1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that Mips uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MipsISelLowering.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MCTargetDesc/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsMCTargetDesc.h"
18 #include "MipsCCState.h"
19 #include "MipsInstrInfo.h"
20 #include "MipsMachineFunction.h"
21 #include "MipsRegisterInfo.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "MipsTargetObjectFile.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/CodeGen/CallingConvLower.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineJumpTableInfo.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/CodeGen/SelectionDAGNodes.h"
46 #include "llvm/CodeGen/TargetFrameLowering.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cctype>
73 #include <cstdint>
74 #include <deque>
75 #include <iterator>
76 #include <utility>
77 #include <vector>
78
79 using namespace llvm;
80
81 #define DEBUG_TYPE "mips-lower"
82
83 STATISTIC(NumTailCalls, "Number of tail calls");
84
85 static cl::opt<bool>
86 LargeGOT("mxgot", cl::Hidden,
87 cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
88
89 static cl::opt<bool>
90 NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
91 cl::desc("MIPS: Don't trap on integer division by zero."),
92 cl::init(false));
93
94 extern cl::opt<bool> EmitJalrReloc;
95
96 static const MCPhysReg Mips64DPRegs[8] = {
97 Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
98 Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
99 };
100
101 // If I is a shifted mask, set the size (Size) and the first bit of the
102 // mask (Pos), and return true.
103 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
isShiftedMask(uint64_t I,uint64_t & Pos,uint64_t & Size)104 static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
105 if (!isShiftedMask_64(I))
106 return false;
107
108 Size = countPopulation(I);
109 Pos = countTrailingZeros(I);
110 return true;
111 }
112
113 // The MIPS MSA ABI passes vector arguments in the integer register set.
114 // The number of integer registers used is dependant on the ABI used.
getRegisterTypeForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const115 MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
116 CallingConv::ID CC,
117 EVT VT) const {
118 if (VT.isVector()) {
119 if (Subtarget.isABI_O32()) {
120 return MVT::i32;
121 } else {
122 return (VT.getSizeInBits() == 32) ? MVT::i32 : MVT::i64;
123 }
124 }
125 return MipsTargetLowering::getRegisterType(Context, VT);
126 }
127
getNumRegistersForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const128 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
129 CallingConv::ID CC,
130 EVT VT) const {
131 if (VT.isVector())
132 return std::max((VT.getSizeInBits() / (Subtarget.isABI_O32() ? 32 : 64)),
133 1U);
134 return MipsTargetLowering::getNumRegisters(Context, VT);
135 }
136
getVectorTypeBreakdownForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT) const137 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
138 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
139 unsigned &NumIntermediates, MVT &RegisterVT) const {
140 // Break down vector types to either 2 i64s or 4 i32s.
141 RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT);
142 IntermediateVT = RegisterVT;
143 NumIntermediates = VT.getSizeInBits() < RegisterVT.getSizeInBits()
144 ? VT.getVectorNumElements()
145 : VT.getSizeInBits() / RegisterVT.getSizeInBits();
146
147 return NumIntermediates;
148 }
149
getGlobalReg(SelectionDAG & DAG,EVT Ty) const150 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
151 MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
152 return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
153 }
154
getTargetNode(GlobalAddressSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const155 SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
156 SelectionDAG &DAG,
157 unsigned Flag) const {
158 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
159 }
160
getTargetNode(ExternalSymbolSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const161 SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
162 SelectionDAG &DAG,
163 unsigned Flag) const {
164 return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
165 }
166
getTargetNode(BlockAddressSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const167 SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
168 SelectionDAG &DAG,
169 unsigned Flag) const {
170 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
171 }
172
getTargetNode(JumpTableSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const173 SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
174 SelectionDAG &DAG,
175 unsigned Flag) const {
176 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
177 }
178
getTargetNode(ConstantPoolSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const179 SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
180 SelectionDAG &DAG,
181 unsigned Flag) const {
182 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
183 N->getOffset(), Flag);
184 }
185
getTargetNodeName(unsigned Opcode) const186 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
187 switch ((MipsISD::NodeType)Opcode) {
188 case MipsISD::FIRST_NUMBER: break;
189 case MipsISD::JmpLink: return "MipsISD::JmpLink";
190 case MipsISD::TailCall: return "MipsISD::TailCall";
191 case MipsISD::Highest: return "MipsISD::Highest";
192 case MipsISD::Higher: return "MipsISD::Higher";
193 case MipsISD::Hi: return "MipsISD::Hi";
194 case MipsISD::Lo: return "MipsISD::Lo";
195 case MipsISD::GotHi: return "MipsISD::GotHi";
196 case MipsISD::TlsHi: return "MipsISD::TlsHi";
197 case MipsISD::GPRel: return "MipsISD::GPRel";
198 case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer";
199 case MipsISD::Ret: return "MipsISD::Ret";
200 case MipsISD::ERet: return "MipsISD::ERet";
201 case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN";
202 case MipsISD::FMS: return "MipsISD::FMS";
203 case MipsISD::FPBrcond: return "MipsISD::FPBrcond";
204 case MipsISD::FPCmp: return "MipsISD::FPCmp";
205 case MipsISD::FSELECT: return "MipsISD::FSELECT";
206 case MipsISD::MTC1_D64: return "MipsISD::MTC1_D64";
207 case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T";
208 case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F";
209 case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP";
210 case MipsISD::MFHI: return "MipsISD::MFHI";
211 case MipsISD::MFLO: return "MipsISD::MFLO";
212 case MipsISD::MTLOHI: return "MipsISD::MTLOHI";
213 case MipsISD::Mult: return "MipsISD::Mult";
214 case MipsISD::Multu: return "MipsISD::Multu";
215 case MipsISD::MAdd: return "MipsISD::MAdd";
216 case MipsISD::MAddu: return "MipsISD::MAddu";
217 case MipsISD::MSub: return "MipsISD::MSub";
218 case MipsISD::MSubu: return "MipsISD::MSubu";
219 case MipsISD::DivRem: return "MipsISD::DivRem";
220 case MipsISD::DivRemU: return "MipsISD::DivRemU";
221 case MipsISD::DivRem16: return "MipsISD::DivRem16";
222 case MipsISD::DivRemU16: return "MipsISD::DivRemU16";
223 case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64";
224 case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
225 case MipsISD::Wrapper: return "MipsISD::Wrapper";
226 case MipsISD::DynAlloc: return "MipsISD::DynAlloc";
227 case MipsISD::Sync: return "MipsISD::Sync";
228 case MipsISD::Ext: return "MipsISD::Ext";
229 case MipsISD::Ins: return "MipsISD::Ins";
230 case MipsISD::CIns: return "MipsISD::CIns";
231 case MipsISD::LWL: return "MipsISD::LWL";
232 case MipsISD::LWR: return "MipsISD::LWR";
233 case MipsISD::SWL: return "MipsISD::SWL";
234 case MipsISD::SWR: return "MipsISD::SWR";
235 case MipsISD::LDL: return "MipsISD::LDL";
236 case MipsISD::LDR: return "MipsISD::LDR";
237 case MipsISD::SDL: return "MipsISD::SDL";
238 case MipsISD::SDR: return "MipsISD::SDR";
239 case MipsISD::EXTP: return "MipsISD::EXTP";
240 case MipsISD::EXTPDP: return "MipsISD::EXTPDP";
241 case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H";
242 case MipsISD::EXTR_W: return "MipsISD::EXTR_W";
243 case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W";
244 case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W";
245 case MipsISD::SHILO: return "MipsISD::SHILO";
246 case MipsISD::MTHLIP: return "MipsISD::MTHLIP";
247 case MipsISD::MULSAQ_S_W_PH: return "MipsISD::MULSAQ_S_W_PH";
248 case MipsISD::MAQ_S_W_PHL: return "MipsISD::MAQ_S_W_PHL";
249 case MipsISD::MAQ_S_W_PHR: return "MipsISD::MAQ_S_W_PHR";
250 case MipsISD::MAQ_SA_W_PHL: return "MipsISD::MAQ_SA_W_PHL";
251 case MipsISD::MAQ_SA_W_PHR: return "MipsISD::MAQ_SA_W_PHR";
252 case MipsISD::DPAU_H_QBL: return "MipsISD::DPAU_H_QBL";
253 case MipsISD::DPAU_H_QBR: return "MipsISD::DPAU_H_QBR";
254 case MipsISD::DPSU_H_QBL: return "MipsISD::DPSU_H_QBL";
255 case MipsISD::DPSU_H_QBR: return "MipsISD::DPSU_H_QBR";
256 case MipsISD::DPAQ_S_W_PH: return "MipsISD::DPAQ_S_W_PH";
257 case MipsISD::DPSQ_S_W_PH: return "MipsISD::DPSQ_S_W_PH";
258 case MipsISD::DPAQ_SA_L_W: return "MipsISD::DPAQ_SA_L_W";
259 case MipsISD::DPSQ_SA_L_W: return "MipsISD::DPSQ_SA_L_W";
260 case MipsISD::DPA_W_PH: return "MipsISD::DPA_W_PH";
261 case MipsISD::DPS_W_PH: return "MipsISD::DPS_W_PH";
262 case MipsISD::DPAQX_S_W_PH: return "MipsISD::DPAQX_S_W_PH";
263 case MipsISD::DPAQX_SA_W_PH: return "MipsISD::DPAQX_SA_W_PH";
264 case MipsISD::DPAX_W_PH: return "MipsISD::DPAX_W_PH";
265 case MipsISD::DPSX_W_PH: return "MipsISD::DPSX_W_PH";
266 case MipsISD::DPSQX_S_W_PH: return "MipsISD::DPSQX_S_W_PH";
267 case MipsISD::DPSQX_SA_W_PH: return "MipsISD::DPSQX_SA_W_PH";
268 case MipsISD::MULSA_W_PH: return "MipsISD::MULSA_W_PH";
269 case MipsISD::MULT: return "MipsISD::MULT";
270 case MipsISD::MULTU: return "MipsISD::MULTU";
271 case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP";
272 case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP";
273 case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP";
274 case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP";
275 case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP";
276 case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP";
277 case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP";
278 case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP";
279 case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP";
280 case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO";
281 case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO";
282 case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO";
283 case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO";
284 case MipsISD::VCEQ: return "MipsISD::VCEQ";
285 case MipsISD::VCLE_S: return "MipsISD::VCLE_S";
286 case MipsISD::VCLE_U: return "MipsISD::VCLE_U";
287 case MipsISD::VCLT_S: return "MipsISD::VCLT_S";
288 case MipsISD::VCLT_U: return "MipsISD::VCLT_U";
289 case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
290 case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
291 case MipsISD::VNOR: return "MipsISD::VNOR";
292 case MipsISD::VSHF: return "MipsISD::VSHF";
293 case MipsISD::SHF: return "MipsISD::SHF";
294 case MipsISD::ILVEV: return "MipsISD::ILVEV";
295 case MipsISD::ILVOD: return "MipsISD::ILVOD";
296 case MipsISD::ILVL: return "MipsISD::ILVL";
297 case MipsISD::ILVR: return "MipsISD::ILVR";
298 case MipsISD::PCKEV: return "MipsISD::PCKEV";
299 case MipsISD::PCKOD: return "MipsISD::PCKOD";
300 case MipsISD::INSVE: return "MipsISD::INSVE";
301 }
302 return nullptr;
303 }
304
MipsTargetLowering(const MipsTargetMachine & TM,const MipsSubtarget & STI)305 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
306 const MipsSubtarget &STI)
307 : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
308 // Mips does not have i1 type, so use i32 for
309 // setcc operations results (slt, sgt, ...).
310 setBooleanContents(ZeroOrOneBooleanContent);
311 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
312 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
313 // does. Integer booleans still use 0 and 1.
314 if (Subtarget.hasMips32r6())
315 setBooleanContents(ZeroOrOneBooleanContent,
316 ZeroOrNegativeOneBooleanContent);
317
318 // Load extented operations for i1 types must be promoted
319 for (MVT VT : MVT::integer_valuetypes()) {
320 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
321 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
322 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
323 }
324
325 // MIPS doesn't have extending float->double load/store. Set LoadExtAction
326 // for f32, f16
327 for (MVT VT : MVT::fp_valuetypes()) {
328 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
329 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
330 }
331
332 // Set LoadExtAction for f16 vectors to Expand
333 for (MVT VT : MVT::fp_vector_valuetypes()) {
334 MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
335 if (F16VT.isValid())
336 setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
337 }
338
339 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
340 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
341
342 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
343
344 // Used by legalize types to correctly generate the setcc result.
345 // Without this, every float setcc comes with a AND/OR with the result,
346 // we don't want this, since the fpcmp result goes to a flag register,
347 // which is used implicitly by brcond and select operations.
348 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
349
350 // Mips Custom Operations
351 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
352 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
353 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
354 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
355 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
356 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
357 setOperationAction(ISD::SELECT, MVT::f32, Custom);
358 setOperationAction(ISD::SELECT, MVT::f64, Custom);
359 setOperationAction(ISD::SELECT, MVT::i32, Custom);
360 setOperationAction(ISD::SETCC, MVT::f32, Custom);
361 setOperationAction(ISD::SETCC, MVT::f64, Custom);
362 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
363 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
364 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
365 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
366
367 if (!(TM.Options.NoNaNsFPMath || Subtarget.inAbs2008Mode())) {
368 setOperationAction(ISD::FABS, MVT::f32, Custom);
369 setOperationAction(ISD::FABS, MVT::f64, Custom);
370 }
371
372 if (Subtarget.isGP64bit()) {
373 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
374 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
375 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
376 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
377 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
378 setOperationAction(ISD::SELECT, MVT::i64, Custom);
379 setOperationAction(ISD::LOAD, MVT::i64, Custom);
380 setOperationAction(ISD::STORE, MVT::i64, Custom);
381 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
382 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
383 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
384 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
385 }
386
387 if (!Subtarget.isGP64bit()) {
388 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
389 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
390 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
391 }
392
393 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
394 if (Subtarget.isGP64bit())
395 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
396
397 setOperationAction(ISD::SDIV, MVT::i32, Expand);
398 setOperationAction(ISD::SREM, MVT::i32, Expand);
399 setOperationAction(ISD::UDIV, MVT::i32, Expand);
400 setOperationAction(ISD::UREM, MVT::i32, Expand);
401 setOperationAction(ISD::SDIV, MVT::i64, Expand);
402 setOperationAction(ISD::SREM, MVT::i64, Expand);
403 setOperationAction(ISD::UDIV, MVT::i64, Expand);
404 setOperationAction(ISD::UREM, MVT::i64, Expand);
405
406 // Operations not directly supported by Mips.
407 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
408 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
409 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
410 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
411 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
412 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
413 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
414 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
415 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
416 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
417 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
418 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
419 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
420 if (Subtarget.hasCnMips()) {
421 setOperationAction(ISD::CTPOP, MVT::i32, Legal);
422 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
423 } else {
424 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
425 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
426 }
427 setOperationAction(ISD::CTTZ, MVT::i32, Expand);
428 setOperationAction(ISD::CTTZ, MVT::i64, Expand);
429 setOperationAction(ISD::ROTL, MVT::i32, Expand);
430 setOperationAction(ISD::ROTL, MVT::i64, Expand);
431 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
432 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
433
434 if (!Subtarget.hasMips32r2())
435 setOperationAction(ISD::ROTR, MVT::i32, Expand);
436
437 if (!Subtarget.hasMips64r2())
438 setOperationAction(ISD::ROTR, MVT::i64, Expand);
439
440 setOperationAction(ISD::FSIN, MVT::f32, Expand);
441 setOperationAction(ISD::FSIN, MVT::f64, Expand);
442 setOperationAction(ISD::FCOS, MVT::f32, Expand);
443 setOperationAction(ISD::FCOS, MVT::f64, Expand);
444 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
445 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
446 setOperationAction(ISD::FPOW, MVT::f32, Expand);
447 setOperationAction(ISD::FPOW, MVT::f64, Expand);
448 setOperationAction(ISD::FLOG, MVT::f32, Expand);
449 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
450 setOperationAction(ISD::FLOG10, MVT::f32, Expand);
451 setOperationAction(ISD::FEXP, MVT::f32, Expand);
452 setOperationAction(ISD::FMA, MVT::f32, Expand);
453 setOperationAction(ISD::FMA, MVT::f64, Expand);
454 setOperationAction(ISD::FREM, MVT::f32, Expand);
455 setOperationAction(ISD::FREM, MVT::f64, Expand);
456
457 // Lower f16 conversion operations into library calls
458 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
459 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
460 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
461 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
462
463 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
464
465 setOperationAction(ISD::VASTART, MVT::Other, Custom);
466 setOperationAction(ISD::VAARG, MVT::Other, Custom);
467 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
468 setOperationAction(ISD::VAEND, MVT::Other, Expand);
469
470 // Use the default for now
471 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
472 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
473
474 if (!Subtarget.isGP64bit()) {
475 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
476 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
477 }
478
479 if (!Subtarget.hasMips32r2()) {
480 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
481 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
482 }
483
484 // MIPS16 lacks MIPS32's clz and clo instructions.
485 if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
486 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
487 if (!Subtarget.hasMips64())
488 setOperationAction(ISD::CTLZ, MVT::i64, Expand);
489
490 if (!Subtarget.hasMips32r2())
491 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
492 if (!Subtarget.hasMips64r2())
493 setOperationAction(ISD::BSWAP, MVT::i64, Expand);
494
495 if (Subtarget.isGP64bit()) {
496 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
497 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
498 setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
499 setTruncStoreAction(MVT::i64, MVT::i32, Custom);
500 }
501
502 setOperationAction(ISD::TRAP, MVT::Other, Legal);
503
504 setTargetDAGCombine(ISD::SDIVREM);
505 setTargetDAGCombine(ISD::UDIVREM);
506 setTargetDAGCombine(ISD::SELECT);
507 setTargetDAGCombine(ISD::AND);
508 setTargetDAGCombine(ISD::OR);
509 setTargetDAGCombine(ISD::ADD);
510 setTargetDAGCombine(ISD::SUB);
511 setTargetDAGCombine(ISD::AssertZext);
512 setTargetDAGCombine(ISD::SHL);
513
514 if (ABI.IsO32()) {
515 // These libcalls are not available in 32-bit.
516 setLibcallName(RTLIB::SHL_I128, nullptr);
517 setLibcallName(RTLIB::SRL_I128, nullptr);
518 setLibcallName(RTLIB::SRA_I128, nullptr);
519 }
520
521 setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2);
522
523 // The arguments on the stack are defined in terms of 4-byte slots on O32
524 // and 8-byte slots on N32/N64.
525 setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? 8 : 4);
526
527 setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
528
529 MaxStoresPerMemcpy = 16;
530
531 isMicroMips = Subtarget.inMicroMipsMode();
532 }
533
create(const MipsTargetMachine & TM,const MipsSubtarget & STI)534 const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM,
535 const MipsSubtarget &STI) {
536 if (STI.inMips16Mode())
537 return createMips16TargetLowering(TM, STI);
538
539 return createMipsSETargetLowering(TM, STI);
540 }
541
542 // Create a fast isel object.
543 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const544 MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
545 const TargetLibraryInfo *libInfo) const {
546 const MipsTargetMachine &TM =
547 static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget());
548
549 // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
550 bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() &&
551 !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() &&
552 !Subtarget.inMicroMipsMode();
553
554 // Disable if either of the following is true:
555 // We do not generate PIC, the ABI is not O32, LargeGOT is being used.
