1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCContext.h"
34 #include "llvm/Support/DataTypes.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <algorithm>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "codegen"
42 
MachineBasicBlock(MachineFunction & MF,const BasicBlock * B)43 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
44     : BB(B), Number(-1), xParent(&MF) {
45   Insts.Parent = this;
46   if (B)
47     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
48 }
49 
~MachineBasicBlock()50 MachineBasicBlock::~MachineBasicBlock() {
51 }
52 
53 /// Return the MCSymbol for this basic block.
getSymbol() const54 MCSymbol *MachineBasicBlock::getSymbol() const {
55   if (!CachedMCSymbol) {
56     const MachineFunction *MF = getParent();
57     MCContext &Ctx = MF->getContext();
58     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
59     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
60     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
61                                            Twine(MF->getFunctionNumber()) +
62                                            "_" + Twine(getNumber()));
63   }
64 
65   return CachedMCSymbol;
66 }
67 
68 
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)69 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
70   MBB.print(OS);
71   return OS;
72 }
73 
printMBBReference(const MachineBasicBlock & MBB)74 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
75   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
76 }
77 
78 /// When an MBB is added to an MF, we need to update the parent pointer of the
79 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
80 /// operand list for registers.
81 ///
82 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
83 /// gets the next available unique MBB number. If it is removed from a
84 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)85 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
86     MachineBasicBlock *N) {
87   MachineFunction &MF = *N->getParent();
88   N->Number = MF.addToMBBNumbering(N);
89 
90   // Make sure the instructions have their operands in the reginfo lists.
91   MachineRegisterInfo &RegInfo = MF.getRegInfo();
92   for (MachineBasicBlock::instr_iterator
93          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
94     I->AddRegOperandsToUseLists(RegInfo);
95 }
96 
removeNodeFromList(MachineBasicBlock * N)97 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
98     MachineBasicBlock *N) {
99   N->getParent()->removeFromMBBNumbering(N->Number);
100   N->Number = -1;
101 }
102 
103 /// When we add an instruction to a basic block list, we update its parent
104 /// pointer and add its operands from reg use/def lists if appropriate.
addNodeToList(MachineInstr * N)105 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
106   assert(!N->getParent() && "machine instruction already in a basic block");
107   N->setParent(Parent);
108 
109   // Add the instruction's register operands to their corresponding
110   // use/def lists.
111   MachineFunction *MF = Parent->getParent();
112   N->AddRegOperandsToUseLists(MF->getRegInfo());
113   MF->handleInsertion(*N);
114 }
115 
116 /// When we remove an instruction from a basic block list, we update its parent
117 /// pointer and remove its operands from reg use/def lists if appropriate.
removeNodeFromList(MachineInstr * N)118 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
119   assert(N->getParent() && "machine instruction not in a basic block");
120 
121   // Remove from the use/def lists.
122   if (MachineFunction *MF = N->getMF()) {
123     MF->handleRemoval(*N);
124     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
125   }
126 
127   N->setParent(nullptr);
128 }
129 
130 /// When moving a range of instructions from one MBB list to another, we need to
131 /// update the parent pointers and the use/def lists.
transferNodesFromList(ilist_traits & FromList,instr_iterator First,instr_iterator Last)132 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
133                                                        instr_iterator First,
134                                                        instr_iterator Last) {
135   assert(Parent->getParent() == FromList.Parent->getParent() &&
136         "MachineInstr parent mismatch!");
137   assert(this != &FromList && "Called without a real transfer...");
138   assert(Parent != FromList.Parent && "Two lists have the same parent?");
139 
140   // If splicing between two blocks within the same function, just update the
141   // parent pointers.
142   for (; First != Last; ++First)
143     First->setParent(Parent);
144 }
145 
deleteNode(MachineInstr * MI)146 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
147   assert(!MI->getParent() && "MI is still in a block!");
148   Parent->getParent()->DeleteMachineInstr(MI);
149 }
150 
getFirstNonPHI()151 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
152   instr_iterator I = instr_begin(), E = instr_end();
153   while (I != E && I->isPHI())
154     ++I;
155   assert((I == E || !I->isInsideBundle()) &&
156          "First non-phi MI cannot be inside a bundle!");
157   return I;
158 }
159 
160 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)161 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
162   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
163 
164   iterator E = end();
165   while (I != E && (I->isPHI() || I->isPosition() ||
166                     TII->isBasicBlockPrologue(*I)))
167     ++I;
168   // FIXME: This needs to change if we wish to bundle labels
169   // inside the bundle.
170   assert((I == E || !I->isInsideBundle()) &&
171          "First non-phi / non-label instruction is inside a bundle!");
172   return I;
173 }
174 
175 MachineBasicBlock::iterator
SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I)176 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
177   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
178 
179   iterator E = end();
180   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
181                     TII->isBasicBlockPrologue(*I)))
182     ++I;
183   // FIXME: This needs to change if we wish to bundle labels / dbg_values
184   // inside the bundle.
185   assert((I == E || !I->isInsideBundle()) &&
186          "First non-phi / non-label / non-debug "
187          "instruction is inside a bundle!");
188   return I;
189 }
190 
getFirstTerminator()191 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
192   iterator B = begin(), E = end(), I = E;
193   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
194     ; /*noop */
195   while (I != E && !I->isTerminator())
196     ++I;
197   return I;
198 }
199 
getFirstInstrTerminator()200 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
201   instr_iterator B = instr_begin(), E = instr_end(), I = E;
202   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
203     ; /*noop */
204   while (I != E && !I->isTerminator())
205     ++I;
206   return I;
207 }
208 
getFirstNonDebugInstr()209 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
210   // Skip over begin-of-block dbg_value instructions.
211   return skipDebugInstructionsForward(begin(), end());
212 }
213 
getLastNonDebugInstr()214 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
215   // Skip over end-of-block dbg_value instructions.
216   instr_iterator B = instr_begin(), I = instr_end();
217   while (I != B) {
218     --I;
219     // Return instruction that starts a bundle.
220     if (I->isDebugInstr() || I->isInsideBundle())
221       continue;
222     return I;
223   }
224   // The block is all debug values.
