1 //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates n-ary add expressions and eliminates the redundancy
10 // exposed by the reassociation.
11 //
12 // A motivating example:
13 //
14 //   void foo(int a, int b) {
15 //     bar(a + b);
16 //     bar((a + 2) + b);
17 //   }
18 //
19 // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
20 // the above code to
21 //
22 //   int t = a + b;
23 //   bar(t);
24 //   bar(t + 2);
25 //
26 // However, the Reassociate pass is unable to do that because it processes each
27 // instruction individually and believes (a + 2) + b is the best form according
28 // to its rank system.
29 //
30 // To address this limitation, NaryReassociate reassociates an expression in a
31 // form that reuses existing instructions. As a result, NaryReassociate can
32 // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
33 // (a + b) is computed before.
34 //
35 // NaryReassociate works as follows. For every instruction in the form of (a +
36 // b) + c, it checks whether a + c or b + c is already computed by a dominating
37 // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
38 // c) + a and removes the redundancy accordingly. To efficiently look up whether
39 // an expression is computed before, we store each instruction seen and its SCEV
40 // into an SCEV-to-instruction map.
41 //
42 // Although the algorithm pattern-matches only ternary additions, it
43 // automatically handles many >3-ary expressions by walking through the function
44 // in the depth-first order. For example, given
45 //
46 //   (a + c) + d
47 //   ((a + b) + c) + d
48 //
49 // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
50 // ((a + c) + b) + d into ((a + c) + d) + b.
51 //
52 // Finally, the above dominator-based algorithm may need to be run multiple
53 // iterations before emitting optimal code. One source of this need is that we
54 // only split an operand when it is used only once. The above algorithm can
55 // eliminate an instruction and decrease the usage count of its operands. As a
56 // result, an instruction that previously had multiple uses may become a
57 // single-use instruction and thus eligible for split consideration. For
58 // example,
59 //
60 //   ac = a + c
61 //   ab = a + b
62 //   abc = ab + c
63 //   ab2 = ab + b
64 //   ab2c = ab2 + c
65 //
66 // In the first iteration, we cannot reassociate abc to ac+b because ab is used
67 // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
68 // result, ab2 becomes dead and ab will be used only once in the second
69 // iteration.
70 //
71 // Limitations and TODO items:
72 //
73 // 1) We only considers n-ary adds and muls for now. This should be extended
74 // and generalized.
75 //
76 //===----------------------------------------------------------------------===//
77 
78 #include "llvm/Transforms/Scalar/NaryReassociate.h"
79 #include "llvm/ADT/DepthFirstIterator.h"
80 #include "llvm/ADT/SmallVector.h"
81 #include "llvm/Analysis/AssumptionCache.h"
82 #include "llvm/Analysis/ScalarEvolution.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/TargetTransformInfo.h"
85 #include "llvm/Transforms/Utils/Local.h"
86 #include "llvm/Analysis/ValueTracking.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/Constants.h"
89 #include "llvm/IR/DataLayout.h"
90 #include "llvm/IR/DerivedTypes.h"
91 #include "llvm/IR/Dominators.h"
92 #include "llvm/IR/Function.h"
93 #include "llvm/IR/GetElementPtrTypeIterator.h"
94 #include "llvm/IR/IRBuilder.h"
95 #include "llvm/IR/InstrTypes.h"
96 #include "llvm/IR/Instruction.h"
97 #include "llvm/IR/Instructions.h"
98 #include "llvm/IR/Module.h"
99 #include "llvm/IR/Operator.h"
100 #include "llvm/IR/PatternMatch.h"
101 #include "llvm/IR/Type.h"
102 #include "llvm/IR/Value.h"
103 #include "llvm/IR/ValueHandle.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include <cassert>
109 #include <cstdint>
110 
111 using namespace llvm;
112 using namespace PatternMatch;
113 
114 #define DEBUG_TYPE "nary-reassociate"
115 
116 namespace {
117 
118 class NaryReassociateLegacyPass : public FunctionPass {
119 public:
120   static char ID;
121 
NaryReassociateLegacyPass()122   NaryReassociateLegacyPass() : FunctionPass(ID) {
123     initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
124   }
125 
doInitialization(Module & M)126   bool doInitialization(Module &M) override {
127     return false;
128   }
129 
130   bool runOnFunction(Function &F) override;
131 
getAnalysisUsage(AnalysisUsage & AU) const132   void getAnalysisUsage(AnalysisUsage &AU) const override {
133     AU.addPreserved<DominatorTreeWrapperPass>();
134     AU.addPreserved<ScalarEvolutionWrapperPass>();
135     AU.addPreserved<TargetLibraryInfoWrapperPass>();
136     AU.addRequired<AssumptionCacheTracker>();
137     AU.addRequired<DominatorTreeWrapperPass>();
138     AU.addRequired<ScalarEvolutionWrapperPass>();
139     AU.addRequired<TargetLibraryInfoWrapperPass>();
140     AU.addRequired<TargetTransformInfoWrapperPass>();
141     AU.setPreservesCFG();
142   }
143 
144 private:
145   NaryReassociatePass Impl;
146 };
147 
148 } // end anonymous namespace
149 
150 char NaryReassociateLegacyPass::ID = 0;
151 
152 INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