556 if (!TM.isPositionIndependent() || !TM.getABI().IsO32() || LargeGOT)
557 UseFastISel = false;
558
559 return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr;
560 }
561
getSetCCResultType(const DataLayout &,LLVMContext &,EVT VT) const562 EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
563 EVT VT) const {
564 if (!VT.isVector())
565 return MVT::i32;
566 return VT.changeVectorElementTypeToInteger();
567 }
568
performDivRemCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)569 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
570 TargetLowering::DAGCombinerInfo &DCI,
571 const MipsSubtarget &Subtarget) {
572 if (DCI.isBeforeLegalizeOps())
573 return SDValue();
574
575 EVT Ty = N->getValueType(0);
576 unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
577 unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
578 unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
579 MipsISD::DivRemU16;
580 SDLoc DL(N);
581
582 SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
583 N->getOperand(0), N->getOperand(1));
584 SDValue InChain = DAG.getEntryNode();
585 SDValue InGlue = DivRem;
586
587 // insert MFLO
588 if (N->hasAnyUseOfValue(0)) {
589 SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
590 InGlue);
591 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
592 InChain = CopyFromLo.getValue(1);
593 InGlue = CopyFromLo.getValue(2);
594 }
595
596 // insert MFHI
597 if (N->hasAnyUseOfValue(1)) {
598 SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
599 HI, Ty, InGlue);
600 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
601 }
602
603 return SDValue();
604 }
605
condCodeToFCC(ISD::CondCode CC)606 static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
607 switch (CC) {
608 default: llvm_unreachable("Unknown fp condition code!");
609 case ISD::SETEQ:
610 case ISD::SETOEQ: return Mips::FCOND_OEQ;
611 case ISD::SETUNE: return Mips::FCOND_UNE;
612 case ISD::SETLT:
613 case ISD::SETOLT: return Mips::FCOND_OLT;
614 case ISD::SETGT:
615 case ISD::SETOGT: return Mips::FCOND_OGT;
616 case ISD::SETLE:
617 case ISD::SETOLE: return Mips::FCOND_OLE;
618 case ISD::SETGE:
619 case ISD::SETOGE: return Mips::FCOND_OGE;
620 case ISD::SETULT: return Mips::FCOND_ULT;
621 case ISD::SETULE: return Mips::FCOND_ULE;
622 case ISD::SETUGT: return Mips::FCOND_UGT;
623 case ISD::SETUGE: return Mips::FCOND_UGE;
624 case ISD::SETUO: return Mips::FCOND_UN;
625 case ISD::SETO: return Mips::FCOND_OR;
626 case ISD::SETNE:
627 case ISD::SETONE: return Mips::FCOND_ONE;
628 case ISD::SETUEQ: return Mips::FCOND_UEQ;
629 }
630 }
631
632 /// This function returns true if the floating point conditional branches and
633 /// conditional moves which use condition code CC should be inverted.
invertFPCondCodeUser(Mips::CondCode CC)634 static bool invertFPCondCodeUser(Mips::CondCode CC) {
635 if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
636 return false;
637
638 assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
639 "Illegal Condition Code");
640
641 return true;
642 }
643
644 // Creates and returns an FPCmp node from a setcc node.
645 // Returns Op if setcc is not a floating point comparison.
createFPCmp(SelectionDAG & DAG,const SDValue & Op)646 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
647 // must be a SETCC node
648 if (Op.getOpcode() != ISD::SETCC)
649 return Op;
650
651 SDValue LHS = Op.getOperand(0);
652
653 if (!LHS.getValueType().isFloatingPoint())
654 return Op;
655
656 SDValue RHS = Op.getOperand(1);
657 SDLoc DL(Op);
658
659 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
660 // node if necessary.
661 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
662
663 return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
664 DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
665 }
666
667 // Creates and returns a CMovFPT/F node.
createCMovFP(SelectionDAG & DAG,SDValue Cond,SDValue True,SDValue False,const SDLoc & DL)668 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
669 SDValue False, const SDLoc &DL) {
670 ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
671 bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
672 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
673
674 return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
675 True.getValueType(), True, FCC0, False, Cond);
676 }
677
performSELECTCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)678 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
679 TargetLowering::DAGCombinerInfo &DCI,
680 const MipsSubtarget &Subtarget) {
681 if (DCI.isBeforeLegalizeOps())
682 return SDValue();
683
684 SDValue SetCC = N->getOperand(0);
685
686 if ((SetCC.getOpcode() != ISD::SETCC) ||
687 !SetCC.getOperand(0).getValueType().isInteger())
688 return SDValue();
689
690 SDValue False = N->getOperand(2);
691 EVT FalseTy = False.getValueType();
692
693 if (!FalseTy.isInteger())
694 return SDValue();
695
696 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
697
698 // If the RHS (False) is 0, we swap the order of the operands
699 // of ISD::SELECT (obviously also inverting the condition) so that we can
700 // take advantage of conditional moves using the $0 register.
701 // Example:
702 // return (a != 0) ? x : 0;
703 // load $reg, x
704 // movz $reg, $0, a
705 if (!FalseC)
706 return SDValue();
707
708 const SDLoc DL(N);
709
710 if (!FalseC->getZExtValue()) {
711 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
712 SDValue True = N->getOperand(1);
713
714 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
715 SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
716
717 return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
718 }
719
720 // If both operands are integer constants there's a possibility that we
721 // can do some interesting optimizations.
722 SDValue True = N->getOperand(1);
723 ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
724
725 if (!TrueC || !True.getValueType().isInteger())
726 return SDValue();
727
728 // We'll also ignore MVT::i64 operands as this optimizations proves
729 // to be ineffective because of the required sign extensions as the result
730 // of a SETCC operator is always MVT::i32 for non-vector types.
731 if (True.getValueType() == MVT::i64)
732 return SDValue();
733
734 int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
735
736 // 1) (a < x) ? y : y-1
737 // slti $reg1, a, x
738 // addiu $reg2, $reg1, y-1
739 if (Diff == 1)
740 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
741
742 // 2) (a < x) ? y-1 : y
743 // slti $reg1, a, x
744 // xor $reg1, $reg1, 1
745 // addiu $reg2, $reg1, y-1
746 if (Diff == -1) {
747 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
748 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
749 SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
750 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
751 }
752
753 // Could not optimize.
754 return SDValue();
755 }
756
performCMovFPCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)757 static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
758 TargetLowering::DAGCombinerInfo &DCI,
759 const MipsSubtarget &Subtarget) {
760 if (DCI.isBeforeLegalizeOps())
761 return SDValue();
762
763 SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
764
765 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
766 if (!FalseC || FalseC->getZExtValue())
767 return SDValue();
768
769 // Since RHS (False) is 0, we swap the order of the True/False operands
770 // (obviously also inverting the condition) so that we can
771 // take advantage of conditional moves using the $0 register.
772 // Example:
773 // return (a != 0) ? x : 0;
774 // load $reg, x
775 // movz $reg, $0, a
776 unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
777 MipsISD::CMovFP_T;
778
779 SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
780 return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
781 ValueIfFalse, FCC, ValueIfTrue, Glue);
782 }
783
performANDCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)784 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
785 TargetLowering::DAGCombinerInfo &DCI,
786 const MipsSubtarget &Subtarget) {
787 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
788 return SDValue();
789
790 SDValue FirstOperand = N->getOperand(0);
791 unsigned FirstOperandOpc = FirstOperand.getOpcode();
792 SDValue Mask = N->getOperand(1);
793 EVT ValTy = N->getValueType(0);
794 SDLoc DL(N);
795
796 uint64_t Pos = 0, SMPos, SMSize;
797 ConstantSDNode *CN;
798 SDValue NewOperand;
799 unsigned Opc;
800
801 // Op's second operand must be a shifted mask.
802 if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
803 !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
804 return SDValue();
805
806 if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
807 // Pattern match EXT.
808 // $dst = and ((sra or srl) $src , pos), (2**size - 1)
809 // => ext $dst, $src, pos, size
810
811 // The second operand of the shift must be an immediate.
812 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
813 return SDValue();
814
815 Pos = CN->getZExtValue();
816
817 // Return if the shifted mask does not start at bit 0 or the sum of its size
818 // and Pos exceeds the word's size.
819 if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
820 return SDValue();
821
822 Opc = MipsISD::Ext;
823 NewOperand = FirstOperand.getOperand(0);
824 } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) {
825 // Pattern match CINS.
826 // $dst = and (shl $src , pos), mask
827 // => cins $dst, $src, pos, size
828 // mask is a shifted mask with consecutive 1's, pos = shift amount,
829 // size = population count.
830
831 // The second operand of the shift must be an immediate.
832 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
833 return SDValue();
834
835 Pos = CN->getZExtValue();
836
837 if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 ||
838 Pos + SMSize > ValTy.getSizeInBits())
839 return SDValue();
840
841 NewOperand = FirstOperand.getOperand(0);
842 // SMSize is 'location' (position) in this case, not size.
843 SMSize--;
844 Opc = MipsISD::CIns;
845 } else {
846 // Pattern match EXT.
847 // $dst = and $src, (2**size - 1) , if size > 16
848 // => ext $dst, $src, pos, size , pos = 0
849
850 // If the mask is <= 0xffff, andi can be used instead.
851 if (CN->getZExtValue() <= 0xffff)
852 return SDValue();
853
854 // Return if the mask doesn't start at position 0.
855 if (SMPos)
856 return SDValue();
857
858 Opc = MipsISD::Ext;
859 NewOperand = FirstOperand;
860 }
861 return DAG.getNode(Opc, DL, ValTy, NewOperand,
862 DAG.getConstant(Pos, DL, MVT::i32),
863 DAG.getConstant(SMSize, DL, MVT::i32));
864 }
865
performORCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)866 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
867 TargetLowering::DAGCombinerInfo &DCI,
868 const MipsSubtarget &Subtarget) {
869 // Pattern match INS.
870 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
871 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1
872 // => ins $dst, $src, size, pos, $src1
873 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
874 return SDValue();
875
876 SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
877 uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
878 ConstantSDNode *CN, *CN1;
879
880 // See if Op's first operand matches (and $src1 , mask0).
881 if (And0.getOpcode() != ISD::AND)
882 return SDValue();
883
884 if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
885 !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
886 return SDValue();
887
888 // See if Op's second operand matches (and (shl $src, pos), mask1).
889 if (And1.getOpcode() == ISD::AND &&
890 And1.getOperand(0).getOpcode() == ISD::SHL) {
891
892 if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
893 !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
894 return SDValue();
895
896 // The shift masks must have the same position and size.
897 if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
898 return SDValue();
899
900 SDValue Shl = And1.getOperand(0);
901
902 if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
903 return SDValue();
904
905 unsigned Shamt = CN->getZExtValue();
906
907 // Return if the shift amount and the first bit position of mask are not the
908 // same.
909 EVT ValTy = N->getValueType(0);
910 if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
911 return SDValue();
912
913 SDLoc DL(N);
914 return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
915 DAG.getConstant(SMPos0, DL, MVT::i32),
916 DAG.getConstant(SMSize0, DL, MVT::i32),
917 And0.getOperand(0));
918 } else {
919 // Pattern match DINS.
920 // $dst = or (and $src, mask0), mask1
921 // where mask0 = ((1 << SMSize0) -1) << SMPos0
922 // => dins $dst, $src, pos, size
923 if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) &&
924 ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) ||
925 (SMSize0 + SMPos0 <= 32))) {
926 // Check if AND instruction has constant as argument
927 bool isConstCase = And1.getOpcode() != ISD::AND;
928 if (And1.getOpcode() == ISD::AND) {
929 if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1))))
930 return SDValue();
931 } else {
932 if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1))))
933 return SDValue();
934 }
935 // Don't generate INS if constant OR operand doesn't fit into bits
936 // cleared by constant AND operand.
937 if (CN->getSExtValue() & CN1->getSExtValue())
938 return SDValue();
939
940 SDLoc DL(N);
941 EVT ValTy = N->getOperand(0)->getValueType(0);
942 SDValue Const1;
943 SDValue SrlX;
944 if (!isConstCase) {
945 Const1 = DAG.getConstant(SMPos0, DL, MVT::i32);
946 SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1);
947 }
948 return DAG.getNode(
949 MipsISD::Ins, DL, N->getValueType(0),
950 isConstCase
951 ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy)
952 : SrlX,
953 DAG.getConstant(SMPos0, DL, MVT::i32),
954 DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31
955 : SMSize0,
956 DL, MVT::i32),
957 And0->getOperand(0));
958
959 }
960 return SDValue();
961 }
962 }
963
performMADD_MSUBCombine(SDNode * ROOTNode,SelectionDAG & CurDAG,const MipsSubtarget & Subtarget)964 static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG,
965 const MipsSubtarget &Subtarget) {
966 // ROOTNode must have a multiplication as an operand for the match to be
967 // successful.
968 if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL &&
969 ROOTNode->getOperand(1).getOpcode() != ISD::MUL)
970 return SDValue();
971
972 // We don't handle vector types here.
973 if (ROOTNode->getValueType(0).isVector())
974 return SDValue();
975
976 // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
977 // arithmetic. E.g.
978 // (add (mul a b) c) =>
979 // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
980 // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
981 // or
982 // MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
983 //
984 // The overhead of setting up the Hi/Lo registers and reassembling the
985 // result makes this a dubious optimzation for MIPS64. The core of the
986 // problem is that Hi/Lo contain the upper and lower 32 bits of the
987 // operand and result.
988 //
989 // It requires a chain of 4 add/mul for MIPS64R2 to get better code
990 // density than doing it naively, 5 for MIPS64. Additionally, using
991 // madd/msub on MIPS64 requires the operands actually be 32 bit sign
992 // extended operands, not true 64 bit values.
993 //
994 // FIXME: For the moment, disable this completely for MIPS64.
995 if (Subtarget.hasMips64())
996 return SDValue();
997
998 SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
999 ? ROOTNode->getOperand(0)
1000 : ROOTNode->getOperand(1);
1001
1002 SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
1003 ? ROOTNode->getOperand(1)
1004 : ROOTNode->getOperand(0);
1005
1006 // Transform this to a MADD only if the user of this node is the add.
1007 // If there are other users of the mul, this function returns here.
1008 if (!Mult.hasOneUse())
1009 return SDValue();
1010
1011 // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1012 // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1013 // of the multiply must have 32 or more sign bits, otherwise we cannot
1014 // perform this optimization. We have to check this here as we're performing
1015 // this optimization pre-legalization.
1016 SDValue MultLHS = Mult->getOperand(0);
1017 SDValue MultRHS = Mult->getOperand(1);
1018
1019 bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND &&
1020 MultRHS->getOpcode() == ISD::SIGN_EXTEND;
1021 bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND &&
1022 MultRHS->getOpcode() == ISD::ZERO_EXTEND;
1023
1024 if (!IsSigned && !IsUnsigned)
1025 return SDValue();
1026
1027 // Initialize accumulator.
1028 SDLoc DL(ROOTNode);
1029 SDValue TopHalf;
1030 SDValue BottomHalf;
1031 BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1032 CurDAG.getIntPtrConstant(0, DL));
1033
1034 TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1035 CurDAG.getIntPtrConstant(1, DL));
1036 SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
1037 BottomHalf,
1038 TopHalf);
1039
1040 // Create MipsMAdd(u) / MipsMSub(u) node.
1041 bool IsAdd = ROOTNode->getOpcode() == ISD::ADD;
1042 unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd)
1043 : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub);
1044 SDValue MAddOps[3] = {
1045 CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)),
1046 CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn};
1047 EVT VTs[2] = {MVT::i32, MVT::i32};
1048 SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps);
1049
1050 SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
1051 SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
1052 SDValue Combined =
1053 CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi);
1054 return Combined;
1055 }
1056
performSUBCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)1057 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
1058 TargetLowering::DAGCombinerInfo &DCI,
1059 const MipsSubtarget &Subtarget) {
1060 // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1061 if (DCI.isBeforeLegalizeOps()) {
1062 if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1063 !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1064 return performMADD_MSUBCombine(N, DAG, Subtarget);
1065
1066 return SDValue();
1067 }
1068
1069 return SDValue();
1070 }
1071
performADDCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)1072 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
1073 TargetLowering::DAGCombinerInfo &DCI,
1074 const MipsSubtarget &Subtarget) {
1075 // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1076 if (DCI.isBeforeLegalizeOps()) {
1077 if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1078 !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1079 return performMADD_MSUBCombine(N, DAG, Subtarget);
1080
1081 return SDValue();
1082 }
1083
1084 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1085 SDValue Add = N->getOperand(1);
1086
1087 if (Add.getOpcode() != ISD::ADD)
1088 return SDValue();
1089
1090 SDValue Lo = Add.getOperand(1);
1091
1092 if ((Lo.getOpcode() != MipsISD::Lo) ||
1093 (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
1094 return SDValue();
1095
1096 EVT ValTy = N->getValueType(0);
1097 SDLoc DL(N);
1098
1099 SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
1100 Add.getOperand(0));
1101 return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
1102 }
1103
performSHLCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)1104 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
1105 TargetLowering::DAGCombinerInfo &DCI,
1106 const MipsSubtarget &Subtarget) {
1107 // Pattern match CINS.
1108 // $dst = shl (and $src , imm), pos
1109 // => cins $dst, $src, pos, size
1110
1111 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips())
1112 return SDValue();
1113
1114 SDValue FirstOperand = N->getOperand(0);
1115 unsigned FirstOperandOpc = FirstOperand.getOpcode();
1116 SDValue SecondOperand = N->getOperand(1);
1117 EVT ValTy = N->getValueType(0);
1118 SDLoc DL(N);
1119
1120 uint64_t Pos = 0, SMPos, SMSize;
1121 ConstantSDNode *CN;
1122 SDValue NewOperand;
1123
1124 // The second operand of the shift must be an immediate.
1125 if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)))
1126 return SDValue();
1127
1128 Pos = CN->getZExtValue();
1129
1130 if (Pos >= ValTy.getSizeInBits())
1131 return SDValue();
1132
1133 if (FirstOperandOpc != ISD::AND)
1134 return SDValue();
1135
1136 // AND's second operand must be a shifted mask.
1137 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
1138 !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
1139 return SDValue();
1140
1141 // Return if the shifted mask does not start at bit 0 or the sum of its size
1142 // and Pos exceeds the word's size.
1143 if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits())
1144 return SDValue();
1145
1146 NewOperand = FirstOperand.getOperand(0);
1147 // SMSize is 'location' (position) in this case, not size.