225   return end();
226 }
227 
hasEHPadSuccessor() const228 bool MachineBasicBlock::hasEHPadSuccessor() const {
229   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
230     if ((*I)->isEHPad())
231       return true;
232   return false;
233 }
234 
235 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const236 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
237   print(dbgs());
238 }
239 #endif
240 
isLegalToHoistInto() const241 bool MachineBasicBlock::isLegalToHoistInto() const {
242   if (isReturnBlock() || hasEHPadSuccessor())
243     return false;
244   return true;
245 }
246 
getName() const247 StringRef MachineBasicBlock::getName() const {
248   if (const BasicBlock *LBB = getBasicBlock())
249     return LBB->getName();
250   else
251     return StringRef("", 0);
252 }
253 
254 /// Return a hopefully unique identifier for this block.
getFullName() const255 std::string MachineBasicBlock::getFullName() const {
256   std::string Name;
257   if (getParent())
258     Name = (getParent()->getName() + ":").str();
259   if (getBasicBlock())
260     Name += getBasicBlock()->getName();
261   else
262     Name += ("BB" + Twine(getNumber())).str();
263   return Name;
264 }
265 
print(raw_ostream & OS,const SlotIndexes * Indexes,bool IsStandalone) const266 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
267                               bool IsStandalone) const {
268   const MachineFunction *MF = getParent();
269   if (!MF) {
270     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
271        << " is null\n";
272     return;
273   }
274   const Function &F = MF->getFunction();
275   const Module *M = F.getParent();
276   ModuleSlotTracker MST(M);
277   MST.incorporateFunction(F);
278   print(OS, MST, Indexes, IsStandalone);
279 }
280 
print(raw_ostream & OS,ModuleSlotTracker & MST,const SlotIndexes * Indexes,bool IsStandalone) const281 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
282                               const SlotIndexes *Indexes,
283                               bool IsStandalone) const {
284   const MachineFunction *MF = getParent();
285   if (!MF) {
286     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
287        << " is null\n";
288     return;
289   }
290 
291   if (Indexes)
292     OS << Indexes->getMBBStartIdx(this) << '\t';
293 
294   OS << "bb." << getNumber();
295   bool HasAttributes = false;
296   if (const auto *BB = getBasicBlock()) {
297     if (BB->hasName()) {
298       OS << "." << BB->getName();
299     } else {
300       HasAttributes = true;
301       OS << " (";
302       int Slot = MST.getLocalSlot(BB);
303       if (Slot == -1)
304         OS << "<ir-block badref>";
305       else
306         OS << (Twine("%ir-block.") + Twine(Slot)).str();
307     }
308   }
309 
310   if (hasAddressTaken()) {
311     OS << (HasAttributes ? ", " : " (");
312     OS << "address-taken";
313     HasAttributes = true;
314   }
315   if (isEHPad()) {
316     OS << (HasAttributes ? ", " : " (");
317     OS << "landing-pad";
318     HasAttributes = true;
319   }
320   if (getAlignment()) {
321     OS << (HasAttributes ? ", " : " (");
322     OS << "align " << getAlignment();
323     HasAttributes = true;
324   }
325   if (HasAttributes)
326     OS << ")";
327   OS << ":\n";
328 
329   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
330   const MachineRegisterInfo &MRI = MF->getRegInfo();
331   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
332   bool HasLineAttributes = false;
333 
334   // Print the preds of this block according to the CFG.
335   if (!pred_empty() && IsStandalone) {
336     if (Indexes) OS << '\t';
337     // Don't indent(2), align with previous line attributes.
338     OS << "; predecessors: ";
339     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
340       if (I != pred_begin())
341         OS << ", ";
342       OS << printMBBReference(**I);
343     }
344     OS << '\n';
345     HasLineAttributes = true;
346   }
347 
348   if (!succ_empty()) {
349     if (Indexes) OS << '\t';
350     // Print the successors
351     OS.indent(2) << "successors: ";
352     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
353       if (I != succ_begin())
354         OS << ", ";
355       OS << printMBBReference(**I);
356       if (!Probs.empty())
357         OS << '('
358            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
359            << ')';
360     }
361     if (!Probs.empty() && IsStandalone) {
362       // Print human readable probabilities as comments.
363       OS << "; ";
364       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
365         const BranchProbability &BP = getSuccProbability(I);
366         if (I != succ_begin())
367           OS << ", ";
368         OS << printMBBReference(**I) << '('
369            << format("%.2f%%",
370                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
371                           100.0 * 100.0) /
372                          100.0)
373            << ')';
374       }
375     }
376 
377     OS << '\n';
378     HasLineAttributes = true;
379   }
380 
381   if (!livein_empty() && MRI.tracksLiveness()) {
382     if (Indexes) OS << '\t';
383     OS.indent(2) << "liveins: ";
384 
385     bool First = true;
386     for (const auto &LI : liveins()) {
387       if (!First)
388         OS << ", ";
389       First = false;
390       OS << printReg(LI.PhysReg, TRI);
391       if (!LI.LaneMask.all())
392         OS << ":0x" << PrintLaneMask(LI.LaneMask);
393     }
394     HasLineAttributes = true;
395   }
396 
397   if (HasLineAttributes)
398     OS << '\n';
399 
400   bool IsInBundle = false;
401   for (const MachineInstr &MI : instrs()) {
402     if (Indexes) {
403       if (Indexes->hasIndex(MI))
404         OS << Indexes->getInstructionIndex(MI);
405       OS << '\t';
406     }
407 
408     if (IsInBundle && !MI.isInsideBundle()) {
409       OS.indent(2) << "}\n";
410       IsInBundle = false;
411     }
412 
413     OS.indent(IsInBundle ? 4 : 2);
414     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
415              /*AddNewLine=*/false, &TII);
416 
417     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
418       OS << " {";
419       IsInBundle = true;
420     }
421     OS << '\n';
422   }
423 
424   if (IsInBundle)
425     OS.indent(2) << "}\n";
426 
427   if (IrrLoopHeaderWeight && IsStandalone) {
428     if (Indexes) OS << '\t';
429     OS.indent(2) << "; Irreducible loop header weight: "
430                  << IrrLoopHeaderWeight.getValue() << '\n';
431   }
432 }
433 
printAsOperand(raw_ostream & OS,bool) const434 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
435                                        bool /*PrintType*/) const {
436   OS << "%bb." << getNumber();
437 }
438 
removeLiveIn(MCPhysReg Reg,LaneBitmask LaneMask)439 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
440   LiveInVector::iterator I = find_if(
441       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
442   if (I == LiveIns.end())
443     return;
444 
445   I->LaneMask &= ~LaneMask;
446   if (I->LaneMask.none())
447     LiveIns.erase(I);
448 }
449 
450 MachineBasicBlock::livein_iterator
removeLiveIn(MachineBasicBlock::livein_iterator I)451 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
452   // Get non-const version of iterator.
