1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file includes support code use by SelectionDAGBuilder when lowering a
11 // statepoint sequence in SelectionDAG IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "StatepointLowering.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/FunctionLoweringInfo.h"
25 #include "llvm/CodeGen/GCMetadata.h"
26 #include "llvm/CodeGen/GCStrategy.h"
27 #include "llvm/CodeGen/ISDOpcodes.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/RuntimeLibcalls.h"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/CodeGen/SelectionDAGNodes.h"
34 #include "llvm/CodeGen/StackMaps.h"
35 #include "llvm/CodeGen/TargetLowering.h"
36 #include "llvm/CodeGen/TargetOpcodes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Statepoint.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/MachineValueType.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <cassert>
49 #include <cstddef>
50 #include <cstdint>
51 #include <iterator>
52 #include <tuple>
53 #include <utility>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "statepoint-lowering"
58 
59 STATISTIC(NumSlotsAllocatedForStatepoints,
60           "Number of stack slots allocated for statepoints");
61 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
62 STATISTIC(StatepointMaxSlotsRequired,
63           "Maximum number of stack slots required for a singe statepoint");
64 
pushStackMapConstant(SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder,uint64_t Value)65 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
66                                  SelectionDAGBuilder &Builder, uint64_t Value) {
67   SDLoc L = Builder.getCurSDLoc();
68   Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
69                                               MVT::i64));
70   Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
71 }
72 
startNewStatepoint(SelectionDAGBuilder & Builder)73 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
74   // Consistency check
75   assert(PendingGCRelocateCalls.empty() &&
76          "Trying to visit statepoint before finished processing previous one");
77   Locations.clear();
78   NextSlotToAllocate = 0;
79   // Need to resize this on each safepoint - we need the two to stay in sync and
80   // the clear patterns of a SelectionDAGBuilder have no relation to
81   // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
82   AllocatedStackSlots.clear();
83   AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
84 }
85 
clear()86 void StatepointLoweringState::clear() {
87   Locations.clear();
88   AllocatedStackSlots.clear();
89   assert(PendingGCRelocateCalls.empty() &&
90          "cleared before statepoint sequence completed");
91 }
92 
93 SDValue
allocateStackSlot(EVT ValueType,SelectionDAGBuilder & Builder)94 StatepointLoweringState::allocateStackSlot(EVT ValueType,
95                                            SelectionDAGBuilder &Builder) {
96   NumSlotsAllocatedForStatepoints++;
97   MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
98 
99   unsigned SpillSize = ValueType.getStoreSize();
100   assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
101 
102   // First look for a previously created stack slot which is not in
103   // use (accounting for the fact arbitrary slots may already be
104   // reserved), or to create a new stack slot and use it.
105 
106   const size_t NumSlots = AllocatedStackSlots.size();
107   assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
108 
109   assert(AllocatedStackSlots.size() ==
110          Builder.FuncInfo.StatepointStackSlots.size() &&
111          "Broken invariant");
112 
113   for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
114     if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
115       const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
116       if (MFI.getObjectSize(FI) == SpillSize) {
117         AllocatedStackSlots.set(NextSlotToAllocate);
118         // TODO: Is ValueType the right thing to use here?
119         return Builder.DAG.getFrameIndex(FI, ValueType);
120       }
121     }
122   }
123 
124   // Couldn't find a free slot, so create a new one:
125 
126   SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
127   const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
128   MFI.markAsStatepointSpillSlotObjectIndex(FI);
129 
130   Builder.FuncInfo.StatepointStackSlots.push_back(FI);
131   AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
132   assert(AllocatedStackSlots.size() ==
133          Builder.FuncInfo.StatepointStackSlots.size() &&
134          "Broken invariant");
135 
136   StatepointMaxSlotsRequired.updateMax(
137       Builder.FuncInfo.StatepointStackSlots.size());
138 
139   return SpillSlot;
140 }
141 
142 /// Utility function for reservePreviousStackSlotForValue. Tries to find
143 /// stack slot index to which we have spilled value for previous statepoints.
144 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
findPreviousSpillSlot(const Value * Val,SelectionDAGBuilder & Builder,int LookUpDepth)145 static Optional<int> findPreviousSpillSlot(const Value *Val,
146                                            SelectionDAGBuilder &Builder,
147                                            int LookUpDepth) {
148   // Can not look any further - give up now
149   if (LookUpDepth <= 0)
150     return None;
151 
152   // Spill location is known for gc relocates
153   if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
154     const auto &SpillMap =
155         Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()];
156 
157     auto It = SpillMap.find(Relocate->getDerivedPtr());
158     if (It == SpillMap.end())
159       return None;
160 
161     return It->second;
162   }
163 
164   // Look through bitcast instructions.
165   if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
166     return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
167 
168   // Look through phi nodes
169   // All incoming values should have same known stack slot, otherwise result
170   // is unknown.