1148 SMSize--;
1149
1150 return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand,
1151 DAG.getConstant(Pos, DL, MVT::i32),
1152 DAG.getConstant(SMSize, DL, MVT::i32));
1153 }
1154
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1155 SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
1156 const {
1157 SelectionDAG &DAG = DCI.DAG;
1158 unsigned Opc = N->getOpcode();
1159
1160 switch (Opc) {
1161 default: break;
1162 case ISD::SDIVREM:
1163 case ISD::UDIVREM:
1164 return performDivRemCombine(N, DAG, DCI, Subtarget);
1165 case ISD::SELECT:
1166 return performSELECTCombine(N, DAG, DCI, Subtarget);
1167 case MipsISD::CMovFP_F:
1168 case MipsISD::CMovFP_T:
1169 return performCMovFPCombine(N, DAG, DCI, Subtarget);
1170 case ISD::AND:
1171 return performANDCombine(N, DAG, DCI, Subtarget);
1172 case ISD::OR:
1173 return performORCombine(N, DAG, DCI, Subtarget);
1174 case ISD::ADD:
1175 return performADDCombine(N, DAG, DCI, Subtarget);
1176 case ISD::SHL:
1177 return performSHLCombine(N, DAG, DCI, Subtarget);
1178 case ISD::SUB:
1179 return performSUBCombine(N, DAG, DCI, Subtarget);
1180 }
1181
1182 return SDValue();
1183 }
1184
isCheapToSpeculateCttz() const1185 bool MipsTargetLowering::isCheapToSpeculateCttz() const {
1186 return Subtarget.hasMips32();
1187 }
1188
isCheapToSpeculateCtlz() const1189 bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
1190 return Subtarget.hasMips32();
1191 }
1192
shouldFoldConstantShiftPairToMask(const SDNode * N,CombineLevel Level) const1193 bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
1194 const SDNode *N, CombineLevel Level) const {
1195 if (N->getOperand(0).getValueType().isVector())
1196 return false;
1197 return true;
1198 }
1199
1200 void
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const1201 MipsTargetLowering::LowerOperationWrapper(SDNode *N,
1202 SmallVectorImpl<SDValue> &Results,
1203 SelectionDAG &DAG) const {
1204 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1205
1206 if (Res)
1207 for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1208 Results.push_back(Res.getValue(I));
1209 }
1210
1211 void
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const1212 MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1213 SmallVectorImpl<SDValue> &Results,
1214 SelectionDAG &DAG) const {
1215 return LowerOperationWrapper(N, Results, DAG);
1216 }
1217
1218 SDValue MipsTargetLowering::
LowerOperation(SDValue Op,SelectionDAG & DAG) const1219 LowerOperation(SDValue Op, SelectionDAG &DAG) const
1220 {
1221 switch (Op.getOpcode())
1222 {
1223 case ISD::BRCOND: return lowerBRCOND(Op, DAG);
1224 case ISD::ConstantPool: return lowerConstantPool(Op, DAG);
1225 case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG);
1226 case ISD::BlockAddress: return lowerBlockAddress(Op, DAG);
1227 case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG);
1228 case ISD::JumpTable: return lowerJumpTable(Op, DAG);
1229 case ISD::SELECT: return lowerSELECT(Op, DAG);
1230 case ISD::SETCC: return lowerSETCC(Op, DAG);
1231 case ISD::VASTART: return lowerVASTART(Op, DAG);
1232 case ISD::VAARG: return lowerVAARG(Op, DAG);
1233 case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG);
1234 case ISD::FABS: return lowerFABS(Op, DAG);
1235 case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG);
1236 case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG);
1237 case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG);
1238 case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG);
1239 case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG);
1240 case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true);
1241 case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false);
1242 case ISD::LOAD: return lowerLOAD(Op, DAG);
1243 case ISD::STORE: return lowerSTORE(Op, DAG);
1244 case ISD::EH_DWARF_CFA: return lowerEH_DWARF_CFA(Op, DAG);
1245 case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG);
1246 }
1247 return SDValue();
1248 }
1249
1250 //===----------------------------------------------------------------------===//
1251 // Lower helper functions
1252 //===----------------------------------------------------------------------===//
1253
1254 // addLiveIn - This helper function adds the specified physical register to the
1255 // MachineFunction as a live in value. It also creates a corresponding
1256 // virtual register for it.
1257 static unsigned
addLiveIn(MachineFunction & MF,unsigned PReg,const TargetRegisterClass * RC)1258 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1259 {
1260 unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1261 MF.getRegInfo().addLiveIn(PReg, VReg);
1262 return VReg;
1263 }
1264
insertDivByZeroTrap(MachineInstr & MI,MachineBasicBlock & MBB,const TargetInstrInfo & TII,bool Is64Bit,bool IsMicroMips)1265 static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
1266 MachineBasicBlock &MBB,
1267 const TargetInstrInfo &TII,
1268 bool Is64Bit, bool IsMicroMips) {
1269 if (NoZeroDivCheck)
1270 return &MBB;
1271
1272 // Insert instruction "teq $divisor_reg, $zero, 7".
1273 MachineBasicBlock::iterator I(MI);
1274 MachineInstrBuilder MIB;
1275 MachineOperand &Divisor = MI.getOperand(2);
1276 MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
1277 TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
1278 .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
1279 .addReg(Mips::ZERO)
1280 .addImm(7);
1281
1282 // Use the 32-bit sub-register if this is a 64-bit division.
1283 if (Is64Bit)
1284 MIB->getOperand(0).setSubReg(Mips::sub_32);
1285
1286 // Clear Divisor's kill flag.
1287 Divisor.setIsKill(false);
1288
1289 // We would normally delete the original instruction here but in this case
1290 // we only needed to inject an additional instruction rather than replace it.
1291
1292 return &MBB;
1293 }
1294
1295 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const1296 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1297 MachineBasicBlock *BB) const {
1298 switch (MI.getOpcode()) {
1299 default:
1300 llvm_unreachable("Unexpected instr type to insert");
1301 case Mips::ATOMIC_LOAD_ADD_I8:
1302 return emitAtomicBinaryPartword(MI, BB, 1);
1303 case Mips::ATOMIC_LOAD_ADD_I16:
1304 return emitAtomicBinaryPartword(MI, BB, 2);
1305 case Mips::ATOMIC_LOAD_ADD_I32:
1306 return emitAtomicBinary(MI, BB);
1307 case Mips::ATOMIC_LOAD_ADD_I64:
1308 return emitAtomicBinary(MI, BB);
1309
1310 case Mips::ATOMIC_LOAD_AND_I8:
1311 return emitAtomicBinaryPartword(MI, BB, 1);
1312 case Mips::ATOMIC_LOAD_AND_I16:
1313 return emitAtomicBinaryPartword(MI, BB, 2);
1314 case Mips::ATOMIC_LOAD_AND_I32:
1315 return emitAtomicBinary(MI, BB);
1316 case Mips::ATOMIC_LOAD_AND_I64:
1317 return emitAtomicBinary(MI, BB);
1318
1319 case Mips::ATOMIC_LOAD_OR_I8:
1320 return emitAtomicBinaryPartword(MI, BB, 1);
1321 case Mips::ATOMIC_LOAD_OR_I16:
1322 return emitAtomicBinaryPartword(MI, BB, 2);
1323 case Mips::ATOMIC_LOAD_OR_I32:
1324 return emitAtomicBinary(MI, BB);
1325 case Mips::ATOMIC_LOAD_OR_I64:
1326 return emitAtomicBinary(MI, BB);
1327
1328 case Mips::ATOMIC_LOAD_XOR_I8:
1329 return emitAtomicBinaryPartword(MI, BB, 1);
1330 case Mips::ATOMIC_LOAD_XOR_I16:
1331 return emitAtomicBinaryPartword(MI, BB, 2);
1332 case Mips::ATOMIC_LOAD_XOR_I32:
1333 return emitAtomicBinary(MI, BB);
1334 case Mips::ATOMIC_LOAD_XOR_I64:
1335 return emitAtomicBinary(MI, BB);
1336
1337 case Mips::ATOMIC_LOAD_NAND_I8:
1338 return emitAtomicBinaryPartword(MI, BB, 1);
1339 case Mips::ATOMIC_LOAD_NAND_I16:
1340 return emitAtomicBinaryPartword(MI, BB, 2);
1341 case Mips::ATOMIC_LOAD_NAND_I32:
1342 return emitAtomicBinary(MI, BB);
1343 case Mips::ATOMIC_LOAD_NAND_I64:
1344 return emitAtomicBinary(MI, BB);
1345
1346 case Mips::ATOMIC_LOAD_SUB_I8:
1347 return emitAtomicBinaryPartword(MI, BB, 1);
1348 case Mips::ATOMIC_LOAD_SUB_I16:
1349 return emitAtomicBinaryPartword(MI, BB, 2);
1350 case Mips::ATOMIC_LOAD_SUB_I32:
1351 return emitAtomicBinary(MI, BB);
1352 case Mips::ATOMIC_LOAD_SUB_I64:
1353 return emitAtomicBinary(MI, BB);
1354
1355 case Mips::ATOMIC_SWAP_I8:
1356 return emitAtomicBinaryPartword(MI, BB, 1);
1357 case Mips::ATOMIC_SWAP_I16:
1358 return emitAtomicBinaryPartword(MI, BB, 2);
1359 case Mips::ATOMIC_SWAP_I32:
1360 return emitAtomicBinary(MI, BB);
1361 case Mips::ATOMIC_SWAP_I64:
1362 return emitAtomicBinary(MI, BB);
1363
1364 case Mips::ATOMIC_CMP_SWAP_I8:
1365 return emitAtomicCmpSwapPartword(MI, BB, 1);
1366 case Mips::ATOMIC_CMP_SWAP_I16:
1367 return emitAtomicCmpSwapPartword(MI, BB, 2);
1368 case Mips::ATOMIC_CMP_SWAP_I32:
1369 return emitAtomicCmpSwap(MI, BB);
1370 case Mips::ATOMIC_CMP_SWAP_I64:
1371 return emitAtomicCmpSwap(MI, BB);
1372 case Mips::PseudoSDIV:
1373 case Mips::PseudoUDIV:
1374 case Mips::DIV:
1375 case Mips::DIVU:
1376 case Mips::MOD:
1377 case Mips::MODU:
1378 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
1379 false);
1380 case Mips::SDIV_MM_Pseudo:
1381 case Mips::UDIV_MM_Pseudo:
1382 case Mips::SDIV_MM:
1383 case Mips::UDIV_MM:
1384 case Mips::DIV_MMR6:
1385 case Mips::DIVU_MMR6:
1386 case Mips::MOD_MMR6:
1387 case Mips::MODU_MMR6:
1388 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
1389 case Mips::PseudoDSDIV:
1390 case Mips::PseudoDUDIV:
1391 case Mips::DDIV:
1392 case Mips::DDIVU:
1393 case Mips::DMOD:
1394 case Mips::DMODU:
1395 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);
1396
1397 case Mips::PseudoSELECT_I:
1398 case Mips::PseudoSELECT_I64:
1399 case Mips::PseudoSELECT_S:
1400 case Mips::PseudoSELECT_D32:
1401 case Mips::PseudoSELECT_D64:
1402 return emitPseudoSELECT(MI, BB, false, Mips::BNE);
1403 case Mips::PseudoSELECTFP_F_I:
1404 case Mips::PseudoSELECTFP_F_I64:
1405 case Mips::PseudoSELECTFP_F_S:
1406 case Mips::PseudoSELECTFP_F_D32:
1407 case Mips::PseudoSELECTFP_F_D64:
1408 return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
1409 case Mips::PseudoSELECTFP_T_I:
1410 case Mips::PseudoSELECTFP_T_I64:
1411 case Mips::PseudoSELECTFP_T_S:
1412 case Mips::PseudoSELECTFP_T_D32:
1413 case Mips::PseudoSELECTFP_T_D64:
1414 return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
1415 case Mips::PseudoD_SELECT_I:
1416 case Mips::PseudoD_SELECT_I64:
1417 return emitPseudoD_SELECT(MI, BB);
1418 }
1419 }
1420
1421 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1422 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1423 MachineBasicBlock *
emitAtomicBinary(MachineInstr & MI,MachineBasicBlock * BB) const1424 MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
1425 MachineBasicBlock *BB) const {
1426
1427 MachineFunction *MF = BB->getParent();
1428 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1429 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1430 DebugLoc DL = MI.getDebugLoc();
1431
1432 unsigned AtomicOp;
1433 switch (MI.getOpcode()) {
1434 case Mips::ATOMIC_LOAD_ADD_I32:
1435 AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA;
1436 break;
1437 case Mips::ATOMIC_LOAD_SUB_I32:
1438 AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA;
1439 break;
1440 case Mips::ATOMIC_LOAD_AND_I32:
1441 AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA;
1442 break;
1443 case Mips::ATOMIC_LOAD_OR_I32:
1444 AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA;
1445 break;
1446 case Mips::ATOMIC_LOAD_XOR_I32:
1447 AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA;
1448 break;
1449 case Mips::ATOMIC_LOAD_NAND_I32:
1450 AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA;
1451 break;
1452 case Mips::ATOMIC_SWAP_I32:
1453 AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA;
1454 break;
1455 case Mips::ATOMIC_LOAD_ADD_I64:
1456 AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA;
1457 break;
1458 case Mips::ATOMIC_LOAD_SUB_I64:
1459 AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA;
1460 break;
1461 case Mips::ATOMIC_LOAD_AND_I64:
1462 AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA;
1463 break;
1464 case Mips::ATOMIC_LOAD_OR_I64:
1465 AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA;
1466 break;
1467 case Mips::ATOMIC_LOAD_XOR_I64:
1468 AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA;
1469 break;
1470 case Mips::ATOMIC_LOAD_NAND_I64:
1471 AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA;
1472 break;
1473 case Mips::ATOMIC_SWAP_I64:
1474 AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA;
1475 break;
1476 default:
1477 llvm_unreachable("Unknown pseudo atomic for replacement!");
1478 }
1479
1480 unsigned OldVal = MI.getOperand(0).getReg();
1481 unsigned Ptr = MI.getOperand(1).getReg();
1482 unsigned Incr = MI.getOperand(2).getReg();
1483 unsigned Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
1484
1485 MachineBasicBlock::iterator II(MI);
1486
1487 // The scratch registers here with the EarlyClobber | Define | Implicit
1488 // flags is used to persuade the register allocator and the machine
1489 // verifier to accept the usage of this register. This has to be a real
1490 // register which has an UNDEF value but is dead after the instruction which
1491 // is unique among the registers chosen for the instruction.
1492
1493 // The EarlyClobber flag has the semantic properties that the operand it is
1494 // attached to is clobbered before the rest of the inputs are read. Hence it
1495 // must be unique among the operands to the instruction.
1496 // The Define flag is needed to coerce the machine verifier that an Undef
1497 // value isn't a problem.
1498 // The Dead flag is needed as the value in scratch isn't used by any other
1499 // instruction. Kill isn't used as Dead is more precise.
1500 // The implicit flag is here due to the interaction between the other flags
1501 // and the machine verifier.
1502
1503 // For correctness purpose, a new pseudo is introduced here. We need this
1504 // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1505 // that is spread over >1 basic blocks. A register allocator which
1506 // introduces (or any codegen infact) a store, can violate the expectations
1507 // of the hardware.
1508 //
1509 // An atomic read-modify-write sequence starts with a linked load
1510 // instruction and ends with a store conditional instruction. The atomic
1511 // read-modify-write sequence fails if any of the following conditions
1512 // occur between the execution of ll and sc:
1513 // * A coherent store is completed by another process or coherent I/O
1514 // module into the block of synchronizable physical memory containing
1515 // the word. The size and alignment of the block is
1516 // implementation-dependent.
1517 // * A coherent store is executed between an LL and SC sequence on the
1518 // same processor to the block of synchornizable physical memory
1519 // containing the word.
1520 //
1521
1522 unsigned PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr));
1523 unsigned IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr));
1524
1525 BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr);
1526 BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1527
1528 BuildMI(*BB, II, DL, TII->get(AtomicOp))
1529 .addReg(OldVal, RegState::Define | RegState::EarlyClobber)
1530 .addReg(PtrCopy)
1531 .addReg(IncrCopy)
1532 .addReg(Scratch, RegState::Define | RegState::EarlyClobber |
1533 RegState::Implicit | RegState::Dead);
1534
1535 MI.eraseFromParent();
1536
1537 return BB;
1538 }
1539
emitSignExtendToI32InReg(MachineInstr & MI,MachineBasicBlock * BB,unsigned Size,unsigned DstReg,unsigned SrcReg) const1540 MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
1541 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
1542 unsigned SrcReg) const {
1543 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1544 const DebugLoc &DL = MI.getDebugLoc();
1545
1546 if (Subtarget.hasMips32r2() && Size == 1) {
1547 BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
1548 return BB;
1549 }
1550
1551 if (Subtarget.hasMips32r2() && Size == 2) {
1552 BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
1553 return BB;
1554 }
1555
1556 MachineFunction *MF = BB->getParent();
1557 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1558 const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1559 unsigned ScrReg = RegInfo.createVirtualRegister(RC);
1560
1561 assert(Size < 32);
1562 int64_t ShiftImm = 32 - (Size * 8);
1563
1564 BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
1565 BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
1566
1567 return BB;
1568 }
1569
emitAtomicBinaryPartword(MachineInstr & MI,MachineBasicBlock * BB,unsigned Size) const1570 MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
1571 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1572 assert((Size == 1 || Size == 2) &&
1573 "Unsupported size for EmitAtomicBinaryPartial.");
1574
1575 MachineFunction *MF = BB->getParent();
1576 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1577 const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1578 const bool ArePtrs64bit = ABI.ArePtrs64bit();
1579 const TargetRegisterClass *RCp =
1580 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1581 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1582 DebugLoc DL = MI.getDebugLoc();
1583
1584 unsigned Dest = MI.getOperand(0).getReg();
1585 unsigned Ptr = MI.getOperand(1).getReg();
1586 unsigned Incr = MI.getOperand(2).getReg();
1587
1588 unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
1589 unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1590 unsigned Mask = RegInfo.createVirtualRegister(RC);
1591 unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1592 unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1593 unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1594 unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1595 unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1596 unsigned Scratch = RegInfo.createVirtualRegister(RC);
1597 unsigned Scratch2 = RegInfo.createVirtualRegister(RC);
1598 unsigned Scratch3 = RegInfo.createVirtualRegister(RC);
1599
1600 unsigned AtomicOp = 0;
1601 switch (MI.getOpcode()) {
1602 case Mips::ATOMIC_LOAD_NAND_I8:
1603 AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA;
1604 break;
1605 case Mips::ATOMIC_LOAD_NAND_I16:
1606 AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA;
1607 break;
1608 case Mips::ATOMIC_SWAP_I8:
1609 AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA;
1610 break;
1611 case Mips::ATOMIC_SWAP_I16:
1612 AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA;
1613 break;
1614 case Mips::ATOMIC_LOAD_ADD_I8:
1615 AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA;
1616 break;
1617 case Mips::ATOMIC_LOAD_ADD_I16:
1618 AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA;
1619 break;
1620 case Mips::ATOMIC_LOAD_SUB_I8:
1621 AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA;
1622 break;
1623 case Mips::ATOMIC_LOAD_SUB_I16:
1624 AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA;
1625 break;
1626 case Mips::ATOMIC_LOAD_AND_I8:
1627 AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA;
1628 break;
1629 case Mips::ATOMIC_LOAD_AND_I16:
1630 AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA;
1631 break;
1632 case Mips::ATOMIC_LOAD_OR_I8:
1633 AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA;
1634 break;
1635 case Mips::ATOMIC_LOAD_OR_I16:
1636 AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA;
1637 break;
1638 case Mips::ATOMIC_LOAD_XOR_I8:
1639 AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA;
1640 break;
1641 case Mips::ATOMIC_LOAD_XOR_I16:
1642 AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA;
1643 break;
1644 default:
1645 llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1646 }
1647
1648 // insert new blocks after the current block
1649 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1650 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1651 MachineFunction::iterator It = ++BB->getIterator();
1652 MF->insert(It, exitMBB);
1653
1654 // Transfer the remainder of BB and its successor edges to exitMBB.
