1 //===- yaml2coff - Convert YAML to a COFF object file ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// The COFF component of yaml2obj.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "yaml2obj.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringSwitch.h"
20 #include "llvm/DebugInfo/CodeView/DebugStringTableSubsection.h"
21 #include "llvm/DebugInfo/CodeView/StringsAndChecksums.h"
22 #include "llvm/Object/COFF.h"
23 #include "llvm/ObjectYAML/ObjectYAML.h"
24 #include "llvm/Support/Endian.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/Support/SourceMgr.h"
27 #include "llvm/Support/WithColor.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <vector>
30 
31 using namespace llvm;
32 
33 /// This parses a yaml stream that represents a COFF object file.
34 /// See docs/yaml2obj for the yaml scheema.
35 struct COFFParser {
COFFParserCOFFParser36   COFFParser(COFFYAML::Object &Obj)
37       : Obj(Obj), SectionTableStart(0), SectionTableSize(0) {
38     // A COFF string table always starts with a 4 byte size field. Offsets into
39     // it include this size, so allocate it now.
40     StringTable.append(4, char(0));
41   }
42 
useBigObjCOFFParser43   bool useBigObj() const {
44     return static_cast<int32_t>(Obj.Sections.size()) >
45            COFF::MaxNumberOfSections16;
46   }
47 
isPECOFFParser48   bool isPE() const { return Obj.OptionalHeader.hasValue(); }
is64BitCOFFParser49   bool is64Bit() const {
50     return Obj.Header.Machine == COFF::IMAGE_FILE_MACHINE_AMD64 ||
51            Obj.Header.Machine == COFF::IMAGE_FILE_MACHINE_ARM64;
52   }
53 
getFileAlignmentCOFFParser54   uint32_t getFileAlignment() const {
55     return Obj.OptionalHeader->Header.FileAlignment;
56   }
57 
getHeaderSizeCOFFParser58   unsigned getHeaderSize() const {
59     return useBigObj() ? COFF::Header32Size : COFF::Header16Size;
60   }
61 
getSymbolSizeCOFFParser62   unsigned getSymbolSize() const {
63     return useBigObj() ? COFF::Symbol32Size : COFF::Symbol16Size;
64   }
65 
parseSectionsCOFFParser66   bool parseSections() {
67     for (std::vector<COFFYAML::Section>::iterator i = Obj.Sections.begin(),
68            e = Obj.Sections.end(); i != e; ++i) {
69       COFFYAML::Section &Sec = *i;
70 
71       // If the name is less than 8 bytes, store it in place, otherwise
72       // store it in the string table.
73       StringRef Name = Sec.Name;
74 
75       if (Name.size() <= COFF::NameSize) {
76         std::copy(Name.begin(), Name.end(), Sec.Header.Name);
77       } else {
78         // Add string to the string table and format the index for output.
79         unsigned Index = getStringIndex(Name);
80         std::string str = utostr(Index);
81         if (str.size() > 7) {
82           errs() << "String table got too large\n";
83           return false;
84         }
85         Sec.Header.Name[0] = '/';
86         std::copy(str.begin(), str.end(), Sec.Header.Name + 1);
87       }
88 
89       if (Sec.Alignment) {
90         if (Sec.Alignment > 8192) {
91           errs() << "Section alignment is too large\n";
92           return false;
93         }
94         if (!isPowerOf2_32(Sec.Alignment)) {
95           errs() << "Section alignment is not a power of 2\n";
96           return false;
97         }
98         Sec.Header.Characteristics |= (Log2_32(Sec.Alignment) + 1) << 20;
99       }
100     }
101     return true;
102   }
103 
parseSymbolsCOFFParser104   bool parseSymbols() {
105     for (std::vector<COFFYAML::Symbol>::iterator i = Obj.Symbols.begin(),
106            e = Obj.Symbols.end(); i != e; ++i) {
107       COFFYAML::Symbol &Sym = *i;
108 
109       // If the name is less than 8 bytes, store it in place, otherwise
110       // store it in the string table.
111       StringRef Name = Sym.Name;
112       if (Name.size() <= COFF::NameSize) {
113         std::copy(Name.begin(), Name.end(), Sym.Header.Name);
114       } else {
115         // Add string to the string table and format the index for output.
