1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/TableGen/Error.h"
28 #include "llvm/TableGen/Record.h"
29 #include <algorithm>
30 #include <cstdio>
31 #include <iterator>
32 #include <set>
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "dag-patterns"
36 
isIntegerOrPtr(MVT VT)37 static inline bool isIntegerOrPtr(MVT VT) {
38   return VT.isInteger() || VT == MVT::iPTR;
39 }
isFloatingPoint(MVT VT)40 static inline bool isFloatingPoint(MVT VT) {
41   return VT.isFloatingPoint();
42 }
isVector(MVT VT)43 static inline bool isVector(MVT VT) {
44   return VT.isVector();
45 }
isScalar(MVT VT)46 static inline bool isScalar(MVT VT) {
47   return !VT.isVector();
48 }
49 
50 template <typename Predicate>
berase_if(MachineValueTypeSet & S,Predicate P)51 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
52   bool Erased = false;
53   // It is ok to iterate over MachineValueTypeSet and remove elements from it
54   // at the same time.
55   for (MVT T : S) {
56     if (!P(T))
57       continue;
58     Erased = true;
59     S.erase(T);
60   }
61   return Erased;
62 }
63 
64 // --- TypeSetByHwMode
65 
66 // This is a parameterized type-set class. For each mode there is a list
67 // of types that are currently possible for a given tree node. Type
68 // inference will apply to each mode separately.
69 
TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList)70 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
71   for (const ValueTypeByHwMode &VVT : VTList)
72     insert(VVT);
73 }
74 
isValueTypeByHwMode(bool AllowEmpty) const75 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
76   for (const auto &I : *this) {
77     if (I.second.size() > 1)
78       return false;
79     if (!AllowEmpty && I.second.empty())
80       return false;
81   }
82   return true;
83 }
84 
getValueTypeByHwMode() const85 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
86   assert(isValueTypeByHwMode(true) &&
87          "The type set has multiple types for at least one HW mode");
88   ValueTypeByHwMode VVT;
89   for (const auto &I : *this) {
90     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
91     VVT.getOrCreateTypeForMode(I.first, T);
92   }
93   return VVT;
94 }
95 
isPossible() const96 bool TypeSetByHwMode::isPossible() const {
97   for (const auto &I : *this)
98     if (!I.second.empty())
99       return true;
100   return false;
101 }
102 
insert(const ValueTypeByHwMode & VVT)103 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
104   bool Changed = false;
105   bool ContainsDefault = false;
106   MVT DT = MVT::Other;
107 
108   SmallDenseSet<unsigned, 4> Modes;
109   for (const auto &P : VVT) {
110     unsigned M = P.first;
111     Modes.insert(M);
112     // Make sure there exists a set for each specific mode from VVT.
113     Changed |= getOrCreate(M).insert(P.second).second;
114     // Cache VVT's default mode.
115     if (DefaultMode == M) {
116       ContainsDefault = true;
117       DT = P.second;
118     }
119   }
120 
121   // If VVT has a default mode, add the corresponding type to all
122   // modes in "this" that do not exist in VVT.
123   if (ContainsDefault)
124     for (auto &I : *this)
125       if (!Modes.count(I.first))
126         Changed |= I.second.insert(DT).second;
127 
128   return Changed;
129 }
130 
131 // Constrain the type set to be the intersection with VTS.
constrain(const TypeSetByHwMode & VTS)132 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
133   bool Changed = false;
134   if (hasDefault()) {
135     for (const auto &I : VTS) {
136       unsigned M = I.first;
137       if (M == DefaultMode || hasMode(M))
138         continue;
139       Map.insert({M, Map.at(DefaultMode)});
140       Changed = true;
141     }
142   }
143 
144   for (auto &I : *this) {
145     unsigned M = I.first;
146     SetType &S = I.second;
147     if (VTS.hasMode(M) || VTS.hasDefault()) {
148       Changed |= intersect(I.second, VTS.get(M));
149     } else if (!S.empty()) {
150       S.clear();
151       Changed = true;
152     }
153   }
154   return Changed;
155 }
156 
157 template <typename Predicate>
constrain(Predicate P)158 bool TypeSetByHwMode::constrain(Predicate P) {
159   bool Changed = false;
160   for (auto &I : *this)
161     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
162   return Changed;
163 }
164 
165 template <typename Predicate>
assign_if(const TypeSetByHwMode & VTS,Predicate P)166 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
167   assert(empty());
168   for (const auto &I : VTS) {
169     SetType &S = getOrCreate(I.first);
170     for (auto J : I.second)
171       if (P(J))
172         S.insert(J);
173   }
174   return !empty();
175 }
176 
writeToStream(raw_ostream & OS) const177 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
178   SmallVector<unsigned, 4> Modes;
179   Modes.reserve(Map.size());
180 
181   for (const auto &I : *this)
182     Modes.push_back(I.first);
183   if (Modes.empty()) {
184     OS << "{}";
185     return;
186   }
187   array_pod_sort(Modes.begin(), Modes.end());
188 
189   OS << '{';
190   for (unsigned M : Modes) {
191     OS << ' ' << getModeName(M) << ':';
192     writeToStream(get(M), OS);
193   }
194   OS << " }";
195 }
196 
writeToStream(const SetType & S,raw_ostream & OS)197 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
198   SmallVector<MVT, 4> Types(S.begin(), S.end());
199   array_pod_sort(Types.begin(), Types.end());
200 
201   OS << '[';
202   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
203     OS << ValueTypeByHwMode::getMVTName(Types[i]);
204     if (i != e-1)
205       OS << ' ';
206   }
207   OS << ']';
208 }
209 
operator ==(const TypeSetByHwMode & VTS) const210 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
211   // The isSimple call is much quicker than hasDefault - check this first.
212   bool IsSimple = isSimple();
213   bool VTSIsSimple = VTS.isSimple();
214   if (IsSimple && VTSIsSimple)
215     return *begin() == *VTS.begin();
216 
217   // Speedup: We have a default if the set is simple.
218   bool HaveDefault = IsSimple || hasDefault();
219   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
220   if (HaveDefault != VTSHaveDefault)
221     return false;
222 
223   SmallDenseSet<unsigned, 4> Modes;
224   for (auto &I : *this)
225     Modes.insert(I.first);
226   for (const auto &I : VTS)
227     Modes.insert(I.first);
228 
229   if (HaveDefault) {
230     // Both sets have default mode.
231     for (unsigned M : Modes) {
232       if (get(M) != VTS.get(M))
233         return false;
234     }
235   } else {
236     // Neither set has default mode.
237     for (unsigned M : Modes) {
238       // If there is no default mode, an empty set is equivalent to not having
239       // the corresponding mode.
240       bool NoModeThis = !hasMode(M) || get(M).empty();
241       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
242       if (NoModeThis != NoModeVTS)
243         return false;
244       if (!NoModeThis)
245         if (get(M) != VTS.get(M))
246           return false;
247     }
248   }
249 
250   return true;
251 }
252 
253 namespace llvm {
operator <<(raw_ostream & OS,const TypeSetByHwMode & T)254   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
255     T.writeToStream(OS);
256     return OS;
257   }
258 }
259 
260 LLVM_DUMP_METHOD
dump() const261 void TypeSetByHwMode::dump() const {
262   dbgs() << *this << '\n';
263 }
264 
intersect(SetType & Out,const SetType & In)265 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
266   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
267   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
268 
269   if (OutP == InP)
270     return berase_if(Out, Int);
271 
272   // Compute the intersection of scalars separately to account for only
273   // one set containing iPTR.
274   // The itersection of iPTR with a set of integer scalar types that does not
275   // include iPTR will result in the most specific scalar type:
276   // - iPTR is more specific than any set with two elements or more
277   // - iPTR is less specific than any single integer scalar type.
278   // For example
279   // { iPTR } * { i32 }     -> { i32 }
280   // { iPTR } * { i32 i64 } -> { iPTR }
281   // and
282   // { iPTR i32 } * { i32 }          -> { i32 }
283   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
284   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
285 
286   // Compute the difference between the two sets in such a way that the
287   // iPTR is in the set that is being subtracted. This is to see if there
288   // are any extra scalars in the set without iPTR that are not in the
289   // set containing iPTR. Then the iPTR could be considered a "wildcard"
290   // matching these scalars. If there is only one such scalar, it would
291   // replace the iPTR, if there are more, the iPTR would be retained.
292   SetType Diff;
293   if (InP) {
294     Diff = Out;
295     berase_if(Diff, [&In](MVT T) { return In.count(T); });
296     // Pre-remove these elements and rely only on InP/OutP to determine
297     // whether a change has been made.
298     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
299   } else {
300     Diff = In;
301     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
302     Out.erase(MVT::iPTR);
303   }
304 
305   // The actual intersection.
306   bool Changed = berase_if(Out, Int);
307   unsigned NumD = Diff.size();
308   if (NumD == 0)
309     return Changed;
310 
311   if (NumD == 1) {
312     Out.insert(*Diff.begin());
313     // This is a change only if Out was the one with iPTR (which is now
314     // being replaced).
315     Changed |= OutP;
316   } else {
317     // Multiple elements from Out are now replaced with iPTR.
318     Out.insert(MVT::iPTR);
319     Changed |= !OutP;
320   }
321   return Changed;
322 }
323 
validate() const324 bool TypeSetByHwMode::validate() const {
325 #ifndef NDEBUG
326   if (empty())
327     return true;
328   bool AllEmpty = true;
329   for (const auto &I : *this)
330     AllEmpty &= I.second.empty();
331   return !AllEmpty;
332 #endif
333   return true;
334 }
335 
336 // --- TypeInfer
337 
MergeInTypeInfo(TypeSetByHwMode & Out,const TypeSetByHwMode & In)338 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
339                                 const TypeSetByHwMode &In) {
340   ValidateOnExit _1(Out, *this);
341   In.validate();
342   if (In.empty() || Out == In || TP.hasError())
343     return false;
344   if (Out.empty()) {
345     Out = In;
346     return true;
347   }
348 
349   bool Changed = Out.constrain(In);
350   if (Changed && Out.empty())
351     TP.error("Type contradiction");
352 
353   return Changed;
354 }
355 
forceArbitrary(TypeSetByHwMode & Out)356 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
357   ValidateOnExit _1(Out, *this);
358   if (TP.hasError())
359     return false;
360   assert(!Out.empty() && "cannot pick from an empty set");
361 
362   bool Changed = false;
363   for (auto &I : Out) {
364     TypeSetByHwMode::SetType &S = I.second;
365     if (S.size() <= 1)
366       continue;
367     MVT T = *S.begin(); // Pick the first element.
368     S.clear();
369     S.insert(T);
370     Changed = true;
371   }
372   return Changed;
373 }
374 
EnforceInteger(TypeSetByHwMode & Out)375 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
376   ValidateOnExit _1(Out, *this);
377   if (TP.hasError())
378     return false;
379   if (!Out.empty())
380     return Out.constrain(isIntegerOrPtr);
381 
382   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
383 }
384 
EnforceFloatingPoint(TypeSetByHwMode & Out)385 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
386   ValidateOnExit _1(Out, *this);
387   if (TP.hasError())
388     return false;
389   if (!Out.empty())
390     return Out.constrain(isFloatingPoint);
391 
392   return Out.assign_if(getLegalTypes(), isFloatingPoint);
393 }
394 
EnforceScalar(TypeSetByHwMode & Out)395 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
396   ValidateOnExit _1(Out, *this);
397   if (TP.hasError())
398     return false;
399   if (!Out.empty())
400     return Out.constrain(isScalar);
401 
402   return Out.assign_if(getLegalTypes(), isScalar);
403 }
404 
EnforceVector(TypeSetByHwMode & Out)405 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
406   ValidateOnExit _1(Out, *this);
407   if (TP.hasError())
408     return false;
409   if (!Out.empty())
410     return Out.constrain(isVector);
411 
412   return Out.assign_if(getLegalTypes(), isVector);
413 }
414 
EnforceAny(TypeSetByHwMode & Out)415 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
416   ValidateOnExit _1(Out, *this);
417   if (TP.hasError() || !Out.empty())
418     return false;
419 
420   Out = getLegalTypes();
421   return true;
422 }
423 
424 template <typename Iter, typename Pred, typename Less>
min_if(Iter B,Iter E,Pred P,Less L)425 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
426   if (B == E)
427     return E;
428   Iter Min = E;
429   for (Iter I = B; I != E; ++I) {
430     if (!P(*I))
431       continue;
432     if (Min == E || L(*I, *Min))
433       Min = I;
434   }
435   return Min;
436 }
437 
438 template <typename Iter, typename Pred, typename Less>
max_if(Iter B,Iter E,Pred P,Less L)439 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
440   if (B == E)
441     return E;
442   Iter Max = E;
443   for (Iter I = B; I != E; ++I) {
444     if (!P(*I))
445       continue;
446     if (Max == E || L(*Max, *I))
447       Max = I;
448   }
449   return Max;
450 }
451 
452 /// Make sure that for each type in Small, there exists a larger type in Big.
EnforceSmallerThan(TypeSetByHwMode & Small,TypeSetByHwMode & Big)453 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
454                                    TypeSetByHwMode &Big) {
455   ValidateOnExit _1(Small, *this), _2(Big, *this);
456   if (TP.hasError())
457     return false;
458   bool Changed = false;
459 
460   if (Small.empty())
461     Changed |= EnforceAny(Small);
462   if (Big.empty())
463     Changed |= EnforceAny(Big);
464 
465   assert(Small.hasDefault() && Big.hasDefault());
466 
467   std::vector<unsigned> Modes = union_modes(Small, Big);
468 
469   // 1. Only allow integer or floating point types and make sure that
470   //    both sides are both integer or both floating point.
471   // 2. Make sure that either both sides have vector types, or neither
472   //    of them does.
473   for (unsigned M : Modes) {
474     TypeSetByHwMode::SetType &S = Small.get(M);
475     TypeSetByHwMode::SetType &B = Big.get(M);
476 
477     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
478       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
479       Changed |= berase_if(S, NotInt) |
480                  berase_if(B, NotInt);
481     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
482       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
483       Changed |= berase_if(S, NotFP) |
484                  berase_if(B, NotFP);
485     } else if (S.empty() || B.empty()) {
486       Changed = !S.empty() || !B.empty();
487       S.clear();
488       B.clear();
489     } else {
490       TP.error("Incompatible types");
491       return Changed;
492     }
493 
494     if (none_of(S, isVector) || none_of(B, isVector)) {
495       Changed |= berase_if(S, isVector) |
496                  berase_if(B, isVector);
497     }
498   }
499 
500   auto LT = [](MVT A, MVT B) -> bool {
501     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
502            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
503             A.getSizeInBits() < B.getSizeInBits());
504   };
505   auto LE = [](MVT A, MVT B) -> bool {
506     // This function is used when removing elements: when a vector is compared
507     // to a non-vector, it should return false (to avoid removal).
508     if (A.isVector() != B.isVector())
509       return false;
510 
511     // Note on the < comparison below:
512     // X86 has patterns like
513     //   (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))),
514     // where the truncated vector is given a type v16i8, while the source
515     // vector has type v4i32. They both have the same size in bits.
516     // The minimal type in the result is obviously v16i8, and when we remove
517     // all types from the source that are smaller-or-equal than v8i16, the
518     // only source type would also be removed (since it's equal in size).
519     return A.getScalarSizeInBits() <= B.getScalarSizeInBits() ||
520            A.getSizeInBits() < B.getSizeInBits();
521   };
522 
523   for (unsigned M : Modes) {
524     TypeSetByHwMode::SetType &S = Small.get(M);
525     TypeSetByHwMode::SetType &B = Big.get(M);
526     // MinS = min scalar in Small, remove all scalars from Big that are
527     // smaller-or-equal than MinS.
528     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
529     if (MinS != S.end())
530       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
531 
532     // MaxS = max scalar in Big, remove all scalars from Small that are
533     // larger than MaxS.
534     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
535     if (MaxS != B.end())
536       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
537 
538     // MinV = min vector in Small, remove all vectors from Big that are
539     // smaller-or-equal than MinV.
540     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
541     if (MinV != S.end())
542       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
543 
544     // MaxV = max vector in Big, remove all vectors from Small that are
545     // larger than MaxV.
546     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
547     if (MaxV != B.end())
548       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
549   }
550 
551   return Changed;
552 }
553 
554 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
555 ///    for each type U in Elem, U is a scalar type.
556 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
557 ///    type T in Vec, such that U is the element type of T.
EnforceVectorEltTypeIs(TypeSetByHwMode & Vec,TypeSetByHwMode & Elem)558 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
559                                        TypeSetByHwMode &Elem) {
560   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
561   if (TP.hasError())
562     return false;
563   bool Changed = false;
564 
565   if (Vec.empty())
566     Changed |= EnforceVector(Vec);
567   if (Elem.empty())
568     Changed |= EnforceScalar(Elem);
569 
570   for (unsigned M : union_modes(Vec, Elem)) {
571     TypeSetByHwMode::SetType &V = Vec.get(M);
572     TypeSetByHwMode::SetType &E = Elem.get(M);
573 
574     Changed |= berase_if(V, isScalar);  // Scalar = !vector
575     Changed |= berase_if(E, isVector);  // Vector = !scalar
576     assert(!V.empty() && !E.empty());
577 
578     SmallSet<MVT,4> VT, ST;
579     // Collect element types from the "vector" set.
580     for (MVT T : V)
581       VT.insert(T.getVectorElementType());
582     // Collect scalar types from the "element" set.
583     for (MVT T : E)
584       ST.insert(T);
585 
586     // Remove from V all (vector) types whose element type is not in S.
587     Changed |= berase_if(V, [&ST](MVT T) -> bool {
588                               return !ST.count(T.getVectorElementType());
589                             });
590     // Remove from E all (scalar) types, for which there is no corresponding
591     // type in V.
592     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
593   }
594 
595   return Changed;
596 }
597 
EnforceVectorEltTypeIs(TypeSetByHwMode & Vec,const ValueTypeByHwMode & VVT)598 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
599                                        const ValueTypeByHwMode &VVT) {
600   TypeSetByHwMode Tmp(VVT);
601   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
602   return EnforceVectorEltTypeIs(Vec, Tmp);
603 }
604 
605 /// Ensure that for each type T in Sub, T is a vector type, and there
606 /// exists a type U in Vec such that U is a vector type with the same
607 /// element type as T and at least as many elements as T.
EnforceVectorSubVectorTypeIs(TypeSetByHwMode & Vec,TypeSetByHwMode & Sub)608 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
609                                              TypeSetByHwMode &Sub) {
610   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
611   if (TP.hasError())
612     return false;
613 
614   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
615   auto IsSubVec = [](MVT B, MVT P) -> bool {
616     if (!B.isVector() || !P.isVector())
617       return false;
618     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
619     // but until there are obvious use-cases for this, keep the
620     // types separate.