1655 exitMBB->splice(exitMBB->begin(), BB,
1656 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1657 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1658
1659 BB->addSuccessor(exitMBB, BranchProbability::getOne());
1660
1661 // thisMBB:
1662 // addiu masklsb2,$0,-4 # 0xfffffffc
1663 // and alignedaddr,ptr,masklsb2
1664 // andi ptrlsb2,ptr,3
1665 // sll shiftamt,ptrlsb2,3
1666 // ori maskupper,$0,255 # 0xff
1667 // sll mask,maskupper,shiftamt
1668 // nor mask2,$0,mask
1669 // sll incr2,incr,shiftamt
1670
1671 int64_t MaskImm = (Size == 1) ? 255 : 65535;
1672 BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
1673 .addReg(ABI.GetNullPtr()).addImm(-4);
1674 BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
1675 .addReg(Ptr).addReg(MaskLSB2);
1676 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1677 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1678 if (Subtarget.isLittle()) {
1679 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1680 } else {
1681 unsigned Off = RegInfo.createVirtualRegister(RC);
1682 BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1683 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1684 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1685 }
1686 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1687 .addReg(Mips::ZERO).addImm(MaskImm);
1688 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1689 .addReg(MaskUpper).addReg(ShiftAmt);
1690 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1691 BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1692
1693
1694 // The purposes of the flags on the scratch registers is explained in
1695 // emitAtomicBinary. In summary, we need a scratch register which is going to
1696 // be undef, that is unique among registers chosen for the instruction.
1697
1698 BuildMI(BB, DL, TII->get(AtomicOp))
1699 .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1700 .addReg(AlignedAddr)
1701 .addReg(Incr2)
1702 .addReg(Mask)
1703 .addReg(Mask2)
1704 .addReg(ShiftAmt)
1705 .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1706 RegState::Dead | RegState::Implicit)
1707 .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
1708 RegState::Dead | RegState::Implicit)
1709 .addReg(Scratch3, RegState::EarlyClobber | RegState::Define |
1710 RegState::Dead | RegState::Implicit);
1711
1712 MI.eraseFromParent(); // The instruction is gone now.
1713
1714 return exitMBB;
1715 }
1716
1717 // Lower atomic compare and swap to a pseudo instruction, taking care to
1718 // define a scratch register for the pseudo instruction's expansion. The
1719 // instruction is expanded after the register allocator as to prevent
1720 // the insertion of stores between the linked load and the store conditional.
1721
1722 MachineBasicBlock *
emitAtomicCmpSwap(MachineInstr & MI,MachineBasicBlock * BB) const1723 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
1724 MachineBasicBlock *BB) const {
1725
1726 assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ||
1727 MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) &&
1728 "Unsupported atomic pseudo for EmitAtomicCmpSwap.");
1729
1730 const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8;
1731
1732 MachineFunction *MF = BB->getParent();
1733 MachineRegisterInfo &MRI = MF->getRegInfo();
1734 const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1735 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1736 DebugLoc DL = MI.getDebugLoc();
1737
1738 unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1739 ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1740 : Mips::ATOMIC_CMP_SWAP_I64_POSTRA;
1741 unsigned Dest = MI.getOperand(0).getReg();
1742 unsigned Ptr = MI.getOperand(1).getReg();
1743 unsigned OldVal = MI.getOperand(2).getReg();
1744 unsigned NewVal = MI.getOperand(3).getReg();
1745
1746 unsigned Scratch = MRI.createVirtualRegister(RC);
1747 MachineBasicBlock::iterator II(MI);
1748
1749 // We need to create copies of the various registers and kill them at the
1750 // atomic pseudo. If the copies are not made, when the atomic is expanded
1751 // after fast register allocation, the spills will end up outside of the
1752 // blocks that their values are defined in, causing livein errors.
1753
1754 unsigned PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr));
1755 unsigned OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal));
1756 unsigned NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal));
1757
1758 BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1759 BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal);
1760 BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal);
1761
1762 // The purposes of the flags on the scratch registers is explained in
1763 // emitAtomicBinary. In summary, we need a scratch register which is going to
1764 // be undef, that is unique among registers chosen for the instruction.
1765
1766 BuildMI(*BB, II, DL, TII->get(AtomicOp))
1767 .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1768 .addReg(PtrCopy, RegState::Kill)
1769 .addReg(OldValCopy, RegState::Kill)
1770 .addReg(NewValCopy, RegState::Kill)
1771 .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1772 RegState::Dead | RegState::Implicit);
1773
1774 MI.eraseFromParent(); // The instruction is gone now.
1775
1776 return BB;
1777 }
1778
emitAtomicCmpSwapPartword(MachineInstr & MI,MachineBasicBlock * BB,unsigned Size) const1779 MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
1780 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1781 assert((Size == 1 || Size == 2) &&
1782 "Unsupported size for EmitAtomicCmpSwapPartial.");
1783
1784 MachineFunction *MF = BB->getParent();
1785 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1786 const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1787 const bool ArePtrs64bit = ABI.ArePtrs64bit();
1788 const TargetRegisterClass *RCp =
1789 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1790 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1791 DebugLoc DL = MI.getDebugLoc();
1792
1793 unsigned Dest = MI.getOperand(0).getReg();
1794 unsigned Ptr = MI.getOperand(1).getReg();
1795 unsigned CmpVal = MI.getOperand(2).getReg();
1796 unsigned NewVal = MI.getOperand(3).getReg();
1797
1798 unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
1799 unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1800 unsigned Mask = RegInfo.createVirtualRegister(RC);
1801 unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1802 unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1803 unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1804 unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1805 unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1806 unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1807 unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1808 unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1809 unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1810 ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1811 : Mips::ATOMIC_CMP_SWAP_I16_POSTRA;
1812
1813 // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1814 // flags are used to coerce the register allocator and the machine verifier to
1815 // accept the usage of these registers.
1816 // The EarlyClobber flag has the semantic properties that the operand it is
1817 // attached to is clobbered before the rest of the inputs are read. Hence it
1818 // must be unique among the operands to the instruction.
1819 // The Define flag is needed to coerce the machine verifier that an Undef
1820 // value isn't a problem.
1821 // The Dead flag is needed as the value in scratch isn't used by any other
1822 // instruction. Kill isn't used as Dead is more precise.
1823 unsigned Scratch = RegInfo.createVirtualRegister(RC);
1824 unsigned Scratch2 = RegInfo.createVirtualRegister(RC);
1825
1826 // insert new blocks after the current block
1827 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1828 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1829 MachineFunction::iterator It = ++BB->getIterator();
1830 MF->insert(It, exitMBB);
1831
1832 // Transfer the remainder of BB and its successor edges to exitMBB.
1833 exitMBB->splice(exitMBB->begin(), BB,
1834 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1835 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1836
1837 BB->addSuccessor(exitMBB, BranchProbability::getOne());
1838
1839 // thisMBB:
1840 // addiu masklsb2,$0,-4 # 0xfffffffc
1841 // and alignedaddr,ptr,masklsb2
1842 // andi ptrlsb2,ptr,3
1843 // xori ptrlsb2,ptrlsb2,3 # Only for BE
1844 // sll shiftamt,ptrlsb2,3
1845 // ori maskupper,$0,255 # 0xff
1846 // sll mask,maskupper,shiftamt
1847 // nor mask2,$0,mask
1848 // andi maskedcmpval,cmpval,255
1849 // sll shiftedcmpval,maskedcmpval,shiftamt
1850 // andi maskednewval,newval,255
1851 // sll shiftednewval,maskednewval,shiftamt
1852 int64_t MaskImm = (Size == 1) ? 255 : 65535;
1853 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
1854 .addReg(ABI.GetNullPtr()).addImm(-4);
1855 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
1856 .addReg(Ptr).addReg(MaskLSB2);
1857 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1858 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1859 if (Subtarget.isLittle()) {
1860 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1861 } else {
1862 unsigned Off = RegInfo.createVirtualRegister(RC);
1863 BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1864 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1865 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1866 }
1867 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1868 .addReg(Mips::ZERO).addImm(MaskImm);
1869 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1870 .addReg(MaskUpper).addReg(ShiftAmt);
1871 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1872 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1873 .addReg(CmpVal).addImm(MaskImm);
1874 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1875 .addReg(MaskedCmpVal).addReg(ShiftAmt);
1876 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1877 .addReg(NewVal).addImm(MaskImm);
1878 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1879 .addReg(MaskedNewVal).addReg(ShiftAmt);
1880
1881 // The purposes of the flags on the scratch registers are explained in
1882 // emitAtomicBinary. In summary, we need a scratch register which is going to
1883 // be undef, that is unique among the register chosen for the instruction.
1884
1885 BuildMI(BB, DL, TII->get(AtomicOp))
1886 .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1887 .addReg(AlignedAddr)
1888 .addReg(Mask)
1889 .addReg(ShiftedCmpVal)
1890 .addReg(Mask2)
1891 .addReg(ShiftedNewVal)
1892 .addReg(ShiftAmt)
1893 .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1894 RegState::Dead | RegState::Implicit)
1895 .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
1896 RegState::Dead | RegState::Implicit);
1897
1898 MI.eraseFromParent(); // The instruction is gone now.
1899
1900 return exitMBB;
1901 }
1902
lowerBRCOND(SDValue Op,SelectionDAG & DAG) const1903 SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1904 // The first operand is the chain, the second is the condition, the third is
1905 // the block to branch to if the condition is true.
1906 SDValue Chain = Op.getOperand(0);
1907 SDValue Dest = Op.getOperand(2);
1908 SDLoc DL(Op);
1909
1910 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1911 SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1912
1913 // Return if flag is not set by a floating point comparison.
1914 if (CondRes.getOpcode() != MipsISD::FPCmp)
1915 return Op;
1916
1917 SDValue CCNode = CondRes.getOperand(2);
1918 Mips::CondCode CC =
1919 (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1920 unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1921 SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
1922 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1923 return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1924 FCC0, Dest, CondRes);
1925 }
1926
1927 SDValue MipsTargetLowering::
lowerSELECT(SDValue Op,SelectionDAG & DAG) const1928 lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1929 {
1930 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1931 SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1932
1933 // Return if flag is not set by a floating point comparison.
1934 if (Cond.getOpcode() != MipsISD::FPCmp)
1935 return Op;
1936
1937 return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1938 SDLoc(Op));
1939 }
1940
lowerSETCC(SDValue Op,SelectionDAG & DAG) const1941 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1942 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1943 SDValue Cond = createFPCmp(DAG, Op);
1944
1945 assert(Cond.getOpcode() == MipsISD::FPCmp &&
1946 "Floating point operand expected.");
1947
1948 SDLoc DL(Op);
1949 SDValue True = DAG.getConstant(1, DL, MVT::i32);
1950 SDValue False = DAG.getConstant(0, DL, MVT::i32);
1951
1952 return createCMovFP(DAG, Cond, True, False, DL);
1953 }
1954
lowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const1955 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1956 SelectionDAG &DAG) const {
1957 EVT Ty = Op.getValueType();
1958 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1959 const GlobalValue *GV = N->getGlobal();
1960
1961 if (!isPositionIndependent()) {
1962 const MipsTargetObjectFile *TLOF =
1963 static_cast<const MipsTargetObjectFile *>(
1964 getTargetMachine().getObjFileLowering());
1965 const GlobalObject *GO = GV->getBaseObject();
1966 if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine()))
1967 // %gp_rel relocation
1968 return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
1969
1970 // %hi/%lo relocation
1971 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
1972 // %highest/%higher/%hi/%lo relocation
1973 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
1974 }
1975
1976 // Every other architecture would use shouldAssumeDSOLocal in here, but
1977 // mips is special.
1978 // * In PIC code mips requires got loads even for local statics!
1979 // * To save on got entries, for local statics the got entry contains the
1980 // page and an additional add instruction takes care of the low bits.
1981 // * It is legal to access a hidden symbol with a non hidden undefined,
1982 // so one cannot guarantee that all access to a hidden symbol will know
1983 // it is hidden.
1984 // * Mips linkers don't support creating a page and a full got entry for
1985 // the same symbol.
1986 // * Given all that, we have to use a full got entry for hidden symbols :-(
1987 if (GV->hasLocalLinkage())
1988 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1989
1990 if (LargeGOT)
1991 return getAddrGlobalLargeGOT(
1992 N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
1993 DAG.getEntryNode(),
1994 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1995
1996 return getAddrGlobal(
1997 N, SDLoc(N), Ty, DAG,
1998 (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
1999 DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2000 }
2001
lowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2002 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
2003 SelectionDAG &DAG) const {
2004 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2005 EVT Ty = Op.getValueType();
2006
2007 if (!isPositionIndependent())
2008 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2009 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2010
2011 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2012 }
2013
2014 SDValue MipsTargetLowering::
lowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const2015 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
2016 {
2017 // If the relocation model is PIC, use the General Dynamic TLS Model or
2018 // Local Dynamic TLS model, otherwise use the Initial Exec or
2019 // Local Exec TLS Model.
2020
2021 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2022 if (DAG.getTarget().useEmulatedTLS())
2023 return LowerToTLSEmulatedModel(GA, DAG);
2024
2025 SDLoc DL(GA);
2026 const GlobalValue *GV = GA->getGlobal();
2027 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2028
2029 TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2030
2031 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2032 // General Dynamic and Local Dynamic TLS Model.
2033 unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
2034 : MipsII::MO_TLSGD;
2035
2036 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
2037 SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
2038 getGlobalReg(DAG, PtrVT), TGA);
2039 unsigned PtrSize = PtrVT.getSizeInBits();
2040 IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
2041
2042 SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
2043
2044 ArgListTy Args;
2045 ArgListEntry Entry;
2046 Entry.Node = Argument;
2047 Entry.Ty = PtrTy;
2048 Args.push_back(Entry);
2049
2050 TargetLowering::CallLoweringInfo CLI(DAG);
2051 CLI.setDebugLoc(DL)
2052 .setChain(DAG.getEntryNode())
2053 .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
2054 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2055
2056 SDValue Ret = CallResult.first;
2057
2058 if (model != TLSModel::LocalDynamic)
2059 return Ret;
2060
2061 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2062 MipsII::MO_DTPREL_HI);
2063 SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2064 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2065 MipsII::MO_DTPREL_LO);
2066 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2067 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
2068 return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
2069 }
2070
2071 SDValue Offset;
2072 if (model == TLSModel::InitialExec) {
2073 // Initial Exec TLS Model
2074 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2075 MipsII::MO_GOTTPREL);
2076 TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
2077 TGA);
2078 Offset =
2079 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo());
2080 } else {
2081 // Local Exec TLS Model
2082 assert(model == TLSModel::LocalExec);
2083 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2084 MipsII::MO_TPREL_HI);
2085 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2086 MipsII::MO_TPREL_LO);
2087 SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2088 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2089 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2090 }
2091
2092 SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2093 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
2094 }
2095
2096 SDValue MipsTargetLowering::
lowerJumpTable(SDValue Op,SelectionDAG & DAG) const2097 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
2098 {
2099 JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2100 EVT Ty = Op.getValueType();
2101
2102 if (!isPositionIndependent())
2103 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2104 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2105
2106 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2107 }
2108
2109 SDValue MipsTargetLowering::
lowerConstantPool(SDValue Op,SelectionDAG & DAG) const2110 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2111 {
2112 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2113 EVT Ty = Op.getValueType();
2114
2115 if (!isPositionIndependent()) {
2116 const MipsTargetObjectFile *TLOF =
2117 static_cast<const MipsTargetObjectFile *>(
2118 getTargetMachine().getObjFileLowering());
2119
2120 if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
2121 getTargetMachine()))
2122 // %gp_rel relocation
2123 return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
2124
2125 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2126 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2127 }
2128
2129 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2130 }
2131
lowerVASTART(SDValue Op,SelectionDAG & DAG) const2132 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2133 MachineFunction &MF = DAG.getMachineFunction();
2134 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2135
2136 SDLoc DL(Op);
2137 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2138 getPointerTy(MF.getDataLayout()));
2139
2140 // vastart just stores the address of the VarArgsFrameIndex slot into the
2141 // memory location argument.
2142 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2143 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2144 MachinePointerInfo(SV));
2145 }
2146
lowerVAARG(SDValue Op,SelectionDAG & DAG) const2147 SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2148 SDNode *Node = Op.getNode();
2149 EVT VT = Node->getValueType(0);
2150 SDValue Chain = Node->getOperand(0);
2151 SDValue VAListPtr = Node->getOperand(1);
2152 unsigned Align = Node->getConstantOperandVal(3);
2153 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2154 SDLoc DL(Node);
2155 unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
2156
2157 SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain,
2158 VAListPtr, MachinePointerInfo(SV));
2159 SDValue VAList = VAListLoad;
2160
2161 // Re-align the pointer if necessary.
2162 // It should only ever be necessary for 64-bit types on O32 since the minimum
2163 // argument alignment is the same as the maximum type alignment for N32/N64.
2164 //
2165 // FIXME: We currently align too often. The code generator doesn't notice
2166 // when the pointer is still aligned from the last va_arg (or pair of
2167 // va_args for the i64 on O32 case).
2168 if (Align > getMinStackArgumentAlignment()) {
2169 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2170
2171 VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
2172 DAG.getConstant(Align - 1, DL, VAList.getValueType()));
2173
2174 VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList,
2175 DAG.getConstant(-(int64_t)Align, DL,
2176 VAList.getValueType()));
2177 }
2178
2179 // Increment the pointer, VAList, to the next vaarg.
2180 auto &TD = DAG.getDataLayout();
2181 unsigned ArgSizeInBytes =
2182 TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
2183 SDValue Tmp3 =
2184 DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
2185 DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
2186 DL, VAList.getValueType()));
2187 // Store the incremented VAList to the legalized pointer
2188 Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
2189 MachinePointerInfo(SV));
2190
2191 // In big-endian mode we must adjust the pointer when the load size is smaller
2192 // than the argument slot size. We must also reduce the known alignment to
2193 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2194 // the correct half of the slot, and reduce the alignment from 8 (slot
2195 // alignment) down to 4 (type alignment).
2196 if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
2197 unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
2198 VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
2199 DAG.getIntPtrConstant(Adjustment, DL));
2200 }
2201 // Load the actual argument out of the pointer VAList
2202 return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo());
2203 }
2204
lowerFCOPYSIGN32(SDValue Op,SelectionDAG & DAG,bool HasExtractInsert)2205 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
2206 bool HasExtractInsert) {
2207 EVT TyX = Op.getOperand(0).getValueType();
2208 EVT TyY = Op.getOperand(1).getValueType();
2209 SDLoc DL(Op);
2210 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2211 SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
2212 SDValue Res;
2213
2214 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2215 // to i32.
2216 SDValue X = (TyX == MVT::f32) ?
2217 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2218 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2219 Const1);
2220 SDValue Y = (TyY == MVT::f32) ?
2221 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2222 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2223 Const1);
2224
2225 if (HasExtractInsert) {
2226 // ext E, Y, 31, 1 ; extract bit31 of Y
2227 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X
2228 SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2229 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2230 } else {
2231 // sll SllX, X, 1
2232 // srl SrlX, SllX, 1
2233 // srl SrlY, Y, 31
2234 // sll SllY, SrlX, 31
2235 // or Or, SrlX, SllY
2236 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2237 SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2238 SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2239 SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2240 Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2241 }
2242
2243 if (TyX == MVT::f32)
2244 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2245
2246 SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2247 Op.getOperand(0),
2248 DAG.getConstant(0, DL, MVT::i32));
2249 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2250 }
2251
lowerFCOPYSIGN64(SDValue Op,SelectionDAG & DAG,bool HasExtractInsert)2252 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
2253 bool HasExtractInsert) {
2254 unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2255 unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2256 EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2257 SDLoc DL(Op);
2258 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2259
2260 // Bitcast to integer nodes.
