1 //===- Endian.h - Utilities for IO with endian specific data ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares generic functions to read and write endian specific data.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_SUPPORT_ENDIAN_H
15 #define LLVM_SUPPORT_ENDIAN_H
16 
17 #include "llvm/Support/AlignOf.h"
18 #include "llvm/Support/Compiler.h"
19 #include "llvm/Support/Host.h"
20 #include "llvm/Support/SwapByteOrder.h"
21 #include <cassert>
22 #include <cstddef>
23 #include <cstdint>
24 #include <cstring>
25 #include <type_traits>
26 
27 namespace llvm {
28 namespace support {
29 
30 enum endianness {big, little, native};
31 
32 // These are named values for common alignments.
33 enum {aligned = 0, unaligned = 1};
34 
35 namespace detail {
36 
37 /// ::value is either alignment, or alignof(T) if alignment is 0.
38 template<class T, int alignment>
39 struct PickAlignment {
40  enum { value = alignment == 0 ? alignof(T) : alignment };
41 };
42 
43 } // end namespace detail
44 
45 namespace endian {
46 
system_endianness()47 constexpr endianness system_endianness() {
48   return sys::IsBigEndianHost ? big : little;
49 }
50 
51 template <typename value_type>
byte_swap(value_type value,endianness endian)52 inline value_type byte_swap(value_type value, endianness endian) {
53   if ((endian != native) && (endian != system_endianness()))
54     sys::swapByteOrder(value);
55   return value;
56 }
57 
58 /// Swap the bytes of value to match the given endianness.
59 template<typename value_type, endianness endian>
byte_swap(value_type value)60 inline value_type byte_swap(value_type value) {
61   return byte_swap(value, endian);
62 }
63 
64 /// Read a value of a particular endianness from memory.
65 template <typename value_type, std::size_t alignment>
read(const void * memory,endianness endian)66 inline value_type read(const void *memory, endianness endian) {
67   value_type ret;
68 
69   memcpy(&ret,
70          LLVM_ASSUME_ALIGNED(
71              memory, (detail::PickAlignment<value_type, alignment>::value)),
72          sizeof(value_type));
73   return byte_swap<value_type>(ret, endian);
74 }
75 
76 template<typename value_type,
77          endianness endian,
78          std::size_t alignment>
read(const void * memory)79 inline value_type read(const void *memory) {
80   return read<value_type, alignment>(memory, endian);
81 }
82 
83 /// Read a value of a particular endianness from a buffer, and increment the
84 /// buffer past that value.
85 template <typename value_type, std::size_t alignment, typename CharT>
readNext(const CharT * & memory,endianness endian)86 inline value_type readNext(const CharT *&memory, endianness endian) {
87   value_type ret = read<value_type, alignment>(memory, endian);
88   memory += sizeof(value_type);
89   return ret;
90 }
91 
92 template<typename value_type, endianness endian, std::size_t alignment,
93          typename CharT>
readNext(const CharT * & memory)94 inline value_type readNext(const CharT *&memory) {
95   return readNext<value_type, alignment, CharT>(memory, endian);
96 }
97 
98 /// Write a value to memory with a particular endianness.
99 template <typename value_type, std::size_t alignment>
write(void * memory,value_type value,endianness endian)100 inline void write(void *memory, value_type value, endianness endian) {
101   value = byte_swap<value_type>(value, endian);
102   memcpy(LLVM_ASSUME_ALIGNED(
103              memory, (detail::PickAlignment<value_type, alignment>::value)),
104          &value, sizeof(value_type));
105 }
106 
107 template<typename value_type,
108          endianness endian,
109          std::size_t alignment>
write(void * memory,value_type value)110 inline void write(void *memory, value_type value) {
111   write<value_type, alignment>(memory, value, endian);
112 }
113 
114 template <typename value_type>
115 using make_unsigned_t = typename std::make_unsigned<value_type>::type;
116 
117 /// Read a value of a particular endianness from memory, for a location
118 /// that starts at the given bit offset within the first byte.
119 template <typename value_type, endianness endian, std::size_t alignment>
readAtBitAlignment(const void * memory,uint64_t startBit)120 inline value_type readAtBitAlignment(const void *memory, uint64_t startBit) {
121   assert(startBit < 8);
122   if (startBit == 0)
123     return read<value_type, endian, alignment>(memory);
124   else {
125     // Read two values and compose the result from them.