453   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
454   return LiveIns.erase(LI);
455 }
456 
isLiveIn(MCPhysReg Reg,LaneBitmask LaneMask) const457 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
458   livein_iterator I = find_if(
459       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
460   return I != livein_end() && (I->LaneMask & LaneMask).any();
461 }
462 
sortUniqueLiveIns()463 void MachineBasicBlock::sortUniqueLiveIns() {
464   llvm::sort(LiveIns,
465              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
466                return LI0.PhysReg < LI1.PhysReg;
467              });
468   // Liveins are sorted by physreg now we can merge their lanemasks.
469   LiveInVector::const_iterator I = LiveIns.begin();
470   LiveInVector::const_iterator J;
471   LiveInVector::iterator Out = LiveIns.begin();
472   for (; I != LiveIns.end(); ++Out, I = J) {
473     unsigned PhysReg = I->PhysReg;
474     LaneBitmask LaneMask = I->LaneMask;
475     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
476       LaneMask |= J->LaneMask;
477     Out->PhysReg = PhysReg;
478     Out->LaneMask = LaneMask;
479   }
480   LiveIns.erase(Out, LiveIns.end());
481 }
482 
483 unsigned
addLiveIn(MCPhysReg PhysReg,const TargetRegisterClass * RC)484 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
485   assert(getParent() && "MBB must be inserted in function");
486   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
487   assert(RC && "Register class is required");
488   assert((isEHPad() || this == &getParent()->front()) &&
489          "Only the entry block and landing pads can have physreg live ins");
490 
491   bool LiveIn = isLiveIn(PhysReg);
492   iterator I = SkipPHIsAndLabels(begin()), E = end();
493   MachineRegisterInfo &MRI = getParent()->getRegInfo();
494   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
495 
496   // Look for an existing copy.
497   if (LiveIn)
498     for (;I != E && I->isCopy(); ++I)
499       if (I->getOperand(1).getReg() == PhysReg) {
500         unsigned VirtReg = I->getOperand(0).getReg();
501         if (!MRI.constrainRegClass(VirtReg, RC))
502           llvm_unreachable("Incompatible live-in register class.");
503         return VirtReg;
504       }
505 
506   // No luck, create a virtual register.
507   unsigned VirtReg = MRI.createVirtualRegister(RC);
508   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
509     .addReg(PhysReg, RegState::Kill);
510   if (!LiveIn)
511     addLiveIn(PhysReg);
512   return VirtReg;
513 }
514 
moveBefore(MachineBasicBlock * NewAfter)515 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
516   getParent()->splice(NewAfter->getIterator(), getIterator());
517 }
518 
moveAfter(MachineBasicBlock * NewBefore)519 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
520   getParent()->splice(++NewBefore->getIterator(), getIterator());
521 }
522 
updateTerminator()523 void MachineBasicBlock::updateTerminator() {
524   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
525   // A block with no successors has no concerns with fall-through edges.
526   if (this->succ_empty())
527     return;
528 
529   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
530   SmallVector<MachineOperand, 4> Cond;
531   DebugLoc DL = findBranchDebugLoc();
532   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
533   (void) B;
534   assert(!B && "UpdateTerminators requires analyzable predecessors!");
535   if (Cond.empty()) {
536     if (TBB) {
537       // The block has an unconditional branch. If its successor is now its
538       // layout successor, delete the branch.
539       if (isLayoutSuccessor(TBB))
540         TII->removeBranch(*this);
541     } else {
542       // The block has an unconditional fallthrough. If its successor is not its
543       // layout successor, insert a branch. First we have to locate the only
544       // non-landing-pad successor, as that is the fallthrough block.
545       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
546         if ((*SI)->isEHPad())
547           continue;
548         assert(!TBB && "Found more than one non-landing-pad successor!");
549         TBB = *SI;
550       }
551 
552       // If there is no non-landing-pad successor, the block has no fall-through
553       // edges to be concerned with.
554       if (!TBB)
555         return;
556 
557       // Finally update the unconditional successor to be reached via a branch
558       // if it would not be reached by fallthrough.
559       if (!isLayoutSuccessor(TBB))
560         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
561     }
562     return;
563   }
564 
565   if (FBB) {
566     // The block has a non-fallthrough conditional branch. If one of its
567     // successors is its layout successor, rewrite it to a fallthrough
568     // conditional branch.
569     if (isLayoutSuccessor(TBB)) {
570       if (TII->reverseBranchCondition(Cond))
571         return;
572       TII->removeBranch(*this);
573       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
574     } else if (isLayoutSuccessor(FBB)) {
575       TII->removeBranch(*this);
576       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
577     }
578     return;
579   }
580 
581   // Walk through the successors and find the successor which is not a landing
582   // pad and is not the conditional branch destination (in TBB) as the
583   // fallthrough successor.
584   MachineBasicBlock *FallthroughBB = nullptr;
585   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
586     if ((*SI)->isEHPad() || *SI == TBB)
587       continue;
588     assert(!FallthroughBB && "Found more than one fallthrough successor.");
589     FallthroughBB = *SI;
590   }
591 
592   if (!FallthroughBB) {
593     if (canFallThrough()) {
594       // We fallthrough to the same basic block as the conditional jump targets.
595       // Remove the conditional jump, leaving unconditional fallthrough.
596       // FIXME: This does not seem like a reasonable pattern to support, but it
597       // has been seen in the wild coming out of degenerate ARM test cases.