2261 SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2262 SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2263
2264 if (HasExtractInsert) {
2265 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
2266 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
2267 SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2268 DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);
2269
2270 if (WidthX > WidthY)
2271 E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2272 else if (WidthY > WidthX)
2273 E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2274
2275 SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2276 DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
2277 X);
2278 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2279 }
2280
2281 // (d)sll SllX, X, 1
2282 // (d)srl SrlX, SllX, 1
2283 // (d)srl SrlY, Y, width(Y)-1
2284 // (d)sll SllY, SrlX, width(Y)-1
2285 // or Or, SrlX, SllY
2286 SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2287 SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2288 SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2289 DAG.getConstant(WidthY - 1, DL, MVT::i32));
2290
2291 if (WidthX > WidthY)
2292 SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2293 else if (WidthY > WidthX)
2294 SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2295
2296 SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2297 DAG.getConstant(WidthX - 1, DL, MVT::i32));
2298 SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2299 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2300 }
2301
2302 SDValue
lowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const2303 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2304 if (Subtarget.isGP64bit())
2305 return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
2306
2307 return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
2308 }
2309
lowerFABS32(SDValue Op,SelectionDAG & DAG,bool HasExtractInsert)2310 static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG,
2311 bool HasExtractInsert) {
2312 SDLoc DL(Op);
2313 SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2314
2315 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2316 // to i32.
2317 SDValue X = (Op.getValueType() == MVT::f32)
2318 ? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0))
2319 : DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2320 Op.getOperand(0), Const1);
2321
2322 // Clear MSB.
2323 if (HasExtractInsert)
2324 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2325 DAG.getRegister(Mips::ZERO, MVT::i32),
2326 DAG.getConstant(31, DL, MVT::i32), Const1, X);
2327 else {
2328 // TODO: Provide DAG patterns which transform (and x, cst)
2329 // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
2330 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2331 Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2332 }
2333
2334 if (Op.getValueType() == MVT::f32)
2335 return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2336
2337 // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
2338 // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
2339 // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
2340 // place.
2341 SDValue LowX =
2342 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2343 DAG.getConstant(0, DL, MVT::i32));
2344 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2345 }
2346
lowerFABS64(SDValue Op,SelectionDAG & DAG,bool HasExtractInsert)2347 static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG,
2348 bool HasExtractInsert) {
2349 SDLoc DL(Op);
2350 SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2351
2352 // Bitcast to integer node.
2353 SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2354
2355 // Clear MSB.
2356 if (HasExtractInsert)
2357 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2358 DAG.getRegister(Mips::ZERO_64, MVT::i64),
2359 DAG.getConstant(63, DL, MVT::i32), Const1, X);
2360 else {
2361 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2362 Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2363 }
2364
2365 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2366 }
2367
lowerFABS(SDValue Op,SelectionDAG & DAG) const2368 SDValue MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
2369 if ((ABI.IsN32() || ABI.IsN64()) && (Op.getValueType() == MVT::f64))
2370 return lowerFABS64(Op, DAG, Subtarget.hasExtractInsert());
2371
2372 return lowerFABS32(Op, DAG, Subtarget.hasExtractInsert());
2373 }
2374
2375 SDValue MipsTargetLowering::
lowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const2376 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2377 // check the depth
2378 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
2379 DAG.getContext()->emitError(
2380 "return address can be determined only for current frame");
2381 return SDValue();
2382 }
2383
2384 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2385 MFI.setFrameAddressIsTaken(true);
2386 EVT VT = Op.getValueType();
2387 SDLoc DL(Op);
2388 SDValue FrameAddr = DAG.getCopyFromReg(
2389 DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
2390 return FrameAddr;
2391 }
2392
lowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const2393 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
2394 SelectionDAG &DAG) const {
2395 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2396 return SDValue();
2397
2398 // check the depth
2399 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
2400 DAG.getContext()->emitError(
2401 "return address can be determined only for current frame");
2402 return SDValue();
2403 }
2404
2405 MachineFunction &MF = DAG.getMachineFunction();
2406 MachineFrameInfo &MFI = MF.getFrameInfo();
2407 MVT VT = Op.getSimpleValueType();
2408 unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
2409 MFI.setReturnAddressIsTaken(true);
2410
2411 // Return RA, which contains the return address. Mark it an implicit live-in.
2412 unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2413 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
2414 }
2415
2416 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2417 // generated from __builtin_eh_return (offset, handler)
2418 // The effect of this is to adjust the stack pointer by "offset"
2419 // and then branch to "handler".
lowerEH_RETURN(SDValue Op,SelectionDAG & DAG) const2420 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2421 const {
2422 MachineFunction &MF = DAG.getMachineFunction();
2423 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2424
2425 MipsFI->setCallsEhReturn();
2426 SDValue Chain = Op.getOperand(0);
2427 SDValue Offset = Op.getOperand(1);
2428 SDValue Handler = Op.getOperand(2);
2429 SDLoc DL(Op);
2430 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2431
2432 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2433 // EH_RETURN nodes, so that instructions are emitted back-to-back.
2434 unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
2435 unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
2436 Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2437 Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2438 return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2439 DAG.getRegister(OffsetReg, Ty),
2440 DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
2441 Chain.getValue(1));
2442 }
2443
lowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const2444 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
2445 SelectionDAG &DAG) const {
2446 // FIXME: Need pseudo-fence for 'singlethread' fences
2447 // FIXME: Set SType for weaker fences where supported/appropriate.
2448 unsigned SType = 0;
2449 SDLoc DL(Op);
2450 return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
2451 DAG.getConstant(SType, DL, MVT::i32));
2452 }
2453
lowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const2454 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
2455 SelectionDAG &DAG) const {
2456 SDLoc DL(Op);
2457 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2458
2459 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2460 SDValue Shamt = Op.getOperand(2);
2461 // if shamt < (VT.bits):
2462 // lo = (shl lo, shamt)
2463 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2464 // else:
2465 // lo = 0
2466 // hi = (shl lo, shamt[4:0])
2467 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2468 DAG.getConstant(-1, DL, MVT::i32));
2469 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
2470 DAG.getConstant(1, DL, VT));
2471 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
2472 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2473 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2474 SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2475 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2476 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2477 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2478 DAG.getConstant(0, DL, VT), ShiftLeftLo);
2479 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
2480
2481 SDValue Ops[2] = {Lo, Hi};
2482 return DAG.getMergeValues(Ops, DL);
2483 }
2484
lowerShiftRightParts(SDValue Op,SelectionDAG & DAG,bool IsSRA) const2485 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2486 bool IsSRA) const {
2487 SDLoc DL(Op);
2488 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2489 SDValue Shamt = Op.getOperand(2);
2490 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2491
2492 // if shamt < (VT.bits):
2493 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2494 // if isSRA:
2495 // hi = (sra hi, shamt)
2496 // else:
2497 // hi = (srl hi, shamt)
2498 // else:
2499 // if isSRA:
2500 // lo = (sra hi, shamt[4:0])
2501 // hi = (sra hi, 31)
2502 // else:
2503 // lo = (srl hi, shamt[4:0])
2504 // hi = 0
2505 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2506 DAG.getConstant(-1, DL, MVT::i32));
2507 SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
2508 DAG.getConstant(1, DL, VT));
2509 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
2510 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2511 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2512 SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
2513 DL, VT, Hi, Shamt);
2514 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2515 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2516 SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
2517 DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));
2518
2519 if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) {
2520 SDVTList VTList = DAG.getVTList(VT, VT);
2521 return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64
2522 : Mips::PseudoD_SELECT_I,
2523 DL, VTList, Cond, ShiftRightHi,
2524 IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or,
2525 ShiftRightHi);
2526 }
2527
2528 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
2529 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2530 IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);
2531
2532 SDValue Ops[2] = {Lo, Hi};
2533 return DAG.getMergeValues(Ops, DL);
2534 }
2535
createLoadLR(unsigned Opc,SelectionDAG & DAG,LoadSDNode * LD,SDValue Chain,SDValue Src,unsigned Offset)2536 static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2537 SDValue Chain, SDValue Src, unsigned Offset) {
2538 SDValue Ptr = LD->getBasePtr();
2539 EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2540 EVT BasePtrVT = Ptr.getValueType();
2541 SDLoc DL(LD);
2542 SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2543
2544 if (Offset)
2545 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2546 DAG.getConstant(Offset, DL, BasePtrVT));
2547
2548 SDValue Ops[] = { Chain, Ptr, Src };
2549 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2550 LD->getMemOperand());
2551 }
2552
2553 // Expand an unaligned 32 or 64-bit integer load node.
lowerLOAD(SDValue Op,SelectionDAG & DAG) const2554 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2555 LoadSDNode *LD = cast<LoadSDNode>(Op);
2556 EVT MemVT = LD->getMemoryVT();
2557
2558 if (Subtarget.systemSupportsUnalignedAccess())
2559 return Op;
2560
2561 // Return if load is aligned or if MemVT is neither i32 nor i64.
2562 if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2563 ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2564 return SDValue();
2565
2566 bool IsLittle = Subtarget.isLittle();
2567 EVT VT = Op.getValueType();
2568 ISD::LoadExtType ExtType = LD->getExtensionType();
2569 SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2570
2571 assert((VT == MVT::i32) || (VT == MVT::i64));
2572
2573 // Expand
2574 // (set dst, (i64 (load baseptr)))
2575 // to
2576 // (set tmp, (ldl (add baseptr, 7), undef))
2577 // (set dst, (ldr baseptr, tmp))
2578 if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2579 SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2580 IsLittle ? 7 : 0);
2581 return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2582 IsLittle ? 0 : 7);
2583 }
2584
2585 SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2586 IsLittle ? 3 : 0);
2587 SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2588 IsLittle ? 0 : 3);
2589
2590 // Expand
2591 // (set dst, (i32 (load baseptr))) or
2592 // (set dst, (i64 (sextload baseptr))) or
2593 // (set dst, (i64 (extload baseptr)))
2594 // to
2595 // (set tmp, (lwl (add baseptr, 3), undef))
2596 // (set dst, (lwr baseptr, tmp))
2597 if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2598 (ExtType == ISD::EXTLOAD))
2599 return LWR;
2600
2601 assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2602
2603 // Expand
2604 // (set dst, (i64 (zextload baseptr)))
2605 // to
2606 // (set tmp0, (lwl (add baseptr, 3), undef))
2607 // (set tmp1, (lwr baseptr, tmp0))
2608 // (set tmp2, (shl tmp1, 32))
2609 // (set dst, (srl tmp2, 32))
2610 SDLoc DL(LD);
2611 SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
2612 SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2613 SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2614 SDValue Ops[] = { SRL, LWR.getValue(1) };
2615 return DAG.getMergeValues(Ops, DL);
2616 }
2617
createStoreLR(unsigned Opc,SelectionDAG & DAG,StoreSDNode * SD,SDValue Chain,unsigned Offset)2618 static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2619 SDValue Chain, unsigned Offset) {
2620 SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2621 EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2622 SDLoc DL(SD);
2623 SDVTList VTList = DAG.getVTList(MVT::Other);
2624
2625 if (Offset)
2626 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2627 DAG.getConstant(Offset, DL, BasePtrVT));
2628
2629 SDValue Ops[] = { Chain, Value, Ptr };
2630 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2631 SD->getMemOperand());
2632 }
2633
2634 // Expand an unaligned 32 or 64-bit integer store node.
lowerUnalignedIntStore(StoreSDNode * SD,SelectionDAG & DAG,bool IsLittle)2635 static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2636 bool IsLittle) {
2637 SDValue Value = SD->getValue(), Chain = SD->getChain();
2638 EVT VT = Value.getValueType();
2639
2640 // Expand
2641 // (store val, baseptr) or
2642 // (truncstore val, baseptr)
2643 // to
2644 // (swl val, (add baseptr, 3))
2645 // (swr val, baseptr)
2646 if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2647 SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2648 IsLittle ? 3 : 0);
2649 return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2650 }
2651
2652 assert(VT == MVT::i64);
2653
2654 // Expand
2655 // (store val, baseptr)
2656 // to
2657 // (sdl val, (add baseptr, 7))
2658 // (sdr val, baseptr)
2659 SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2660 return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2661 }
2662
2663 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
lowerFP_TO_SINT_STORE(StoreSDNode * SD,SelectionDAG & DAG,bool SingleFloat)2664 static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG,
2665 bool SingleFloat) {
2666 SDValue Val = SD->getValue();
2667
2668 if (Val.getOpcode() != ISD::FP_TO_SINT ||
2669 (Val.getValueSizeInBits() > 32 && SingleFloat))
2670 return SDValue();
2671
2672 EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2673 SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2674 Val.getOperand(0));
2675 return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2676 SD->getPointerInfo(), SD->getAlignment(),
2677 SD->getMemOperand()->getFlags());
2678 }
2679
lowerSTORE(SDValue Op,SelectionDAG & DAG) const2680 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2681 StoreSDNode *SD = cast<StoreSDNode>(Op);
2682 EVT MemVT = SD->getMemoryVT();
2683
2684 // Lower unaligned integer stores.
2685 if (!Subtarget.systemSupportsUnalignedAccess() &&
2686 (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2687 ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2688 return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
2689
2690 return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat());
2691 }
2692
lowerEH_DWARF_CFA(SDValue Op,SelectionDAG & DAG) const2693 SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
2694 SelectionDAG &DAG) const {
2695
2696 // Return a fixed StackObject with offset 0 which points to the old stack
2697 // pointer.
2698 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2699 EVT ValTy = Op->getValueType(0);
2700 int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2701 return DAG.getFrameIndex(FI, ValTy);
2702 }
2703
lowerFP_TO_SINT(SDValue Op,SelectionDAG & DAG) const2704 SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2705 SelectionDAG &DAG) const {
2706 if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat())
2707 return SDValue();
2708
2709 EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2710 SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2711 Op.getOperand(0));
2712 return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2713 }
2714
2715 //===----------------------------------------------------------------------===//
2716 // Calling Convention Implementation
2717 //===----------------------------------------------------------------------===//
2718
2719 //===----------------------------------------------------------------------===//
2720 // TODO: Implement a generic logic using tblgen that can support this.
2721 // Mips O32 ABI rules:
2722 // ---
2723 // i32 - Passed in A0, A1, A2, A3 and stack
2724 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2725 // an argument. Otherwise, passed in A1, A2, A3 and stack.
2726 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2727 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2728 // not used, it must be shadowed. If only A3 is available, shadow it and
2729 // go to stack.
2730 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2731 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2732 // with the remainder spilled to the stack.
2733 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2734 // spilling the remainder to the stack.
2735 //
2736 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2737 //===----------------------------------------------------------------------===//
2738
CC_MipsO32(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State,ArrayRef<MCPhysReg> F64Regs)2739 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2740 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2741 CCState &State, ArrayRef<MCPhysReg> F64Regs) {
2742 const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
2743 State.getMachineFunction().getSubtarget());
2744
2745 static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2746
2747 const MipsCCState * MipsState = static_cast<MipsCCState *>(&State);
2748
2749 static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
2750
2751 static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 };
2752
2753 // Do not process byval args here.
2754 if (ArgFlags.isByVal())
2755 return true;
2756
2757 // Promote i8 and i16
2758 if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
2759 if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
2760 LocVT = MVT::i32;
2761 if (ArgFlags.isSExt())
2762 LocInfo = CCValAssign::SExtUpper;
2763 else if (ArgFlags.isZExt())
2764 LocInfo = CCValAssign::ZExtUpper;
2765 else
2766 LocInfo = CCValAssign::AExtUpper;
2767 }
2768 }
2769
2770 // Promote i8 and i16
2771 if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2772 LocVT = MVT::i32;
2773 if (ArgFlags.isSExt())
2774 LocInfo = CCValAssign::SExt;
2775 else if (ArgFlags.isZExt())
2776 LocInfo = CCValAssign::ZExt;
2777 else
2778 LocInfo = CCValAssign::AExt;
2779 }
2780
2781 unsigned Reg;
2782
2783 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2784 // is true: function is vararg, argument is 3rd or higher, there is previous
2785 // argument which is not f32 or f64.
2786 bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
2787 State.getFirstUnallocated(F32Regs) != ValNo;
2788 unsigned OrigAlign = ArgFlags.getOrigAlign();
2789 bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2790 bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo);
2791
2792 // The MIPS vector ABI for floats passes them in a pair of registers
2793 if (ValVT == MVT::i32 && isVectorFloat) {
2794 // This is the start of an vector that was scalarized into an unknown number
2795 // of components. It doesn't matter how many there are. Allocate one of the
2796 // notional 8 byte aligned registers which map onto the argument stack, and
2797 // shadow the register lost to alignment requirements.
2798 if (ArgFlags.isSplit()) {
2799 Reg = State.AllocateReg(FloatVectorIntRegs);
2800 if (Reg == Mips::A2)
2801 State.AllocateReg(Mips::A1);
2802 else if (Reg == 0)
2803 State.AllocateReg(Mips::A3);
2804 } else {
2805 // If we're an intermediate component of the split, we can just attempt to
2806 // allocate a register directly.
2807 Reg = State.AllocateReg(IntRegs);
2808 }
2809 } else if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2810 Reg = State.AllocateReg(IntRegs);
2811 // If this is the first part of an i64 arg,
2812 // the allocated register must be either A0 or A2.
2813 if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2814 Reg = State.AllocateReg(IntRegs);
2815 LocVT = MVT::i32;
2816 } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2817 // Allocate int register and shadow next int register. If first
2818 // available register is Mips::A1 or Mips::A3, shadow it too.
2819 Reg = State.AllocateReg(IntRegs);
2820 if (Reg == Mips::A1 || Reg == Mips::A3)
2821 Reg = State.AllocateReg(IntRegs);
2822 State.AllocateReg(IntRegs);
2823 LocVT = MVT::i32;
2824 } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2825 // we are guaranteed to find an available float register
2826 if (ValVT == MVT::f32) {
2827 Reg = State.AllocateReg(F32Regs);
2828 // Shadow int register
2829 State.AllocateReg(IntRegs);
2830 } else {
2831 Reg = State.AllocateReg(F64Regs);
2832 // Shadow int registers
2833 unsigned Reg2 = State.AllocateReg(IntRegs);
2834 if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2835 State.AllocateReg(IntRegs);
2836 State.AllocateReg(IntRegs);
2837 }
2838 } else
2839 llvm_unreachable("Cannot handle this ValVT.");
2840
2841 if (!Reg) {
2842 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
2843 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2844 } else
2845 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2846
2847 return false;
2848 }
2849
CC_MipsO32_FP32(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)2850 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2851 MVT LocVT, CCValAssign::LocInfo LocInfo,
2852 ISD::ArgFlagsTy ArgFlags, CCState &State) {
2853 static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
2854
2855 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2856 }
2857
CC_MipsO32_FP64(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)2858 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2859 MVT LocVT, CCValAssign::LocInfo LocInfo,
2860 ISD::ArgFlagsTy ArgFlags, CCState &State) {
2861 static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
2862
2863 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2864 }
2865
2866 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2867 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2868 CCState &State) LLVM_ATTRIBUTE_UNUSED;
2869
2870 #include "MipsGenCallingConv.inc"
2871
CCAssignFnForCall() const2872 CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{
2873 return CC_Mips;
2874 }
2875
CCAssignFnForReturn() const2876 CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{
2877 return RetCC_Mips;
2878 }
2879 //===----------------------------------------------------------------------===//
2880 // Call Calling Convention Implementation
2881 //===----------------------------------------------------------------------===//
2882
2883 // Return next O32 integer argument register.
getNextIntArgReg(unsigned Reg)2884 static unsigned getNextIntArgReg(unsigned Reg) {
2885 assert((Reg == Mips::A0) || (Reg == Mips::A2));
2886 return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2887 }
2888
passArgOnStack(SDValue StackPtr,unsigned Offset,SDValue Chain,SDValue Arg,const SDLoc & DL,bool IsTailCall,SelectionDAG & DAG) const2889 SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2890 SDValue Chain, SDValue Arg,
2891 const SDLoc &DL, bool IsTailCall,
2892 SelectionDAG &DAG) const {
2893 if (!IsTailCall) {
2894 SDValue PtrOff =
2895 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
2896 DAG.getIntPtrConstant(Offset, DL));
2897 return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo());
2898 }
2899
2900 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2901 int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2902 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2903 return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2904 /* Alignment = */ 0, MachineMemOperand::MOVolatile);
2905 }
2906
2907 void MipsTargetLowering::
getOpndList(SmallVectorImpl<SDValue> & Ops,std::deque<std::pair<unsigned,SDValue>> & RegsToPass,bool IsPICCall,bool GlobalOrExternal,bool InternalLinkage,bool IsCallReloc,CallLoweringInfo & CLI,SDValue Callee,SDValue Chain) const2908 getOpndList(SmallVectorImpl<SDValue> &Ops,
2909 std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
2910 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2911 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
2912 SDValue Chain) const {
2913 // Insert node "GP copy globalreg" before call to function.
