1 //===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for OpenMP runtime code generation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGOpenMPRuntime.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "clang/CodeGen/ConstantInitBuilder.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/StmtOpenMP.h"
21 #include "clang/Basic/BitmaskEnum.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/Bitcode/BitcodeReader.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/Format.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <cassert>
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 namespace {
35 /// Base class for handling code generation inside OpenMP regions.
36 class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
37 public:
38   /// Kinds of OpenMP regions used in codegen.
39   enum CGOpenMPRegionKind {
40     /// Region with outlined function for standalone 'parallel'
41     /// directive.
42     ParallelOutlinedRegion,
43     /// Region with outlined function for standalone 'task' directive.
44     TaskOutlinedRegion,
45     /// Region for constructs that do not require function outlining,
46     /// like 'for', 'sections', 'atomic' etc. directives.
47     InlinedRegion,
48     /// Region with outlined function for standalone 'target' directive.
49     TargetRegion,
50   };
51 
CGOpenMPRegionInfo(const CapturedStmt & CS,const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)52   CGOpenMPRegionInfo(const CapturedStmt &CS,
53                      const CGOpenMPRegionKind RegionKind,
54                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
55                      bool HasCancel)
56       : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
57         CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
58 
CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)59   CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
60                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
61                      bool HasCancel)
62       : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
63         Kind(Kind), HasCancel(HasCancel) {}
64 
65   /// Get a variable or parameter for storing global thread id
66   /// inside OpenMP construct.
67   virtual const VarDecl *getThreadIDVariable() const = 0;
68 
69   /// Emit the captured statement body.
70   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
71 
72   /// Get an LValue for the current ThreadID variable.
73   /// \return LValue for thread id variable. This LValue always has type int32*.
74   virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
75 
emitUntiedSwitch(CodeGenFunction &)76   virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
77 
getRegionKind() const78   CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
79 
getDirectiveKind() const80   OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
81 
hasCancel() const82   bool hasCancel() const { return HasCancel; }
83 
classof(const CGCapturedStmtInfo * Info)84   static bool classof(const CGCapturedStmtInfo *Info) {
85     return Info->getKind() == CR_OpenMP;
86   }
87 
88   ~CGOpenMPRegionInfo() override = default;
89 
90 protected:
91   CGOpenMPRegionKind RegionKind;
92   RegionCodeGenTy CodeGen;
93   OpenMPDirectiveKind Kind;
94   bool HasCancel;
95 };
96 
97 /// API for captured statement code generation in OpenMP constructs.
98 class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
99 public:
CGOpenMPOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,StringRef HelperName)100   CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
101                              const RegionCodeGenTy &CodeGen,
102                              OpenMPDirectiveKind Kind, bool HasCancel,
103                              StringRef HelperName)
104       : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
105                            HasCancel),
106         ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
107     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
108   }
109 
110   /// Get a variable or parameter for storing global thread id
111   /// inside OpenMP construct.
getThreadIDVariable() const112   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
113 
114   /// Get the name of the capture helper.
getHelperName() const115   StringRef getHelperName() const override { return HelperName; }
116 
classof(const CGCapturedStmtInfo * Info)117   static bool classof(const CGCapturedStmtInfo *Info) {
118     return CGOpenMPRegionInfo::classof(Info) &&
119            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
120                ParallelOutlinedRegion;
121   }
122 
123 private:
124   /// A variable or parameter storing global thread id for OpenMP
125   /// constructs.
126   const VarDecl *ThreadIDVar;
127   StringRef HelperName;
128 };
129 
130 /// API for captured statement code generation in OpenMP constructs.
131 class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
132 public:
133   class UntiedTaskActionTy final : public PrePostActionTy {
134     bool Untied;
135     const VarDecl *PartIDVar;
136     const RegionCodeGenTy UntiedCodeGen;
137     llvm::SwitchInst *UntiedSwitch = nullptr;
138 
139   public:
UntiedTaskActionTy(bool Tied,const VarDecl * PartIDVar,const RegionCodeGenTy & UntiedCodeGen)140     UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
141                        const RegionCodeGenTy &UntiedCodeGen)
142         : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
Enter(CodeGenFunction & CGF)143     void Enter(CodeGenFunction &CGF) override {
144       if (Untied) {
145         // Emit task switching point.
146         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
147             CGF.GetAddrOfLocalVar(PartIDVar),
148             PartIDVar->getType()->castAs<PointerType>());
149         llvm::Value *Res =
150             CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation());
151         llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done.");
152         UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
153         CGF.EmitBlock(DoneBB);
154         CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
155         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
156         UntiedSwitch->addCase(CGF.Builder.getInt32(0),
157                               CGF.Builder.GetInsertBlock());
158         emitUntiedSwitch(CGF);
159       }
160     }
emitUntiedSwitch(CodeGenFunction & CGF) const161     void emitUntiedSwitch(CodeGenFunction &CGF) const {
162       if (Untied) {
163         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
164             CGF.GetAddrOfLocalVar(PartIDVar),
165             PartIDVar->getType()->castAs<PointerType>());
166         CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
167                               PartIdLVal);
168         UntiedCodeGen(CGF);
169         CodeGenFunction::JumpDest CurPoint =
170             CGF.getJumpDestInCurrentScope(".untied.next.");
171         CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
172         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
173         UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
174                               CGF.Builder.GetInsertBlock());
175         CGF.EmitBranchThroughCleanup(CurPoint);
176         CGF.EmitBlock(CurPoint.getBlock());
177       }
178     }
getNumberOfParts() const179     unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
180   };
CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,const UntiedTaskActionTy & Action)181   CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
182                                  const VarDecl *ThreadIDVar,
183                                  const RegionCodeGenTy &CodeGen,
184                                  OpenMPDirectiveKind Kind, bool HasCancel,
185                                  const UntiedTaskActionTy &Action)
186       : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
187         ThreadIDVar(ThreadIDVar), Action(Action) {
188     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
189   }
190 
191   /// Get a variable or parameter for storing global thread id
192   /// inside OpenMP construct.
getThreadIDVariable() const193   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
194 
195   /// Get an LValue for the current ThreadID variable.
196   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
197 
198   /// Get the name of the capture helper.
getHelperName() const199   StringRef getHelperName() const override { return ".omp_outlined."; }
200 
emitUntiedSwitch(CodeGenFunction & CGF)201   void emitUntiedSwitch(CodeGenFunction &CGF) override {
202     Action.emitUntiedSwitch(CGF);
203   }
204 
classof(const CGCapturedStmtInfo * Info)205   static bool classof(const CGCapturedStmtInfo *Info) {
206     return CGOpenMPRegionInfo::classof(Info) &&
207            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
208                TaskOutlinedRegion;
209   }
210 
211 private:
212   /// A variable or parameter storing global thread id for OpenMP
213   /// constructs.
214   const VarDecl *ThreadIDVar;
215   /// Action for emitting code for untied tasks.
216   const UntiedTaskActionTy &Action;
217 };
218 
219 /// API for inlined captured statement code generation in OpenMP
220 /// constructs.
221 class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
222 public:
CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo * OldCSI,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)223   CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
224                             const RegionCodeGenTy &CodeGen,
225                             OpenMPDirectiveKind Kind, bool HasCancel)
226       : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
227         OldCSI(OldCSI),
228         OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
229 
230   // Retrieve the value of the context parameter.
getContextValue() const231   llvm::Value *getContextValue() const override {
232     if (OuterRegionInfo)
233       return OuterRegionInfo->getContextValue();
234     llvm_unreachable("No context value for inlined OpenMP region");
235   }
236 
setContextValue(llvm::Value * V)237   void setContextValue(llvm::Value *V) override {
238     if (OuterRegionInfo) {
239       OuterRegionInfo->setContextValue(V);
240       return;
241     }
242     llvm_unreachable("No context value for inlined OpenMP region");
243   }
244 
245   /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const246   const FieldDecl *lookup(const VarDecl *VD) const override {
247     if (OuterRegionInfo)
248       return OuterRegionInfo->lookup(VD);
249     // If there is no outer outlined region,no need to lookup in a list of
250     // captured variables, we can use the original one.
251     return nullptr;
252   }
253 
getThisFieldDecl() const254   FieldDecl *getThisFieldDecl() const override {
255     if (OuterRegionInfo)
256       return OuterRegionInfo->getThisFieldDecl();
257     return nullptr;
258   }
259 
260   /// Get a variable or parameter for storing global thread id
261   /// inside OpenMP construct.
getThreadIDVariable() const262   const VarDecl *getThreadIDVariable() const override {
263     if (OuterRegionInfo)
264       return OuterRegionInfo->getThreadIDVariable();
265     return nullptr;
266   }
267 
268   /// Get an LValue for the current ThreadID variable.
getThreadIDVariableLValue(CodeGenFunction & CGF)269   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override {
270     if (OuterRegionInfo)
271       return OuterRegionInfo->getThreadIDVariableLValue(CGF);
272     llvm_unreachable("No LValue for inlined OpenMP construct");
273   }
274 
275   /// Get the name of the capture helper.
getHelperName() const276   StringRef getHelperName() const override {
277     if (auto *OuterRegionInfo = getOldCSI())
278       return OuterRegionInfo->getHelperName();
279     llvm_unreachable("No helper name for inlined OpenMP construct");
280   }
281 
emitUntiedSwitch(CodeGenFunction & CGF)282   void emitUntiedSwitch(CodeGenFunction &CGF) override {
283     if (OuterRegionInfo)
284       OuterRegionInfo->emitUntiedSwitch(CGF);
285   }
286 
getOldCSI() const287   CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
288 
classof(const CGCapturedStmtInfo * Info)289   static bool classof(const CGCapturedStmtInfo *Info) {
290     return CGOpenMPRegionInfo::classof(Info) &&
291            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
292   }
293 
294   ~CGOpenMPInlinedRegionInfo() override = default;
295 
296 private:
297   /// CodeGen info about outer OpenMP region.
298   CodeGenFunction::CGCapturedStmtInfo *OldCSI;
299   CGOpenMPRegionInfo *OuterRegionInfo;
300 };
301 
302 /// API for captured statement code generation in OpenMP target
303 /// constructs. For this captures, implicit parameters are used instead of the
304 /// captured fields. The name of the target region has to be unique in a given
305 /// application so it is provided by the client, because only the client has
306 /// the information to generate that.
307 class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
308 public:
CGOpenMPTargetRegionInfo(const CapturedStmt & CS,const RegionCodeGenTy & CodeGen,StringRef HelperName)309   CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
310                            const RegionCodeGenTy &CodeGen, StringRef HelperName)
311       : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
312                            /*HasCancel=*/false),
313         HelperName(HelperName) {}
314 
315   /// This is unused for target regions because each starts executing
316   /// with a single thread.
getThreadIDVariable() const317   const VarDecl *getThreadIDVariable() const override { return nullptr; }
318 
319   /// Get the name of the capture helper.
getHelperName() const320   StringRef getHelperName() const override { return HelperName; }
321 
classof(const CGCapturedStmtInfo * Info)322   static bool classof(const CGCapturedStmtInfo *Info) {
323     return CGOpenMPRegionInfo::classof(Info) &&
324            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
325   }
326 
327 private:
328   StringRef HelperName;
329 };
330 
EmptyCodeGen(CodeGenFunction &,PrePostActionTy &)331 static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
332   llvm_unreachable("No codegen for expressions");
333 }
334 /// API for generation of expressions captured in a innermost OpenMP
335 /// region.
336 class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
337 public:
CGOpenMPInnerExprInfo(CodeGenFunction & CGF,const CapturedStmt & CS)338   CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
339       : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
340                                   OMPD_unknown,
341                                   /*HasCancel=*/false),
342         PrivScope(CGF) {
343     // Make sure the globals captured in the provided statement are local by
344     // using the privatization logic. We assume the same variable is not
345     // captured more than once.
346     for (const auto &C : CS.captures()) {
347       if (!C.capturesVariable() && !C.capturesVariableByCopy())
348         continue;
349 
350       const VarDecl *VD = C.getCapturedVar();
351       if (VD->isLocalVarDeclOrParm())
352         continue;
353 
354       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
355                       /*RefersToEnclosingVariableOrCapture=*/false,
356                       VD->getType().getNonReferenceType(), VK_LValue,
357                       C.getLocation());
358       PrivScope.addPrivate(
359           VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(); });
360     }
361     (void)PrivScope.Privatize();
362   }
363 
364   /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const365   const FieldDecl *lookup(const VarDecl *VD) const override {
366     if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
367       return FD;
368     return nullptr;
369   }
370 
371   /// Emit the captured statement body.
EmitBody(CodeGenFunction & CGF,const Stmt * S)372   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
373     llvm_unreachable("No body for expressions");
374   }
375 
376   /// Get a variable or parameter for storing global thread id
377   /// inside OpenMP construct.
getThreadIDVariable() const378   const VarDecl *getThreadIDVariable() const override {
379     llvm_unreachable("No thread id for expressions");
380   }
381 
382   /// Get the name of the capture helper.
getHelperName() const383   StringRef getHelperName() const override {
384     llvm_unreachable("No helper name for expressions");
385   }
386 
classof(const CGCapturedStmtInfo * Info)387   static bool classof(const CGCapturedStmtInfo *Info) { return false; }
388 
389 private:
390   /// Private scope to capture global variables.
391   CodeGenFunction::OMPPrivateScope PrivScope;
392 };
393 
394 /// RAII for emitting code of OpenMP constructs.
395 class InlinedOpenMPRegionRAII {
396   CodeGenFunction &CGF;
397   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
398   FieldDecl *LambdaThisCaptureField = nullptr;
399   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
400 
401 public:
402   /// Constructs region for combined constructs.
403   /// \param CodeGen Code generation sequence for combined directives. Includes
404   /// a list of functions used for code generation of implicitly inlined
405   /// regions.
InlinedOpenMPRegionRAII(CodeGenFunction & CGF,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)406   InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
407                           OpenMPDirectiveKind Kind, bool HasCancel)
408       : CGF(CGF) {
409     // Start emission for the construct.
410     CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
411         CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
412     std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
413     LambdaThisCaptureField = CGF.LambdaThisCaptureField;
414     CGF.LambdaThisCaptureField = nullptr;
415     BlockInfo = CGF.BlockInfo;
416     CGF.BlockInfo = nullptr;
417   }
418 
~InlinedOpenMPRegionRAII()419   ~InlinedOpenMPRegionRAII() {
420     // Restore original CapturedStmtInfo only if we're done with code emission.
421     auto *OldCSI =
422         cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
423     delete CGF.CapturedStmtInfo;
424     CGF.CapturedStmtInfo = OldCSI;
425     std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
426     CGF.LambdaThisCaptureField = LambdaThisCaptureField;
427     CGF.BlockInfo = BlockInfo;
428   }
429 };
430 
431 /// Values for bit flags used in the ident_t to describe the fields.
432 /// All enumeric elements are named and described in accordance with the code
433 /// from https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
434 enum OpenMPLocationFlags : unsigned {
435   /// Use trampoline for internal microtask.
436   OMP_IDENT_IMD = 0x01,
437   /// Use c-style ident structure.
438   OMP_IDENT_KMPC = 0x02,
439   /// Atomic reduction option for kmpc_reduce.
440   OMP_ATOMIC_REDUCE = 0x10,
441   /// Explicit 'barrier' directive.
442   OMP_IDENT_BARRIER_EXPL = 0x20,
443   /// Implicit barrier in code.
444   OMP_IDENT_BARRIER_IMPL = 0x40,
445   /// Implicit barrier in 'for' directive.
446   OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
447   /// Implicit barrier in 'sections' directive.
448   OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
449   /// Implicit barrier in 'single' directive.
450   OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140,
451   /// Call of __kmp_for_static_init for static loop.
452   OMP_IDENT_WORK_LOOP = 0x200,
453   /// Call of __kmp_for_static_init for sections.
454   OMP_IDENT_WORK_SECTIONS = 0x400,
455   /// Call of __kmp_for_static_init for distribute.
456   OMP_IDENT_WORK_DISTRIBUTE = 0x800,
457   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)
458 };
459 
460 namespace {
461 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
462 /// Values for bit flags for marking which requires clauses have been used.
463 enum OpenMPOffloadingRequiresDirFlags : int64_t {
464   /// flag undefined.
465   OMP_REQ_UNDEFINED               = 0x000,
466   /// no requires clause present.
467   OMP_REQ_NONE                    = 0x001,
468   /// reverse_offload clause.
469   OMP_REQ_REVERSE_OFFLOAD         = 0x002,
470   /// unified_address clause.
471   OMP_REQ_UNIFIED_ADDRESS         = 0x004,
472   /// unified_shared_memory clause.
473   OMP_REQ_UNIFIED_SHARED_MEMORY   = 0x008,
474   /// dynamic_allocators clause.
475   OMP_REQ_DYNAMIC_ALLOCATORS      = 0x010,
476   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)
477 };
478 
479 enum OpenMPOffloadingReservedDeviceIDs {
480   /// Device ID if the device was not defined, runtime should get it
481   /// from environment variables in the spec.
482   OMP_DEVICEID_UNDEF = -1,
483 };
484 } // anonymous namespace
485 
486 /// Describes ident structure that describes a source location.
487 /// All descriptions are taken from
488 /// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
489 /// Original structure:
490 /// typedef struct ident {
491 ///    kmp_int32 reserved_1;   /**<  might be used in Fortran;
492 ///                                  see above  */
493 ///    kmp_int32 flags;        /**<  also f.flags; KMP_IDENT_xxx flags;
494 ///                                  KMP_IDENT_KMPC identifies this union
495 ///                                  member  */
496 ///    kmp_int32 reserved_2;   /**<  not really used in Fortran any more;
497 ///                                  see above */
498 ///#if USE_ITT_BUILD
499 ///                            /*  but currently used for storing
500 ///                                region-specific ITT */
501 ///                            /*  contextual information. */
502 ///#endif /* USE_ITT_BUILD */
503 ///    kmp_int32 reserved_3;   /**< source[4] in Fortran, do not use for
504 ///                                 C++  */
505 ///    char const *psource;    /**< String describing the source location.
506 ///                            The string is composed of semi-colon separated
507 //                             fields which describe the source file,
508 ///                            the function and a pair of line numbers that
509 ///                            delimit the construct.
510 ///                             */
511 /// } ident_t;
512 enum IdentFieldIndex {
513   /// might be used in Fortran
514   IdentField_Reserved_1,
515   /// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
516   IdentField_Flags,
517   /// Not really used in Fortran any more
518   IdentField_Reserved_2,
519   /// Source[4] in Fortran, do not use for C++
520   IdentField_Reserved_3,
521   /// String describing the source location. The string is composed of
522   /// semi-colon separated fields which describe the source file, the function
523   /// and a pair of line numbers that delimit the construct.
524   IdentField_PSource
525 };
526 
527 /// Schedule types for 'omp for' loops (these enumerators are taken from
528 /// the enum sched_type in kmp.h).
529 enum OpenMPSchedType {
530   /// Lower bound for default (unordered) versions.
531   OMP_sch_lower = 32,
532   OMP_sch_static_chunked = 33,
533   OMP_sch_static = 34,
534   OMP_sch_dynamic_chunked = 35,
535   OMP_sch_guided_chunked = 36,
536   OMP_sch_runtime = 37,
537   OMP_sch_auto = 38,
538   /// static with chunk adjustment (e.g., simd)
539   OMP_sch_static_balanced_chunked = 45,
540   /// Lower bound for 'ordered' versions.
541   OMP_ord_lower = 64,
542   OMP_ord_static_chunked = 65,
543   OMP_ord_static = 66,
544   OMP_ord_dynamic_chunked = 67,
545   OMP_ord_guided_chunked = 68,
546   OMP_ord_runtime = 69,
547   OMP_ord_auto = 70,
548   OMP_sch_default = OMP_sch_static,
549   /// dist_schedule types
550   OMP_dist_sch_static_chunked = 91,
551   OMP_dist_sch_static = 92,
552   /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
553   /// Set if the monotonic schedule modifier was present.
554   OMP_sch_modifier_monotonic = (1 << 29),
555   /// Set if the nonmonotonic schedule modifier was present.
556   OMP_sch_modifier_nonmonotonic = (1 << 30),
557 };
558 
559 enum OpenMPRTLFunction {
560   /// Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc,
561   /// kmpc_micro microtask, ...);
562   OMPRTL__kmpc_fork_call,
563   /// Call to void *__kmpc_threadprivate_cached(ident_t *loc,
564   /// kmp_int32 global_tid, void *data, size_t size, void ***cache);
565   OMPRTL__kmpc_threadprivate_cached,
566   /// Call to void __kmpc_threadprivate_register( ident_t *,
567   /// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
568   OMPRTL__kmpc_threadprivate_register,
569   // Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc);
570   OMPRTL__kmpc_global_thread_num,
571   // Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
572   // kmp_critical_name *crit);
573   OMPRTL__kmpc_critical,
574   // Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32
575   // global_tid, kmp_critical_name *crit, uintptr_t hint);
576   OMPRTL__kmpc_critical_with_hint,
577   // Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
578   // kmp_critical_name *crit);
579   OMPRTL__kmpc_end_critical,
580   // Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
581   // global_tid);
582   OMPRTL__kmpc_cancel_barrier,
583   // Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
584   OMPRTL__kmpc_barrier,
585   // Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
586   OMPRTL__kmpc_for_static_fini,
587   // Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
588   // global_tid);
589   OMPRTL__kmpc_serialized_parallel,
590   // Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
591   // global_tid);
592   OMPRTL__kmpc_end_serialized_parallel,
593   // Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
594   // kmp_int32 num_threads);
595   OMPRTL__kmpc_push_num_threads,
596   // Call to void __kmpc_flush(ident_t *loc);
597   OMPRTL__kmpc_flush,
598   // Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
599   OMPRTL__kmpc_master,
600   // Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
601   OMPRTL__kmpc_end_master,
602   // Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
603   // int end_part);
604   OMPRTL__kmpc_omp_taskyield,
605   // Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
606   OMPRTL__kmpc_single,
607   // Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
608   OMPRTL__kmpc_end_single,
609   // Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
610   // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
611   // kmp_routine_entry_t *task_entry);
612   OMPRTL__kmpc_omp_task_alloc,
613   // Call to kmp_task_t * __kmpc_omp_target_task_alloc(ident_t *,
614   // kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
615   // size_t sizeof_shareds, kmp_routine_entry_t *task_entry,
616   // kmp_int64 device_id);
617   OMPRTL__kmpc_omp_target_task_alloc,
618   // Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *
619   // new_task);
620   OMPRTL__kmpc_omp_task,
621   // Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
622   // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
623   // kmp_int32 didit);
624   OMPRTL__kmpc_copyprivate,
625   // Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
626   // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
627   // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
628   OMPRTL__kmpc_reduce,
629   // Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
630   // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
631   // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
632   // *lck);
633   OMPRTL__kmpc_reduce_nowait,
634   // Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
635   // kmp_critical_name *lck);
636   OMPRTL__kmpc_end_reduce,
637   // Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
638   // kmp_critical_name *lck);
639   OMPRTL__kmpc_end_reduce_nowait,
640   // Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
641   // kmp_task_t * new_task);
642   OMPRTL__kmpc_omp_task_begin_if0,
643   // Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
644   // kmp_task_t * new_task);
645   OMPRTL__kmpc_omp_task_complete_if0,
646   // Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
647   OMPRTL__kmpc_ordered,
648   // Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
649   OMPRTL__kmpc_end_ordered,
650   // Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
651   // global_tid);
652   OMPRTL__kmpc_omp_taskwait,
653   // Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
654   OMPRTL__kmpc_taskgroup,
655   // Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
656   OMPRTL__kmpc_end_taskgroup,
657   // Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
658   // int proc_bind);
659   OMPRTL__kmpc_push_proc_bind,
660   // Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32
661   // gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t
662   // *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
663   OMPRTL__kmpc_omp_task_with_deps,
664   // Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32
665   // gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
666   // ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
667   OMPRTL__kmpc_omp_wait_deps,
668   // Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
669   // global_tid, kmp_int32 cncl_kind);
670   OMPRTL__kmpc_cancellationpoint,
671   // Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
672   // kmp_int32 cncl_kind);
673   OMPRTL__kmpc_cancel,
674   // Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
675   // kmp_int32 num_teams, kmp_int32 thread_limit);
676   OMPRTL__kmpc_push_num_teams,
677   // Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
678   // microtask, ...);
679   OMPRTL__kmpc_fork_teams,
680   // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
681   // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
682   // sched, kmp_uint64 grainsize, void *task_dup);
683   OMPRTL__kmpc_taskloop,
684   // Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
685   // num_dims, struct kmp_dim *dims);
686   OMPRTL__kmpc_doacross_init,
687   // Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
688   OMPRTL__kmpc_doacross_fini,
689   // Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
690   // *vec);
691   OMPRTL__kmpc_doacross_post,
692   // Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
693   // *vec);
694   OMPRTL__kmpc_doacross_wait,
695   // Call to void *__kmpc_task_reduction_init(int gtid, int num_data, void
696   // *data);
697   OMPRTL__kmpc_task_reduction_init,
698   // Call to void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
699   // *d);
700   OMPRTL__kmpc_task_reduction_get_th_data,
701   // Call to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
702   OMPRTL__kmpc_alloc,
703   // Call to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
704   OMPRTL__kmpc_free,
705 
706   //
707   // Offloading related calls
708   //
709   // Call to void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
710   // size);
711   OMPRTL__kmpc_push_target_tripcount,
712   // Call to int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
713   // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
714   // *arg_types);
715   OMPRTL__tgt_target,
716   // Call to int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
717   // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
718   // *arg_types);
719   OMPRTL__tgt_target_nowait,
720   // Call to int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
721   // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
722   // *arg_types, int32_t num_teams, int32_t thread_limit);
723   OMPRTL__tgt_target_teams,
724   // Call to int32_t __tgt_target_teams_nowait(int64_t device_id, void
725   // *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t
726   // *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
727   OMPRTL__tgt_target_teams_nowait,
728   // Call to void __tgt_register_requires(int64_t flags);
729   OMPRTL__tgt_register_requires,
730   // Call to void __tgt_register_lib(__tgt_bin_desc *desc);
731   OMPRTL__tgt_register_lib,
732   // Call to void __tgt_unregister_lib(__tgt_bin_desc *desc);
733   OMPRTL__tgt_unregister_lib,
734   // Call to void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
735   // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
736   OMPRTL__tgt_target_data_begin,
737   // Call to void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
738   // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
739   // *arg_types);
740   OMPRTL__tgt_target_data_begin_nowait,
741   // Call to void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
742   // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
743   OMPRTL__tgt_target_data_end,
744   // Call to void __tgt_target_data_end_nowait(int64_t device_id, int32_t
745   // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
746   // *arg_types);
747   OMPRTL__tgt_target_data_end_nowait,
748   // Call to void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
749   // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
750   OMPRTL__tgt_target_data_update,
751   // Call to void __tgt_target_data_update_nowait(int64_t device_id, int32_t
752   // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
753   // *arg_types);
754   OMPRTL__tgt_target_data_update_nowait,
755 };
756 
757 /// A basic class for pre|post-action for advanced codegen sequence for OpenMP
758 /// region.
759 class CleanupTy final : public EHScopeStack::Cleanup {
760   PrePostActionTy *Action;
761 
762 public:
CleanupTy(PrePostActionTy * Action)763   explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
Emit(CodeGenFunction & CGF,Flags)764   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
765     if (!CGF.HaveInsertPoint())
766       return;
767     Action->Exit(CGF);
768   }
769 };
770 
771 } // anonymous namespace
772 
operator ()(CodeGenFunction & CGF) const773 void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
774   CodeGenFunction::RunCleanupsScope Scope(CGF);
775   if (PrePostAction) {
776     CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
777     Callback(CodeGen, CGF, *PrePostAction);
778   } else {
779     PrePostActionTy Action;
780     Callback(CodeGen, CGF, Action);
781   }
782 }
783 
784 /// Check if the combiner is a call to UDR combiner and if it is so return the
785 /// UDR decl used for reduction.
786 static const OMPDeclareReductionDecl *
getReductionInit(const Expr * ReductionOp)787 getReductionInit(const Expr *ReductionOp) {
788   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
789     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
790       if (const auto *DRE =
791               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
792         if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
793           return DRD;
794   return nullptr;
795 }
796 
emitInitWithReductionInitializer(CodeGenFunction & CGF,const OMPDeclareReductionDecl * DRD,const Expr * InitOp,Address Private,Address Original,QualType Ty)797 static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
798                                              const OMPDeclareReductionDecl *DRD,
799                                              const Expr *InitOp,
800                                              Address Private, Address Original,
801                                              QualType Ty) {
802   if (DRD->getInitializer()) {
803     std::pair<llvm::Function *, llvm::Function *> Reduction =
804         CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
805     const auto *CE = cast<CallExpr>(InitOp);
806     const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
807     const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
808     const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
809     const auto *LHSDRE =
810         cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
811     const auto *RHSDRE =
812         cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
813     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
814     PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
815                             [=]() { return Private; });
816     PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
817                             [=]() { return Original; });
818     (void)PrivateScope.Privatize();
819     RValue Func = RValue::get(Reduction.second);
820     CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
821     CGF.EmitIgnoredExpr(InitOp);
822   } else {
823     llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
824     std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"});
825     auto *GV = new llvm::GlobalVariable(
826         CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
827         llvm::GlobalValue::PrivateLinkage, Init, Name);
828     LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
829     RValue InitRVal;
830     switch (CGF.getEvaluationKind(Ty)) {
831     case TEK_Scalar:
832       InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation());
833       break;
834     case TEK_Complex:
835       InitRVal =
836           RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation()));
837       break;
838     case TEK_Aggregate:
839       InitRVal = RValue::getAggregate(LV.getAddress());
840       break;
841     }
842     OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue);
843     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
844     CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
845                          /*IsInitializer=*/false);
846   }
847 }
848 
849 /// Emit initialization of arrays of complex types.
850 /// \param DestAddr Address of the array.
851 /// \param Type Type of array.
852 /// \param Init Initial expression of array.
853 /// \param SrcAddr Address of the original array.
EmitOMPAggregateInit(CodeGenFunction & CGF,Address DestAddr,QualType Type,bool EmitDeclareReductionInit,const Expr * Init,const OMPDeclareReductionDecl * DRD,Address SrcAddr=Address::invalid ())854 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
855                                  QualType Type, bool EmitDeclareReductionInit,
856                                  const Expr *Init,
857                                  const OMPDeclareReductionDecl *DRD,
858                                  Address SrcAddr = Address::invalid()) {
859   // Perform element-by-element initialization.
860   QualType ElementTy;
861 
862   // Drill down to the base element type on both arrays.
863   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
864   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
865   DestAddr =
866       CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
867   if (DRD)
868     SrcAddr =
869         CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
870 
871   llvm::Value *SrcBegin = nullptr;
872   if (DRD)
873     SrcBegin = SrcAddr.getPointer();
874   llvm::Value *DestBegin = DestAddr.getPointer();
875   // Cast from pointer to array type to pointer to single element.
876   llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
877   // The basic structure here is a while-do loop.
878   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
879   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
880   llvm::Value *IsEmpty =
881       CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
882   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
883 
884   // Enter the loop body, making that address the current address.
885   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
886   CGF.EmitBlock(BodyBB);
887 
888   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
889 
890   llvm::PHINode *SrcElementPHI = nullptr;
891   Address SrcElementCurrent = Address::invalid();
892   if (DRD) {
893     SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
894                                           "omp.arraycpy.srcElementPast");
895     SrcElementPHI->addIncoming(SrcBegin, EntryBB);
896     SrcElementCurrent =
897         Address(SrcElementPHI,
898                 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
899   }
900   llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
901       DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
902   DestElementPHI->addIncoming(DestBegin, EntryBB);
903   Address DestElementCurrent =
904       Address(DestElementPHI,
905               DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
906 
907   // Emit copy.