598       TII->removeBranch(*this);
599 
600       // Finally update the unconditional successor to be reached via a branch if
601       // it would not be reached by fallthrough.
602       if (!isLayoutSuccessor(TBB))
603         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
604       return;
605     }
606 
607     // We enter here iff exactly one successor is TBB which cannot fallthrough
608     // and the rest successors if any are EHPads.  In this case, we need to
609     // change the conditional branch into unconditional branch.
610     TII->removeBranch(*this);
611     Cond.clear();
612     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
613     return;
614   }
615 
616   // The block has a fallthrough conditional branch.
617   if (isLayoutSuccessor(TBB)) {
618     if (TII->reverseBranchCondition(Cond)) {
619       // We can't reverse the condition, add an unconditional branch.
620       Cond.clear();
621       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
622       return;
623     }
624     TII->removeBranch(*this);
625     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
626   } else if (!isLayoutSuccessor(FallthroughBB)) {
627     TII->removeBranch(*this);
628     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
629   }
630 }
631 
validateSuccProbs() const632 void MachineBasicBlock::validateSuccProbs() const {
633 #ifndef NDEBUG
634   int64_t Sum = 0;
635   for (auto Prob : Probs)
636     Sum += Prob.getNumerator();
637   // Due to precision issue, we assume that the sum of probabilities is one if
638   // the difference between the sum of their numerators and the denominator is
639   // no greater than the number of successors.
640   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
641              Probs.size() &&
642          "The sum of successors's probabilities exceeds one.");
643 #endif // NDEBUG
644 }
645 
addSuccessor(MachineBasicBlock * Succ,BranchProbability Prob)646 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
647                                      BranchProbability Prob) {
648   // Probability list is either empty (if successor list isn't empty, this means
649   // disabled optimization) or has the same size as successor list.
650   if (!(Probs.empty() && !Successors.empty()))
651     Probs.push_back(Prob);
652   Successors.push_back(Succ);
653   Succ->addPredecessor(this);
654 }
655 
addSuccessorWithoutProb(MachineBasicBlock * Succ)656 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
657   // We need to make sure probability list is either empty or has the same size
658   // of successor list. When this function is called, we can safely delete all
659   // probability in the list.
660   Probs.clear();
661   Successors.push_back(Succ);
662   Succ->addPredecessor(this);
663 }
664 
splitSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New,bool NormalizeSuccProbs)665 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
666                                        MachineBasicBlock *New,
667                                        bool NormalizeSuccProbs) {
668   succ_iterator OldI = llvm::find(successors(), Old);
669   assert(OldI != succ_end() && "Old is not a successor of this block!");
670   assert(llvm::find(successors(), New) == succ_end() &&
671          "New is already a successor of this block!");
672 
673   // Add a new successor with equal probability as the original one. Note
674   // that we directly copy the probability using the iterator rather than
675   // getting a potentially synthetic probability computed when unknown. This
676   // preserves the probabilities as-is and then we can renormalize them and
677   // query them effectively afterward.
678   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
679                                   : *getProbabilityIterator(OldI));
680   if (NormalizeSuccProbs)
681     normalizeSuccProbs();
682 }
683 
removeSuccessor(MachineBasicBlock * Succ,bool NormalizeSuccProbs)684 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
685                                         bool NormalizeSuccProbs) {
686   succ_iterator I = find(Successors, Succ);
687   removeSuccessor(I, NormalizeSuccProbs);
688 }
689 
690 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I,bool NormalizeSuccProbs)691 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
692   assert(I != Successors.end() && "Not a current successor!");
693 
694   // If probability list is empty it means we don't use it (disabled
695   // optimization).
696   if (!Probs.empty()) {
697     probability_iterator WI = getProbabilityIterator(I);
698     Probs.erase(WI);
699     if (NormalizeSuccProbs)
700       normalizeSuccProbs();
701   }
702 
703   (*I)->removePredecessor(this);
704   return Successors.erase(I);
705 }
706 
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)707 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
708                                          MachineBasicBlock *New) {
709   if (Old == New)
710     return;
711 
712   succ_iterator E = succ_end();
713   succ_iterator NewI = E;
714   succ_iterator OldI = E;
715   for (succ_iterator I = succ_begin(); I != E; ++I) {
716     if (*I == Old) {
717       OldI = I;
718       if (NewI != E)
719         break;
720     }
721     if (*I == New) {
722       NewI = I;
723       if (OldI != E)
724         break;
725     }
726   }
727   assert(OldI != E && "Old is not a successor of this block");
728 
729   // If New isn't already a successor, let it take Old's place.
730   if (NewI == E) {
731     Old->removePredecessor(this);
732     New->addPredecessor(this);
733     *OldI = New;
734     return;
735   }
736 
737   // New is already a successor.
738   // Update its probability instead of adding a duplicate edge.
739   if (!Probs.empty()) {
740     auto ProbIter = getProbabilityIterator(NewI);
741     if (!ProbIter->isUnknown())
742       *ProbIter += *getProbabilityIterator(OldI);
743   }
744   removeSuccessor(OldI);
745 }
746 
copySuccessor(MachineBasicBlock * Orig,succ_iterator I)747 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
748                                       succ_iterator I) {
749   if (Orig->Probs.empty())
750     addSuccessor(*I, Orig->getSuccProbability(I));
751   else
752     addSuccessorWithoutProb(*I);
753 }
754 
addPredecessor(MachineBasicBlock * Pred)755 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
756   Predecessors.push_back(Pred);
757 }
758 
removePredecessor(MachineBasicBlock * Pred)759 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
760   pred_iterator I = find(Predecessors, Pred);
761   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
762   Predecessors.erase(I);
763 }
764 
transferSuccessors(MachineBasicBlock * FromMBB)765 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
766   if (this == FromMBB)
767     return;
768 
769   while (!FromMBB->succ_empty()) {
770     MachineBasicBlock *Succ = *FromMBB->succ_begin();
771 
772     // If probability list is empty it means we don't use it (disabled optimization).
