1 //===--- NewDeleteOverloadsCheck.cpp - clang-tidy--------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "NewDeleteOverloadsCheck.h"
11 #include "clang/AST/ASTContext.h"
12 #include "clang/ASTMatchers/ASTMatchFinder.h"
13
14 using namespace clang::ast_matchers;
15
16 namespace clang {
17 namespace tidy {
18 namespace misc {
19
20 namespace {
21
AST_MATCHER(FunctionDecl,isPlacementOverload)22 AST_MATCHER(FunctionDecl, isPlacementOverload) {
23 bool New;
24 switch (Node.getOverloadedOperator()) {
25 default:
26 return false;
27 case OO_New:
28 case OO_Array_New:
29 New = true;
30 break;
31 case OO_Delete:
32 case OO_Array_Delete:
33 New = false;
34 break;
35 }
36
37 // Variadic functions are always placement functions.
38 if (Node.isVariadic())
39 return true;
40
41 // Placement new is easy: it always has more than one parameter (the first
42 // parameter is always the size). If it's an overload of delete or delete[]
43 // that has only one parameter, it's never a placement delete.
44 if (New)
45 return Node.getNumParams() > 1;
46 if (Node.getNumParams() == 1)
47 return false;
48
49 // Placement delete is a little more challenging. They always have more than
50 // one parameter with the first parameter being a pointer. However, the
51 // second parameter can be a size_t for sized deallocation, and that is never
52 // a placement delete operator.
53 if (Node.getNumParams() <= 1 || Node.getNumParams() > 2)
54 return true;
55
56 const auto *FPT = Node.getType()->castAs<FunctionProtoType>();
57 ASTContext &Ctx = Node.getASTContext();
58 if (Ctx.getLangOpts().SizedDeallocation &&
59 Ctx.hasSameType(FPT->getParamType(1), Ctx.getSizeType()))
60 return false;
61
62 return true;
63 }
64
getCorrespondingOverload(const FunctionDecl * FD)65 OverloadedOperatorKind getCorrespondingOverload(const FunctionDecl *FD) {
66 switch (FD->getOverloadedOperator()) {
67 default:
68 break;
69 case OO_New:
70 return OO_Delete;
71 case OO_Delete:
72 return OO_New;
73 case OO_Array_New:
74 return OO_Array_Delete;
75 case OO_Array_Delete:
76 return OO_Array_New;
77 }
78 llvm_unreachable("Not an overloaded allocation operator");
79 }
80
getOperatorName(OverloadedOperatorKind K)81 const char *getOperatorName(OverloadedOperatorKind K) {
82 switch (K) {
83 default:
84 break;
85 case OO_New:
86 return "operator new";
87 case OO_Delete:
88 return "operator delete";
89 case OO_Array_New:
90 return "operator new[]";
91 case OO_Array_Delete:
92 return "operator delete[]";
93 }
94 llvm_unreachable("Not an overloaded allocation operator");
95 }
96
areCorrespondingOverloads(const FunctionDecl * LHS,const FunctionDecl * RHS)97 bool areCorrespondingOverloads(const FunctionDecl *LHS,
98 const FunctionDecl *RHS) {
99 return RHS->getOverloadedOperator() == getCorrespondingOverload(LHS);
100 }
101
hasCorrespondingOverloadInBaseClass(const CXXMethodDecl * MD,const CXXRecordDecl * RD=nullptr)102 bool hasCorrespondingOverloadInBaseClass(const CXXMethodDecl *MD,
103 const CXXRecordDecl *RD = nullptr) {
104 if (RD) {
105 // Check the methods in the given class and accessible to derived classes.
106 for (const auto *BMD : RD->methods())
107 if (BMD->isOverloadedOperator() && BMD->getAccess() != AS_private &&
108 areCorrespondingOverloads(MD, BMD))
109 return true;
110 } else {
111 // Get the parent class of the method; we do not need to care about checking
112 // the methods in this class as the caller has already done that by looking
113 // at the declaration contexts.