621     if (B.isScalableVector() != P.isScalableVector())
622       return false;
623     if (B.getVectorElementType() != P.getVectorElementType())
624       return false;
625     return B.getVectorNumElements() < P.getVectorNumElements();
626   };
627 
628   /// Return true if S has no element (vector type) that T is a sub-vector of,
629   /// i.e. has the same element type as T and more elements.
630   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
631     for (const auto &I : S)
632       if (IsSubVec(T, I))
633         return false;
634     return true;
635   };
636 
637   /// Return true if S has no element (vector type) that T is a super-vector
638   /// of, i.e. has the same element type as T and fewer elements.
639   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
640     for (const auto &I : S)
641       if (IsSubVec(I, T))
642         return false;
643     return true;
644   };
645 
646   bool Changed = false;
647 
648   if (Vec.empty())
649     Changed |= EnforceVector(Vec);
650   if (Sub.empty())
651     Changed |= EnforceVector(Sub);
652 
653   for (unsigned M : union_modes(Vec, Sub)) {
654     TypeSetByHwMode::SetType &S = Sub.get(M);
655     TypeSetByHwMode::SetType &V = Vec.get(M);
656 
657     Changed |= berase_if(S, isScalar);
658 
659     // Erase all types from S that are not sub-vectors of a type in V.
660     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
661 
662     // Erase all types from V that are not super-vectors of a type in S.
663     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
664   }
665 
666   return Changed;
667 }
668 
669 /// 1. Ensure that V has a scalar type iff W has a scalar type.
670 /// 2. Ensure that for each vector type T in V, there exists a vector
671 ///    type U in W, such that T and U have the same number of elements.
672 /// 3. Ensure that for each vector type U in W, there exists a vector
673 ///    type T in V, such that T and U have the same number of elements
674 ///    (reverse of 2).
EnforceSameNumElts(TypeSetByHwMode & V,TypeSetByHwMode & W)675 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
676   ValidateOnExit _1(V, *this), _2(W, *this);
677   if (TP.hasError())
678     return false;
679 
680   bool Changed = false;
681   if (V.empty())
682     Changed |= EnforceAny(V);
683   if (W.empty())
684     Changed |= EnforceAny(W);
685 
686   // An actual vector type cannot have 0 elements, so we can treat scalars
687   // as zero-length vectors. This way both vectors and scalars can be
688   // processed identically.
689   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
690     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
691   };
692 
693   for (unsigned M : union_modes(V, W)) {
694     TypeSetByHwMode::SetType &VS = V.get(M);
695     TypeSetByHwMode::SetType &WS = W.get(M);
696 
697     SmallSet<unsigned,2> VN, WN;
698     for (MVT T : VS)
699       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
700     for (MVT T : WS)
701       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
702 
703     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
704     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
705   }
706   return Changed;
707 }
708 
709 /// 1. Ensure that for each type T in A, there exists a type U in B,
710 ///    such that T and U have equal size in bits.
711 /// 2. Ensure that for each type U in B, there exists a type T in A
712 ///    such that T and U have equal size in bits (reverse of 1).
EnforceSameSize(TypeSetByHwMode & A,TypeSetByHwMode & B)713 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
714   ValidateOnExit _1(A, *this), _2(B, *this);
715   if (TP.hasError())
716     return false;
717   bool Changed = false;
718   if (A.empty())
719     Changed |= EnforceAny(A);
720   if (B.empty())
721     Changed |= EnforceAny(B);
722 
723   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
724     return !Sizes.count(T.getSizeInBits());
725   };
726 
727   for (unsigned M : union_modes(A, B)) {
728     TypeSetByHwMode::SetType &AS = A.get(M);
729     TypeSetByHwMode::SetType &BS = B.get(M);
730     SmallSet<unsigned,2> AN, BN;
731 
732     for (MVT T : AS)
733       AN.insert(T.getSizeInBits());
734     for (MVT T : BS)
735       BN.insert(T.getSizeInBits());
736 
737     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
738     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
739   }
740 
741   return Changed;
742 }
743 
expandOverloads(TypeSetByHwMode & VTS)744 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
745   ValidateOnExit _1(VTS, *this);
746   const TypeSetByHwMode &Legal = getLegalTypes();
747   assert(Legal.isDefaultOnly() && "Default-mode only expected");
748   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
749 
750   for (auto &I : VTS)
751     expandOverloads(I.second, LegalTypes);
752 }
753 
expandOverloads(TypeSetByHwMode::SetType & Out,const TypeSetByHwMode::SetType & Legal)754 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
755                                 const TypeSetByHwMode::SetType &Legal) {
756   std::set<MVT> Ovs;
757   for (MVT T : Out) {
758     if (!T.isOverloaded())
759       continue;
760 
761     Ovs.insert(T);
762     // MachineValueTypeSet allows iteration and erasing.
763     Out.erase(T);
764   }
765 
766   for (MVT Ov : Ovs) {
767     switch (Ov.SimpleTy) {
768       case MVT::iPTRAny:
769         Out.insert(MVT::iPTR);
770         return;
771       case MVT::iAny:
772         for (MVT T : MVT::integer_valuetypes())
773           if (Legal.count(T))
774             Out.insert(T);
775         for (MVT T : MVT::integer_vector_valuetypes())
776           if (Legal.count(T))
777             Out.insert(T);
778         return;
779       case MVT::fAny:
780         for (MVT T : MVT::fp_valuetypes())
781           if (Legal.count(T))
782             Out.insert(T);
783         for (MVT T : MVT::fp_vector_valuetypes())
784           if (Legal.count(T))
785             Out.insert(T);
786         return;
787       case MVT::vAny:
788         for (MVT T : MVT::vector_valuetypes())
789           if (Legal.count(T))
790             Out.insert(T);
791         return;
792       case MVT::Any:
793         for (MVT T : MVT::all_valuetypes())
794           if (Legal.count(T))
795             Out.insert(T);
796         return;
797       default:
798         break;
799     }
800   }
801 }
802 
getLegalTypes()803 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
804   if (!LegalTypesCached) {
805     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
806     // Stuff all types from all modes into the default mode.
807     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
808     for (const auto &I : LTS)
809       LegalTypes.insert(I.second);
810     LegalTypesCached = true;
811   }
812   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
813   return LegalCache;
814 }
815 
816 #ifndef NDEBUG
~ValidateOnExit()817 TypeInfer::ValidateOnExit::~ValidateOnExit() {
818   if (Infer.Validate && !VTS.validate()) {
819     dbgs() << "Type set is empty for each HW mode:\n"
820               "possible type contradiction in the pattern below "
821               "(use -print-records with llvm-tblgen to see all "
822               "expanded records).\n";
823     Infer.TP.dump();
824     llvm_unreachable(nullptr);
825   }
826 }
827 #endif
828 
829 
830 //===----------------------------------------------------------------------===//
831 // ScopedName Implementation
832 //===----------------------------------------------------------------------===//
833 
operator ==(const ScopedName & o) const834 bool ScopedName::operator==(const ScopedName &o) const {
835   return Scope == o.Scope && Identifier == o.Identifier;
836 }
837 
operator !=(const ScopedName & o) const838 bool ScopedName::operator!=(const ScopedName &o) const {
839   return !(*this == o);
840 }
841 
842 
843 //===----------------------------------------------------------------------===//
844 // TreePredicateFn Implementation
845 //===----------------------------------------------------------------------===//
846 
847 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
TreePredicateFn(TreePattern * N)848 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
849   assert(
850       (!hasPredCode() || !hasImmCode()) &&
851       ".td file corrupt: can't have a node predicate *and* an imm predicate");
852 }
853 
hasPredCode() const854 bool TreePredicateFn::hasPredCode() const {
855   return isLoad() || isStore() || isAtomic() ||
856          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
857 }
858 
getPredCode() const859 std::string TreePredicateFn::getPredCode() const {
860   std::string Code = "";
861 
862   if (!isLoad() && !isStore() && !isAtomic()) {
863     Record *MemoryVT = getMemoryVT();
864 
865     if (MemoryVT)
866       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
867                       "MemoryVT requires IsLoad or IsStore");
868   }
869 
870   if (!isLoad() && !isStore()) {
871     if (isUnindexed())
872       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
873                       "IsUnindexed requires IsLoad or IsStore");
874 
875     Record *ScalarMemoryVT = getScalarMemoryVT();
876 
877     if (ScalarMemoryVT)
878       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
879                       "ScalarMemoryVT requires IsLoad or IsStore");
880   }
881 
882   if (isLoad() + isStore() + isAtomic() > 1)
883     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
884                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
885 
886   if (isLoad()) {
887     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
888         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
889         getScalarMemoryVT() == nullptr)
890       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
891                       "IsLoad cannot be used by itself");
892   } else {
893     if (isNonExtLoad())
894       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
895                       "IsNonExtLoad requires IsLoad");
896     if (isAnyExtLoad())
897       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
898                       "IsAnyExtLoad requires IsLoad");
899     if (isSignExtLoad())
900       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
901                       "IsSignExtLoad requires IsLoad");
902     if (isZeroExtLoad())
903       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
904                       "IsZeroExtLoad requires IsLoad");
905   }
906 
907   if (isStore()) {
908     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
909         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
910       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
911                       "IsStore cannot be used by itself");
912   } else {
913     if (isNonTruncStore())
914       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
915                       "IsNonTruncStore requires IsStore");
916     if (isTruncStore())
917       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
918                       "IsTruncStore requires IsStore");
919   }
920 
921   if (isAtomic()) {
922     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
923         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
924         !isAtomicOrderingAcquireRelease() &&
925         !isAtomicOrderingSequentiallyConsistent() &&
926         !isAtomicOrderingAcquireOrStronger() &&
927         !isAtomicOrderingReleaseOrStronger() &&
928         !isAtomicOrderingWeakerThanAcquire() &&
929         !isAtomicOrderingWeakerThanRelease())
930       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
931                       "IsAtomic cannot be used by itself");
932   } else {
933     if (isAtomicOrderingMonotonic())
934       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935                       "IsAtomicOrderingMonotonic requires IsAtomic");
936     if (isAtomicOrderingAcquire())
937       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
938                       "IsAtomicOrderingAcquire requires IsAtomic");
939     if (isAtomicOrderingRelease())
940       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
941                       "IsAtomicOrderingRelease requires IsAtomic");
942     if (isAtomicOrderingAcquireRelease())
943       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
944                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
945     if (isAtomicOrderingSequentiallyConsistent())
946       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
947                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
948     if (isAtomicOrderingAcquireOrStronger())
949       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
950                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
951     if (isAtomicOrderingReleaseOrStronger())
952       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
953                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
954     if (isAtomicOrderingWeakerThanAcquire())
955       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
956                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
957   }
958 
959   if (isLoad() || isStore() || isAtomic()) {
960     StringRef SDNodeName =
961         isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
962 
963     Record *MemoryVT = getMemoryVT();
964 
965     if (MemoryVT)
966       Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
967                MemoryVT->getName() + ") return false;\n")
968                   .str();
969   }
970 
971   if (isAtomic() && isAtomicOrderingMonotonic())
972     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
973             "AtomicOrdering::Monotonic) return false;\n";
974   if (isAtomic() && isAtomicOrderingAcquire())
975     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
976             "AtomicOrdering::Acquire) return false;\n";
977   if (isAtomic() && isAtomicOrderingRelease())
978     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
979             "AtomicOrdering::Release) return false;\n";
980   if (isAtomic() && isAtomicOrderingAcquireRelease())
981     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
982             "AtomicOrdering::AcquireRelease) return false;\n";
983   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
984     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
985             "AtomicOrdering::SequentiallyConsistent) return false;\n";
986 
987   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
988     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
989             "return false;\n";
990   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
991     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
992             "return false;\n";
993 
994   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
995     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
996             "return false;\n";
997   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
998     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
999             "return false;\n";
1000 
1001   if (isLoad() || isStore()) {
1002     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1003 
1004     if (isUnindexed())
1005       Code += ("if (cast<" + SDNodeName +
1006                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1007                "return false;\n")
1008                   .str();
1009 
1010     if (isLoad()) {
1011       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1012            isZeroExtLoad()) > 1)
1013         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1014                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1015                         "IsZeroExtLoad are mutually exclusive");
1016       if (isNonExtLoad())
1017         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1018                 "ISD::NON_EXTLOAD) return false;\n";
1019       if (isAnyExtLoad())
1020         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1021                 "return false;\n";
1022       if (isSignExtLoad())
1023         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1024                 "return false;\n";
1025       if (isZeroExtLoad())
1026         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1027                 "return false;\n";
1028     } else {
1029       if ((isNonTruncStore() + isTruncStore()) > 1)
1030         PrintFatalError(
1031             getOrigPatFragRecord()->getRecord()->getLoc(),
1032             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1033       if (isNonTruncStore())
1034         Code +=
1035             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1036       if (isTruncStore())
1037         Code +=
1038             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1039     }
1040 
1041     Record *ScalarMemoryVT = getScalarMemoryVT();
1042 
1043     if (ScalarMemoryVT)
1044       Code += ("if (cast<" + SDNodeName +
1045                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1046                ScalarMemoryVT->getName() + ") return false;\n")
1047                   .str();
1048   }
1049 
1050   std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1051 
1052   Code += PredicateCode;
1053 
1054   if (PredicateCode.empty() && !Code.empty())
1055     Code += "return true;\n";
1056 
1057   return Code;
1058 }
1059 
hasImmCode() const1060 bool TreePredicateFn::hasImmCode() const {
1061   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1062 }
1063 
getImmCode() const1064 std::string TreePredicateFn::getImmCode() const {
1065   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1066 }
1067 
immCodeUsesAPInt() const1068 bool TreePredicateFn::immCodeUsesAPInt() const {
1069   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1070 }
1071 
immCodeUsesAPFloat() const1072 bool TreePredicateFn::immCodeUsesAPFloat() const {
1073   bool Unset;
1074   // The return value will be false when IsAPFloat is unset.
1075   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1076                                                                    Unset);
1077 }
1078 
isPredefinedPredicateEqualTo(StringRef Field,bool Value) const1079 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1080                                                    bool Value) const {
1081   bool Unset;
1082   bool Result =
1083       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1084   if (Unset)
1085     return false;
1086   return Result == Value;
1087 }
usesOperands() const1088 bool TreePredicateFn::usesOperands() const {
1089   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1090 }
isLoad() const1091 bool TreePredicateFn::isLoad() const {
1092   return isPredefinedPredicateEqualTo("IsLoad", true);
1093 }
isStore() const1094 bool TreePredicateFn::isStore() const {
1095   return isPredefinedPredicateEqualTo("IsStore", true);
1096 }
isAtomic() const1097 bool TreePredicateFn::isAtomic() const {
1098   return isPredefinedPredicateEqualTo("IsAtomic", true);
1099 }
isUnindexed() const1100 bool TreePredicateFn::isUnindexed() const {
1101   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1102 }
isNonExtLoad() const1103 bool TreePredicateFn::isNonExtLoad() const {
1104   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1105 }
isAnyExtLoad() const1106 bool TreePredicateFn::isAnyExtLoad() const {
1107   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1108 }
isSignExtLoad() const1109 bool TreePredicateFn::isSignExtLoad() const {
1110   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1111 }
isZeroExtLoad() const1112 bool TreePredicateFn::isZeroExtLoad() const {
1113   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1114 }
isNonTruncStore() const1115 bool TreePredicateFn::isNonTruncStore() const {
1116   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1117 }
isTruncStore() const1118 bool TreePredicateFn::isTruncStore() const {
1119   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1120 }
isAtomicOrderingMonotonic() const1121 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1122   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1123 }
isAtomicOrderingAcquire() const1124 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1125   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1126 }
isAtomicOrderingRelease() const1127 bool TreePredicateFn::isAtomicOrderingRelease() const {
1128   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1129 }
isAtomicOrderingAcquireRelease() const1130 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1131   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1132 }
isAtomicOrderingSequentiallyConsistent() const1133 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1134   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1135                                       true);
1136 }
isAtomicOrderingAcquireOrStronger() const1137 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1138   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1139 }
isAtomicOrderingWeakerThanAcquire() const1140 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1141   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1142 }
isAtomicOrderingReleaseOrStronger() const1143 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1144   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1145 }
isAtomicOrderingWeakerThanRelease() const1146 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1147   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1148 }
getMemoryVT() const1149 Record *TreePredicateFn::getMemoryVT() const {
1150   Record *R = getOrigPatFragRecord()->getRecord();
1151   if (R->isValueUnset("MemoryVT"))
1152     return nullptr;
1153   return R->getValueAsDef("MemoryVT");
1154 }
getScalarMemoryVT() const1155 Record *TreePredicateFn::getScalarMemoryVT() const {
1156   Record *R = getOrigPatFragRecord()->getRecord();
1157   if (R->isValueUnset("ScalarMemoryVT"))
1158     return nullptr;
1159   return R->getValueAsDef("ScalarMemoryVT");
1160 }
hasGISelPredicateCode() const1161 bool TreePredicateFn::hasGISelPredicateCode() const {
1162   return !PatFragRec->getRecord()
1163               ->getValueAsString("GISelPredicateCode")
1164               .empty();
1165 }
getGISelPredicateCode() const1166 std::string TreePredicateFn::getGISelPredicateCode() const {
1167   return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1168 }
1169 
getImmType() const1170 StringRef TreePredicateFn::getImmType() const {
1171   if (immCodeUsesAPInt())
1172     return "const APInt &";
1173   if (immCodeUsesAPFloat())
1174     return "const APFloat &";
1175   return "int64_t";
1176 }
1177 
getImmTypeIdentifier() const1178 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1179   if (immCodeUsesAPInt())
1180     return "APInt";
1181   else if (immCodeUsesAPFloat())
1182     return "APFloat";
1183   return "I64";
1184 }
1185 
1186 /// isAlwaysTrue - Return true if this is a noop predicate.
isAlwaysTrue() const1187 bool TreePredicateFn::isAlwaysTrue() const {
1188   return !hasPredCode() && !hasImmCode();
1189 }
1190 
1191 /// Return the name to use in the generated code to reference this, this is
1192 /// "Predicate_foo" if from a pattern fragment "foo".
getFnName() const1193 std::string TreePredicateFn::getFnName() const {
1194   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1195 }
1196 
1197 /// getCodeToRunOnSDNode - Return the code for the function body that
1198 /// evaluates this predicate.  The argument is expected to be in "Node",
1199 /// not N.  This handles casting and conversion to a concrete node type as
1200 /// appropriate.
getCodeToRunOnSDNode() const1201 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1202   // Handle immediate predicates first.