153                       "Nary reassociation", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)154 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
155 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
156 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
157 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
158 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
159 INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
160                     "Nary reassociation", false, false)
161 
162 FunctionPass *llvm::createNaryReassociatePass() {
163   return new NaryReassociateLegacyPass();
164 }
165 
runOnFunction(Function & F)166 bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
167   if (skipFunction(F))
168     return false;
169 
170   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
171   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
172   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
173   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
174   auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
175 
176   return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
177 }
178 
run(Function & F,FunctionAnalysisManager & AM)179 PreservedAnalyses NaryReassociatePass::run(Function &F,
180                                            FunctionAnalysisManager &AM) {
181   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
182   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
183   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
184   auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
185   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
186 
187   if (!runImpl(F, AC, DT, SE, TLI, TTI))
188     return PreservedAnalyses::all();
189 
190   PreservedAnalyses PA;
191   PA.preserveSet<CFGAnalyses>();
192   PA.preserve<ScalarEvolutionAnalysis>();
193   return PA;
194 }
195 
runImpl(Function & F,AssumptionCache * AC_,DominatorTree * DT_,ScalarEvolution * SE_,TargetLibraryInfo * TLI_,TargetTransformInfo * TTI_)196 bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_,
197                                   DominatorTree *DT_, ScalarEvolution *SE_,
198                                   TargetLibraryInfo *TLI_,
199                                   TargetTransformInfo *TTI_) {
200   AC = AC_;
201   DT = DT_;
202   SE = SE_;
203   TLI = TLI_;
204   TTI = TTI_;
205   DL = &F.getParent()->getDataLayout();
206 
207   bool Changed = false, ChangedInThisIteration;
208   do {
209     ChangedInThisIteration = doOneIteration(F);
210     Changed |= ChangedInThisIteration;
211   } while (ChangedInThisIteration);
212   return Changed;
213 }
214 
215 // Whitelist the instruction types NaryReassociate handles for now.
isPotentiallyNaryReassociable(Instruction * I)216 static bool isPotentiallyNaryReassociable(Instruction *I) {
217   switch (I->getOpcode()) {
218   case Instruction::Add:
219   case Instruction::GetElementPtr:
220   case Instruction::Mul:
221     return true;
222   default:
223     return false;
224   }
225 }
226 
doOneIteration(Function & F)227 bool NaryReassociatePass::doOneIteration(Function &F) {
228   bool Changed = false;
229   SeenExprs.clear();
230   // Process the basic blocks in a depth first traversal of the dominator
231   // tree. This order ensures that all bases of a candidate are in Candidates
232   // when we process it.
233   for (const auto Node : depth_first(DT)) {
234     BasicBlock *BB = Node->getBlock();
235     for (auto I = BB->begin(); I != BB->end(); ++I) {
236       if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(&*I)) {
237         const SCEV *OldSCEV = SE->getSCEV(&*I);
238         if (Instruction *NewI = tryReassociate(&*I)) {
239           Changed = true;
240           SE->forgetValue(&*I);
241           I->replaceAllUsesWith(NewI);
242           WeakVH NewIExist = NewI;
243           // If SeenExprs/NewIExist contains I's WeakTrackingVH/WeakVH, that
244           // entry will be replaced with nullptr if deleted.
245           RecursivelyDeleteTriviallyDeadInstructions(&*I, TLI);
246           if (!NewIExist) {
247             // Rare occation where the new instruction (NewI) have been removed,
248             // probably due to parts of the input code was dead from the
249             // beginning, reset the iterator and start over from the beginning
250             I = BB->begin();
251             continue;
252           }
253           I = NewI->getIterator();
254         }
255         // Add the rewritten instruction to SeenExprs; the original instruction
256         // is deleted.
257         const SCEV *NewSCEV = SE->getSCEV(&*I);
258         SeenExprs[NewSCEV].push_back(WeakTrackingVH(&*I));
259         // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
260         // is equivalent to I. However, ScalarEvolution::getSCEV may
261         // weaken nsw causing NewSCEV not to equal OldSCEV. For example, suppose
262         // we reassociate
263         //   I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
264         // to
265         //   NewI = &a[sext(i)] + sext(j).
266         //
267         // ScalarEvolution computes
268         //   getSCEV(I)    = a + 4 * sext(i + j)
269         //   getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
270         // which are different SCEVs.