116         unsigned Index = getStringIndex(Name);
117         *reinterpret_cast<support::aligned_ulittle32_t*>(
118             Sym.Header.Name + 4) = Index;
119       }
120 
121       Sym.Header.Type = Sym.SimpleType;
122       Sym.Header.Type |= Sym.ComplexType << COFF::SCT_COMPLEX_TYPE_SHIFT;
123     }
124     return true;
125   }
126 
parseCOFFParser127   bool parse() {
128     if (!parseSections())
129       return false;
130     if (!parseSymbols())
131       return false;
132     return true;
133   }
134 
getStringIndexCOFFParser135   unsigned getStringIndex(StringRef Str) {
136     StringMap<unsigned>::iterator i = StringTableMap.find(Str);
137     if (i == StringTableMap.end()) {
138       unsigned Index = StringTable.size();
139       StringTable.append(Str.begin(), Str.end());
140       StringTable.push_back(0);
141       StringTableMap[Str] = Index;
142       return Index;
143     }
144     return i->second;
145   }
146 
147   COFFYAML::Object &Obj;
148 
149   codeview::StringsAndChecksums StringsAndChecksums;
150   BumpPtrAllocator Allocator;
151   StringMap<unsigned> StringTableMap;
152   std::string StringTable;
153   uint32_t SectionTableStart;
154   uint32_t SectionTableSize;
155 };
156 
157 // Take a CP and assign addresses and sizes to everything. Returns false if the
158 // layout is not valid to do.
layoutOptionalHeader(COFFParser & CP)159 static bool layoutOptionalHeader(COFFParser &CP) {
160   if (!CP.isPE())
161     return true;
162   unsigned PEHeaderSize = CP.is64Bit() ? sizeof(object::pe32plus_header)
163                                        : sizeof(object::pe32_header);
164   CP.Obj.Header.SizeOfOptionalHeader =
165       PEHeaderSize +
166       sizeof(object::data_directory) * (COFF::NUM_DATA_DIRECTORIES + 1);
167   return true;
168 }
169 
170 namespace {
171 enum { DOSStubSize = 128 };
172 }
173 
174 static yaml::BinaryRef
toDebugS(ArrayRef<CodeViewYAML::YAMLDebugSubsection> Subsections,const codeview::StringsAndChecksums & SC,BumpPtrAllocator & Allocator)175 toDebugS(ArrayRef<CodeViewYAML::YAMLDebugSubsection> Subsections,
176          const codeview::StringsAndChecksums &SC, BumpPtrAllocator &Allocator) {
177   using namespace codeview;
178   ExitOnError Err("Error occurred writing .debug$S section");
179   auto CVSS =
180       Err(CodeViewYAML::toCodeViewSubsectionList(Allocator, Subsections, SC));
181 
182   std::vector<DebugSubsectionRecordBuilder> Builders;
183   uint32_t Size = sizeof(uint32_t);
184   for (auto &SS : CVSS) {
185     DebugSubsectionRecordBuilder B(SS, CodeViewContainer::ObjectFile);
186     Size += B.calculateSerializedLength();
187     Builders.push_back(std::move(B));
188   }
189   uint8_t *Buffer = Allocator.Allocate<uint8_t>(Size);
190   MutableArrayRef<uint8_t> Output(Buffer, Size);
191   BinaryStreamWriter Writer(Output, support::little);
192 
193   Err(Writer.writeInteger<uint32_t>(COFF::DEBUG_SECTION_MAGIC));
194   for (const auto &B : Builders) {
195     Err(B.commit(Writer));
196   }
197   return {Output};
198 }
199 
200 // Take a CP and assign addresses and sizes to everything. Returns false if the
201 // layout is not valid to do.
layoutCOFF(COFFParser & CP)202 static bool layoutCOFF(COFFParser &CP) {
203   // The section table starts immediately after the header, including the
204   // optional header.
205   CP.SectionTableStart =
206       CP.getHeaderSize() + CP.Obj.Header.SizeOfOptionalHeader;
207   if (CP.isPE())
208     CP.SectionTableStart += DOSStubSize + sizeof(COFF::PEMagic);
209   CP.SectionTableSize = COFF::SectionSize * CP.Obj.Sections.size();
210 
211   uint32_t CurrentSectionDataOffset =
212       CP.SectionTableStart + CP.SectionTableSize;
213 
214   for (COFFYAML::Section &S : CP.Obj.Sections) {
215     // We support specifying exactly one of SectionData or Subsections.  So if
216     // there is already some SectionData, then we don't need to do any of this.