114 RD = MD->getParent();
115 }
116
117 for (const auto &BS : RD->bases()) {
118 // We can't say much about a dependent base class, but to avoid false
119 // positives assume it can have a corresponding overload.
120 if (BS.getType()->isDependentType())
121 return true;
122 if (const auto *BaseRD = BS.getType()->getAsCXXRecordDecl())
123 if (hasCorrespondingOverloadInBaseClass(MD, BaseRD))
124 return true;
125 }
126
127 return false;
128 }
129
130 } // anonymous namespace
131
registerMatchers(MatchFinder * Finder)132 void NewDeleteOverloadsCheck::registerMatchers(MatchFinder *Finder) {
133 if (!getLangOpts().CPlusPlus)
134 return;
135
136 // Match all operator new and operator delete overloads (including the array
137 // forms). Do not match implicit operators, placement operators, or
138 // deleted/private operators.
139 //
140 // Technically, trivially-defined operator delete seems like a reasonable
141 // thing to also skip. e.g., void operator delete(void *) {}
142 // However, I think it's more reasonable to warn in this case as the user
143 // should really be writing that as a deleted function.
144 Finder->addMatcher(
145 functionDecl(unless(anyOf(isImplicit(), isPlacementOverload(),
146 isDeleted(), cxxMethodDecl(isPrivate()))),
147 anyOf(hasOverloadedOperatorName("new"),
148 hasOverloadedOperatorName("new[]"),
149 hasOverloadedOperatorName("delete"),
150 hasOverloadedOperatorName("delete[]")))
151 .bind("func"),
152 this);
153 }
154
check(const MatchFinder::MatchResult & Result)155 void NewDeleteOverloadsCheck::check(const MatchFinder::MatchResult &Result) {
156 // Add any matches we locate to the list of things to be checked at the
157 // end of the translation unit.
158 const auto *FD = Result.Nodes.getNodeAs<FunctionDecl>("func");
159 const CXXRecordDecl *RD = nullptr;
160 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
161 RD = MD->getParent();
162 Overloads[RD].push_back(FD);
163 }
164
onEndOfTranslationUnit()165 void NewDeleteOverloadsCheck::onEndOfTranslationUnit() {
166 // Walk over the list of declarations we've found to see if there is a
167 // corresponding overload at the same declaration context or within a base
168 // class. If there is not, add the element to the list of declarations to
169 // diagnose.
170 SmallVector<const FunctionDecl *, 4> Diagnose;
171 for (const auto &RP : Overloads) {
172 // We don't care about the CXXRecordDecl key in the map; we use it as a way
173 // to shard the overloads by declaration context to reduce the algorithmic
174 // complexity when searching for corresponding free store functions.
175 for (const auto *Overload : RP.second) {
176 const auto *Match =
177 std::find_if(RP.second.begin(), RP.second.end(),
178 [&Overload](const FunctionDecl *FD) {
179 if (FD == Overload)
180 return false;
181 // If the declaration contexts don't match, we don't
182 // need to check any further.
183 if (FD->getDeclContext() != Overload->getDeclContext())
184 return false;
185
186 // Since the declaration contexts match, see whether
187 // the current element is the corresponding operator.
188 if (!areCorrespondingOverloads(Overload, FD))
189 return false;
190
191 return true;
192 });
193
194 if (Match == RP.second.end()) {
195 // Check to see if there is a corresponding overload in a base class
196 // context. If there isn't, or if the overload is not a class member
197 // function, then we should diagnose.
198 const auto *MD = dyn_cast<CXXMethodDecl>(Overload);
199 if (!MD || !hasCorrespondingOverloadInBaseClass(MD))
200 Diagnose.push_back(Overload);
201 }
202 }
203 }
204
205 for (const auto *FD : Diagnose)
206 diag(FD->getLocation(), "declaration of %0 has no matching declaration "
207 "of '%1' at the same scope")
208 << FD << getOperatorName(getCorrespondingOverload(FD));
209 }
210
211 } // namespace misc
212 } // namespace tidy
213 } // namespace clang
214