773     if (!FromMBB->Probs.empty()) {
774       auto Prob = *FromMBB->Probs.begin();
775       addSuccessor(Succ, Prob);
776     } else
777       addSuccessorWithoutProb(Succ);
778 
779     FromMBB->removeSuccessor(Succ);
780   }
781 }
782 
783 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * FromMBB)784 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
785   if (this == FromMBB)
786     return;
787 
788   while (!FromMBB->succ_empty()) {
789     MachineBasicBlock *Succ = *FromMBB->succ_begin();
790     if (!FromMBB->Probs.empty()) {
791       auto Prob = *FromMBB->Probs.begin();
792       addSuccessor(Succ, Prob);
793     } else
794       addSuccessorWithoutProb(Succ);
795     FromMBB->removeSuccessor(Succ);
796 
797     // Fix up any PHI nodes in the successor.
798     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
799            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
800       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
801         MachineOperand &MO = MI->getOperand(i);
802         if (MO.getMBB() == FromMBB)
803           MO.setMBB(this);
804       }
805   }
806   normalizeSuccProbs();
807 }
808 
isPredecessor(const MachineBasicBlock * MBB) const809 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
810   return is_contained(predecessors(), MBB);
811 }
812 
isSuccessor(const MachineBasicBlock * MBB) const813 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
814   return is_contained(successors(), MBB);
815 }
816 
isLayoutSuccessor(const MachineBasicBlock * MBB) const817 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
818   MachineFunction::const_iterator I(this);
819   return std::next(I) == MachineFunction::const_iterator(MBB);
820 }
821 
getFallThrough()822 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
823   MachineFunction::iterator Fallthrough = getIterator();
824   ++Fallthrough;
825   // If FallthroughBlock is off the end of the function, it can't fall through.
826   if (Fallthrough == getParent()->end())
827     return nullptr;
828 
829   // If FallthroughBlock isn't a successor, no fallthrough is possible.
830   if (!isSuccessor(&*Fallthrough))
831     return nullptr;
832 
833   // Analyze the branches, if any, at the end of the block.
834   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
835   SmallVector<MachineOperand, 4> Cond;
836   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
837   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
838     // If we couldn't analyze the branch, examine the last instruction.
839     // If the block doesn't end in a known control barrier, assume fallthrough
840     // is possible. The isPredicated check is needed because this code can be
841     // called during IfConversion, where an instruction which is normally a
842     // Barrier is predicated and thus no longer an actual control barrier.
843     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
844                ? &*Fallthrough
845                : nullptr;
846   }
847 
848   // If there is no branch, control always falls through.
849   if (!TBB) return &*Fallthrough;
850 
851   // If there is some explicit branch to the fallthrough block, it can obviously
852   // reach, even though the branch should get folded to fall through implicitly.
853   if (MachineFunction::iterator(TBB) == Fallthrough ||
854       MachineFunction::iterator(FBB) == Fallthrough)
855     return &*Fallthrough;
856 
857   // If it's an unconditional branch to some block not the fall through, it
858   // doesn't fall through.
859   if (Cond.empty()) return nullptr;
860 
861   // Otherwise, if it is conditional and has no explicit false block, it falls
862   // through.
863   return (FBB == nullptr) ? &*Fallthrough : nullptr;
864 }
865 
canFallThrough()866 bool MachineBasicBlock::canFallThrough() {
867   return getFallThrough() != nullptr;
868 }
869 
SplitCriticalEdge(MachineBasicBlock * Succ,Pass & P)870 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
871                                                         Pass &P) {
872   if (!canSplitCriticalEdge(Succ))
873     return nullptr;
874 
875   MachineFunction *MF = getParent();
876   DebugLoc DL;  // FIXME: this is nowhere
877 
878   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
879   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
880   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
881                     << " -- " << printMBBReference(*NMBB) << " -- "
882                     << printMBBReference(*Succ) << '\n');
883 
884   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
885   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
886   if (LIS)
887     LIS->insertMBBInMaps(NMBB);
888   else if (Indexes)
889     Indexes->insertMBBInMaps(NMBB);
890 
891   // On some targets like Mips, branches may kill virtual registers. Make sure
892   // that LiveVariables is properly updated after updateTerminator replaces the
893   // terminators.
894   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
895 
896   // Collect a list of virtual registers killed by the terminators.
897   SmallVector<unsigned, 4> KilledRegs;
898   if (LV)
899     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
900          I != E; ++I) {
901       MachineInstr *MI = &*I;
902       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
903            OE = MI->operands_end(); OI != OE; ++OI) {
904         if (!OI->isReg() || OI->getReg() == 0 ||
905             !OI->isUse() || !OI->isKill() || OI->isUndef())
906           continue;
907         unsigned Reg = OI->getReg();
908         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
909             LV->getVarInfo(Reg).removeKill(*MI)) {
910           KilledRegs.push_back(Reg);
911           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
912           OI->setIsKill(false);
913         }
914       }
915     }
916 
917   SmallVector<unsigned, 4> UsedRegs;
918   if (LIS) {
919     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
920          I != E; ++I) {
921       MachineInstr *MI = &*I;
922 
923       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
924            OE = MI->operands_end(); OI != OE; ++OI) {
925         if (!OI->isReg() || OI->getReg() == 0)
926           continue;
927 
928         unsigned Reg = OI->getReg();
929         if (!is_contained(UsedRegs, Reg))
930           UsedRegs.push_back(Reg);
931       }
932     }
933   }
934 
935   ReplaceUsesOfBlockWith(Succ, NMBB);
936 
937   // If updateTerminator() removes instructions, we need to remove them from
938   // SlotIndexes.
939   SmallVector<MachineInstr*, 4> Terminators;
940   if (Indexes) {
941     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
942          I != E; ++I)
943       Terminators.push_back(&*I);
944   }
945 
946   updateTerminator();
947 
948   if (Indexes) {
949     SmallVector<MachineInstr*, 4> NewTerminators;
950     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
951          I != E; ++I)
952       NewTerminators.push_back(&*I);
953 
954     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
955         E = Terminators.end(); I != E; ++I) {
956       if (!is_contained(NewTerminators, *I))
957         Indexes->removeMachineInstrFromMaps(**I);
958     }
959   }
960 
961   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
962   NMBB->addSuccessor(Succ);
963   if (!NMBB->isLayoutSuccessor(Succ)) {
964     SmallVector<MachineOperand, 4> Cond;
965     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
966     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
967 
968     if (Indexes) {
969       for (MachineInstr &MI : NMBB->instrs()) {
970         // Some instructions may have been moved to NMBB by updateTerminator(),
971         // so we first remove any instruction that already has an index.