271         //
272         // To alleviate this issue of ScalarEvolution not always capturing
273         // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
274         // map both SCEV before and after tryReassociate(I) to I.
275         //
276         // This improvement is exercised in @reassociate_gep_nsw in nary-gep.ll.
277         if (NewSCEV != OldSCEV)
278           SeenExprs[OldSCEV].push_back(WeakTrackingVH(&*I));
279       }
280     }
281   }
282   return Changed;
283 }
284 
tryReassociate(Instruction * I)285 Instruction *NaryReassociatePass::tryReassociate(Instruction *I) {
286   switch (I->getOpcode()) {
287   case Instruction::Add:
288   case Instruction::Mul:
289     return tryReassociateBinaryOp(cast<BinaryOperator>(I));
290   case Instruction::GetElementPtr:
291     return tryReassociateGEP(cast<GetElementPtrInst>(I));
292   default:
293     llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable");
294   }
295 }
296 
isGEPFoldable(GetElementPtrInst * GEP,const TargetTransformInfo * TTI)297 static bool isGEPFoldable(GetElementPtrInst *GEP,
298                           const TargetTransformInfo *TTI) {
299   SmallVector<const Value*, 4> Indices;
300   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
301     Indices.push_back(*I);
302   return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
303                          Indices) == TargetTransformInfo::TCC_Free;
304 }
305 
tryReassociateGEP(GetElementPtrInst * GEP)306 Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
307   // Not worth reassociating GEP if it is foldable.
308   if (isGEPFoldable(GEP, TTI))
309     return nullptr;
310 
311   gep_type_iterator GTI = gep_type_begin(*GEP);
312   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
313     if (GTI.isSequential()) {
314       if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
315                                                   GTI.getIndexedType())) {
316         return NewGEP;
317       }
318     }
319   }
320   return nullptr;
321 }
322 
requiresSignExtension(Value * Index,GetElementPtrInst * GEP)323 bool NaryReassociatePass::requiresSignExtension(Value *Index,
324                                                 GetElementPtrInst *GEP) {
325   unsigned PointerSizeInBits =
326       DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
327   return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
328 }
329 
330 GetElementPtrInst *
tryReassociateGEPAtIndex(GetElementPtrInst * GEP,unsigned I,Type * IndexedType)331 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
332                                               unsigned I, Type *IndexedType) {
333   Value *IndexToSplit = GEP->getOperand(I + 1);
334   if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
335     IndexToSplit = SExt->getOperand(0);
336   } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
337     // zext can be treated as sext if the source is non-negative.
338     if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
339       IndexToSplit = ZExt->getOperand(0);
340   }
341 
342   if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
343     // If the I-th index needs sext and the underlying add is not equipped with
344     // nsw, we cannot split the add because
345     //   sext(LHS + RHS) != sext(LHS) + sext(RHS).
346     if (requiresSignExtension(IndexToSplit, GEP) &&
347         computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
348             OverflowResult::NeverOverflows)
349       return nullptr;
350 
351     Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
352     // IndexToSplit = LHS + RHS.
353     if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
354       return NewGEP;
355     // Symmetrically, try IndexToSplit = RHS + LHS.
356     if (LHS != RHS) {
357       if (auto *NewGEP =
358               tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
359         return NewGEP;
360     }
361   }
362   return nullptr;
363 }
364 
365 GetElementPtrInst *
tryReassociateGEPAtIndex(GetElementPtrInst * GEP,unsigned I,Value * LHS,Value * RHS,Type * IndexedType)366 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
367                                               unsigned I, Value *LHS,
368                                               Value *RHS, Type *IndexedType) {
369   // Look for GEP's closest dominator that has the same SCEV as GEP except that
370   // the I-th index is replaced with LHS.
371   SmallVector<const SCEV *, 4> IndexExprs;
372   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
373     IndexExprs.push_back(SE->getSCEV(*Index));
374   // Replace the I-th index with LHS.
375   IndexExprs[I] = SE->getSCEV(LHS);
376   if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
377       DL->getTypeSizeInBits(LHS->getType()) <
378           DL->getTypeSizeInBits(GEP->getOperand(I)->getType())) {
379     // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
380     // zext if the source operand is proved non-negative. We should do that
381     // consistently so that CandidateExpr more likely appears before. See
382     // @reassociate_gep_assume for an example of this canonicalization.
383     IndexExprs[I] =
384         SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
385   }
386   const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
387                                              IndexExprs);
388 
389   Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
390   if (Candidate == nullptr)
391     return nullptr;
392 
393   IRBuilder<> Builder(GEP);
394   // Candidate does not necessarily have the same pointer type as GEP. Use
395   // bitcast or pointer cast to make sure they have the same type, so that the
396   // later RAUW doesn't complain.