171   if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
172     Optional<int> MergedResult = None;
173 
174     for (auto &IncomingValue : Phi->incoming_values()) {
175       Optional<int> SpillSlot =
176           findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
177       if (!SpillSlot.hasValue())
178         return None;
179 
180       if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
181         return None;
182 
183       MergedResult = SpillSlot;
184     }
185     return MergedResult;
186   }
187 
188   // TODO: We can do better for PHI nodes. In cases like this:
189   //   ptr = phi(relocated_pointer, not_relocated_pointer)
190   //   statepoint(ptr)
191   // We will return that stack slot for ptr is unknown. And later we might
192   // assign different stack slots for ptr and relocated_pointer. This limits
193   // llvm's ability to remove redundant stores.
194   // Unfortunately it's hard to accomplish in current infrastructure.
195   // We use this function to eliminate spill store completely, while
196   // in example we still need to emit store, but instead of any location
197   // we need to use special "preferred" location.
198 
199   // TODO: handle simple updates.  If a value is modified and the original
200   // value is no longer live, it would be nice to put the modified value in the
201   // same slot.  This allows folding of the memory accesses for some
202   // instructions types (like an increment).
203   //   statepoint (i)
204   //   i1 = i+1
205   //   statepoint (i1)
206   // However we need to be careful for cases like this:
207   //   statepoint(i)
208   //   i1 = i+1
209   //   statepoint(i, i1)
210   // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
211   // put handling of simple modifications in this function like it's done
212   // for bitcasts we might end up reserving i's slot for 'i+1' because order in
213   // which we visit values is unspecified.
214 
215   // Don't know any information about this instruction
216   return None;
217 }
218 
219 /// Try to find existing copies of the incoming values in stack slots used for
220 /// statepoint spilling.  If we can find a spill slot for the incoming value,
221 /// mark that slot as allocated, and reuse the same slot for this safepoint.
222 /// This helps to avoid series of loads and stores that only serve to reshuffle
223 /// values on the stack between calls.
reservePreviousStackSlotForValue(const Value * IncomingValue,SelectionDAGBuilder & Builder)224 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
225                                              SelectionDAGBuilder &Builder) {
226   SDValue Incoming = Builder.getValue(IncomingValue);
227 
228   if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
229     // We won't need to spill this, so no need to check for previously
230     // allocated stack slots
231     return;
232   }
233 
234   SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
235   if (OldLocation.getNode())
236     // Duplicates in input
237     return;
238 
239   const int LookUpDepth = 6;
240   Optional<int> Index =
241       findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
242   if (!Index.hasValue())
243     return;
244 
245   const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
246 
247   auto SlotIt = find(StatepointSlots, *Index);
248   assert(SlotIt != StatepointSlots.end() &&
249          "Value spilled to the unknown stack slot");
250 
251   // This is one of our dedicated lowering slots
252   const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
253   if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
254     // stack slot already assigned to someone else, can't use it!
255     // TODO: currently we reserve space for gc arguments after doing
256     // normal allocation for deopt arguments.  We should reserve for
257     // _all_ deopt and gc arguments, then start allocating.  This
258     // will prevent some moves being inserted when vm state changes,
259     // but gc state doesn't between two calls.
260     return;
261   }
262   // Reserve this stack slot
263   Builder.StatepointLowering.reserveStackSlot(Offset);
264 
265   // Cache this slot so we find it when going through the normal
266   // assignment loop.
267   SDValue Loc =
268       Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
269   Builder.StatepointLowering.setLocation(Incoming, Loc);
270 }
271 
272 /// Remove any duplicate (as SDValues) from the derived pointer pairs.  This
273 /// is not required for correctness.  It's purpose is to reduce the size of
274 /// StackMap section.  It has no effect on the number of spill slots required
275 /// or the actual lowering.