908   {
909     CodeGenFunction::RunCleanupsScope InitScope(CGF);
910     if (EmitDeclareReductionInit) {
911       emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
912                                        SrcElementCurrent, ElementTy);
913     } else
914       CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
915                            /*IsInitializer=*/false);
916   }
917 
918   if (DRD) {
919     // Shift the address forward by one element.
920     llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32(
921         SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
922     SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
923   }
924 
925   // Shift the address forward by one element.
926   llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32(
927       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
928   // Check whether we've reached the end.
929   llvm::Value *Done =
930       CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
931   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
932   DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
933 
934   // Done.
935   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
936 }
937 
emitSharedLValue(CodeGenFunction & CGF,const Expr * E)938 LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) {
939   return CGF.EmitOMPSharedLValue(E);
940 }
941 
emitSharedLValueUB(CodeGenFunction & CGF,const Expr * E)942 LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF,
943                                             const Expr *E) {
944   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E))
945     return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
946   return LValue();
947 }
948 
emitAggregateInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,LValue SharedLVal,const OMPDeclareReductionDecl * DRD)949 void ReductionCodeGen::emitAggregateInitialization(
950     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
951     const OMPDeclareReductionDecl *DRD) {
952   // Emit VarDecl with copy init for arrays.
953   // Get the address of the original variable captured in current
954   // captured region.
955   const auto *PrivateVD =
956       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
957   bool EmitDeclareReductionInit =
958       DRD && (DRD->getInitializer() || !PrivateVD->hasInit());
959   EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(),
960                        EmitDeclareReductionInit,
961                        EmitDeclareReductionInit ? ClausesData[N].ReductionOp
962                                                 : PrivateVD->getInit(),
963                        DRD, SharedLVal.getAddress());
964 }
965 
ReductionCodeGen(ArrayRef<const Expr * > Shareds,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > ReductionOps)966 ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds,
967                                    ArrayRef<const Expr *> Privates,
968                                    ArrayRef<const Expr *> ReductionOps) {
969   ClausesData.reserve(Shareds.size());
970   SharedAddresses.reserve(Shareds.size());
971   Sizes.reserve(Shareds.size());
972   BaseDecls.reserve(Shareds.size());
973   auto IPriv = Privates.begin();
974   auto IRed = ReductionOps.begin();
975   for (const Expr *Ref : Shareds) {
976     ClausesData.emplace_back(Ref, *IPriv, *IRed);
977     std::advance(IPriv, 1);
978     std::advance(IRed, 1);
979   }
980 }
981 
emitSharedLValue(CodeGenFunction & CGF,unsigned N)982 void ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, unsigned N) {
983   assert(SharedAddresses.size() == N &&
984          "Number of generated lvalues must be exactly N.");
985   LValue First = emitSharedLValue(CGF, ClausesData[N].Ref);
986   LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref);
987   SharedAddresses.emplace_back(First, Second);
988 }
989 
emitAggregateType(CodeGenFunction & CGF,unsigned N)990 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) {
991   const auto *PrivateVD =
992       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
993   QualType PrivateType = PrivateVD->getType();
994   bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref);
995   if (!PrivateType->isVariablyModifiedType()) {
996     Sizes.emplace_back(
997         CGF.getTypeSize(
998             SharedAddresses[N].first.getType().getNonReferenceType()),
999         nullptr);
1000     return;
1001   }
1002   llvm::Value *Size;
1003   llvm::Value *SizeInChars;
1004   auto *ElemType =
1005       cast<llvm::PointerType>(SharedAddresses[N].first.getPointer()->getType())
1006           ->getElementType();
1007   auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType);
1008   if (AsArraySection) {
1009     Size = CGF.Builder.CreatePtrDiff(SharedAddresses[N].second.getPointer(),
1010                                      SharedAddresses[N].first.getPointer());
1011     Size = CGF.Builder.CreateNUWAdd(
1012         Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
1013     SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf);
1014   } else {
1015     SizeInChars = CGF.getTypeSize(
1016         SharedAddresses[N].first.getType().getNonReferenceType());
1017     Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf);
1018   }
1019   Sizes.emplace_back(SizeInChars, Size);
1020   CodeGenFunction::OpaqueValueMapping OpaqueMap(
1021       CGF,
1022       cast<OpaqueValueExpr>(
1023           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
1024       RValue::get(Size));
1025   CGF.EmitVariablyModifiedType(PrivateType);
1026 }
1027 
emitAggregateType(CodeGenFunction & CGF,unsigned N,llvm::Value * Size)1028 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N,
1029                                          llvm::Value *Size) {
1030   const auto *PrivateVD =
1031       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1032   QualType PrivateType = PrivateVD->getType();
1033   if (!PrivateType->isVariablyModifiedType()) {
1034     assert(!Size && !Sizes[N].second &&
1035            "Size should be nullptr for non-variably modified reduction "
1036            "items.");
1037     return;
1038   }
1039   CodeGenFunction::OpaqueValueMapping OpaqueMap(
1040       CGF,
1041       cast<OpaqueValueExpr>(
1042           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
1043       RValue::get(Size));
1044   CGF.EmitVariablyModifiedType(PrivateType);
1045 }
1046 
emitInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,LValue SharedLVal,llvm::function_ref<bool (CodeGenFunction &)> DefaultInit)1047 void ReductionCodeGen::emitInitialization(
1048     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
1049     llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) {
1050   assert(SharedAddresses.size() > N && "No variable was generated");
1051   const auto *PrivateVD =
1052       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1053   const OMPDeclareReductionDecl *DRD =
1054       getReductionInit(ClausesData[N].ReductionOp);
1055   QualType PrivateType = PrivateVD->getType();
1056   PrivateAddr = CGF.Builder.CreateElementBitCast(
1057       PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
1058   QualType SharedType = SharedAddresses[N].first.getType();
1059   SharedLVal = CGF.MakeAddrLValue(
1060       CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(),
1061                                        CGF.ConvertTypeForMem(SharedType)),
1062       SharedType, SharedAddresses[N].first.getBaseInfo(),
1063       CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType));
1064   if (CGF.getContext().getAsArrayType(PrivateVD->getType())) {
1065     emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD);
1066   } else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1067     emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp,
1068                                      PrivateAddr, SharedLVal.getAddress(),
1069                                      SharedLVal.getType());
1070   } else if (!DefaultInit(CGF) && PrivateVD->hasInit() &&
1071              !CGF.isTrivialInitializer(PrivateVD->getInit())) {
1072     CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr,
1073                          PrivateVD->getType().getQualifiers(),
1074                          /*IsInitializer=*/false);
1075   }
1076 }
1077 
needCleanups(unsigned N)1078 bool ReductionCodeGen::needCleanups(unsigned N) {
1079   const auto *PrivateVD =
1080       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1081   QualType PrivateType = PrivateVD->getType();
1082   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
1083   return DTorKind != QualType::DK_none;
1084 }
1085 
emitCleanups(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)1086 void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N,
1087                                     Address PrivateAddr) {
1088   const auto *PrivateVD =
1089       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1090   QualType PrivateType = PrivateVD->getType();
1091   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
1092   if (needCleanups(N)) {
1093     PrivateAddr = CGF.Builder.CreateElementBitCast(
1094         PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
1095     CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType);
1096   }
1097 }
1098 
loadToBegin(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,LValue BaseLV)1099 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
1100                           LValue BaseLV) {
1101   BaseTy = BaseTy.getNonReferenceType();
1102   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
1103          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
1104     if (const auto *PtrTy = BaseTy->getAs<PointerType>()) {
1105       BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy);
1106     } else {
1107       LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(), BaseTy);
1108       BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal);
1109     }
1110     BaseTy = BaseTy->getPointeeType();
1111   }
1112   return CGF.MakeAddrLValue(
1113       CGF.Builder.CreateElementBitCast(BaseLV.getAddress(),
1114                                        CGF.ConvertTypeForMem(ElTy)),
1115       BaseLV.getType(), BaseLV.getBaseInfo(),
1116       CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType()));
1117 }
1118 
castToBase(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,llvm::Type * BaseLVType,CharUnits BaseLVAlignment,llvm::Value * Addr)1119 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
1120                           llvm::Type *BaseLVType, CharUnits BaseLVAlignment,
1121                           llvm::Value *Addr) {
1122   Address Tmp = Address::invalid();
1123   Address TopTmp = Address::invalid();
1124   Address MostTopTmp = Address::invalid();
1125   BaseTy = BaseTy.getNonReferenceType();
1126   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
1127          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
1128     Tmp = CGF.CreateMemTemp(BaseTy);
1129     if (TopTmp.isValid())
1130       CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
1131     else
1132       MostTopTmp = Tmp;
1133     TopTmp = Tmp;
1134     BaseTy = BaseTy->getPointeeType();
1135   }
1136   llvm::Type *Ty = BaseLVType;
1137   if (Tmp.isValid())
1138     Ty = Tmp.getElementType();
1139   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
1140   if (Tmp.isValid()) {
1141     CGF.Builder.CreateStore(Addr, Tmp);
1142     return MostTopTmp;
1143   }
1144   return Address(Addr, BaseLVAlignment);
1145 }
1146 
getBaseDecl(const Expr * Ref,const DeclRefExpr * & DE)1147 static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) {
1148   const VarDecl *OrigVD = nullptr;
1149   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) {
1150     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
1151     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
1152       Base = TempOASE->getBase()->IgnoreParenImpCasts();
1153     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
1154       Base = TempASE->getBase()->IgnoreParenImpCasts();
1155     DE = cast<DeclRefExpr>(Base);
1156     OrigVD = cast<VarDecl>(DE->getDecl());
1157   } else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) {
1158     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
1159     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
1160       Base = TempASE->getBase()->IgnoreParenImpCasts();
1161     DE = cast<DeclRefExpr>(Base);
1162     OrigVD = cast<VarDecl>(DE->getDecl());
1163   }
1164   return OrigVD;
1165 }
1166 
adjustPrivateAddress(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)1167 Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N,
1168                                                Address PrivateAddr) {
1169   const DeclRefExpr *DE;
1170   if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) {
1171     BaseDecls.emplace_back(OrigVD);
1172     LValue OriginalBaseLValue = CGF.EmitLValue(DE);
1173     LValue BaseLValue =
1174         loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(),
1175                     OriginalBaseLValue);
1176     llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff(
1177         BaseLValue.getPointer(), SharedAddresses[N].first.getPointer());
1178     llvm::Value *PrivatePointer =
1179         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1180             PrivateAddr.getPointer(),
1181             SharedAddresses[N].first.getAddress().getType());
1182     llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment);
1183     return castToBase(CGF, OrigVD->getType(),
1184                       SharedAddresses[N].first.getType(),
1185                       OriginalBaseLValue.getAddress().getType(),
1186                       OriginalBaseLValue.getAlignment(), Ptr);
1187   }
1188   BaseDecls.emplace_back(
1189       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl()));
1190   return PrivateAddr;
1191 }
1192 
usesReductionInitializer(unsigned N) const1193 bool ReductionCodeGen::usesReductionInitializer(unsigned N) const {
1194   const OMPDeclareReductionDecl *DRD =
1195       getReductionInit(ClausesData[N].ReductionOp);
1196   return DRD && DRD->getInitializer();
1197 }
1198 
getThreadIDVariableLValue(CodeGenFunction & CGF)1199 LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
1200   return CGF.EmitLoadOfPointerLValue(
1201       CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1202       getThreadIDVariable()->getType()->castAs<PointerType>());
1203 }
1204 
EmitBody(CodeGenFunction & CGF,const Stmt *)1205 void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
1206   if (!CGF.HaveInsertPoint())
1207     return;
1208   // 1.2.2 OpenMP Language Terminology
1209   // Structured block - An executable statement with a single entry at the
1210   // top and a single exit at the bottom.
1211   // The point of exit cannot be a branch out of the structured block.
1212   // longjmp() and throw() must not violate the entry/exit criteria.
1213   CGF.EHStack.pushTerminate();
1214   CodeGen(CGF);
1215   CGF.EHStack.popTerminate();
1216 }
1217 
getThreadIDVariableLValue(CodeGenFunction & CGF)1218 LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
1219     CodeGenFunction &CGF) {
1220   return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1221                             getThreadIDVariable()->getType(),
1222                             AlignmentSource::Decl);
1223 }
1224 
addFieldToRecordDecl(ASTContext & C,DeclContext * DC,QualType FieldTy)1225 static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
1226                                        QualType FieldTy) {
1227   auto *Field = FieldDecl::Create(
1228       C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
1229       C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
1230       /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
1231   Field->setAccess(AS_public);
1232   DC->addDecl(Field);
1233   return Field;
1234 }
1235 
CGOpenMPRuntime(CodeGenModule & CGM,StringRef FirstSeparator,StringRef Separator)1236 CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator,
1237                                  StringRef Separator)
1238     : CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator),
1239       OffloadEntriesInfoManager(CGM) {
1240   ASTContext &C = CGM.getContext();
1241   RecordDecl *RD = C.buildImplicitRecord("ident_t");
1242   QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
1243   RD->startDefinition();
1244   // reserved_1
1245   addFieldToRecordDecl(C, RD, KmpInt32Ty);
1246   // flags
1247   addFieldToRecordDecl(C, RD, KmpInt32Ty);
1248   // reserved_2
1249   addFieldToRecordDecl(C, RD, KmpInt32Ty);
1250   // reserved_3
1251   addFieldToRecordDecl(C, RD, KmpInt32Ty);
1252   // psource
1253   addFieldToRecordDecl(C, RD, C.VoidPtrTy);
1254   RD->completeDefinition();
1255   IdentQTy = C.getRecordType(RD);
1256   IdentTy = CGM.getTypes().ConvertRecordDeclType(RD);
1257   KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
1258 
1259   loadOffloadInfoMetadata();
1260 }
1261 
clear()1262 void CGOpenMPRuntime::clear() {
1263   InternalVars.clear();
1264   // Clean non-target variable declarations possibly used only in debug info.
1265   for (const auto &Data : EmittedNonTargetVariables) {
1266     if (!Data.getValue().pointsToAliveValue())
1267       continue;
1268     auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue());
1269     if (!GV)
1270       continue;
1271     if (!GV->isDeclaration() || GV->getNumUses() > 0)
1272       continue;
1273     GV->eraseFromParent();
1274   }
1275 }
1276 
getName(ArrayRef<StringRef> Parts) const1277 std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const {
1278   SmallString<128> Buffer;
1279   llvm::raw_svector_ostream OS(Buffer);
1280   StringRef Sep = FirstSeparator;
1281   for (StringRef Part : Parts) {
1282     OS << Sep << Part;
1283     Sep = Separator;
1284   }
1285   return OS.str();
1286 }
1287 
1288 static llvm::Function *
emitCombinerOrInitializer(CodeGenModule & CGM,QualType Ty,const Expr * CombinerInitializer,const VarDecl * In,const VarDecl * Out,bool IsCombiner)1289 emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
1290                           const Expr *CombinerInitializer, const VarDecl *In,
1291                           const VarDecl *Out, bool IsCombiner) {
1292   // void .omp_combiner.(Ty *in, Ty *out);
1293   ASTContext &C = CGM.getContext();
1294   QualType PtrTy = C.getPointerType(Ty).withRestrict();
1295   FunctionArgList Args;
1296   ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
1297                                /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1298   ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
1299                               /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1300   Args.push_back(&OmpOutParm);
1301   Args.push_back(&OmpInParm);
1302   const CGFunctionInfo &FnInfo =
1303       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1304   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
1305   std::string Name = CGM.getOpenMPRuntime().getName(
1306       {IsCombiner ? "omp_combiner" : "omp_initializer", ""});
1307   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
1308                                     Name, &CGM.getModule());
1309   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
1310   if (CGM.getLangOpts().Optimize) {
1311     Fn->removeFnAttr(llvm::Attribute::NoInline);
1312     Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
1313     Fn->addFnAttr(llvm::Attribute::AlwaysInline);
1314   }
1315   CodeGenFunction CGF(CGM);
1316   // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
1317   // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
1318   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(),
1319                     Out->getLocation());
1320   CodeGenFunction::OMPPrivateScope Scope(CGF);
1321   Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
1322   Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() {
1323     return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
1324         .getAddress();
1325   });
1326   Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
1327   Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() {
1328     return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
1329         .getAddress();
1330   });
1331   (void)Scope.Privatize();
1332   if (!IsCombiner && Out->hasInit() &&
1333       !CGF.isTrivialInitializer(Out->getInit())) {
1334     CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out),
1335                          Out->getType().getQualifiers(),
1336                          /*IsInitializer=*/true);
1337   }
1338   if (CombinerInitializer)
1339     CGF.EmitIgnoredExpr(CombinerInitializer);
1340   Scope.ForceCleanup();
1341   CGF.FinishFunction();
1342   return Fn;
1343 }
1344 
emitUserDefinedReduction(CodeGenFunction * CGF,const OMPDeclareReductionDecl * D)1345 void CGOpenMPRuntime::emitUserDefinedReduction(
1346     CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
1347   if (UDRMap.count(D) > 0)
1348     return;
1349   llvm::Function *Combiner = emitCombinerOrInitializer(
1350       CGM, D->getType(), D->getCombiner(),
1351       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()),
1352       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()),
1353       /*IsCombiner=*/true);
1354   llvm::Function *Initializer = nullptr;
1355   if (const Expr *Init = D->getInitializer()) {
1356     Initializer = emitCombinerOrInitializer(
1357         CGM, D->getType(),
1358         D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init
1359                                                                      : nullptr,
1360         cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()),
1361         cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()),
1362         /*IsCombiner=*/false);
1363   }
1364   UDRMap.try_emplace(D, Combiner, Initializer);
1365   if (CGF) {
1366     auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
1367     Decls.second.push_back(D);
1368   }
1369 }
1370 
1371 std::pair<llvm::Function *, llvm::Function *>
getUserDefinedReduction(const OMPDeclareReductionDecl * D)1372 CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
1373   auto I = UDRMap.find(D);
1374   if (I != UDRMap.end())
1375     return I->second;
1376   emitUserDefinedReduction(/*CGF=*/nullptr, D);
1377   return UDRMap.lookup(D);
1378 }
1379 
emitParallelOrTeamsOutlinedFunction(CodeGenModule & CGM,const OMPExecutableDirective & D,const CapturedStmt * CS,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const StringRef OutlinedHelperName,const RegionCodeGenTy & CodeGen)1380 static llvm::Function *emitParallelOrTeamsOutlinedFunction(
1381     CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
1382     const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
1383     const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
1384   assert(ThreadIDVar->getType()->isPointerType() &&
1385          "thread id variable must be of type kmp_int32 *");
1386   CodeGenFunction CGF(CGM, true);
1387   bool HasCancel = false;
1388   if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D))
1389     HasCancel = OPD->hasCancel();
1390   else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
1391     HasCancel = OPSD->hasCancel();
1392   else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
1393     HasCancel = OPFD->hasCancel();
1394   else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D))
1395     HasCancel = OPFD->hasCancel();
1396   else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D))
1397     HasCancel = OPFD->hasCancel();
1398   else if (const auto *OPFD =
1399                dyn_cast<OMPTeamsDistributeParallelForDirective>(&D))
1400     HasCancel = OPFD->hasCancel();
1401   else if (const auto *OPFD =
1402                dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D))
1403     HasCancel = OPFD->hasCancel();
1404   CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
1405                                     HasCancel, OutlinedHelperName);
1406   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1407   return CGF.GenerateOpenMPCapturedStmtFunction(*CS);
1408 }
1409 
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1410 llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction(
1411     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1412     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1413   const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
1414   return emitParallelOrTeamsOutlinedFunction(
1415       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1416 }
1417 
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1418 llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction(
1419     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1420     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1421   const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
1422   return emitParallelOrTeamsOutlinedFunction(
1423       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1424 }
1425 
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)1426 llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction(
1427     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1428     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
1429     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1430     bool Tied, unsigned &NumberOfParts) {
1431   auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
1432                                               PrePostActionTy &) {
1433     llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc());
1434     llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc());
1435     llvm::Value *TaskArgs[] = {
1436         UpLoc, ThreadID,
1437         CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
1438                                     TaskTVar->getType()->castAs<PointerType>())
1439             .getPointer()};
1440     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs);
1441   };
1442   CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
1443                                                             UntiedCodeGen);
1444   CodeGen.setAction(Action);
1445   assert(!ThreadIDVar->getType()->isPointerType() &&
1446          "thread id variable must be of type kmp_int32 for tasks");
1447   const OpenMPDirectiveKind Region =
1448       isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop
1449                                                       : OMPD_task;
1450   const CapturedStmt *CS = D.getCapturedStmt(Region);
1451   const auto *TD = dyn_cast<OMPTaskDirective>(&D);
1452   CodeGenFunction CGF(CGM, true);
1453   CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
1454                                         InnermostKind,
1455                                         TD ? TD->hasCancel() : false, Action);
1456   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1457   llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS);
1458   if (!Tied)
1459     NumberOfParts = Action.getNumberOfParts();
1460   return Res;
1461 }
1462 
buildStructValue(ConstantStructBuilder & Fields,CodeGenModule & CGM,const RecordDecl * RD,const CGRecordLayout & RL,ArrayRef<llvm::Constant * > Data)1463 static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM,
1464                              const RecordDecl *RD, const CGRecordLayout &RL,
1465                              ArrayRef<llvm::Constant *> Data) {
1466   llvm::StructType *StructTy = RL.getLLVMType();
1467   unsigned PrevIdx = 0;
1468   ConstantInitBuilder CIBuilder(CGM);
1469   auto DI = Data.begin();
1470   for (const FieldDecl *FD : RD->fields()) {
1471     unsigned Idx = RL.getLLVMFieldNo(FD);
1472     // Fill the alignment.
1473     for (unsigned I = PrevIdx; I < Idx; ++I)
1474       Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I)));
1475     PrevIdx = Idx + 1;
1476     Fields.add(*DI);
1477     ++DI;
1478   }
1479 }
1480 
1481 template <class... As>
1482 static llvm::GlobalVariable *
createGlobalStruct(CodeGenModule & CGM,QualType Ty,bool IsConstant,ArrayRef<llvm::Constant * > Data,const Twine & Name,As &&...Args)1483 createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant,
1484                    ArrayRef<llvm::Constant *> Data, const Twine &Name,
1485                    As &&... Args) {
1486   const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1487   const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1488   ConstantInitBuilder CIBuilder(CGM);
1489   ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType());
1490   buildStructValue(Fields, CGM, RD, RL, Data);
1491   return Fields.finishAndCreateGlobal(
1492       Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant,
1493       std::forward<As>(Args)...);
1494 }
1495 
1496 template <typename T>
1497 static void
createConstantGlobalStructAndAddToParent(CodeGenModule & CGM,QualType Ty,ArrayRef<llvm::Constant * > Data,T & Parent)1498 createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty,
1499                                          ArrayRef<llvm::Constant *> Data,
1500                                          T &Parent) {
1501   const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1502   const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1503   ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType());
1504   buildStructValue(Fields, CGM, RD, RL, Data);
1505   Fields.finishAndAddTo(Parent);
1506 }
1507 
getOrCreateDefaultLocation(unsigned Flags)1508 Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) {
1509   CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
1510   unsigned Reserved2Flags = getDefaultLocationReserved2Flags();
1511   FlagsTy FlagsKey(Flags, Reserved2Flags);
1512   llvm::Value *Entry = OpenMPDefaultLocMap.lookup(FlagsKey);
1513   if (!Entry) {
1514     if (!DefaultOpenMPPSource) {
1515       // Initialize default location for psource field of ident_t structure of
1516       // all ident_t objects. Format is ";file;function;line;column;;".
1517       // Taken from
1518       // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp_str.cpp
1519       DefaultOpenMPPSource =
1520           CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer();
1521       DefaultOpenMPPSource =
1522           llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy);
1523     }
1524 
1525     llvm::Constant *Data[] = {
1526         llvm::ConstantInt::getNullValue(CGM.Int32Ty),
1527         llvm::ConstantInt::get(CGM.Int32Ty, Flags),
1528         llvm::ConstantInt::get(CGM.Int32Ty, Reserved2Flags),
1529         llvm::ConstantInt::getNullValue(CGM.Int32Ty), DefaultOpenMPPSource};
1530     llvm::GlobalValue *DefaultOpenMPLocation =
1531         createGlobalStruct(CGM, IdentQTy, isDefaultLocationConstant(), Data, "",
1532                            llvm::GlobalValue::PrivateLinkage);
1533     DefaultOpenMPLocation->setUnnamedAddr(
1534         llvm::GlobalValue::UnnamedAddr::Global);
1535 
1536     OpenMPDefaultLocMap[FlagsKey] = Entry = DefaultOpenMPLocation;
1537   }
1538   return Address(Entry, Align);
1539 }
1540 
setLocThreadIdInsertPt(CodeGenFunction & CGF,bool AtCurrentPoint)1541 void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF,
1542                                              bool AtCurrentPoint) {
1543   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1544   assert(!Elem.second.ServiceInsertPt && "Insert point is set already.");
1545 
1546   llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty);
1547   if (AtCurrentPoint) {
1548     Elem.second.ServiceInsertPt = new llvm::BitCastInst(
1549         Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock());
1550   } else {
1551     Elem.second.ServiceInsertPt =
1552         new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt");
1553     Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt);
1554   }
1555 }
1556 
clearLocThreadIdInsertPt(CodeGenFunction & CGF)1557 void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) {
1558   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1559   if (Elem.second.ServiceInsertPt) {
1560     llvm::Instruction *Ptr = Elem.second.ServiceInsertPt;
1561     Elem.second.ServiceInsertPt = nullptr;
1562     Ptr->eraseFromParent();
1563   }
1564 }
1565 
emitUpdateLocation(CodeGenFunction & CGF,SourceLocation Loc,unsigned Flags)1566 llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
1567                                                  SourceLocation Loc,
1568                                                  unsigned Flags) {
1569   Flags |= OMP_IDENT_KMPC;
1570   // If no debug info is generated - return global default location.
1571   if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
1572       Loc.isInvalid())
1573     return getOrCreateDefaultLocation(Flags).getPointer();
1574 
1575   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1576 
1577   CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
1578   Address LocValue = Address::invalid();
1579   auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
1580   if (I != OpenMPLocThreadIDMap.end())
1581     LocValue = Address(I->second.DebugLoc, Align);
1582 
1583   // OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if
1584   // GetOpenMPThreadID was called before this routine.
1585   if (!LocValue.isValid()) {
1586     // Generate "ident_t .kmpc_loc.addr;"
1587     Address AI = CGF.CreateMemTemp(IdentQTy, ".kmpc_loc.addr");
1588     auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1589     Elem.second.DebugLoc = AI.getPointer();
1590     LocValue = AI;
1591 
1592     if (!Elem.second.ServiceInsertPt)
1593       setLocThreadIdInsertPt(CGF);
1594     CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1595     CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
1596     CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags),
1597                              CGF.getTypeSize(IdentQTy));
1598   }
1599 
1600   // char **psource = &.kmpc_loc_<flags>.addr.psource;
1601   LValue Base = CGF.MakeAddrLValue(LocValue, IdentQTy);
1602   auto Fields = cast<RecordDecl>(IdentQTy->getAsTagDecl())->field_begin();
1603   LValue PSource =
1604       CGF.EmitLValueForField(Base, *std::next(Fields, IdentField_PSource));
1605 
1606   llvm::Value *OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding());
1607   if (OMPDebugLoc == nullptr) {
1608     SmallString<128> Buffer2;
1609     llvm::raw_svector_ostream OS2(Buffer2);
1610     // Build debug location
1611     PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
1612     OS2 << ";" << PLoc.getFilename() << ";";
1613     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
1614       OS2 << FD->getQualifiedNameAsString();
1615     OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
1616     OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str());
1617     OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc;
1618   }
1619   // *psource = ";<File>;<Function>;<Line>;<Column>;;";
1620   CGF.EmitStoreOfScalar(OMPDebugLoc, PSource);
1621 
1622   // Our callers always pass this to a runtime function, so for
1623   // convenience, go ahead and return a naked pointer.
1624   return LocValue.getPointer();
1625 }
1626 
getThreadID(CodeGenFunction & CGF,SourceLocation Loc)1627 llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
1628                                           SourceLocation Loc) {
1629   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1630 
1631   llvm::Value *ThreadID = nullptr;
1632   // Check whether we've already cached a load of the thread id in this
1633   // function.
1634   auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
1635   if (I != OpenMPLocThreadIDMap.end()) {
1636     ThreadID = I->second.ThreadID;
1637     if (ThreadID != nullptr)
1638       return ThreadID;
1639   }
1640   // If exceptions are enabled, do not use parameter to avoid possible crash.
1641   if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions ||
1642       !CGF.getLangOpts().CXXExceptions ||
1643       CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
1644     if (auto *OMPRegionInfo =
1645             dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
1646       if (OMPRegionInfo->getThreadIDVariable()) {
1647         // Check if this an outlined function with thread id passed as argument.
1648         LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
1649         ThreadID = CGF.EmitLoadOfScalar(LVal, Loc);
1650         // If value loaded in entry block, cache it and use it everywhere in
1651         // function.
1652         if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
1653           auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1654           Elem.second.ThreadID = ThreadID;
1655         }
1656         return ThreadID;
1657       }
1658     }
1659   }
1660 
1661   // This is not an outlined function region - need to call __kmpc_int32
1662   // kmpc_global_thread_num(ident_t *loc).
1663   // Generate thread id value and cache this value for use across the
1664   // function.
1665   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1666   if (!Elem.second.ServiceInsertPt)
1667     setLocThreadIdInsertPt(CGF);
1668   CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1669   CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
1670   llvm::CallInst *Call = CGF.Builder.CreateCall(
1671       createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
1672       emitUpdateLocation(CGF, Loc));
1673   Call->setCallingConv(CGF.getRuntimeCC());
1674   Elem.second.ThreadID = Call;
1675   return Call;
1676 }
1677 
functionFinished(CodeGenFunction & CGF)1678 void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
1679   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1680   if (OpenMPLocThreadIDMap.count(CGF.CurFn)) {
1681     clearLocThreadIdInsertPt(CGF);
1682     OpenMPLocThreadIDMap.erase(CGF.CurFn);
1683   }
1684   if (FunctionUDRMap.count(CGF.CurFn) > 0) {
1685     for(auto *D : FunctionUDRMap[CGF.CurFn])
1686       UDRMap.erase(D);
1687     FunctionUDRMap.erase(CGF.CurFn);
1688   }
1689 }
1690 
getIdentTyPointerTy()1691 llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
1692   return IdentTy->getPointerTo();
1693 }
1694 
getKmpc_MicroPointerTy()1695 llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
1696   if (!Kmpc_MicroTy) {
1697     // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
1698     llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
1699                                  llvm::PointerType::getUnqual(CGM.Int32Ty)};
1700     Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
1701   }
1702   return llvm::PointerType::getUnqual(Kmpc_MicroTy);
1703 }
1704 
createRuntimeFunction(unsigned Function)1705 llvm::FunctionCallee CGOpenMPRuntime::createRuntimeFunction(unsigned Function) {
1706   llvm::FunctionCallee RTLFn = nullptr;
1707   switch (static_cast<OpenMPRTLFunction>(Function)) {
1708   case OMPRTL__kmpc_fork_call: {
1709     // Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro
1710     // microtask, ...);
1711     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1712                                 getKmpc_MicroPointerTy()};
1713     auto *FnTy =
1714         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
1715     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call");
1716     if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
1717       if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
1718         llvm::LLVMContext &Ctx = F->getContext();
1719         llvm::MDBuilder MDB(Ctx);
1720         // Annotate the callback behavior of the __kmpc_fork_call:
1721         //  - The callback callee is argument number 2 (microtask).
1722         //  - The first two arguments of the callback callee are unknown (-1).
1723         //  - All variadic arguments to the __kmpc_fork_call are passed to the
1724         //    callback callee.