2914 //
2915 // R_MIPS_CALL* operators (emitted when non-internal functions are called
2916 // in PIC mode) allow symbols to be resolved via lazy binding.
2917 // The lazy binding stub requires GP to point to the GOT.
2918 // Note that we don't need GP to point to the GOT for indirect calls
2919 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
2920 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
2921 // used for the function (that is, Mips linker doesn't generate lazy binding
2922 // stub for a function whose address is taken in the program).
2923 if (IsPICCall && !InternalLinkage && IsCallReloc) {
2924 unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
2925 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2926 RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2927 }
2928
2929 // Build a sequence of copy-to-reg nodes chained together with token
2930 // chain and flag operands which copy the outgoing args into registers.
2931 // The InFlag in necessary since all emitted instructions must be
2932 // stuck together.
2933 SDValue InFlag;
2934
2935 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2936 Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2937 RegsToPass[i].second, InFlag);
2938 InFlag = Chain.getValue(1);
2939 }
2940
2941 // Add argument registers to the end of the list so that they are
2942 // known live into the call.
2943 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2944 Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2945 RegsToPass[i].second.getValueType()));
2946
2947 // Add a register mask operand representing the call-preserved registers.
2948 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2949 const uint32_t *Mask =
2950 TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
2951 assert(Mask && "Missing call preserved mask for calling convention");
2952 if (Subtarget.inMips16HardFloat()) {
2953 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2954 StringRef Sym = G->getGlobal()->getName();
2955 Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2956 if (F && F->hasFnAttribute("__Mips16RetHelper")) {
2957 Mask = MipsRegisterInfo::getMips16RetHelperMask();
2958 }
2959 }
2960 }
2961 Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2962
2963 if (InFlag.getNode())
2964 Ops.push_back(InFlag);
2965 }
2966
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const2967 void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
2968 SDNode *Node) const {
2969 switch (MI.getOpcode()) {
2970 default:
2971 return;
2972 case Mips::JALR:
2973 case Mips::JALRPseudo:
2974 case Mips::JALR64:
2975 case Mips::JALR64Pseudo:
2976 case Mips::JALR16_MM:
2977 case Mips::JALRC16_MMR6:
2978 case Mips::TAILCALLREG:
2979 case Mips::TAILCALLREG64:
2980 case Mips::TAILCALLR6REG:
2981 case Mips::TAILCALL64R6REG:
2982 case Mips::TAILCALLREG_MM:
2983 case Mips::TAILCALLREG_MMR6: {
2984 if (!EmitJalrReloc ||
2985 Subtarget.inMips16Mode() ||
2986 !isPositionIndependent() ||
2987 Node->getNumOperands() < 1 ||
2988 Node->getOperand(0).getNumOperands() < 2) {
2989 return;
2990 }
2991 // We are after the callee address, set by LowerCall().
2992 // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
2993 // symbol.
2994 const SDValue TargetAddr = Node->getOperand(0).getOperand(1);
2995 StringRef Sym;
2996 if (const GlobalAddressSDNode *G =
2997 dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) {
2998 Sym = G->getGlobal()->getName();
2999 }
3000 else if (const ExternalSymbolSDNode *ES =
3001 dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) {
3002 Sym = ES->getSymbol();
3003 }
3004
3005 if (Sym.empty())
3006 return;
3007
3008 MachineFunction *MF = MI.getParent()->getParent();
3009 MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym);
3010 MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR));
3011 }
3012 }
3013 }
3014
3015 /// LowerCall - functions arguments are copied from virtual regs to
3016 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3017 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const3018 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3019 SmallVectorImpl<SDValue> &InVals) const {
3020 SelectionDAG &DAG = CLI.DAG;
3021 SDLoc DL = CLI.DL;
3022 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3023 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
3024 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
3025 SDValue Chain = CLI.Chain;
3026 SDValue Callee = CLI.Callee;
3027 bool &IsTailCall = CLI.IsTailCall;
3028 CallingConv::ID CallConv = CLI.CallConv;
3029 bool IsVarArg = CLI.IsVarArg;
3030
3031 MachineFunction &MF = DAG.getMachineFunction();
3032 MachineFrameInfo &MFI = MF.getFrameInfo();
3033 const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
3034 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
3035 bool IsPIC = isPositionIndependent();
3036
3037 // Analyze operands of the call, assigning locations to each operand.
3038 SmallVector<CCValAssign, 16> ArgLocs;
3039 MipsCCState CCInfo(
3040 CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
3041 MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
3042
3043 const ExternalSymbolSDNode *ES =
3044 dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode());
3045
3046 // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
3047 // is during the lowering of a call with a byval argument which produces
3048 // a call to memcpy. For the O32 case, this causes the caller to allocate
3049 // stack space for the reserved argument area for the callee, then recursively
3050 // again for the memcpy call. In the NEWABI case, this doesn't occur as those
3051 // ABIs mandate that the callee allocates the reserved argument area. We do
3052 // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
3053 //
3054 // If the callee has a byval argument and memcpy is used, we are mandated
3055 // to already have produced a reserved argument area for the callee for O32.
3056 // Therefore, the reserved argument area can be reused for both calls.
3057 //
3058 // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
3059 // present, as we have yet to hook that node onto the chain.
3060 //
3061 // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
3062 // case. GCC does a similar trick, in that wherever possible, it calculates
3063 // the maximum out going argument area (including the reserved area), and
3064 // preallocates the stack space on entrance to the caller.
3065 //
3066 // FIXME: We should do the same for efficiency and space.
3067
3068 // Note: The check on the calling convention below must match
3069 // MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
3070 bool MemcpyInByVal = ES &&
3071 StringRef(ES->getSymbol()) == StringRef("memcpy") &&
3072 CallConv != CallingConv::Fast &&
3073 Chain.getOpcode() == ISD::CALLSEQ_START;
3074
3075 // Allocate the reserved argument area. It seems strange to do this from the
3076 // caller side but removing it breaks the frame size calculation.
3077 unsigned ReservedArgArea =
3078 MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv);
3079 CCInfo.AllocateStack(ReservedArgArea, 1);
3080
3081 CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(),
3082 ES ? ES->getSymbol() : nullptr);
3083
3084 // Get a count of how many bytes are to be pushed on the stack.
3085 unsigned NextStackOffset = CCInfo.getNextStackOffset();
3086
3087 // Check if it's really possible to do a tail call. Restrict it to functions
3088 // that are part of this compilation unit.
3089 bool InternalLinkage = false;
3090 if (IsTailCall) {
3091 IsTailCall = isEligibleForTailCallOptimization(
3092 CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
3093 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3094 InternalLinkage = G->getGlobal()->hasInternalLinkage();
3095 IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() ||
3096 G->getGlobal()->hasPrivateLinkage() ||
3097 G->getGlobal()->hasHiddenVisibility() ||
3098 G->getGlobal()->hasProtectedVisibility());
3099 }
3100 }
3101 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
3102 report_fatal_error("failed to perform tail call elimination on a call "
3103 "site marked musttail");
3104
3105 if (IsTailCall)
3106 ++NumTailCalls;
3107
3108 // Chain is the output chain of the last Load/Store or CopyToReg node.
3109 // ByValChain is the output chain of the last Memcpy node created for copying
3110 // byval arguments to the stack.
3111 unsigned StackAlignment = TFL->getStackAlignment();
3112 NextStackOffset = alignTo(NextStackOffset, StackAlignment);
3113 SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true);
3114
3115 if (!(IsTailCall || MemcpyInByVal))
3116 Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL);
3117
3118 SDValue StackPtr =
3119 DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
3120 getPointerTy(DAG.getDataLayout()));
3121
3122 std::deque<std::pair<unsigned, SDValue>> RegsToPass;
3123 SmallVector<SDValue, 8> MemOpChains;
3124
3125 CCInfo.rewindByValRegsInfo();
3126
3127 // Walk the register/memloc assignments, inserting copies/loads.
3128 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3129 SDValue Arg = OutVals[i];
3130 CCValAssign &VA = ArgLocs[i];
3131 MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
3132 ISD::ArgFlagsTy Flags = Outs[i].Flags;
3133 bool UseUpperBits = false;
3134
3135 // ByVal Arg.
3136 if (Flags.isByVal()) {
3137 unsigned FirstByValReg, LastByValReg;
3138 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3139 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3140
3141 assert(Flags.getByValSize() &&
3142 "ByVal args of size 0 should have been ignored by front-end.");
3143 assert(ByValIdx < CCInfo.getInRegsParamsCount());
3144 assert(!IsTailCall &&
3145 "Do not tail-call optimize if there is a byval argument.");
3146 passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
3147 FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
3148 VA);
3149 CCInfo.nextInRegsParam();
3150 continue;
3151 }
3152
3153 // Promote the value if needed.
3154 switch (VA.getLocInfo()) {
3155 default:
3156 llvm_unreachable("Unknown loc info!");
3157 case CCValAssign::Full:
3158 if (VA.isRegLoc()) {
3159 if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
3160 (ValVT == MVT::f64 && LocVT == MVT::i64) ||
3161 (ValVT == MVT::i64 && LocVT == MVT::f64))
3162 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3163 else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3164 SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3165 Arg, DAG.getConstant(0, DL, MVT::i32));
3166 SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3167 Arg, DAG.getConstant(1, DL, MVT::i32));
3168 if (!Subtarget.isLittle())
3169 std::swap(Lo, Hi);
3170 unsigned LocRegLo = VA.getLocReg();
3171 unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
3172 RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3173 RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3174 continue;
3175 }
3176 }
3177 break;
3178 case CCValAssign::BCvt:
3179 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3180 break;
3181 case CCValAssign::SExtUpper:
3182 UseUpperBits = true;
3183 LLVM_FALLTHROUGH;
3184 case CCValAssign::SExt:
3185 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
3186 break;
3187 case CCValAssign::ZExtUpper:
3188 UseUpperBits = true;
3189 LLVM_FALLTHROUGH;
3190 case CCValAssign::ZExt:
3191 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
3192 break;
3193 case CCValAssign::AExtUpper:
3194 UseUpperBits = true;
3195 LLVM_FALLTHROUGH;
3196 case CCValAssign::AExt:
3197 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
3198 break;
3199 }
3200
3201 if (UseUpperBits) {
3202 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3203 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3204 Arg = DAG.getNode(
3205 ISD::SHL, DL, VA.getLocVT(), Arg,
3206 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3207 }
3208
3209 // Arguments that can be passed on register must be kept at
3210 // RegsToPass vector
3211 if (VA.isRegLoc()) {
3212 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3213 continue;
3214 }
3215
3216 // Register can't get to this point...
3217 assert(VA.isMemLoc());
3218
3219 // emit ISD::STORE whichs stores the
3220 // parameter value to a stack Location
3221 MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
3222 Chain, Arg, DL, IsTailCall, DAG));
3223 }
3224
3225 // Transform all store nodes into one single node because all store
3226 // nodes are independent of each other.
3227 if (!MemOpChains.empty())
3228 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3229
3230 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3231 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3232 // node so that legalize doesn't hack it.
3233
3234 EVT Ty = Callee.getValueType();
3235 bool GlobalOrExternal = false, IsCallReloc = false;
3236
3237 // The long-calls feature is ignored in case of PIC.
3238 // While we do not support -mshared / -mno-shared properly,
3239 // ignore long-calls in case of -mabicalls too.
3240 if (!Subtarget.isABICalls() && !IsPIC) {
3241 // If the function should be called using "long call",
3242 // get its address into a register to prevent using
3243 // of the `jal` instruction for the direct call.
3244 if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3245 if (Subtarget.useLongCalls())
3246 Callee = Subtarget.hasSym32()
3247 ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3248 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3249 } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) {
3250 bool UseLongCalls = Subtarget.useLongCalls();
3251 // If the function has long-call/far/near attribute
3252 // it overrides command line switch pased to the backend.
3253 if (auto *F = dyn_cast<Function>(N->getGlobal())) {
3254 if (F->hasFnAttribute("long-call"))
3255 UseLongCalls = true;
3256 else if (F->hasFnAttribute("short-call"))
3257 UseLongCalls = false;
3258 }
3259 if (UseLongCalls)
3260 Callee = Subtarget.hasSym32()
3261 ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3262 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3263 }
3264 }
3265
3266 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3267 if (IsPIC) {
3268 const GlobalValue *Val = G->getGlobal();
3269 InternalLinkage = Val->hasInternalLinkage();
3270
3271 if (InternalLinkage)
3272 Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
3273 else if (LargeGOT) {
3274 Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3275 MipsII::MO_CALL_LO16, Chain,
3276 FuncInfo->callPtrInfo(Val));
3277 IsCallReloc = true;
3278 } else {
3279 Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3280 FuncInfo->callPtrInfo(Val));
3281 IsCallReloc = true;
3282 }
3283 } else
3284 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
3285 getPointerTy(DAG.getDataLayout()), 0,
3286 MipsII::MO_NO_FLAG);
3287 GlobalOrExternal = true;
3288 }
3289 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3290 const char *Sym = S->getSymbol();
3291
3292 if (!IsPIC) // static
3293 Callee = DAG.getTargetExternalSymbol(
3294 Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
3295 else if (LargeGOT) {
3296 Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3297 MipsII::MO_CALL_LO16, Chain,
3298 FuncInfo->callPtrInfo(Sym));
3299 IsCallReloc = true;
3300 } else { // PIC
3301 Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3302 FuncInfo->callPtrInfo(Sym));
3303 IsCallReloc = true;
3304 }
3305
3306 GlobalOrExternal = true;
3307 }
3308
3309 SmallVector<SDValue, 8> Ops(1, Chain);
3310 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3311
3312 getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage,
3313 IsCallReloc, CLI, Callee, Chain);
3314
3315 if (IsTailCall) {
3316 MF.getFrameInfo().setHasTailCall();
3317 return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
3318 }
3319
3320 Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
3321 SDValue InFlag = Chain.getValue(1);
3322
3323 // Create the CALLSEQ_END node in the case of where it is not a call to
3324 // memcpy.
3325 if (!(MemcpyInByVal)) {
3326 Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3327 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3328 InFlag = Chain.getValue(1);
3329 }
3330
3331 // Handle result values, copying them out of physregs into vregs that we
3332 // return.
3333 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3334 InVals, CLI);
3335 }
3336
3337 /// LowerCallResult - Lower the result values of a call into the
3338 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,TargetLowering::CallLoweringInfo & CLI) const3339 SDValue MipsTargetLowering::LowerCallResult(
3340 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
3341 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3342 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
3343 TargetLowering::CallLoweringInfo &CLI) const {
3344 // Assign locations to each value returned by this call.
3345 SmallVector<CCValAssign, 16> RVLocs;
3346 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
3347 *DAG.getContext());
3348
3349 const ExternalSymbolSDNode *ES =
3350 dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode());
3351 CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy,
3352 ES ? ES->getSymbol() : nullptr);
3353
3354 // Copy all of the result registers out of their specified physreg.
3355 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3356 CCValAssign &VA = RVLocs[i];
3357 assert(VA.isRegLoc() && "Can only return in registers!");
3358
3359 SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
3360 RVLocs[i].getLocVT(), InFlag);
3361 Chain = Val.getValue(1);
3362 InFlag = Val.getValue(2);
3363
3364 if (VA.isUpperBitsInLoc()) {
3365 unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
3366 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3367 unsigned Shift =
3368 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3369 Val = DAG.getNode(
3370 Shift, DL, VA.getLocVT(), Val,
3371 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3372 }
3373
3374 switch (VA.getLocInfo()) {
3375 default:
3376 llvm_unreachable("Unknown loc info!");
3377 case CCValAssign::Full:
3378 break;
3379 case CCValAssign::BCvt:
3380 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3381 break;
3382 case CCValAssign::AExt:
3383 case CCValAssign::AExtUpper:
3384 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3385 break;
3386 case CCValAssign::ZExt:
3387 case CCValAssign::ZExtUpper:
3388 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
3389 DAG.getValueType(VA.getValVT()));
3390 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3391 break;
3392 case CCValAssign::SExt:
3393 case CCValAssign::SExtUpper:
3394 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
3395 DAG.getValueType(VA.getValVT()));
3396 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3397 break;
3398 }
3399
3400 InVals.push_back(Val);
3401 }
3402
3403 return Chain;
3404 }
3405
UnpackFromArgumentSlot(SDValue Val,const CCValAssign & VA,EVT ArgVT,const SDLoc & DL,SelectionDAG & DAG)3406 static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
3407 EVT ArgVT, const SDLoc &DL,
3408 SelectionDAG &DAG) {
3409 MVT LocVT = VA.getLocVT();
3410 EVT ValVT = VA.getValVT();
3411
3412 // Shift into the upper bits if necessary.
3413 switch (VA.getLocInfo()) {
3414 default:
3415 break;
3416 case CCValAssign::AExtUpper:
3417 case CCValAssign::SExtUpper:
3418 case CCValAssign::ZExtUpper: {
3419 unsigned ValSizeInBits = ArgVT.getSizeInBits();
3420 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3421 unsigned Opcode =
3422 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3423 Val = DAG.getNode(
3424 Opcode, DL, VA.getLocVT(), Val,
3425 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3426 break;
3427 }
3428 }
3429
3430 // If this is an value smaller than the argument slot size (32-bit for O32,
3431 // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3432 // size. Extract the value and insert any appropriate assertions regarding
3433 // sign/zero extension.
3434 switch (VA.getLocInfo()) {
3435 default:
3436 llvm_unreachable("Unknown loc info!");
3437 case CCValAssign::Full:
3438 break;
3439 case CCValAssign::AExtUpper:
3440 case CCValAssign::AExt:
3441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3442 break;
3443 case CCValAssign::SExtUpper:
3444 case CCValAssign::SExt:
3445 Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
3446 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3447 break;
3448 case CCValAssign::ZExtUpper:
3449 case CCValAssign::ZExt:
3450 Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
3451 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3452 break;
3453 case CCValAssign::BCvt:
3454 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
3455 break;
3456 }
3457
3458 return Val;
3459 }
3460
3461 //===----------------------------------------------------------------------===//
3462 // Formal Arguments Calling Convention Implementation
3463 //===----------------------------------------------------------------------===//
3464 /// LowerFormalArguments - transform physical registers into virtual registers
3465 /// and generate load operations for arguments places on the stack.