276 static void
removeDuplicateGCPtrs(SmallVectorImpl<const Value * > & Bases,SmallVectorImpl<const Value * > & Ptrs,SmallVectorImpl<const GCRelocateInst * > & Relocs,SelectionDAGBuilder & Builder,FunctionLoweringInfo::StatepointSpillMap & SSM)277 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases,
278                       SmallVectorImpl<const Value *> &Ptrs,
279                       SmallVectorImpl<const GCRelocateInst *> &Relocs,
280                       SelectionDAGBuilder &Builder,
281                       FunctionLoweringInfo::StatepointSpillMap &SSM) {
282   DenseMap<SDValue, const Value *> Seen;
283 
284   SmallVector<const Value *, 64> NewBases, NewPtrs;
285   SmallVector<const GCRelocateInst *, 64> NewRelocs;
286   for (size_t i = 0, e = Ptrs.size(); i < e; i++) {
287     SDValue SD = Builder.getValue(Ptrs[i]);
288     auto SeenIt = Seen.find(SD);
289 
290     if (SeenIt == Seen.end()) {
291       // Only add non-duplicates
292       NewBases.push_back(Bases[i]);
293       NewPtrs.push_back(Ptrs[i]);
294       NewRelocs.push_back(Relocs[i]);
295       Seen[SD] = Ptrs[i];
296     } else {
297       // Duplicate pointer found, note in SSM and move on:
298       SSM.DuplicateMap[Ptrs[i]] = SeenIt->second;
299     }
300   }
301   assert(Bases.size() >= NewBases.size());
302   assert(Ptrs.size() >= NewPtrs.size());
303   assert(Relocs.size() >= NewRelocs.size());
304   Bases = NewBases;
305   Ptrs = NewPtrs;
306   Relocs = NewRelocs;
307   assert(Ptrs.size() == Bases.size());
308   assert(Ptrs.size() == Relocs.size());
309 }
310 
311 /// Extract call from statepoint, lower it and return pointer to the
312 /// call node. Also update NodeMap so that getValue(statepoint) will
313 /// reference lowered call result
lowerCallFromStatepointLoweringInfo(SelectionDAGBuilder::StatepointLoweringInfo & SI,SelectionDAGBuilder & Builder,SmallVectorImpl<SDValue> & PendingExports)314 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
315     SelectionDAGBuilder::StatepointLoweringInfo &SI,
316     SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
317   SDValue ReturnValue, CallEndVal;
318   std::tie(ReturnValue, CallEndVal) =
319       Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
320   SDNode *CallEnd = CallEndVal.getNode();
321 
322   // Get a call instruction from the call sequence chain.  Tail calls are not
323   // allowed.  The following code is essentially reverse engineering X86's
324   // LowerCallTo.
325   //
326   // We are expecting DAG to have the following form:
327   //
328   // ch = eh_label (only in case of invoke statepoint)
329   //   ch, glue = callseq_start ch
330   //   ch, glue = X86::Call ch, glue
331   //   ch, glue = callseq_end ch, glue
332   //   get_return_value ch, glue
333   //
334   // get_return_value can either be a sequence of CopyFromReg instructions
335   // to grab the return value from the return register(s), or it can be a LOAD
336   // to load a value returned by reference via a stack slot.
337 
338   bool HasDef = !SI.CLI.RetTy->isVoidTy();
339   if (HasDef) {
340     if (CallEnd->getOpcode() == ISD::LOAD)
341       CallEnd = CallEnd->getOperand(0).getNode();
342     else
343       while (CallEnd->getOpcode() == ISD::CopyFromReg)
344         CallEnd = CallEnd->getOperand(0).getNode();
345   }
346 
347   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
348   return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
349 }
350 
351 /// Spill a value incoming to the statepoint. It might be either part of
352 /// vmstate
353 /// or gcstate. In both cases unconditionally spill it on the stack unless it
354 /// is a null constant. Return pair with first element being frame index
355 /// containing saved value and second element with outgoing chain from the
356 /// emitted store
357 static std::pair<SDValue, SDValue>
spillIncomingStatepointValue(SDValue Incoming,SDValue Chain,SelectionDAGBuilder & Builder)358 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
359                              SelectionDAGBuilder &Builder) {
360   SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
361 
362   // Emit new store if we didn't do it for this ptr before
363   if (!Loc.getNode()) {
364     Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
365                                                        Builder);
366     int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
367     // We use TargetFrameIndex so that isel will not select it into LEA
368     Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
369 
370     // TODO: We can create TokenFactor node instead of
371     //       chaining stores one after another, this may allow
372     //       a bit more optimal scheduling for them
373 
374 #ifndef NDEBUG
375     // Right now we always allocate spill slots that are of the same
376     // size as the value we're about to spill (the size of spillee can
377     // vary since we spill vectors of pointers too).  At some point we
378     // can consider allowing spills of smaller values to larger slots
379     // (i.e. change the '==' in the assert below to a '>=').
380     MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
381     assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() &&
382            "Bad spill:  stack slot does not match!");
383 #endif
384 
385     Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
386                                  MachinePointerInfo::getFixedStack(
387                                      Builder.DAG.getMachineFunction(), Index));
388 
389     Builder.StatepointLowering.setLocation(Incoming, Loc);
390   }
391 
392   assert(Loc.getNode());
393   return std::make_pair(Loc, Chain);
394 }
395 
396 /// Lower a single value incoming to a statepoint node.  This value can be
397 /// either a deopt value or a gc value, the handling is the same.  We special
398 /// case constants and allocas, then fall back to spilling if required.
lowerIncomingStatepointValue(SDValue Incoming,bool LiveInOnly,SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder)399 static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly,
400                                          SmallVectorImpl<SDValue> &Ops,
401                                          SelectionDAGBuilder &Builder) {
402   SDValue Chain = Builder.getRoot();
403 
404   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
405     // If the original value was a constant, make sure it gets recorded as
406     // such in the stackmap.  This is required so that the consumer can
407     // parse any internal format to the deopt state.  It also handles null
408     // pointers and other constant pointers in GC states.  Note the constant
409     // vectors do not appear to actually hit this path and that anything larger
410     // than an i64 value (not type!) will fail asserts here.