217     if (S.Name == ".debug$S" && S.SectionData.binary_size() == 0) {
218       CodeViewYAML::initializeStringsAndChecksums(S.DebugS,
219                                                   CP.StringsAndChecksums);
220       if (CP.StringsAndChecksums.hasChecksums() &&
221           CP.StringsAndChecksums.hasStrings())
222         break;
223     }
224   }
225 
226   // Assign each section data address consecutively.
227   for (COFFYAML::Section &S : CP.Obj.Sections) {
228     if (S.Name == ".debug$S") {
229       if (S.SectionData.binary_size() == 0) {
230         assert(CP.StringsAndChecksums.hasStrings() &&
231                "Object file does not have debug string table!");
232 
233         S.SectionData =
234             toDebugS(S.DebugS, CP.StringsAndChecksums, CP.Allocator);
235       }
236     } else if (S.Name == ".debug$T") {
237       if (S.SectionData.binary_size() == 0)
238         S.SectionData = CodeViewYAML::toDebugT(S.DebugT, CP.Allocator, S.Name);
239     } else if (S.Name == ".debug$P") {
240       if (S.SectionData.binary_size() == 0)
241         S.SectionData = CodeViewYAML::toDebugT(S.DebugP, CP.Allocator, S.Name);
242     } else if (S.Name == ".debug$H") {
243       if (S.DebugH.hasValue() && S.SectionData.binary_size() == 0)
244         S.SectionData = CodeViewYAML::toDebugH(*S.DebugH, CP.Allocator);
245     }
246 
247     if (S.SectionData.binary_size() > 0) {
248       CurrentSectionDataOffset = alignTo(CurrentSectionDataOffset,
249                                          CP.isPE() ? CP.getFileAlignment() : 4);
250       S.Header.SizeOfRawData = S.SectionData.binary_size();
251       if (CP.isPE())
252         S.Header.SizeOfRawData =
253             alignTo(S.Header.SizeOfRawData, CP.getFileAlignment());
254       S.Header.PointerToRawData = CurrentSectionDataOffset;
255       CurrentSectionDataOffset += S.Header.SizeOfRawData;
256       if (!S.Relocations.empty()) {
257         S.Header.PointerToRelocations = CurrentSectionDataOffset;
258         S.Header.NumberOfRelocations = S.Relocations.size();
259         CurrentSectionDataOffset +=
260             S.Header.NumberOfRelocations * COFF::RelocationSize;
261       }
262     } else {
263       S.Header.SizeOfRawData = 0;
264       S.Header.PointerToRawData = 0;
265     }
266   }
267 
268   uint32_t SymbolTableStart = CurrentSectionDataOffset;
269 
270   // Calculate number of symbols.
271   uint32_t NumberOfSymbols = 0;
272   for (std::vector<COFFYAML::Symbol>::iterator i = CP.Obj.Symbols.begin(),
273                                                e = CP.Obj.Symbols.end();
274                                                i != e; ++i) {
275     uint32_t NumberOfAuxSymbols = 0;
276     if (i->FunctionDefinition)
277       NumberOfAuxSymbols += 1;
278     if (i->bfAndefSymbol)
279       NumberOfAuxSymbols += 1;
280     if (i->WeakExternal)
281       NumberOfAuxSymbols += 1;
282     if (!i->File.empty())
283       NumberOfAuxSymbols +=
284           (i->File.size() + CP.getSymbolSize() - 1) / CP.getSymbolSize();
285     if (i->SectionDefinition)
286       NumberOfAuxSymbols += 1;
287     if (i->CLRToken)
288       NumberOfAuxSymbols += 1;
289     i->Header.NumberOfAuxSymbols = NumberOfAuxSymbols;
290     NumberOfSymbols += 1 + NumberOfAuxSymbols;
291   }
292 
293   // Store all the allocated start addresses in the header.