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3466 SDValue MipsTargetLowering::LowerFormalArguments(
3467 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
3468 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3469 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3470 MachineFunction &MF = DAG.getMachineFunction();
3471 MachineFrameInfo &MFI = MF.getFrameInfo();
3472 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3473
3474 MipsFI->setVarArgsFrameIndex(0);
3475
3476 // Used with vargs to acumulate store chains.
3477 std::vector<SDValue> OutChains;
3478
3479 // Assign locations to all of the incoming arguments.
3480 SmallVector<CCValAssign, 16> ArgLocs;
3481 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3482 *DAG.getContext());
3483 CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
3484 const Function &Func = DAG.getMachineFunction().getFunction();
3485 Function::const_arg_iterator FuncArg = Func.arg_begin();
3486
3487 if (Func.hasFnAttribute("interrupt") && !Func.arg_empty())
3488 report_fatal_error(
3489 "Functions with the interrupt attribute cannot have arguments!");
3490
3491 CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
3492 MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3493 CCInfo.getInRegsParamsCount() > 0);
3494
3495 unsigned CurArgIdx = 0;
3496 CCInfo.rewindByValRegsInfo();
3497
3498 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3499 CCValAssign &VA = ArgLocs[i];
3500 if (Ins[i].isOrigArg()) {
3501 std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx);
3502 CurArgIdx = Ins[i].getOrigArgIndex();
3503 }
3504 EVT ValVT = VA.getValVT();
3505 ISD::ArgFlagsTy Flags = Ins[i].Flags;
3506 bool IsRegLoc = VA.isRegLoc();
3507
3508 if (Flags.isByVal()) {
3509 assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit");
3510 unsigned FirstByValReg, LastByValReg;
3511 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3512 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3513
3514 assert(Flags.getByValSize() &&
3515 "ByVal args of size 0 should have been ignored by front-end.");
3516 assert(ByValIdx < CCInfo.getInRegsParamsCount());
3517 copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
3518 FirstByValReg, LastByValReg, VA, CCInfo);
3519 CCInfo.nextInRegsParam();
3520 continue;
3521 }
3522
3523 // Arguments stored on registers
3524 if (IsRegLoc) {
3525 MVT RegVT = VA.getLocVT();
3526 unsigned ArgReg = VA.getLocReg();
3527 const TargetRegisterClass *RC = getRegClassFor(RegVT);
3528
3529 // Transform the arguments stored on
3530 // physical registers into virtual ones
3531 unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3532 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3533
3534 ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3535
3536 // Handle floating point arguments passed in integer registers and
3537 // long double arguments passed in floating point registers.
3538 if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3539 (RegVT == MVT::i64 && ValVT == MVT::f64) ||
3540 (RegVT == MVT::f64 && ValVT == MVT::i64))
3541 ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
3542 else if (ABI.IsO32() && RegVT == MVT::i32 &&
3543 ValVT == MVT::f64) {
3544 unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
3545 getNextIntArgReg(ArgReg), RC);
3546 SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
3547 if (!Subtarget.isLittle())
3548 std::swap(ArgValue, ArgValue2);
3549 ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
3550 ArgValue, ArgValue2);
3551 }
3552
3553 InVals.push_back(ArgValue);
3554 } else { // VA.isRegLoc()
3555 MVT LocVT = VA.getLocVT();
3556
3557 if (ABI.IsO32()) {
3558 // We ought to be able to use LocVT directly but O32 sets it to i32
3559 // when allocating floating point values to integer registers.
3560 // This shouldn't influence how we load the value into registers unless
3561 // we are targeting softfloat.
3562 if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat())
3563 LocVT = VA.getValVT();
3564 }
3565
3566 // sanity check
3567 assert(VA.isMemLoc());
3568
3569 // The stack pointer offset is relative to the caller stack frame.
3570 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
3571 VA.getLocMemOffset(), true);
3572
3573 // Create load nodes to retrieve arguments from the stack
3574 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3575 SDValue ArgValue = DAG.getLoad(
3576 LocVT, DL, Chain, FIN,
3577 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3578 OutChains.push_back(ArgValue.getValue(1));
3579
3580 ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3581
3582 InVals.push_back(ArgValue);
3583 }
3584 }
3585
3586 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3587 // The mips ABIs for returning structs by value requires that we copy
3588 // the sret argument into $v0 for the return. Save the argument into
3589 // a virtual register so that we can access it from the return points.
3590 if (Ins[i].Flags.isSRet()) {
3591 unsigned Reg = MipsFI->getSRetReturnReg();
3592 if (!Reg) {
3593 Reg = MF.getRegInfo().createVirtualRegister(
3594 getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
3595 MipsFI->setSRetReturnReg(Reg);
3596 }
3597 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
3598 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3599 break;
3600 }
3601 }
3602
3603 if (IsVarArg)
3604 writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
3605
3606 // All stores are grouped in one node to allow the matching between
3607 // the size of Ins and InVals. This only happens when on varg functions
3608 if (!OutChains.empty()) {
3609 OutChains.push_back(Chain);
3610 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
3611 }
3612
3613 return Chain;
3614 }
3615
3616 //===----------------------------------------------------------------------===//
3617 // Return Value Calling Convention Implementation
3618 //===----------------------------------------------------------------------===//
3619
3620 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const3621 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3622 MachineFunction &MF, bool IsVarArg,
3623 const SmallVectorImpl<ISD::OutputArg> &Outs,
3624 LLVMContext &Context) const {
3625 SmallVector<CCValAssign, 16> RVLocs;
3626 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3627 return CCInfo.CheckReturn(Outs, RetCC_Mips);
3628 }
3629
3630 bool
shouldSignExtendTypeInLibCall(EVT Type,bool IsSigned) const3631 MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
3632 if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32)
3633 return true;
3634
3635 return IsSigned;
3636 }
3637
3638 SDValue
LowerInterruptReturn(SmallVectorImpl<SDValue> & RetOps,const SDLoc & DL,SelectionDAG & DAG) const3639 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3640 const SDLoc &DL,
3641 SelectionDAG &DAG) const {
3642 MachineFunction &MF = DAG.getMachineFunction();
3643 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3644
3645 MipsFI->setISR();
3646
3647 return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
3648 }
3649
3650 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const3651 MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3652 bool IsVarArg,
3653 const SmallVectorImpl<ISD::OutputArg> &Outs,
3654 const SmallVectorImpl<SDValue> &OutVals,
3655 const SDLoc &DL, SelectionDAG &DAG) const {
3656 // CCValAssign - represent the assignment of
3657 // the return value to a location
3658 SmallVector<CCValAssign, 16> RVLocs;
3659 MachineFunction &MF = DAG.getMachineFunction();
3660
3661 // CCState - Info about the registers and stack slot.
3662 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
3663
3664 // Analyze return values.
3665 CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3666
3667 SDValue Flag;
3668 SmallVector<SDValue, 4> RetOps(1, Chain);
3669
3670 // Copy the result values into the output registers.
3671 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3672 SDValue Val = OutVals[i];
3673 CCValAssign &VA = RVLocs[i];
3674 assert(VA.isRegLoc() && "Can only return in registers!");
3675 bool UseUpperBits = false;
3676
3677 switch (VA.getLocInfo()) {
3678 default:
3679 llvm_unreachable("Unknown loc info!");
3680 case CCValAssign::Full:
3681 break;
3682 case CCValAssign::BCvt:
3683 Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
3684 break;
3685 case CCValAssign::AExtUpper:
3686 UseUpperBits = true;
3687 LLVM_FALLTHROUGH;
3688 case CCValAssign::AExt:
3689 Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
3690 break;
3691 case CCValAssign::ZExtUpper:
3692 UseUpperBits = true;
3693 LLVM_FALLTHROUGH;
3694 case CCValAssign::ZExt:
3695 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
3696 break;
3697 case CCValAssign::SExtUpper:
3698 UseUpperBits = true;
3699 LLVM_FALLTHROUGH;
3700 case CCValAssign::SExt:
3701 Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
3702 break;
3703 }
3704
3705 if (UseUpperBits) {
3706 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3707 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3708 Val = DAG.getNode(
3709 ISD::SHL, DL, VA.getLocVT(), Val,
3710 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3711 }
3712
3713 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
3714
3715 // Guarantee that all emitted copies are stuck together with flags.
3716 Flag = Chain.getValue(1);
3717 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3718 }
3719
3720 // The mips ABIs for returning structs by value requires that we copy
3721 // the sret argument into $v0 for the return. We saved the argument into
3722 // a virtual register in the entry block, so now we copy the value out
3723 // and into $v0.
3724 if (MF.getFunction().hasStructRetAttr()) {
3725 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3726 unsigned Reg = MipsFI->getSRetReturnReg();
3727
3728 if (!Reg)
3729 llvm_unreachable("sret virtual register not created in the entry block");
3730 SDValue Val =
3731 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
3732 unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
3733
3734 Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
3735 Flag = Chain.getValue(1);
3736 RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
3737 }
3738
3739 RetOps[0] = Chain; // Update chain.
3740
3741 // Add the flag if we have it.
3742 if (Flag.getNode())
3743 RetOps.push_back(Flag);
3744
3745 // ISRs must use "eret".
3746 if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3747 return LowerInterruptReturn(RetOps, DL, DAG);
3748
3749 // Standard return on Mips is a "jr $ra"
3750 return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
3751 }
3752
3753 //===----------------------------------------------------------------------===//
3754 // Mips Inline Assembly Support
3755 //===----------------------------------------------------------------------===//
3756
3757 /// getConstraintType - Given a constraint letter, return the type of
3758 /// constraint it is for this target.
3759 MipsTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const3760 MipsTargetLowering::getConstraintType(StringRef Constraint) const {
3761 // Mips specific constraints
3762 // GCC config/mips/constraints.md
3763 //
3764 // 'd' : An address register. Equivalent to r
3765 // unless generating MIPS16 code.
3766 // 'y' : Equivalent to r; retained for
3767 // backwards compatibility.
3768 // 'c' : A register suitable for use in an indirect
3769 // jump. This will always be $25 for -mabicalls.
3770 // 'l' : The lo register. 1 word storage.
3771 // 'x' : The hilo register pair. Double word storage.
3772 if (Constraint.size() == 1) {
3773 switch (Constraint[0]) {
3774 default : break;
3775 case 'd':
3776 case 'y':
3777 case 'f':
3778 case 'c':
3779 case 'l':
3780 case 'x':
3781 return C_RegisterClass;
3782 case 'R':
3783 return C_Memory;
3784 }
3785 }
3786
3787 if (Constraint == "ZC")
3788 return C_Memory;
3789
3790 return TargetLowering::getConstraintType(Constraint);
3791 }
3792
3793 /// Examine constraint type and operand type and determine a weight value.
3794 /// This object must already have been set up with the operand type
3795 /// and the current alternative constraint selected.
3796 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const3797 MipsTargetLowering::getSingleConstraintMatchWeight(
3798 AsmOperandInfo &info, const char *constraint) const {
3799 ConstraintWeight weight = CW_Invalid;
3800 Value *CallOperandVal = info.CallOperandVal;
3801 // If we don't have a value, we can't do a match,
3802 // but allow it at the lowest weight.
3803 if (!CallOperandVal)
3804 return CW_Default;
3805 Type *type = CallOperandVal->getType();
3806 // Look at the constraint type.
3807 switch (*constraint) {
3808 default:
3809 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3810 break;
3811 case 'd':
3812 case 'y':
3813 if (type->isIntegerTy())
3814 weight = CW_Register;
3815 break;
3816 case 'f': // FPU or MSA register
3817 if (Subtarget.hasMSA() && type->isVectorTy() &&
3818 cast<VectorType>(type)->getBitWidth() == 128)
3819 weight = CW_Register;
3820 else if (type->isFloatTy())
3821 weight = CW_Register;
3822 break;
3823 case 'c': // $25 for indirect jumps
3824 case 'l': // lo register
3825 case 'x': // hilo register pair
3826 if (type->isIntegerTy())
3827 weight = CW_SpecificReg;
3828 break;
3829 case 'I': // signed 16 bit immediate
3830 case 'J': // integer zero
3831 case 'K': // unsigned 16 bit immediate
3832 case 'L': // signed 32 bit immediate where lower 16 bits are 0
3833 case 'N': // immediate in the range of -65535 to -1 (inclusive)
3834 case 'O': // signed 15 bit immediate (+- 16383)
3835 case 'P': // immediate in the range of 65535 to 1 (inclusive)
3836 if (isa<ConstantInt>(CallOperandVal))
3837 weight = CW_Constant;
3838 break;
3839 case 'R':
3840 weight = CW_Memory;
3841 break;
3842 }
3843 return weight;
3844 }
3845
3846 /// This is a helper function to parse a physical register string and split it
3847 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
3848 /// that is returned indicates whether parsing was successful. The second flag
3849 /// is true if the numeric part exists.
parsePhysicalReg(StringRef C,StringRef & Prefix,unsigned long long & Reg)3850 static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
3851 unsigned long long &Reg) {
3852 if (C.front() != '{' || C.back() != '}')
3853 return std::make_pair(false, false);
3854
3855 // Search for the first numeric character.
3856 StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
3857 I = std::find_if(B, E, isdigit);
3858
3859 Prefix = StringRef(B, I - B);
3860
3861 // The second flag is set to false if no numeric characters were found.
3862 if (I == E)
3863 return std::make_pair(true, false);
3864
3865 // Parse the numeric characters.
3866 return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
3867 true);
3868 }
3869
getTypeForExtReturn(LLVMContext & Context,EVT VT,ISD::NodeType) const3870 EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
3871 ISD::NodeType) const {
3872 bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32;
3873 EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32);
3874 return VT.bitsLT(MinVT) ? MinVT : VT;
3875 }
3876
3877 std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
parseRegForInlineAsmConstraint(StringRef C,MVT VT) const3878 parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
3879 const TargetRegisterInfo *TRI =
3880 Subtarget.getRegisterInfo();
3881 const TargetRegisterClass *RC;
3882 StringRef Prefix;
3883 unsigned long long Reg;
3884
3885 std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
3886
3887 if (!R.first)
3888 return std::make_pair(0U, nullptr);
3889
3890 if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
3891 // No numeric characters follow "hi" or "lo".
3892 if (R.second)
3893 return std::make_pair(0U, nullptr);
3894
3895 RC = TRI->getRegClass(Prefix == "hi" ?
3896 Mips::HI32RegClassID : Mips::LO32RegClassID);
3897 return std::make_pair(*(RC->begin()), RC);
3898 } else if (Prefix.startswith("$msa")) {
3899 // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
3900
3901 // No numeric characters follow the name.
3902 if (R.second)
3903 return std::make_pair(0U, nullptr);
3904
3905 Reg = StringSwitch<unsigned long long>(Prefix)
3906 .Case("$msair", Mips::MSAIR)
3907 .Case("$msacsr", Mips::MSACSR)
3908 .Case("$msaaccess", Mips::MSAAccess)
3909 .Case("$msasave", Mips::MSASave)
3910 .Case("$msamodify", Mips::MSAModify)
3911 .Case("$msarequest", Mips::MSARequest)
3912 .Case("$msamap", Mips::MSAMap)
3913 .Case("$msaunmap", Mips::MSAUnmap)
3914 .Default(0);
3915
3916 if (!Reg)
3917 return std::make_pair(0U, nullptr);
3918
3919 RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
3920 return std::make_pair(Reg, RC);
3921 }
3922
3923 if (!R.second)
3924 return std::make_pair(0U, nullptr);
3925
3926 if (Prefix == "$f") { // Parse $f0-$f31.
3927 // If the size of FP registers is 64-bit or Reg is an even number, select
3928 // the 64-bit register class. Otherwise, select the 32-bit register class.
3929 if (VT == MVT::Other)
3930 VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
3931
3932 RC = getRegClassFor(VT);
3933
3934 if (RC == &Mips::AFGR64RegClass) {
3935 assert(Reg % 2 == 0);
3936 Reg >>= 1;
3937 }
3938 } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
3939 RC = TRI->getRegClass(Mips::FCCRegClassID);
3940 else if (Prefix == "$w") { // Parse $w0-$w31.
3941 RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
3942 } else { // Parse $0-$31.
3943 assert(Prefix == "$");
3944 RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
3945 }
3946
3947 assert(Reg < RC->getNumRegs());
3948 return std::make_pair(*(RC->begin() + Reg), RC);
3949 }
3950
3951 /// Given a register class constraint, like 'r', if this corresponds directly
3952 /// to an LLVM register class, return a register of 0 and the register class
3953 /// pointer.
3954 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const3955 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3956 StringRef Constraint,
3957 MVT VT) const {
3958 if (Constraint.size() == 1) {
3959 switch (Constraint[0]) {
3960 case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3961 case 'y': // Same as 'r'. Exists for compatibility.
3962 case 'r':
3963 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3964 if (Subtarget.inMips16Mode())
3965 return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3966 return std::make_pair(0U, &Mips::GPR32RegClass);
3967 }
3968 if (VT == MVT::i64 && !Subtarget.isGP64bit())
3969 return std::make_pair(0U, &Mips::GPR32RegClass);
3970 if (VT == MVT::i64 && Subtarget.isGP64bit())
3971 return std::make_pair(0U, &Mips::GPR64RegClass);
3972 // This will generate an error message
3973 return std::make_pair(0U, nullptr);
3974 case 'f': // FPU or MSA register
3975 if (VT == MVT::v16i8)
3976 return std::make_pair(0U, &Mips::MSA128BRegClass);
3977 else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3978 return std::make_pair(0U, &Mips::MSA128HRegClass);
3979 else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3980 return std::make_pair(0U, &Mips::MSA128WRegClass);
3981 else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3982 return std::make_pair(0U, &Mips::MSA128DRegClass);
3983 else if (VT == MVT::f32)
3984 return std::make_pair(0U, &Mips::FGR32RegClass);
3985 else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
3986 if (Subtarget.isFP64bit())
3987 return std::make_pair(0U, &Mips::FGR64RegClass);
3988 return std::make_pair(0U, &Mips::AFGR64RegClass);
3989 }
3990 break;
3991 case 'c': // register suitable for indirect jump
3992 if (VT == MVT::i32)
3993 return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
3994 if (VT == MVT::i64)
3995 return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
3996 // This will generate an error message
3997 return std::make_pair(0U, nullptr);
3998 case 'l': // use the `lo` register to store values
3999 // that are no bigger than a word
4000 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
4001 return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
4002 return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
4003 case 'x': // use the concatenated `hi` and `lo` registers
4004 // to store doubleword values
4005 // Fixme: Not triggering the use of both hi and low
4006 // This will generate an error message
4007 return std::make_pair(0U, nullptr);
4008 }
4009 }
4010
4011 std::pair<unsigned, const TargetRegisterClass *> R;
4012 R = parseRegForInlineAsmConstraint(Constraint, VT);
4013
4014 if (R.second)
4015 return R;
4016
4017 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4018 }
4019
4020 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4021 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const4022 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4023 std::string &Constraint,
4024 std::vector<SDValue>&Ops,
4025 SelectionDAG &DAG) const {
4026 SDLoc DL(Op);
4027 SDValue Result;
4028
4029 // Only support length 1 constraints for now.