411     pushStackMapConstant(Ops, Builder, C->getSExtValue());
412   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
413     // This handles allocas as arguments to the statepoint (this is only
414     // really meaningful for a deopt value.  For GC, we'd be trying to
415     // relocate the address of the alloca itself?)
416     assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
417            "Incoming value is a frame index!");
418     Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
419                                                   Builder.getFrameIndexTy()));
420   } else if (LiveInOnly) {
421     // If this value is live in (not live-on-return, or live-through), we can
422     // treat it the same way patchpoint treats it's "live in" values.  We'll
423     // end up folding some of these into stack references, but they'll be
424     // handled by the register allocator.  Note that we do not have the notion
425     // of a late use so these values might be placed in registers which are
426     // clobbered by the call.  This is fine for live-in.
427     Ops.push_back(Incoming);
428   } else {
429     // Otherwise, locate a spill slot and explicitly spill it so it
430     // can be found by the runtime later.  We currently do not support
431     // tracking values through callee saved registers to their eventual
432     // spill location.  This would be a useful optimization, but would
433     // need to be optional since it requires a lot of complexity on the
434     // runtime side which not all would support.
435     auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
436     Ops.push_back(Res.first);
437     Chain = Res.second;
438   }
439 
440   Builder.DAG.setRoot(Chain);
441 }
442 
443 /// Lower deopt state and gc pointer arguments of the statepoint.  The actual
444 /// lowering is described in lowerIncomingStatepointValue.  This function is
445 /// responsible for lowering everything in the right position and playing some
446 /// tricks to avoid redundant stack manipulation where possible.  On
447 /// completion, 'Ops' will contain ready to use operands for machine code
448 /// statepoint. The chain nodes will have already been created and the DAG root
449 /// will be set to the last value spilled (if any were).
450 static void
lowerStatepointMetaArgs(SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder::StatepointLoweringInfo & SI,SelectionDAGBuilder & Builder)451 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
452                         SelectionDAGBuilder::StatepointLoweringInfo &SI,
453                         SelectionDAGBuilder &Builder) {
454   // Lower the deopt and gc arguments for this statepoint.  Layout will be:
455   // deopt argument length, deopt arguments.., gc arguments...
456 #ifndef NDEBUG
457   if (auto *GFI = Builder.GFI) {
458     // Check that each of the gc pointer and bases we've gotten out of the
459     // safepoint is something the strategy thinks might be a pointer (or vector
460     // of pointers) into the GC heap.  This is basically just here to help catch
461     // errors during statepoint insertion. TODO: This should actually be in the
462     // Verifier, but we can't get to the GCStrategy from there (yet).
463     GCStrategy &S = GFI->getStrategy();
464     for (const Value *V : SI.Bases) {
465       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
466       if (Opt.hasValue()) {
467         assert(Opt.getValue() &&
468                "non gc managed base pointer found in statepoint");
469       }
470     }
471     for (const Value *V : SI.Ptrs) {
472       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
473       if (Opt.hasValue()) {
474         assert(Opt.getValue() &&
475                "non gc managed derived pointer found in statepoint");
476       }
477     }
478     assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
479   } else {
480     assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
481     assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
482   }
483 #endif
484 
485   // Figure out what lowering strategy we're going to use for each part
486   // Note: Is is conservatively correct to lower both "live-in" and "live-out"
487   // as "live-through". A "live-through" variable is one which is "live-in",
488   // "live-out", and live throughout the lifetime of the call (i.e. we can find
489   // it from any PC within the transitive callee of the statepoint).  In
490   // particular, if the callee spills callee preserved registers we may not
491   // be able to find a value placed in that register during the call.  This is
492   // fine for live-out, but not for live-through.  If we were willing to make
493   // assumptions about the code generator producing the callee, we could
494   // potentially allow live-through values in callee saved registers.
495   const bool LiveInDeopt =
496     SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
497 
498   auto isGCValue =[&](const Value *V) {
499     return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V);
500   };
501 
502   // Before we actually start lowering (and allocating spill slots for values),
503   // reserve any stack slots which we judge to be profitable to reuse for a
504   // particular value.  This is purely an optimization over the code below and
505   // doesn't change semantics at all.  It is important for performance that we
506   // reserve slots for both deopt and gc values before lowering either.