1725         F->addMetadata(
1726             llvm::LLVMContext::MD_callback,
1727             *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1728                                         2, {-1, -1},
1729                                         /* VarArgsArePassed */ true)}));
1730       }
1731     }
1732     break;
1733   }
1734   case OMPRTL__kmpc_global_thread_num: {
1735     // Build kmp_int32 __kmpc_global_thread_num(ident_t *loc);
1736     llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
1737     auto *FnTy =
1738         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1739     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num");
1740     break;
1741   }
1742   case OMPRTL__kmpc_threadprivate_cached: {
1743     // Build void *__kmpc_threadprivate_cached(ident_t *loc,
1744     // kmp_int32 global_tid, void *data, size_t size, void ***cache);
1745     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1746                                 CGM.VoidPtrTy, CGM.SizeTy,
1747                                 CGM.VoidPtrTy->getPointerTo()->getPointerTo()};
1748     auto *FnTy =
1749         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false);
1750     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached");
1751     break;
1752   }
1753   case OMPRTL__kmpc_critical: {
1754     // Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
1755     // kmp_critical_name *crit);
1756     llvm::Type *TypeParams[] = {
1757         getIdentTyPointerTy(), CGM.Int32Ty,
1758         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1759     auto *FnTy =
1760         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1761     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical");
1762     break;
1763   }
1764   case OMPRTL__kmpc_critical_with_hint: {
1765     // Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid,
1766     // kmp_critical_name *crit, uintptr_t hint);
1767     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1768                                 llvm::PointerType::getUnqual(KmpCriticalNameTy),
1769                                 CGM.IntPtrTy};
1770     auto *FnTy =
1771         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1772     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint");
1773     break;
1774   }
1775   case OMPRTL__kmpc_threadprivate_register: {
1776     // Build void __kmpc_threadprivate_register(ident_t *, void *data,
1777     // kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
1778     // typedef void *(*kmpc_ctor)(void *);
1779     auto *KmpcCtorTy =
1780         llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
1781                                 /*isVarArg*/ false)->getPointerTo();
1782     // typedef void *(*kmpc_cctor)(void *, void *);
1783     llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1784     auto *KmpcCopyCtorTy =
1785         llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs,
1786                                 /*isVarArg*/ false)
1787             ->getPointerTo();
1788     // typedef void (*kmpc_dtor)(void *);
1789     auto *KmpcDtorTy =
1790         llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false)
1791             ->getPointerTo();
1792     llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy,
1793                               KmpcCopyCtorTy, KmpcDtorTy};
1794     auto *FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs,
1795                                         /*isVarArg*/ false);
1796     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register");
1797     break;
1798   }
1799   case OMPRTL__kmpc_end_critical: {
1800     // Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
1801     // kmp_critical_name *crit);
1802     llvm::Type *TypeParams[] = {
1803         getIdentTyPointerTy(), CGM.Int32Ty,
1804         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1805     auto *FnTy =
1806         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1807     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical");
1808     break;
1809   }
1810   case OMPRTL__kmpc_cancel_barrier: {
1811     // Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
1812     // global_tid);
1813     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1814     auto *FnTy =
1815         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1816     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier");
1817     break;
1818   }
1819   case OMPRTL__kmpc_barrier: {
1820     // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
1821     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1822     auto *FnTy =
1823         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1824     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
1825     break;
1826   }
1827   case OMPRTL__kmpc_for_static_fini: {
1828     // Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
1829     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1830     auto *FnTy =
1831         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1832     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini");
1833     break;
1834   }
1835   case OMPRTL__kmpc_push_num_threads: {
1836     // Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
1837     // kmp_int32 num_threads)
1838     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1839                                 CGM.Int32Ty};
1840     auto *FnTy =
1841         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1842     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads");
1843     break;
1844   }
1845   case OMPRTL__kmpc_serialized_parallel: {
1846     // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
1847     // global_tid);
1848     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1849     auto *FnTy =
1850         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1851     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
1852     break;
1853   }
1854   case OMPRTL__kmpc_end_serialized_parallel: {
1855     // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
1856     // global_tid);
1857     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1858     auto *FnTy =
1859         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1860     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
1861     break;
1862   }
1863   case OMPRTL__kmpc_flush: {
1864     // Build void __kmpc_flush(ident_t *loc);
1865     llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
1866     auto *FnTy =
1867         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1868     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush");
1869     break;
1870   }
1871   case OMPRTL__kmpc_master: {
1872     // Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid);
1873     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1874     auto *FnTy =
1875         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1876     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master");
1877     break;
1878   }
1879   case OMPRTL__kmpc_end_master: {
1880     // Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid);
1881     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1882     auto *FnTy =
1883         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1884     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master");
1885     break;
1886   }
1887   case OMPRTL__kmpc_omp_taskyield: {
1888     // Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
1889     // int end_part);
1890     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
1891     auto *FnTy =
1892         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1893     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield");
1894     break;
1895   }
1896   case OMPRTL__kmpc_single: {
1897     // Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid);
1898     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1899     auto *FnTy =
1900         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1901     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single");
1902     break;
1903   }
1904   case OMPRTL__kmpc_end_single: {
1905     // Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid);
1906     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1907     auto *FnTy =
1908         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1909     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single");
1910     break;
1911   }
1912   case OMPRTL__kmpc_omp_task_alloc: {
1913     // Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
1914     // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
1915     // kmp_routine_entry_t *task_entry);
1916     assert(KmpRoutineEntryPtrTy != nullptr &&
1917            "Type kmp_routine_entry_t must be created.");
1918     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
1919                                 CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy};
1920     // Return void * and then cast to particular kmp_task_t type.
1921     auto *FnTy =
1922         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
1923     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc");
1924     break;
1925   }
1926   case OMPRTL__kmpc_omp_target_task_alloc: {
1927     // Build kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *, kmp_int32 gtid,
1928     // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
1929     // kmp_routine_entry_t *task_entry, kmp_int64 device_id);
1930     assert(KmpRoutineEntryPtrTy != nullptr &&
1931            "Type kmp_routine_entry_t must be created.");
1932     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
1933                                 CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy,
1934                                 CGM.Int64Ty};
1935     // Return void * and then cast to particular kmp_task_t type.
1936     auto *FnTy =
1937         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
1938     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_target_task_alloc");
1939     break;
1940   }
1941   case OMPRTL__kmpc_omp_task: {
1942     // Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
1943     // *new_task);
1944     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1945                                 CGM.VoidPtrTy};
1946     auto *FnTy =
1947         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1948     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task");
1949     break;
1950   }
1951   case OMPRTL__kmpc_copyprivate: {
1952     // Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
1953     // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
1954     // kmp_int32 didit);
1955     llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1956     auto *CpyFnTy =
1957         llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false);
1958     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy,
1959                                 CGM.VoidPtrTy, CpyFnTy->getPointerTo(),
1960                                 CGM.Int32Ty};
1961     auto *FnTy =
1962         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1963     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate");
1964     break;
1965   }
1966   case OMPRTL__kmpc_reduce: {
1967     // Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
1968     // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
1969     // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
1970     llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1971     auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
1972                                                /*isVarArg=*/false);
1973     llvm::Type *TypeParams[] = {
1974         getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
1975         CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
1976         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1977     auto *FnTy =
1978         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1979     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce");
1980     break;
1981   }
1982   case OMPRTL__kmpc_reduce_nowait: {
1983     // Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
1984     // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
1985     // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
1986     // *lck);
1987     llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1988     auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
1989                                                /*isVarArg=*/false);
1990     llvm::Type *TypeParams[] = {
1991         getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
1992         CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
1993         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1994     auto *FnTy =
1995         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1996     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait");
1997     break;
1998   }
1999   case OMPRTL__kmpc_end_reduce: {
2000     // Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
2001     // kmp_critical_name *lck);
2002     llvm::Type *TypeParams[] = {
2003         getIdentTyPointerTy(), CGM.Int32Ty,
2004         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
2005     auto *FnTy =
2006         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2007     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce");
2008     break;
2009   }
2010   case OMPRTL__kmpc_end_reduce_nowait: {
2011     // Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
2012     // kmp_critical_name *lck);
2013     llvm::Type *TypeParams[] = {
2014         getIdentTyPointerTy(), CGM.Int32Ty,
2015         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
2016     auto *FnTy =
2017         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2018     RTLFn =
2019         CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait");
2020     break;
2021   }
2022   case OMPRTL__kmpc_omp_task_begin_if0: {
2023     // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
2024     // *new_task);
2025     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2026                                 CGM.VoidPtrTy};
2027     auto *FnTy =
2028         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2029     RTLFn =
2030         CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0");
2031     break;
2032   }
2033   case OMPRTL__kmpc_omp_task_complete_if0: {
2034     // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
2035     // *new_task);
2036     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2037                                 CGM.VoidPtrTy};
2038     auto *FnTy =
2039         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2040     RTLFn = CGM.CreateRuntimeFunction(FnTy,
2041                                       /*Name=*/"__kmpc_omp_task_complete_if0");
2042     break;
2043   }
2044   case OMPRTL__kmpc_ordered: {
2045     // Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
2046     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2047     auto *FnTy =
2048         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2049     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered");
2050     break;
2051   }
2052   case OMPRTL__kmpc_end_ordered: {
2053     // Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
2054     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2055     auto *FnTy =
2056         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2057     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered");
2058     break;
2059   }
2060   case OMPRTL__kmpc_omp_taskwait: {
2061     // Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid);
2062     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2063     auto *FnTy =
2064         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
2065     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait");
2066     break;
2067   }
2068   case OMPRTL__kmpc_taskgroup: {
2069     // Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
2070     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2071     auto *FnTy =
2072         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2073     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup");
2074     break;
2075   }
2076   case OMPRTL__kmpc_end_taskgroup: {
2077     // Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
2078     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2079     auto *FnTy =
2080         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2081     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup");
2082     break;
2083   }
2084   case OMPRTL__kmpc_push_proc_bind: {
2085     // Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
2086     // int proc_bind)
2087     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
2088     auto *FnTy =
2089         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2090     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind");
2091     break;
2092   }
2093   case OMPRTL__kmpc_omp_task_with_deps: {
2094     // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
2095     // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
2096     // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
2097     llvm::Type *TypeParams[] = {
2098         getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty,
2099         CGM.VoidPtrTy,         CGM.Int32Ty, CGM.VoidPtrTy};
2100     auto *FnTy =
2101         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
2102     RTLFn =
2103         CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps");
2104     break;
2105   }
2106   case OMPRTL__kmpc_omp_wait_deps: {
2107     // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
2108     // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
2109     // kmp_depend_info_t *noalias_dep_list);
2110     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2111                                 CGM.Int32Ty,           CGM.VoidPtrTy,
2112                                 CGM.Int32Ty,           CGM.VoidPtrTy};
2113     auto *FnTy =
2114         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2115     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps");
2116     break;
2117   }
2118   case OMPRTL__kmpc_cancellationpoint: {
2119     // Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
2120     // global_tid, kmp_int32 cncl_kind)
2121     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
2122     auto *FnTy =
2123         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2124     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint");
2125     break;
2126   }
2127   case OMPRTL__kmpc_cancel: {
2128     // Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
2129     // kmp_int32 cncl_kind)
2130     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
2131     auto *FnTy =
2132         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2133     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel");
2134     break;
2135   }
2136   case OMPRTL__kmpc_push_num_teams: {
2137     // Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid,
2138     // kmp_int32 num_teams, kmp_int32 num_threads)
2139     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
2140         CGM.Int32Ty};
2141     auto *FnTy =
2142         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2143     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams");
2144     break;
2145   }
2146   case OMPRTL__kmpc_fork_teams: {
2147     // Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
2148     // microtask, ...);
2149     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2150                                 getKmpc_MicroPointerTy()};
2151     auto *FnTy =
2152         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
2153     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams");
2154     if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
2155       if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
2156         llvm::LLVMContext &Ctx = F->getContext();
2157         llvm::MDBuilder MDB(Ctx);
2158         // Annotate the callback behavior of the __kmpc_fork_teams:
2159         //  - The callback callee is argument number 2 (microtask).
2160         //  - The first two arguments of the callback callee are unknown (-1).
2161         //  - All variadic arguments to the __kmpc_fork_teams are passed to the
2162         //    callback callee.
2163         F->addMetadata(
2164             llvm::LLVMContext::MD_callback,
2165             *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2166                                         2, {-1, -1},
2167                                         /* VarArgsArePassed */ true)}));
2168       }
2169     }
2170     break;
2171   }
2172   case OMPRTL__kmpc_taskloop: {
2173     // Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
2174     // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
2175     // sched, kmp_uint64 grainsize, void *task_dup);
2176     llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
2177                                 CGM.IntTy,
2178                                 CGM.VoidPtrTy,
2179                                 CGM.IntTy,
2180                                 CGM.Int64Ty->getPointerTo(),
2181                                 CGM.Int64Ty->getPointerTo(),
2182                                 CGM.Int64Ty,
2183                                 CGM.IntTy,
2184                                 CGM.IntTy,
2185                                 CGM.Int64Ty,
2186                                 CGM.VoidPtrTy};
2187     auto *FnTy =
2188         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2189     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop");
2190     break;
2191   }
2192   case OMPRTL__kmpc_doacross_init: {
2193     // Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
2194     // num_dims, struct kmp_dim *dims);
2195     llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
2196                                 CGM.Int32Ty,
2197                                 CGM.Int32Ty,
2198                                 CGM.VoidPtrTy};
2199     auto *FnTy =
2200         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2201     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init");
2202     break;
2203   }
2204   case OMPRTL__kmpc_doacross_fini: {
2205     // Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
2206     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2207     auto *FnTy =
2208         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2209     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini");
2210     break;
2211   }
2212   case OMPRTL__kmpc_doacross_post: {
2213     // Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
2214     // *vec);
2215     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2216                                 CGM.Int64Ty->getPointerTo()};
2217     auto *FnTy =
2218         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2219     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post");
2220     break;
2221   }
2222   case OMPRTL__kmpc_doacross_wait: {
2223     // Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
2224     // *vec);
2225     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2226                                 CGM.Int64Ty->getPointerTo()};
2227     auto *FnTy =
2228         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2229     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait");
2230     break;
2231   }
2232   case OMPRTL__kmpc_task_reduction_init: {
2233     // Build void *__kmpc_task_reduction_init(int gtid, int num_data, void
2234     // *data);
2235     llvm::Type *TypeParams[] = {CGM.IntTy, CGM.IntTy, CGM.VoidPtrTy};
2236     auto *FnTy =
2237         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
2238     RTLFn =
2239         CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_task_reduction_init");
2240     break;
2241   }
2242   case OMPRTL__kmpc_task_reduction_get_th_data: {
2243     // Build void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
2244     // *d);
2245     llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy};
2246     auto *FnTy =
2247         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
2248     RTLFn = CGM.CreateRuntimeFunction(
2249         FnTy, /*Name=*/"__kmpc_task_reduction_get_th_data");
2250     break;
2251   }
2252   case OMPRTL__kmpc_alloc: {
2253     // Build to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t
2254     // al); omp_allocator_handle_t type is void *.
2255     llvm::Type *TypeParams[] = {CGM.IntTy, CGM.SizeTy, CGM.VoidPtrTy};
2256     auto *FnTy =
2257         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
2258     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_alloc");
2259     break;
2260   }
2261   case OMPRTL__kmpc_free: {
2262     // Build to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t
2263     // al); omp_allocator_handle_t type is void *.
2264     llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy};
2265     auto *FnTy =
2266         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2267     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_free");
2268     break;
2269   }
2270   case OMPRTL__kmpc_push_target_tripcount: {
2271     // Build void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
2272     // size);
2273     llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int64Ty};
2274     llvm::FunctionType *FnTy =
2275         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2276     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_target_tripcount");
2277     break;
2278   }
2279   case OMPRTL__tgt_target: {
2280     // Build int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
2281     // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
2282     // *arg_types);
2283     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2284                                 CGM.VoidPtrTy,
2285                                 CGM.Int32Ty,
2286                                 CGM.VoidPtrPtrTy,
2287                                 CGM.VoidPtrPtrTy,
2288                                 CGM.Int64Ty->getPointerTo(),
2289                                 CGM.Int64Ty->getPointerTo()};
2290     auto *FnTy =
2291         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2292     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target");
2293     break;
2294   }
2295   case OMPRTL__tgt_target_nowait: {
2296     // Build int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
2297     // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes,
2298     // int64_t *arg_types);
2299     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2300                                 CGM.VoidPtrTy,
2301                                 CGM.Int32Ty,
2302                                 CGM.VoidPtrPtrTy,
2303                                 CGM.VoidPtrPtrTy,
2304                                 CGM.Int64Ty->getPointerTo(),
2305                                 CGM.Int64Ty->getPointerTo()};
2306     auto *FnTy =
2307         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2308     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_nowait");
2309     break;
2310   }
2311   case OMPRTL__tgt_target_teams: {
2312     // Build int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
2313     // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes,
2314     // int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
2315     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2316                                 CGM.VoidPtrTy,
2317                                 CGM.Int32Ty,
2318                                 CGM.VoidPtrPtrTy,
2319                                 CGM.VoidPtrPtrTy,
2320                                 CGM.Int64Ty->getPointerTo(),
2321                                 CGM.Int64Ty->getPointerTo(),
2322                                 CGM.Int32Ty,
2323                                 CGM.Int32Ty};
2324     auto *FnTy =
2325         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2326     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams");
2327     break;
2328   }
2329   case OMPRTL__tgt_target_teams_nowait: {
2330     // Build int32_t __tgt_target_teams_nowait(int64_t device_id, void
2331     // *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t
2332     // *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
2333     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2334                                 CGM.VoidPtrTy,
2335                                 CGM.Int32Ty,
2336                                 CGM.VoidPtrPtrTy,
2337                                 CGM.VoidPtrPtrTy,
2338                                 CGM.Int64Ty->getPointerTo(),
2339                                 CGM.Int64Ty->getPointerTo(),
2340                                 CGM.Int32Ty,
2341                                 CGM.Int32Ty};
2342     auto *FnTy =
2343         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2344     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams_nowait");
2345     break;
2346   }
2347   case OMPRTL__tgt_register_requires: {
2348     // Build void __tgt_register_requires(int64_t flags);
2349     llvm::Type *TypeParams[] = {CGM.Int64Ty};
2350     auto *FnTy =
2351         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2352     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_requires");
2353     break;
2354   }
2355   case OMPRTL__tgt_register_lib: {
2356     // Build void __tgt_register_lib(__tgt_bin_desc *desc);
2357     QualType ParamTy =
2358         CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
2359     llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
2360     auto *FnTy =
2361         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2362     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_lib");
2363     break;
2364   }
2365   case OMPRTL__tgt_unregister_lib: {
2366     // Build void __tgt_unregister_lib(__tgt_bin_desc *desc);
2367     QualType ParamTy =
2368         CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
2369     llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
2370     auto *FnTy =
2371         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2372     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_unregister_lib");
2373     break;
2374   }
2375   case OMPRTL__tgt_target_data_begin: {
2376     // Build void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
2377     // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
2378     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2379                                 CGM.Int32Ty,
2380                                 CGM.VoidPtrPtrTy,
2381                                 CGM.VoidPtrPtrTy,
2382                                 CGM.Int64Ty->getPointerTo(),
2383                                 CGM.Int64Ty->getPointerTo()};
2384     auto *FnTy =
2385         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2386     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin");
2387     break;
2388   }
2389   case OMPRTL__tgt_target_data_begin_nowait: {
2390     // Build void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
2391     // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
2392     // *arg_types);
2393     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2394                                 CGM.Int32Ty,
2395                                 CGM.VoidPtrPtrTy,
2396                                 CGM.VoidPtrPtrTy,
2397                                 CGM.Int64Ty->getPointerTo(),
2398                                 CGM.Int64Ty->getPointerTo()};
2399     auto *FnTy =
2400         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2401     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin_nowait");
2402     break;
2403   }
2404   case OMPRTL__tgt_target_data_end: {
2405     // Build void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
2406     // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
2407     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2408                                 CGM.Int32Ty,
2409                                 CGM.VoidPtrPtrTy,
2410                                 CGM.VoidPtrPtrTy,
2411                                 CGM.Int64Ty->getPointerTo(),
2412                                 CGM.Int64Ty->getPointerTo()};
2413     auto *FnTy =
2414         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2415     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end");
2416     break;
2417   }
2418   case OMPRTL__tgt_target_data_end_nowait: {
2419     // Build void __tgt_target_data_end_nowait(int64_t device_id, int32_t
2420     // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
2421     // *arg_types);
2422     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2423                                 CGM.Int32Ty,
2424                                 CGM.VoidPtrPtrTy,
2425                                 CGM.VoidPtrPtrTy,
2426                                 CGM.Int64Ty->getPointerTo(),
2427                                 CGM.Int64Ty->getPointerTo()};
2428     auto *FnTy =
2429         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2430     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end_nowait");
2431     break;
2432   }
2433   case OMPRTL__tgt_target_data_update: {
2434     // Build void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
2435     // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
2436     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2437                                 CGM.Int32Ty,
2438                                 CGM.VoidPtrPtrTy,
2439                                 CGM.VoidPtrPtrTy,
2440                                 CGM.Int64Ty->getPointerTo(),
2441                                 CGM.Int64Ty->getPointerTo()};
2442     auto *FnTy =
2443         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2444     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update");
2445     break;
2446   }
2447   case OMPRTL__tgt_target_data_update_nowait: {
2448     // Build void __tgt_target_data_update_nowait(int64_t device_id, int32_t
2449     // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
2450     // *arg_types);
2451     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2452                                 CGM.Int32Ty,
2453                                 CGM.VoidPtrPtrTy,
2454                                 CGM.VoidPtrPtrTy,
2455                                 CGM.Int64Ty->getPointerTo(),
2456                                 CGM.Int64Ty->getPointerTo()};
2457     auto *FnTy =
2458         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2459     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update_nowait");
2460     break;
2461   }
2462   }
2463   assert(RTLFn && "Unable to find OpenMP runtime function");
2464   return RTLFn;
2465 }
2466 
2467 llvm::FunctionCallee
createForStaticInitFunction(unsigned IVSize,bool IVSigned)2468 CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) {
2469   assert((IVSize == 32 || IVSize == 64) &&
2470          "IV size is not compatible with the omp runtime");
2471   StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
2472                                             : "__kmpc_for_static_init_4u")
2473                                 : (IVSigned ? "__kmpc_for_static_init_8"
2474                                             : "__kmpc_for_static_init_8u");
2475   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
2476   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
2477   llvm::Type *TypeParams[] = {
2478     getIdentTyPointerTy(),                     // loc
2479     CGM.Int32Ty,                               // tid
2480     CGM.Int32Ty,                               // schedtype
2481     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
2482     PtrTy,                                     // p_lower
2483     PtrTy,                                     // p_upper
2484     PtrTy,                                     // p_stride
2485     ITy,                                       // incr
2486     ITy                                        // chunk
2487   };
2488   auto *FnTy =
2489       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2490   return CGM.CreateRuntimeFunction(FnTy, Name);
2491 }
2492 
2493 llvm::FunctionCallee
createDispatchInitFunction(unsigned IVSize,bool IVSigned)2494 CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) {
2495   assert((IVSize == 32 || IVSize == 64) &&
2496          "IV size is not compatible with the omp runtime");
2497   StringRef Name =
2498       IVSize == 32
2499           ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
2500           : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
2501   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
2502   llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
2503                                CGM.Int32Ty,           // tid
2504                                CGM.Int32Ty,           // schedtype
2505                                ITy,                   // lower
2506                                ITy,                   // upper
2507                                ITy,                   // stride
2508                                ITy                    // chunk
2509   };
2510   auto *FnTy =
2511       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2512   return CGM.CreateRuntimeFunction(FnTy, Name);
2513 }
2514 
2515 llvm::FunctionCallee
createDispatchFiniFunction(unsigned IVSize,bool IVSigned)2516 CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) {
2517   assert((IVSize == 32 || IVSize == 64) &&
2518          "IV size is not compatible with the omp runtime");
2519   StringRef Name =
2520       IVSize == 32
2521           ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
2522           : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
2523   llvm::Type *TypeParams[] = {
2524       getIdentTyPointerTy(), // loc
2525       CGM.Int32Ty,           // tid
2526   };
2527   auto *FnTy =
2528       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2529   return CGM.CreateRuntimeFunction(FnTy, Name);
2530 }
2531 
2532 llvm::FunctionCallee
createDispatchNextFunction(unsigned IVSize,bool IVSigned)2533 CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) {
2534   assert((IVSize == 32 || IVSize == 64) &&
2535          "IV size is not compatible with the omp runtime");
2536   StringRef Name =
2537       IVSize == 32
2538           ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
2539           : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
2540   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
2541   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
2542   llvm::Type *TypeParams[] = {
2543     getIdentTyPointerTy(),                     // loc
2544     CGM.Int32Ty,                               // tid
2545     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
2546     PtrTy,                                     // p_lower
2547     PtrTy,                                     // p_upper
2548     PtrTy                                      // p_stride
2549   };
2550   auto *FnTy =
2551       llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2552   return CGM.CreateRuntimeFunction(FnTy, Name);
2553 }
2554 
getAddrOfDeclareTargetVar(const VarDecl * VD)2555 Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) {
2556   if (CGM.getLangOpts().OpenMPSimd)
2557     return Address::invalid();
2558   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2559       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2560   if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link ||
2561               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2562                HasRequiresUnifiedSharedMemory))) {
2563     SmallString<64> PtrName;
2564     {
2565       llvm::raw_svector_ostream OS(PtrName);
2566       OS << CGM.getMangledName(GlobalDecl(VD)) << "_decl_tgt_ref_ptr";
2567     }
2568     llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName);
2569     if (!Ptr) {
2570       QualType PtrTy = CGM.getContext().getPointerType(VD->getType());
2571       Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy),
2572                                         PtrName);
2573       if (!CGM.getLangOpts().OpenMPIsDevice) {
2574         auto *GV = cast<llvm::GlobalVariable>(Ptr);
2575         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
2576         GV->setInitializer(CGM.GetAddrOfGlobal(VD));
2577       }
2578       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ptr));
2579       registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr));
2580     }
2581     return Address(Ptr, CGM.getContext().getDeclAlign(VD));
2582   }
2583   return Address::invalid();
2584 }
2585 
2586 llvm::Constant *
getOrCreateThreadPrivateCache(const VarDecl * VD)2587 CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
2588   assert(!CGM.getLangOpts().OpenMPUseTLS ||
2589          !CGM.getContext().getTargetInfo().isTLSSupported());
2590   // Lookup the entry, lazily creating it if necessary.
2591   std::string Suffix = getName({"cache", ""});
2592   return getOrCreateInternalVariable(
2593       CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix));
2594 }
2595 
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)2596 Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
2597                                                 const VarDecl *VD,
2598                                                 Address VDAddr,
2599                                                 SourceLocation Loc) {
2600   if (CGM.getLangOpts().OpenMPUseTLS &&
2601       CGM.getContext().getTargetInfo().isTLSSupported())
2602     return VDAddr;
2603 
2604   llvm::Type *VarTy = VDAddr.getElementType();
2605   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2606                          CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
2607                                                        CGM.Int8PtrTy),
2608                          CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
2609                          getOrCreateThreadPrivateCache(VD)};
2610   return Address(CGF.EmitRuntimeCall(
2611       createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
2612                  VDAddr.getAlignment());
2613 }
2614 
emitThreadPrivateVarInit(CodeGenFunction & CGF,Address VDAddr,llvm::Value * Ctor,llvm::Value * CopyCtor,llvm::Value * Dtor,SourceLocation Loc)2615 void CGOpenMPRuntime::emitThreadPrivateVarInit(
2616     CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
2617     llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
2618   // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
2619   // library.
2620   llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc);
2621   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
2622                       OMPLoc);
2623   // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
2624   // to register constructor/destructor for variable.
2625   llvm::Value *Args[] = {
2626       OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy),
2627       Ctor, CopyCtor, Dtor};
2628   CGF.EmitRuntimeCall(
2629       createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args);
2630 }
2631 
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)2632 llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
2633     const VarDecl *VD, Address VDAddr, SourceLocation Loc,
2634     bool PerformInit, CodeGenFunction *CGF) {
2635   if (CGM.getLangOpts().OpenMPUseTLS &&
2636       CGM.getContext().getTargetInfo().isTLSSupported())
2637     return nullptr;
2638 
2639   VD = VD->getDefinition(CGM.getContext());
2640   if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) {
2641     QualType ASTTy = VD->getType();
2642 
2643     llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
2644     const Expr *Init = VD->getAnyInitializer();
2645     if (CGM.getLangOpts().CPlusPlus && PerformInit) {
2646       // Generate function that re-emits the declaration's initializer into the
2647       // threadprivate copy of the variable VD
2648       CodeGenFunction CtorCGF(CGM);
2649       FunctionArgList Args;
2650       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
2651                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
2652                             ImplicitParamDecl::Other);
2653       Args.push_back(&Dst);
2654 
2655       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
2656           CGM.getContext().VoidPtrTy, Args);
2657       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2658       std::string Name = getName({"__kmpc_global_ctor_", ""});
2659       llvm::Function *Fn =
2660           CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
2661       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
2662                             Args, Loc, Loc);
2663       llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar(
2664           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
2665           CGM.getContext().VoidPtrTy, Dst.getLocation());
2666       Address Arg = Address(ArgVal, VDAddr.getAlignment());
2667       Arg = CtorCGF.Builder.CreateElementBitCast(
2668           Arg, CtorCGF.ConvertTypeForMem(ASTTy));
2669       CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
2670                                /*IsInitializer=*/true);
2671       ArgVal = CtorCGF.EmitLoadOfScalar(
2672           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
2673           CGM.getContext().VoidPtrTy, Dst.getLocation());
2674       CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
2675       CtorCGF.FinishFunction();
2676       Ctor = Fn;
2677     }
2678     if (VD->getType().isDestructedType() != QualType::DK_none) {
2679       // Generate function that emits destructor call for the threadprivate copy
2680       // of the variable VD
2681       CodeGenFunction DtorCGF(CGM);
2682       FunctionArgList Args;
2683       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
2684                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
2685                             ImplicitParamDecl::Other);
2686       Args.push_back(&Dst);
2687 
2688       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
2689           CGM.getContext().VoidTy, Args);
2690       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2691       std::string Name = getName({"__kmpc_global_dtor_", ""});
2692       llvm::Function *Fn =
2693           CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
2694       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
2695       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
2696                             Loc, Loc);
2697       // Create a scope with an artificial location for the body of this function.
2698       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
2699       llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar(
2700           DtorCGF.GetAddrOfLocalVar(&Dst),
2701           /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
2702       DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
2703                           DtorCGF.getDestroyer(ASTTy.isDestructedType()),
2704                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
2705       DtorCGF.FinishFunction();
2706       Dtor = Fn;
2707     }
2708     // Do not emit init function if it is not required.
2709     if (!Ctor && !Dtor)
2710       return nullptr;
2711 
2712     llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
2713     auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
2714                                                /*isVarArg=*/false)
2715                            ->getPointerTo();
2716     // Copying constructor for the threadprivate variable.
2717     // Must be NULL - reserved by runtime, but currently it requires that this
2718     // parameter is always NULL. Otherwise it fires assertion.