4030 if (Constraint.length() > 1) return;
4031
4032 char ConstraintLetter = Constraint[0];
4033 switch (ConstraintLetter) {
4034 default: break; // This will fall through to the generic implementation
4035 case 'I': // Signed 16 bit constant
4036 // If this fails, the parent routine will give an error
4037 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4038 EVT Type = Op.getValueType();
4039 int64_t Val = C->getSExtValue();
4040 if (isInt<16>(Val)) {
4041 Result = DAG.getTargetConstant(Val, DL, Type);
4042 break;
4043 }
4044 }
4045 return;
4046 case 'J': // integer zero
4047 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4048 EVT Type = Op.getValueType();
4049 int64_t Val = C->getZExtValue();
4050 if (Val == 0) {
4051 Result = DAG.getTargetConstant(0, DL, Type);
4052 break;
4053 }
4054 }
4055 return;
4056 case 'K': // unsigned 16 bit immediate
4057 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4058 EVT Type = Op.getValueType();
4059 uint64_t Val = (uint64_t)C->getZExtValue();
4060 if (isUInt<16>(Val)) {
4061 Result = DAG.getTargetConstant(Val, DL, Type);
4062 break;
4063 }
4064 }
4065 return;
4066 case 'L': // signed 32 bit immediate where lower 16 bits are 0
4067 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4068 EVT Type = Op.getValueType();
4069 int64_t Val = C->getSExtValue();
4070 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
4071 Result = DAG.getTargetConstant(Val, DL, Type);
4072 break;
4073 }
4074 }
4075 return;
4076 case 'N': // immediate in the range of -65535 to -1 (inclusive)
4077 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4078 EVT Type = Op.getValueType();
4079 int64_t Val = C->getSExtValue();
4080 if ((Val >= -65535) && (Val <= -1)) {
4081 Result = DAG.getTargetConstant(Val, DL, Type);
4082 break;
4083 }
4084 }
4085 return;
4086 case 'O': // signed 15 bit immediate
4087 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4088 EVT Type = Op.getValueType();
4089 int64_t Val = C->getSExtValue();
4090 if ((isInt<15>(Val))) {
4091 Result = DAG.getTargetConstant(Val, DL, Type);
4092 break;
4093 }
4094 }
4095 return;
4096 case 'P': // immediate in the range of 1 to 65535 (inclusive)
4097 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4098 EVT Type = Op.getValueType();
4099 int64_t Val = C->getSExtValue();
4100 if ((Val <= 65535) && (Val >= 1)) {
4101 Result = DAG.getTargetConstant(Val, DL, Type);
4102 break;
4103 }
4104 }
4105 return;
4106 }
4107
4108 if (Result.getNode()) {
4109 Ops.push_back(Result);
4110 return;
4111 }
4112
4113 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4114 }
4115
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const4116 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4117 const AddrMode &AM, Type *Ty,
4118 unsigned AS, Instruction *I) const {
4119 // No global is ever allowed as a base.
4120 if (AM.BaseGV)
4121 return false;
4122
4123 switch (AM.Scale) {
4124 case 0: // "r+i" or just "i", depending on HasBaseReg.
4125 break;
4126 case 1:
4127 if (!AM.HasBaseReg) // allow "r+i".
4128 break;
4129 return false; // disallow "r+r" or "r+r+i".
4130 default:
4131 return false;
4132 }
4133
4134 return true;
4135 }
4136
4137 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const4138 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4139 // The Mips target isn't yet aware of offsets.
4140 return false;
4141 }
4142
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,const AttributeList & FuncAttributes) const4143 EVT MipsTargetLowering::getOptimalMemOpType(
4144 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
4145 bool ZeroMemset, bool MemcpyStrSrc,
4146 const AttributeList &FuncAttributes) const {
4147 if (Subtarget.hasMips64())
4148 return MVT::i64;
4149
4150 return MVT::i32;
4151 }
4152
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const4153 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
4154 bool ForCodeSize) const {
4155 if (VT != MVT::f32 && VT != MVT::f64)
4156 return false;
4157 if (Imm.isNegZero())
4158 return false;
4159 return Imm.isZero();
4160 }
4161
getJumpTableEncoding() const4162 unsigned MipsTargetLowering::getJumpTableEncoding() const {
4163
4164 // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4165 if (ABI.IsN64() && isPositionIndependent())
4166 return MachineJumpTableInfo::EK_GPRel64BlockAddress;
4167
4168 return TargetLowering::getJumpTableEncoding();
4169 }
4170
useSoftFloat() const4171 bool MipsTargetLowering::useSoftFloat() const {
4172 return Subtarget.useSoftFloat();
4173 }
4174
copyByValRegs(SDValue Chain,const SDLoc & DL,std::vector<SDValue> & OutChains,SelectionDAG & DAG,const ISD::ArgFlagsTy & Flags,SmallVectorImpl<SDValue> & InVals,const Argument * FuncArg,unsigned FirstReg,unsigned LastReg,const CCValAssign & VA,MipsCCState & State) const4175 void MipsTargetLowering::copyByValRegs(
4176 SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
4177 SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
4178 SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
4179 unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
4180 MipsCCState &State) const {
4181 MachineFunction &MF = DAG.getMachineFunction();
4182 MachineFrameInfo &MFI = MF.getFrameInfo();
4183 unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
4184 unsigned NumRegs = LastReg - FirstReg;
4185 unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
4186 unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
4187 int FrameObjOffset;
4188 ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
4189
4190 if (RegAreaSize)
4191 FrameObjOffset =
4192 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4193 (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
4194 else
4195 FrameObjOffset = VA.getLocMemOffset();
4196
4197 // Create frame object.
4198 EVT PtrTy = getPointerTy(DAG.getDataLayout());
4199 // Make the fixed object stored to mutable so that the load instructions
4200 // referencing it have their memory dependencies added.
4201 // Set the frame object as isAliased which clears the underlying objects
4202 // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4203 // stores as dependencies for loads referencing this fixed object.
4204 int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true);
4205 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4206 InVals.push_back(FIN);
4207
4208 if (!NumRegs)
4209 return;
4210
4211 // Copy arg registers.
4212 MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
4213 const TargetRegisterClass *RC = getRegClassFor(RegTy);
4214
4215 for (unsigned I = 0; I < NumRegs; ++I) {
4216 unsigned ArgReg = ByValArgRegs[FirstReg + I];
4217 unsigned VReg = addLiveIn(MF, ArgReg, RC);
4218 unsigned Offset = I * GPRSizeInBytes;
4219 SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
4220 DAG.getConstant(Offset, DL, PtrTy));
4221 SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
4222 StorePtr, MachinePointerInfo(FuncArg, Offset));
4223 OutChains.push_back(Store);
4224 }
4225 }
4226
4227 // Copy byVal arg to registers and stack.
passByValArg(SDValue Chain,const SDLoc & DL,std::deque<std::pair<unsigned,SDValue>> & RegsToPass,SmallVectorImpl<SDValue> & MemOpChains,SDValue StackPtr,MachineFrameInfo & MFI,SelectionDAG & DAG,SDValue Arg,unsigned FirstReg,unsigned LastReg,const ISD::ArgFlagsTy & Flags,bool isLittle,const CCValAssign & VA) const4228 void MipsTargetLowering::passByValArg(
4229 SDValue Chain, const SDLoc &DL,
4230 std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
4231 SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
4232 MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
4233 unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
4234 const CCValAssign &VA) const {
4235 unsigned ByValSizeInBytes = Flags.getByValSize();
4236 unsigned OffsetInBytes = 0; // From beginning of struct
4237 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4238 unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
4239 EVT PtrTy = getPointerTy(DAG.getDataLayout()),
4240 RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4241 unsigned NumRegs = LastReg - FirstReg;
4242
4243 if (NumRegs) {
4244 ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
4245 bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
4246 unsigned I = 0;
4247
4248 // Copy words to registers.
4249 for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
4250 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4251 DAG.getConstant(OffsetInBytes, DL, PtrTy));
4252 SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
4253 MachinePointerInfo(), Alignment);
4254 MemOpChains.push_back(LoadVal.getValue(1));
4255 unsigned ArgReg = ArgRegs[FirstReg + I];
4256 RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
4257 }
4258
4259 // Return if the struct has been fully copied.
4260 if (ByValSizeInBytes == OffsetInBytes)
4261 return;
4262
4263 // Copy the remainder of the byval argument with sub-word loads and shifts.
4264 if (LeftoverBytes) {
4265 SDValue Val;
4266
4267 for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
4268 OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
4269 unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
4270
4271 if (RemainingSizeInBytes < LoadSizeInBytes)
4272 continue;
4273
4274 // Load subword.
4275 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4276 DAG.getConstant(OffsetInBytes, DL,
4277 PtrTy));
4278 SDValue LoadVal = DAG.getExtLoad(
4279 ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
4280 MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment);
4281 MemOpChains.push_back(LoadVal.getValue(1));
4282
4283 // Shift the loaded value.
4284 unsigned Shamt;
4285
4286 if (isLittle)
4287 Shamt = TotalBytesLoaded * 8;
4288 else
4289 Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
4290
4291 SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
4292 DAG.getConstant(Shamt, DL, MVT::i32));
4293
4294 if (Val.getNode())
4295 Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
4296 else
4297 Val = Shift;
4298
4299 OffsetInBytes += LoadSizeInBytes;
4300 TotalBytesLoaded += LoadSizeInBytes;
4301 Alignment = std::min(Alignment, LoadSizeInBytes);
4302 }
4303
4304 unsigned ArgReg = ArgRegs[FirstReg + I];
4305 RegsToPass.push_back(std::make_pair(ArgReg, Val));
4306 return;
4307 }
4308 }
4309
4310 // Copy remainder of byval arg to it with memcpy.
4311 unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
4312 SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4313 DAG.getConstant(OffsetInBytes, DL, PtrTy));
4314 SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
4315 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
4316 Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
4317 DAG.getConstant(MemCpySize, DL, PtrTy),
4318 Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
4319 /*isTailCall=*/false,
4320 MachinePointerInfo(), MachinePointerInfo());
4321 MemOpChains.push_back(Chain);
4322 }
4323
writeVarArgRegs(std::vector<SDValue> & OutChains,SDValue Chain,const SDLoc & DL,SelectionDAG & DAG,CCState & State) const4324 void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
4325 SDValue Chain, const SDLoc &DL,
4326 SelectionDAG &DAG,
4327 CCState &State) const {
4328 ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
4329 unsigned Idx = State.getFirstUnallocated(ArgRegs);
4330 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4331 MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4332 const TargetRegisterClass *RC = getRegClassFor(RegTy);
4333 MachineFunction &MF = DAG.getMachineFunction();
4334 MachineFrameInfo &MFI = MF.getFrameInfo();
4335 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
4336
4337 // Offset of the first variable argument from stack pointer.
4338 int VaArgOffset;
4339
4340 if (ArgRegs.size() == Idx)
4341 VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes);
4342 else {
4343 VaArgOffset =
4344 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4345 (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
4346 }
4347
4348 // Record the frame index of the first variable argument
4349 // which is a value necessary to VASTART.
4350 int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4351 MipsFI->setVarArgsFrameIndex(FI);
4352
4353 // Copy the integer registers that have not been used for argument passing
4354 // to the argument register save area. For O32, the save area is allocated
4355 // in the caller's stack frame, while for N32/64, it is allocated in the
4356 // callee's stack frame.
4357 for (unsigned I = Idx; I < ArgRegs.size();
4358 ++I, VaArgOffset += RegSizeInBytes) {
4359 unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
4360 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
4361 FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4362 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4363 SDValue Store =
4364 DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo());
4365 cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
4366 (Value *)nullptr);
4367 OutChains.push_back(Store);
4368 }
4369 }
4370
HandleByVal(CCState * State,unsigned & Size,unsigned Align) const4371 void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
4372 unsigned Align) const {
4373 const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
4374
4375 assert(Size && "Byval argument's size shouldn't be 0.");
4376
4377 Align = std::min(Align, TFL->getStackAlignment());
4378
4379 unsigned FirstReg = 0;
4380 unsigned NumRegs = 0;
4381
4382 if (State->getCallingConv() != CallingConv::Fast) {
4383 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4384 ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
4385 // FIXME: The O32 case actually describes no shadow registers.
4386 const MCPhysReg *ShadowRegs =
4387 ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
4388
4389 // We used to check the size as well but we can't do that anymore since
4390 // CCState::HandleByVal() rounds up the size after calling this function.
4391 assert(!(Align % RegSizeInBytes) &&
4392 "Byval argument's alignment should be a multiple of"
4393 "RegSizeInBytes.");
4394
4395 FirstReg = State->getFirstUnallocated(IntArgRegs);
4396
4397 // If Align > RegSizeInBytes, the first arg register must be even.
4398 // FIXME: This condition happens to do the right thing but it's not the
4399 // right way to test it. We want to check that the stack frame offset
4400 // of the register is aligned.
4401 if ((Align > RegSizeInBytes) && (FirstReg % 2)) {
4402 State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
4403 ++FirstReg;
4404 }
4405
4406 // Mark the registers allocated.
4407 Size = alignTo(Size, RegSizeInBytes);
4408 for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
4409 Size -= RegSizeInBytes, ++I, ++NumRegs)
4410 State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
4411 }
4412
4413 State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
4414 }
4415
emitPseudoSELECT(MachineInstr & MI,MachineBasicBlock * BB,bool isFPCmp,unsigned Opc) const4416 MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
4417 MachineBasicBlock *BB,
4418 bool isFPCmp,
4419 unsigned Opc) const {
4420 assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4421 "Subtarget already supports SELECT nodes with the use of"
4422 "conditional-move instructions.");
4423
4424 const TargetInstrInfo *TII =
4425 Subtarget.getInstrInfo();
4426 DebugLoc DL = MI.getDebugLoc();
4427
4428 // To "insert" a SELECT instruction, we actually have to insert the
4429 // diamond control-flow pattern. The incoming instruction knows the
4430 // destination vreg to set, the condition code register to branch on, the
4431 // true/false values to select between, and a branch opcode to use.
4432 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4433 MachineFunction::iterator It = ++BB->getIterator();
4434
4435 // thisMBB:
4436 // ...
4437 // TrueVal = ...
4438 // setcc r1, r2, r3
4439 // bNE r1, r0, copy1MBB
4440 // fallthrough --> copy0MBB
4441 MachineBasicBlock *thisMBB = BB;
4442 MachineFunction *F = BB->getParent();
4443 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4444 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4445 F->insert(It, copy0MBB);
4446 F->insert(It, sinkMBB);
4447
4448 // Transfer the remainder of BB and its successor edges to sinkMBB.
4449 sinkMBB->splice(sinkMBB->begin(), BB,
4450 std::next(MachineBasicBlock::iterator(MI)), BB->end());
4451 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4452
4453 // Next, add the true and fallthrough blocks as its successors.
4454 BB->addSuccessor(copy0MBB);
4455 BB->addSuccessor(sinkMBB);
4456
4457 if (isFPCmp) {
4458 // bc1[tf] cc, sinkMBB
4459 BuildMI(BB, DL, TII->get(Opc))
4460 .addReg(MI.getOperand(1).getReg())
4461 .addMBB(sinkMBB);
4462 } else {
4463 // bne rs, $0, sinkMBB
4464 BuildMI(BB, DL, TII->get(Opc))
4465 .addReg(MI.getOperand(1).getReg())
4466 .addReg(Mips::ZERO)
4467 .addMBB(sinkMBB);
4468 }
4469
4470 // copy0MBB:
4471 // %FalseValue = ...
4472 // # fallthrough to sinkMBB
4473 BB = copy0MBB;
4474
4475 // Update machine-CFG edges
4476 BB->addSuccessor(sinkMBB);
4477
4478 // sinkMBB:
4479 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4480 // ...
4481 BB = sinkMBB;
4482
4483 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4484 .addReg(MI.getOperand(2).getReg())
4485 .addMBB(thisMBB)
4486 .addReg(MI.getOperand(3).getReg())
4487 .addMBB(copy0MBB);
4488
4489 MI.eraseFromParent(); // The pseudo instruction is gone now.
4490
4491 return BB;
4492 }
4493
emitPseudoD_SELECT(MachineInstr & MI,MachineBasicBlock * BB) const4494 MachineBasicBlock *MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI,
4495 MachineBasicBlock *BB) const {
4496 assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4497 "Subtarget already supports SELECT nodes with the use of"
4498 "conditional-move instructions.");
4499
4500 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4501 DebugLoc DL = MI.getDebugLoc();
4502
4503 // D_SELECT substitutes two SELECT nodes that goes one after another and
4504 // have the same condition operand. On machines which don't have
4505 // conditional-move instruction, it reduces unnecessary branch instructions
4506 // which are result of using two diamond patterns that are result of two
4507 // SELECT pseudo instructions.
4508 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4509 MachineFunction::iterator It = ++BB->getIterator();
4510
4511 // thisMBB:
4512 // ...
4513 // TrueVal = ...
4514 // setcc r1, r2, r3
4515 // bNE r1, r0, copy1MBB
4516 // fallthrough --> copy0MBB
4517 MachineBasicBlock *thisMBB = BB;
4518 MachineFunction *F = BB->getParent();
4519 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4520 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4521 F->insert(It, copy0MBB);
4522 F->insert(It, sinkMBB);
4523
4524 // Transfer the remainder of BB and its successor edges to sinkMBB.
4525 sinkMBB->splice(sinkMBB->begin(), BB,
4526 std::next(MachineBasicBlock::iterator(MI)), BB->end());
4527 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4528
4529 // Next, add the true and fallthrough blocks as its successors.
4530 BB->addSuccessor(copy0MBB);
4531 BB->addSuccessor(sinkMBB);
4532
4533 // bne rs, $0, sinkMBB
4534 BuildMI(BB, DL, TII->get(Mips::BNE))
4535 .addReg(MI.getOperand(2).getReg())
4536 .addReg(Mips::ZERO)
4537 .addMBB(sinkMBB);
4538
4539 // copy0MBB:
4540 // %FalseValue = ...
4541 // # fallthrough to sinkMBB
4542 BB = copy0MBB;
4543
4544 // Update machine-CFG edges
4545 BB->addSuccessor(sinkMBB);
4546
4547 // sinkMBB:
4548 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4549 // ...
4550 BB = sinkMBB;
4551
4552 // Use two PHI nodes to select two reults
4553 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4554 .addReg(MI.getOperand(3).getReg())
4555 .addMBB(thisMBB)
4556 .addReg(MI.getOperand(5).getReg())
4557 .addMBB(copy0MBB);
4558 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg())
4559 .addReg(MI.getOperand(4).getReg())
4560 .addMBB(thisMBB)
4561 .addReg(MI.getOperand(6).getReg())
4562 .addMBB(copy0MBB);
4563
4564 MI.eraseFromParent(); // The pseudo instruction is gone now.
4565
4566 return BB;
4567 }
4568
4569 // FIXME? Maybe this could be a TableGen attribute on some registers and
4570 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const4571 unsigned MipsTargetLowering::getRegisterByName(const char* RegName, EVT VT,
4572 SelectionDAG &DAG) const {
4573 // Named registers is expected to be fairly rare. For now, just support $28
4574 // since the linux kernel uses it.
4575 if (Subtarget.isGP64bit()) {
4576 unsigned Reg = StringSwitch<unsigned>(RegName)
4577 .Case("$28", Mips::GP_64)
4578 .Default(0);
4579 if (Reg)
4580 return Reg;
4581 } else {
4582 unsigned Reg = StringSwitch<unsigned>(RegName)
4583 .Case("$28", Mips::GP)
4584 .Default(0);
4585 if (Reg)
4586 return Reg;
4587 }
4588 report_fatal_error("Invalid register name global variable");
4589 }
4590