126     value_type val[2];
127     memcpy(&val[0],
128            LLVM_ASSUME_ALIGNED(
129                memory, (detail::PickAlignment<value_type, alignment>::value)),
130            sizeof(value_type) * 2);
131     val[0] = byte_swap<value_type, endian>(val[0]);
132     val[1] = byte_swap<value_type, endian>(val[1]);
133 
134     // Shift bits from the lower value into place.
135     make_unsigned_t<value_type> lowerVal = val[0] >> startBit;
136     // Mask off upper bits after right shift in case of signed type.
137     make_unsigned_t<value_type> numBitsFirstVal =
138         (sizeof(value_type) * 8) - startBit;
139     lowerVal &= ((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1;
140 
141     // Get the bits from the upper value.
142     make_unsigned_t<value_type> upperVal =
143         val[1] & (((make_unsigned_t<value_type>)1 << startBit) - 1);
144     // Shift them in to place.
145     upperVal <<= numBitsFirstVal;
146 
147     return lowerVal | upperVal;
148   }
149 }
150 
151 /// Write a value to memory with a particular endianness, for a location
152 /// that starts at the given bit offset within the first byte.
153 template <typename value_type, endianness endian, std::size_t alignment>
writeAtBitAlignment(void * memory,value_type value,uint64_t startBit)154 inline void writeAtBitAlignment(void *memory, value_type value,
155                                 uint64_t startBit) {
156   assert(startBit < 8);
157   if (startBit == 0)
158     write<value_type, endian, alignment>(memory, value);
159   else {
160     // Read two values and shift the result into them.
161     value_type val[2];
162     memcpy(&val[0],
163            LLVM_ASSUME_ALIGNED(
164                memory, (detail::PickAlignment<value_type, alignment>::value)),
165            sizeof(value_type) * 2);
166     val[0] = byte_swap<value_type, endian>(val[0]);
167     val[1] = byte_swap<value_type, endian>(val[1]);
168 
169     // Mask off any existing bits in the upper part of the lower value that
170     // we want to replace.
171     val[0] &= ((make_unsigned_t<value_type>)1 << startBit) - 1;
172     make_unsigned_t<value_type> numBitsFirstVal =
173         (sizeof(value_type) * 8) - startBit;
174     make_unsigned_t<value_type> lowerVal = value;
175     if (startBit > 0) {
176       // Mask off the upper bits in the new value that are not going to go into
177       // the lower value. This avoids a left shift of a negative value, which
178       // is undefined behavior.
179       lowerVal &= (((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1);
180       // Now shift the new bits into place
181       lowerVal <<= startBit;
182     }
183     val[0] |= lowerVal;
184 
185     // Mask off any existing bits in the lower part of the upper value that
186     // we want to replace.
187     val[1] &= ~(((make_unsigned_t<value_type>)1 << startBit) - 1);
188     // Next shift the bits that go into the upper value into position.
189     make_unsigned_t<value_type> upperVal = value >> numBitsFirstVal;
190     // Mask off upper bits after right shift in case of signed type.
191     upperVal &= ((make_unsigned_t<value_type>)1 << startBit) - 1;
192     val[1] |= upperVal;
193 
194     // Finally, rewrite values.