397   Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType());
398   assert(Candidate->getType() == GEP->getType());
399 
400   // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
401   uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
402   Type *ElementType = GEP->getResultElementType();
403   uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
404   // Another less rare case: because I is not necessarily the last index of the
405   // GEP, the size of the type at the I-th index (IndexedSize) is not
406   // necessarily divisible by ElementSize. For example,
407   //
408   // #pragma pack(1)
409   // struct S {
410   //   int a[3];
411   //   int64 b[8];
412   // };
413   // #pragma pack()
414   //
415   // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
416   //
417   // TODO: bail out on this case for now. We could emit uglygep.
418   if (IndexedSize % ElementSize != 0)
419     return nullptr;
420 
421   // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
422   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
423   if (RHS->getType() != IntPtrTy)
424     RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
425   if (IndexedSize != ElementSize) {
426     RHS = Builder.CreateMul(
427         RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
428   }
429   GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(
430       Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS));
431   NewGEP->setIsInBounds(GEP->isInBounds());
432   NewGEP->takeName(GEP);
433   return NewGEP;
434 }
435 
tryReassociateBinaryOp(BinaryOperator * I)436 Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
437   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
438   // There is no need to reassociate 0.
439   if (SE->getSCEV(I)->isZero())
440     return nullptr;
441   if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
442     return NewI;
443   if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
444     return NewI;
445   return nullptr;
446 }
447 
tryReassociateBinaryOp(Value * LHS,Value * RHS,BinaryOperator * I)448 Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
449                                                          BinaryOperator *I) {
450   Value *A = nullptr, *B = nullptr;
451   // To be conservative, we reassociate I only when it is the only user of (A op
452   // B).
453   if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
454     // I = (A op B) op RHS
455     //   = (A op RHS) op B or (B op RHS) op A
456     const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
457     const SCEV *RHSExpr = SE->getSCEV(RHS);
458     if (BExpr != RHSExpr) {
459       if (auto *NewI =
460               tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
461         return NewI;
462     }
463     if (AExpr != RHSExpr) {
464       if (auto *NewI =
465               tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
466         return NewI;
467     }
468   }
469   return nullptr;
470 }
471 
tryReassociatedBinaryOp(const SCEV * LHSExpr,Value * RHS,BinaryOperator * I)472 Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
473                                                           Value *RHS,
474                                                           BinaryOperator *I) {
475   // Look for the closest dominator LHS of I that computes LHSExpr, and replace
476   // I with LHS op RHS.
477   auto *LHS = findClosestMatchingDominator(LHSExpr, I);
478   if (LHS == nullptr)
479     return nullptr;
480 
481   Instruction *NewI = nullptr;
482   switch (I->getOpcode()) {
483   case Instruction::Add:
484     NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
485     break;
486   case Instruction::Mul:
487     NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
488     break;
489   default:
490     llvm_unreachable("Unexpected instruction.");
491   }
492   NewI->takeName(I);
493   return NewI;
494 }
495 
matchTernaryOp(BinaryOperator * I,Value * V,Value * & Op1,Value * & Op2)496 bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
497                                          Value *&Op1, Value *&Op2) {
498   switch (I->getOpcode()) {
499   case Instruction::Add:
500     return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
501   case Instruction::Mul:
502     return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
503   default:
504     llvm_unreachable("Unexpected instruction.");
505   }
506   return false;
507 }
508 
getBinarySCEV(BinaryOperator * I,const SCEV * LHS,const SCEV * RHS)509 const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
510                                                const SCEV *LHS,
511                                                const SCEV *RHS) {
512   switch (I->getOpcode()) {
513   case Instruction::Add:
514     return SE->getAddExpr(LHS, RHS);
515   case Instruction::Mul:
516     return SE->getMulExpr(LHS, RHS);
517   default:
518     llvm_unreachable("Unexpected instruction.");
519   }
520   return nullptr;
521 }
522 
523 Instruction *
findClosestMatchingDominator(const SCEV * CandidateExpr,Instruction * Dominatee)524 NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
525                                                   Instruction *Dominatee) {
526   auto Pos = SeenExprs.find(CandidateExpr);
527   if (Pos == SeenExprs.end())
528     return nullptr;
529 
530   auto &Candidates = Pos->second;
531   // Because we process the basic blocks in pre-order of the dominator tree, a
532   // candidate that doesn't dominate the current instruction won't dominate any
533   // future instruction either. Therefore, we pop it out of the stack. This
534   // optimization makes the algorithm O(n).
535   while (!Candidates.empty()) {
536     // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
537     // removed
538     // during rewriting.
539     if (Value *Candidate = Candidates.back()) {
540       Instruction *CandidateInstruction = cast<Instruction>(Candidate);
541       if (DT->dominates(CandidateInstruction, Dominatee))
542         return CandidateInstruction;
543     }
544     Candidates.pop_back();
545   }
546   return nullptr;
547 }
548