1 //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file implements the construction of a VPlan-based Hierarchical CFG
12 /// (H-CFG) for an incoming IR. This construction comprises the following
13 /// components and steps:
14 //
15 /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
16 /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
17 /// Region) is created to enclose and serve as parent of all the VPBasicBlocks
18 /// in the plain CFG.
19 /// NOTE: At this point, there is a direct correspondence between all the
20 /// VPBasicBlocks created for the initial plain CFG and the incoming
21 /// BasicBlocks. However, this might change in the future.
22 ///
23 //===----------------------------------------------------------------------===//
24 
25 #include "VPlanHCFGBuilder.h"
26 #include "LoopVectorizationPlanner.h"
27 #include "llvm/Analysis/LoopIterator.h"
28 
29 #define DEBUG_TYPE "loop-vectorize"
30 
31 using namespace llvm;
32 
33 namespace {
34 // Class that is used to build the plain CFG for the incoming IR.
35 class PlainCFGBuilder {
36 private:
37   // The outermost loop of the input loop nest considered for vectorization.
38   Loop *TheLoop;
39 
40   // Loop Info analysis.
41   LoopInfo *LI;
42 
43   // Vectorization plan that we are working on.
44   VPlan &Plan;
45 
46   // Output Top Region.
47   VPRegionBlock *TopRegion = nullptr;
48 
49   // Builder of the VPlan instruction-level representation.
50   VPBuilder VPIRBuilder;
51 
52   // NOTE: The following maps are intentionally destroyed after the plain CFG
53   // construction because subsequent VPlan-to-VPlan transformation may
54   // invalidate them.
55   // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
56   DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
57   // Map incoming Value definitions to their newly-created VPValues.
58   DenseMap<Value *, VPValue *> IRDef2VPValue;
59 
60   // Hold phi node's that need to be fixed once the plain CFG has been built.
61   SmallVector<PHINode *, 8> PhisToFix;
62 
63   // Utility functions.
64   void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
65   void fixPhiNodes();
66   VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
67   bool isExternalDef(Value *Val);
68   VPValue *getOrCreateVPOperand(Value *IRVal);
69   void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
70 
71 public:
PlainCFGBuilder(Loop * Lp,LoopInfo * LI,VPlan & P)72   PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
73       : TheLoop(Lp), LI(LI), Plan(P) {}
74 
75   // Build the plain CFG and return its Top Region.
76   VPRegionBlock *buildPlainCFG();
77 };
78 } // anonymous namespace
79 
80 // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
81 // must have no predecessors.
setVPBBPredsFromBB(VPBasicBlock * VPBB,BasicBlock * BB)82 void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
83   SmallVector<VPBlockBase *, 8> VPBBPreds;
84   // Collect VPBB predecessors.
85   for (BasicBlock *Pred : predecessors(BB))
86     VPBBPreds.push_back(getOrCreateVPBB(Pred));
87 
88   VPBB->setPredecessors(VPBBPreds);
89 }
90 
91 // Add operands to VPInstructions representing phi nodes from the input IR.
fixPhiNodes()92 void PlainCFGBuilder::fixPhiNodes() {
93   for (auto *Phi : PhisToFix) {
94     assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
95     VPValue *VPVal = IRDef2VPValue[Phi];
96     assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node.");
97     auto *VPPhi = cast<VPInstruction>(VPVal);
98     assert(VPPhi->getNumOperands() == 0 &&
99            "Expected VPInstruction with no operands.");
100 
101     for (Value *Op : Phi->operands())
102       VPPhi->addOperand(getOrCreateVPOperand(Op));
103   }
104 }
105 
106 // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
107 // existing one if it was already created.
getOrCreateVPBB(BasicBlock * BB)108 VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
109   auto BlockIt = BB2VPBB.find(BB);
110   if (BlockIt != BB2VPBB.end())
111     // Retrieve existing VPBB.
112     return BlockIt->second;
113 
114   // Create new VPBB.
115   LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n");
116   VPBasicBlock *VPBB = new VPBasicBlock(BB->getName());
117   BB2VPBB[BB] = VPBB;
118   VPBB->setParent(TopRegion);
119   return VPBB;
120 }
121 
122 // Return true if \p Val is considered an external definition. An external
123 // definition is either:
124 // 1. A Value that is not an Instruction. This will be refined in the future.
125 // 2. An Instruction that is outside of the CFG snippet represented in VPlan,
126 // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
127 // outermost loop exits.
isExternalDef(Value * Val)128 bool PlainCFGBuilder::isExternalDef(Value *Val) {
129   // All the Values that are not Instructions are considered external
130   // definitions for now.