294   CP.Obj.Header.NumberOfSections = CP.Obj.Sections.size();
295   CP.Obj.Header.NumberOfSymbols = NumberOfSymbols;
296   if (NumberOfSymbols > 0 || CP.StringTable.size() > 4)
297     CP.Obj.Header.PointerToSymbolTable = SymbolTableStart;
298   else
299     CP.Obj.Header.PointerToSymbolTable = 0;
300 
301   *reinterpret_cast<support::ulittle32_t *>(&CP.StringTable[0])
302     = CP.StringTable.size();
303 
304   return true;
305 }
306 
307 template <typename value_type>
308 struct binary_le_impl {
309   value_type Value;
binary_le_implbinary_le_impl310   binary_le_impl(value_type V) : Value(V) {}
311 };
312 
313 template <typename value_type>
operator <<(raw_ostream & OS,const binary_le_impl<value_type> & BLE)314 raw_ostream &operator <<( raw_ostream &OS
315                         , const binary_le_impl<value_type> &BLE) {
316   char Buffer[sizeof(BLE.Value)];
317   support::endian::write<value_type, support::little, support::unaligned>(
318     Buffer, BLE.Value);
319   OS.write(Buffer, sizeof(BLE.Value));
320   return OS;
321 }
322 
323 template <typename value_type>
binary_le(value_type V)324 binary_le_impl<value_type> binary_le(value_type V) {
325   return binary_le_impl<value_type>(V);
326 }
327 
328 template <size_t NumBytes> struct zeros_impl {};
329 
330 template <size_t NumBytes>
operator <<(raw_ostream & OS,const zeros_impl<NumBytes> &)331 raw_ostream &operator<<(raw_ostream &OS, const zeros_impl<NumBytes> &) {
332   char Buffer[NumBytes];
333   memset(Buffer, 0, sizeof(Buffer));
334   OS.write(Buffer, sizeof(Buffer));
335   return OS;
336 }
337 
338 template <typename T>
zeros(const T &)339 zeros_impl<sizeof(T)> zeros(const T &) {
340   return zeros_impl<sizeof(T)>();
341 }
342 
343 struct num_zeros_impl {
344   size_t N;
num_zeros_implnum_zeros_impl345   num_zeros_impl(size_t N) : N(N) {}
346 };
347 
operator <<(raw_ostream & OS,const num_zeros_impl & NZI)348 raw_ostream &operator<<(raw_ostream &OS, const num_zeros_impl &NZI) {
349   for (size_t I = 0; I != NZI.N; ++I)
350     OS.write(0);
351   return OS;
352 }
353 
num_zeros(size_t N)354 static num_zeros_impl num_zeros(size_t N) {
355   num_zeros_impl NZI(N);
356   return NZI;
357 }
358 
359 template <typename T>
initializeOptionalHeader(COFFParser & CP,uint16_t Magic,T Header)360 static uint32_t initializeOptionalHeader(COFFParser &CP, uint16_t Magic, T Header) {
361   memset(Header, 0, sizeof(*Header));
362   Header->Magic = Magic;
363   Header->SectionAlignment = CP.Obj.OptionalHeader->Header.SectionAlignment;
364   Header->FileAlignment = CP.Obj.OptionalHeader->Header.FileAlignment;
365   uint32_t SizeOfCode = 0, SizeOfInitializedData = 0,
366            SizeOfUninitializedData = 0;
367   uint32_t SizeOfHeaders = alignTo(CP.SectionTableStart + CP.SectionTableSize,
368                                    Header->FileAlignment);
369   uint32_t SizeOfImage = alignTo(SizeOfHeaders, Header->SectionAlignment);
370   uint32_t BaseOfData = 0;
371   for (const COFFYAML::Section &S : CP.Obj.Sections) {
372     if (S.Header.Characteristics & COFF::IMAGE_SCN_CNT_CODE)
373       SizeOfCode += S.Header.SizeOfRawData;