2719     CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
2720     if (Ctor == nullptr) {
2721       auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
2722                                              /*isVarArg=*/false)
2723                          ->getPointerTo();
2724       Ctor = llvm::Constant::getNullValue(CtorTy);
2725     }
2726     if (Dtor == nullptr) {
2727       auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
2728                                              /*isVarArg=*/false)
2729                          ->getPointerTo();
2730       Dtor = llvm::Constant::getNullValue(DtorTy);
2731     }
2732     if (!CGF) {
2733       auto *InitFunctionTy =
2734           llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
2735       std::string Name = getName({"__omp_threadprivate_init_", ""});
2736       llvm::Function *InitFunction = CGM.CreateGlobalInitOrDestructFunction(
2737           InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction());
2738       CodeGenFunction InitCGF(CGM);
2739       FunctionArgList ArgList;
2740       InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
2741                             CGM.getTypes().arrangeNullaryFunction(), ArgList,
2742                             Loc, Loc);
2743       emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
2744       InitCGF.FinishFunction();
2745       return InitFunction;
2746     }
2747     emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
2748   }
2749   return nullptr;
2750 }
2751 
2752 /// Obtain information that uniquely identifies a target entry. This
2753 /// consists of the file and device IDs as well as line number associated with
2754 /// the relevant entry source location.
getTargetEntryUniqueInfo(ASTContext & C,SourceLocation Loc,unsigned & DeviceID,unsigned & FileID,unsigned & LineNum)2755 static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
2756                                      unsigned &DeviceID, unsigned &FileID,
2757                                      unsigned &LineNum) {
2758   SourceManager &SM = C.getSourceManager();
2759 
2760   // The loc should be always valid and have a file ID (the user cannot use
2761   // #pragma directives in macros)
2762 
2763   assert(Loc.isValid() && "Source location is expected to be always valid.");
2764 
2765   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2766   assert(PLoc.isValid() && "Source location is expected to be always valid.");
2767 
2768   llvm::sys::fs::UniqueID ID;
2769   if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
2770     SM.getDiagnostics().Report(diag::err_cannot_open_file)
2771         << PLoc.getFilename() << EC.message();
2772 
2773   DeviceID = ID.getDevice();
2774   FileID = ID.getFile();
2775   LineNum = PLoc.getLine();
2776 }
2777 
emitDeclareTargetVarDefinition(const VarDecl * VD,llvm::GlobalVariable * Addr,bool PerformInit)2778 bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD,
2779                                                      llvm::GlobalVariable *Addr,
2780                                                      bool PerformInit) {
2781   Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2782       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2783   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
2784       (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2785        HasRequiresUnifiedSharedMemory))
2786     return CGM.getLangOpts().OpenMPIsDevice;
2787   VD = VD->getDefinition(CGM.getContext());
2788   if (VD && !DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second)
2789     return CGM.getLangOpts().OpenMPIsDevice;
2790 
2791   QualType ASTTy = VD->getType();
2792 
2793   SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc();
2794   // Produce the unique prefix to identify the new target regions. We use
2795   // the source location of the variable declaration which we know to not
2796   // conflict with any target region.
2797   unsigned DeviceID;
2798   unsigned FileID;
2799   unsigned Line;
2800   getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line);
2801   SmallString<128> Buffer, Out;
2802   {
2803     llvm::raw_svector_ostream OS(Buffer);
2804     OS << "__omp_offloading_" << llvm::format("_%x", DeviceID)
2805        << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
2806   }
2807 
2808   const Expr *Init = VD->getAnyInitializer();
2809   if (CGM.getLangOpts().CPlusPlus && PerformInit) {
2810     llvm::Constant *Ctor;
2811     llvm::Constant *ID;
2812     if (CGM.getLangOpts().OpenMPIsDevice) {
2813       // Generate function that re-emits the declaration's initializer into
2814       // the threadprivate copy of the variable VD
2815       CodeGenFunction CtorCGF(CGM);
2816 
2817       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
2818       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2819       llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
2820           FTy, Twine(Buffer, "_ctor"), FI, Loc);
2821       auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF);
2822       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
2823                             FunctionArgList(), Loc, Loc);
2824       auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF);
2825       CtorCGF.EmitAnyExprToMem(Init,
2826                                Address(Addr, CGM.getContext().getDeclAlign(VD)),
2827                                Init->getType().getQualifiers(),
2828                                /*IsInitializer=*/true);
2829       CtorCGF.FinishFunction();
2830       Ctor = Fn;
2831       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
2832       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor));
2833     } else {
2834       Ctor = new llvm::GlobalVariable(
2835           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
2836           llvm::GlobalValue::PrivateLinkage,
2837           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor"));
2838       ID = Ctor;
2839     }
2840 
2841     // Register the information for the entry associated with the constructor.
2842     Out.clear();
2843     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
2844         DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor,
2845         ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor);
2846   }
2847   if (VD->getType().isDestructedType() != QualType::DK_none) {
2848     llvm::Constant *Dtor;
2849     llvm::Constant *ID;
2850     if (CGM.getLangOpts().OpenMPIsDevice) {
2851       // Generate function that emits destructor call for the threadprivate
2852       // copy of the variable VD
2853       CodeGenFunction DtorCGF(CGM);
2854 
2855       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
2856       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2857       llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
2858           FTy, Twine(Buffer, "_dtor"), FI, Loc);
2859       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
2860       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
2861                             FunctionArgList(), Loc, Loc);
2862       // Create a scope with an artificial location for the body of this
2863       // function.
2864       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
2865       DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)),
2866                           ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()),
2867                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
2868       DtorCGF.FinishFunction();
2869       Dtor = Fn;
2870       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
2871       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor));
2872     } else {
2873       Dtor = new llvm::GlobalVariable(
2874           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
2875           llvm::GlobalValue::PrivateLinkage,
2876           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor"));
2877       ID = Dtor;
2878     }
2879     // Register the information for the entry associated with the destructor.
2880     Out.clear();
2881     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
2882         DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor,
2883         ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor);
2884   }
2885   return CGM.getLangOpts().OpenMPIsDevice;
2886 }
2887 
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)2888 Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF,
2889                                                           QualType VarType,
2890                                                           StringRef Name) {
2891   std::string Suffix = getName({"artificial", ""});
2892   std::string CacheSuffix = getName({"cache", ""});
2893   llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType);
2894   llvm::Value *GAddr =
2895       getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix));
2896   llvm::Value *Args[] = {
2897       emitUpdateLocation(CGF, SourceLocation()),
2898       getThreadID(CGF, SourceLocation()),
2899       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy),
2900       CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy,
2901                                 /*isSigned=*/false),
2902       getOrCreateInternalVariable(
2903           CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))};
2904   return Address(
2905       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2906           CGF.EmitRuntimeCall(
2907               createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
2908           VarLVType->getPointerTo(/*AddrSpace=*/0)),
2909       CGM.getPointerAlign());
2910 }
2911 
emitOMPIfClause(CodeGenFunction & CGF,const Expr * Cond,const RegionCodeGenTy & ThenGen,const RegionCodeGenTy & ElseGen)2912 void CGOpenMPRuntime::emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond,
2913                                       const RegionCodeGenTy &ThenGen,
2914                                       const RegionCodeGenTy &ElseGen) {
2915   CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
2916 
2917   // If the condition constant folds and can be elided, try to avoid emitting
2918   // the condition and the dead arm of the if/else.
2919   bool CondConstant;
2920   if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
2921     if (CondConstant)
2922       ThenGen(CGF);
2923     else
2924       ElseGen(CGF);
2925     return;
2926   }
2927 
2928   // Otherwise, the condition did not fold, or we couldn't elide it.  Just
2929   // emit the conditional branch.
2930   llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then");
2931   llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else");
2932   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end");
2933   CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
2934 
2935   // Emit the 'then' code.
2936   CGF.EmitBlock(ThenBlock);
2937   ThenGen(CGF);
2938   CGF.EmitBranch(ContBlock);
2939   // Emit the 'else' code if present.
2940   // There is no need to emit line number for unconditional branch.
2941   (void)ApplyDebugLocation::CreateEmpty(CGF);
2942   CGF.EmitBlock(ElseBlock);
2943   ElseGen(CGF);
2944   // There is no need to emit line number for unconditional branch.
2945   (void)ApplyDebugLocation::CreateEmpty(CGF);
2946   CGF.EmitBranch(ContBlock);
2947   // Emit the continuation block for code after the if.
2948   CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
2949 }
2950 
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)2951 void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
2952                                        llvm::Function *OutlinedFn,
2953                                        ArrayRef<llvm::Value *> CapturedVars,
2954                                        const Expr *IfCond) {
2955   if (!CGF.HaveInsertPoint())
2956     return;
2957   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2958   auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF,
2959                                                      PrePostActionTy &) {
2960     // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
2961     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2962     llvm::Value *Args[] = {
2963         RTLoc,
2964         CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
2965         CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
2966     llvm::SmallVector<llvm::Value *, 16> RealArgs;
2967     RealArgs.append(std::begin(Args), std::end(Args));
2968     RealArgs.append(CapturedVars.begin(), CapturedVars.end());
2969 
2970     llvm::FunctionCallee RTLFn =
2971         RT.createRuntimeFunction(OMPRTL__kmpc_fork_call);
2972     CGF.EmitRuntimeCall(RTLFn, RealArgs);
2973   };
2974   auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF,
2975                                                           PrePostActionTy &) {
2976     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2977     llvm::Value *ThreadID = RT.getThreadID(CGF, Loc);
2978     // Build calls:
2979     // __kmpc_serialized_parallel(&Loc, GTid);
2980     llvm::Value *Args[] = {RTLoc, ThreadID};
2981     CGF.EmitRuntimeCall(
2982         RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args);
2983 
2984     // OutlinedFn(&GTid, &zero, CapturedStruct);
2985     Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2986                                                         /*Name*/ ".zero.addr");
2987     CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
2988     llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2989     // ThreadId for serialized parallels is 0.
2990     OutlinedFnArgs.push_back(ZeroAddr.getPointer());
2991     OutlinedFnArgs.push_back(ZeroAddr.getPointer());
2992     OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2993     RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
2994 
2995     // __kmpc_end_serialized_parallel(&Loc, GTid);
2996     llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
2997     CGF.EmitRuntimeCall(
2998         RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel),
2999         EndArgs);
3000   };
3001   if (IfCond) {
3002     emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
3003   } else {
3004     RegionCodeGenTy ThenRCG(ThenGen);
3005     ThenRCG(CGF);
3006   }
3007 }
3008 
3009 // If we're inside an (outlined) parallel region, use the region info's
3010 // thread-ID variable (it is passed in a first argument of the outlined function
3011 // as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
3012 // regular serial code region, get thread ID by calling kmp_int32
3013 // kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
3014 // return the address of that temp.
emitThreadIDAddress(CodeGenFunction & CGF,SourceLocation Loc)3015 Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
3016                                              SourceLocation Loc) {
3017   if (auto *OMPRegionInfo =
3018           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
3019     if (OMPRegionInfo->getThreadIDVariable())
3020       return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress();
3021 
3022   llvm::Value *ThreadID = getThreadID(CGF, Loc);
3023   QualType Int32Ty =
3024       CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
3025   Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
3026   CGF.EmitStoreOfScalar(ThreadID,
3027                         CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
3028 
3029   return ThreadIDTemp;
3030 }
3031 
getOrCreateInternalVariable(llvm::Type * Ty,const llvm::Twine & Name,unsigned AddressSpace)3032 llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable(
3033     llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) {
3034   SmallString<256> Buffer;
3035   llvm::raw_svector_ostream Out(Buffer);
3036   Out << Name;
3037   StringRef RuntimeName = Out.str();
3038   auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first;
3039   if (Elem.second) {
3040     assert(Elem.second->getType()->getPointerElementType() == Ty &&
3041            "OMP internal variable has different type than requested");
3042     return &*Elem.second;
3043   }
3044 
3045   return Elem.second = new llvm::GlobalVariable(
3046              CGM.getModule(), Ty, /*IsConstant*/ false,
3047              llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
3048              Elem.first(), /*InsertBefore=*/nullptr,
3049              llvm::GlobalValue::NotThreadLocal, AddressSpace);
3050 }
3051 
getCriticalRegionLock(StringRef CriticalName)3052 llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
3053   std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
3054   std::string Name = getName({Prefix, "var"});
3055   return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
3056 }
3057 
3058 namespace {
3059 /// Common pre(post)-action for different OpenMP constructs.
3060 class CommonActionTy final : public PrePostActionTy {
3061   llvm::FunctionCallee EnterCallee;
3062   ArrayRef<llvm::Value *> EnterArgs;
3063   llvm::FunctionCallee ExitCallee;
3064   ArrayRef<llvm::Value *> ExitArgs;
3065   bool Conditional;
3066   llvm::BasicBlock *ContBlock = nullptr;
3067 
3068 public:
CommonActionTy(llvm::FunctionCallee EnterCallee,ArrayRef<llvm::Value * > EnterArgs,llvm::FunctionCallee ExitCallee,ArrayRef<llvm::Value * > ExitArgs,bool Conditional=false)3069   CommonActionTy(llvm::FunctionCallee EnterCallee,
3070                  ArrayRef<llvm::Value *> EnterArgs,
3071                  llvm::FunctionCallee ExitCallee,
3072                  ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
3073       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
3074         ExitArgs(ExitArgs), Conditional(Conditional) {}
Enter(CodeGenFunction & CGF)3075   void Enter(CodeGenFunction &CGF) override {
3076     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
3077     if (Conditional) {
3078       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
3079       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
3080       ContBlock = CGF.createBasicBlock("omp_if.end");
3081       // Generate the branch (If-stmt)
3082       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
3083       CGF.EmitBlock(ThenBlock);
3084     }
3085   }
Done(CodeGenFunction & CGF)3086   void Done(CodeGenFunction &CGF) {
3087     // Emit the rest of blocks/branches
3088     CGF.EmitBranch(ContBlock);
3089     CGF.EmitBlock(ContBlock, true);
3090   }
Exit(CodeGenFunction & CGF)3091   void Exit(CodeGenFunction &CGF) override {
3092     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
3093   }
3094 };
3095 } // anonymous namespace
3096 
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)3097 void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
3098                                          StringRef CriticalName,
3099                                          const RegionCodeGenTy &CriticalOpGen,
3100                                          SourceLocation Loc, const Expr *Hint) {
3101   // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
3102   // CriticalOpGen();
3103   // __kmpc_end_critical(ident_t *, gtid, Lock);
3104   // Prepare arguments and build a call to __kmpc_critical
3105   if (!CGF.HaveInsertPoint())
3106     return;
3107   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3108                          getCriticalRegionLock(CriticalName)};
3109   llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
3110                                                 std::end(Args));
3111   if (Hint) {
3112     EnterArgs.push_back(CGF.Builder.CreateIntCast(
3113         CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false));
3114   }
3115   CommonActionTy Action(
3116       createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint
3117                                  : OMPRTL__kmpc_critical),
3118       EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args);
3119   CriticalOpGen.setAction(Action);
3120   emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
3121 }
3122 
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)3123 void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
3124                                        const RegionCodeGenTy &MasterOpGen,
3125                                        SourceLocation Loc) {
3126   if (!CGF.HaveInsertPoint())
3127     return;
3128   // if(__kmpc_master(ident_t *, gtid)) {
3129   //   MasterOpGen();
3130   //   __kmpc_end_master(ident_t *, gtid);
3131   // }
3132   // Prepare arguments and build a call to __kmpc_master
3133   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3134   CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args,
3135                         createRuntimeFunction(OMPRTL__kmpc_end_master), Args,
3136                         /*Conditional=*/true);
3137   MasterOpGen.setAction(Action);
3138   emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
3139   Action.Done(CGF);
3140 }
3141 
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)3142 void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
3143                                         SourceLocation Loc) {
3144   if (!CGF.HaveInsertPoint())
3145     return;
3146   // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
3147   llvm::Value *Args[] = {
3148       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3149       llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
3150   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args);
3151   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
3152     Region->emitUntiedSwitch(CGF);
3153 }
3154 
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)3155 void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
3156                                           const RegionCodeGenTy &TaskgroupOpGen,
3157                                           SourceLocation Loc) {
3158   if (!CGF.HaveInsertPoint())
3159     return;
3160   // __kmpc_taskgroup(ident_t *, gtid);
3161   // TaskgroupOpGen();
3162   // __kmpc_end_taskgroup(ident_t *, gtid);
3163   // Prepare arguments and build a call to __kmpc_taskgroup
3164   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3165   CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args,
3166                         createRuntimeFunction(OMPRTL__kmpc_end_taskgroup),
3167                         Args);
3168   TaskgroupOpGen.setAction(Action);
3169   emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
3170 }
3171 
3172 /// Given an array of pointers to variables, project the address of a
3173 /// given variable.
emitAddrOfVarFromArray(CodeGenFunction & CGF,Address Array,unsigned Index,const VarDecl * Var)3174 static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
3175                                       unsigned Index, const VarDecl *Var) {
3176   // Pull out the pointer to the variable.
3177   Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index);
3178   llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
3179 
3180   Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
3181   Addr = CGF.Builder.CreateElementBitCast(
3182       Addr, CGF.ConvertTypeForMem(Var->getType()));
3183   return Addr;
3184 }
3185 
emitCopyprivateCopyFunction(CodeGenModule & CGM,llvm::Type * ArgsType,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps,SourceLocation Loc)3186 static llvm::Value *emitCopyprivateCopyFunction(
3187     CodeGenModule &CGM, llvm::Type *ArgsType,
3188     ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
3189     ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps,
3190     SourceLocation Loc) {
3191   ASTContext &C = CGM.getContext();
3192   // void copy_func(void *LHSArg, void *RHSArg);
3193   FunctionArgList Args;
3194   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
3195                            ImplicitParamDecl::Other);
3196   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
3197                            ImplicitParamDecl::Other);
3198   Args.push_back(&LHSArg);
3199   Args.push_back(&RHSArg);
3200   const auto &CGFI =
3201       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3202   std::string Name =
3203       CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"});
3204   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
3205                                     llvm::GlobalValue::InternalLinkage, Name,
3206                                     &CGM.getModule());
3207   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3208   Fn->setDoesNotRecurse();
3209   CodeGenFunction CGF(CGM);
3210   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3211   // Dest = (void*[n])(LHSArg);
3212   // Src = (void*[n])(RHSArg);
3213   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3214       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
3215       ArgsType), CGF.getPointerAlign());
3216   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3217       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
3218       ArgsType), CGF.getPointerAlign());
3219   // *(Type0*)Dst[0] = *(Type0*)Src[0];
3220   // *(Type1*)Dst[1] = *(Type1*)Src[1];
3221   // ...
3222   // *(Typen*)Dst[n] = *(Typen*)Src[n];
3223   for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
3224     const auto *DestVar =
3225         cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
3226     Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
3227 
3228     const auto *SrcVar =
3229         cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
3230     Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
3231 
3232     const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
3233     QualType Type = VD->getType();
3234     CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
3235   }
3236   CGF.FinishFunction();
3237   return Fn;
3238 }
3239 
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > DstExprs,ArrayRef<const Expr * > AssignmentOps)3240 void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
3241                                        const RegionCodeGenTy &SingleOpGen,
3242                                        SourceLocation Loc,
3243                                        ArrayRef<const Expr *> CopyprivateVars,
3244                                        ArrayRef<const Expr *> SrcExprs,
3245                                        ArrayRef<const Expr *> DstExprs,
3246                                        ArrayRef<const Expr *> AssignmentOps) {
3247   if (!CGF.HaveInsertPoint())
3248     return;
3249   assert(CopyprivateVars.size() == SrcExprs.size() &&
3250          CopyprivateVars.size() == DstExprs.size() &&
3251          CopyprivateVars.size() == AssignmentOps.size());
3252   ASTContext &C = CGM.getContext();
3253   // int32 did_it = 0;
3254   // if(__kmpc_single(ident_t *, gtid)) {
3255   //   SingleOpGen();
3256   //   __kmpc_end_single(ident_t *, gtid);
3257   //   did_it = 1;
3258   // }
3259   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
3260   // <copy_func>, did_it);
3261 
3262   Address DidIt = Address::invalid();
3263   if (!CopyprivateVars.empty()) {
3264     // int32 did_it = 0;
3265     QualType KmpInt32Ty =
3266         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
3267     DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
3268     CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
3269   }
3270   // Prepare arguments and build a call to __kmpc_single
3271   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3272   CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args,
3273                         createRuntimeFunction(OMPRTL__kmpc_end_single), Args,
3274                         /*Conditional=*/true);
3275   SingleOpGen.setAction(Action);
3276   emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
3277   if (DidIt.isValid()) {
3278     // did_it = 1;
3279     CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
3280   }
3281   Action.Done(CGF);
3282   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
3283   // <copy_func>, did_it);
3284   if (DidIt.isValid()) {
3285     llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
3286     QualType CopyprivateArrayTy =
3287         C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
3288                                /*IndexTypeQuals=*/0);
3289     // Create a list of all private variables for copyprivate.
3290     Address CopyprivateList =
3291         CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
3292     for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
3293       Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I);
3294       CGF.Builder.CreateStore(
3295           CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3296               CGF.EmitLValue(CopyprivateVars[I]).getPointer(), CGF.VoidPtrTy),
3297           Elem);
3298     }
3299     // Build function that copies private values from single region to all other
3300     // threads in the corresponding parallel region.
3301     llvm::Value *CpyFn = emitCopyprivateCopyFunction(
3302         CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
3303         CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc);
3304     llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
3305     Address CL =
3306       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
3307                                                       CGF.VoidPtrTy);
3308     llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt);
3309     llvm::Value *Args[] = {
3310         emitUpdateLocation(CGF, Loc), // ident_t *<loc>
3311         getThreadID(CGF, Loc),        // i32 <gtid>
3312         BufSize,                      // size_t <buf_size>
3313         CL.getPointer(),              // void *<copyprivate list>
3314         CpyFn,                        // void (*) (void *, void *) <copy_func>
3315         DidItVal                      // i32 did_it
3316     };
3317     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args);
3318   }
3319 }
3320 
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)3321 void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
3322                                         const RegionCodeGenTy &OrderedOpGen,
3323                                         SourceLocation Loc, bool IsThreads) {
3324   if (!CGF.HaveInsertPoint())
3325     return;
3326   // __kmpc_ordered(ident_t *, gtid);
3327   // OrderedOpGen();
3328   // __kmpc_end_ordered(ident_t *, gtid);
3329   // Prepare arguments and build a call to __kmpc_ordered
3330   if (IsThreads) {
3331     llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3332     CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args,
3333                           createRuntimeFunction(OMPRTL__kmpc_end_ordered),
3334                           Args);
3335     OrderedOpGen.setAction(Action);
3336     emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
3337     return;
3338   }
3339   emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
3340 }
3341 
getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind)3342 unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) {
3343   unsigned Flags;
3344   if (Kind == OMPD_for)
3345     Flags = OMP_IDENT_BARRIER_IMPL_FOR;
3346   else if (Kind == OMPD_sections)
3347     Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
3348   else if (Kind == OMPD_single)
3349     Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
3350   else if (Kind == OMPD_barrier)
3351     Flags = OMP_IDENT_BARRIER_EXPL;
3352   else
3353     Flags = OMP_IDENT_BARRIER_IMPL;
3354   return Flags;
3355 }
3356 
getDefaultScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPScheduleClauseKind & ScheduleKind,const Expr * & ChunkExpr) const3357 void CGOpenMPRuntime::getDefaultScheduleAndChunk(
3358     CodeGenFunction &CGF, const OMPLoopDirective &S,
3359     OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const {
3360   // Check if the loop directive is actually a doacross loop directive. In this
3361   // case choose static, 1 schedule.
3362   if (llvm::any_of(
3363           S.getClausesOfKind<OMPOrderedClause>(),
3364           [](const OMPOrderedClause *C) { return C->getNumForLoops(); })) {
3365     ScheduleKind = OMPC_SCHEDULE_static;
3366     // Chunk size is 1 in this case.
3367     llvm::APInt ChunkSize(32, 1);
3368     ChunkExpr = IntegerLiteral::Create(
3369         CGF.getContext(), ChunkSize,
3370         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3371         SourceLocation());
3372   }
3373 }
3374 
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)3375 void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
3376                                       OpenMPDirectiveKind Kind, bool EmitChecks,
3377                                       bool ForceSimpleCall) {
3378   if (!CGF.HaveInsertPoint())
3379     return;
3380   // Build call __kmpc_cancel_barrier(loc, thread_id);
3381   // Build call __kmpc_barrier(loc, thread_id);
3382   unsigned Flags = getDefaultFlagsForBarriers(Kind);
3383   // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
3384   // thread_id);
3385   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
3386                          getThreadID(CGF, Loc)};
3387   if (auto *OMPRegionInfo =
3388           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
3389     if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
3390       llvm::Value *Result = CGF.EmitRuntimeCall(
3391           createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args);
3392       if (EmitChecks) {
3393         // if (__kmpc_cancel_barrier()) {
3394         //   exit from construct;
3395         // }
3396         llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
3397         llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
3398         llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
3399         CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
3400         CGF.EmitBlock(ExitBB);
3401         //   exit from construct;
3402         CodeGenFunction::JumpDest CancelDestination =
3403             CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
3404         CGF.EmitBranchThroughCleanup(CancelDestination);
3405         CGF.EmitBlock(ContBB, /*IsFinished=*/true);
3406       }
3407       return;
3408     }
3409   }
3410   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args);
3411 }
3412 
3413 /// Map the OpenMP loop schedule to the runtime enumeration.
getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,bool Chunked,bool Ordered)3414 static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
3415                                           bool Chunked, bool Ordered) {
3416   switch (ScheduleKind) {
3417   case OMPC_SCHEDULE_static:
3418     return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
3419                    : (Ordered ? OMP_ord_static : OMP_sch_static);
3420   case OMPC_SCHEDULE_dynamic:
3421     return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
3422   case OMPC_SCHEDULE_guided:
3423     return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
3424   case OMPC_SCHEDULE_runtime:
3425     return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
3426   case OMPC_SCHEDULE_auto:
3427     return Ordered ? OMP_ord_auto : OMP_sch_auto;
3428   case OMPC_SCHEDULE_unknown:
3429     assert(!Chunked && "chunk was specified but schedule kind not known");
3430     return Ordered ? OMP_ord_static : OMP_sch_static;
3431   }
3432   llvm_unreachable("Unexpected runtime schedule");
3433 }
3434 
3435 /// Map the OpenMP distribute schedule to the runtime enumeration.
3436 static OpenMPSchedType
getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked)3437 getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
3438   // only static is allowed for dist_schedule
3439   return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
3440 }
3441 
isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const3442 bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
3443                                          bool Chunked) const {
3444   OpenMPSchedType Schedule =
3445       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
3446   return Schedule == OMP_sch_static;
3447 }
3448 
isStaticNonchunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const3449 bool CGOpenMPRuntime::isStaticNonchunked(
3450     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
3451   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
3452   return Schedule == OMP_dist_sch_static;
3453 }
3454 
isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const3455 bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,
3456                                       bool Chunked) const {
3457   OpenMPSchedType Schedule =
3458       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
3459   return Schedule == OMP_sch_static_chunked;
3460 }
3461 
isStaticChunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const3462 bool CGOpenMPRuntime::isStaticChunked(
3463     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
3464   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
3465   return Schedule == OMP_dist_sch_static_chunked;
3466 }
3467 
isDynamic(OpenMPScheduleClauseKind ScheduleKind) const3468 bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
3469   OpenMPSchedType Schedule =
3470       getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
3471   assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
3472   return Schedule != OMP_sch_static;
3473 }
3474 
addMonoNonMonoModifier(OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2)3475 static int addMonoNonMonoModifier(OpenMPSchedType Schedule,
3476                                   OpenMPScheduleClauseModifier M1,
3477                                   OpenMPScheduleClauseModifier M2) {
3478   int Modifier = 0;
3479   switch (M1) {
3480   case OMPC_SCHEDULE_MODIFIER_monotonic:
3481     Modifier = OMP_sch_modifier_monotonic;
3482     break;
3483   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
3484     Modifier = OMP_sch_modifier_nonmonotonic;
3485     break;
3486   case OMPC_SCHEDULE_MODIFIER_simd:
3487     if (Schedule == OMP_sch_static_chunked)
3488       Schedule = OMP_sch_static_balanced_chunked;
3489     break;
3490   case OMPC_SCHEDULE_MODIFIER_last:
3491   case OMPC_SCHEDULE_MODIFIER_unknown:
3492     break;
3493   }
3494   switch (M2) {
3495   case OMPC_SCHEDULE_MODIFIER_monotonic:
3496     Modifier = OMP_sch_modifier_monotonic;
3497     break;
3498   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
3499     Modifier = OMP_sch_modifier_nonmonotonic;
3500     break;
3501   case OMPC_SCHEDULE_MODIFIER_simd:
3502     if (Schedule == OMP_sch_static_chunked)
3503       Schedule = OMP_sch_static_balanced_chunked;
3504     break;
3505   case OMPC_SCHEDULE_MODIFIER_last:
3506   case OMPC_SCHEDULE_MODIFIER_unknown:
3507     break;
3508   }
3509   return Schedule | Modifier;
3510 }
3511 
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)3512 void CGOpenMPRuntime::emitForDispatchInit(
3513     CodeGenFunction &CGF, SourceLocation Loc,
3514     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
3515     bool Ordered, const DispatchRTInput &DispatchValues) {
3516   if (!CGF.HaveInsertPoint())
3517     return;
3518   OpenMPSchedType Schedule = getRuntimeSchedule(
3519       ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
3520   assert(Ordered ||
3521          (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
3522           Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
3523           Schedule != OMP_sch_static_balanced_chunked));
3524   // Call __kmpc_dispatch_init(
3525   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
3526   //          kmp_int[32|64] lower, kmp_int[32|64] upper,
3527   //          kmp_int[32|64] stride, kmp_int[32|64] chunk);
3528 
3529   // If the Chunk was not specified in the clause - use default value 1.
3530   llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
3531                                             : CGF.Builder.getIntN(IVSize, 1);
3532   llvm::Value *Args[] = {
3533       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3534       CGF.Builder.getInt32(addMonoNonMonoModifier(
3535           Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
3536       DispatchValues.LB,                                // Lower
3537       DispatchValues.UB,                                // Upper
3538       CGF.Builder.getIntN(IVSize, 1),                   // Stride
3539       Chunk                                             // Chunk
3540   };
3541   CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
3542 }
3543 
emitForStaticInitCall(CodeGenFunction & CGF,llvm::Value * UpdateLocation,llvm::Value * ThreadId,llvm::FunctionCallee ForStaticInitFunction,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2,const CGOpenMPRuntime::StaticRTInput & Values)3544 static void emitForStaticInitCall(
3545     CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
3546     llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule,
3547     OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
3548     const CGOpenMPRuntime::StaticRTInput &Values) {
3549   if (!CGF.HaveInsertPoint())
3550     return;
3551 
3552   assert(!Values.Ordered);
3553   assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
3554          Schedule == OMP_sch_static_balanced_chunked ||
3555          Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
3556          Schedule == OMP_dist_sch_static ||
3557          Schedule == OMP_dist_sch_static_chunked);
3558 
3559   // Call __kmpc_for_static_init(
3560   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
3561   //          kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
3562   //          kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
3563   //          kmp_int[32|64] incr, kmp_int[32|64] chunk);
3564   llvm::Value *Chunk = Values.Chunk;
3565   if (Chunk == nullptr) {
3566     assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
3567             Schedule == OMP_dist_sch_static) &&
3568            "expected static non-chunked schedule");
3569     // If the Chunk was not specified in the clause - use default value 1.