972         if (Indexes->hasIndex(MI))
973           Indexes->removeMachineInstrFromMaps(MI);
974         Indexes->insertMachineInstrInMaps(MI);
975       }
976     }
977   }
978 
979   // Fix PHI nodes in Succ so they refer to NMBB instead of this
980   for (MachineBasicBlock::instr_iterator
981          i = Succ->instr_begin(),e = Succ->instr_end();
982        i != e && i->isPHI(); ++i)
983     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
984       if (i->getOperand(ni+1).getMBB() == this)
985         i->getOperand(ni+1).setMBB(NMBB);
986 
987   // Inherit live-ins from the successor
988   for (const auto &LI : Succ->liveins())
989     NMBB->addLiveIn(LI);
990 
991   // Update LiveVariables.
992   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
993   if (LV) {
994     // Restore kills of virtual registers that were killed by the terminators.
995     while (!KilledRegs.empty()) {
996       unsigned Reg = KilledRegs.pop_back_val();
997       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
998         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
999           continue;
1000         if (TargetRegisterInfo::isVirtualRegister(Reg))
1001           LV->getVarInfo(Reg).Kills.push_back(&*I);
1002         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1003         break;
1004       }
1005     }
1006     // Update relevant live-through information.
1007     LV->addNewBlock(NMBB, this, Succ);
1008   }
1009 
1010   if (LIS) {
1011     // After splitting the edge and updating SlotIndexes, live intervals may be
1012     // in one of two situations, depending on whether this block was the last in
1013     // the function. If the original block was the last in the function, all
1014     // live intervals will end prior to the beginning of the new split block. If
1015     // the original block was not at the end of the function, all live intervals
1016     // will extend to the end of the new split block.
1017 
1018     bool isLastMBB =
1019       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1020 
1021     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1022     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1023     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1024 
1025     // Find the registers used from NMBB in PHIs in Succ.
1026     SmallSet<unsigned, 8> PHISrcRegs;
1027     for (MachineBasicBlock::instr_iterator
1028          I = Succ->instr_begin(), E = Succ->instr_end();
1029          I != E && I->isPHI(); ++I) {
1030       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1031         if (I->getOperand(ni+1).getMBB() == NMBB) {
1032           MachineOperand &MO = I->getOperand(ni);
1033           unsigned Reg = MO.getReg();
1034           PHISrcRegs.insert(Reg);
1035           if (MO.isUndef())
1036             continue;
1037 
1038           LiveInterval &LI = LIS->getInterval(Reg);
1039           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1040           assert(VNI &&
1041                  "PHI sources should be live out of their predecessors.");
1042           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1043         }
1044       }
1045     }
1046 
1047     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1048     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1049       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1050       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1051         continue;
1052 
1053       LiveInterval &LI = LIS->getInterval(Reg);
1054       if (!LI.liveAt(PrevIndex))
1055         continue;
1056 
1057       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1058       if (isLiveOut && isLastMBB) {
1059         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1060         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1061         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1062       } else if (!isLiveOut && !isLastMBB) {
1063         LI.removeSegment(StartIndex, EndIndex);
1064       }
1065     }
1066 
1067     // Update all intervals for registers whose uses may have been modified by
1068     // updateTerminator().
1069     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1070   }
1071 
1072   if (MachineDominatorTree *MDT =
1073           P.getAnalysisIfAvailable<MachineDominatorTree>())
1074     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1075 
1076   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1077     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1078       // If one or the other blocks were not in a loop, the new block is not
1079       // either, and thus LI doesn't need to be updated.
1080       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1081         if (TIL == DestLoop) {
1082           // Both in the same loop, the NMBB joins loop.
1083           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1084         } else if (TIL->contains(DestLoop)) {
1085           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1086           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1087         } else if (DestLoop->contains(TIL)) {
1088           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1089           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1090         } else {
1091           // Edge from two loops with no containment relation.  Because these
1092           // are natural loops, we know that the destination block must be the
1093           // header of its loop (adding a branch into a loop elsewhere would
1094           // create an irreducible loop).
1095           assert(DestLoop->getHeader() == Succ &&
1096                  "Should not create irreducible loops!");
1097           if (MachineLoop *P = DestLoop->getParentLoop())
1098             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1099         }
1100       }
1101     }
1102 
1103   return NMBB;
1104 }
1105 
canSplitCriticalEdge(const MachineBasicBlock * Succ) const1106 bool MachineBasicBlock::canSplitCriticalEdge(
1107     const MachineBasicBlock *Succ) const {
1108   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1109   // it in this generic function.
1110   if (Succ->isEHPad())
1111     return false;
1112 
1113   const MachineFunction *MF = getParent();
1114 
1115   // Performance might be harmed on HW that implements branching using exec mask
1116   // where both sides of the branches are always executed.
1117   if (MF->getTarget().requiresStructuredCFG())
1118     return false;
1119 
1120   // We may need to update this's terminator, but we can't do that if
1121   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1122   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1123   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1124   SmallVector<MachineOperand, 4> Cond;
1125   // AnalyzeBanch should modify this, since we did not allow modification.
1126   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1127                          /*AllowModify*/ false))
1128     return false;
1129 
1130   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1131   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1132   // case that we can't handle. Since this never happens in properly optimized
1133   // code, just skip those edges.
1134   if (TBB && TBB == FBB) {
1135     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1136                       << printMBBReference(*this) << '\n');
1137     return false;
1138   }
1139   return true;
1140 }
1141 
1142 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1143 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)1144 static void unbundleSingleMI(MachineInstr *MI) {
1145   // Removing the first instruction in a bundle.
1146   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1147     MI->unbundleFromSucc();
1148   // Removing the last instruction in a bundle.