374     if (S.Header.Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA)
375       SizeOfInitializedData += S.Header.SizeOfRawData;
376     if (S.Header.Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)
377       SizeOfUninitializedData += S.Header.SizeOfRawData;
378     if (S.Name.equals(".text"))
379       Header->BaseOfCode = S.Header.VirtualAddress; // RVA
380     else if (S.Name.equals(".data"))
381       BaseOfData = S.Header.VirtualAddress; // RVA
382     if (S.Header.VirtualAddress)
383       SizeOfImage += alignTo(S.Header.VirtualSize, Header->SectionAlignment);
384   }
385   Header->SizeOfCode = SizeOfCode;
386   Header->SizeOfInitializedData = SizeOfInitializedData;
387   Header->SizeOfUninitializedData = SizeOfUninitializedData;
388   Header->AddressOfEntryPoint =
389       CP.Obj.OptionalHeader->Header.AddressOfEntryPoint; // RVA
390   Header->ImageBase = CP.Obj.OptionalHeader->Header.ImageBase;
391   Header->MajorOperatingSystemVersion =
392       CP.Obj.OptionalHeader->Header.MajorOperatingSystemVersion;
393   Header->MinorOperatingSystemVersion =
394       CP.Obj.OptionalHeader->Header.MinorOperatingSystemVersion;
395   Header->MajorImageVersion =
396       CP.Obj.OptionalHeader->Header.MajorImageVersion;
397   Header->MinorImageVersion =
398       CP.Obj.OptionalHeader->Header.MinorImageVersion;
399   Header->MajorSubsystemVersion =
400       CP.Obj.OptionalHeader->Header.MajorSubsystemVersion;
401   Header->MinorSubsystemVersion =
402       CP.Obj.OptionalHeader->Header.MinorSubsystemVersion;
403   Header->SizeOfImage = SizeOfImage;
404   Header->SizeOfHeaders = SizeOfHeaders;
405   Header->Subsystem = CP.Obj.OptionalHeader->Header.Subsystem;
406   Header->DLLCharacteristics = CP.Obj.OptionalHeader->Header.DLLCharacteristics;
407   Header->SizeOfStackReserve = CP.Obj.OptionalHeader->Header.SizeOfStackReserve;
408   Header->SizeOfStackCommit = CP.Obj.OptionalHeader->Header.SizeOfStackCommit;
409   Header->SizeOfHeapReserve = CP.Obj.OptionalHeader->Header.SizeOfHeapReserve;
410   Header->SizeOfHeapCommit = CP.Obj.OptionalHeader->Header.SizeOfHeapCommit;
411   Header->NumberOfRvaAndSize = COFF::NUM_DATA_DIRECTORIES + 1;
412   return BaseOfData;
413 }
414 
writeCOFF(COFFParser & CP,raw_ostream & OS)415 static bool writeCOFF(COFFParser &CP, raw_ostream &OS) {
416   if (CP.isPE()) {
417     // PE files start with a DOS stub.
418     object::dos_header DH;
419     memset(&DH, 0, sizeof(DH));
420 
421     // DOS EXEs start with "MZ" magic.
422     DH.Magic[0] = 'M';
423     DH.Magic[1] = 'Z';
424     // Initializing the AddressOfRelocationTable is strictly optional but
425     // mollifies certain tools which expect it to have a value greater than
426     // 0x40.
427     DH.AddressOfRelocationTable = sizeof(DH);
428     // This is the address of the PE signature.
429     DH.AddressOfNewExeHeader = DOSStubSize;
430 
431     // Write out our DOS stub.
432     OS.write(reinterpret_cast<char *>(&DH), sizeof(DH));
433     // Write padding until we reach the position of where our PE signature
434     // should live.
435     OS << num_zeros(DOSStubSize - sizeof(DH));
436     // Write out the PE signature.