3570     Chunk = CGF.Builder.getIntN(Values.IVSize, 1);
3571   } else {
3572     assert((Schedule == OMP_sch_static_chunked ||
3573             Schedule == OMP_sch_static_balanced_chunked ||
3574             Schedule == OMP_ord_static_chunked ||
3575             Schedule == OMP_dist_sch_static_chunked) &&
3576            "expected static chunked schedule");
3577   }
3578   llvm::Value *Args[] = {
3579       UpdateLocation,
3580       ThreadId,
3581       CGF.Builder.getInt32(addMonoNonMonoModifier(Schedule, M1,
3582                                                   M2)), // Schedule type
3583       Values.IL.getPointer(),                           // &isLastIter
3584       Values.LB.getPointer(),                           // &LB
3585       Values.UB.getPointer(),                           // &UB
3586       Values.ST.getPointer(),                           // &Stride
3587       CGF.Builder.getIntN(Values.IVSize, 1),            // Incr
3588       Chunk                                             // Chunk
3589   };
3590   CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
3591 }
3592 
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)3593 void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
3594                                         SourceLocation Loc,
3595                                         OpenMPDirectiveKind DKind,
3596                                         const OpenMPScheduleTy &ScheduleKind,
3597                                         const StaticRTInput &Values) {
3598   OpenMPSchedType ScheduleNum = getRuntimeSchedule(
3599       ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered);
3600   assert(isOpenMPWorksharingDirective(DKind) &&
3601          "Expected loop-based or sections-based directive.");
3602   llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc,
3603                                              isOpenMPLoopDirective(DKind)
3604                                                  ? OMP_IDENT_WORK_LOOP
3605                                                  : OMP_IDENT_WORK_SECTIONS);
3606   llvm::Value *ThreadId = getThreadID(CGF, Loc);
3607   llvm::FunctionCallee StaticInitFunction =
3608       createForStaticInitFunction(Values.IVSize, Values.IVSigned);
3609   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
3610                         ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values);
3611 }
3612 
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const CGOpenMPRuntime::StaticRTInput & Values)3613 void CGOpenMPRuntime::emitDistributeStaticInit(
3614     CodeGenFunction &CGF, SourceLocation Loc,
3615     OpenMPDistScheduleClauseKind SchedKind,
3616     const CGOpenMPRuntime::StaticRTInput &Values) {
3617   OpenMPSchedType ScheduleNum =
3618       getRuntimeSchedule(SchedKind, Values.Chunk != nullptr);
3619   llvm::Value *UpdatedLocation =
3620       emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE);
3621   llvm::Value *ThreadId = getThreadID(CGF, Loc);
3622   llvm::FunctionCallee StaticInitFunction =
3623       createForStaticInitFunction(Values.IVSize, Values.IVSigned);
3624   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
3625                         ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
3626                         OMPC_SCHEDULE_MODIFIER_unknown, Values);
3627 }
3628 
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)3629 void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
3630                                           SourceLocation Loc,
3631                                           OpenMPDirectiveKind DKind) {
3632   if (!CGF.HaveInsertPoint())
3633     return;
3634   // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
3635   llvm::Value *Args[] = {
3636       emitUpdateLocation(CGF, Loc,
3637                          isOpenMPDistributeDirective(DKind)
3638                              ? OMP_IDENT_WORK_DISTRIBUTE
3639                              : isOpenMPLoopDirective(DKind)
3640                                    ? OMP_IDENT_WORK_LOOP
3641                                    : OMP_IDENT_WORK_SECTIONS),
3642       getThreadID(CGF, Loc)};
3643   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini),
3644                       Args);
3645 }
3646 
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)3647 void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
3648                                                  SourceLocation Loc,
3649                                                  unsigned IVSize,
3650                                                  bool IVSigned) {
3651   if (!CGF.HaveInsertPoint())
3652     return;
3653   // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
3654   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3655   CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
3656 }
3657 
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)3658 llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
3659                                           SourceLocation Loc, unsigned IVSize,
3660                                           bool IVSigned, Address IL,
3661                                           Address LB, Address UB,
3662                                           Address ST) {
3663   // Call __kmpc_dispatch_next(
3664   //          ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
3665   //          kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
3666   //          kmp_int[32|64] *p_stride);
3667   llvm::Value *Args[] = {
3668       emitUpdateLocation(CGF, Loc),
3669       getThreadID(CGF, Loc),
3670       IL.getPointer(), // &isLastIter
3671       LB.getPointer(), // &Lower
3672       UB.getPointer(), // &Upper
3673       ST.getPointer()  // &Stride
3674   };
3675   llvm::Value *Call =
3676       CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
3677   return CGF.EmitScalarConversion(
3678       Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1),
3679       CGF.getContext().BoolTy, Loc);
3680 }
3681 
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)3682 void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
3683                                            llvm::Value *NumThreads,
3684                                            SourceLocation Loc) {
3685   if (!CGF.HaveInsertPoint())
3686     return;
3687   // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
3688   llvm::Value *Args[] = {
3689       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3690       CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
3691   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads),
3692                       Args);
3693 }
3694 
emitProcBindClause(CodeGenFunction & CGF,OpenMPProcBindClauseKind ProcBind,SourceLocation Loc)3695 void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
3696                                          OpenMPProcBindClauseKind ProcBind,
3697                                          SourceLocation Loc) {
3698   if (!CGF.HaveInsertPoint())
3699     return;
3700   // Constants for proc bind value accepted by the runtime.
3701   enum ProcBindTy {
3702     ProcBindFalse = 0,
3703     ProcBindTrue,
3704     ProcBindMaster,
3705     ProcBindClose,
3706     ProcBindSpread,
3707     ProcBindIntel,
3708     ProcBindDefault
3709   } RuntimeProcBind;
3710   switch (ProcBind) {
3711   case OMPC_PROC_BIND_master:
3712     RuntimeProcBind = ProcBindMaster;
3713     break;
3714   case OMPC_PROC_BIND_close:
3715     RuntimeProcBind = ProcBindClose;
3716     break;
3717   case OMPC_PROC_BIND_spread:
3718     RuntimeProcBind = ProcBindSpread;
3719     break;
3720   case OMPC_PROC_BIND_unknown:
3721     llvm_unreachable("Unsupported proc_bind value.");
3722   }
3723   // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
3724   llvm::Value *Args[] = {
3725       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3726       llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)};
3727   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args);
3728 }
3729 
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * >,SourceLocation Loc)3730 void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
3731                                 SourceLocation Loc) {
3732   if (!CGF.HaveInsertPoint())
3733     return;
3734   // Build call void __kmpc_flush(ident_t *loc)
3735   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush),
3736                       emitUpdateLocation(CGF, Loc));
3737 }
3738 
3739 namespace {
3740 /// Indexes of fields for type kmp_task_t.
3741 enum KmpTaskTFields {
3742   /// List of shared variables.
3743   KmpTaskTShareds,
3744   /// Task routine.
3745   KmpTaskTRoutine,
3746   /// Partition id for the untied tasks.
3747   KmpTaskTPartId,
3748   /// Function with call of destructors for private variables.
3749   Data1,
3750   /// Task priority.
3751   Data2,
3752   /// (Taskloops only) Lower bound.
3753   KmpTaskTLowerBound,
3754   /// (Taskloops only) Upper bound.
3755   KmpTaskTUpperBound,
3756   /// (Taskloops only) Stride.
3757   KmpTaskTStride,
3758   /// (Taskloops only) Is last iteration flag.
3759   KmpTaskTLastIter,
3760   /// (Taskloops only) Reduction data.
3761   KmpTaskTReductions,
3762 };
3763 } // anonymous namespace
3764 
empty() const3765 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
3766   return OffloadEntriesTargetRegion.empty() &&
3767          OffloadEntriesDeviceGlobalVar.empty();
3768 }
3769 
3770 /// Initialize target region entry.
3771 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,unsigned Order)3772     initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
3773                                     StringRef ParentName, unsigned LineNum,
3774                                     unsigned Order) {
3775   assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
3776                                              "only required for the device "
3777                                              "code generation.");
3778   OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
3779       OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
3780                                    OMPTargetRegionEntryTargetRegion);
3781   ++OffloadingEntriesNum;
3782 }
3783 
3784 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,llvm::Constant * Addr,llvm::Constant * ID,OMPTargetRegionEntryKind Flags)3785     registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
3786                                   StringRef ParentName, unsigned LineNum,
3787                                   llvm::Constant *Addr, llvm::Constant *ID,
3788                                   OMPTargetRegionEntryKind Flags) {
3789   // If we are emitting code for a target, the entry is already initialized,
3790   // only has to be registered.
3791   if (CGM.getLangOpts().OpenMPIsDevice) {
3792     if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) {
3793       unsigned DiagID = CGM.getDiags().getCustomDiagID(
3794           DiagnosticsEngine::Error,
3795           "Unable to find target region on line '%0' in the device code.");
3796       CGM.getDiags().Report(DiagID) << LineNum;
3797       return;
3798     }
3799     auto &Entry =
3800         OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
3801     assert(Entry.isValid() && "Entry not initialized!");
3802     Entry.setAddress(Addr);
3803     Entry.setID(ID);
3804     Entry.setFlags(Flags);
3805   } else {
3806     OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
3807     OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
3808     ++OffloadingEntriesNum;
3809   }
3810 }
3811 
hasTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum) const3812 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
3813     unsigned DeviceID, unsigned FileID, StringRef ParentName,
3814     unsigned LineNum) const {
3815   auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
3816   if (PerDevice == OffloadEntriesTargetRegion.end())
3817     return false;
3818   auto PerFile = PerDevice->second.find(FileID);
3819   if (PerFile == PerDevice->second.end())
3820     return false;
3821   auto PerParentName = PerFile->second.find(ParentName);
3822   if (PerParentName == PerFile->second.end())
3823     return false;
3824   auto PerLine = PerParentName->second.find(LineNum);
3825   if (PerLine == PerParentName->second.end())
3826     return false;
3827   // Fail if this entry is already registered.
3828   if (PerLine->second.getAddress() || PerLine->second.getID())
3829     return false;
3830   return true;
3831 }
3832 
actOnTargetRegionEntriesInfo(const OffloadTargetRegionEntryInfoActTy & Action)3833 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
3834     const OffloadTargetRegionEntryInfoActTy &Action) {
3835   // Scan all target region entries and perform the provided action.
3836   for (const auto &D : OffloadEntriesTargetRegion)
3837     for (const auto &F : D.second)
3838       for (const auto &P : F.second)
3839         for (const auto &L : P.second)
3840           Action(D.first, F.first, P.first(), L.first, L.second);
3841 }
3842 
3843 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeDeviceGlobalVarEntryInfo(StringRef Name,OMPTargetGlobalVarEntryKind Flags,unsigned Order)3844     initializeDeviceGlobalVarEntryInfo(StringRef Name,
3845                                        OMPTargetGlobalVarEntryKind Flags,
3846                                        unsigned Order) {
3847   assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
3848                                              "only required for the device "
3849                                              "code generation.");
3850   OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
3851   ++OffloadingEntriesNum;
3852 }
3853 
3854 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerDeviceGlobalVarEntryInfo(StringRef VarName,llvm::Constant * Addr,CharUnits VarSize,OMPTargetGlobalVarEntryKind Flags,llvm::GlobalValue::LinkageTypes Linkage)3855     registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr,
3856                                      CharUnits VarSize,
3857                                      OMPTargetGlobalVarEntryKind Flags,
3858                                      llvm::GlobalValue::LinkageTypes Linkage) {
3859   if (CGM.getLangOpts().OpenMPIsDevice) {
3860     auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
3861     assert(Entry.isValid() && Entry.getFlags() == Flags &&
3862            "Entry not initialized!");
3863     assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
3864            "Resetting with the new address.");
3865     if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
3866       if (Entry.getVarSize().isZero()) {
3867         Entry.setVarSize(VarSize);
3868         Entry.setLinkage(Linkage);
3869       }
3870       return;
3871     }
3872     Entry.setVarSize(VarSize);
3873     Entry.setLinkage(Linkage);
3874     Entry.setAddress(Addr);
3875   } else {
3876     if (hasDeviceGlobalVarEntryInfo(VarName)) {
3877       auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
3878       assert(Entry.isValid() && Entry.getFlags() == Flags &&
3879              "Entry not initialized!");
3880       assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
3881              "Resetting with the new address.");
3882       if (Entry.getVarSize().isZero()) {
3883         Entry.setVarSize(VarSize);
3884         Entry.setLinkage(Linkage);
3885       }
3886       return;
3887     }
3888     OffloadEntriesDeviceGlobalVar.try_emplace(
3889         VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage);
3890     ++OffloadingEntriesNum;
3891   }
3892 }
3893 
3894 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
actOnDeviceGlobalVarEntriesInfo(const OffloadDeviceGlobalVarEntryInfoActTy & Action)3895     actOnDeviceGlobalVarEntriesInfo(
3896         const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
3897   // Scan all target region entries and perform the provided action.
3898   for (const auto &E : OffloadEntriesDeviceGlobalVar)
3899     Action(E.getKey(), E.getValue());
3900 }
3901 
3902 llvm::Function *
createOffloadingBinaryDescriptorRegistration()3903 CGOpenMPRuntime::createOffloadingBinaryDescriptorRegistration() {
3904   // If we don't have entries or if we are emitting code for the device, we
3905   // don't need to do anything.
3906   if (CGM.getLangOpts().OpenMPIsDevice || OffloadEntriesInfoManager.empty())
3907     return nullptr;
3908 
3909   llvm::Module &M = CGM.getModule();
3910   ASTContext &C = CGM.getContext();
3911 
3912   // Get list of devices we care about
3913   const std::vector<llvm::Triple> &Devices = CGM.getLangOpts().OMPTargetTriples;
3914 
3915   // We should be creating an offloading descriptor only if there are devices
3916   // specified.
3917   assert(!Devices.empty() && "No OpenMP offloading devices??");
3918 
3919   // Create the external variables that will point to the begin and end of the
3920   // host entries section. These will be defined by the linker.
3921   llvm::Type *OffloadEntryTy =
3922       CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy());
3923   std::string EntriesBeginName = getName({"omp_offloading", "entries_begin"});
3924   auto *HostEntriesBegin = new llvm::GlobalVariable(
3925       M, OffloadEntryTy, /*isConstant=*/true,
3926       llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr,
3927       EntriesBeginName);
3928   std::string EntriesEndName = getName({"omp_offloading", "entries_end"});
3929   auto *HostEntriesEnd =
3930       new llvm::GlobalVariable(M, OffloadEntryTy, /*isConstant=*/true,
3931                                llvm::GlobalValue::ExternalLinkage,
3932                                /*Initializer=*/nullptr, EntriesEndName);
3933 
3934   // Create all device images
3935   auto *DeviceImageTy = cast<llvm::StructType>(
3936       CGM.getTypes().ConvertTypeForMem(getTgtDeviceImageQTy()));
3937   ConstantInitBuilder DeviceImagesBuilder(CGM);
3938   ConstantArrayBuilder DeviceImagesEntries =
3939       DeviceImagesBuilder.beginArray(DeviceImageTy);
3940 
3941   for (const llvm::Triple &Device : Devices) {
3942     StringRef T = Device.getTriple();
3943     std::string BeginName = getName({"omp_offloading", "img_start", ""});
3944     auto *ImgBegin = new llvm::GlobalVariable(
3945         M, CGM.Int8Ty, /*isConstant=*/true,
3946         llvm::GlobalValue::ExternalWeakLinkage,
3947         /*Initializer=*/nullptr, Twine(BeginName).concat(T));
3948     std::string EndName = getName({"omp_offloading", "img_end", ""});
3949     auto *ImgEnd = new llvm::GlobalVariable(
3950         M, CGM.Int8Ty, /*isConstant=*/true,
3951         llvm::GlobalValue::ExternalWeakLinkage,
3952         /*Initializer=*/nullptr, Twine(EndName).concat(T));
3953 
3954     llvm::Constant *Data[] = {ImgBegin, ImgEnd, HostEntriesBegin,
3955                               HostEntriesEnd};
3956     createConstantGlobalStructAndAddToParent(CGM, getTgtDeviceImageQTy(), Data,
3957                                              DeviceImagesEntries);
3958   }
3959 
3960   // Create device images global array.
3961   std::string ImagesName = getName({"omp_offloading", "device_images"});
3962   llvm::GlobalVariable *DeviceImages =
3963       DeviceImagesEntries.finishAndCreateGlobal(ImagesName,
3964                                                 CGM.getPointerAlign(),
3965                                                 /*isConstant=*/true);
3966   DeviceImages->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3967 
3968   // This is a Zero array to be used in the creation of the constant expressions
3969   llvm::Constant *Index[] = {llvm::Constant::getNullValue(CGM.Int32Ty),
3970                              llvm::Constant::getNullValue(CGM.Int32Ty)};
3971 
3972   // Create the target region descriptor.
3973   llvm::Constant *Data[] = {
3974       llvm::ConstantInt::get(CGM.Int32Ty, Devices.size()),
3975       llvm::ConstantExpr::getGetElementPtr(DeviceImages->getValueType(),
3976                                            DeviceImages, Index),
3977       HostEntriesBegin, HostEntriesEnd};
3978   std::string Descriptor = getName({"omp_offloading", "descriptor"});
3979   llvm::GlobalVariable *Desc = createGlobalStruct(
3980       CGM, getTgtBinaryDescriptorQTy(), /*IsConstant=*/true, Data, Descriptor);
3981 
3982   // Emit code to register or unregister the descriptor at execution
3983   // startup or closing, respectively.
3984 
3985   llvm::Function *UnRegFn;
3986   {
3987     FunctionArgList Args;
3988     ImplicitParamDecl DummyPtr(C, C.VoidPtrTy, ImplicitParamDecl::Other);
3989     Args.push_back(&DummyPtr);
3990 
3991     CodeGenFunction CGF(CGM);
3992     // Disable debug info for global (de-)initializer because they are not part
3993     // of some particular construct.
3994     CGF.disableDebugInfo();
3995     const auto &FI =
3996         CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3997     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
3998     std::string UnregName = getName({"omp_offloading", "descriptor_unreg"});
3999     UnRegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, UnregName, FI);
4000     CGF.StartFunction(GlobalDecl(), C.VoidTy, UnRegFn, FI, Args);
4001     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_unregister_lib),
4002                         Desc);
4003     CGF.FinishFunction();
4004   }
4005   llvm::Function *RegFn;
4006   {
4007     CodeGenFunction CGF(CGM);
4008     // Disable debug info for global (de-)initializer because they are not part
4009     // of some particular construct.
4010     CGF.disableDebugInfo();
4011     const auto &FI = CGM.getTypes().arrangeNullaryFunction();
4012     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
4013 
4014     // Encode offload target triples into the registration function name. It
4015     // will serve as a comdat key for the registration/unregistration code for
4016     // this particular combination of offloading targets.
4017     SmallVector<StringRef, 4U> RegFnNameParts(Devices.size() + 2U);
4018     RegFnNameParts[0] = "omp_offloading";
4019     RegFnNameParts[1] = "descriptor_reg";
4020     llvm::transform(Devices, std::next(RegFnNameParts.begin(), 2),
4021                     [](const llvm::Triple &T) -> const std::string& {
4022                       return T.getTriple();
4023                     });
4024     llvm::sort(std::next(RegFnNameParts.begin(), 2), RegFnNameParts.end());
4025     std::string Descriptor = getName(RegFnNameParts);
4026     RegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, Descriptor, FI);
4027     CGF.StartFunction(GlobalDecl(), C.VoidTy, RegFn, FI, FunctionArgList());
4028     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_register_lib), Desc);
4029     // Create a variable to drive the registration and unregistration of the
4030     // descriptor, so we can reuse the logic that emits Ctors and Dtors.
4031     ImplicitParamDecl RegUnregVar(C, C.getTranslationUnitDecl(),
4032                                   SourceLocation(), nullptr, C.CharTy,
4033                                   ImplicitParamDecl::Other);
4034     CGM.getCXXABI().registerGlobalDtor(CGF, RegUnregVar, UnRegFn, Desc);
4035     CGF.FinishFunction();
4036   }
4037   if (CGM.supportsCOMDAT()) {
4038     // It is sufficient to call registration function only once, so create a
4039     // COMDAT group for registration/unregistration functions and associated
4040     // data. That would reduce startup time and code size. Registration
4041     // function serves as a COMDAT group key.
4042     llvm::Comdat *ComdatKey = M.getOrInsertComdat(RegFn->getName());
4043     RegFn->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4044     RegFn->setVisibility(llvm::GlobalValue::HiddenVisibility);
4045     RegFn->setComdat(ComdatKey);
4046     UnRegFn->setComdat(ComdatKey);
4047     DeviceImages->setComdat(ComdatKey);
4048     Desc->setComdat(ComdatKey);
4049   }
4050   return RegFn;
4051 }
4052 
createOffloadEntry(llvm::Constant * ID,llvm::Constant * Addr,uint64_t Size,int32_t Flags,llvm::GlobalValue::LinkageTypes Linkage)4053 void CGOpenMPRuntime::createOffloadEntry(
4054     llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags,
4055     llvm::GlobalValue::LinkageTypes Linkage) {
4056   StringRef Name = Addr->getName();
4057   llvm::Module &M = CGM.getModule();
4058   llvm::LLVMContext &C = M.getContext();
4059 
4060   // Create constant string with the name.
4061   llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
4062 
4063   std::string StringName = getName({"omp_offloading", "entry_name"});
4064   auto *Str = new llvm::GlobalVariable(
4065       M, StrPtrInit->getType(), /*isConstant=*/true,
4066       llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName);
4067   Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4068 
4069   llvm::Constant *Data[] = {llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy),
4070                             llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy),
4071                             llvm::ConstantInt::get(CGM.SizeTy, Size),
4072                             llvm::ConstantInt::get(CGM.Int32Ty, Flags),
4073                             llvm::ConstantInt::get(CGM.Int32Ty, 0)};
4074   std::string EntryName = getName({"omp_offloading", "entry", ""});
4075   llvm::GlobalVariable *Entry = createGlobalStruct(
4076       CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data,
4077       Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage);
4078 
4079   // The entry has to be created in the section the linker expects it to be.
4080   std::string Section = getName({"omp_offloading", "entries"});
4081   Entry->setSection(Section);
4082 }
4083 
createOffloadEntriesAndInfoMetadata()4084 void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
4085   // Emit the offloading entries and metadata so that the device codegen side
4086   // can easily figure out what to emit. The produced metadata looks like
4087   // this:
4088   //
4089   // !omp_offload.info = !{!1, ...}
4090   //
4091   // Right now we only generate metadata for function that contain target
4092   // regions.
4093 
4094   // If we do not have entries, we don't need to do anything.
4095   if (OffloadEntriesInfoManager.empty())
4096     return;
4097 
4098   llvm::Module &M = CGM.getModule();
4099   llvm::LLVMContext &C = M.getContext();
4100   SmallVector<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *, 16>
4101       OrderedEntries(OffloadEntriesInfoManager.size());
4102   llvm::SmallVector<StringRef, 16> ParentFunctions(
4103       OffloadEntriesInfoManager.size());
4104 
4105   // Auxiliary methods to create metadata values and strings.
4106   auto &&GetMDInt = [this](unsigned V) {
4107     return llvm::ConstantAsMetadata::get(
4108         llvm::ConstantInt::get(CGM.Int32Ty, V));
4109   };
4110 
4111   auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); };
4112 
4113   // Create the offloading info metadata node.
4114   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
4115 
4116   // Create function that emits metadata for each target region entry;
4117   auto &&TargetRegionMetadataEmitter =
4118       [&C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt, &GetMDString](
4119           unsigned DeviceID, unsigned FileID, StringRef ParentName,
4120           unsigned Line,
4121           const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
4122         // Generate metadata for target regions. Each entry of this metadata
4123         // contains:
4124         // - Entry 0 -> Kind of this type of metadata (0).
4125         // - Entry 1 -> Device ID of the file where the entry was identified.
4126         // - Entry 2 -> File ID of the file where the entry was identified.
4127         // - Entry 3 -> Mangled name of the function where the entry was
4128         // identified.
4129         // - Entry 4 -> Line in the file where the entry was identified.
4130         // - Entry 5 -> Order the entry was created.
4131         // The first element of the metadata node is the kind.
4132         llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID),
4133                                  GetMDInt(FileID),      GetMDString(ParentName),
4134                                  GetMDInt(Line),        GetMDInt(E.getOrder())};
4135 
4136         // Save this entry in the right position of the ordered entries array.
4137         OrderedEntries[E.getOrder()] = &E;
4138         ParentFunctions[E.getOrder()] = ParentName;
4139 
4140         // Add metadata to the named metadata node.
4141         MD->addOperand(llvm::MDNode::get(C, Ops));
4142       };
4143 
4144   OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
4145       TargetRegionMetadataEmitter);
4146 
4147   // Create function that emits metadata for each device global variable entry;
4148   auto &&DeviceGlobalVarMetadataEmitter =
4149       [&C, &OrderedEntries, &GetMDInt, &GetMDString,
4150        MD](StringRef MangledName,
4151            const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar
4152                &E) {
4153         // Generate metadata for global variables. Each entry of this metadata
4154         // contains:
4155         // - Entry 0 -> Kind of this type of metadata (1).
4156         // - Entry 1 -> Mangled name of the variable.
4157         // - Entry 2 -> Declare target kind.
4158         // - Entry 3 -> Order the entry was created.
4159         // The first element of the metadata node is the kind.
4160         llvm::Metadata *Ops[] = {
4161             GetMDInt(E.getKind()), GetMDString(MangledName),
4162             GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
4163 
4164         // Save this entry in the right position of the ordered entries array.
4165         OrderedEntries[E.getOrder()] = &E;
4166 
4167         // Add metadata to the named metadata node.
4168         MD->addOperand(llvm::MDNode::get(C, Ops));
4169       };
4170 
4171   OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo(
4172       DeviceGlobalVarMetadataEmitter);
4173 
4174   for (const auto *E : OrderedEntries) {
4175     assert(E && "All ordered entries must exist!");
4176     if (const auto *CE =
4177             dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
4178                 E)) {
4179       if (!CE->getID() || !CE->getAddress()) {
4180         // Do not blame the entry if the parent funtion is not emitted.
4181         StringRef FnName = ParentFunctions[CE->getOrder()];
4182         if (!CGM.GetGlobalValue(FnName))
4183           continue;
4184         unsigned DiagID = CGM.getDiags().getCustomDiagID(
4185             DiagnosticsEngine::Error,
4186             "Offloading entry for target region is incorrect: either the "
4187             "address or the ID is invalid.");
4188         CGM.getDiags().Report(DiagID);
4189         continue;
4190       }
4191       createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0,
4192                          CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage);
4193     } else if (const auto *CE =
4194                    dyn_cast<OffloadEntriesInfoManagerTy::
4195                                 OffloadEntryInfoDeviceGlobalVar>(E)) {
4196       OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags =
4197           static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
4198               CE->getFlags());
4199       switch (Flags) {
4200       case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: {
4201         if (CGM.getLangOpts().OpenMPIsDevice &&
4202             CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())
4203           continue;
4204         if (!CE->getAddress()) {
4205           unsigned DiagID = CGM.getDiags().getCustomDiagID(
4206               DiagnosticsEngine::Error,
4207               "Offloading entry for declare target variable is incorrect: the "
4208               "address is invalid.");
4209           CGM.getDiags().Report(DiagID);
4210           continue;
4211         }
4212         // The vaiable has no definition - no need to add the entry.
4213         if (CE->getVarSize().isZero())
4214           continue;
4215         break;
4216       }
4217       case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink:
4218         assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) ||
4219                 (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) &&
4220                "Declaret target link address is set.");
4221         if (CGM.getLangOpts().OpenMPIsDevice)
4222           continue;
4223         if (!CE->getAddress()) {
4224           unsigned DiagID = CGM.getDiags().getCustomDiagID(
4225               DiagnosticsEngine::Error,
4226               "Offloading entry for declare target variable is incorrect: the "
4227               "address is invalid.");
4228           CGM.getDiags().Report(DiagID);
4229           continue;
4230         }
4231         break;
4232       }
4233       createOffloadEntry(CE->getAddress(), CE->getAddress(),
4234                          CE->getVarSize().getQuantity(), Flags,
4235                          CE->getLinkage());
4236     } else {
4237       llvm_unreachable("Unsupported entry kind.");
4238     }
4239   }
4240 }
4241 
4242 /// Loads all the offload entries information from the host IR
4243 /// metadata.
loadOffloadInfoMetadata()4244 void CGOpenMPRuntime::loadOffloadInfoMetadata() {
4245   // If we are in target mode, load the metadata from the host IR. This code has
4246   // to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
4247 
4248   if (!CGM.getLangOpts().OpenMPIsDevice)
4249     return;
4250 
4251   if (CGM.getLangOpts().OMPHostIRFile.empty())
4252     return;
4253 
4254   auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
4255   if (auto EC = Buf.getError()) {
4256     CGM.getDiags().Report(diag::err_cannot_open_file)
4257         << CGM.getLangOpts().OMPHostIRFile << EC.message();
4258     return;
4259   }
4260 
4261   llvm::LLVMContext C;
4262   auto ME = expectedToErrorOrAndEmitErrors(
4263       C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
4264 
4265   if (auto EC = ME.getError()) {
4266     unsigned DiagID = CGM.getDiags().getCustomDiagID(
4267         DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'");
4268     CGM.getDiags().Report(DiagID)
4269         << CGM.getLangOpts().OMPHostIRFile << EC.message();
4270     return;
4271   }
4272 
4273   llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
4274   if (!MD)
4275     return;
4276 
4277   for (llvm::MDNode *MN : MD->operands()) {
4278     auto &&GetMDInt = [MN](unsigned Idx) {
4279       auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
4280       return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
4281     };
4282 
4283     auto &&GetMDString = [MN](unsigned Idx) {
4284       auto *V = cast<llvm::MDString>(MN->getOperand(Idx));
4285       return V->getString();
4286     };
4287 
4288     switch (GetMDInt(0)) {
4289     default:
4290       llvm_unreachable("Unexpected metadata!");
4291       break;
4292     case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
4293         OffloadingEntryInfoTargetRegion:
4294       OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
4295           /*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2),
4296           /*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4),
4297           /*Order=*/GetMDInt(5));
4298       break;
4299     case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
4300         OffloadingEntryInfoDeviceGlobalVar:
4301       OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo(
4302           /*MangledName=*/GetMDString(1),
4303           static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
4304               /*Flags=*/GetMDInt(2)),
4305           /*Order=*/GetMDInt(3));
4306       break;
4307     }
4308   }
4309 }
4310 
emitKmpRoutineEntryT(QualType KmpInt32Ty)4311 void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
4312   if (!KmpRoutineEntryPtrTy) {
4313     // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
4314     ASTContext &C = CGM.getContext();
4315     QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
4316     FunctionProtoType::ExtProtoInfo EPI;
4317     KmpRoutineEntryPtrQTy = C.getPointerType(
4318         C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
4319     KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
4320   }
4321 }
4322 
getTgtOffloadEntryQTy()4323 QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
4324   // Make sure the type of the entry is already created. This is the type we
4325   // have to create:
4326   // struct __tgt_offload_entry{
4327   //   void      *addr;       // Pointer to the offload entry info.
4328   //                          // (function or global)
4329   //   char      *name;       // Name of the function or global.
4330   //   size_t     size;       // Size of the entry info (0 if it a function).
4331   //   int32_t    flags;      // Flags associated with the entry, e.g. 'link'.
4332   //   int32_t    reserved;   // Reserved, to use by the runtime library.
4333   // };
4334   if (TgtOffloadEntryQTy.isNull()) {
4335     ASTContext &C = CGM.getContext();
4336     RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry");
4337     RD->startDefinition();
4338     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4339     addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
4340     addFieldToRecordDecl(C, RD, C.getSizeType());
4341     addFieldToRecordDecl(
4342         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
4343     addFieldToRecordDecl(
4344         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
4345     RD->completeDefinition();
4346     RD->addAttr(PackedAttr::CreateImplicit(C));
4347     TgtOffloadEntryQTy = C.getRecordType(RD);
4348   }
4349   return TgtOffloadEntryQTy;
4350 }
4351 
getTgtDeviceImageQTy()4352 QualType CGOpenMPRuntime::getTgtDeviceImageQTy() {
4353   // These are the types we need to build:
4354   // struct __tgt_device_image{
4355   // void   *ImageStart;       // Pointer to the target code start.
4356   // void   *ImageEnd;         // Pointer to the target code end.