507   for (const Value *V : SI.DeoptState) {
508     if (!LiveInDeopt || isGCValue(V))
509       reservePreviousStackSlotForValue(V, Builder);
510   }
511   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
512     reservePreviousStackSlotForValue(SI.Bases[i], Builder);
513     reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
514   }
515 
516   // First, prefix the list with the number of unique values to be
517   // lowered.  Note that this is the number of *Values* not the
518   // number of SDValues required to lower them.
519   const int NumVMSArgs = SI.DeoptState.size();
520   pushStackMapConstant(Ops, Builder, NumVMSArgs);
521 
522   // The vm state arguments are lowered in an opaque manner.  We do not know
523   // what type of values are contained within.
524   for (const Value *V : SI.DeoptState) {
525     SDValue Incoming;
526     // If this is a function argument at a static frame index, generate it as
527     // the frame index.
528     if (const Argument *Arg = dyn_cast<Argument>(V)) {
529       int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
530       if (FI != INT_MAX)
531         Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
532     }
533     if (!Incoming.getNode())
534       Incoming = Builder.getValue(V);
535     const bool LiveInValue = LiveInDeopt && !isGCValue(V);
536     lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder);
537   }
538 
539   // Finally, go ahead and lower all the gc arguments.  There's no prefixed
540   // length for this one.  After lowering, we'll have the base and pointer
541   // arrays interwoven with each (lowered) base pointer immediately followed by
542   // it's (lowered) derived pointer.  i.e
543   // (base[0], ptr[0], base[1], ptr[1], ...)
544   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
545     const Value *Base = SI.Bases[i];
546     lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false,
547                                  Ops, Builder);
548 
549     const Value *Ptr = SI.Ptrs[i];
550     lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false,
551                                  Ops, Builder);
552   }
553 
554   // If there are any explicit spill slots passed to the statepoint, record
555   // them, but otherwise do not do anything special.  These are user provided
556   // allocas and give control over placement to the consumer.  In this case,
557   // it is the contents of the slot which may get updated, not the pointer to
558   // the alloca
559   for (Value *V : SI.GCArgs) {
560     SDValue Incoming = Builder.getValue(V);
561     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
562       // This handles allocas as arguments to the statepoint
563       assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
564              "Incoming value is a frame index!");
565       Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
566                                                     Builder.getFrameIndexTy()));
567     }
568   }
569 
570   // Record computed locations for all lowered values.
571   // This can not be embedded in lowering loops as we need to record *all*
572   // values, while previous loops account only values with unique SDValues.
573   const Instruction *StatepointInstr = SI.StatepointInstr;
574   auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr];
575 
576   for (const GCRelocateInst *Relocate : SI.GCRelocates) {
577     const Value *V = Relocate->getDerivedPtr();
578     SDValue SDV = Builder.getValue(V);
579     SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
580 
581     if (Loc.getNode()) {
582       SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
583     } else {
584       // Record value as visited, but not spilled. This is case for allocas
585       // and constants. For this values we can avoid emitting spill load while
586       // visiting corresponding gc_relocate.
587       // Actually we do not need to record them in this map at all.
588       // We do this only to check that we are not relocating any unvisited
589       // value.
590       SpillMap.SlotMap[V] = None;
591 
592       // Default llvm mechanisms for exporting values which are used in
593       // different basic blocks does not work for gc relocates.
594       // Note that it would be incorrect to teach llvm that all relocates are
595       // uses of the corresponding values so that it would automatically
596       // export them. Relocates of the spilled values does not use original
597       // value.
598       if (Relocate->getParent() != StatepointInstr->getParent())
599         Builder.ExportFromCurrentBlock(V);
600     }
601   }
602 }
603 
LowerAsSTATEPOINT(SelectionDAGBuilder::StatepointLoweringInfo & SI)604 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
605     SelectionDAGBuilder::StatepointLoweringInfo &SI) {
606   // The basic scheme here is that information about both the original call and
607   // the safepoint is encoded in the CallInst.  We create a temporary call and
608   // lower it, then reverse engineer the calling sequence.
609 
610   NumOfStatepoints++;
611   // Clear state
612   StatepointLowering.startNewStatepoint(*this);
613 
614 #ifndef NDEBUG
615   // We schedule gc relocates before removeDuplicateGCPtrs since we _will_
616   // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs.
617   for (auto *Reloc : SI.GCRelocates)
618     if (Reloc->getParent() == SI.StatepointInstr->getParent())
619       StatepointLowering.scheduleRelocCall(*Reloc);
620 #endif
621 
622   // Remove any redundant llvm::Values which map to the same SDValue as another
623   // input.  Also has the effect of removing duplicates in the original
624   // llvm::Value input list as well.  This is a useful optimization for
625   // reducing the size of the StackMap section.  It has no other impact.