1203   std::string ImmCode = getImmCode();
1204   if (!ImmCode.empty()) {
1205     if (isLoad())
1206       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1207                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1208     if (isStore())
1209       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1210                       "IsStore cannot be used with ImmLeaf or its subclasses");
1211     if (isUnindexed())
1212       PrintFatalError(
1213           getOrigPatFragRecord()->getRecord()->getLoc(),
1214           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1215     if (isNonExtLoad())
1216       PrintFatalError(
1217           getOrigPatFragRecord()->getRecord()->getLoc(),
1218           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1219     if (isAnyExtLoad())
1220       PrintFatalError(
1221           getOrigPatFragRecord()->getRecord()->getLoc(),
1222           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1223     if (isSignExtLoad())
1224       PrintFatalError(
1225           getOrigPatFragRecord()->getRecord()->getLoc(),
1226           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1227     if (isZeroExtLoad())
1228       PrintFatalError(
1229           getOrigPatFragRecord()->getRecord()->getLoc(),
1230           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1231     if (isNonTruncStore())
1232       PrintFatalError(
1233           getOrigPatFragRecord()->getRecord()->getLoc(),
1234           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1235     if (isTruncStore())
1236       PrintFatalError(
1237           getOrigPatFragRecord()->getRecord()->getLoc(),
1238           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1239     if (getMemoryVT())
1240       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1241                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1242     if (getScalarMemoryVT())
1243       PrintFatalError(
1244           getOrigPatFragRecord()->getRecord()->getLoc(),
1245           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1246 
1247     std::string Result = ("    " + getImmType() + " Imm = ").str();
1248     if (immCodeUsesAPFloat())
1249       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1250     else if (immCodeUsesAPInt())
1251       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1252     else
1253       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1254     return Result + ImmCode;
1255   }
1256 
1257   // Handle arbitrary node predicates.
1258   assert(hasPredCode() && "Don't have any predicate code!");
1259   StringRef ClassName;
1260   if (PatFragRec->getOnlyTree()->isLeaf())
1261     ClassName = "SDNode";
1262   else {
1263     Record *Op = PatFragRec->getOnlyTree()->getOperator();
1264     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1265   }
1266   std::string Result;
1267   if (ClassName == "SDNode")
1268     Result = "    SDNode *N = Node;\n";
1269   else
1270     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1271 
1272   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1273 }
1274 
1275 //===----------------------------------------------------------------------===//
1276 // PatternToMatch implementation
1277 //
1278 
1279 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1280 /// patterns before small ones.  This is used to determine the size of a
1281 /// pattern.
getPatternSize(const TreePatternNode * P,const CodeGenDAGPatterns & CGP)1282 static unsigned getPatternSize(const TreePatternNode *P,
1283                                const CodeGenDAGPatterns &CGP) {
1284   unsigned Size = 3;  // The node itself.
1285   // If the root node is a ConstantSDNode, increases its size.
1286   // e.g. (set R32:$dst, 0).
1287   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1288     Size += 2;
1289 
1290   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1291     Size += AM->getComplexity();
1292     // We don't want to count any children twice, so return early.
1293     return Size;
1294   }
1295 
1296   // If this node has some predicate function that must match, it adds to the
1297   // complexity of this node.
1298   if (!P->getPredicateCalls().empty())
1299     ++Size;
1300 
1301   // Count children in the count if they are also nodes.
1302   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1303     const TreePatternNode *Child = P->getChild(i);
1304     if (!Child->isLeaf() && Child->getNumTypes()) {
1305       const TypeSetByHwMode &T0 = Child->getExtType(0);
1306       // At this point, all variable type sets should be simple, i.e. only
1307       // have a default mode.
1308       if (T0.getMachineValueType() != MVT::Other) {
1309         Size += getPatternSize(Child, CGP);
1310         continue;
1311       }
1312     }
1313     if (Child->isLeaf()) {
1314       if (isa<IntInit>(Child->getLeafValue()))
1315         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1316       else if (Child->getComplexPatternInfo(CGP))
1317         Size += getPatternSize(Child, CGP);
1318       else if (!Child->getPredicateCalls().empty())
1319         ++Size;
1320     }
1321   }
1322 
1323   return Size;
1324 }
1325 
1326 /// Compute the complexity metric for the input pattern.  This roughly
1327 /// corresponds to the number of nodes that are covered.
1328 int PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns & CGP) const1329 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1330   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1331 }
1332 
1333 /// getPredicateCheck - Return a single string containing all of this
1334 /// pattern's predicates concatenated with "&&" operators.
1335 ///
getPredicateCheck() const1336 std::string PatternToMatch::getPredicateCheck() const {
1337   SmallVector<const Predicate*,4> PredList;
1338   for (const Predicate &P : Predicates)
1339     PredList.push_back(&P);
1340   llvm::sort(PredList, deref<llvm::less>());
1341 
1342   std::string Check;
1343   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1344     if (i != 0)
1345       Check += " && ";
1346     Check += '(' + PredList[i]->getCondString() + ')';
1347   }
1348   return Check;
1349 }
1350 
1351 //===----------------------------------------------------------------------===//
1352 // SDTypeConstraint implementation
1353 //
1354 
SDTypeConstraint(Record * R,const CodeGenHwModes & CGH)1355 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1356   OperandNo = R->getValueAsInt("OperandNum");
1357 
1358   if (R->isSubClassOf("SDTCisVT")) {
1359     ConstraintType = SDTCisVT;
1360     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1361     for (const auto &P : VVT)
1362       if (P.second == MVT::isVoid)
1363         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1364   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1365     ConstraintType = SDTCisPtrTy;
1366   } else if (R->isSubClassOf("SDTCisInt")) {
1367     ConstraintType = SDTCisInt;
1368   } else if (R->isSubClassOf("SDTCisFP")) {
1369     ConstraintType = SDTCisFP;
1370   } else if (R->isSubClassOf("SDTCisVec")) {
1371     ConstraintType = SDTCisVec;
1372   } else if (R->isSubClassOf("SDTCisSameAs")) {
1373     ConstraintType = SDTCisSameAs;
1374     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1375   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1376     ConstraintType = SDTCisVTSmallerThanOp;
1377     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1378       R->getValueAsInt("OtherOperandNum");
1379   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1380     ConstraintType = SDTCisOpSmallerThanOp;
1381     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1382       R->getValueAsInt("BigOperandNum");
1383   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1384     ConstraintType = SDTCisEltOfVec;
1385     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1386   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1387     ConstraintType = SDTCisSubVecOfVec;
1388     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1389       R->getValueAsInt("OtherOpNum");
1390   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1391     ConstraintType = SDTCVecEltisVT;
1392     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1393     for (const auto &P : VVT) {
1394       MVT T = P.second;
1395       if (T.isVector())
1396         PrintFatalError(R->getLoc(),
1397                         "Cannot use vector type as SDTCVecEltisVT");
1398       if (!T.isInteger() && !T.isFloatingPoint())
1399         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1400                                      "as SDTCVecEltisVT");
1401     }
1402   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1403     ConstraintType = SDTCisSameNumEltsAs;
1404     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1405       R->getValueAsInt("OtherOperandNum");
1406   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1407     ConstraintType = SDTCisSameSizeAs;
1408     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1409       R->getValueAsInt("OtherOperandNum");
1410   } else {
1411     PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1412   }
1413 }
1414 
1415 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1416 /// N, and the result number in ResNo.
getOperandNum(unsigned OpNo,TreePatternNode * N,const SDNodeInfo & NodeInfo,unsigned & ResNo)1417 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1418                                       const SDNodeInfo &NodeInfo,
1419                                       unsigned &ResNo) {
1420   unsigned NumResults = NodeInfo.getNumResults();
1421   if (OpNo < NumResults) {
1422     ResNo = OpNo;
1423     return N;
1424   }
1425 
1426   OpNo -= NumResults;
1427 
1428   if (OpNo >= N->getNumChildren()) {
1429     std::string S;
1430     raw_string_ostream OS(S);
1431     OS << "Invalid operand number in type constraint "
1432            << (OpNo+NumResults) << " ";
1433     N->print(OS);
1434     PrintFatalError(OS.str());
1435   }
1436 
1437   return N->getChild(OpNo);
1438 }
1439 
1440 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1441 /// constraint to the nodes operands.  This returns true if it makes a
1442 /// change, false otherwise.  If a type contradiction is found, flag an error.
ApplyTypeConstraint(TreePatternNode * N,const SDNodeInfo & NodeInfo,TreePattern & TP) const1443 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1444                                            const SDNodeInfo &NodeInfo,
1445                                            TreePattern &TP) const {
1446   if (TP.hasError())
1447     return false;
1448 
1449   unsigned ResNo = 0; // The result number being referenced.
1450   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1451   TypeInfer &TI = TP.getInfer();
1452 
1453   switch (ConstraintType) {
1454   case SDTCisVT:
1455     // Operand must be a particular type.
1456     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1457   case SDTCisPtrTy:
1458     // Operand must be same as target pointer type.
1459     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1460   case SDTCisInt:
1461     // Require it to be one of the legal integer VTs.
1462      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1463   case SDTCisFP:
1464     // Require it to be one of the legal fp VTs.
1465     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1466   case SDTCisVec:
1467     // Require it to be one of the legal vector VTs.
1468     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1469   case SDTCisSameAs: {
1470     unsigned OResNo = 0;
1471     TreePatternNode *OtherNode =
1472       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1473     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1474            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1475   }
1476   case SDTCisVTSmallerThanOp: {
1477     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1478     // have an integer type that is smaller than the VT.
1479     if (!NodeToApply->isLeaf() ||
1480         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1481         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1482                ->isSubClassOf("ValueType")) {
1483       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1484       return false;
1485     }
1486     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1487     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1488     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1489     TypeSetByHwMode TypeListTmp(VVT);
1490 
1491     unsigned OResNo = 0;
1492     TreePatternNode *OtherNode =
1493       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1494                     OResNo);
1495 
1496     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1497   }
1498   case SDTCisOpSmallerThanOp: {
1499     unsigned BResNo = 0;
1500     TreePatternNode *BigOperand =
1501       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1502                     BResNo);
1503     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1504                                  BigOperand->getExtType(BResNo));
1505   }
1506   case SDTCisEltOfVec: {
1507     unsigned VResNo = 0;
1508     TreePatternNode *VecOperand =
1509       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1510                     VResNo);
1511     // Filter vector types out of VecOperand that don't have the right element
1512     // type.
1513     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1514                                      NodeToApply->getExtType(ResNo));
1515   }
1516   case SDTCisSubVecOfVec: {
1517     unsigned VResNo = 0;
1518     TreePatternNode *BigVecOperand =
1519       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1520                     VResNo);
1521 
1522     // Filter vector types out of BigVecOperand that don't have the
1523     // right subvector type.
1524     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1525                                            NodeToApply->getExtType(ResNo));
1526   }
1527   case SDTCVecEltisVT: {
1528     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1529   }
1530   case SDTCisSameNumEltsAs: {
1531     unsigned OResNo = 0;
1532     TreePatternNode *OtherNode =
1533       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1534                     N, NodeInfo, OResNo);
1535     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1536                                  NodeToApply->getExtType(ResNo));
1537   }
1538   case SDTCisSameSizeAs: {
1539     unsigned OResNo = 0;
1540     TreePatternNode *OtherNode =
1541       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1542                     N, NodeInfo, OResNo);
1543     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1544                               NodeToApply->getExtType(ResNo));
1545   }
1546   }
1547   llvm_unreachable("Invalid ConstraintType!");
1548 }
1549 
1550 // Update the node type to match an instruction operand or result as specified
1551 // in the ins or outs lists on the instruction definition. Return true if the
1552 // type was actually changed.
UpdateNodeTypeFromInst(unsigned ResNo,Record * Operand,TreePattern & TP)1553 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1554                                              Record *Operand,
1555                                              TreePattern &TP) {
1556   // The 'unknown' operand indicates that types should be inferred from the
1557   // context.
1558   if (Operand->isSubClassOf("unknown_class"))
1559     return false;
1560 
1561   // The Operand class specifies a type directly.
1562   if (Operand->isSubClassOf("Operand")) {
1563     Record *R = Operand->getValueAsDef("Type");
1564     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1565     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1566   }
1567 
1568   // PointerLikeRegClass has a type that is determined at runtime.
1569   if (Operand->isSubClassOf("PointerLikeRegClass"))
1570     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1571 
1572   // Both RegisterClass and RegisterOperand operands derive their types from a
1573   // register class def.
1574   Record *RC = nullptr;
1575   if (Operand->isSubClassOf("RegisterClass"))
1576     RC = Operand;
1577   else if (Operand->isSubClassOf("RegisterOperand"))
1578     RC = Operand->getValueAsDef("RegClass");
1579 
1580   assert(RC && "Unknown operand type");
1581   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1582   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1583 }
1584 
ContainsUnresolvedType(TreePattern & TP) const1585 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1586   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1587     if (!TP.getInfer().isConcrete(Types[i], true))
1588       return true;
1589   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1590     if (getChild(i)->ContainsUnresolvedType(TP))
1591       return true;
1592   return false;
1593 }
1594 
hasProperTypeByHwMode() const1595 bool TreePatternNode::hasProperTypeByHwMode() const {
1596   for (const TypeSetByHwMode &S : Types)
1597     if (!S.isDefaultOnly())
1598       return true;
1599   for (const TreePatternNodePtr &C : Children)
1600     if (C->hasProperTypeByHwMode())
1601       return true;
1602   return false;
1603 }
1604 
hasPossibleType() const1605 bool TreePatternNode::hasPossibleType() const {
1606   for (const TypeSetByHwMode &S : Types)
1607     if (!S.isPossible())
1608       return false;
1609   for (const TreePatternNodePtr &C : Children)
1610     if (!C->hasPossibleType())
1611       return false;
1612   return true;
1613 }
1614 
setDefaultMode(unsigned Mode)1615 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1616   for (TypeSetByHwMode &S : Types) {
1617     S.makeSimple(Mode);
1618     // Check if the selected mode had a type conflict.
1619     if (S.get(DefaultMode).empty())
1620       return false;
1621   }
1622   for (const TreePatternNodePtr &C : Children)
1623     if (!C->setDefaultMode(Mode))
1624       return false;
1625   return true;
1626 }
1627 
1628 //===----------------------------------------------------------------------===//
1629 // SDNodeInfo implementation
1630 //
SDNodeInfo(Record * R,const CodeGenHwModes & CGH)1631 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1632   EnumName    = R->getValueAsString("Opcode");
1633   SDClassName = R->getValueAsString("SDClass");
1634   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1635   NumResults = TypeProfile->getValueAsInt("NumResults");
1636   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1637 
1638   // Parse the properties.
1639   Properties = parseSDPatternOperatorProperties(R);
1640 
1641   // Parse the type constraints.
1642   std::vector<Record*> ConstraintList =
1643     TypeProfile->getValueAsListOfDefs("Constraints");
1644   for (Record *R : ConstraintList)
1645     TypeConstraints.emplace_back(R, CGH);
1646 }
1647 
1648 /// getKnownType - If the type constraints on this node imply a fixed type
1649 /// (e.g. all stores return void, etc), then return it as an
1650 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
getKnownType(unsigned ResNo) const1651 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1652   unsigned NumResults = getNumResults();
1653   assert(NumResults <= 1 &&
1654          "We only work with nodes with zero or one result so far!");
1655   assert(ResNo == 0 && "Only handles single result nodes so far");
1656 
1657   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1658     // Make sure that this applies to the correct node result.
1659     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1660       continue;
1661 
1662     switch (Constraint.ConstraintType) {
1663     default: break;
1664     case SDTypeConstraint::SDTCisVT:
1665       if (Constraint.VVT.isSimple())
1666         return Constraint.VVT.getSimple().SimpleTy;
1667       break;
1668     case SDTypeConstraint::SDTCisPtrTy:
1669       return MVT::iPTR;
1670     }
1671   }
1672   return MVT::Other;
1673 }
1674 
1675 //===----------------------------------------------------------------------===//
1676 // TreePatternNode implementation
1677 //
1678 
GetNumNodeResults(Record * Operator,CodeGenDAGPatterns & CDP)1679 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1680   if (Operator->getName() == "set" ||
1681       Operator->getName() == "implicit")
1682     return 0;  // All return nothing.
1683 
1684   if (Operator->isSubClassOf("Intrinsic"))
1685     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1686 
1687   if (Operator->isSubClassOf("SDNode"))
1688     return CDP.getSDNodeInfo(Operator).getNumResults();
1689 
1690   if (Operator->isSubClassOf("PatFrags")) {
1691     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1692     // the forward reference case where one pattern fragment references another
1693     // before it is processed.
1694     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1695       // The number of results of a fragment with alternative records is the
1696       // maximum number of results across all alternatives.
1697       unsigned NumResults = 0;
1698       for (auto T : PFRec->getTrees())
1699         NumResults = std::max(NumResults, T->getNumTypes());
1700       return NumResults;
1701     }
1702 
1703     ListInit *LI = Operator->getValueAsListInit("Fragments");
1704     assert(LI && "Invalid Fragment");
1705     unsigned NumResults = 0;
1706     for (Init *I : LI->getValues()) {
1707       Record *Op = nullptr;
1708       if (DagInit *Dag = dyn_cast<DagInit>(I))
1709         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1710           Op = DI->getDef();
1711       assert(Op && "Invalid Fragment");
1712       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1713     }
1714     return NumResults;
1715   }
1716 
1717   if (Operator->isSubClassOf("Instruction")) {
1718     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1719 
1720     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1721 
1722     // Subtract any defaulted outputs.
1723     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1724       Record *OperandNode = InstInfo.Operands[i].Rec;
1725 
1726       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1727           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1728         --NumDefsToAdd;
1729     }
1730 
1731     // Add on one implicit def if it has a resolvable type.
1732     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1733       ++NumDefsToAdd;
1734     return NumDefsToAdd;
1735   }
1736 
1737   if (Operator->isSubClassOf("SDNodeXForm"))
1738     return 1;  // FIXME: Generalize SDNodeXForm
1739 
1740   if (Operator->isSubClassOf("ValueType"))
1741     return 1;  // A type-cast of one result.