4357   // // We also add the host entries to the device image, as it may be useful
4358   // // for the target runtime to have access to that information.
4359   // __tgt_offload_entry  *EntriesBegin;   // Begin of the table with all
4360   //                                       // the entries.
4361   // __tgt_offload_entry  *EntriesEnd;     // End of the table with all the
4362   //                                       // entries (non inclusive).
4363   // };
4364   if (TgtDeviceImageQTy.isNull()) {
4365     ASTContext &C = CGM.getContext();
4366     RecordDecl *RD = C.buildImplicitRecord("__tgt_device_image");
4367     RD->startDefinition();
4368     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4369     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4370     addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
4371     addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
4372     RD->completeDefinition();
4373     TgtDeviceImageQTy = C.getRecordType(RD);
4374   }
4375   return TgtDeviceImageQTy;
4376 }
4377 
getTgtBinaryDescriptorQTy()4378 QualType CGOpenMPRuntime::getTgtBinaryDescriptorQTy() {
4379   // struct __tgt_bin_desc{
4380   //   int32_t              NumDevices;      // Number of devices supported.
4381   //   __tgt_device_image   *DeviceImages;   // Arrays of device images
4382   //                                         // (one per device).
4383   //   __tgt_offload_entry  *EntriesBegin;   // Begin of the table with all the
4384   //                                         // entries.
4385   //   __tgt_offload_entry  *EntriesEnd;     // End of the table with all the
4386   //                                         // entries (non inclusive).
4387   // };
4388   if (TgtBinaryDescriptorQTy.isNull()) {
4389     ASTContext &C = CGM.getContext();
4390     RecordDecl *RD = C.buildImplicitRecord("__tgt_bin_desc");
4391     RD->startDefinition();
4392     addFieldToRecordDecl(
4393         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
4394     addFieldToRecordDecl(C, RD, C.getPointerType(getTgtDeviceImageQTy()));
4395     addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
4396     addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
4397     RD->completeDefinition();
4398     TgtBinaryDescriptorQTy = C.getRecordType(RD);
4399   }
4400   return TgtBinaryDescriptorQTy;
4401 }
4402 
4403 namespace {
4404 struct PrivateHelpersTy {
PrivateHelpersTy__anon850272ab1511::PrivateHelpersTy4405   PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy,
4406                    const VarDecl *PrivateElemInit)
4407       : Original(Original), PrivateCopy(PrivateCopy),
4408         PrivateElemInit(PrivateElemInit) {}
4409   const VarDecl *Original;
4410   const VarDecl *PrivateCopy;
4411   const VarDecl *PrivateElemInit;
4412 };
4413 typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
4414 } // anonymous namespace
4415 
4416 static RecordDecl *
createPrivatesRecordDecl(CodeGenModule & CGM,ArrayRef<PrivateDataTy> Privates)4417 createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
4418   if (!Privates.empty()) {
4419     ASTContext &C = CGM.getContext();
4420     // Build struct .kmp_privates_t. {
4421     //         /*  private vars  */
4422     //       };
4423     RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t");
4424     RD->startDefinition();
4425     for (const auto &Pair : Privates) {
4426       const VarDecl *VD = Pair.second.Original;
4427       QualType Type = VD->getType().getNonReferenceType();
4428       FieldDecl *FD = addFieldToRecordDecl(C, RD, Type);
4429       if (VD->hasAttrs()) {
4430         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
4431              E(VD->getAttrs().end());
4432              I != E; ++I)
4433           FD->addAttr(*I);
4434       }
4435     }
4436     RD->completeDefinition();
4437     return RD;
4438   }
4439   return nullptr;
4440 }
4441 
4442 static RecordDecl *
createKmpTaskTRecordDecl(CodeGenModule & CGM,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpRoutineEntryPointerQTy)4443 createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
4444                          QualType KmpInt32Ty,
4445                          QualType KmpRoutineEntryPointerQTy) {
4446   ASTContext &C = CGM.getContext();
4447   // Build struct kmp_task_t {
4448   //         void *              shareds;
4449   //         kmp_routine_entry_t routine;
4450   //         kmp_int32           part_id;
4451   //         kmp_cmplrdata_t data1;
4452   //         kmp_cmplrdata_t data2;
4453   // For taskloops additional fields:
4454   //         kmp_uint64          lb;
4455   //         kmp_uint64          ub;
4456   //         kmp_int64           st;
4457   //         kmp_int32           liter;
4458   //         void *              reductions;
4459   //       };
4460   RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
4461   UD->startDefinition();
4462   addFieldToRecordDecl(C, UD, KmpInt32Ty);
4463   addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
4464   UD->completeDefinition();
4465   QualType KmpCmplrdataTy = C.getRecordType(UD);
4466   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t");
4467   RD->startDefinition();
4468   addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4469   addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
4470   addFieldToRecordDecl(C, RD, KmpInt32Ty);
4471   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
4472   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
4473   if (isOpenMPTaskLoopDirective(Kind)) {
4474     QualType KmpUInt64Ty =
4475         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
4476     QualType KmpInt64Ty =
4477         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
4478     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
4479     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
4480     addFieldToRecordDecl(C, RD, KmpInt64Ty);
4481     addFieldToRecordDecl(C, RD, KmpInt32Ty);
4482     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4483   }
4484   RD->completeDefinition();
4485   return RD;
4486 }
4487 
4488 static RecordDecl *
createKmpTaskTWithPrivatesRecordDecl(CodeGenModule & CGM,QualType KmpTaskTQTy,ArrayRef<PrivateDataTy> Privates)4489 createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
4490                                      ArrayRef<PrivateDataTy> Privates) {
4491   ASTContext &C = CGM.getContext();
4492   // Build struct kmp_task_t_with_privates {
4493   //         kmp_task_t task_data;
4494   //         .kmp_privates_t. privates;
4495   //       };
4496   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
4497   RD->startDefinition();
4498   addFieldToRecordDecl(C, RD, KmpTaskTQTy);
4499   if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates))
4500     addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
4501   RD->completeDefinition();
4502   return RD;
4503 }
4504 
4505 /// Emit a proxy function which accepts kmp_task_t as the second
4506 /// argument.
4507 /// \code
4508 /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
4509 ///   TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
4510 ///   For taskloops:
4511 ///   tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
4512 ///   tt->reductions, tt->shareds);
4513 ///   return 0;
4514 /// }
4515 /// \endcode
4516 static llvm::Function *
emitProxyTaskFunction(CodeGenModule & CGM,SourceLocation Loc,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy,QualType KmpTaskTQTy,QualType SharedsPtrTy,llvm::Function * TaskFunction,llvm::Value * TaskPrivatesMap)4517 emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
4518                       OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
4519                       QualType KmpTaskTWithPrivatesPtrQTy,
4520                       QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
4521                       QualType SharedsPtrTy, llvm::Function *TaskFunction,
4522                       llvm::Value *TaskPrivatesMap) {
4523   ASTContext &C = CGM.getContext();
4524   FunctionArgList Args;
4525   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
4526                             ImplicitParamDecl::Other);
4527   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4528                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
4529                                 ImplicitParamDecl::Other);
4530   Args.push_back(&GtidArg);
4531   Args.push_back(&TaskTypeArg);
4532   const auto &TaskEntryFnInfo =
4533       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
4534   llvm::FunctionType *TaskEntryTy =
4535       CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
4536   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""});
4537   auto *TaskEntry = llvm::Function::Create(
4538       TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
4539   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo);
4540   TaskEntry->setDoesNotRecurse();
4541   CodeGenFunction CGF(CGM);
4542   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args,
4543                     Loc, Loc);
4544 
4545   // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
4546   // tt,
4547   // For taskloops:
4548   // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
4549   // tt->task_data.shareds);
4550   llvm::Value *GtidParam = CGF.EmitLoadOfScalar(
4551       CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
4552   LValue TDBase = CGF.EmitLoadOfPointerLValue(
4553       CGF.GetAddrOfLocalVar(&TaskTypeArg),
4554       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4555   const auto *KmpTaskTWithPrivatesQTyRD =
4556       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
4557   LValue Base =
4558       CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
4559   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
4560   auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
4561   LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
4562   llvm::Value *PartidParam = PartIdLVal.getPointer();
4563 
4564   auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
4565   LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
4566   llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4567       CGF.EmitLoadOfScalar(SharedsLVal, Loc),
4568       CGF.ConvertTypeForMem(SharedsPtrTy));
4569 
4570   auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
4571   llvm::Value *PrivatesParam;
4572   if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
4573     LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
4574     PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4575         PrivatesLVal.getPointer(), CGF.VoidPtrTy);
4576   } else {
4577     PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4578   }
4579 
4580   llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
4581                                TaskPrivatesMap,
4582                                CGF.Builder
4583                                    .CreatePointerBitCastOrAddrSpaceCast(
4584                                        TDBase.getAddress(), CGF.VoidPtrTy)
4585                                    .getPointer()};
4586   SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
4587                                           std::end(CommonArgs));
4588   if (isOpenMPTaskLoopDirective(Kind)) {
4589     auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
4590     LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI);
4591     llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc);
4592     auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
4593     LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI);
4594     llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc);
4595     auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
4596     LValue StLVal = CGF.EmitLValueForField(Base, *StFI);
4597     llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc);
4598     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
4599     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
4600     llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc);
4601     auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions);
4602     LValue RLVal = CGF.EmitLValueForField(Base, *RFI);
4603     llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc);
4604     CallArgs.push_back(LBParam);
4605     CallArgs.push_back(UBParam);
4606     CallArgs.push_back(StParam);
4607     CallArgs.push_back(LIParam);
4608     CallArgs.push_back(RParam);
4609   }
4610   CallArgs.push_back(SharedsParam);
4611 
4612   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction,
4613                                                   CallArgs);
4614   CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)),
4615                              CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
4616   CGF.FinishFunction();
4617   return TaskEntry;
4618 }
4619 
emitDestructorsFunction(CodeGenModule & CGM,SourceLocation Loc,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy)4620 static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
4621                                             SourceLocation Loc,
4622                                             QualType KmpInt32Ty,
4623                                             QualType KmpTaskTWithPrivatesPtrQTy,
4624                                             QualType KmpTaskTWithPrivatesQTy) {
4625   ASTContext &C = CGM.getContext();
4626   FunctionArgList Args;
4627   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
4628                             ImplicitParamDecl::Other);
4629   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4630                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
4631                                 ImplicitParamDecl::Other);
4632   Args.push_back(&GtidArg);
4633   Args.push_back(&TaskTypeArg);
4634   const auto &DestructorFnInfo =
4635       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
4636   llvm::FunctionType *DestructorFnTy =
4637       CGM.getTypes().GetFunctionType(DestructorFnInfo);
4638   std::string Name =
4639       CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""});
4640   auto *DestructorFn =
4641       llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
4642                              Name, &CGM.getModule());
4643   CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn,
4644                                     DestructorFnInfo);
4645   DestructorFn->setDoesNotRecurse();
4646   CodeGenFunction CGF(CGM);
4647   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
4648                     Args, Loc, Loc);
4649 
4650   LValue Base = CGF.EmitLoadOfPointerLValue(
4651       CGF.GetAddrOfLocalVar(&TaskTypeArg),
4652       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4653   const auto *KmpTaskTWithPrivatesQTyRD =
4654       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
4655   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
4656   Base = CGF.EmitLValueForField(Base, *FI);
4657   for (const auto *Field :
4658        cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
4659     if (QualType::DestructionKind DtorKind =
4660             Field->getType().isDestructedType()) {
4661       LValue FieldLValue = CGF.EmitLValueForField(Base, Field);
4662       CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType());
4663     }
4664   }
4665   CGF.FinishFunction();
4666   return DestructorFn;
4667 }
4668 
4669 /// Emit a privates mapping function for correct handling of private and
4670 /// firstprivate variables.
4671 /// \code
4672 /// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
4673 /// **noalias priv1,...,  <tyn> **noalias privn) {
4674 ///   *priv1 = &.privates.priv1;
4675 ///   ...;
4676 ///   *privn = &.privates.privn;
4677 /// }
4678 /// \endcode
4679 static llvm::Value *
emitTaskPrivateMappingFunction(CodeGenModule & CGM,SourceLocation Loc,ArrayRef<const Expr * > PrivateVars,ArrayRef<const Expr * > FirstprivateVars,ArrayRef<const Expr * > LastprivateVars,QualType PrivatesQTy,ArrayRef<PrivateDataTy> Privates)4680 emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
4681                                ArrayRef<const Expr *> PrivateVars,
4682                                ArrayRef<const Expr *> FirstprivateVars,
4683                                ArrayRef<const Expr *> LastprivateVars,
4684                                QualType PrivatesQTy,
4685                                ArrayRef<PrivateDataTy> Privates) {
4686   ASTContext &C = CGM.getContext();
4687   FunctionArgList Args;
4688   ImplicitParamDecl TaskPrivatesArg(
4689       C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4690       C.getPointerType(PrivatesQTy).withConst().withRestrict(),
4691       ImplicitParamDecl::Other);
4692   Args.push_back(&TaskPrivatesArg);
4693   llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos;
4694   unsigned Counter = 1;
4695   for (const Expr *E : PrivateVars) {
4696     Args.push_back(ImplicitParamDecl::Create(
4697         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4698         C.getPointerType(C.getPointerType(E->getType()))
4699             .withConst()
4700             .withRestrict(),
4701         ImplicitParamDecl::Other));
4702     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4703     PrivateVarsPos[VD] = Counter;
4704     ++Counter;
4705   }
4706   for (const Expr *E : FirstprivateVars) {
4707     Args.push_back(ImplicitParamDecl::Create(
4708         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4709         C.getPointerType(C.getPointerType(E->getType()))
4710             .withConst()
4711             .withRestrict(),
4712         ImplicitParamDecl::Other));
4713     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4714     PrivateVarsPos[VD] = Counter;
4715     ++Counter;
4716   }
4717   for (const Expr *E : LastprivateVars) {
4718     Args.push_back(ImplicitParamDecl::Create(
4719         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4720         C.getPointerType(C.getPointerType(E->getType()))
4721             .withConst()
4722             .withRestrict(),
4723         ImplicitParamDecl::Other));
4724     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4725     PrivateVarsPos[VD] = Counter;
4726     ++Counter;
4727   }
4728   const auto &TaskPrivatesMapFnInfo =
4729       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
4730   llvm::FunctionType *TaskPrivatesMapTy =
4731       CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
4732   std::string Name =
4733       CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""});
4734   auto *TaskPrivatesMap = llvm::Function::Create(
4735       TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name,
4736       &CGM.getModule());
4737   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap,
4738                                     TaskPrivatesMapFnInfo);
4739   if (CGM.getLangOpts().Optimize) {
4740     TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
4741     TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone);
4742     TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
4743   }
4744   CodeGenFunction CGF(CGM);
4745   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
4746                     TaskPrivatesMapFnInfo, Args, Loc, Loc);
4747 
4748   // *privi = &.privates.privi;
4749   LValue Base = CGF.EmitLoadOfPointerLValue(
4750       CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
4751       TaskPrivatesArg.getType()->castAs<PointerType>());
4752   const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
4753   Counter = 0;
4754   for (const FieldDecl *Field : PrivatesQTyRD->fields()) {
4755     LValue FieldLVal = CGF.EmitLValueForField(Base, Field);
4756     const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
4757     LValue RefLVal =
4758         CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
4759     LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue(
4760         RefLVal.getAddress(), RefLVal.getType()->castAs<PointerType>());
4761     CGF.EmitStoreOfScalar(FieldLVal.getPointer(), RefLoadLVal);
4762     ++Counter;
4763   }
4764   CGF.FinishFunction();
4765   return TaskPrivatesMap;
4766 }
4767 
4768 /// Emit initialization for private variables in task-based directives.
emitPrivatesInit(CodeGenFunction & CGF,const OMPExecutableDirective & D,Address KmpTaskSharedsPtr,LValue TDBase,const RecordDecl * KmpTaskTWithPrivatesQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool ForDup)4769 static void emitPrivatesInit(CodeGenFunction &CGF,
4770                              const OMPExecutableDirective &D,
4771                              Address KmpTaskSharedsPtr, LValue TDBase,
4772                              const RecordDecl *KmpTaskTWithPrivatesQTyRD,
4773                              QualType SharedsTy, QualType SharedsPtrTy,
4774                              const OMPTaskDataTy &Data,
4775                              ArrayRef<PrivateDataTy> Privates, bool ForDup) {
4776   ASTContext &C = CGF.getContext();
4777   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
4778   LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
4779   OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind())
4780                                  ? OMPD_taskloop
4781                                  : OMPD_task;
4782   const CapturedStmt &CS = *D.getCapturedStmt(Kind);
4783   CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS);
4784   LValue SrcBase;
4785   bool IsTargetTask =
4786       isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) ||
4787       isOpenMPTargetExecutionDirective(D.getDirectiveKind());
4788   // For target-based directives skip 3 firstprivate arrays BasePointersArray,
4789   // PointersArray and SizesArray. The original variables for these arrays are
4790   // not captured and we get their addresses explicitly.
4791   if ((!IsTargetTask && !Data.FirstprivateVars.empty()) ||
4792       (IsTargetTask && KmpTaskSharedsPtr.isValid())) {
4793     SrcBase = CGF.MakeAddrLValue(
4794         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4795             KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
4796         SharedsTy);
4797   }
4798   FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
4799   for (const PrivateDataTy &Pair : Privates) {
4800     const VarDecl *VD = Pair.second.PrivateCopy;
4801     const Expr *Init = VD->getAnyInitializer();
4802     if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
4803                              !CGF.isTrivialInitializer(Init)))) {
4804       LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
4805       if (const VarDecl *Elem = Pair.second.PrivateElemInit) {
4806         const VarDecl *OriginalVD = Pair.second.Original;
4807         // Check if the variable is the target-based BasePointersArray,
4808         // PointersArray or SizesArray.
4809         LValue SharedRefLValue;
4810         QualType Type = PrivateLValue.getType();
4811         const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD);
4812         if (IsTargetTask && !SharedField) {
4813           assert(isa<ImplicitParamDecl>(OriginalVD) &&
4814                  isa<CapturedDecl>(OriginalVD->getDeclContext()) &&
4815                  cast<CapturedDecl>(OriginalVD->getDeclContext())
4816                          ->getNumParams() == 0 &&
4817                  isa<TranslationUnitDecl>(
4818                      cast<CapturedDecl>(OriginalVD->getDeclContext())
4819                          ->getDeclContext()) &&
4820                  "Expected artificial target data variable.");
4821           SharedRefLValue =
4822               CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type);
4823         } else {
4824           SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
4825           SharedRefLValue = CGF.MakeAddrLValue(
4826               Address(SharedRefLValue.getPointer(), C.getDeclAlign(OriginalVD)),
4827               SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl),
4828               SharedRefLValue.getTBAAInfo());
4829         }
4830         if (Type->isArrayType()) {
4831           // Initialize firstprivate array.
4832           if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
4833             // Perform simple memcpy.
4834             CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type);
4835           } else {
4836             // Initialize firstprivate array using element-by-element
4837             // initialization.
4838             CGF.EmitOMPAggregateAssign(
4839                 PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type,
4840                 [&CGF, Elem, Init, &CapturesInfo](Address DestElement,
4841                                                   Address SrcElement) {
4842                   // Clean up any temporaries needed by the initialization.
4843                   CodeGenFunction::OMPPrivateScope InitScope(CGF);
4844                   InitScope.addPrivate(
4845                       Elem, [SrcElement]() -> Address { return SrcElement; });
4846                   (void)InitScope.Privatize();
4847                   // Emit initialization for single element.
4848                   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
4849                       CGF, &CapturesInfo);
4850                   CGF.EmitAnyExprToMem(Init, DestElement,
4851                                        Init->getType().getQualifiers(),
4852                                        /*IsInitializer=*/false);
4853                 });
4854           }
4855         } else {
4856           CodeGenFunction::OMPPrivateScope InitScope(CGF);
4857           InitScope.addPrivate(Elem, [SharedRefLValue]() -> Address {
4858             return SharedRefLValue.getAddress();
4859           });
4860           (void)InitScope.Privatize();
4861           CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
4862           CGF.EmitExprAsInit(Init, VD, PrivateLValue,
4863                              /*capturedByInit=*/false);
4864         }
4865       } else {
4866         CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
4867       }
4868     }
4869     ++FI;
4870   }
4871 }
4872 
4873 /// Check if duplication function is required for taskloops.
checkInitIsRequired(CodeGenFunction & CGF,ArrayRef<PrivateDataTy> Privates)4874 static bool checkInitIsRequired(CodeGenFunction &CGF,
4875                                 ArrayRef<PrivateDataTy> Privates) {
4876   bool InitRequired = false;
4877   for (const PrivateDataTy &Pair : Privates) {
4878     const VarDecl *VD = Pair.second.PrivateCopy;
4879     const Expr *Init = VD->getAnyInitializer();
4880     InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
4881                                     !CGF.isTrivialInitializer(Init));
4882     if (InitRequired)
4883       break;
4884   }
4885   return InitRequired;
4886 }
4887 
4888 
4889 /// Emit task_dup function (for initialization of
4890 /// private/firstprivate/lastprivate vars and last_iter flag)
4891 /// \code
4892 /// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
4893 /// lastpriv) {
4894 /// // setup lastprivate flag
4895 ///    task_dst->last = lastpriv;
4896 /// // could be constructor calls here...
4897 /// }
4898 /// \endcode
4899 static llvm::Value *
emitTaskDupFunction(CodeGenModule & CGM,SourceLocation Loc,const OMPExecutableDirective & D,QualType KmpTaskTWithPrivatesPtrQTy,const RecordDecl * KmpTaskTWithPrivatesQTyRD,const RecordDecl * KmpTaskTQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool WithLastIter)4900 emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
4901                     const OMPExecutableDirective &D,
4902                     QualType KmpTaskTWithPrivatesPtrQTy,
4903                     const RecordDecl *KmpTaskTWithPrivatesQTyRD,
4904                     const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
4905                     QualType SharedsPtrTy, const OMPTaskDataTy &Data,
4906                     ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
4907   ASTContext &C = CGM.getContext();
4908   FunctionArgList Args;
4909   ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4910                            KmpTaskTWithPrivatesPtrQTy,
4911                            ImplicitParamDecl::Other);
4912   ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4913                            KmpTaskTWithPrivatesPtrQTy,
4914                            ImplicitParamDecl::Other);
4915   ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
4916                                 ImplicitParamDecl::Other);
4917   Args.push_back(&DstArg);
4918   Args.push_back(&SrcArg);
4919   Args.push_back(&LastprivArg);
4920   const auto &TaskDupFnInfo =
4921       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
4922   llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
4923   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""});
4924   auto *TaskDup = llvm::Function::Create(
4925       TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
4926   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo);
4927   TaskDup->setDoesNotRecurse();
4928   CodeGenFunction CGF(CGM);
4929   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc,
4930                     Loc);
4931 
4932   LValue TDBase = CGF.EmitLoadOfPointerLValue(
4933       CGF.GetAddrOfLocalVar(&DstArg),
4934       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4935   // task_dst->liter = lastpriv;
4936   if (WithLastIter) {
4937     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
4938     LValue Base = CGF.EmitLValueForField(
4939         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
4940     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
4941     llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
4942         CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
4943     CGF.EmitStoreOfScalar(Lastpriv, LILVal);
4944   }
4945 
4946   // Emit initial values for private copies (if any).
4947   assert(!Privates.empty());
4948   Address KmpTaskSharedsPtr = Address::invalid();
4949   if (!Data.FirstprivateVars.empty()) {
4950     LValue TDBase = CGF.EmitLoadOfPointerLValue(
4951         CGF.GetAddrOfLocalVar(&SrcArg),
4952         KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4953     LValue Base = CGF.EmitLValueForField(
4954         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
4955     KmpTaskSharedsPtr = Address(
4956         CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
4957                                  Base, *std::next(KmpTaskTQTyRD->field_begin(),
4958                                                   KmpTaskTShareds)),
4959                              Loc),
4960         CGF.getNaturalTypeAlignment(SharedsTy));
4961   }
4962   emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
4963                    SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
4964   CGF.FinishFunction();
4965   return TaskDup;
4966 }
4967 
4968 /// Checks if destructor function is required to be generated.
4969 /// \return true if cleanups are required, false otherwise.
4970 static bool
checkDestructorsRequired(const RecordDecl * KmpTaskTWithPrivatesQTyRD)4971 checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) {
4972   bool NeedsCleanup = false;
4973   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
4974   const auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl());
4975   for (const FieldDecl *FD : PrivateRD->fields()) {
4976     NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType();
4977     if (NeedsCleanup)
4978       break;
4979   }
4980   return NeedsCleanup;
4981 }
4982 
4983 CGOpenMPRuntime::TaskResultTy
emitTaskInit(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const OMPTaskDataTy & Data)4984 CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
4985                               const OMPExecutableDirective &D,
4986                               llvm::Function *TaskFunction, QualType SharedsTy,
4987                               Address Shareds, const OMPTaskDataTy &Data) {
4988   ASTContext &C = CGM.getContext();
4989   llvm::SmallVector<PrivateDataTy, 4> Privates;
4990   // Aggregate privates and sort them by the alignment.
4991   auto I = Data.PrivateCopies.begin();
4992   for (const Expr *E : Data.PrivateVars) {
4993     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4994     Privates.emplace_back(
4995         C.getDeclAlign(VD),
4996         PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4997                          /*PrivateElemInit=*/nullptr));
4998     ++I;
4999   }
5000   I = Data.FirstprivateCopies.begin();
5001   auto IElemInitRef = Data.FirstprivateInits.begin();
5002   for (const Expr *E : Data.FirstprivateVars) {
5003     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
5004     Privates.emplace_back(
5005         C.getDeclAlign(VD),
5006         PrivateHelpersTy(
5007             VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
5008             cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())));
5009     ++I;
5010     ++IElemInitRef;
5011   }
5012   I = Data.LastprivateCopies.begin();
5013   for (const Expr *E : Data.LastprivateVars) {
5014     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
5015     Privates.emplace_back(
5016         C.getDeclAlign(VD),
5017         PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
5018                          /*PrivateElemInit=*/nullptr));
5019     ++I;
5020   }
5021   llvm::stable_sort(Privates, [](PrivateDataTy L, PrivateDataTy R) {
5022     return L.first > R.first;
5023   });
5024   QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
5025   // Build type kmp_routine_entry_t (if not built yet).
5026   emitKmpRoutineEntryT(KmpInt32Ty);
5027   // Build type kmp_task_t (if not built yet).
5028   if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) {
5029     if (SavedKmpTaskloopTQTy.isNull()) {
5030       SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl(
5031           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
5032     }
5033     KmpTaskTQTy = SavedKmpTaskloopTQTy;
5034   } else {
5035     assert((D.getDirectiveKind() == OMPD_task ||
5036             isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||
5037             isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&
5038            "Expected taskloop, task or target directive");
5039     if (SavedKmpTaskTQTy.isNull()) {
5040       SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
5041           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
5042     }
5043     KmpTaskTQTy = SavedKmpTaskTQTy;
5044   }
5045   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
5046   // Build particular struct kmp_task_t for the given task.
5047   const RecordDecl *KmpTaskTWithPrivatesQTyRD =
5048       createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
5049   QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
5050   QualType KmpTaskTWithPrivatesPtrQTy =
5051       C.getPointerType(KmpTaskTWithPrivatesQTy);
5052   llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
5053   llvm::Type *KmpTaskTWithPrivatesPtrTy =
5054       KmpTaskTWithPrivatesTy->getPointerTo();
5055   llvm::Value *KmpTaskTWithPrivatesTySize =
5056       CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
5057   QualType SharedsPtrTy = C.getPointerType(SharedsTy);
5058 
5059   // Emit initial values for private copies (if any).
5060   llvm::Value *TaskPrivatesMap = nullptr;
5061   llvm::Type *TaskPrivatesMapTy =
5062       std::next(TaskFunction->arg_begin(), 3)->getType();
5063   if (!Privates.empty()) {
5064     auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
5065     TaskPrivatesMap = emitTaskPrivateMappingFunction(
5066         CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars,
5067         FI->getType(), Privates);
5068     TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5069         TaskPrivatesMap, TaskPrivatesMapTy);
5070   } else {
5071     TaskPrivatesMap = llvm::ConstantPointerNull::get(
5072         cast<llvm::PointerType>(TaskPrivatesMapTy));
5073   }
5074   // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
5075   // kmp_task_t *tt);
5076   llvm::Function *TaskEntry = emitProxyTaskFunction(
5077       CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
5078       KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
5079       TaskPrivatesMap);
5080 
5081   // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
5082   // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
5083   // kmp_routine_entry_t *task_entry);
5084   // Task flags. Format is taken from
5085   // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h,
5086   // description of kmp_tasking_flags struct.
5087   enum {
5088     TiedFlag = 0x1,
5089     FinalFlag = 0x2,
5090     DestructorsFlag = 0x8,
5091     PriorityFlag = 0x20
5092   };
5093   unsigned Flags = Data.Tied ? TiedFlag : 0;
5094   bool NeedsCleanup = false;
5095   if (!Privates.empty()) {
5096     NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD);
5097     if (NeedsCleanup)
5098       Flags = Flags | DestructorsFlag;
5099   }
5100   if (Data.Priority.getInt())
5101     Flags = Flags | PriorityFlag;
5102   llvm::Value *TaskFlags =
5103       Data.Final.getPointer()
5104           ? CGF.Builder.CreateSelect(Data.Final.getPointer(),
5105                                      CGF.Builder.getInt32(FinalFlag),
5106                                      CGF.Builder.getInt32(/*C=*/0))
5107           : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
5108   TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
5109   llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
5110   SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc),
5111       getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize,
5112       SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5113           TaskEntry, KmpRoutineEntryPtrTy)};
5114   llvm::Value *NewTask;
5115   if (D.hasClausesOfKind<OMPNowaitClause>()) {
5116     // Check if we have any device clause associated with the directive.
5117     const Expr *Device = nullptr;
5118     if (auto *C = D.getSingleClause<OMPDeviceClause>())
5119       Device = C->getDevice();
5120     // Emit device ID if any otherwise use default value.
5121     llvm::Value *DeviceID;
5122     if (Device)
5123       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
5124                                            CGF.Int64Ty, /*isSigned=*/true);
5125     else
5126       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
5127     AllocArgs.push_back(DeviceID);
5128     NewTask = CGF.EmitRuntimeCall(
5129       createRuntimeFunction(OMPRTL__kmpc_omp_target_task_alloc), AllocArgs);
5130   } else {
5131     NewTask = CGF.EmitRuntimeCall(
5132       createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs);
5133   }
5134   llvm::Value *NewTaskNewTaskTTy =
5135       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5136           NewTask, KmpTaskTWithPrivatesPtrTy);
5137   LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
5138                                                KmpTaskTWithPrivatesQTy);
5139   LValue TDBase =
5140       CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
5141   // Fill the data in the resulting kmp_task_t record.
5142   // Copy shareds if there are any.
5143   Address KmpTaskSharedsPtr = Address::invalid();
5144   if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
5145     KmpTaskSharedsPtr =
5146         Address(CGF.EmitLoadOfScalar(
5147                     CGF.EmitLValueForField(
5148                         TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
5149                                            KmpTaskTShareds)),
5150                     Loc),
5151                 CGF.getNaturalTypeAlignment(SharedsTy));
5152     LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy);
5153     LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy);
5154     CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap);
5155   }
5156   // Emit initial values for private copies (if any).
5157   TaskResultTy Result;
5158   if (!Privates.empty()) {
5159     emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
5160                      SharedsTy, SharedsPtrTy, Data, Privates,
5161                      /*ForDup=*/false);
5162     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
5163         (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
5164       Result.TaskDupFn = emitTaskDupFunction(
5165           CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
5166           KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
5167           /*WithLastIter=*/!Data.LastprivateVars.empty());
5168     }
5169   }
5170   // Fields of union "kmp_cmplrdata_t" for destructors and priority.