626   removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this,
627                         FuncInfo.StatepointSpillMaps[SI.StatepointInstr]);
628   assert(SI.Bases.size() == SI.Ptrs.size() &&
629          SI.Ptrs.size() == SI.GCRelocates.size());
630 
631   // Lower statepoint vmstate and gcstate arguments
632   SmallVector<SDValue, 10> LoweredMetaArgs;
633   lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this);
634 
635   // Now that we've emitted the spills, we need to update the root so that the
636   // call sequence is ordered correctly.
637   SI.CLI.setChain(getRoot());
638 
639   // Get call node, we will replace it later with statepoint
640   SDValue ReturnVal;
641   SDNode *CallNode;
642   std::tie(ReturnVal, CallNode) =
643       lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
644 
645   // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
646   // nodes with all the appropriate arguments and return values.
647 
648   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
649   SDValue Chain = CallNode->getOperand(0);
650 
651   SDValue Glue;
652   bool CallHasIncomingGlue = CallNode->getGluedNode();
653   if (CallHasIncomingGlue) {
654     // Glue is always last operand
655     Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
656   }
657 
658   // Build the GC_TRANSITION_START node if necessary.
659   //
660   // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
661   // order in which they appear in the call to the statepoint intrinsic. If
662   // any of the operands is a pointer-typed, that operand is immediately
663   // followed by a SRCVALUE for the pointer that may be used during lowering
664   // (e.g. to form MachinePointerInfo values for loads/stores).
665   const bool IsGCTransition =
666       (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
667       (uint64_t)StatepointFlags::GCTransition;
668   if (IsGCTransition) {
669     SmallVector<SDValue, 8> TSOps;
670 
671     // Add chain
672     TSOps.push_back(Chain);
673 
674     // Add GC transition arguments
675     for (const Value *V : SI.GCTransitionArgs) {
676       TSOps.push_back(getValue(V));
677       if (V->getType()->isPointerTy())
678         TSOps.push_back(DAG.getSrcValue(V));
679     }
680 
681     // Add glue if necessary
682     if (CallHasIncomingGlue)
683       TSOps.push_back(Glue);
684 
685     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
686 
687     SDValue GCTransitionStart =
688         DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
689 
690     Chain = GCTransitionStart.getValue(0);
691     Glue = GCTransitionStart.getValue(1);
692   }
693 
694   // TODO: Currently, all of these operands are being marked as read/write in
695   // PrologEpilougeInserter.cpp, we should special case the VMState arguments
696   // and flags to be read-only.
697   SmallVector<SDValue, 40> Ops;
698 
699   // Add the <id> and <numBytes> constants.
700   Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
701   Ops.push_back(
702       DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
703 
704   // Calculate and push starting position of vmstate arguments
705   // Get number of arguments incoming directly into call node
706   unsigned NumCallRegArgs =
707       CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
708   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
709 
710   // Add call target
711   SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
712   Ops.push_back(CallTarget);
713 
714   // Add call arguments
715   // Get position of register mask in the call
716   SDNode::op_iterator RegMaskIt;
717   if (CallHasIncomingGlue)
718     RegMaskIt = CallNode->op_end() - 2;
719   else
720     RegMaskIt = CallNode->op_end() - 1;
721   Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
722 
723   // Add a constant argument for the calling convention
724   pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
725 
726   // Add a constant argument for the flags
727   uint64_t Flags = SI.StatepointFlags;
728   assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
729          "Unknown flag used");
730   pushStackMapConstant(Ops, *this, Flags);
731 
732   // Insert all vmstate and gcstate arguments
733   Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
734 
735   // Add register mask from call node
736   Ops.push_back(*RegMaskIt);
737 
738   // Add chain
739   Ops.push_back(Chain);
740 
741   // Same for the glue, but we add it only if original call had it
742   if (Glue.getNode())
743     Ops.push_back(Glue);
744 
745   // Compute return values.  Provide a glue output since we consume one as
746   // input.  This allows someone else to chain off us as needed.
747   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
748 
749   SDNode *StatepointMCNode =
750       DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
751 
752   SDNode *SinkNode = StatepointMCNode;
753 
754   // Build the GC_TRANSITION_END node if necessary.
755   //
756   // See the comment above regarding GC_TRANSITION_START for the layout of
757   // the operands to the GC_TRANSITION_END node.
758   if (IsGCTransition) {
759     SmallVector<SDValue, 8> TEOps;
760 
761     // Add chain
762     TEOps.push_back(SDValue(StatepointMCNode, 0));
763 
764     // Add GC transition arguments
765     for (const Value *V : SI.GCTransitionArgs) {
766       TEOps.push_back(getValue(V));
767       if (V->getType()->isPointerTy())
768         TEOps.push_back(DAG.getSrcValue(V));
769     }
770 
771     // Add glue
772     TEOps.push_back(SDValue(StatepointMCNode, 1));
773 
774     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
775 
776     SDValue GCTransitionStart =
777         DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
778 
779     SinkNode = GCTransitionStart.getNode();
780   }
781 
782   // Replace original call
783   DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
784   // Remove original call node
785   DAG.DeleteNode(CallNode);
786 
787   // DON'T set the root - under the assumption that it's already set past the
788   // inserted node we created.