1742 
1743   if (Operator->isSubClassOf("ComplexPattern"))
1744     return 1;
1745 
1746   errs() << *Operator;
1747   PrintFatalError("Unhandled node in GetNumNodeResults");
1748 }
1749 
print(raw_ostream & OS) const1750 void TreePatternNode::print(raw_ostream &OS) const {
1751   if (isLeaf())
1752     OS << *getLeafValue();
1753   else
1754     OS << '(' << getOperator()->getName();
1755 
1756   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1757     OS << ':';
1758     getExtType(i).writeToStream(OS);
1759   }
1760 
1761   if (!isLeaf()) {
1762     if (getNumChildren() != 0) {
1763       OS << " ";
1764       getChild(0)->print(OS);
1765       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1766         OS << ", ";
1767         getChild(i)->print(OS);
1768       }
1769     }
1770     OS << ")";
1771   }
1772 
1773   for (const TreePredicateCall &Pred : PredicateCalls) {
1774     OS << "<<P:";
1775     if (Pred.Scope)
1776       OS << Pred.Scope << ":";
1777     OS << Pred.Fn.getFnName() << ">>";
1778   }
1779   if (TransformFn)
1780     OS << "<<X:" << TransformFn->getName() << ">>";
1781   if (!getName().empty())
1782     OS << ":$" << getName();
1783 
1784   for (const ScopedName &Name : NamesAsPredicateArg)
1785     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1786 }
dump() const1787 void TreePatternNode::dump() const {
1788   print(errs());
1789 }
1790 
1791 /// isIsomorphicTo - Return true if this node is recursively
1792 /// isomorphic to the specified node.  For this comparison, the node's
1793 /// entire state is considered. The assigned name is ignored, since
1794 /// nodes with differing names are considered isomorphic. However, if
1795 /// the assigned name is present in the dependent variable set, then
1796 /// the assigned name is considered significant and the node is
1797 /// isomorphic if the names match.
isIsomorphicTo(const TreePatternNode * N,const MultipleUseVarSet & DepVars) const1798 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1799                                      const MultipleUseVarSet &DepVars) const {
1800   if (N == this) return true;
1801   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1802       getPredicateCalls() != N->getPredicateCalls() ||
1803       getTransformFn() != N->getTransformFn())
1804     return false;
1805 
1806   if (isLeaf()) {
1807     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1808       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1809         return ((DI->getDef() == NDI->getDef())
1810                 && (DepVars.find(getName()) == DepVars.end()
1811                     || getName() == N->getName()));
1812       }
1813     }
1814     return getLeafValue() == N->getLeafValue();
1815   }
1816 
1817   if (N->getOperator() != getOperator() ||
1818       N->getNumChildren() != getNumChildren()) return false;
1819   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1820     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1821       return false;
1822   return true;
1823 }
1824 
1825 /// clone - Make a copy of this tree and all of its children.
1826 ///
clone() const1827 TreePatternNodePtr TreePatternNode::clone() const {
1828   TreePatternNodePtr New;
1829   if (isLeaf()) {
1830     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1831   } else {
1832     std::vector<TreePatternNodePtr> CChildren;
1833     CChildren.reserve(Children.size());
1834     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1835       CChildren.push_back(getChild(i)->clone());
1836     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1837                                             getNumTypes());
1838   }
1839   New->setName(getName());
1840   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1841   New->Types = Types;
1842   New->setPredicateCalls(getPredicateCalls());
1843   New->setTransformFn(getTransformFn());
1844   return New;
1845 }
1846 
1847 /// RemoveAllTypes - Recursively strip all the types of this tree.
RemoveAllTypes()1848 void TreePatternNode::RemoveAllTypes() {
1849   // Reset to unknown type.
1850   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1851   if (isLeaf()) return;
1852   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1853     getChild(i)->RemoveAllTypes();
1854 }
1855 
1856 
1857 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1858 /// with actual values specified by ArgMap.
SubstituteFormalArguments(std::map<std::string,TreePatternNodePtr> & ArgMap)1859 void TreePatternNode::SubstituteFormalArguments(
1860     std::map<std::string, TreePatternNodePtr> &ArgMap) {
1861   if (isLeaf()) return;
1862 
1863   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1864     TreePatternNode *Child = getChild(i);
1865     if (Child->isLeaf()) {
1866       Init *Val = Child->getLeafValue();
1867       // Note that, when substituting into an output pattern, Val might be an
1868       // UnsetInit.
1869       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1870           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1871         // We found a use of a formal argument, replace it with its value.
1872         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1873         assert(NewChild && "Couldn't find formal argument!");
1874         assert((Child->getPredicateCalls().empty() ||
1875                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1876                "Non-empty child predicate clobbered!");
1877         setChild(i, std::move(NewChild));
1878       }
1879     } else {
1880       getChild(i)->SubstituteFormalArguments(ArgMap);
1881     }
1882   }
1883 }
1884 
1885 
1886 /// InlinePatternFragments - If this pattern refers to any pattern
1887 /// fragments, return the set of inlined versions (this can be more than
1888 /// one if a PatFrags record has multiple alternatives).
InlinePatternFragments(TreePatternNodePtr T,TreePattern & TP,std::vector<TreePatternNodePtr> & OutAlternatives)1889 void TreePatternNode::InlinePatternFragments(
1890   TreePatternNodePtr T, TreePattern &TP,
1891   std::vector<TreePatternNodePtr> &OutAlternatives) {
1892 
1893   if (TP.hasError())
1894     return;
1895 
1896   if (isLeaf()) {
1897     OutAlternatives.push_back(T);  // nothing to do.
1898     return;
1899   }
1900 
1901   Record *Op = getOperator();
1902 
1903   if (!Op->isSubClassOf("PatFrags")) {
1904     if (getNumChildren() == 0) {
1905       OutAlternatives.push_back(T);
1906       return;
1907     }
1908 
1909     // Recursively inline children nodes.
1910     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
1911     ChildAlternatives.resize(getNumChildren());
1912     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1913       TreePatternNodePtr Child = getChildShared(i);
1914       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
1915       // If there are no alternatives for any child, there are no
1916       // alternatives for this expression as whole.
1917       if (ChildAlternatives[i].empty())
1918         return;
1919 
1920       for (auto NewChild : ChildAlternatives[i])
1921         assert((Child->getPredicateCalls().empty() ||
1922                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1923                "Non-empty child predicate clobbered!");
1924     }
1925 
1926     // The end result is an all-pairs construction of the resultant pattern.
1927     std::vector<unsigned> Idxs;
1928     Idxs.resize(ChildAlternatives.size());
1929     bool NotDone;
1930     do {
1931       // Create the variant and add it to the output list.
1932       std::vector<TreePatternNodePtr> NewChildren;
1933       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
1934         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
1935       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
1936           getOperator(), std::move(NewChildren), getNumTypes());
1937 
1938       // Copy over properties.
1939       R->setName(getName());
1940       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
1941       R->setPredicateCalls(getPredicateCalls());
1942       R->setTransformFn(getTransformFn());
1943       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
1944         R->setType(i, getExtType(i));
1945       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
1946         R->setResultIndex(i, getResultIndex(i));
1947 
1948       // Register alternative.
1949       OutAlternatives.push_back(R);
1950 
1951       // Increment indices to the next permutation by incrementing the
1952       // indices from last index backward, e.g., generate the sequence
1953       // [0, 0], [0, 1], [1, 0], [1, 1].
1954       int IdxsIdx;
1955       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
1956         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
1957           Idxs[IdxsIdx] = 0;
1958         else
1959           break;
1960       }
1961       NotDone = (IdxsIdx >= 0);
1962     } while (NotDone);
1963 
1964     return;
1965   }
1966 
1967   // Otherwise, we found a reference to a fragment.  First, look up its
1968   // TreePattern record.
1969   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1970 
1971   // Verify that we are passing the right number of operands.
1972   if (Frag->getNumArgs() != Children.size()) {
1973     TP.error("'" + Op->getName() + "' fragment requires " +
1974              Twine(Frag->getNumArgs()) + " operands!");
1975     return;
1976   }
1977 
1978   TreePredicateFn PredFn(Frag);
1979   unsigned Scope = 0;
1980   if (TreePredicateFn(Frag).usesOperands())
1981     Scope = TP.getDAGPatterns().allocateScope();
1982 
1983   // Compute the map of formal to actual arguments.
1984   std::map<std::string, TreePatternNodePtr> ArgMap;
1985   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
1986     TreePatternNodePtr Child = getChildShared(i);
1987     if (Scope != 0) {
1988       Child = Child->clone();
1989       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
1990     }
1991     ArgMap[Frag->getArgName(i)] = Child;
1992   }
1993 
1994   // Loop over all fragment alternatives.
1995   for (auto Alternative : Frag->getTrees()) {
1996     TreePatternNodePtr FragTree = Alternative->clone();
1997 
1998     if (!PredFn.isAlwaysTrue())
1999       FragTree->addPredicateCall(PredFn, Scope);
2000 
2001     // Resolve formal arguments to their actual value.
2002     if (Frag->getNumArgs())
2003       FragTree->SubstituteFormalArguments(ArgMap);
2004 
2005     // Transfer types.  Note that the resolved alternative may have fewer
2006     // (but not more) results than the PatFrags node.
2007     FragTree->setName(getName());
2008     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2009       FragTree->UpdateNodeType(i, getExtType(i), TP);
2010 
2011     // Transfer in the old predicates.
2012     for (const TreePredicateCall &Pred : getPredicateCalls())
2013       FragTree->addPredicateCall(Pred);
2014 
2015     // The fragment we inlined could have recursive inlining that is needed.  See
2016     // if there are any pattern fragments in it and inline them as needed.
2017     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2018   }
2019 }
2020 
2021 /// getImplicitType - Check to see if the specified record has an implicit
2022 /// type which should be applied to it.  This will infer the type of register
2023 /// references from the register file information, for example.
2024 ///
2025 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2026 /// the F8RC register class argument in:
2027 ///
2028 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2029 ///
2030 /// When Unnamed is false, return the type of a named DAG operand such as the
2031 /// GPR:$src operand above.
2032 ///
getImplicitType(Record * R,unsigned ResNo,bool NotRegisters,bool Unnamed,TreePattern & TP)2033 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2034                                        bool NotRegisters,
2035                                        bool Unnamed,
2036                                        TreePattern &TP) {
2037   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2038 
2039   // Check to see if this is a register operand.
2040   if (R->isSubClassOf("RegisterOperand")) {
2041     assert(ResNo == 0 && "Regoperand ref only has one result!");
2042     if (NotRegisters)
2043       return TypeSetByHwMode(); // Unknown.
2044     Record *RegClass = R->getValueAsDef("RegClass");
2045     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2046     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2047   }
2048 
2049   // Check to see if this is a register or a register class.
2050   if (R->isSubClassOf("RegisterClass")) {
2051     assert(ResNo == 0 && "Regclass ref only has one result!");
2052     // An unnamed register class represents itself as an i32 immediate, for
2053     // example on a COPY_TO_REGCLASS instruction.
2054     if (Unnamed)
2055       return TypeSetByHwMode(MVT::i32);
2056 
2057     // In a named operand, the register class provides the possible set of
2058     // types.
2059     if (NotRegisters)
2060       return TypeSetByHwMode(); // Unknown.
2061     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2062     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2063   }
2064 
2065   if (R->isSubClassOf("PatFrags")) {
2066     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2067     // Pattern fragment types will be resolved when they are inlined.
2068     return TypeSetByHwMode(); // Unknown.
2069   }
2070 
2071   if (R->isSubClassOf("Register")) {
2072     assert(ResNo == 0 && "Registers only produce one result!");
2073     if (NotRegisters)
2074       return TypeSetByHwMode(); // Unknown.
2075     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2076     return TypeSetByHwMode(T.getRegisterVTs(R));
2077   }
2078 
2079   if (R->isSubClassOf("SubRegIndex")) {
2080     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2081     return TypeSetByHwMode(MVT::i32);
2082   }
2083 
2084   if (R->isSubClassOf("ValueType")) {
2085     assert(ResNo == 0 && "This node only has one result!");
2086     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2087     //
2088     //   (sext_inreg GPR:$src, i16)
2089     //                         ~~~
2090     if (Unnamed)
2091       return TypeSetByHwMode(MVT::Other);
2092     // With a name, the ValueType simply provides the type of the named
2093     // variable.
2094     //
2095     //   (sext_inreg i32:$src, i16)
2096     //               ~~~~~~~~
2097     if (NotRegisters)
2098       return TypeSetByHwMode(); // Unknown.
2099     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2100     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2101   }
2102 
2103   if (R->isSubClassOf("CondCode")) {
2104     assert(ResNo == 0 && "This node only has one result!");
2105     // Using a CondCodeSDNode.
2106     return TypeSetByHwMode(MVT::Other);
2107   }
2108 
2109   if (R->isSubClassOf("ComplexPattern")) {
2110     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2111     if (NotRegisters)
2112       return TypeSetByHwMode(); // Unknown.
2113     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2114   }
2115   if (R->isSubClassOf("PointerLikeRegClass")) {
2116     assert(ResNo == 0 && "Regclass can only have one result!");
2117     TypeSetByHwMode VTS(MVT::iPTR);
2118     TP.getInfer().expandOverloads(VTS);
2119     return VTS;
2120   }
2121 
2122   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2123       R->getName() == "zero_reg") {
2124     // Placeholder.
2125     return TypeSetByHwMode(); // Unknown.
2126   }
2127 
2128   if (R->isSubClassOf("Operand")) {
2129     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2130     Record *T = R->getValueAsDef("Type");
2131     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2132   }
2133 
2134   TP.error("Unknown node flavor used in pattern: " + R->getName());
2135   return TypeSetByHwMode(MVT::Other);
2136 }
2137 
2138 
2139 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2140 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2141 const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns & CDP) const2142 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2143   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2144       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2145       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2146     return nullptr;
2147 
2148   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2149   return &CDP.getIntrinsicInfo(IID);
2150 }
2151 
2152 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2153 /// return the ComplexPattern information, otherwise return null.
2154 const ComplexPattern *
getComplexPatternInfo(const CodeGenDAGPatterns & CGP) const2155 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2156   Record *Rec;
2157   if (isLeaf()) {
2158     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2159     if (!DI)
2160       return nullptr;
2161     Rec = DI->getDef();
2162   } else
2163     Rec = getOperator();
2164 
2165   if (!Rec->isSubClassOf("ComplexPattern"))
2166     return nullptr;
2167   return &CGP.getComplexPattern(Rec);
2168 }
2169 
getNumMIResults(const CodeGenDAGPatterns & CGP) const2170 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2171   // A ComplexPattern specifically declares how many results it fills in.
2172   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2173     return CP->getNumOperands();
2174 
2175   // If MIOperandInfo is specified, that gives the count.
2176   if (isLeaf()) {
2177     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2178     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2179       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2180       if (MIOps->getNumArgs())
2181         return MIOps->getNumArgs();
2182     }
2183   }
2184 
2185   // Otherwise there is just one result.
2186   return 1;
2187 }
2188 
2189 /// NodeHasProperty - Return true if this node has the specified property.
NodeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const2190 bool TreePatternNode::NodeHasProperty(SDNP Property,
2191                                       const CodeGenDAGPatterns &CGP) const {
2192   if (isLeaf()) {
2193     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2194       return CP->hasProperty(Property);
2195 
2196     return false;
2197   }
2198 
2199   if (Property != SDNPHasChain) {
2200     // The chain proprety is already present on the different intrinsic node
2201     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2202     // on the intrinsic. Anything else is specific to the individual intrinsic.
2203     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2204       return Int->hasProperty(Property);
2205   }
2206 
2207   if (!Operator->isSubClassOf("SDPatternOperator"))
2208     return false;
2209 
2210   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2211 }
2212 
2213 
2214 
2215 
2216 /// TreeHasProperty - Return true if any node in this tree has the specified
2217 /// property.
TreeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const2218 bool TreePatternNode::TreeHasProperty(SDNP Property,
2219                                       const CodeGenDAGPatterns &CGP) const {
2220   if (NodeHasProperty(Property, CGP))
2221     return true;
2222   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2223     if (getChild(i)->TreeHasProperty(Property, CGP))
2224       return true;
2225   return false;
2226 }
2227 
2228 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2229 /// commutative intrinsic.
2230 bool
isCommutativeIntrinsic(const CodeGenDAGPatterns & CDP) const2231 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2232   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2233     return Int->isCommutative;
2234   return false;
2235 }
2236 
isOperandClass(const TreePatternNode * N,StringRef Class)2237 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2238   if (!N->isLeaf())
2239     return N->getOperator()->isSubClassOf(Class);
2240 
2241   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2242   if (DI && DI->getDef()->isSubClassOf(Class))
2243     return true;
2244 
2245   return false;
2246 }
2247 
emitTooManyOperandsError(TreePattern & TP,StringRef InstName,unsigned Expected,unsigned Actual)2248 static void emitTooManyOperandsError(TreePattern &TP,
2249                                      StringRef InstName,
2250                                      unsigned Expected,
2251                                      unsigned Actual) {
2252   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2253            " operands but expected only " + Twine(Expected) + "!");
2254 }
2255 
emitTooFewOperandsError(TreePattern & TP,StringRef InstName,unsigned Actual)2256 static void emitTooFewOperandsError(TreePattern &TP,
2257                                     StringRef InstName,
2258                                     unsigned Actual) {
2259   TP.error("Instruction '" + InstName +
2260            "' expects more than the provided " + Twine(Actual) + " operands!");
2261 }
2262 
2263 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2264 /// this node and its children in the tree.  This returns true if it makes a
2265 /// change, false otherwise.  If a type contradiction is found, flag an error.
ApplyTypeConstraints(TreePattern & TP,bool NotRegisters)2266 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2267   if (TP.hasError())
2268     return false;
2269 
2270   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2271   if (isLeaf()) {
2272     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2273       // If it's a regclass or something else known, include the type.
2274       bool MadeChange = false;
2275       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2276         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2277                                                         NotRegisters,
2278                                                         !hasName(), TP), TP);
2279       return MadeChange;
2280     }
2281 
2282     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2283       assert(Types.size() == 1 && "Invalid IntInit");
2284 
2285       // Int inits are always integers. :)
2286       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2287 
2288       if (!TP.getInfer().isConcrete(Types[0], false))
2289         return MadeChange;
2290 
2291       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2292       for (auto &P : VVT) {
2293         MVT::SimpleValueType VT = P.second.SimpleTy;
2294         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2295           continue;
2296         unsigned Size = MVT(VT).getSizeInBits();
2297         // Make sure that the value is representable for this type.
2298         if (Size >= 32)
2299           continue;
2300         // Check that the value doesn't use more bits than we have. It must
2301         // either be a sign- or zero-extended equivalent of the original.
2302         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2303         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2304             SignBitAndAbove == 1)
2305           continue;
2306 
2307         TP.error("Integer value '" + Twine(II->getValue()) +
2308                  "' is out of range for type '" + getEnumName(VT) + "'!");
2309         break;
2310       }
2311       return MadeChange;
2312     }
2313 
2314     return false;
2315   }
2316 
2317   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2318     bool MadeChange = false;
2319 
2320     // Apply the result type to the node.
2321     unsigned NumRetVTs = Int->IS.RetVTs.size();
2322     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2323 
2324     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2325       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2326 
2327     if (getNumChildren() != NumParamVTs + 1) {
2328       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2329                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2330       return false;
2331     }
2332 
2333     // Apply type info to the intrinsic ID.
2334     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2335 
2336     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2337       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2338 
2339       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2340       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2341       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2342     }
2343     return MadeChange;
2344   }
2345 
2346   if (getOperator()->isSubClassOf("SDNode")) {
2347     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2348 
2349     // Check that the number of operands is sane.  Negative operands -> varargs.
2350     if (NI.getNumOperands() >= 0 &&
2351         getNumChildren() != (unsigned)NI.getNumOperands()) {
2352       TP.error(getOperator()->getName() + " node requires exactly " +
2353                Twine(NI.getNumOperands()) + " operands!");
2354       return false;
2355     }
2356 
2357     bool MadeChange = false;
2358     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2359       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2360     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2361     return MadeChange;
2362   }
2363 
2364   if (getOperator()->isSubClassOf("Instruction")) {
2365     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2366     CodeGenInstruction &InstInfo =
2367       CDP.getTargetInfo().getInstruction(getOperator());
2368 
2369     bool MadeChange = false;
2370 
2371     // Apply the result types to the node, these come from the things in the
2372     // (outs) list of the instruction.