5171   enum { Priority = 0, Destructors = 1 };
5172   // Provide pointer to function with destructors for privates.
5173   auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
5174   const RecordDecl *KmpCmplrdataUD =
5175       (*FI)->getType()->getAsUnionType()->getDecl();
5176   if (NeedsCleanup) {
5177     llvm::Value *DestructorFn = emitDestructorsFunction(
5178         CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
5179         KmpTaskTWithPrivatesQTy);
5180     LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
5181     LValue DestructorsLV = CGF.EmitLValueForField(
5182         Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
5183     CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5184                               DestructorFn, KmpRoutineEntryPtrTy),
5185                           DestructorsLV);
5186   }
5187   // Set priority.
5188   if (Data.Priority.getInt()) {
5189     LValue Data2LV = CGF.EmitLValueForField(
5190         TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
5191     LValue PriorityLV = CGF.EmitLValueForField(
5192         Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
5193     CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
5194   }
5195   Result.NewTask = NewTask;
5196   Result.TaskEntry = TaskEntry;
5197   Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
5198   Result.TDBase = TDBase;
5199   Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
5200   return Result;
5201 }
5202 
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)5203 void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
5204                                    const OMPExecutableDirective &D,
5205                                    llvm::Function *TaskFunction,
5206                                    QualType SharedsTy, Address Shareds,
5207                                    const Expr *IfCond,
5208                                    const OMPTaskDataTy &Data) {
5209   if (!CGF.HaveInsertPoint())
5210     return;
5211 
5212   TaskResultTy Result =
5213       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5214   llvm::Value *NewTask = Result.NewTask;
5215   llvm::Function *TaskEntry = Result.TaskEntry;
5216   llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
5217   LValue TDBase = Result.TDBase;
5218   const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
5219   ASTContext &C = CGM.getContext();
5220   // Process list of dependences.
5221   Address DependenciesArray = Address::invalid();
5222   unsigned NumDependencies = Data.Dependences.size();
5223   if (NumDependencies) {
5224     // Dependence kind for RTL.
5225     enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3, DepMutexInOutSet = 0x4 };
5226     enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
5227     RecordDecl *KmpDependInfoRD;
5228     QualType FlagsTy =
5229         C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
5230     llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
5231     if (KmpDependInfoTy.isNull()) {
5232       KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
5233       KmpDependInfoRD->startDefinition();
5234       addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
5235       addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
5236       addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
5237       KmpDependInfoRD->completeDefinition();
5238       KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
5239     } else {
5240       KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
5241     }
5242     // Define type kmp_depend_info[<Dependences.size()>];
5243     QualType KmpDependInfoArrayTy = C.getConstantArrayType(
5244         KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies),
5245         ArrayType::Normal, /*IndexTypeQuals=*/0);
5246     // kmp_depend_info[<Dependences.size()>] deps;
5247     DependenciesArray =
5248         CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
5249     for (unsigned I = 0; I < NumDependencies; ++I) {
5250       const Expr *E = Data.Dependences[I].second;
5251       LValue Addr = CGF.EmitLValue(E);
5252       llvm::Value *Size;
5253       QualType Ty = E->getType();
5254       if (const auto *ASE =
5255               dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
5256         LValue UpAddrLVal =
5257             CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false);
5258         llvm::Value *UpAddr =
5259             CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(), /*Idx0=*/1);
5260         llvm::Value *LowIntPtr =
5261             CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGM.SizeTy);
5262         llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy);
5263         Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
5264       } else {
5265         Size = CGF.getTypeSize(Ty);
5266       }
5267       LValue Base = CGF.MakeAddrLValue(
5268           CGF.Builder.CreateConstArrayGEP(DependenciesArray, I),
5269           KmpDependInfoTy);
5270       // deps[i].base_addr = &<Dependences[i].second>;
5271       LValue BaseAddrLVal = CGF.EmitLValueForField(
5272           Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
5273       CGF.EmitStoreOfScalar(
5274           CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGF.IntPtrTy),
5275           BaseAddrLVal);
5276       // deps[i].len = sizeof(<Dependences[i].second>);
5277       LValue LenLVal = CGF.EmitLValueForField(
5278           Base, *std::next(KmpDependInfoRD->field_begin(), Len));
5279       CGF.EmitStoreOfScalar(Size, LenLVal);
5280       // deps[i].flags = <Dependences[i].first>;
5281       RTLDependenceKindTy DepKind;
5282       switch (Data.Dependences[I].first) {
5283       case OMPC_DEPEND_in:
5284         DepKind = DepIn;
5285         break;
5286       // Out and InOut dependencies must use the same code.
5287       case OMPC_DEPEND_out:
5288       case OMPC_DEPEND_inout:
5289         DepKind = DepInOut;
5290         break;
5291       case OMPC_DEPEND_mutexinoutset:
5292         DepKind = DepMutexInOutSet;
5293         break;
5294       case OMPC_DEPEND_source:
5295       case OMPC_DEPEND_sink:
5296       case OMPC_DEPEND_unknown:
5297         llvm_unreachable("Unknown task dependence type");
5298       }
5299       LValue FlagsLVal = CGF.EmitLValueForField(
5300           Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
5301       CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
5302                             FlagsLVal);
5303     }
5304     DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5305         CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0), CGF.VoidPtrTy);
5306   }
5307 
5308   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5309   // libcall.
5310   // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
5311   // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
5312   // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
5313   // list is not empty
5314   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5315   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5316   llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
5317   llvm::Value *DepTaskArgs[7];
5318   if (NumDependencies) {
5319     DepTaskArgs[0] = UpLoc;
5320     DepTaskArgs[1] = ThreadID;
5321     DepTaskArgs[2] = NewTask;
5322     DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies);
5323     DepTaskArgs[4] = DependenciesArray.getPointer();
5324     DepTaskArgs[5] = CGF.Builder.getInt32(0);
5325     DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5326   }
5327   auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, NumDependencies,
5328                         &TaskArgs,
5329                         &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
5330     if (!Data.Tied) {
5331       auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
5332       LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
5333       CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
5334     }
5335     if (NumDependencies) {
5336       CGF.EmitRuntimeCall(
5337           createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs);
5338     } else {
5339       CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task),
5340                           TaskArgs);
5341     }
5342     // Check if parent region is untied and build return for untied task;
5343     if (auto *Region =
5344             dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
5345       Region->emitUntiedSwitch(CGF);
5346   };
5347 
5348   llvm::Value *DepWaitTaskArgs[6];
5349   if (NumDependencies) {
5350     DepWaitTaskArgs[0] = UpLoc;
5351     DepWaitTaskArgs[1] = ThreadID;
5352     DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies);
5353     DepWaitTaskArgs[3] = DependenciesArray.getPointer();
5354     DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
5355     DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5356   }
5357   auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry,
5358                         NumDependencies, &DepWaitTaskArgs,
5359                         Loc](CodeGenFunction &CGF, PrePostActionTy &) {
5360     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5361     CodeGenFunction::RunCleanupsScope LocalScope(CGF);
5362     // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
5363     // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
5364     // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
5365     // is specified.
5366     if (NumDependencies)
5367       CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps),
5368                           DepWaitTaskArgs);
5369     // Call proxy_task_entry(gtid, new_task);
5370     auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy,
5371                       Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
5372       Action.Enter(CGF);
5373       llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
5374       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry,
5375                                                           OutlinedFnArgs);
5376     };
5377 
5378     // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
5379     // kmp_task_t *new_task);
5380     // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
5381     // kmp_task_t *new_task);
5382     RegionCodeGenTy RCG(CodeGen);
5383     CommonActionTy Action(
5384         RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs,
5385         RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs);
5386     RCG.setAction(Action);
5387     RCG(CGF);
5388   };
5389 
5390   if (IfCond) {
5391     emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
5392   } else {
5393     RegionCodeGenTy ThenRCG(ThenCodeGen);
5394     ThenRCG(CGF);
5395   }
5396 }
5397 
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)5398 void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
5399                                        const OMPLoopDirective &D,
5400                                        llvm::Function *TaskFunction,
5401                                        QualType SharedsTy, Address Shareds,
5402                                        const Expr *IfCond,
5403                                        const OMPTaskDataTy &Data) {
5404   if (!CGF.HaveInsertPoint())
5405     return;
5406   TaskResultTy Result =
5407       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5408   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5409   // libcall.
5410   // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
5411   // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
5412   // sched, kmp_uint64 grainsize, void *task_dup);
5413   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5414   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5415   llvm::Value *IfVal;
5416   if (IfCond) {
5417     IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
5418                                       /*isSigned=*/true);
5419   } else {
5420     IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
5421   }
5422 
5423   LValue LBLVal = CGF.EmitLValueForField(
5424       Result.TDBase,
5425       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
5426   const auto *LBVar =
5427       cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
5428   CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(), LBLVal.getQuals(),
5429                        /*IsInitializer=*/true);
5430   LValue UBLVal = CGF.EmitLValueForField(
5431       Result.TDBase,
5432       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
5433   const auto *UBVar =
5434       cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
5435   CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(), UBLVal.getQuals(),
5436                        /*IsInitializer=*/true);
5437   LValue StLVal = CGF.EmitLValueForField(
5438       Result.TDBase,
5439       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
5440   const auto *StVar =
5441       cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
5442   CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(), StLVal.getQuals(),
5443                        /*IsInitializer=*/true);
5444   // Store reductions address.
5445   LValue RedLVal = CGF.EmitLValueForField(
5446       Result.TDBase,
5447       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions));
5448   if (Data.Reductions) {
5449     CGF.EmitStoreOfScalar(Data.Reductions, RedLVal);
5450   } else {
5451     CGF.EmitNullInitialization(RedLVal.getAddress(),
5452                                CGF.getContext().VoidPtrTy);
5453   }
5454   enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
5455   llvm::Value *TaskArgs[] = {
5456       UpLoc,
5457       ThreadID,
5458       Result.NewTask,
5459       IfVal,
5460       LBLVal.getPointer(),
5461       UBLVal.getPointer(),
5462       CGF.EmitLoadOfScalar(StLVal, Loc),
5463       llvm::ConstantInt::getSigned(
5464               CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler
5465       llvm::ConstantInt::getSigned(
5466           CGF.IntTy, Data.Schedule.getPointer()
5467                          ? Data.Schedule.getInt() ? NumTasks : Grainsize
5468                          : NoSchedule),
5469       Data.Schedule.getPointer()
5470           ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
5471                                       /*isSigned=*/false)
5472           : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
5473       Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5474                              Result.TaskDupFn, CGF.VoidPtrTy)
5475                        : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
5476   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs);
5477 }
5478 
5479 /// Emit reduction operation for each element of array (required for
5480 /// array sections) LHS op = RHS.
5481 /// \param Type Type of array.
5482 /// \param LHSVar Variable on the left side of the reduction operation
5483 /// (references element of array in original variable).
5484 /// \param RHSVar Variable on the right side of the reduction operation
5485 /// (references element of array in original variable).
5486 /// \param RedOpGen Generator of reduction operation with use of LHSVar and
5487 /// RHSVar.
EmitOMPAggregateReduction(CodeGenFunction & CGF,QualType Type,const VarDecl * LHSVar,const VarDecl * RHSVar,const llvm::function_ref<void (CodeGenFunction & CGF,const Expr *,const Expr *,const Expr *)> & RedOpGen,const Expr * XExpr=nullptr,const Expr * EExpr=nullptr,const Expr * UpExpr=nullptr)5488 static void EmitOMPAggregateReduction(
5489     CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
5490     const VarDecl *RHSVar,
5491     const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
5492                                   const Expr *, const Expr *)> &RedOpGen,
5493     const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
5494     const Expr *UpExpr = nullptr) {
5495   // Perform element-by-element initialization.
5496   QualType ElementTy;
5497   Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
5498   Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
5499 
5500   // Drill down to the base element type on both arrays.
5501   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
5502   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
5503 
5504   llvm::Value *RHSBegin = RHSAddr.getPointer();
5505   llvm::Value *LHSBegin = LHSAddr.getPointer();
5506   // Cast from pointer to array type to pointer to single element.
5507   llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
5508   // The basic structure here is a while-do loop.
5509   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
5510   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
5511   llvm::Value *IsEmpty =
5512       CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
5513   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
5514 
5515   // Enter the loop body, making that address the current address.
5516   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
5517   CGF.EmitBlock(BodyBB);
5518 
5519   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
5520 
5521   llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
5522       RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
5523   RHSElementPHI->addIncoming(RHSBegin, EntryBB);
5524   Address RHSElementCurrent =
5525       Address(RHSElementPHI,
5526               RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5527 
5528   llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
5529       LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
5530   LHSElementPHI->addIncoming(LHSBegin, EntryBB);
5531   Address LHSElementCurrent =
5532       Address(LHSElementPHI,
5533               LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5534 
5535   // Emit copy.
5536   CodeGenFunction::OMPPrivateScope Scope(CGF);
5537   Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; });
5538   Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; });
5539   Scope.Privatize();
5540   RedOpGen(CGF, XExpr, EExpr, UpExpr);
5541   Scope.ForceCleanup();
5542 
5543   // Shift the address forward by one element.
5544   llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32(
5545       LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
5546   llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32(
5547       RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
5548   // Check whether we've reached the end.
5549   llvm::Value *Done =
5550       CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
5551   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
5552   LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
5553   RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
5554 
5555   // Done.
5556   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
5557 }
5558 
5559 /// Emit reduction combiner. If the combiner is a simple expression emit it as
5560 /// is, otherwise consider it as combiner of UDR decl and emit it as a call of
5561 /// UDR combiner function.
emitReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp)5562 static void emitReductionCombiner(CodeGenFunction &CGF,
5563                                   const Expr *ReductionOp) {
5564   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
5565     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
5566       if (const auto *DRE =
5567               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
5568         if (const auto *DRD =
5569                 dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
5570           std::pair<llvm::Function *, llvm::Function *> Reduction =
5571               CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
5572           RValue Func = RValue::get(Reduction.first);
5573           CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
5574           CGF.EmitIgnoredExpr(ReductionOp);
5575           return;
5576         }
5577   CGF.EmitIgnoredExpr(ReductionOp);
5578 }
5579 
emitReductionFunction(SourceLocation Loc,llvm::Type * ArgsType,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps)5580 llvm::Function *CGOpenMPRuntime::emitReductionFunction(
5581     SourceLocation Loc, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates,
5582     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
5583     ArrayRef<const Expr *> ReductionOps) {
5584   ASTContext &C = CGM.getContext();
5585 
5586   // void reduction_func(void *LHSArg, void *RHSArg);
5587   FunctionArgList Args;
5588   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5589                            ImplicitParamDecl::Other);
5590   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5591                            ImplicitParamDecl::Other);
5592   Args.push_back(&LHSArg);
5593   Args.push_back(&RHSArg);
5594   const auto &CGFI =
5595       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5596   std::string Name = getName({"omp", "reduction", "reduction_func"});
5597   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
5598                                     llvm::GlobalValue::InternalLinkage, Name,
5599                                     &CGM.getModule());
5600   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
5601   Fn->setDoesNotRecurse();
5602   CodeGenFunction CGF(CGM);
5603   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
5604 
5605   // Dst = (void*[n])(LHSArg);
5606   // Src = (void*[n])(RHSArg);
5607   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5608       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
5609       ArgsType), CGF.getPointerAlign());
5610   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5611       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
5612       ArgsType), CGF.getPointerAlign());
5613 
5614   //  ...
5615   //  *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
5616   //  ...
5617   CodeGenFunction::OMPPrivateScope Scope(CGF);
5618   auto IPriv = Privates.begin();
5619   unsigned Idx = 0;
5620   for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
5621     const auto *RHSVar =
5622         cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
5623     Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() {
5624       return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
5625     });
5626     const auto *LHSVar =
5627         cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
5628     Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() {
5629       return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
5630     });
5631     QualType PrivTy = (*IPriv)->getType();
5632     if (PrivTy->isVariablyModifiedType()) {
5633       // Get array size and emit VLA type.
5634       ++Idx;
5635       Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx);
5636       llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
5637       const VariableArrayType *VLA =
5638           CGF.getContext().getAsVariableArrayType(PrivTy);
5639       const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
5640       CodeGenFunction::OpaqueValueMapping OpaqueMap(
5641           CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
5642       CGF.EmitVariablyModifiedType(PrivTy);
5643     }
5644   }
5645   Scope.Privatize();
5646   IPriv = Privates.begin();
5647   auto ILHS = LHSExprs.begin();
5648   auto IRHS = RHSExprs.begin();
5649   for (const Expr *E : ReductionOps) {
5650     if ((*IPriv)->getType()->isArrayType()) {
5651       // Emit reduction for array section.
5652       const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5653       const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5654       EmitOMPAggregateReduction(
5655           CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5656           [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5657             emitReductionCombiner(CGF, E);
5658           });
5659     } else {
5660       // Emit reduction for array subscript or single variable.
5661       emitReductionCombiner(CGF, E);
5662     }
5663     ++IPriv;
5664     ++ILHS;
5665     ++IRHS;
5666   }
5667   Scope.ForceCleanup();
5668   CGF.FinishFunction();
5669   return Fn;
5670 }
5671 
emitSingleReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp,const Expr * PrivateRef,const DeclRefExpr * LHS,const DeclRefExpr * RHS)5672 void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
5673                                                   const Expr *ReductionOp,
5674                                                   const Expr *PrivateRef,
5675                                                   const DeclRefExpr *LHS,
5676                                                   const DeclRefExpr *RHS) {
5677   if (PrivateRef->getType()->isArrayType()) {
5678     // Emit reduction for array section.
5679     const auto *LHSVar = cast<VarDecl>(LHS->getDecl());
5680     const auto *RHSVar = cast<VarDecl>(RHS->getDecl());
5681     EmitOMPAggregateReduction(
5682         CGF, PrivateRef->getType(), LHSVar, RHSVar,
5683         [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5684           emitReductionCombiner(CGF, ReductionOp);
5685         });
5686   } else {
5687     // Emit reduction for array subscript or single variable.
5688     emitReductionCombiner(CGF, ReductionOp);
5689   }
5690 }
5691 
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)5692 void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
5693                                     ArrayRef<const Expr *> Privates,
5694                                     ArrayRef<const Expr *> LHSExprs,
5695                                     ArrayRef<const Expr *> RHSExprs,
5696                                     ArrayRef<const Expr *> ReductionOps,
5697                                     ReductionOptionsTy Options) {
5698   if (!CGF.HaveInsertPoint())
5699     return;
5700 
5701   bool WithNowait = Options.WithNowait;
5702   bool SimpleReduction = Options.SimpleReduction;
5703 
5704   // Next code should be emitted for reduction:
5705   //
5706   // static kmp_critical_name lock = { 0 };
5707   //
5708   // void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
5709   //  *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
5710   //  ...
5711   //  *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
5712   //  *(Type<n>-1*)rhs[<n>-1]);
5713   // }
5714   //
5715   // ...
5716   // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
5717   // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5718   // RedList, reduce_func, &<lock>)) {
5719   // case 1:
5720   //  ...
5721   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5722   //  ...
5723   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5724   // break;
5725   // case 2:
5726   //  ...
5727   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5728   //  ...
5729   // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
5730   // break;
5731   // default:;
5732   // }
5733   //
5734   // if SimpleReduction is true, only the next code is generated:
5735   //  ...
5736   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5737   //  ...
5738 
5739   ASTContext &C = CGM.getContext();
5740 
5741   if (SimpleReduction) {
5742     CodeGenFunction::RunCleanupsScope Scope(CGF);
5743     auto IPriv = Privates.begin();
5744     auto ILHS = LHSExprs.begin();
5745     auto IRHS = RHSExprs.begin();
5746     for (const Expr *E : ReductionOps) {
5747       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5748                                   cast<DeclRefExpr>(*IRHS));
5749       ++IPriv;
5750       ++ILHS;
5751       ++IRHS;
5752     }
5753     return;
5754   }
5755 
5756   // 1. Build a list of reduction variables.
5757   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
5758   auto Size = RHSExprs.size();
5759   for (const Expr *E : Privates) {
5760     if (E->getType()->isVariablyModifiedType())
5761       // Reserve place for array size.
5762       ++Size;
5763   }
5764   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
5765   QualType ReductionArrayTy =
5766       C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
5767                              /*IndexTypeQuals=*/0);
5768   Address ReductionList =
5769       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
5770   auto IPriv = Privates.begin();
5771   unsigned Idx = 0;
5772   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
5773     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5774     CGF.Builder.CreateStore(
5775         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5776             CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
5777         Elem);
5778     if ((*IPriv)->getType()->isVariablyModifiedType()) {
5779       // Store array size.
5780       ++Idx;
5781       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5782       llvm::Value *Size = CGF.Builder.CreateIntCast(
5783           CGF.getVLASize(
5784                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
5785               .NumElts,
5786           CGF.SizeTy, /*isSigned=*/false);
5787       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
5788                               Elem);
5789     }
5790   }
5791 
5792   // 2. Emit reduce_func().
5793   llvm::Function *ReductionFn = emitReductionFunction(
5794       Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
5795       LHSExprs, RHSExprs, ReductionOps);
5796 
5797   // 3. Create static kmp_critical_name lock = { 0 };
5798   std::string Name = getName({"reduction"});
5799   llvm::Value *Lock = getCriticalRegionLock(Name);
5800 
5801   // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5802   // RedList, reduce_func, &<lock>);
5803   llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
5804   llvm::Value *ThreadId = getThreadID(CGF, Loc);
5805   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
5806   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5807       ReductionList.getPointer(), CGF.VoidPtrTy);
5808   llvm::Value *Args[] = {
5809       IdentTLoc,                             // ident_t *<loc>
5810       ThreadId,                              // i32 <gtid>
5811       CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
5812       ReductionArrayTySize,                  // size_type sizeof(RedList)
5813       RL,                                    // void *RedList
5814       ReductionFn, // void (*) (void *, void *) <reduce_func>
5815       Lock         // kmp_critical_name *&<lock>
5816   };
5817   llvm::Value *Res = CGF.EmitRuntimeCall(
5818       createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait
5819                                        : OMPRTL__kmpc_reduce),
5820       Args);
5821 
5822   // 5. Build switch(res)
5823   llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
5824   llvm::SwitchInst *SwInst =
5825       CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
5826 
5827   // 6. Build case 1:
5828   //  ...
5829   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5830   //  ...
5831   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5832   // break;
5833   llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
5834   SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
5835   CGF.EmitBlock(Case1BB);
5836 
5837   // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5838   llvm::Value *EndArgs[] = {
5839       IdentTLoc, // ident_t *<loc>
5840       ThreadId,  // i32 <gtid>
5841       Lock       // kmp_critical_name *&<lock>
5842   };
5843   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps](
5844                        CodeGenFunction &CGF, PrePostActionTy &Action) {
5845     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5846     auto IPriv = Privates.begin();
5847     auto ILHS = LHSExprs.begin();
5848     auto IRHS = RHSExprs.begin();
5849     for (const Expr *E : ReductionOps) {
5850       RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5851                                      cast<DeclRefExpr>(*IRHS));
5852       ++IPriv;
5853       ++ILHS;
5854       ++IRHS;
5855     }
5856   };
5857   RegionCodeGenTy RCG(CodeGen);
5858   CommonActionTy Action(
5859       nullptr, llvm::None,
5860       createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait
5861                                        : OMPRTL__kmpc_end_reduce),
5862       EndArgs);
5863   RCG.setAction(Action);
5864   RCG(CGF);
5865 
5866   CGF.EmitBranch(DefaultBB);
5867 
5868   // 7. Build case 2:
5869   //  ...
5870   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5871   //  ...
5872   // break;
5873   llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
5874   SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
5875   CGF.EmitBlock(Case2BB);
5876 
5877   auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps](
5878                              CodeGenFunction &CGF, PrePostActionTy &Action) {
5879     auto ILHS = LHSExprs.begin();
5880     auto IRHS = RHSExprs.begin();
5881     auto IPriv = Privates.begin();
5882     for (const Expr *E : ReductionOps) {
5883       const Expr *XExpr = nullptr;
5884       const Expr *EExpr = nullptr;
5885       const Expr *UpExpr = nullptr;
5886       BinaryOperatorKind BO = BO_Comma;
5887       if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
5888         if (BO->getOpcode() == BO_Assign) {
5889           XExpr = BO->getLHS();
5890           UpExpr = BO->getRHS();
5891         }
5892       }
5893       // Try to emit update expression as a simple atomic.
5894       const Expr *RHSExpr = UpExpr;
5895       if (RHSExpr) {
5896         // Analyze RHS part of the whole expression.
5897         if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(
5898                 RHSExpr->IgnoreParenImpCasts())) {
5899           // If this is a conditional operator, analyze its condition for
5900           // min/max reduction operator.
5901           RHSExpr = ACO->getCond();
5902         }
5903         if (const auto *BORHS =
5904                 dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
5905           EExpr = BORHS->getRHS();
5906           BO = BORHS->getOpcode();
5907         }
5908       }
5909       if (XExpr) {
5910         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5911         auto &&AtomicRedGen = [BO, VD,
5912                                Loc](CodeGenFunction &CGF, const Expr *XExpr,
5913                                     const Expr *EExpr, const Expr *UpExpr) {
5914           LValue X = CGF.EmitLValue(XExpr);
5915           RValue E;
5916           if (EExpr)
5917             E = CGF.EmitAnyExpr(EExpr);
5918           CGF.EmitOMPAtomicSimpleUpdateExpr(
5919               X, E, BO, /*IsXLHSInRHSPart=*/true,
5920               llvm::AtomicOrdering::Monotonic, Loc,
5921               [&CGF, UpExpr, VD, Loc](RValue XRValue) {
5922                 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5923                 PrivateScope.addPrivate(
5924                     VD, [&CGF, VD, XRValue, Loc]() {
5925                       Address LHSTemp = CGF.CreateMemTemp(VD->getType());
5926                       CGF.emitOMPSimpleStore(
5927                           CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
5928                           VD->getType().getNonReferenceType(), Loc);
5929                       return LHSTemp;
5930                     });
5931                 (void)PrivateScope.Privatize();
5932                 return CGF.EmitAnyExpr(UpExpr);
5933               });
5934         };
5935         if ((*IPriv)->getType()->isArrayType()) {
5936           // Emit atomic reduction for array section.
5937           const auto *RHSVar =
5938               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5939           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
5940                                     AtomicRedGen, XExpr, EExpr, UpExpr);
5941         } else {
5942           // Emit atomic reduction for array subscript or single variable.
5943           AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
5944         }
5945       } else {
5946         // Emit as a critical region.
5947         auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
5948                                            const Expr *, const Expr *) {
5949           CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5950           std::string Name = RT.getName({"atomic_reduction"});
5951           RT.emitCriticalRegion(
5952               CGF, Name,
5953               [=](CodeGenFunction &CGF, PrePostActionTy &Action) {
5954                 Action.Enter(CGF);
5955                 emitReductionCombiner(CGF, E);
5956               },
5957               Loc);
5958         };
5959         if ((*IPriv)->getType()->isArrayType()) {
5960           const auto *LHSVar =
5961               cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5962           const auto *RHSVar =
5963               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5964           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5965                                     CritRedGen);
5966         } else {
5967           CritRedGen(CGF, nullptr, nullptr, nullptr);
5968         }
5969       }
5970       ++ILHS;
5971       ++IRHS;
5972       ++IPriv;
5973     }
5974   };
5975   RegionCodeGenTy AtomicRCG(AtomicCodeGen);
5976   if (!WithNowait) {
5977     // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
5978     llvm::Value *EndArgs[] = {
5979         IdentTLoc, // ident_t *<loc>
5980         ThreadId,  // i32 <gtid>
5981         Lock       // kmp_critical_name *&<lock>
5982     };
5983     CommonActionTy Action(nullptr, llvm::None,
5984                           createRuntimeFunction(OMPRTL__kmpc_end_reduce),
5985                           EndArgs);
5986     AtomicRCG.setAction(Action);
5987     AtomicRCG(CGF);
5988   } else {
5989     AtomicRCG(CGF);
5990   }
5991 
5992   CGF.EmitBranch(DefaultBB);
5993   CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
5994 }
5995 
5996 /// Generates unique name for artificial threadprivate variables.
5997 /// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>"
generateUniqueName(CodeGenModule & CGM,StringRef Prefix,const Expr * Ref)5998 static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix,
5999                                       const Expr *Ref) {
6000   SmallString<256> Buffer;
6001   llvm::raw_svector_ostream Out(Buffer);
6002   const clang::DeclRefExpr *DE;
6003   const VarDecl *D = ::getBaseDecl(Ref, DE);
6004   if (!D)
6005     D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl());
6006   D = D->getCanonicalDecl();
6007   std::string Name = CGM.getOpenMPRuntime().getName(
6008       {D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)});
6009   Out << Prefix << Name << "_"
6010       << D->getCanonicalDecl()->getBeginLoc().getRawEncoding();
6011   return Out.str();
6012 }
6013 
6014 /// Emits reduction initializer function:
6015 /// \code
6016 /// void @.red_init(void* %arg) {
6017 /// %0 = bitcast void* %arg to <type>*
6018 /// store <type> <init>, <type>* %0
6019 /// ret void
6020 /// }
6021 /// \endcode
emitReduceInitFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)6022 static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM,
6023                                            SourceLocation Loc,
6024                                            ReductionCodeGen &RCG, unsigned N) {
6025   ASTContext &C = CGM.getContext();
6026   FunctionArgList Args;
6027   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
6028                           ImplicitParamDecl::Other);
6029   Args.emplace_back(&Param);
6030   const auto &FnInfo =
6031       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
6032   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
6033   std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""});
6034   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
6035                                     Name, &CGM.getModule());
6036   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
6037   Fn->setDoesNotRecurse();
6038   CodeGenFunction CGF(CGM);
6039   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
6040   Address PrivateAddr = CGF.EmitLoadOfPointer(
6041       CGF.GetAddrOfLocalVar(&Param),
6042       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
6043   llvm::Value *Size = nullptr;
6044   // If the size of the reduction item is non-constant, load it from global
6045   // threadprivate variable.
6046   if (RCG.getSizes(N).second) {
6047     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
6048         CGF, CGM.getContext().getSizeType(),
6049         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6050     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
6051                                 CGM.getContext().getSizeType(), Loc);
6052   }
6053   RCG.emitAggregateType(CGF, N, Size);
6054   LValue SharedLVal;
6055   // If initializer uses initializer from declare reduction construct, emit a
6056   // pointer to the address of the original reduction item (reuired by reduction
6057   // initializer)
6058   if (RCG.usesReductionInitializer(N)) {
6059     Address SharedAddr =
6060         CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
6061             CGF, CGM.getContext().VoidPtrTy,
6062             generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
6063     SharedAddr = CGF.EmitLoadOfPointer(
6064         SharedAddr,
6065         CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr());
6066     SharedLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy);
6067   } else {
6068     SharedLVal = CGF.MakeNaturalAlignAddrLValue(
6069         llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
6070         CGM.getContext().VoidPtrTy);
6071   }
6072   // Emit the initializer:
6073   // %0 = bitcast void* %arg to <type>*
6074   // store <type> <init>, <type>* %0
6075   RCG.emitInitialization(CGF, N, PrivateAddr, SharedLVal,
6076                          [](CodeGenFunction &) { return false; });
6077   CGF.FinishFunction();
6078   return Fn;
6079 }
6080 
6081 /// Emits reduction combiner function:
6082 /// \code
6083 /// void @.red_comb(void* %arg0, void* %arg1) {
6084 /// %lhs = bitcast void* %arg0 to <type>*
6085 /// %rhs = bitcast void* %arg1 to <type>*
6086 /// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs)
6087 /// store <type> %2, <type>* %lhs
6088 /// ret void
6089 /// }
6090 /// \endcode
emitReduceCombFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N,const Expr * ReductionOp,const Expr * LHS,const Expr * RHS,const Expr * PrivateRef)6091 static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM,
6092                                            SourceLocation Loc,
6093                                            ReductionCodeGen &RCG, unsigned N,
6094                                            const Expr *ReductionOp,
6095                                            const Expr *LHS, const Expr *RHS,
6096                                            const Expr *PrivateRef) {
6097   ASTContext &C = CGM.getContext();
6098   const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl());
6099   const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl());
6100   FunctionArgList Args;
6101   ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
6102                                C.VoidPtrTy, ImplicitParamDecl::Other);
6103   ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
6104                             ImplicitParamDecl::Other);
6105   Args.emplace_back(&ParamInOut);
6106   Args.emplace_back(&ParamIn);
6107   const auto &FnInfo =
6108       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
6109   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
6110   std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""});
6111   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
6112                                     Name, &CGM.getModule());
6113   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
6114   Fn->setDoesNotRecurse();
6115   CodeGenFunction CGF(CGM);
6116   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
6117   llvm::Value *Size = nullptr;
6118   // If the size of the reduction item is non-constant, load it from global
6119   // threadprivate variable.
