Constraint_ZC: 1345 // ZC matches whatever the pref, ll, and sc instructions can handle for the 1346 // given subtarget. 1347 if (Subtarget->inMicroMipsMode()) { 1348 // On microMIPS, they can handle 12-bit offsets. 1349 if (selectAddrRegImm12(Op, Base, Offset)) { 1350 OutOps.push_back(Base); 1351 OutOps.push_back(Offset); 1352 return false; 1353 } 1354 } else if (Subtarget->hasMips32r6()) { 1355 // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets. 1356 if (selectAddrRegImm9(Op, Base, Offset)) { 1357 OutOps.push_back(Base); 1358 OutOps.push_back(Offset); 1359 return false; 1360 } 1361 } else if (selectAddrRegImm16(Op, Base, Offset)) { 1362 // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets. 1363 OutOps.push_back(Base); 1364 OutOps.push_back(Offset); 1365 return false; 1366 } 1367 // In all cases, 0-bit offsets are acceptable. 1368 OutOps.push_back(Op); 1369 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 1370 return false; 1371 } 1372 return true; 1373 } 1374 1375 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM, 1376 CodeGenOpt::Level OptLevel) { 1377 return new MipsSEDAGToDAGISel(TM, OptLevel); 1378 } 1379