195     val[0] = byte_swap<value_type, endian>(val[0]);
196     val[1] = byte_swap<value_type, endian>(val[1]);
197     memcpy(LLVM_ASSUME_ALIGNED(
198                memory, (detail::PickAlignment<value_type, alignment>::value)),
199            &val[0], sizeof(value_type) * 2);
200   }
201 }
202 
203 } // end namespace endian
204 
205 namespace detail {
206 
207 template<typename value_type,
208          endianness endian,
209          std::size_t alignment>
210 struct packed_endian_specific_integral {
211   packed_endian_specific_integral() = default;
212 
packed_endian_specific_integralpacked_endian_specific_integral213   explicit packed_endian_specific_integral(value_type val) { *this = val; }
214 
value_typepacked_endian_specific_integral215   operator value_type() const {
216     return endian::read<value_type, endian, alignment>(
217       (const void*)Value.buffer);
218   }
219 
220   void operator=(value_type newValue) {
221     endian::write<value_type, endian, alignment>(
222       (void*)Value.buffer, newValue);
223   }
224 
225   packed_endian_specific_integral &operator+=(value_type newValue) {
226     *this = *this + newValue;
227     return *this;
228   }
229 
230   packed_endian_specific_integral &operator-=(value_type newValue) {
231     *this = *this - newValue;
232     return *this;
233   }
234 
235   packed_endian_specific_integral &operator|=(value_type newValue) {
236     *this = *this | newValue;
237     return *this;
238   }
239 
240   packed_endian_specific_integral &operator&=(value_type newValue) {
241     *this = *this & newValue;
242     return *this;
243   }
244 
245 private:
246   AlignedCharArray<PickAlignment<value_type, alignment>::value,
247                    sizeof(value_type)> Value;
248 
249 public:
250   struct ref {
refpacked_endian_specific_integral::ref251     explicit ref(void *Ptr) : Ptr(Ptr) {}
252 
value_typepacked_endian_specific_integral::ref253     operator value_type() const {
254       return endian::read<value_type, endian, alignment>(Ptr);
255     }
256 
257     void operator=(value_type NewValue) {
258       endian::write<value_type, endian, alignment>(Ptr, NewValue);
259     }
260 
261   private:
262     void *Ptr;
263   };
264 };
265 
266 } // end namespace detail
267 
268 using ulittle16_t =
269     detail::packed_endian_specific_integral<uint16_t, little, unaligned>;
270 using ulittle32_t =
271     detail::packed_endian_specific_integral<uint32_t, little, unaligned>;
272 using ulittle64_t =
273     detail::packed_endian_specific_integral<uint64_t, little, unaligned>;
274 
275 using little16_t =
276     detail::packed_endian_specific_integral<int16_t, little, unaligned>;
277 using little32_t =
278     detail::packed_endian_specific_integral<int32_t, little, unaligned>;
279 using little64_t =
280     detail::packed_endian_specific_integral<int64_t, little, unaligned>;
281 
282 using aligned_ulittle16_t =
283     detail::packed_endian_specific_integral<uint16_t, little, aligned>;
284 using aligned_ulittle32_t =
285     detail::packed_endian_specific_integral<uint32_t, little, aligned>;
286 using aligned_ulittle64_t =
287     detail::packed_endian_specific_integral<uint64_t, little, aligned>;
288 
289 using aligned_little16_t =
290     detail::packed_endian_specific_integral<int16_t, little, aligned>;
291 using aligned_little32_t =
292     detail::packed_endian_specific_integral<int32_t, little, aligned>;
293 using aligned_little64_t =
294     detail::packed_endian_specific_integral<int64_t, little, aligned>;
295 
296 using ubig16_t =
297     detail::packed_endian_specific_integral<uint16_t, big, unaligned>;
298 using ubig32_t =
299     detail::packed_endian_specific_integral<uint32_t, big, unaligned>;
300 using ubig64_t =
301     detail::packed_endian_specific_integral<uint64_t, big, unaligned>;
302 
303 using big16_t =
304     detail::packed_endian_specific_integral<int16_t, big, unaligned>;
305 using big32_t =
306     detail::packed_endian_specific_integral<int32_t, big, unaligned>;
307 using big64_t =
308     detail::packed_endian_specific_integral<int64_t, big, unaligned>;
309 
310 using aligned_ubig16_t =
311     detail::packed_endian_specific_integral<uint16_t, big, aligned>;
312 using aligned_ubig32_t =
313     detail::packed_endian_specific_integral<uint32_t, big, aligned>;
314 using aligned_ubig64_t =
315     detail::packed_endian_specific_integral<uint64_t, big, aligned>;
316 
317 using aligned_big16_t =
318     detail::packed_endian_specific_integral<int16_t, big, aligned>;