131   Instruction *Inst = dyn_cast<Instruction>(Val);
132   if (!Inst)
133     return true;
134 
135   BasicBlock *InstParent = Inst->getParent();
136   assert(InstParent && "Expected instruction parent.");
137 
138   // Check whether Instruction definition is in loop PH.
139   BasicBlock *PH = TheLoop->getLoopPreheader();
140   assert(PH && "Expected loop pre-header.");
141 
142   if (InstParent == PH)
143     // Instruction definition is in outermost loop PH.
144     return false;
145 
146   // Check whether Instruction definition is in the loop exit.
147   BasicBlock *Exit = TheLoop->getUniqueExitBlock();
148   assert(Exit && "Expected loop with single exit.");
149   if (InstParent == Exit) {
150     // Instruction definition is in outermost loop exit.
151     return false;
152   }
153 
154   // Check whether Instruction definition is in loop body.
155   return !TheLoop->contains(Inst);
156 }
157 
158 // Create a new VPValue or retrieve an existing one for the Instruction's
159 // operand \p IRVal. This function must only be used to create/retrieve VPValues
160 // for *Instruction's operands* and not to create regular VPInstruction's. For
161 // the latter, please, look at 'createVPInstructionsForVPBB'.
getOrCreateVPOperand(Value * IRVal)162 VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
163   auto VPValIt = IRDef2VPValue.find(IRVal);
164   if (VPValIt != IRDef2VPValue.end())
165     // Operand has an associated VPInstruction or VPValue that was previously
166     // created.
167     return VPValIt->second;
168 
169   // Operand doesn't have a previously created VPInstruction/VPValue. This
170   // means that operand is:
171   //   A) a definition external to VPlan,
172   //   B) any other Value without specific representation in VPlan.
173   // For now, we use VPValue to represent A and B and classify both as external
174   // definitions. We may introduce specific VPValue subclasses for them in the
175   // future.
176   assert(isExternalDef(IRVal) && "Expected external definition as operand.");
177 
178   // A and B: Create VPValue and add it to the pool of external definitions and
179   // to the Value->VPValue map.
180   VPValue *NewVPVal = new VPValue(IRVal);
181   Plan.addExternalDef(NewVPVal);
182   IRDef2VPValue[IRVal] = NewVPVal;
183   return NewVPVal;
184 }
185 
186 // Create new VPInstructions in a VPBasicBlock, given its BasicBlock
187 // counterpart. This function must be invoked in RPO so that the operands of a
188 // VPInstruction in \p BB have been visited before (except for Phi nodes).
createVPInstructionsForVPBB(VPBasicBlock * VPBB,BasicBlock * BB)189 void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
190                                                   BasicBlock *BB) {
191   VPIRBuilder.setInsertPoint(VPBB);
192   for (Instruction &InstRef : *BB) {
193     Instruction *Inst = &InstRef;
194 
195     // There shouldn't be any VPValue for Inst at this point. Otherwise, we
196     // visited Inst when we shouldn't, breaking the RPO traversal order.
197     assert(!IRDef2VPValue.count(Inst) &&
198            "Instruction shouldn't have been visited.");
199 
200     if (auto *Br = dyn_cast<BranchInst>(Inst)) {
201       // Branch instruction is not explicitly represented in VPlan but we need
202       // to represent its condition bit when it's conditional.
203       if (Br->isConditional())
204         getOrCreateVPOperand(Br->getCondition());
205 
206       // Skip the rest of the Instruction processing for Branch instructions.
207       continue;
208     }
209 
210     VPInstruction *NewVPInst;
211     if (auto *Phi = dyn_cast<PHINode>(Inst)) {
212       // Phi node's operands may have not been visited at this point. We create
213       // an empty VPInstruction that we will fix once the whole plain CFG has
214       // been built.
215       NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp(
216           Inst->getOpcode(), {} /*No operands*/, Inst));
217       PhisToFix.push_back(Phi);
218     } else {
219       // Translate LLVM-IR operands into VPValue operands and set them in the
220       // new VPInstruction.
221       SmallVector<VPValue *, 4> VPOperands;
222       for (Value *Op : Inst->operands())
223         VPOperands.push_back(getOrCreateVPOperand(Op));
224 
225       // Build VPInstruction for any arbitraty Instruction without specific
226       // representation in VPlan.
227       NewVPInst = cast<VPInstruction>(
228           VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
229     }
230 
231     IRDef2VPValue[Inst] = NewVPInst;
232   }
233 }
234 
235 // Main interface to build the plain CFG.
buildPlainCFG()236 VPRegionBlock *PlainCFGBuilder::buildPlainCFG() {
237   // 1. Create the Top Region. It will be the parent of all VPBBs.
238   TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/);
239 
240   // 2. Scan the body of the loop in a topological order to visit each basic
241   // block after having visited its predecessor basic blocks. Create a VPBB for
242   // each BB and link it to its successor and predecessor VPBBs. Note that
243   // predecessors must be set in the same order as they are in the incomming IR.