437     OS.write(COFF::PEMagic, sizeof(COFF::PEMagic));
438   }
439   if (CP.useBigObj()) {
440     OS << binary_le(static_cast<uint16_t>(COFF::IMAGE_FILE_MACHINE_UNKNOWN))
441        << binary_le(static_cast<uint16_t>(0xffff))
442        << binary_le(static_cast<uint16_t>(COFF::BigObjHeader::MinBigObjectVersion))
443        << binary_le(CP.Obj.Header.Machine)
444        << binary_le(CP.Obj.Header.TimeDateStamp);
445     OS.write(COFF::BigObjMagic, sizeof(COFF::BigObjMagic));
446     OS << zeros(uint32_t(0))
447        << zeros(uint32_t(0))
448        << zeros(uint32_t(0))
449        << zeros(uint32_t(0))
450        << binary_le(CP.Obj.Header.NumberOfSections)
451        << binary_le(CP.Obj.Header.PointerToSymbolTable)
452        << binary_le(CP.Obj.Header.NumberOfSymbols);
453   } else {
454     OS << binary_le(CP.Obj.Header.Machine)
455        << binary_le(static_cast<int16_t>(CP.Obj.Header.NumberOfSections))
456        << binary_le(CP.Obj.Header.TimeDateStamp)
457        << binary_le(CP.Obj.Header.PointerToSymbolTable)
458        << binary_le(CP.Obj.Header.NumberOfSymbols)
459        << binary_le(CP.Obj.Header.SizeOfOptionalHeader)
460        << binary_le(CP.Obj.Header.Characteristics);
461   }
462   if (CP.isPE()) {
463     if (CP.is64Bit()) {
464       object::pe32plus_header PEH;
465       initializeOptionalHeader(CP, COFF::PE32Header::PE32_PLUS, &PEH);
466       OS.write(reinterpret_cast<char *>(&PEH), sizeof(PEH));
467     } else {
468       object::pe32_header PEH;
469       uint32_t BaseOfData = initializeOptionalHeader(CP, COFF::PE32Header::PE32, &PEH);
470       PEH.BaseOfData = BaseOfData;
471       OS.write(reinterpret_cast<char *>(&PEH), sizeof(PEH));
472     }
473     for (const Optional<COFF::DataDirectory> &DD :
474          CP.Obj.OptionalHeader->DataDirectories) {
475       if (!DD.hasValue()) {
476         OS << zeros(uint32_t(0));
477         OS << zeros(uint32_t(0));
478       } else {
479         OS << binary_le(DD->RelativeVirtualAddress);
480         OS << binary_le(DD->Size);
481       }
482     }
483     OS << zeros(uint32_t(0));
484     OS << zeros(uint32_t(0));
485   }
486 
487   assert(OS.tell() == CP.SectionTableStart);
488   // Output section table.
489   for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
490                                                 e = CP.Obj.Sections.end();
491                                                 i != e; ++i) {
492     OS.write(i->Header.Name, COFF::NameSize);
493     OS << binary_le(i->Header.VirtualSize)
494        << binary_le(i->Header.VirtualAddress)
495        << binary_le(i->Header.SizeOfRawData)
496        << binary_le(i->Header.PointerToRawData)
497        << binary_le(i->Header.PointerToRelocations)
498        << binary_le(i->Header.PointerToLineNumbers)
499        << binary_le(i->Header.NumberOfRelocations)
500        << binary_le(i->Header.NumberOfLineNumbers)
501        << binary_le(i->Header.Characteristics);
502   }
503   assert(OS.tell() == CP.SectionTableStart + CP.SectionTableSize);
504 
505   unsigned CurSymbol = 0;
506   StringMap<unsigned> SymbolTableIndexMap;
507   for (std::vector<COFFYAML::Symbol>::iterator I = CP.Obj.Symbols.begin(),
508                                                E = CP.Obj.Symbols.end();
509        I != E; ++I) {
510     SymbolTableIndexMap[I->Name] = CurSymbol;
511     CurSymbol += 1 + I->Header.NumberOfAuxSymbols;
512   }
513 
514   // Output section data.
515   for (const COFFYAML::Section &S : CP.Obj.Sections) {
516     if (!S.Header.SizeOfRawData)
517       continue;
518     assert(S.Header.PointerToRawData >= OS.tell());
519     OS << num_zeros(S.Header.PointerToRawData - OS.tell());
520     S.SectionData.writeAsBinary(OS);
521     assert(S.Header.SizeOfRawData >= S.SectionData.binary_size());
522     OS << num_zeros(S.Header.SizeOfRawData - S.SectionData.binary_size());
523     for (const COFFYAML::Relocation &R : S.Relocations) {
524       uint32_t SymbolTableIndex;
525       if (R.SymbolTableIndex) {
526         if (!R.SymbolName.empty())
527           WithColor::error()
528               << "Both SymbolName and SymbolTableIndex specified\n";
529         SymbolTableIndex = *R.SymbolTableIndex;
530       } else {
531         SymbolTableIndex = SymbolTableIndexMap[R.SymbolName];
532       }
533       OS << binary_le(R.VirtualAddress)
534          << binary_le(SymbolTableIndex)
535          << binary_le(R.Type);
536     }
537   }
538 
539   // Output symbol table.