1149   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1150     MI->unbundleFromPred();
1151   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1152   // are already fine.
1153 }
1154 
1155 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)1156 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1157   unbundleSingleMI(&*I);
1158   return Insts.erase(I);
1159 }
1160 
remove_instr(MachineInstr * MI)1161 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1162   unbundleSingleMI(MI);
1163   MI->clearFlag(MachineInstr::BundledPred);
1164   MI->clearFlag(MachineInstr::BundledSucc);
1165   return Insts.remove(MI);
1166 }
1167 
1168 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)1169 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1170   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1171          "Cannot insert instruction with bundle flags");
1172   // Set the bundle flags when inserting inside a bundle.
1173   if (I != instr_end() && I->isBundledWithPred()) {
1174     MI->setFlag(MachineInstr::BundledPred);
1175     MI->setFlag(MachineInstr::BundledSucc);
1176   }
1177   return Insts.insert(I, MI);
1178 }
1179 
1180 /// This method unlinks 'this' from the containing function, and returns it, but
1181 /// does not delete it.
removeFromParent()1182 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1183   assert(getParent() && "Not embedded in a function!");
1184   getParent()->remove(this);
1185   return this;
1186 }
1187 
1188 /// This method unlinks 'this' from the containing function, and deletes it.
eraseFromParent()1189 void MachineBasicBlock::eraseFromParent() {
1190   assert(getParent() && "Not embedded in a function!");
1191   getParent()->erase(this);
1192 }
1193 
1194 /// Given a machine basic block that branched to 'Old', change the code and CFG
1195 /// so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)1196 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1197                                                MachineBasicBlock *New) {
1198   assert(Old != New && "Cannot replace self with self!");
1199 
1200   MachineBasicBlock::instr_iterator I = instr_end();
1201   while (I != instr_begin()) {
1202     --I;
1203     if (!I->isTerminator()) break;
1204 
1205     // Scan the operands of this machine instruction, replacing any uses of Old
1206     // with New.
1207     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1208       if (I->getOperand(i).isMBB() &&
1209           I->getOperand(i).getMBB() == Old)
1210         I->getOperand(i).setMBB(New);
1211   }
1212 
1213   // Update the successor information.
1214   replaceSuccessor(Old, New);
1215 }
1216 
1217 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1218 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1219 /// MBB successors from the CFG.  DestA and DestB can be null.
1220 ///
1221 /// Besides DestA and DestB, retain other edges leading to LandingPads
1222 /// (currently there can be only one; we don't check or require that here).
1223 /// Note it is possible that DestA and/or DestB are LandingPads.
CorrectExtraCFGEdges(MachineBasicBlock * DestA,MachineBasicBlock * DestB,bool IsCond)1224 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1225                                              MachineBasicBlock *DestB,
1226                                              bool IsCond) {
1227   // The values of DestA and DestB frequently come from a call to the
1228   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1229   // values from there.
1230   //
1231   // 1. If both DestA and DestB are null, then the block ends with no branches
1232   //    (it falls through to its successor).
1233   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1234   //    with only an unconditional branch.
1235   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1236   //    with a conditional branch that falls through to a successor (DestB).
1237   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1238   //    conditional branch followed by an unconditional branch. DestA is the
1239   //    'true' destination and DestB is the 'false' destination.
1240 
1241   bool Changed = false;
1242 
1243   MachineBasicBlock *FallThru = getNextNode();
1244 
1245   if (!DestA && !DestB) {
1246     // Block falls through to successor.
1247     DestA = FallThru;
1248     DestB = FallThru;
1249   } else if (DestA && !DestB) {
1250     if (IsCond)
1251       // Block ends in conditional jump that falls through to successor.
1252       DestB = FallThru;
1253   } else {
1254     assert(DestA && DestB && IsCond &&
1255            "CFG in a bad state. Cannot correct CFG edges");
1256   }
1257 
1258   // Remove superfluous edges. I.e., those which aren't destinations of this
1259   // basic block, duplicate edges, or landing pads.
1260   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1261   MachineBasicBlock::succ_iterator SI = succ_begin();
1262   while (SI != succ_end()) {
1263     const MachineBasicBlock *MBB = *SI;
1264     if (!SeenMBBs.insert(MBB).second ||
1265         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1266       // This is a superfluous edge, remove it.
1267       SI = removeSuccessor(SI);
1268       Changed = true;
1269     } else {
1270       ++SI;
1271     }
1272   }
1273 
1274   if (Changed)
1275     normalizeSuccProbs();
1276   return Changed;
1277 }
1278 
1279 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1280 /// instructions.  Return UnknownLoc if there is none.
1281 DebugLoc
findDebugLoc(instr_iterator MBBI)1282 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1283   // Skip debug declarations, we don't want a DebugLoc from them.
1284   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1285   if (MBBI != instr_end())
1286     return MBBI->getDebugLoc();
1287   return {};
1288 }
1289 
1290 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1291 /// instructions.  Return UnknownLoc if there is none.
findPrevDebugLoc(instr_iterator MBBI)1292 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1293   if (MBBI == instr_begin()) return {};
1294   // Skip debug declarations, we don't want a DebugLoc from them.
1295   MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin());
1296   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1297   return {};
1298 }
1299 
1300 /// Find and return the merged DebugLoc of the branch instructions of the block.
1301 /// Return UnknownLoc if there is none.
1302 DebugLoc
findBranchDebugLoc()1303 MachineBasicBlock::findBranchDebugLoc() {
1304   DebugLoc DL;
1305   auto TI = getFirstTerminator();
1306   while (TI != end() && !TI->isBranch())
1307     ++TI;
1308 
1309   if (TI != end()) {
1310     DL = TI->getDebugLoc();
1311     for (++TI ; TI != end() ; ++TI)
1312       if (TI->isBranch())
1313         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1314   }
1315   return DL;
1316 }
1317 
1318 /// Return probability of the edge from this block to MBB.