789 
790   // TODO: A better future implementation would be to emit a single variable
791   // argument, variable return value STATEPOINT node here and then hookup the
792   // return value of each gc.relocate to the respective output of the
793   // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
794   // to actually be possible today.
795 
796   return ReturnVal;
797 }
798 
799 void
LowerStatepoint(ImmutableStatepoint ISP,const BasicBlock * EHPadBB)800 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP,
801                                      const BasicBlock *EHPadBB /*= nullptr*/) {
802   assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg &&
803          "anyregcc is not supported on statepoints!");
804 
805 #ifndef NDEBUG
806   // If this is a malformed statepoint, report it early to simplify debugging.
807   // This should catch any IR level mistake that's made when constructing or
808   // transforming statepoints.
809   ISP.verify();
810 
811   // Check that the associated GCStrategy expects to encounter statepoints.
812   assert(GFI->getStrategy().useStatepoints() &&
813          "GCStrategy does not expect to encounter statepoints");
814 #endif
815 
816   SDValue ActualCallee;
817 
818   if (ISP.getNumPatchBytes() > 0) {
819     // If we've been asked to emit a nop sequence instead of a call instruction
820     // for this statepoint then don't lower the call target, but use a constant
821     // `null` instead.  Not lowering the call target lets statepoint clients get
822     // away without providing a physical address for the symbolic call target at
823     // link time.
824 
825     const auto &TLI = DAG.getTargetLoweringInfo();
826     const auto &DL = DAG.getDataLayout();
827 
828     unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace();
829     ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS));
830   } else {
831     ActualCallee = getValue(ISP.getCalledValue());
832   }
833 
834   StatepointLoweringInfo SI(DAG);
835   populateCallLoweringInfo(SI.CLI, ISP.getCallSite(),
836                            ImmutableStatepoint::CallArgsBeginPos,
837                            ISP.getNumCallArgs(), ActualCallee,
838                            ISP.getActualReturnType(), false /* IsPatchPoint */);
839 
840   for (const GCRelocateInst *Relocate : ISP.getRelocates()) {
841     SI.GCRelocates.push_back(Relocate);
842     SI.Bases.push_back(Relocate->getBasePtr());
843     SI.Ptrs.push_back(Relocate->getDerivedPtr());
844   }
845 
846   SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
847   SI.StatepointInstr = ISP.getInstruction();
848   SI.GCTransitionArgs =
849       ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
850   SI.ID = ISP.getID();
851   SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end());
852   SI.StatepointFlags = ISP.getFlags();
853   SI.NumPatchBytes = ISP.getNumPatchBytes();
854   SI.EHPadBB = EHPadBB;
855 
856   SDValue ReturnValue = LowerAsSTATEPOINT(SI);
857 
858   // Export the result value if needed
859   const GCResultInst *GCResult = ISP.getGCResult();
860   Type *RetTy = ISP.getActualReturnType();
861   if (!RetTy->isVoidTy() && GCResult) {
862     if (GCResult->getParent() != ISP.getCallSite().getParent()) {
863       // Result value will be used in a different basic block so we need to
864       // export it now.  Default exporting mechanism will not work here because
865       // statepoint call has a different type than the actual call. It means
866       // that by default llvm will create export register of the wrong type
867       // (always i32 in our case). So instead we need to create export register
868       // with correct type manually.
869       // TODO: To eliminate this problem we can remove gc.result intrinsics
870       //       completely and make statepoint call to return a tuple.
871       unsigned Reg = FuncInfo.CreateRegs(RetTy);
872       RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
873                        DAG.getDataLayout(), Reg, RetTy,
874                        ISP.getCallSite().getCallingConv());
875       SDValue Chain = DAG.getEntryNode();
876 
877       RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
878       PendingExports.push_back(Chain);
879       FuncInfo.ValueMap[ISP.getInstruction()] = Reg;
880     } else {
881       // Result value will be used in a same basic block. Don't export it or
882       // perform any explicit register copies.
883       // We'll replace the actuall call node shortly. gc_result will grab
884       // this value.