2373     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2374                                         Inst.getNumResults());
2375     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2376       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2377 
2378     // If the instruction has implicit defs, we apply the first one as a result.
2379     // FIXME: This sucks, it should apply all implicit defs.
2380     if (!InstInfo.ImplicitDefs.empty()) {
2381       unsigned ResNo = NumResultsToAdd;
2382 
2383       // FIXME: Generalize to multiple possible types and multiple possible
2384       // ImplicitDefs.
2385       MVT::SimpleValueType VT =
2386         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2387 
2388       if (VT != MVT::Other)
2389         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2390     }
2391 
2392     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2393     // be the same.
2394     if (getOperator()->getName() == "INSERT_SUBREG") {
2395       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2396       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2397       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2398     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2399       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2400       // variadic.
2401 
2402       unsigned NChild = getNumChildren();
2403       if (NChild < 3) {
2404         TP.error("REG_SEQUENCE requires at least 3 operands!");
2405         return false;
2406       }
2407 
2408       if (NChild % 2 == 0) {
2409         TP.error("REG_SEQUENCE requires an odd number of operands!");
2410         return false;
2411       }
2412 
2413       if (!isOperandClass(getChild(0), "RegisterClass")) {
2414         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2415         return false;
2416       }
2417 
2418       for (unsigned I = 1; I < NChild; I += 2) {
2419         TreePatternNode *SubIdxChild = getChild(I + 1);
2420         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2421           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2422                    Twine(I + 1) + "!");
2423           return false;
2424         }
2425       }
2426     }
2427 
2428     unsigned ChildNo = 0;
2429     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2430       Record *OperandNode = Inst.getOperand(i);
2431 
2432       // If the instruction expects a predicate or optional def operand, we
2433       // codegen this by setting the operand to it's default value if it has a
2434       // non-empty DefaultOps field.
2435       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
2436           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
2437         continue;
2438 
2439       // Verify that we didn't run out of provided operands.
2440       if (ChildNo >= getNumChildren()) {
2441         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2442         return false;
2443       }
2444 
2445       TreePatternNode *Child = getChild(ChildNo++);
2446       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2447 
2448       // If the operand has sub-operands, they may be provided by distinct
2449       // child patterns, so attempt to match each sub-operand separately.
2450       if (OperandNode->isSubClassOf("Operand")) {
2451         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2452         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2453           // But don't do that if the whole operand is being provided by
2454           // a single ComplexPattern-related Operand.
2455 
2456           if (Child->getNumMIResults(CDP) < NumArgs) {
2457             // Match first sub-operand against the child we already have.
2458             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2459             MadeChange |=
2460               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2461 
2462             // And the remaining sub-operands against subsequent children.
2463             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2464               if (ChildNo >= getNumChildren()) {
2465                 emitTooFewOperandsError(TP, getOperator()->getName(),
2466                                         getNumChildren());
2467                 return false;
2468               }
2469               Child = getChild(ChildNo++);
2470 
2471               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2472               MadeChange |=
2473                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2474             }
2475             continue;
2476           }
2477         }
2478       }
2479 
2480       // If we didn't match by pieces above, attempt to match the whole
2481       // operand now.
2482       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2483     }
2484 
2485     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2486       emitTooManyOperandsError(TP, getOperator()->getName(),
2487                                ChildNo, getNumChildren());
2488       return false;
2489     }
2490 
2491     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2492       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2493     return MadeChange;
2494   }
2495 
2496   if (getOperator()->isSubClassOf("ComplexPattern")) {
2497     bool MadeChange = false;
2498 
2499     for (unsigned i = 0; i < getNumChildren(); ++i)
2500       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2501 
2502     return MadeChange;
2503   }
2504 
2505   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2506 
2507   // Node transforms always take one operand.
2508   if (getNumChildren() != 1) {
2509     TP.error("Node transform '" + getOperator()->getName() +
2510              "' requires one operand!");
2511     return false;
2512   }
2513 
2514   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2515   return MadeChange;
2516 }
2517 
2518 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2519 /// RHS of a commutative operation, not the on LHS.
OnlyOnRHSOfCommutative(TreePatternNode * N)2520 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2521   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2522     return true;
2523   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2524     return true;
2525   return false;
2526 }
2527 
2528 
2529 /// canPatternMatch - If it is impossible for this pattern to match on this
2530 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2531 /// used as a sanity check for .td files (to prevent people from writing stuff
2532 /// that can never possibly work), and to prevent the pattern permuter from
2533 /// generating stuff that is useless.
canPatternMatch(std::string & Reason,const CodeGenDAGPatterns & CDP)2534 bool TreePatternNode::canPatternMatch(std::string &Reason,
2535                                       const CodeGenDAGPatterns &CDP) {
2536   if (isLeaf()) return true;
2537 
2538   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2539     if (!getChild(i)->canPatternMatch(Reason, CDP))
2540       return false;
2541 
2542   // If this is an intrinsic, handle cases that would make it not match.  For
2543   // example, if an operand is required to be an immediate.
2544   if (getOperator()->isSubClassOf("Intrinsic")) {
2545     // TODO:
2546     return true;
2547   }
2548 
2549   if (getOperator()->isSubClassOf("ComplexPattern"))
2550     return true;
2551 
2552   // If this node is a commutative operator, check that the LHS isn't an
2553   // immediate.
2554   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2555   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2556   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2557     // Scan all of the operands of the node and make sure that only the last one
2558     // is a constant node, unless the RHS also is.
2559     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2560       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2561       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2562         if (OnlyOnRHSOfCommutative(getChild(i))) {
2563           Reason="Immediate value must be on the RHS of commutative operators!";
2564           return false;
2565         }
2566     }
2567   }
2568 
2569   return true;
2570 }
2571 
2572 //===----------------------------------------------------------------------===//
2573 // TreePattern implementation
2574 //
2575 
TreePattern(Record * TheRec,ListInit * RawPat,bool isInput,CodeGenDAGPatterns & cdp)2576 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2577                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2578                          isInputPattern(isInput), HasError(false),
2579                          Infer(*this) {
2580   for (Init *I : RawPat->getValues())
2581     Trees.push_back(ParseTreePattern(I, ""));
2582 }
2583 
TreePattern(Record * TheRec,DagInit * Pat,bool isInput,CodeGenDAGPatterns & cdp)2584 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2585                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2586                          isInputPattern(isInput), HasError(false),
2587                          Infer(*this) {
2588   Trees.push_back(ParseTreePattern(Pat, ""));
2589 }
2590 
TreePattern(Record * TheRec,TreePatternNodePtr Pat,bool isInput,CodeGenDAGPatterns & cdp)2591 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2592                          CodeGenDAGPatterns &cdp)
2593     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2594       Infer(*this) {
2595   Trees.push_back(Pat);
2596 }
2597 
error(const Twine & Msg)2598 void TreePattern::error(const Twine &Msg) {
2599   if (HasError)
2600     return;
2601   dump();
2602   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2603   HasError = true;
2604 }
2605 
ComputeNamedNodes()2606 void TreePattern::ComputeNamedNodes() {
2607   for (TreePatternNodePtr &Tree : Trees)
2608     ComputeNamedNodes(Tree.get());
2609 }
2610 
ComputeNamedNodes(TreePatternNode * N)2611 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2612   if (!N->getName().empty())
2613     NamedNodes[N->getName()].push_back(N);
2614 
2615   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2616     ComputeNamedNodes(N->getChild(i));
2617 }
2618 
ParseTreePattern(Init * TheInit,StringRef OpName)2619 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2620                                                  StringRef OpName) {
2621   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2622     Record *R = DI->getDef();
2623 
2624     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2625     // TreePatternNode of its own.  For example:
2626     ///   (foo GPR, imm) -> (foo GPR, (imm))
2627     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2628       return ParseTreePattern(
2629         DagInit::get(DI, nullptr,
2630                      std::vector<std::pair<Init*, StringInit*> >()),
2631         OpName);
2632 
2633     // Input argument?
2634     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2635     if (R->getName() == "node" && !OpName.empty()) {
2636       if (OpName.empty())
2637         error("'node' argument requires a name to match with operand list");
2638       Args.push_back(OpName);
2639     }
2640 
2641     Res->setName(OpName);
2642     return Res;
2643   }
2644 
2645   // ?:$name or just $name.
2646   if (isa<UnsetInit>(TheInit)) {
2647     if (OpName.empty())
2648       error("'?' argument requires a name to match with operand list");
2649     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2650     Args.push_back(OpName);
2651     Res->setName(OpName);
2652     return Res;
2653   }
2654 
2655   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2656     if (!OpName.empty())
2657       error("Constant int or bit argument should not have a name!");
2658     if (isa<BitInit>(TheInit))
2659       TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2660     return std::make_shared<TreePatternNode>(TheInit, 1);
2661   }
2662 
2663   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2664     // Turn this into an IntInit.
2665     Init *II = BI->convertInitializerTo(IntRecTy::get());
2666     if (!II || !isa<IntInit>(II))
2667       error("Bits value must be constants!");
2668     return ParseTreePattern(II, OpName);
2669   }
2670 
2671   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2672   if (!Dag) {
2673     TheInit->print(errs());
2674     error("Pattern has unexpected init kind!");
2675   }
2676   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2677   if (!OpDef) error("Pattern has unexpected operator type!");
2678   Record *Operator = OpDef->getDef();
2679 
2680   if (Operator->isSubClassOf("ValueType")) {
2681     // If the operator is a ValueType, then this must be "type cast" of a leaf
2682     // node.
2683     if (Dag->getNumArgs() != 1)
2684       error("Type cast only takes one operand!");
2685 
2686     TreePatternNodePtr New =
2687         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2688 
2689     // Apply the type cast.
2690     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2691     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2692     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2693 
2694     if (!OpName.empty())
2695       error("ValueType cast should not have a name!");
2696     return New;
2697   }
2698 
2699   // Verify that this is something that makes sense for an operator.
2700   if (!Operator->isSubClassOf("PatFrags") &&
2701       !Operator->isSubClassOf("SDNode") &&
2702       !Operator->isSubClassOf("Instruction") &&
2703       !Operator->isSubClassOf("SDNodeXForm") &&
2704       !Operator->isSubClassOf("Intrinsic") &&
2705       !Operator->isSubClassOf("ComplexPattern") &&
2706       Operator->getName() != "set" &&
2707       Operator->getName() != "implicit")
2708     error("Unrecognized node '" + Operator->getName() + "'!");
2709 
2710   //  Check to see if this is something that is illegal in an input pattern.
2711   if (isInputPattern) {
2712     if (Operator->isSubClassOf("Instruction") ||
2713         Operator->isSubClassOf("SDNodeXForm"))
2714       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2715   } else {
2716     if (Operator->isSubClassOf("Intrinsic"))
2717       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2718 
2719     if (Operator->isSubClassOf("SDNode") &&
2720         Operator->getName() != "imm" &&
2721         Operator->getName() != "fpimm" &&
2722         Operator->getName() != "tglobaltlsaddr" &&
2723         Operator->getName() != "tconstpool" &&
2724         Operator->getName() != "tjumptable" &&
2725         Operator->getName() != "tframeindex" &&
2726         Operator->getName() != "texternalsym" &&
2727         Operator->getName() != "tblockaddress" &&
2728         Operator->getName() != "tglobaladdr" &&
2729         Operator->getName() != "bb" &&
2730         Operator->getName() != "vt" &&
2731         Operator->getName() != "mcsym")
2732       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2733   }
2734 
2735   std::vector<TreePatternNodePtr> Children;
2736 
2737   // Parse all the operands.
2738   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2739     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2740 
2741   // Get the actual number of results before Operator is converted to an intrinsic
2742   // node (which is hard-coded to have either zero or one result).
2743   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2744 
2745   // If the operator is an intrinsic, then this is just syntactic sugar for
2746   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2747   // convert the intrinsic name to a number.
2748   if (Operator->isSubClassOf("Intrinsic")) {
2749     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2750     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2751 
2752     // If this intrinsic returns void, it must have side-effects and thus a
2753     // chain.
2754     if (Int.IS.RetVTs.empty())
2755       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2756     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2757       // Has side-effects, requires chain.
2758       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2759     else // Otherwise, no chain.
2760       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2761 
2762     Children.insert(Children.begin(),
2763                     std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2764   }
2765 
2766   if (Operator->isSubClassOf("ComplexPattern")) {
2767     for (unsigned i = 0; i < Children.size(); ++i) {
2768       TreePatternNodePtr Child = Children[i];
2769 
2770       if (Child->getName().empty())
2771         error("All arguments to a ComplexPattern must be named");
2772 
2773       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2774       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2775       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2776       auto OperandId = std::make_pair(Operator, i);
2777       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2778       if (PrevOp != ComplexPatternOperands.end()) {
2779         if (PrevOp->getValue() != OperandId)
2780           error("All ComplexPattern operands must appear consistently: "
2781                 "in the same order in just one ComplexPattern instance.");
2782       } else
2783         ComplexPatternOperands[Child->getName()] = OperandId;
2784     }
2785   }
2786 
2787   TreePatternNodePtr Result =
2788       std::make_shared<TreePatternNode>(Operator, std::move(Children),
2789                                         NumResults);
2790   Result->setName(OpName);
2791 
2792   if (Dag->getName()) {
2793     assert(Result->getName().empty());
2794     Result->setName(Dag->getNameStr());
2795   }
2796   return Result;
2797 }
2798 
2799 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2800 /// will never match in favor of something obvious that will.  This is here
2801 /// strictly as a convenience to target authors because it allows them to write
2802 /// more type generic things and have useless type casts fold away.
2803 ///
2804 /// This returns true if any change is made.
SimplifyTree(TreePatternNodePtr & N)2805 static bool SimplifyTree(TreePatternNodePtr &N) {
2806   if (N->isLeaf())
2807     return false;
2808 
2809   // If we have a bitconvert with a resolved type and if the source and
2810   // destination types are the same, then the bitconvert is useless, remove it.
2811   if (N->getOperator()->getName() == "bitconvert" &&
2812       N->getExtType(0).isValueTypeByHwMode(false) &&
2813       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2814       N->getName().empty()) {
2815     N = N->getChildShared(0);
2816     SimplifyTree(N);
2817     return true;
2818   }
2819 
2820   // Walk all children.
2821   bool MadeChange = false;
2822   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2823     TreePatternNodePtr Child = N->getChildShared(i);
2824     MadeChange |= SimplifyTree(Child);
2825     N->setChild(i, std::move(Child));
2826   }
2827   return MadeChange;
2828 }
2829 
2830 
2831 
2832 /// InferAllTypes - Infer/propagate as many types throughout the expression
2833 /// patterns as possible.  Return true if all types are inferred, false
2834 /// otherwise.  Flags an error if a type contradiction is found.
2835 bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode *,1>> * InNamedTypes)2836 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2837   if (NamedNodes.empty())
2838     ComputeNamedNodes();
2839 
2840   bool MadeChange = true;
2841   while (MadeChange) {
2842     MadeChange = false;
2843     for (TreePatternNodePtr &Tree : Trees) {
2844       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2845       MadeChange |= SimplifyTree(Tree);
2846     }
2847 
2848     // If there are constraints on our named nodes, apply them.
2849     for (auto &Entry : NamedNodes) {
2850       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2851 
2852       // If we have input named node types, propagate their types to the named
2853       // values here.
2854       if (InNamedTypes) {
2855         if (!InNamedTypes->count(Entry.getKey())) {
2856           error("Node '" + std::string(Entry.getKey()) +
2857                 "' in output pattern but not input pattern");
2858           return true;
2859         }
2860 
2861         const SmallVectorImpl<TreePatternNode*> &InNodes =
2862           InNamedTypes->find(Entry.getKey())->second;
2863 
2864         // The input types should be fully resolved by now.
2865         for (TreePatternNode *Node : Nodes) {
2866           // If this node is a register class, and it is the root of the pattern
2867           // then we're mapping something onto an input register.  We allow
2868           // changing the type of the input register in this case.  This allows
2869           // us to match things like:
2870           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2871           if (Node == Trees[0].get() && Node->isLeaf()) {
2872             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2873             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2874                        DI->getDef()->isSubClassOf("RegisterOperand")))
2875               continue;
2876           }
2877 
2878           assert(Node->getNumTypes() == 1 &&
2879                  InNodes[0]->getNumTypes() == 1 &&
2880                  "FIXME: cannot name multiple result nodes yet");
2881           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2882                                              *this);
2883         }
2884       }
2885 
2886       // If there are multiple nodes with the same name, they must all have the
2887       // same type.
2888       if (Entry.second.size() > 1) {
2889         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2890           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2891           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2892                  "FIXME: cannot name multiple result nodes yet");
2893 
2894           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2895           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2896         }
2897       }
2898     }
2899   }
2900 
2901   bool HasUnresolvedTypes = false;
2902   for (const TreePatternNodePtr &Tree : Trees)
2903     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2904   return !HasUnresolvedTypes;
2905 }
2906 
print(raw_ostream & OS) const2907 void TreePattern::print(raw_ostream &OS) const {
2908   OS << getRecord()->getName();
2909   if (!Args.empty()) {
2910     OS << "(" << Args[0];
2911     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2912       OS << ", " << Args[i];
2913     OS << ")";
2914   }
2915   OS << ": ";
2916 
2917   if (Trees.size() > 1)
2918     OS << "[\n";
2919   for (const TreePatternNodePtr &Tree : Trees) {
2920     OS << "\t";
2921     Tree->print(OS);
2922     OS << "\n";
2923   }
2924 
2925   if (Trees.size() > 1)
2926     OS << "]\n";
2927 }
2928 
dump() const2929 void TreePattern::dump() const { print(errs()); }
2930 
2931 //===----------------------------------------------------------------------===//
2932 // CodeGenDAGPatterns implementation
2933 //
2934 
CodeGenDAGPatterns(RecordKeeper & R,PatternRewriterFn PatternRewriter)2935 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
2936                                        PatternRewriterFn PatternRewriter)
2937     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
2938       PatternRewriter(PatternRewriter) {
2939 
2940   Intrinsics = CodeGenIntrinsicTable(Records, false);
2941   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2942   ParseNodeInfo();
2943   ParseNodeTransforms();
2944   ParseComplexPatterns();
2945   ParsePatternFragments();
2946   ParseDefaultOperands();
2947   ParseInstructions();
2948   ParsePatternFragments(/*OutFrags*/true);
2949   ParsePatterns();
2950 
2951   // Break patterns with parameterized types into a series of patterns,
2952   // where each one has a fixed type and is predicated on the conditions
2953   // of the associated HW mode.
2954   ExpandHwModeBasedTypes();
2955 
2956   // Generate variants.  For example, commutative patterns can match
2957   // multiple ways.  Add them to PatternsToMatch as well.