1319 BranchProbability
getSuccProbability(const_succ_iterator Succ) const1320 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1321   if (Probs.empty())
1322     return BranchProbability(1, succ_size());
1323 
1324   const auto &Prob = *getProbabilityIterator(Succ);
1325   if (Prob.isUnknown()) {
1326     // For unknown probabilities, collect the sum of all known ones, and evenly
1327     // ditribute the complemental of the sum to each unknown probability.
1328     unsigned KnownProbNum = 0;
1329     auto Sum = BranchProbability::getZero();
1330     for (auto &P : Probs) {
1331       if (!P.isUnknown()) {
1332         Sum += P;
1333         KnownProbNum++;
1334       }
1335     }
1336     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1337   } else
1338     return Prob;
1339 }
1340 
1341 /// Set successor probability of a given iterator.
setSuccProbability(succ_iterator I,BranchProbability Prob)1342 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1343                                            BranchProbability Prob) {
1344   assert(!Prob.isUnknown());
1345   if (Probs.empty())
1346     return;
1347   *getProbabilityIterator(I) = Prob;
1348 }
1349 
1350 /// Return probability iterator corresonding to the I successor iterator
1351 MachineBasicBlock::const_probability_iterator
getProbabilityIterator(MachineBasicBlock::const_succ_iterator I) const1352 MachineBasicBlock::getProbabilityIterator(
1353     MachineBasicBlock::const_succ_iterator I) const {
1354   assert(Probs.size() == Successors.size() && "Async probability list!");
1355   const size_t index = std::distance(Successors.begin(), I);
1356   assert(index < Probs.size() && "Not a current successor!");
1357   return Probs.begin() + index;
1358 }
1359 
1360 /// Return probability iterator corresonding to the I successor iterator.
1361 MachineBasicBlock::probability_iterator
getProbabilityIterator(MachineBasicBlock::succ_iterator I)1362 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1363   assert(Probs.size() == Successors.size() && "Async probability list!");
1364   const size_t index = std::distance(Successors.begin(), I);
1365   assert(index < Probs.size() && "Not a current successor!");
1366   return Probs.begin() + index;
1367 }
1368 
1369 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1370 /// as of just before "MI".
1371 ///
1372 /// Search is localised to a neighborhood of
1373 /// Neighborhood instructions before (searching for defs or kills) and N
1374 /// instructions after (searching just for defs) MI.
1375 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,unsigned Reg,const_iterator Before,unsigned Neighborhood) const1376 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1377                                            unsigned Reg, const_iterator Before,
1378                                            unsigned Neighborhood) const {
1379   unsigned N = Neighborhood;
1380 
1381   // Try searching forwards from Before, looking for reads or defs.
1382   const_iterator I(Before);
1383   for (; I != end() && N > 0; ++I) {
1384     if (I->isDebugInstr())
1385       continue;
1386 
1387     --N;
1388 
1389     MachineOperandIteratorBase::PhysRegInfo Info =
1390         ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1391 
1392     // Register is live when we read it here.
1393     if (Info.Read)
1394       return LQR_Live;
1395     // Register is dead if we can fully overwrite or clobber it here.
1396     if (Info.FullyDefined || Info.Clobbered)
1397       return LQR_Dead;
1398   }
1399 
1400   // If we reached the end, it is safe to clobber Reg at the end of a block of
1401   // no successor has it live in.
1402   if (I == end()) {
1403     for (MachineBasicBlock *S : successors()) {
1404       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1405         if (TRI->regsOverlap(LI.PhysReg, Reg))
1406           return LQR_Live;
1407       }
1408     }
1409 
1410     return LQR_Dead;
1411   }
1412 
1413 
1414   N = Neighborhood;
1415 
1416   // Start by searching backwards from Before, looking for kills, reads or defs.
1417   I = const_iterator(Before);
1418   // If this is the first insn in the block, don't search backwards.
1419   if (I != begin()) {
1420     do {
1421       --I;
1422 
1423       if (I->isDebugInstr())
1424         continue;
1425 
1426       --N;
1427 
1428       MachineOperandIteratorBase::PhysRegInfo Info =
1429           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1430 
1431       // Defs happen after uses so they take precedence if both are present.
1432 
1433       // Register is dead after a dead def of the full register.
1434       if (Info.DeadDef)
1435         return LQR_Dead;
1436       // Register is (at least partially) live after a def.
1437       if (Info.Defined) {
1438         if (!Info.PartialDeadDef)
1439           return LQR_Live;
1440         // As soon as we saw a partial definition (dead or not),
1441         // we cannot tell if the value is partial live without
1442         // tracking the lanemasks. We are not going to do this,
1443         // so fall back on the remaining of the analysis.
1444         break;
1445       }
1446       // Register is dead after a full kill or clobber and no def.
1447       if (Info.Killed || Info.Clobbered)
1448         return LQR_Dead;
1449       // Register must be live if we read it.
1450       if (Info.Read)
1451         return LQR_Live;
1452 
1453     } while (I != begin() && N > 0);
1454   }
1455 
1456   // Did we get to the start of the block?
1457   if (I == begin()) {
1458     // If so, the register's state is definitely defined by the live-in state.
1459     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1460       if (TRI->regsOverlap(LI.PhysReg, Reg))
1461         return LQR_Live;
1462 
1463     return LQR_Dead;
1464   }
1465 
1466   // At this point we have no idea of the liveness of the register.
1467   return LQR_Unknown;
1468 }
1469 
1470 const uint32_t *
getBeginClobberMask(const TargetRegisterInfo * TRI) const1471 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1472   // EH funclet entry does not preserve any registers.
1473   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1474 }
1475 
1476 const uint32_t *
getEndClobberMask(const TargetRegisterInfo * TRI) const1477 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1478   // If we see a return block with successors, this must be a funclet return,
1479   // which does not preserve any registers. If there are no successors, we don't
1480   // care what kind of return it is, putting a mask after it is a no-op.
1481   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1482 }
1483 
clearLiveIns()1484 void MachineBasicBlock::clearLiveIns() {
1485   LiveIns.clear();
1486 }
1487 
livein_begin() const1488 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1489   assert(getParent()->getProperties().hasProperty(
1490       MachineFunctionProperties::Property::TracksLiveness) &&
1491       "Liveness information is accurate");
1492   return LiveIns.begin();
1493 }
1494