885       setValue(ISP.getInstruction(), ReturnValue);
886     }
887   } else {
888     // The token value is never used from here on, just generate a poison value
889     setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc()));
890   }
891 }
892 
LowerCallSiteWithDeoptBundleImpl(ImmutableCallSite CS,SDValue Callee,const BasicBlock * EHPadBB,bool VarArgDisallowed,bool ForceVoidReturnTy)893 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
894     ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB,
895     bool VarArgDisallowed, bool ForceVoidReturnTy) {
896   StatepointLoweringInfo SI(DAG);
897   unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin();
898   populateCallLoweringInfo(
899       SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee,
900       ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(),
901       false);
902   if (!VarArgDisallowed)
903     SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg();
904 
905   auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt);
906 
907   unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
908 
909   auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes());
910   SI.ID = SD.StatepointID.getValueOr(DefaultID);
911   SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
912 
913   SI.DeoptState =
914       ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
915   SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
916   SI.EHPadBB = EHPadBB;
917 
918   // NB! The GC arguments are deliberately left empty.
919 
920   if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
921     const Instruction *Inst = CS.getInstruction();
922     ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal);
923     setValue(Inst, ReturnVal);
924   }
925 }
926 
LowerCallSiteWithDeoptBundle(ImmutableCallSite CS,SDValue Callee,const BasicBlock * EHPadBB)927 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
928     ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) {
929   LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB,
930                                    /* VarArgDisallowed = */ false,
931                                    /* ForceVoidReturnTy  = */ false);
932 }
933 
visitGCResult(const GCResultInst & CI)934 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
935   // The result value of the gc_result is simply the result of the actual
936   // call.  We've already emitted this, so just grab the value.
937   const Instruction *I = CI.getStatepoint();
938 
939   if (I->getParent() != CI.getParent()) {
940     // Statepoint is in different basic block so we should have stored call
941     // result in a virtual register.
942     // We can not use default getValue() functionality to copy value from this
943     // register because statepoint and actual call return types can be
944     // different, and getValue() will use CopyFromReg of the wrong type,
945     // which is always i32 in our case.
946     PointerType *CalleeType = cast<PointerType>(
947         ImmutableStatepoint(I).getCalledValue()->getType());
948     Type *RetTy =
949         cast<FunctionType>(CalleeType->getElementType())->getReturnType();
950     SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
951 
952     assert(CopyFromReg.getNode());
953     setValue(&CI, CopyFromReg);
954   } else {
955     setValue(&CI, getValue(I));
956   }
957 }
958 
visitGCRelocate(const GCRelocateInst & Relocate)959 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
960 #ifndef NDEBUG
961   // Consistency check
962   // We skip this check for relocates not in the same basic block as their
963   // statepoint. It would be too expensive to preserve validation info through
964   // different basic blocks.
965   if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
966     StatepointLowering.relocCallVisited(Relocate);
967 
968   auto *Ty = Relocate.getType()->getScalarType();
969   if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
970     assert(*IsManaged && "Non gc managed pointer relocated!");
971 #endif
972 
973   const Value *DerivedPtr = Relocate.getDerivedPtr();
974   SDValue SD = getValue(DerivedPtr);
975 
976   auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()];
977   auto SlotIt = SpillMap.find(DerivedPtr);
978   assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value");
979   Optional<int> DerivedPtrLocation = SlotIt->second;
980 
981   // We didn't need to spill these special cases (constants and allocas).
982   // See the handling in spillIncomingValueForStatepoint for detail.
983   if (!DerivedPtrLocation) {
984     setValue(&Relocate, SD);
985     return;
986   }
987 
988   SDValue SpillSlot =
989       DAG.getTargetFrameIndex(*DerivedPtrLocation, getFrameIndexTy());
990 
991   // Be conservative: flush all pending loads
992   // TODO: Probably we can be less restrictive on this,
993   // it may allow more scheduling opportunities.
994   SDValue Chain = getRoot();
995 
996   SDValue SpillLoad =
997       DAG.getLoad(DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
998                                                            Relocate.getType()),
999                   getCurSDLoc(), Chain, SpillSlot,
1000                   MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
1001                                                     *DerivedPtrLocation));
1002 
1003   // Again, be conservative, don't emit pending loads
1004   DAG.setRoot(SpillLoad.getValue(1));
1005 
1006   assert(SpillLoad.getNode());
1007   setValue(&Relocate, SpillLoad);
1008 }
1009 
LowerDeoptimizeCall(const CallInst * CI)1010 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1011   const auto &TLI = DAG.getTargetLoweringInfo();
1012   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1013                                          TLI.getPointerTy(DAG.getDataLayout()));
1014 
1015   // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1016   // call.  We also do not lower the return value to any virtual register, and
1017   // change the immediately following return to a trap instruction.
1018   LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1019                                    /* VarArgDisallowed = */ true,
1020                                    /* ForceVoidReturnTy = */ true);
1021 }
1022 
LowerDeoptimizingReturn()1023 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1024   // We do not lower the return value from llvm.deoptimize to any virtual
1025   // register, and change the immediately following return to a trap
1026   // instruction.
1027   if (DAG.getTarget().Options.TrapUnreachable)
1028     DAG.setRoot(
1029         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1030 }
1031