2958   GenerateVariants();
2959 
2960   // Infer instruction flags.  For example, we can detect loads,
2961   // stores, and side effects in many cases by examining an
2962   // instruction's pattern.
2963   InferInstructionFlags();
2964 
2965   // Verify that instruction flags match the patterns.
2966   VerifyInstructionFlags();
2967 }
2968 
getSDNodeNamed(const std::string & Name) const2969 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2970   Record *N = Records.getDef(Name);
2971   if (!N || !N->isSubClassOf("SDNode"))
2972     PrintFatalError("Error getting SDNode '" + Name + "'!");
2973 
2974   return N;
2975 }
2976 
2977 // Parse all of the SDNode definitions for the target, populating SDNodes.
ParseNodeInfo()2978 void CodeGenDAGPatterns::ParseNodeInfo() {
2979   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2980   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
2981 
2982   while (!Nodes.empty()) {
2983     Record *R = Nodes.back();
2984     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
2985     Nodes.pop_back();
2986   }
2987 
2988   // Get the builtin intrinsic nodes.
2989   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2990   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2991   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2992 }
2993 
2994 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2995 /// map, and emit them to the file as functions.
ParseNodeTransforms()2996 void CodeGenDAGPatterns::ParseNodeTransforms() {
2997   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2998   while (!Xforms.empty()) {
2999     Record *XFormNode = Xforms.back();
3000     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3001     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3002     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
3003 
3004     Xforms.pop_back();
3005   }
3006 }
3007 
ParseComplexPatterns()3008 void CodeGenDAGPatterns::ParseComplexPatterns() {
3009   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3010   while (!AMs.empty()) {
3011     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3012     AMs.pop_back();
3013   }
3014 }
3015 
3016 
3017 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3018 /// file, building up the PatternFragments map.  After we've collected them all,
3019 /// inline fragments together as necessary, so that there are no references left
3020 /// inside a pattern fragment to a pattern fragment.
3021 ///
ParsePatternFragments(bool OutFrags)3022 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3023   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3024 
3025   // First step, parse all of the fragments.
3026   for (Record *Frag : Fragments) {
3027     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3028       continue;
3029 
3030     ListInit *LI = Frag->getValueAsListInit("Fragments");
3031     TreePattern *P =
3032         (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
3033              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3034              *this)).get();
3035 
3036     // Validate the argument list, converting it to set, to discard duplicates.
3037     std::vector<std::string> &Args = P->getArgList();
3038     // Copy the args so we can take StringRefs to them.
3039     auto ArgsCopy = Args;
3040     SmallDenseSet<StringRef, 4> OperandsSet;
3041     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3042 
3043     if (OperandsSet.count(""))
3044       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3045 
3046     // Parse the operands list.
3047     DagInit *OpsList = Frag->getValueAsDag("Operands");
3048     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3049     // Special cases: ops == outs == ins. Different names are used to
3050     // improve readability.
3051     if (!OpsOp ||
3052         (OpsOp->getDef()->getName() != "ops" &&
3053          OpsOp->getDef()->getName() != "outs" &&
3054          OpsOp->getDef()->getName() != "ins"))
3055       P->error("Operands list should start with '(ops ... '!");
3056 
3057     // Copy over the arguments.
3058     Args.clear();
3059     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3060       if (!isa<DefInit>(OpsList->getArg(j)) ||
3061           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3062         P->error("Operands list should all be 'node' values.");
3063       if (!OpsList->getArgName(j))
3064         P->error("Operands list should have names for each operand!");
3065       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3066       if (!OperandsSet.count(ArgNameStr))
3067         P->error("'" + ArgNameStr +
3068                  "' does not occur in pattern or was multiply specified!");
3069       OperandsSet.erase(ArgNameStr);
3070       Args.push_back(ArgNameStr);
3071     }
3072 
3073     if (!OperandsSet.empty())
3074       P->error("Operands list does not contain an entry for operand '" +
3075                *OperandsSet.begin() + "'!");
3076 
3077     // If there is a node transformation corresponding to this, keep track of
3078     // it.
3079     Record *Transform = Frag->getValueAsDef("OperandTransform");
3080     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3081       for (auto T : P->getTrees())
3082         T->setTransformFn(Transform);
3083   }
3084 
3085   // Now that we've parsed all of the tree fragments, do a closure on them so
3086   // that there are not references to PatFrags left inside of them.
3087   for (Record *Frag : Fragments) {
3088     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3089       continue;
3090 
3091     TreePattern &ThePat = *PatternFragments[Frag];
3092     ThePat.InlinePatternFragments();
3093 
3094     // Infer as many types as possible.  Don't worry about it if we don't infer
3095     // all of them, some may depend on the inputs of the pattern.  Also, don't
3096     // validate type sets; validation may cause spurious failures e.g. if a
3097     // fragment needs floating-point types but the current target does not have
3098     // any (this is only an error if that fragment is ever used!).
3099     {
3100       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3101       ThePat.InferAllTypes();
3102       ThePat.resetError();
3103     }
3104 
3105     // If debugging, print out the pattern fragment result.
3106     LLVM_DEBUG(ThePat.dump());
3107   }
3108 }
3109 
ParseDefaultOperands()3110 void CodeGenDAGPatterns::ParseDefaultOperands() {
3111   std::vector<Record*> DefaultOps;
3112   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3113 
3114   // Find some SDNode.
3115   assert(!SDNodes.empty() && "No SDNodes parsed?");
3116   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3117 
3118   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3119     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3120 
3121     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3122     // SomeSDnode so that we can parse this.
3123     std::vector<std::pair<Init*, StringInit*> > Ops;
3124     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3125       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3126                                    DefaultInfo->getArgName(op)));
3127     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3128 
3129     // Create a TreePattern to parse this.
3130     TreePattern P(DefaultOps[i], DI, false, *this);
3131     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3132 
3133     // Copy the operands over into a DAGDefaultOperand.
3134     DAGDefaultOperand DefaultOpInfo;
3135 
3136     const TreePatternNodePtr &T = P.getTree(0);
3137     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3138       TreePatternNodePtr TPN = T->getChildShared(op);
3139       while (TPN->ApplyTypeConstraints(P, false))
3140         /* Resolve all types */;
3141 
3142       if (TPN->ContainsUnresolvedType(P)) {
3143         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3144                         DefaultOps[i]->getName() +
3145                         "' doesn't have a concrete type!");
3146       }
3147       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3148     }
3149 
3150     // Insert it into the DefaultOperands map so we can find it later.
3151     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3152   }
3153 }
3154 
3155 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3156 /// instruction input.  Return true if this is a real use.
HandleUse(TreePattern & I,TreePatternNodePtr Pat,std::map<std::string,TreePatternNodePtr> & InstInputs)3157 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3158                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3159   // No name -> not interesting.
3160   if (Pat->getName().empty()) {
3161     if (Pat->isLeaf()) {
3162       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3163       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3164                  DI->getDef()->isSubClassOf("RegisterOperand")))
3165         I.error("Input " + DI->getDef()->getName() + " must be named!");
3166     }
3167     return false;
3168   }
3169 
3170   Record *Rec;
3171   if (Pat->isLeaf()) {
3172     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3173     if (!DI)
3174       I.error("Input $" + Pat->getName() + " must be an identifier!");
3175     Rec = DI->getDef();
3176   } else {
3177     Rec = Pat->getOperator();
3178   }
3179 
3180   // SRCVALUE nodes are ignored.
3181   if (Rec->getName() == "srcvalue")
3182     return false;
3183 
3184   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3185   if (!Slot) {
3186     Slot = Pat;
3187     return true;
3188   }
3189   Record *SlotRec;
3190   if (Slot->isLeaf()) {
3191     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3192   } else {
3193     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3194     SlotRec = Slot->getOperator();
3195   }
3196 
3197   // Ensure that the inputs agree if we've already seen this input.
3198   if (Rec != SlotRec)
3199     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3200   // Ensure that the types can agree as well.
3201   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3202   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3203   if (Slot->getExtTypes() != Pat->getExtTypes())
3204     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3205   return true;
3206 }
3207 
3208 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3209 /// part of "I", the instruction), computing the set of inputs and outputs of
3210 /// the pattern.  Report errors if we see anything naughty.
FindPatternInputsAndOutputs(TreePattern & I,TreePatternNodePtr Pat,std::map<std::string,TreePatternNodePtr> & InstInputs,MapVector<std::string,TreePatternNodePtr,std::map<std::string,unsigned>> & InstResults,std::vector<Record * > & InstImpResults)3211 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3212     TreePattern &I, TreePatternNodePtr Pat,
3213     std::map<std::string, TreePatternNodePtr> &InstInputs,
3214     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3215         &InstResults,
3216     std::vector<Record *> &InstImpResults) {
3217 
3218   // The instruction pattern still has unresolved fragments.  For *named*
3219   // nodes we must resolve those here.  This may not result in multiple
3220   // alternatives.
3221   if (!Pat->getName().empty()) {
3222     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3223     SrcPattern.InlinePatternFragments();
3224     SrcPattern.InferAllTypes();
3225     Pat = SrcPattern.getOnlyTree();
3226   }
3227 
3228   if (Pat->isLeaf()) {
3229     bool isUse = HandleUse(I, Pat, InstInputs);
3230     if (!isUse && Pat->getTransformFn())
3231       I.error("Cannot specify a transform function for a non-input value!");
3232     return;
3233   }
3234 
3235   if (Pat->getOperator()->getName() == "implicit") {
3236     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3237       TreePatternNode *Dest = Pat->getChild(i);
3238       if (!Dest->isLeaf())
3239         I.error("implicitly defined value should be a register!");
3240 
3241       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3242       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3243         I.error("implicitly defined value should be a register!");
3244       InstImpResults.push_back(Val->getDef());
3245     }
3246     return;
3247   }
3248 
3249   if (Pat->getOperator()->getName() != "set") {
3250     // If this is not a set, verify that the children nodes are not void typed,
3251     // and recurse.
3252     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3253       if (Pat->getChild(i)->getNumTypes() == 0)
3254         I.error("Cannot have void nodes inside of patterns!");
3255       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3256                                   InstResults, InstImpResults);
3257     }
3258 
3259     // If this is a non-leaf node with no children, treat it basically as if
3260     // it were a leaf.  This handles nodes like (imm).
3261     bool isUse = HandleUse(I, Pat, InstInputs);
3262 
3263     if (!isUse && Pat->getTransformFn())
3264       I.error("Cannot specify a transform function for a non-input value!");
3265     return;
3266   }
3267 
3268   // Otherwise, this is a set, validate and collect instruction results.
3269   if (Pat->getNumChildren() == 0)
3270     I.error("set requires operands!");
3271 
3272   if (Pat->getTransformFn())
3273     I.error("Cannot specify a transform function on a set node!");
3274 
3275   // Check the set destinations.
3276   unsigned NumDests = Pat->getNumChildren()-1;
3277   for (unsigned i = 0; i != NumDests; ++i) {
3278     TreePatternNodePtr Dest = Pat->getChildShared(i);
3279     // For set destinations we also must resolve fragments here.
3280     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3281     DestPattern.InlinePatternFragments();
3282     DestPattern.InferAllTypes();
3283     Dest = DestPattern.getOnlyTree();
3284 
3285     if (!Dest->isLeaf())
3286       I.error("set destination should be a register!");
3287 
3288     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3289     if (!Val) {
3290       I.error("set destination should be a register!");
3291       continue;
3292     }
3293 
3294     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3295         Val->getDef()->isSubClassOf("ValueType") ||
3296         Val->getDef()->isSubClassOf("RegisterOperand") ||
3297         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3298       if (Dest->getName().empty())
3299         I.error("set destination must have a name!");
3300       if (InstResults.count(Dest->getName()))
3301         I.error("cannot set '" + Dest->getName() + "' multiple times");
3302       InstResults[Dest->getName()] = Dest;
3303     } else if (Val->getDef()->isSubClassOf("Register")) {
3304       InstImpResults.push_back(Val->getDef());
3305     } else {
3306       I.error("set destination should be a register!");
3307     }
3308   }
3309 
3310   // Verify and collect info from the computation.
3311   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3312                               InstResults, InstImpResults);
3313 }
3314 
3315 //===----------------------------------------------------------------------===//
3316 // Instruction Analysis
3317 //===----------------------------------------------------------------------===//
3318 
3319 class InstAnalyzer {
3320   const CodeGenDAGPatterns &CDP;
3321 public:
3322   bool hasSideEffects;
3323   bool mayStore;
3324   bool mayLoad;
3325   bool isBitcast;
3326   bool isVariadic;
3327   bool hasChain;
3328 
InstAnalyzer(const CodeGenDAGPatterns & cdp)3329   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3330     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3331       isBitcast(false), isVariadic(false), hasChain(false) {}
3332 
Analyze(const PatternToMatch & Pat)3333   void Analyze(const PatternToMatch &Pat) {
3334     const TreePatternNode *N = Pat.getSrcPattern();
3335     AnalyzeNode(N);
3336     // These properties are detected only on the root node.
3337     isBitcast = IsNodeBitcast(N);
3338   }
3339 
3340 private:
IsNodeBitcast(const TreePatternNode * N) const3341   bool IsNodeBitcast(const TreePatternNode *N) const {
3342     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3343       return false;
3344 
3345     if (N->isLeaf())
3346       return false;
3347     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3348       return false;
3349 
3350     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3351     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3352       return false;
3353     return OpInfo.getEnumName() == "ISD::BITCAST";
3354   }
3355 
3356 public:
AnalyzeNode(const TreePatternNode * N)3357   void AnalyzeNode(const TreePatternNode *N) {
3358     if (N->isLeaf()) {
3359       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3360         Record *LeafRec = DI->getDef();
3361         // Handle ComplexPattern leaves.
3362         if (LeafRec->isSubClassOf("ComplexPattern")) {
3363           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3364           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3365           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3366           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3367         }
3368       }
3369       return;
3370     }
3371 
3372     // Analyze children.
3373     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3374       AnalyzeNode(N->getChild(i));
3375 
3376     // Notice properties of the node.
3377     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3378     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3379     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3380     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3381     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3382 
3383     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3384       // If this is an intrinsic, analyze it.
3385       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3386         mayLoad = true;// These may load memory.
3387 
3388       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3389         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3390 
3391       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3392           IntInfo->hasSideEffects)
3393         // ReadWriteMem intrinsics can have other strange effects.
3394         hasSideEffects = true;
3395     }
3396   }
3397 
3398 };
3399 
InferFromPattern(CodeGenInstruction & InstInfo,const InstAnalyzer & PatInfo,Record * PatDef)3400 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3401                              const InstAnalyzer &PatInfo,
3402                              Record *PatDef) {
3403   bool Error = false;
3404 
3405   // Remember where InstInfo got its flags.
3406   if (InstInfo.hasUndefFlags())
3407       InstInfo.InferredFrom = PatDef;
3408 
3409   // Check explicitly set flags for consistency.
3410   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3411       !InstInfo.hasSideEffects_Unset) {
3412     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3413     // the pattern has no side effects. That could be useful for div/rem
3414     // instructions that may trap.
3415     if (!InstInfo.hasSideEffects) {
3416       Error = true;
3417       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3418                  Twine(InstInfo.hasSideEffects));
3419     }
3420   }
3421 
3422   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3423     Error = true;
3424     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3425                Twine(InstInfo.mayStore));
3426   }
3427 
3428   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3429     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3430     // Some targets translate immediates to loads.
3431     if (!InstInfo.mayLoad) {
3432       Error = true;
3433       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3434                  Twine(InstInfo.mayLoad));
3435     }
3436   }
3437 
3438   // Transfer inferred flags.
3439   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3440   InstInfo.mayStore |= PatInfo.mayStore;
3441   InstInfo.mayLoad |= PatInfo.mayLoad;
3442 
3443   // These flags are silently added without any verification.
3444   // FIXME: To match historical behavior of TableGen, for now add those flags
3445   // only when we're inferring from the primary instruction pattern.
3446   if (PatDef->isSubClassOf("Instruction")) {
3447     InstInfo.isBitcast |= PatInfo.isBitcast;
3448     InstInfo.hasChain |= PatInfo.hasChain;
3449     InstInfo.hasChain_Inferred = true;
3450   }
3451 
3452   // Don't infer isVariadic. This flag means something different on SDNodes and
3453   // instructions. For example, a CALL SDNode is variadic because it has the
3454   // call arguments as operands, but a CALL instruction is not variadic - it
3455   // has argument registers as implicit, not explicit uses.
3456 
3457   return Error;
3458 }
3459 
3460 /// hasNullFragReference - Return true if the DAG has any reference to the
3461 /// null_frag operator.
hasNullFragReference(DagInit * DI)3462 static bool hasNullFragReference(DagInit *DI) {
3463   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3464   if (!OpDef) return false;
3465   Record *Operator = OpDef->getDef();
3466 
3467   // If this is the null fragment, return true.
3468   if (Operator->getName() == "null_frag") return true;
3469   // If any of the arguments reference the null fragment, return true.
3470   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3471     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3472     if (Arg && hasNullFragReference(Arg))
3473       return true;
3474   }
3475 
3476   return false;
3477 }
3478 
3479 /// hasNullFragReference - Return true if any DAG in the list references
3480 /// the null_frag operator.
hasNullFragReference(ListInit * LI)3481 static bool hasNullFragReference(ListInit *LI) {
3482   for (Init *I : LI->getValues()) {
3483     DagInit *DI = dyn_cast<DagInit>(I);
3484     assert(DI && "non-dag in an instruction Pattern list?!");
3485     if (hasNullFragReference(DI))
3486       return true;
3487   }
3488   return false;
3489 }
3490 
3491 /// Get all the instructions in a tree.
3492 static void
getInstructionsInTree(TreePatternNode * Tree,SmallVectorImpl<Record * > & Instrs)3493 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3494   if (Tree->isLeaf())
3495     return;
3496   if (Tree->getOperator()->isSubClassOf("Instruction"))
3497     Instrs.push_back(Tree->getOperator());
3498   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3499     getInstructionsInTree(Tree->getChild(i), Instrs);
3500 }
3501 
3502 /// Check the class of a pattern leaf node against the instruction operand it
3503 /// represents.
checkOperandClass(CGIOperandList::OperandInfo & OI,Record * Leaf)3504 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3505                               Record *Leaf) {
3506   if (OI.Rec == Leaf)
3507     return true;
3508 
3509   // Allow direct value types to be used in instruction set patterns.
3510   // The type will be checked later.
3511   if (Leaf->isSubClassOf("ValueType"))
3512     return true;
3513 
3514   // Patterns can also be ComplexPattern instances.
3515   if (Leaf->isSubClassOf("ComplexPattern"))
3516     return true;
3517 
3518   return false;
3519 }
3520 
parseInstructionPattern(CodeGenInstruction & CGI,ListInit * Pat,DAGInstMap & DAGInsts)3521 void CodeGenDAGPatterns::parseInstructionPattern(
3522     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3523 
3524   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3525 
3526   // Parse the instruction.