244   // Otherwise, there might be problems with existing phi nodes and algorithm
245   // based on predecessors traversal.
246 
247   // Loop PH needs to be explicitly visited since it's not taken into account by
248   // LoopBlocksDFS.
249   BasicBlock *PreheaderBB = TheLoop->getLoopPreheader();
250   assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
251          "Unexpected loop preheader");
252   VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB);
253   createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB);
254   // Create empty VPBB for Loop H so that we can link PH->H.
255   VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader());
256   // Preheader's predecessors will be set during the loop RPO traversal below.
257   PreheaderVPBB->setOneSuccessor(HeaderVPBB);
258 
259   LoopBlocksRPO RPO(TheLoop);
260   RPO.perform(LI);
261 
262   for (BasicBlock *BB : RPO) {
263     // Create or retrieve the VPBasicBlock for this BB and create its
264     // VPInstructions.
265     VPBasicBlock *VPBB = getOrCreateVPBB(BB);
266     createVPInstructionsForVPBB(VPBB, BB);
267 
268     // Set VPBB successors. We create empty VPBBs for successors if they don't
269     // exist already. Recipes will be created when the successor is visited
270     // during the RPO traversal.
271     TerminatorInst *TI = BB->getTerminator();
272     assert(TI && "Terminator expected.");
273     unsigned NumSuccs = TI->getNumSuccessors();
274 
275     if (NumSuccs == 1) {
276       VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0));
277       assert(SuccVPBB && "VPBB Successor not found.");
278       VPBB->setOneSuccessor(SuccVPBB);
279     } else if (NumSuccs == 2) {
280       VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0));
281       assert(SuccVPBB0 && "Successor 0 not found.");
282       VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1));
283       assert(SuccVPBB1 && "Successor 1 not found.");
284 
285       // Get VPBB's condition bit.
286       assert(isa<BranchInst>(TI) && "Unsupported terminator!");
287       auto *Br = cast<BranchInst>(TI);
288       Value *BrCond = Br->getCondition();
289       // Look up the branch condition to get the corresponding VPValue
290       // representing the condition bit in VPlan (which may be in another VPBB).
291       assert(IRDef2VPValue.count(BrCond) &&
292              "Missing condition bit in IRDef2VPValue!");
293       VPValue *VPCondBit = IRDef2VPValue[BrCond];
294 
295       // Link successors using condition bit.
296       VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1, VPCondBit);
297     } else
298       llvm_unreachable("Number of successors not supported.");
299 
300     // Set VPBB predecessors in the same order as they are in the incoming BB.
301     setVPBBPredsFromBB(VPBB, BB);
302   }
303 
304   // 3. Process outermost loop exit. We created an empty VPBB for the loop
305   // single exit BB during the RPO traversal of the loop body but Instructions
306   // weren't visited because it's not part of the the loop.
307   BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
308   assert(LoopExitBB && "Loops with multiple exits are not supported.");
309   VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB];
310   createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB);
311   // Loop exit was already set as successor of the loop exiting BB.
312   // We only set its predecessor VPBB now.
313   setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB);
314 
315   // 4. The whole CFG has been built at this point so all the input Values must
316   // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
317   // VPlan operands.
318   fixPhiNodes();
319 
320   // 5. Final Top Region setup. Set outermost loop pre-header and single exit as
321   // Top Region entry and exit.
322   TopRegion->setEntry(PreheaderVPBB);
323   TopRegion->setExit(LoopExitVPBB);
324   return TopRegion;
325 }
326 
buildPlainCFG()327 VPRegionBlock *VPlanHCFGBuilder::buildPlainCFG() {
328   PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
329   return PCFGBuilder.buildPlainCFG();
330 }
331 
332 // Public interface to build a H-CFG.
buildHierarchicalCFG()333 void VPlanHCFGBuilder::buildHierarchicalCFG() {
334   // Build Top Region enclosing the plain CFG and set it as VPlan entry.
335   VPRegionBlock *TopRegion = buildPlainCFG();
336   Plan.setEntry(TopRegion);
337   LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
338 
339   Verifier.verifyHierarchicalCFG(TopRegion);
340 
341   // Compute plain CFG dom tree for VPLInfo.
342   VPDomTree.recalculate(*TopRegion);
343   LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
344              VPDomTree.print(dbgs()));
345 
346   // Compute VPLInfo and keep it in Plan.
347   VPLoopInfo &VPLInfo = Plan.getVPLoopInfo();
348   VPLInfo.analyze(VPDomTree);
349   LLVM_DEBUG(dbgs() << "VPLoop Info After buildPlainCFG:\n";
350              VPLInfo.print(dbgs()));
351 }
352