319 using aligned_big32_t =
320     detail::packed_endian_specific_integral<int32_t, big, aligned>;
321 using aligned_big64_t =
322     detail::packed_endian_specific_integral<int64_t, big, aligned>;
323 
324 using unaligned_uint16_t =
325     detail::packed_endian_specific_integral<uint16_t, native, unaligned>;
326 using unaligned_uint32_t =
327     detail::packed_endian_specific_integral<uint32_t, native, unaligned>;
328 using unaligned_uint64_t =
329     detail::packed_endian_specific_integral<uint64_t, native, unaligned>;
330 
331 using unaligned_int16_t =
332     detail::packed_endian_specific_integral<int16_t, native, unaligned>;
333 using unaligned_int32_t =
334     detail::packed_endian_specific_integral<int32_t, native, unaligned>;
335 using unaligned_int64_t =
336     detail::packed_endian_specific_integral<int64_t, native, unaligned>;
337 
338 namespace endian {
339 
read(const void * P,endianness E)340 template <typename T> inline T read(const void *P, endianness E) {
341   return read<T, unaligned>(P, E);
342 }
343 
read(const void * P)344 template <typename T, endianness E> inline T read(const void *P) {
345   return *(const detail::packed_endian_specific_integral<T, E, unaligned> *)P;
346 }
347 
read16(const void * P,endianness E)348 inline uint16_t read16(const void *P, endianness E) {
349   return read<uint16_t>(P, E);
350 }
read32(const void * P,endianness E)351 inline uint32_t read32(const void *P, endianness E) {
352   return read<uint32_t>(P, E);
353 }
read64(const void * P,endianness E)354 inline uint64_t read64(const void *P, endianness E) {
355   return read<uint64_t>(P, E);
356 }
357 
read16(const void * P)358 template <endianness E> inline uint16_t read16(const void *P) {
359   return read<uint16_t, E>(P);
360 }
read32(const void * P)361 template <endianness E> inline uint32_t read32(const void *P) {
362   return read<uint32_t, E>(P);
363 }
read64(const void * P)364 template <endianness E> inline uint64_t read64(const void *P) {
365   return read<uint64_t, E>(P);
366 }
367 
read16le(const void * P)368 inline uint16_t read16le(const void *P) { return read16<little>(P); }
read32le(const void * P)369 inline uint32_t read32le(const void *P) { return read32<little>(P); }
read64le(const void * P)370 inline uint64_t read64le(const void *P) { return read64<little>(P); }
read16be(const void * P)371 inline uint16_t read16be(const void *P) { return read16<big>(P); }
read32be(const void * P)372 inline uint32_t read32be(const void *P) { return read32<big>(P); }
read64be(const void * P)373 inline uint64_t read64be(const void *P) { return read64<big>(P); }
374 
write(void * P,T V,endianness E)375 template <typename T> inline void write(void *P, T V, endianness E) {
376   write<T, unaligned>(P, V, E);
377 }
378 
write(void * P,T V)379 template <typename T, endianness E> inline void write(void *P, T V) {
380   *(detail::packed_endian_specific_integral<T, E, unaligned> *)P = V;
381 }
382 
write16(void * P,uint16_t V,endianness E)383 inline void write16(void *P, uint16_t V, endianness E) {
384   write<uint16_t>(P, V, E);
385 }
write32(void * P,uint32_t V,endianness E)386 inline void write32(void *P, uint32_t V, endianness E) {
387   write<uint32_t>(P, V, E);
388 }
write64(void * P,uint64_t V,endianness E)389 inline void write64(void *P, uint64_t V, endianness E) {
390   write<uint64_t>(P, V, E);
391 }
392 
write16(void * P,uint16_t V)393 template <endianness E> inline void write16(void *P, uint16_t V) {
394   write<uint16_t, E>(P, V);
395 }
write32(void * P,uint32_t V)396 template <endianness E> inline void write32(void *P, uint32_t V) {
397   write<uint32_t, E>(P, V);
398 }
write64(void * P,uint64_t V)399 template <endianness E> inline void write64(void *P, uint64_t V) {
400   write<uint64_t, E>(P, V);
401 }
402 
write16le(void * P,uint16_t V)403 inline void write16le(void *P, uint16_t V) { write16<little>(P, V); }
write32le(void * P,uint32_t V)404 inline void write32le(void *P, uint32_t V) { write32<little>(P, V); }
write64le(void * P,uint64_t V)405 inline void write64le(void *P, uint64_t V) { write64<little>(P, V); }
write16be(void * P,uint16_t V)406 inline void write16be(void *P, uint16_t V) { write16<big>(P, V); }
write32be(void * P,uint32_t V)407 inline void write32be(void *P, uint32_t V) { write32<big>(P, V); }
write64be(void * P,uint64_t V)408 inline void write64be(void *P, uint64_t V) { write64<big>(P, V); }
409 
410 } // end namespace endian
411 
412 } // end namespace support
413 } // end namespace llvm
414 
415 #endif // LLVM_SUPPORT_ENDIAN_H
416