3527   TreePattern I(CGI.TheDef, Pat, true, *this);
3528 
3529   // InstInputs - Keep track of all of the inputs of the instruction, along
3530   // with the record they are declared as.
3531   std::map<std::string, TreePatternNodePtr> InstInputs;
3532 
3533   // InstResults - Keep track of all the virtual registers that are 'set'
3534   // in the instruction, including what reg class they are.
3535   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3536       InstResults;
3537 
3538   std::vector<Record*> InstImpResults;
3539 
3540   // Verify that the top-level forms in the instruction are of void type, and
3541   // fill in the InstResults map.
3542   SmallString<32> TypesString;
3543   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3544     TypesString.clear();
3545     TreePatternNodePtr Pat = I.getTree(j);
3546     if (Pat->getNumTypes() != 0) {
3547       raw_svector_ostream OS(TypesString);
3548       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3549         if (k > 0)
3550           OS << ", ";
3551         Pat->getExtType(k).writeToStream(OS);
3552       }
3553       I.error("Top-level forms in instruction pattern should have"
3554                " void types, has types " +
3555                OS.str());
3556     }
3557 
3558     // Find inputs and outputs, and verify the structure of the uses/defs.
3559     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3560                                 InstImpResults);
3561   }
3562 
3563   // Now that we have inputs and outputs of the pattern, inspect the operands
3564   // list for the instruction.  This determines the order that operands are
3565   // added to the machine instruction the node corresponds to.
3566   unsigned NumResults = InstResults.size();
3567 
3568   // Parse the operands list from the (ops) list, validating it.
3569   assert(I.getArgList().empty() && "Args list should still be empty here!");
3570 
3571   // Check that all of the results occur first in the list.
3572   std::vector<Record*> Results;
3573   std::vector<unsigned> ResultIndices;
3574   SmallVector<TreePatternNodePtr, 2> ResNodes;
3575   for (unsigned i = 0; i != NumResults; ++i) {
3576     if (i == CGI.Operands.size()) {
3577       const std::string &OpName =
3578           std::find_if(InstResults.begin(), InstResults.end(),
3579                        [](const std::pair<std::string, TreePatternNodePtr> &P) {
3580                          return P.second;
3581                        })
3582               ->first;
3583 
3584       I.error("'" + OpName + "' set but does not appear in operand list!");
3585     }
3586 
3587     const std::string &OpName = CGI.Operands[i].Name;
3588 
3589     // Check that it exists in InstResults.
3590     auto InstResultIter = InstResults.find(OpName);
3591     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3592       I.error("Operand $" + OpName + " does not exist in operand list!");
3593 
3594     TreePatternNodePtr RNode = InstResultIter->second;
3595     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3596     ResNodes.push_back(std::move(RNode));
3597     if (!R)
3598       I.error("Operand $" + OpName + " should be a set destination: all "
3599                "outputs must occur before inputs in operand list!");
3600 
3601     if (!checkOperandClass(CGI.Operands[i], R))
3602       I.error("Operand $" + OpName + " class mismatch!");
3603 
3604     // Remember the return type.
3605     Results.push_back(CGI.Operands[i].Rec);
3606 
3607     // Remember the result index.
3608     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3609 
3610     // Okay, this one checks out.
3611     InstResultIter->second = nullptr;
3612   }
3613 
3614   // Loop over the inputs next.
3615   std::vector<TreePatternNodePtr> ResultNodeOperands;
3616   std::vector<Record*> Operands;
3617   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3618     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3619     const std::string &OpName = Op.Name;
3620     if (OpName.empty())
3621       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3622 
3623     if (!InstInputs.count(OpName)) {
3624       // If this is an operand with a DefaultOps set filled in, we can ignore
3625       // this.  When we codegen it, we will do so as always executed.
3626       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3627         // Does it have a non-empty DefaultOps field?  If so, ignore this
3628         // operand.
3629         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3630           continue;
3631       }
3632       I.error("Operand $" + OpName +
3633                " does not appear in the instruction pattern");
3634     }
3635     TreePatternNodePtr InVal = InstInputs[OpName];
3636     InstInputs.erase(OpName);   // It occurred, remove from map.
3637 
3638     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3639       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3640       if (!checkOperandClass(Op, InRec))
3641         I.error("Operand $" + OpName + "'s register class disagrees"
3642                  " between the operand and pattern");
3643     }
3644     Operands.push_back(Op.Rec);
3645 
3646     // Construct the result for the dest-pattern operand list.
3647     TreePatternNodePtr OpNode = InVal->clone();
3648 
3649     // No predicate is useful on the result.
3650     OpNode->clearPredicateCalls();
3651 
3652     // Promote the xform function to be an explicit node if set.
3653     if (Record *Xform = OpNode->getTransformFn()) {
3654       OpNode->setTransformFn(nullptr);
3655       std::vector<TreePatternNodePtr> Children;
3656       Children.push_back(OpNode);
3657       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3658                                                  OpNode->getNumTypes());
3659     }
3660 
3661     ResultNodeOperands.push_back(std::move(OpNode));
3662   }
3663 
3664   if (!InstInputs.empty())
3665     I.error("Input operand $" + InstInputs.begin()->first +
3666             " occurs in pattern but not in operands list!");
3667 
3668   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3669       I.getRecord(), std::move(ResultNodeOperands),
3670       GetNumNodeResults(I.getRecord(), *this));
3671   // Copy fully inferred output node types to instruction result pattern.
3672   for (unsigned i = 0; i != NumResults; ++i) {
3673     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3674     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3675     ResultPattern->setResultIndex(i, ResultIndices[i]);
3676   }
3677 
3678   // FIXME: Assume only the first tree is the pattern. The others are clobber
3679   // nodes.
3680   TreePatternNodePtr Pattern = I.getTree(0);
3681   TreePatternNodePtr SrcPattern;
3682   if (Pattern->getOperator()->getName() == "set") {
3683     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3684   } else{
3685     // Not a set (store or something?)
3686     SrcPattern = Pattern;
3687   }
3688 
3689   // Create and insert the instruction.
3690   // FIXME: InstImpResults should not be part of DAGInstruction.
3691   Record *R = I.getRecord();
3692   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3693                    std::forward_as_tuple(Results, Operands, InstImpResults,
3694                                          SrcPattern, ResultPattern));
3695 
3696   LLVM_DEBUG(I.dump());
3697 }
3698 
3699 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3700 /// any fragments involved.  This populates the Instructions list with fully
3701 /// resolved instructions.
ParseInstructions()3702 void CodeGenDAGPatterns::ParseInstructions() {
3703   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3704 
3705   for (Record *Instr : Instrs) {
3706     ListInit *LI = nullptr;
3707 
3708     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3709       LI = Instr->getValueAsListInit("Pattern");
3710 
3711     // If there is no pattern, only collect minimal information about the
3712     // instruction for its operand list.  We have to assume that there is one
3713     // result, as we have no detailed info. A pattern which references the
3714     // null_frag operator is as-if no pattern were specified. Normally this
3715     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3716     // null_frag.
3717     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3718       std::vector<Record*> Results;
3719       std::vector<Record*> Operands;
3720 
3721       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3722 
3723       if (InstInfo.Operands.size() != 0) {
3724         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3725           Results.push_back(InstInfo.Operands[j].Rec);
3726 
3727         // The rest are inputs.
3728         for (unsigned j = InstInfo.Operands.NumDefs,
3729                e = InstInfo.Operands.size(); j < e; ++j)
3730           Operands.push_back(InstInfo.Operands[j].Rec);
3731       }
3732 
3733       // Create and insert the instruction.
3734       std::vector<Record*> ImpResults;
3735       Instructions.insert(std::make_pair(Instr,
3736                             DAGInstruction(Results, Operands, ImpResults)));
3737       continue;  // no pattern.
3738     }
3739 
3740     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3741     parseInstructionPattern(CGI, LI, Instructions);
3742   }
3743 
3744   // If we can, convert the instructions to be patterns that are matched!
3745   for (auto &Entry : Instructions) {
3746     Record *Instr = Entry.first;
3747     DAGInstruction &TheInst = Entry.second;
3748     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3749     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3750 
3751     if (SrcPattern && ResultPattern) {
3752       TreePattern Pattern(Instr, SrcPattern, true, *this);
3753       TreePattern Result(Instr, ResultPattern, false, *this);
3754       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3755     }
3756   }
3757 }
3758 
3759 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3760 
FindNames(TreePatternNode * P,std::map<std::string,NameRecord> & Names,TreePattern * PatternTop)3761 static void FindNames(TreePatternNode *P,
3762                       std::map<std::string, NameRecord> &Names,
3763                       TreePattern *PatternTop) {
3764   if (!P->getName().empty()) {
3765     NameRecord &Rec = Names[P->getName()];
3766     // If this is the first instance of the name, remember the node.
3767     if (Rec.second++ == 0)
3768       Rec.first = P;
3769     else if (Rec.first->getExtTypes() != P->getExtTypes())
3770       PatternTop->error("repetition of value: $" + P->getName() +
3771                         " where different uses have different types!");
3772   }
3773 
3774   if (!P->isLeaf()) {
3775     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3776       FindNames(P->getChild(i), Names, PatternTop);
3777   }
3778 }
3779 
makePredList(ListInit * L)3780 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3781   std::vector<Predicate> Preds;
3782   for (Init *I : L->getValues()) {
3783     if (DefInit *Pred = dyn_cast<DefInit>(I))
3784       Preds.push_back(Pred->getDef());
3785     else
3786       llvm_unreachable("Non-def on the list");
3787   }
3788 
3789   // Sort so that different orders get canonicalized to the same string.
3790   llvm::sort(Preds);
3791   return Preds;
3792 }
3793 
AddPatternToMatch(TreePattern * Pattern,PatternToMatch && PTM)3794 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3795                                            PatternToMatch &&PTM) {
3796   // Do some sanity checking on the pattern we're about to match.
3797   std::string Reason;
3798   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3799     PrintWarning(Pattern->getRecord()->getLoc(),
3800       Twine("Pattern can never match: ") + Reason);
3801     return;
3802   }
3803 
3804   // If the source pattern's root is a complex pattern, that complex pattern
3805   // must specify the nodes it can potentially match.
3806   if (const ComplexPattern *CP =
3807         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3808     if (CP->getRootNodes().empty())
3809       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3810                      " could match");
3811 
3812 
3813   // Find all of the named values in the input and output, ensure they have the
3814   // same type.
3815   std::map<std::string, NameRecord> SrcNames, DstNames;
3816   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3817   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3818 
3819   // Scan all of the named values in the destination pattern, rejecting them if
3820   // they don't exist in the input pattern.
3821   for (const auto &Entry : DstNames) {
3822     if (SrcNames[Entry.first].first == nullptr)
3823       Pattern->error("Pattern has input without matching name in output: $" +
3824                      Entry.first);
3825   }
3826 
3827   // Scan all of the named values in the source pattern, rejecting them if the
3828   // name isn't used in the dest, and isn't used to tie two values together.
3829   for (const auto &Entry : SrcNames)
3830     if (DstNames[Entry.first].first == nullptr &&
3831         SrcNames[Entry.first].second == 1)
3832       Pattern->error("Pattern has dead named input: $" + Entry.first);
3833 
3834   PatternsToMatch.push_back(PTM);
3835 }
3836 
InferInstructionFlags()3837 void CodeGenDAGPatterns::InferInstructionFlags() {
3838   ArrayRef<const CodeGenInstruction*> Instructions =
3839     Target.getInstructionsByEnumValue();
3840 
3841   unsigned Errors = 0;
3842 
3843   // Try to infer flags from all patterns in PatternToMatch.  These include
3844   // both the primary instruction patterns (which always come first) and
3845   // patterns defined outside the instruction.
3846   for (const PatternToMatch &PTM : ptms()) {
3847     // We can only infer from single-instruction patterns, otherwise we won't
3848     // know which instruction should get the flags.
3849     SmallVector<Record*, 8> PatInstrs;
3850     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3851     if (PatInstrs.size() != 1)
3852       continue;
3853 
3854     // Get the single instruction.
3855     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3856 
3857     // Only infer properties from the first pattern. We'll verify the others.
3858     if (InstInfo.InferredFrom)
3859       continue;
3860 
3861     InstAnalyzer PatInfo(*this);
3862     PatInfo.Analyze(PTM);
3863     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3864   }
3865 
3866   if (Errors)
3867     PrintFatalError("pattern conflicts");
3868 
3869   // If requested by the target, guess any undefined properties.
3870   if (Target.guessInstructionProperties()) {
3871     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3872       CodeGenInstruction *InstInfo =
3873         const_cast<CodeGenInstruction *>(Instructions[i]);
3874       if (InstInfo->InferredFrom)
3875         continue;
3876       // The mayLoad and mayStore flags default to false.
3877       // Conservatively assume hasSideEffects if it wasn't explicit.
3878       if (InstInfo->hasSideEffects_Unset)
3879         InstInfo->hasSideEffects = true;
3880     }
3881     return;
3882   }
3883 
3884   // Complain about any flags that are still undefined.
3885   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3886     CodeGenInstruction *InstInfo =
3887       const_cast<CodeGenInstruction *>(Instructions[i]);
3888     if (InstInfo->InferredFrom)
3889       continue;
3890     if (InstInfo->hasSideEffects_Unset)
3891       PrintError(InstInfo->TheDef->getLoc(),
3892                  "Can't infer hasSideEffects from patterns");
3893     if (InstInfo->mayStore_Unset)
3894       PrintError(InstInfo->TheDef->getLoc(),
3895                  "Can't infer mayStore from patterns");
3896     if (InstInfo->mayLoad_Unset)
3897       PrintError(InstInfo->TheDef->getLoc(),
3898                  "Can't infer mayLoad from patterns");
3899   }
3900 }
3901 
3902 
3903 /// Verify instruction flags against pattern node properties.
VerifyInstructionFlags()3904 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3905   unsigned Errors = 0;
3906   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3907     const PatternToMatch &PTM = *I;
3908     SmallVector<Record*, 8> Instrs;
3909     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3910     if (Instrs.empty())
3911       continue;
3912 
3913     // Count the number of instructions with each flag set.
3914     unsigned NumSideEffects = 0;
3915     unsigned NumStores = 0;
3916     unsigned NumLoads = 0;
3917     for (const Record *Instr : Instrs) {
3918       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3919       NumSideEffects += InstInfo.hasSideEffects;
3920       NumStores += InstInfo.mayStore;
3921       NumLoads += InstInfo.mayLoad;
3922     }
3923 
3924     // Analyze the source pattern.
3925     InstAnalyzer PatInfo(*this);
3926     PatInfo.Analyze(PTM);
3927 
3928     // Collect error messages.
3929     SmallVector<std::string, 4> Msgs;
3930 
3931     // Check for missing flags in the output.
3932     // Permit extra flags for now at least.
3933     if (PatInfo.hasSideEffects && !NumSideEffects)
3934       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3935 
3936     // Don't verify store flags on instructions with side effects. At least for
3937     // intrinsics, side effects implies mayStore.
3938     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3939       Msgs.push_back("pattern may store, but mayStore isn't set");
3940 
3941     // Similarly, mayStore implies mayLoad on intrinsics.
3942     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3943       Msgs.push_back("pattern may load, but mayLoad isn't set");
3944 
3945     // Print error messages.
3946     if (Msgs.empty())
3947       continue;
3948     ++Errors;
3949 
3950     for (const std::string &Msg : Msgs)
3951       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3952                  (Instrs.size() == 1 ?
3953                   "instruction" : "output instructions"));
3954     // Provide the location of the relevant instruction definitions.
3955     for (const Record *Instr : Instrs) {
3956       if (Instr != PTM.getSrcRecord())
3957         PrintError(Instr->getLoc(), "defined here");
3958       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3959       if (InstInfo.InferredFrom &&
3960           InstInfo.InferredFrom != InstInfo.TheDef &&
3961           InstInfo.InferredFrom != PTM.getSrcRecord())
3962         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3963     }
3964   }
3965   if (Errors)
3966     PrintFatalError("Errors in DAG patterns");
3967 }
3968 
3969 /// Given a pattern result with an unresolved type, see if we can find one
3970 /// instruction with an unresolved result type.  Force this result type to an
3971 /// arbitrary element if it's possible types to converge results.
ForceArbitraryInstResultType(TreePatternNode * N,TreePattern & TP)3972 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3973   if (N->isLeaf())
3974     return false;
3975 
3976   // Analyze children.
3977   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3978     if (ForceArbitraryInstResultType(N->getChild(i), TP))
3979       return true;
3980 
3981   if (!N->getOperator()->isSubClassOf("Instruction"))
3982     return false;
3983 
3984   // If this type is already concrete or completely unknown we can't do
3985   // anything.
3986   TypeInfer &TI = TP.getInfer();
3987   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3988     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
3989       continue;
3990 
3991     // Otherwise, force its type to an arbitrary choice.
3992     if (TI.forceArbitrary(N->getExtType(i)))
3993       return true;
3994   }
3995 
3996   return false;
3997 }
3998 
3999 // Promote xform function to be an explicit node wherever set.
PromoteXForms(TreePatternNodePtr N)4000 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4001   if (Record *Xform = N->getTransformFn()) {
4002       N->setTransformFn(nullptr);
4003       std::vector<TreePatternNodePtr> Children;
4004       Children.push_back(PromoteXForms(N));
4005       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4006                                                N->getNumTypes());
4007   }
4008 
4009   if (!N->isLeaf())
4010     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4011       TreePatternNodePtr Child = N->getChildShared(i);
4012       N->setChild(i, PromoteXForms(Child));
4013     }
4014   return N;
4015 }
4016 
ParseOnePattern(Record * TheDef,TreePattern & Pattern,TreePattern & Result,const std::vector<Record * > & InstImpResults)4017 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4018        TreePattern &Pattern, TreePattern &Result,
4019        const std::vector<Record *> &InstImpResults) {
4020 
4021   // Inline pattern fragments and expand multiple alternatives.
4022   Pattern.InlinePatternFragments();
4023   Result.InlinePatternFragments();
4024 
4025   if (Result.getNumTrees() != 1)
4026     Result.error("Cannot use multi-alternative fragments in result pattern!");
4027 
4028   // Infer types.
4029   bool IterateInference;
4030   bool InferredAllPatternTypes, InferredAllResultTypes;
4031   do {
4032     // Infer as many types as possible.  If we cannot infer all of them, we
4033     // can never do anything with this pattern: report it to the user.
4034     InferredAllPatternTypes =
4035         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4036 
4037     // Infer as many types as possible.  If we cannot infer all of them, we
4038     // can never do anything with this pattern: report it to the user.
4039     InferredAllResultTypes =
4040         Result.InferAllTypes(&Pattern.getNamedNodesMap());
4041 
4042     IterateInference = false;
4043 
4044     // Apply the type of the result to the source pattern.  This helps us
4045     // resolve cases where the input type is known to be a pointer type (which
4046     // is considered resolved), but the result knows it needs to be 32- or
4047     // 64-bits.  Infer the other way for good measure.