540 
541   for (std::vector<COFFYAML::Symbol>::const_iterator i = CP.Obj.Symbols.begin(),
542                                                      e = CP.Obj.Symbols.end();
543                                                      i != e; ++i) {
544     OS.write(i->Header.Name, COFF::NameSize);
545     OS << binary_le(i->Header.Value);
546     if (CP.useBigObj())
547        OS << binary_le(i->Header.SectionNumber);
548     else
549        OS << binary_le(static_cast<int16_t>(i->Header.SectionNumber));
550     OS << binary_le(i->Header.Type)
551        << binary_le(i->Header.StorageClass)
552        << binary_le(i->Header.NumberOfAuxSymbols);
553 
554     if (i->FunctionDefinition)
555       OS << binary_le(i->FunctionDefinition->TagIndex)
556          << binary_le(i->FunctionDefinition->TotalSize)
557          << binary_le(i->FunctionDefinition->PointerToLinenumber)
558          << binary_le(i->FunctionDefinition->PointerToNextFunction)
559          << zeros(i->FunctionDefinition->unused)
560          << num_zeros(CP.getSymbolSize() - COFF::Symbol16Size);
561     if (i->bfAndefSymbol)
562       OS << zeros(i->bfAndefSymbol->unused1)
563          << binary_le(i->bfAndefSymbol->Linenumber)
564          << zeros(i->bfAndefSymbol->unused2)
565          << binary_le(i->bfAndefSymbol->PointerToNextFunction)
566          << zeros(i->bfAndefSymbol->unused3)
567          << num_zeros(CP.getSymbolSize() - COFF::Symbol16Size);
568     if (i->WeakExternal)
569       OS << binary_le(i->WeakExternal->TagIndex)
570          << binary_le(i->WeakExternal->Characteristics)
571          << zeros(i->WeakExternal->unused)
572          << num_zeros(CP.getSymbolSize() - COFF::Symbol16Size);
573     if (!i->File.empty()) {
574       unsigned SymbolSize = CP.getSymbolSize();
575       uint32_t NumberOfAuxRecords =
576           (i->File.size() + SymbolSize - 1) / SymbolSize;
577       uint32_t NumberOfAuxBytes = NumberOfAuxRecords * SymbolSize;
578       uint32_t NumZeros = NumberOfAuxBytes - i->File.size();
579       OS.write(i->File.data(), i->File.size());
580       OS << num_zeros(NumZeros);
581     }
582     if (i->SectionDefinition)
583       OS << binary_le(i->SectionDefinition->Length)
584          << binary_le(i->SectionDefinition->NumberOfRelocations)
585          << binary_le(i->SectionDefinition->NumberOfLinenumbers)
586          << binary_le(i->SectionDefinition->CheckSum)
587          << binary_le(static_cast<int16_t>(i->SectionDefinition->Number))
588          << binary_le(i->SectionDefinition->Selection)
589          << zeros(i->SectionDefinition->unused)
590          << binary_le(static_cast<int16_t>(i->SectionDefinition->Number >> 16))
591          << num_zeros(CP.getSymbolSize() - COFF::Symbol16Size);
592     if (i->CLRToken)
593       OS << binary_le(i->CLRToken->AuxType)
594          << zeros(i->CLRToken->unused1)
595          << binary_le(i->CLRToken->SymbolTableIndex)
596          << zeros(i->CLRToken->unused2)
597          << num_zeros(CP.getSymbolSize() - COFF::Symbol16Size);
598   }
599 
600   // Output string table.
601   if (CP.Obj.Header.PointerToSymbolTable)
602     OS.write(&CP.StringTable[0], CP.StringTable.size());
603   return true;
604 }
605 
yaml2coff(llvm::COFFYAML::Object & Doc,raw_ostream & Out)606 int yaml2coff(llvm::COFFYAML::Object &Doc, raw_ostream &Out) {
607   COFFParser CP(Doc);
608   if (!CP.parse()) {
609     errs() << "yaml2obj: Failed to parse YAML file!\n";
610     return 1;
611   }
612 
613   if (!layoutOptionalHeader(CP)) {
614     errs() << "yaml2obj: Failed to layout optional header for COFF file!\n";
615     return 1;
616   }
617 
618   if (!layoutCOFF(CP)) {
619     errs() << "yaml2obj: Failed to layout COFF file!\n";
620     return 1;
621   }
622   if (!writeCOFF(CP, Out)) {
623     errs() << "yaml2obj: Failed to write COFF file!\n";
624     return 1;
625   }
626   return 0;
627 }
628