4048     for (auto T : Pattern.getTrees())
4049       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4050                                         T->getNumTypes());
4051          i != e; ++i) {
4052         IterateInference |= T->UpdateNodeType(
4053             i, Result.getOnlyTree()->getExtType(i), Result);
4054         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4055             i, T->getExtType(i), Result);
4056       }
4057 
4058     // If our iteration has converged and the input pattern's types are fully
4059     // resolved but the result pattern is not fully resolved, we may have a
4060     // situation where we have two instructions in the result pattern and
4061     // the instructions require a common register class, but don't care about
4062     // what actual MVT is used.  This is actually a bug in our modelling:
4063     // output patterns should have register classes, not MVTs.
4064     //
4065     // In any case, to handle this, we just go through and disambiguate some
4066     // arbitrary types to the result pattern's nodes.
4067     if (!IterateInference && InferredAllPatternTypes &&
4068         !InferredAllResultTypes)
4069       IterateInference =
4070           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4071   } while (IterateInference);
4072 
4073   // Verify that we inferred enough types that we can do something with the
4074   // pattern and result.  If these fire the user has to add type casts.
4075   if (!InferredAllPatternTypes)
4076     Pattern.error("Could not infer all types in pattern!");
4077   if (!InferredAllResultTypes) {
4078     Pattern.dump();
4079     Result.error("Could not infer all types in pattern result!");
4080   }
4081 
4082   // Promote xform function to be an explicit node wherever set.
4083   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4084 
4085   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4086   Temp.InferAllTypes();
4087 
4088   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4089   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4090 
4091   if (PatternRewriter)
4092     PatternRewriter(&Pattern);
4093 
4094   // A pattern may end up with an "impossible" type, i.e. a situation
4095   // where all types have been eliminated for some node in this pattern.
4096   // This could occur for intrinsics that only make sense for a specific
4097   // value type, and use a specific register class. If, for some mode,
4098   // that register class does not accept that type, the type inference
4099   // will lead to a contradiction, which is not an error however, but
4100   // a sign that this pattern will simply never match.
4101   if (Temp.getOnlyTree()->hasPossibleType())
4102     for (auto T : Pattern.getTrees())
4103       if (T->hasPossibleType())
4104         AddPatternToMatch(&Pattern,
4105                           PatternToMatch(TheDef, makePredList(Preds),
4106                                          T, Temp.getOnlyTree(),
4107                                          InstImpResults, Complexity,
4108                                          TheDef->getID()));
4109 }
4110 
ParsePatterns()4111 void CodeGenDAGPatterns::ParsePatterns() {
4112   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4113 
4114   for (Record *CurPattern : Patterns) {
4115     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4116 
4117     // If the pattern references the null_frag, there's nothing to do.
4118     if (hasNullFragReference(Tree))
4119       continue;
4120 
4121     TreePattern Pattern(CurPattern, Tree, true, *this);
4122 
4123     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4124     if (LI->empty()) continue;  // no pattern.
4125 
4126     // Parse the instruction.
4127     TreePattern Result(CurPattern, LI, false, *this);
4128 
4129     if (Result.getNumTrees() != 1)
4130       Result.error("Cannot handle instructions producing instructions "
4131                    "with temporaries yet!");
4132 
4133     // Validate that the input pattern is correct.
4134     std::map<std::string, TreePatternNodePtr> InstInputs;
4135     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4136         InstResults;
4137     std::vector<Record*> InstImpResults;
4138     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4139       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4140                                   InstResults, InstImpResults);
4141 
4142     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4143   }
4144 }
4145 
collectModes(std::set<unsigned> & Modes,const TreePatternNode * N)4146 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4147   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4148     for (const auto &I : VTS)
4149       Modes.insert(I.first);
4150 
4151   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4152     collectModes(Modes, N->getChild(i));
4153 }
4154 
ExpandHwModeBasedTypes()4155 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4156   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4157   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4158   std::vector<PatternToMatch> Copy = PatternsToMatch;
4159   PatternsToMatch.clear();
4160 
4161   auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4162     TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4163     TreePatternNodePtr NewDst = P.DstPattern->clone();
4164     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4165       return;
4166     }
4167 
4168     std::vector<Predicate> Preds = P.Predicates;
4169     const std::vector<Predicate> &MC = ModeChecks[Mode];
4170     Preds.insert(Preds.end(), MC.begin(), MC.end());
4171     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4172                                  std::move(NewDst), P.getDstRegs(),
4173                                  P.getAddedComplexity(), Record::getNewUID(),
4174                                  Mode);
4175   };
4176 
4177   for (PatternToMatch &P : Copy) {
4178     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4179     if (P.SrcPattern->hasProperTypeByHwMode())
4180       SrcP = P.SrcPattern;
4181     if (P.DstPattern->hasProperTypeByHwMode())
4182       DstP = P.DstPattern;
4183     if (!SrcP && !DstP) {
4184       PatternsToMatch.push_back(P);
4185       continue;
4186     }
4187 
4188     std::set<unsigned> Modes;
4189     if (SrcP)
4190       collectModes(Modes, SrcP.get());
4191     if (DstP)
4192       collectModes(Modes, DstP.get());
4193 
4194     // The predicate for the default mode needs to be constructed for each
4195     // pattern separately.
4196     // Since not all modes must be present in each pattern, if a mode m is
4197     // absent, then there is no point in constructing a check for m. If such
4198     // a check was created, it would be equivalent to checking the default
4199     // mode, except not all modes' predicates would be a part of the checking
4200     // code. The subsequently generated check for the default mode would then
4201     // have the exact same patterns, but a different predicate code. To avoid
4202     // duplicated patterns with different predicate checks, construct the
4203     // default check as a negation of all predicates that are actually present
4204     // in the source/destination patterns.
4205     std::vector<Predicate> DefaultPred;
4206 
4207     for (unsigned M : Modes) {
4208       if (M == DefaultMode)
4209         continue;
4210       if (ModeChecks.find(M) != ModeChecks.end())
4211         continue;
4212 
4213       // Fill the map entry for this mode.
4214       const HwMode &HM = CGH.getMode(M);
4215       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4216 
4217       // Add negations of the HM's predicates to the default predicate.
4218       DefaultPred.emplace_back(Predicate(HM.Features, false));
4219     }
4220 
4221     for (unsigned M : Modes) {
4222       if (M == DefaultMode)
4223         continue;
4224       AppendPattern(P, M);
4225     }
4226 
4227     bool HasDefault = Modes.count(DefaultMode);
4228     if (HasDefault)
4229       AppendPattern(P, DefaultMode);
4230   }
4231 }
4232 
4233 /// Dependent variable map for CodeGenDAGPattern variant generation
4234 typedef StringMap<int> DepVarMap;
4235 
FindDepVarsOf(TreePatternNode * N,DepVarMap & DepMap)4236 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4237   if (N->isLeaf()) {
4238     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4239       DepMap[N->getName()]++;
4240   } else {
4241     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4242       FindDepVarsOf(N->getChild(i), DepMap);
4243   }
4244 }
4245 
4246 /// Find dependent variables within child patterns
FindDepVars(TreePatternNode * N,MultipleUseVarSet & DepVars)4247 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4248   DepVarMap depcounts;
4249   FindDepVarsOf(N, depcounts);
4250   for (const auto &Pair : depcounts) {
4251     if (Pair.getValue() > 1)
4252       DepVars.insert(Pair.getKey());
4253   }
4254 }
4255 
4256 #ifndef NDEBUG
4257 /// Dump the dependent variable set:
DumpDepVars(MultipleUseVarSet & DepVars)4258 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4259   if (DepVars.empty()) {
4260     LLVM_DEBUG(errs() << "<empty set>");
4261   } else {
4262     LLVM_DEBUG(errs() << "[ ");
4263     for (const auto &DepVar : DepVars) {
4264       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4265     }
4266     LLVM_DEBUG(errs() << "]");
4267   }
4268 }
4269 #endif
4270 
4271 
4272 /// CombineChildVariants - Given a bunch of permutations of each child of the
4273 /// 'operator' node, put them together in all possible ways.
CombineChildVariants(TreePatternNodePtr Orig,const std::vector<std::vector<TreePatternNodePtr>> & ChildVariants,std::vector<TreePatternNodePtr> & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)4274 static void CombineChildVariants(
4275     TreePatternNodePtr Orig,
4276     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4277     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4278     const MultipleUseVarSet &DepVars) {
4279   // Make sure that each operand has at least one variant to choose from.
4280   for (const auto &Variants : ChildVariants)
4281     if (Variants.empty())
4282       return;
4283 
4284   // The end result is an all-pairs construction of the resultant pattern.
4285   std::vector<unsigned> Idxs;
4286   Idxs.resize(ChildVariants.size());
4287   bool NotDone;
4288   do {
4289 #ifndef NDEBUG
4290     LLVM_DEBUG(if (!Idxs.empty()) {
4291       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4292       for (unsigned Idx : Idxs) {
4293         errs() << Idx << " ";
4294       }
4295       errs() << "]\n";
4296     });
4297 #endif
4298     // Create the variant and add it to the output list.
4299     std::vector<TreePatternNodePtr> NewChildren;
4300     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4301       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4302     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4303         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4304 
4305     // Copy over properties.
4306     R->setName(Orig->getName());
4307     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4308     R->setPredicateCalls(Orig->getPredicateCalls());
4309     R->setTransformFn(Orig->getTransformFn());
4310     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4311       R->setType(i, Orig->getExtType(i));
4312 
4313     // If this pattern cannot match, do not include it as a variant.
4314     std::string ErrString;
4315     // Scan to see if this pattern has already been emitted.  We can get
4316     // duplication due to things like commuting:
4317     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4318     // which are the same pattern.  Ignore the dups.
4319     if (R->canPatternMatch(ErrString, CDP) &&
4320         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4321           return R->isIsomorphicTo(Variant.get(), DepVars);
4322         }))
4323       OutVariants.push_back(R);
4324 
4325     // Increment indices to the next permutation by incrementing the
4326     // indices from last index backward, e.g., generate the sequence
4327     // [0, 0], [0, 1], [1, 0], [1, 1].
4328     int IdxsIdx;
4329     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4330       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4331         Idxs[IdxsIdx] = 0;
4332       else
4333         break;
4334     }
4335     NotDone = (IdxsIdx >= 0);
4336   } while (NotDone);
4337 }
4338 
4339 /// CombineChildVariants - A helper function for binary operators.
4340 ///
CombineChildVariants(TreePatternNodePtr Orig,const std::vector<TreePatternNodePtr> & LHS,const std::vector<TreePatternNodePtr> & RHS,std::vector<TreePatternNodePtr> & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)4341 static void CombineChildVariants(TreePatternNodePtr Orig,
4342                                  const std::vector<TreePatternNodePtr> &LHS,
4343                                  const std::vector<TreePatternNodePtr> &RHS,
4344                                  std::vector<TreePatternNodePtr> &OutVariants,
4345                                  CodeGenDAGPatterns &CDP,
4346                                  const MultipleUseVarSet &DepVars) {
4347   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4348   ChildVariants.push_back(LHS);
4349   ChildVariants.push_back(RHS);
4350   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4351 }
4352 
4353 static void
GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,std::vector<TreePatternNodePtr> & Children)4354 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4355                                   std::vector<TreePatternNodePtr> &Children) {
4356   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4357   Record *Operator = N->getOperator();
4358 
4359   // Only permit raw nodes.
4360   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4361       N->getTransformFn()) {
4362     Children.push_back(N);
4363     return;
4364   }
4365 
4366   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4367     Children.push_back(N->getChildShared(0));
4368   else
4369     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4370 
4371   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4372     Children.push_back(N->getChildShared(1));
4373   else
4374     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4375 }
4376 
4377 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4378 /// the (potentially recursive) pattern by using algebraic laws.
4379 ///
GenerateVariantsOf(TreePatternNodePtr N,std::vector<TreePatternNodePtr> & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)4380 static void GenerateVariantsOf(TreePatternNodePtr N,
4381                                std::vector<TreePatternNodePtr> &OutVariants,
4382                                CodeGenDAGPatterns &CDP,
4383                                const MultipleUseVarSet &DepVars) {
4384   // We cannot permute leaves or ComplexPattern uses.
4385   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4386     OutVariants.push_back(N);
4387     return;
4388   }
4389 
4390   // Look up interesting info about the node.
4391   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4392 
4393   // If this node is associative, re-associate.
4394   if (NodeInfo.hasProperty(SDNPAssociative)) {
4395     // Re-associate by pulling together all of the linked operators
4396     std::vector<TreePatternNodePtr> MaximalChildren;
4397     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4398 
4399     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4400     // permutations.
4401     if (MaximalChildren.size() == 3) {
4402       // Find the variants of all of our maximal children.
4403       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4404       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4405       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4406       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4407 
4408       // There are only two ways we can permute the tree:
4409       //   (A op B) op C    and    A op (B op C)
4410       // Within these forms, we can also permute A/B/C.
4411 
4412       // Generate legal pair permutations of A/B/C.
4413       std::vector<TreePatternNodePtr> ABVariants;
4414       std::vector<TreePatternNodePtr> BAVariants;
4415       std::vector<TreePatternNodePtr> ACVariants;
4416       std::vector<TreePatternNodePtr> CAVariants;
4417       std::vector<TreePatternNodePtr> BCVariants;
4418       std::vector<TreePatternNodePtr> CBVariants;
4419       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4420       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4421       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4422       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4423       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4424       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4425 
4426       // Combine those into the result: (x op x) op x
4427       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4428       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4429       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4430       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4431       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4432       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4433 
4434       // Combine those into the result: x op (x op x)
4435       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4436       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4437       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4438       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4439       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4440       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4441       return;
4442     }
4443   }
4444 
4445   // Compute permutations of all children.
4446   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4447   ChildVariants.resize(N->getNumChildren());
4448   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4449     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4450 
4451   // Build all permutations based on how the children were formed.
4452   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4453 
4454   // If this node is commutative, consider the commuted order.
4455   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4456   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4457     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4458            "Commutative but doesn't have 2 children!");
4459     // Don't count children which are actually register references.
4460     unsigned NC = 0;
4461     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4462       TreePatternNode *Child = N->getChild(i);
4463       if (Child->isLeaf())
4464         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4465           Record *RR = DI->getDef();
4466           if (RR->isSubClassOf("Register"))
4467             continue;
4468         }
4469       NC++;
4470     }
4471     // Consider the commuted order.
4472     if (isCommIntrinsic) {
4473       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4474       // operands are the commutative operands, and there might be more operands
4475       // after those.
4476       assert(NC >= 3 &&
4477              "Commutative intrinsic should have at least 3 children!");
4478       std::vector<std::vector<TreePatternNodePtr>> Variants;
4479       Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4480       Variants.push_back(std::move(ChildVariants[2]));
4481       Variants.push_back(std::move(ChildVariants[1]));
4482       for (unsigned i = 3; i != NC; ++i)
4483         Variants.push_back(std::move(ChildVariants[i]));
4484       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4485     } else if (NC == N->getNumChildren()) {
4486       std::vector<std::vector<TreePatternNodePtr>> Variants;
4487       Variants.push_back(std::move(ChildVariants[1]));
4488       Variants.push_back(std::move(ChildVariants[0]));
4489       for (unsigned i = 2; i != NC; ++i)
4490         Variants.push_back(std::move(ChildVariants[i]));
4491       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4492     }
4493   }
4494 }
4495 
4496 
4497 // GenerateVariants - Generate variants.  For example, commutative patterns can
4498 // match multiple ways.  Add them to PatternsToMatch as well.
GenerateVariants()4499 void CodeGenDAGPatterns::GenerateVariants() {
4500   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4501 
4502   // Loop over all of the patterns we've collected, checking to see if we can
4503   // generate variants of the instruction, through the exploitation of
4504   // identities.  This permits the target to provide aggressive matching without
4505   // the .td file having to contain tons of variants of instructions.
4506   //
4507   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4508   // intentionally do not reconsider these.  Any variants of added patterns have
4509   // already been added.
4510   //
4511   const unsigned NumOriginalPatterns = PatternsToMatch.size();
4512   BitVector MatchedPatterns(NumOriginalPatterns);
4513   std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4514                                            BitVector(NumOriginalPatterns));
4515 
4516   typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4517       DepsAndVariants;
4518   std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4519 
4520   // Collect patterns with more than one variant.
4521   for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4522     MultipleUseVarSet DepVars;
4523     std::vector<TreePatternNodePtr> Variants;
4524     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4525     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4526     LLVM_DEBUG(DumpDepVars(DepVars));
4527     LLVM_DEBUG(errs() << "\n");
4528     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4529                        *this, DepVars);
4530 
4531     assert(!Variants.empty() && "Must create at least original variant!");
4532     if (Variants.size() == 1) // No additional variants for this pattern.
4533       continue;
4534 
4535     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4536                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4537 
4538     PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4539 
4540     // Cache matching predicates.
4541     if (MatchedPatterns[i])
4542       continue;
4543 
4544     const std::vector<Predicate> &Predicates =
4545         PatternsToMatch[i].getPredicates();
4546 
4547     BitVector &Matches = MatchedPredicates[i];
4548     MatchedPatterns.set(i);
4549     Matches.set(i);
4550 
4551     // Don't test patterns that have already been cached - it won't match.
4552     for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4553       if (!MatchedPatterns[p])
4554         Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4555 
4556     // Copy this to all the matching patterns.
4557     for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4558       if (p != (int)i) {
4559         MatchedPatterns.set(p);
4560         MatchedPredicates[p] = Matches;
4561       }
4562   }
4563 
4564   for (auto it : PatternsWithVariants) {
4565     unsigned i = it.first;
4566     const MultipleUseVarSet &DepVars = it.second.first;
4567     const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4568 
4569     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4570       TreePatternNodePtr Variant = Variants[v];
4571       BitVector &Matches = MatchedPredicates[i];
4572 
4573       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4574                  errs() << "\n");
4575 
4576       // Scan to see if an instruction or explicit pattern already matches this.
4577       bool AlreadyExists = false;
4578       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4579         // Skip if the top level predicates do not match.
4580         if (!Matches[p])
4581           continue;
4582         // Check to see if this variant already exists.
4583         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4584                                     DepVars)) {
4585           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4586           AlreadyExists = true;
4587           break;
4588         }
4589       }
4590       // If we already have it, ignore the variant.
4591       if (AlreadyExists) continue;
4592 
4593       // Otherwise, add it to the list of patterns we have.
4594       PatternsToMatch.push_back(PatternToMatch(
4595           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4596           Variant, PatternsToMatch[i].getDstPatternShared(),
4597           PatternsToMatch[i].getDstRegs(),
4598           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4599       MatchedPredicates.push_back(Matches);
4600 
4601       // Add a new match the same as this pattern.
4602       for (auto &P : MatchedPredicates)
4603         P.push_back(P[i]);
4604     }
4605 
4606     LLVM_DEBUG(errs() << "\n");
4607   }
4608 }
4609