6120   if (RCG.getSizes(N).second) {
6121     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
6122         CGF, CGM.getContext().getSizeType(),
6123         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6124     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
6125                                 CGM.getContext().getSizeType(), Loc);
6126   }
6127   RCG.emitAggregateType(CGF, N, Size);
6128   // Remap lhs and rhs variables to the addresses of the function arguments.
6129   // %lhs = bitcast void* %arg0 to <type>*
6130   // %rhs = bitcast void* %arg1 to <type>*
6131   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6132   PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() {
6133     // Pull out the pointer to the variable.
6134     Address PtrAddr = CGF.EmitLoadOfPointer(
6135         CGF.GetAddrOfLocalVar(&ParamInOut),
6136         C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
6137     return CGF.Builder.CreateElementBitCast(
6138         PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType()));
6139   });
6140   PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() {
6141     // Pull out the pointer to the variable.
6142     Address PtrAddr = CGF.EmitLoadOfPointer(
6143         CGF.GetAddrOfLocalVar(&ParamIn),
6144         C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
6145     return CGF.Builder.CreateElementBitCast(
6146         PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType()));
6147   });
6148   PrivateScope.Privatize();
6149   // Emit the combiner body:
6150   // %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs)
6151   // store <type> %2, <type>* %lhs
6152   CGM.getOpenMPRuntime().emitSingleReductionCombiner(
6153       CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS),
6154       cast<DeclRefExpr>(RHS));
6155   CGF.FinishFunction();
6156   return Fn;
6157 }
6158 
6159 /// Emits reduction finalizer function:
6160 /// \code
6161 /// void @.red_fini(void* %arg) {
6162 /// %0 = bitcast void* %arg to <type>*
6163 /// <destroy>(<type>* %0)
6164 /// ret void
6165 /// }
6166 /// \endcode
emitReduceFiniFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)6167 static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM,
6168                                            SourceLocation Loc,
6169                                            ReductionCodeGen &RCG, unsigned N) {
6170   if (!RCG.needCleanups(N))
6171     return nullptr;
6172   ASTContext &C = CGM.getContext();
6173   FunctionArgList Args;
6174   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
6175                           ImplicitParamDecl::Other);
6176   Args.emplace_back(&Param);
6177   const auto &FnInfo =
6178       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
6179   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
6180   std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""});
6181   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
6182                                     Name, &CGM.getModule());
6183   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
6184   Fn->setDoesNotRecurse();
6185   CodeGenFunction CGF(CGM);
6186   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
6187   Address PrivateAddr = CGF.EmitLoadOfPointer(
6188       CGF.GetAddrOfLocalVar(&Param),
6189       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
6190   llvm::Value *Size = nullptr;
6191   // If the size of the reduction item is non-constant, load it from global
6192   // threadprivate variable.
6193   if (RCG.getSizes(N).second) {
6194     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
6195         CGF, CGM.getContext().getSizeType(),
6196         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6197     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
6198                                 CGM.getContext().getSizeType(), Loc);
6199   }
6200   RCG.emitAggregateType(CGF, N, Size);
6201   // Emit the finalizer body:
6202   // <destroy>(<type>* %0)
6203   RCG.emitCleanups(CGF, N, PrivateAddr);
6204   CGF.FinishFunction();
6205   return Fn;
6206 }
6207 
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)6208 llvm::Value *CGOpenMPRuntime::emitTaskReductionInit(
6209     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
6210     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
6211   if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty())
6212     return nullptr;
6213 
6214   // Build typedef struct:
6215   // kmp_task_red_input {
6216   //   void *reduce_shar; // shared reduction item
6217   //   size_t reduce_size; // size of data item
6218   //   void *reduce_init; // data initialization routine
6219   //   void *reduce_fini; // data finalization routine
6220   //   void *reduce_comb; // data combiner routine
6221   //   kmp_task_red_flags_t flags; // flags for additional info from compiler
6222   // } kmp_task_red_input_t;
6223   ASTContext &C = CGM.getContext();
6224   RecordDecl *RD = C.buildImplicitRecord("kmp_task_red_input_t");
6225   RD->startDefinition();
6226   const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6227   const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType());
6228   const FieldDecl *InitFD  = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6229   const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6230   const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6231   const FieldDecl *FlagsFD = addFieldToRecordDecl(
6232       C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false));
6233   RD->completeDefinition();
6234   QualType RDType = C.getRecordType(RD);
6235   unsigned Size = Data.ReductionVars.size();
6236   llvm::APInt ArraySize(/*numBits=*/64, Size);
6237   QualType ArrayRDType = C.getConstantArrayType(
6238       RDType, ArraySize, ArrayType::Normal, /*IndexTypeQuals=*/0);
6239   // kmp_task_red_input_t .rd_input.[Size];
6240   Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input.");
6241   ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionCopies,
6242                        Data.ReductionOps);
6243   for (unsigned Cnt = 0; Cnt < Size; ++Cnt) {
6244     // kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt];
6245     llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0),
6246                            llvm::ConstantInt::get(CGM.SizeTy, Cnt)};
6247     llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP(
6248         TaskRedInput.getPointer(), Idxs,
6249         /*SignedIndices=*/false, /*IsSubtraction=*/false, Loc,
6250         ".rd_input.gep.");
6251     LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType);
6252     // ElemLVal.reduce_shar = &Shareds[Cnt];
6253     LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD);
6254     RCG.emitSharedLValue(CGF, Cnt);
6255     llvm::Value *CastedShared =
6256         CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer());
6257     CGF.EmitStoreOfScalar(CastedShared, SharedLVal);
6258     RCG.emitAggregateType(CGF, Cnt);
6259     llvm::Value *SizeValInChars;
6260     llvm::Value *SizeVal;
6261     std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt);
6262     // We use delayed creation/initialization for VLAs, array sections and
6263     // custom reduction initializations. It is required because runtime does not
6264     // provide the way to pass the sizes of VLAs/array sections to
6265     // initializer/combiner/finalizer functions and does not pass the pointer to
6266     // original reduction item to the initializer. Instead threadprivate global
6267     // variables are used to store these values and use them in the functions.
6268     bool DelayedCreation = !!SizeVal;
6269     SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy,
6270                                                /*isSigned=*/false);
6271     LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD);
6272     CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal);
6273     // ElemLVal.reduce_init = init;
6274     LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD);
6275     llvm::Value *InitAddr =
6276         CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt));
6277     CGF.EmitStoreOfScalar(InitAddr, InitLVal);
6278     DelayedCreation = DelayedCreation || RCG.usesReductionInitializer(Cnt);
6279     // ElemLVal.reduce_fini = fini;
6280     LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD);
6281     llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt);
6282     llvm::Value *FiniAddr = Fini
6283                                 ? CGF.EmitCastToVoidPtr(Fini)
6284                                 : llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
6285     CGF.EmitStoreOfScalar(FiniAddr, FiniLVal);
6286     // ElemLVal.reduce_comb = comb;
6287     LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD);
6288     llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction(
6289         CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt],
6290         RHSExprs[Cnt], Data.ReductionCopies[Cnt]));
6291     CGF.EmitStoreOfScalar(CombAddr, CombLVal);
6292     // ElemLVal.flags = 0;
6293     LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD);
6294     if (DelayedCreation) {
6295       CGF.EmitStoreOfScalar(
6296           llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true),
6297           FlagsLVal);
6298     } else
6299       CGF.EmitNullInitialization(FlagsLVal.getAddress(), FlagsLVal.getType());
6300   }
6301   // Build call void *__kmpc_task_reduction_init(int gtid, int num_data, void
6302   // *data);
6303   llvm::Value *Args[] = {
6304       CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
6305                                 /*isSigned=*/true),
6306       llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
6307       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(),
6308                                                       CGM.VoidPtrTy)};
6309   return CGF.EmitRuntimeCall(
6310       createRuntimeFunction(OMPRTL__kmpc_task_reduction_init), Args);
6311 }
6312 
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)6313 void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
6314                                               SourceLocation Loc,
6315                                               ReductionCodeGen &RCG,
6316                                               unsigned N) {
6317   auto Sizes = RCG.getSizes(N);
6318   // Emit threadprivate global variable if the type is non-constant
6319   // (Sizes.second = nullptr).
6320   if (Sizes.second) {
6321     llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy,
6322                                                      /*isSigned=*/false);
6323     Address SizeAddr = getAddrOfArtificialThreadPrivate(
6324         CGF, CGM.getContext().getSizeType(),
6325         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6326     CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false);
6327   }
6328   // Store address of the original reduction item if custom initializer is used.
6329   if (RCG.usesReductionInitializer(N)) {
6330     Address SharedAddr = getAddrOfArtificialThreadPrivate(
6331         CGF, CGM.getContext().VoidPtrTy,
6332         generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
6333     CGF.Builder.CreateStore(
6334         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6335             RCG.getSharedLValue(N).getPointer(), CGM.VoidPtrTy),
6336         SharedAddr, /*IsVolatile=*/false);
6337   }
6338 }
6339 
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)6340 Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF,
6341                                               SourceLocation Loc,
6342                                               llvm::Value *ReductionsPtr,
6343                                               LValue SharedLVal) {
6344   // Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
6345   // *d);
6346   llvm::Value *Args[] = {
6347       CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
6348                                 /*isSigned=*/true),
6349       ReductionsPtr,
6350       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(SharedLVal.getPointer(),
6351                                                       CGM.VoidPtrTy)};
6352   return Address(
6353       CGF.EmitRuntimeCall(
6354           createRuntimeFunction(OMPRTL__kmpc_task_reduction_get_th_data), Args),
6355       SharedLVal.getAlignment());
6356 }
6357 
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc)6358 void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
6359                                        SourceLocation Loc) {
6360   if (!CGF.HaveInsertPoint())
6361     return;
6362   // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
6363   // global_tid);
6364   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
6365   // Ignore return result until untied tasks are supported.
6366   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args);
6367   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
6368     Region->emitUntiedSwitch(CGF);
6369 }
6370 
emitInlinedDirective(CodeGenFunction & CGF,OpenMPDirectiveKind InnerKind,const RegionCodeGenTy & CodeGen,bool HasCancel)6371 void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
6372                                            OpenMPDirectiveKind InnerKind,
6373                                            const RegionCodeGenTy &CodeGen,
6374                                            bool HasCancel) {
6375   if (!CGF.HaveInsertPoint())
6376     return;
6377   InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
6378   CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
6379 }
6380 
6381 namespace {
6382 enum RTCancelKind {
6383   CancelNoreq = 0,
6384   CancelParallel = 1,
6385   CancelLoop = 2,
6386   CancelSections = 3,
6387   CancelTaskgroup = 4
6388 };
6389 } // anonymous namespace
6390 
getCancellationKind(OpenMPDirectiveKind CancelRegion)6391 static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
6392   RTCancelKind CancelKind = CancelNoreq;
6393   if (CancelRegion == OMPD_parallel)
6394     CancelKind = CancelParallel;
6395   else if (CancelRegion == OMPD_for)
6396     CancelKind = CancelLoop;
6397   else if (CancelRegion == OMPD_sections)
6398     CancelKind = CancelSections;
6399   else {
6400     assert(CancelRegion == OMPD_taskgroup);
6401     CancelKind = CancelTaskgroup;
6402   }
6403   return CancelKind;
6404 }
6405 
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)6406 void CGOpenMPRuntime::emitCancellationPointCall(
6407     CodeGenFunction &CGF, SourceLocation Loc,
6408     OpenMPDirectiveKind CancelRegion) {
6409   if (!CGF.HaveInsertPoint())
6410     return;
6411   // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
6412   // global_tid, kmp_int32 cncl_kind);
6413   if (auto *OMPRegionInfo =
6414           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6415     // For 'cancellation point taskgroup', the task region info may not have a
6416     // cancel. This may instead happen in another adjacent task.
6417     if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
6418       llvm::Value *Args[] = {
6419           emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
6420           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6421       // Ignore return result until untied tasks are supported.
6422       llvm::Value *Result = CGF.EmitRuntimeCall(
6423           createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args);
6424       // if (__kmpc_cancellationpoint()) {
6425       //   exit from construct;
6426       // }
6427       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6428       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6429       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6430       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6431       CGF.EmitBlock(ExitBB);
6432       // exit from construct;
6433       CodeGenFunction::JumpDest CancelDest =
6434           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6435       CGF.EmitBranchThroughCleanup(CancelDest);
6436       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6437     }
6438   }
6439 }
6440 
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)6441 void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
6442                                      const Expr *IfCond,
6443                                      OpenMPDirectiveKind CancelRegion) {
6444   if (!CGF.HaveInsertPoint())
6445     return;
6446   // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
6447   // kmp_int32 cncl_kind);
6448   if (auto *OMPRegionInfo =
6449           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6450     auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF,
6451                                                         PrePostActionTy &) {
6452       CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
6453       llvm::Value *Args[] = {
6454           RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
6455           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6456       // Ignore return result until untied tasks are supported.
6457       llvm::Value *Result = CGF.EmitRuntimeCall(
6458           RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args);
6459       // if (__kmpc_cancel()) {
6460       //   exit from construct;
6461       // }
6462       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6463       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6464       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6465       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6466       CGF.EmitBlock(ExitBB);
6467       // exit from construct;
6468       CodeGenFunction::JumpDest CancelDest =
6469           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6470       CGF.EmitBranchThroughCleanup(CancelDest);
6471       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6472     };
6473     if (IfCond) {
6474       emitOMPIfClause(CGF, IfCond, ThenGen,
6475                       [](CodeGenFunction &, PrePostActionTy &) {});
6476     } else {
6477       RegionCodeGenTy ThenRCG(ThenGen);
6478       ThenRCG(CGF);
6479     }
6480   }
6481 }
6482 
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6483 void CGOpenMPRuntime::emitTargetOutlinedFunction(
6484     const OMPExecutableDirective &D, StringRef ParentName,
6485     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6486     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6487   assert(!ParentName.empty() && "Invalid target region parent name!");
6488   HasEmittedTargetRegion = true;
6489   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
6490                                    IsOffloadEntry, CodeGen);
6491 }
6492 
emitTargetOutlinedFunctionHelper(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6493 void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
6494     const OMPExecutableDirective &D, StringRef ParentName,
6495     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6496     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6497   // Create a unique name for the entry function using the source location
6498   // information of the current target region. The name will be something like:
6499   //
6500   // __omp_offloading_DD_FFFF_PP_lBB
6501   //
6502   // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
6503   // mangled name of the function that encloses the target region and BB is the
6504   // line number of the target region.
6505 
6506   unsigned DeviceID;
6507   unsigned FileID;
6508   unsigned Line;
6509   getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID,
6510                            Line);
6511   SmallString<64> EntryFnName;
6512   {
6513     llvm::raw_svector_ostream OS(EntryFnName);
6514     OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
6515        << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
6516   }
6517 
6518   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
6519 
6520   CodeGenFunction CGF(CGM, true);
6521   CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
6522   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6523 
6524   OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS);
6525 
6526   // If this target outline function is not an offload entry, we don't need to
6527   // register it.
6528   if (!IsOffloadEntry)
6529     return;
6530 
6531   // The target region ID is used by the runtime library to identify the current
6532   // target region, so it only has to be unique and not necessarily point to
6533   // anything. It could be the pointer to the outlined function that implements
6534   // the target region, but we aren't using that so that the compiler doesn't
6535   // need to keep that, and could therefore inline the host function if proven
6536   // worthwhile during optimization. In the other hand, if emitting code for the
6537   // device, the ID has to be the function address so that it can retrieved from
6538   // the offloading entry and launched by the runtime library. We also mark the
6539   // outlined function to have external linkage in case we are emitting code for
6540   // the device, because these functions will be entry points to the device.
6541 
6542   if (CGM.getLangOpts().OpenMPIsDevice) {
6543     OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
6544     OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
6545     OutlinedFn->setDSOLocal(false);
6546   } else {
6547     std::string Name = getName({EntryFnName, "region_id"});
6548     OutlinedFnID = new llvm::GlobalVariable(
6549         CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
6550         llvm::GlobalValue::WeakAnyLinkage,
6551         llvm::Constant::getNullValue(CGM.Int8Ty), Name);
6552   }
6553 
6554   // Register the information for the entry associated with this target region.
6555   OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
6556       DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID,
6557       OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion);
6558 }
6559 
6560 /// Checks if the expression is constant or does not have non-trivial function
6561 /// calls.
isTrivial(ASTContext & Ctx,const Expr * E)6562 static bool isTrivial(ASTContext &Ctx, const Expr * E) {
6563   // We can skip constant expressions.
6564   // We can skip expressions with trivial calls or simple expressions.
6565   return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
6566           !E->hasNonTrivialCall(Ctx)) &&
6567          !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
6568 }
6569 
getSingleCompoundChild(ASTContext & Ctx,const Stmt * Body)6570 const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx,
6571                                                     const Stmt *Body) {
6572   const Stmt *Child = Body->IgnoreContainers();
6573   while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) {
6574     Child = nullptr;
6575     for (const Stmt *S : C->body()) {
6576       if (const auto *E = dyn_cast<Expr>(S)) {
6577         if (isTrivial(Ctx, E))
6578           continue;
6579       }
6580       // Some of the statements can be ignored.
6581       if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
6582           isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
6583         continue;
6584       // Analyze declarations.
6585       if (const auto *DS = dyn_cast<DeclStmt>(S)) {
6586         if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) {
6587               if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
6588                   isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
6589                   isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
6590                   isa<UsingDirectiveDecl>(D) ||
6591                   isa<OMPDeclareReductionDecl>(D) ||
6592                   isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D))
6593                 return true;
6594               const auto *VD = dyn_cast<VarDecl>(D);
6595               if (!VD)
6596                 return false;
6597               return VD->isConstexpr() ||
6598                      ((VD->getType().isTrivialType(Ctx) ||
6599                        VD->getType()->isReferenceType()) &&
6600                       (!VD->hasInit() || isTrivial(Ctx, VD->getInit())));
6601             }))
6602           continue;
6603       }
6604       // Found multiple children - cannot get the one child only.
6605       if (Child)
6606         return nullptr;
6607       Child = S;
6608     }
6609     if (Child)
6610       Child = Child->IgnoreContainers();
6611   }
6612   return Child;
6613 }
6614 
6615 /// Emit the number of teams for a target directive.  Inspect the num_teams
6616 /// clause associated with a teams construct combined or closely nested
6617 /// with the target directive.
6618 ///
6619 /// Emit a team of size one for directives such as 'target parallel' that
6620 /// have no associated teams construct.
6621 ///
6622 /// Otherwise, return nullptr.
6623 static llvm::Value *
emitNumTeamsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6624 emitNumTeamsForTargetDirective(CodeGenFunction &CGF,
6625                                const OMPExecutableDirective &D) {
6626   assert(!CGF.getLangOpts().OpenMPIsDevice &&
6627          "Clauses associated with the teams directive expected to be emitted "
6628          "only for the host!");
6629   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6630   assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6631          "Expected target-based executable directive.");
6632   CGBuilderTy &Bld = CGF.Builder;
6633   switch (DirectiveKind) {
6634   case OMPD_target: {
6635     const auto *CS = D.getInnermostCapturedStmt();
6636     const auto *Body =
6637         CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
6638     const Stmt *ChildStmt =
6639         CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body);
6640     if (const auto *NestedDir =
6641             dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
6642       if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) {
6643         if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) {
6644           CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6645           CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6646           const Expr *NumTeams =
6647               NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6648           llvm::Value *NumTeamsVal =
6649               CGF.EmitScalarExpr(NumTeams,
6650                                  /*IgnoreResultAssign*/ true);
6651           return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6652                                    /*isSigned=*/true);
6653         }
6654         return Bld.getInt32(0);
6655       }
6656       if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) ||
6657           isOpenMPSimdDirective(NestedDir->getDirectiveKind()))
6658         return Bld.getInt32(1);
6659       return Bld.getInt32(0);
6660     }
6661     return nullptr;
6662   }
6663   case OMPD_target_teams:
6664   case OMPD_target_teams_distribute:
6665   case OMPD_target_teams_distribute_simd:
6666   case OMPD_target_teams_distribute_parallel_for:
6667   case OMPD_target_teams_distribute_parallel_for_simd: {
6668     if (D.hasClausesOfKind<OMPNumTeamsClause>()) {
6669       CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
6670       const Expr *NumTeams =
6671           D.getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6672       llvm::Value *NumTeamsVal =
6673           CGF.EmitScalarExpr(NumTeams,
6674                              /*IgnoreResultAssign*/ true);
6675       return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6676                                /*isSigned=*/true);
6677     }
6678     return Bld.getInt32(0);
6679   }
6680   case OMPD_target_parallel:
6681   case OMPD_target_parallel_for:
6682   case OMPD_target_parallel_for_simd:
6683   case OMPD_target_simd:
6684     return Bld.getInt32(1);
6685   case OMPD_parallel:
6686   case OMPD_for:
6687   case OMPD_parallel_for:
6688   case OMPD_parallel_sections:
6689   case OMPD_for_simd:
6690   case OMPD_parallel_for_simd:
6691   case OMPD_cancel:
6692   case OMPD_cancellation_point:
6693   case OMPD_ordered:
6694   case OMPD_threadprivate:
6695   case OMPD_allocate:
6696   case OMPD_task:
6697   case OMPD_simd:
6698   case OMPD_sections:
6699   case OMPD_section:
6700   case OMPD_single:
6701   case OMPD_master:
6702   case OMPD_critical:
6703   case OMPD_taskyield:
6704   case OMPD_barrier:
6705   case OMPD_taskwait:
6706   case OMPD_taskgroup:
6707   case OMPD_atomic:
6708   case OMPD_flush:
6709   case OMPD_teams:
6710   case OMPD_target_data:
6711   case OMPD_target_exit_data:
6712   case OMPD_target_enter_data:
6713   case OMPD_distribute:
6714   case OMPD_distribute_simd:
6715   case OMPD_distribute_parallel_for:
6716   case OMPD_distribute_parallel_for_simd:
6717   case OMPD_teams_distribute:
6718   case OMPD_teams_distribute_simd:
6719   case OMPD_teams_distribute_parallel_for:
6720   case OMPD_teams_distribute_parallel_for_simd:
6721   case OMPD_target_update:
6722   case OMPD_declare_simd:
6723   case OMPD_declare_target:
6724   case OMPD_end_declare_target:
6725   case OMPD_declare_reduction:
6726   case OMPD_declare_mapper:
6727   case OMPD_taskloop:
6728   case OMPD_taskloop_simd:
6729   case OMPD_requires:
6730   case OMPD_unknown:
6731     break;
6732   }
6733   llvm_unreachable("Unexpected directive kind.");
6734 }
6735 
getNumThreads(CodeGenFunction & CGF,const CapturedStmt * CS,llvm::Value * DefaultThreadLimitVal)6736 static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS,
6737                                   llvm::Value *DefaultThreadLimitVal) {
6738   const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6739       CGF.getContext(), CS->getCapturedStmt());
6740   if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6741     if (isOpenMPParallelDirective(Dir->getDirectiveKind())) {
6742       llvm::Value *NumThreads = nullptr;
6743       llvm::Value *CondVal = nullptr;
6744       // Handle if clause. If if clause present, the number of threads is
6745       // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6746       if (Dir->hasClausesOfKind<OMPIfClause>()) {
6747         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6748         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6749         const OMPIfClause *IfClause = nullptr;
6750         for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) {
6751           if (C->getNameModifier() == OMPD_unknown ||
6752               C->getNameModifier() == OMPD_parallel) {
6753             IfClause = C;
6754             break;
6755           }
6756         }
6757         if (IfClause) {
6758           const Expr *Cond = IfClause->getCondition();
6759           bool Result;
6760           if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6761             if (!Result)
6762               return CGF.Builder.getInt32(1);
6763           } else {
6764             CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange());
6765             if (const auto *PreInit =
6766                     cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) {
6767               for (const auto *I : PreInit->decls()) {
6768                 if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6769                   CGF.EmitVarDecl(cast<VarDecl>(*I));
6770                 } else {
6771                   CodeGenFunction::AutoVarEmission Emission =
6772                       CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6773                   CGF.EmitAutoVarCleanups(Emission);
6774                 }
6775               }
6776             }
6777             CondVal = CGF.EvaluateExprAsBool(Cond);
6778           }
6779         }
6780       }
6781       // Check the value of num_threads clause iff if clause was not specified
6782       // or is not evaluated to false.
6783       if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) {
6784         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6785         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6786         const auto *NumThreadsClause =
6787             Dir->getSingleClause<OMPNumThreadsClause>();
6788         CodeGenFunction::LexicalScope Scope(
6789             CGF, NumThreadsClause->getNumThreads()->getSourceRange());
6790         if (const auto *PreInit =
6791                 cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) {
6792           for (const auto *I : PreInit->decls()) {
6793             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6794               CGF.EmitVarDecl(cast<VarDecl>(*I));
6795             } else {
6796               CodeGenFunction::AutoVarEmission Emission =
6797                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6798               CGF.EmitAutoVarCleanups(Emission);
6799             }
6800           }
6801         }
6802         NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads());
6803         NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty,
6804                                                /*isSigned=*/false);
6805         if (DefaultThreadLimitVal)
6806           NumThreads = CGF.Builder.CreateSelect(
6807               CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads),
6808               DefaultThreadLimitVal, NumThreads);
6809       } else {
6810         NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal
6811                                            : CGF.Builder.getInt32(0);
6812       }
6813       // Process condition of the if clause.
6814       if (CondVal) {
6815         NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads,
6816                                               CGF.Builder.getInt32(1));
6817       }
6818       return NumThreads;
6819     }
6820     if (isOpenMPSimdDirective(Dir->getDirectiveKind()))
6821       return CGF.Builder.getInt32(1);
6822     return DefaultThreadLimitVal;
6823   }
6824   return DefaultThreadLimitVal ? DefaultThreadLimitVal
6825                                : CGF.Builder.getInt32(0);
6826 }
6827 
6828 /// Emit the number of threads for a target directive.  Inspect the
6829 /// thread_limit clause associated with a teams construct combined or closely
6830 /// nested with the target directive.
6831 ///
6832 /// Emit the num_threads clause for directives such as 'target parallel' that
6833 /// have no associated teams construct.
6834 ///
6835 /// Otherwise, return nullptr.
6836 static llvm::Value *
emitNumThreadsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6837 emitNumThreadsForTargetDirective(CodeGenFunction &CGF,
6838                                  const OMPExecutableDirective &D) {
6839   assert(!CGF.getLangOpts().OpenMPIsDevice &&
6840          "Clauses associated with the teams directive expected to be emitted "
6841          "only for the host!");
6842   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6843   assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6844          "Expected target-based executable directive.");
6845   CGBuilderTy &Bld = CGF.Builder;
6846   llvm::Value *ThreadLimitVal = nullptr;
6847   llvm::Value *NumThreadsVal = nullptr;
6848   switch (DirectiveKind) {
6849   case OMPD_target: {
6850     const CapturedStmt *CS = D.getInnermostCapturedStmt();
6851     if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6852       return NumThreads;
6853     const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6854         CGF.getContext(), CS->getCapturedStmt());
6855     if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6856       if (Dir->hasClausesOfKind<OMPThreadLimitClause>()) {
6857         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6858         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6859         const auto *ThreadLimitClause =
6860             Dir->getSingleClause<OMPThreadLimitClause>();
6861         CodeGenFunction::LexicalScope Scope(
6862             CGF, ThreadLimitClause->getThreadLimit()->getSourceRange());
6863         if (const auto *PreInit =
6864                 cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) {
6865           for (const auto *I : PreInit->decls()) {
6866             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6867               CGF.EmitVarDecl(cast<VarDecl>(*I));
6868             } else {
6869               CodeGenFunction::AutoVarEmission Emission =
6870                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6871               CGF.EmitAutoVarCleanups(Emission);
6872             }
6873           }
6874         }
6875         llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6876             ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6877         ThreadLimitVal =
6878             Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6879       }
6880       if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) &&
6881           !isOpenMPDistributeDirective(Dir->getDirectiveKind())) {
6882         CS = Dir->getInnermostCapturedStmt();
6883         const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6884             CGF.getContext(), CS->getCapturedStmt());
6885         Dir = dyn_cast_or_null<OMPExecutableDirective>(Child);
6886       }
6887       if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) &&
6888           !isOpenMPSimdDirective(Dir->getDirectiveKind())) {
6889         CS = Dir->getInnermostCapturedStmt();
6890         if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6891           return NumThreads;
6892       }
6893       if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind()))
6894         return Bld.getInt32(1);
6895     }
6896     return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6897   }
6898   case OMPD_target_teams: {
6899     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6900       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6901       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6902       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6903           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6904       ThreadLimitVal =
6905           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6906     }
6907     const CapturedStmt *CS = D.getInnermostCapturedStmt();
6908     if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6909       return NumThreads;
6910     const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6911         CGF.getContext(), CS->getCapturedStmt());
6912     if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6913       if (Dir->getDirectiveKind() == OMPD_distribute) {
6914         CS = Dir->getInnermostCapturedStmt();
6915         if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6916           return NumThreads;
6917       }
6918     }
6919     return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6920   }
6921   case OMPD_target_teams_distribute:
6922     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6923       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6924       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6925       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6926           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6927       ThreadLimitVal =
6928           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6929     }
6930     return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal);
6931   case OMPD_target_parallel:
6932   case OMPD_target_parallel_for:
6933   case OMPD_target_parallel_for_simd:
6934   case OMPD_target_teams_distribute_parallel_for:
6935   case OMPD_target_teams_distribute_parallel_for_simd: {
6936     llvm::Value *CondVal = nullptr;
6937     // Handle if clause. If if clause present, the number of threads is
6938     // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6939     if (D.hasClausesOfKind<OMPIfClause>()) {
6940       const OMPIfClause *IfClause = nullptr;
6941       for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
6942         if (C->getNameModifier() == OMPD_unknown ||
6943             C->getNameModifier() == OMPD_parallel) {
6944           IfClause = C;
6945           break;
6946         }
6947       }
6948       if (IfClause) {
6949         const Expr *Cond = IfClause->getCondition();
6950         bool Result;
6951         if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6952           if (!Result)
6953             return Bld.getInt32(1);
6954         } else {
6955           CodeGenFunction::RunCleanupsScope Scope(CGF);
6956           CondVal = CGF.EvaluateExprAsBool(Cond);
6957         }
6958       }
6959     }
6960     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6961       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6962       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6963       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6964           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6965       ThreadLimitVal =
6966           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6967     }
6968     if (D.hasClausesOfKind<OMPNumThreadsClause>()) {
6969       CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
6970       const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>();
6971       llvm::Value *NumThreads = CGF.EmitScalarExpr(
6972           NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true);
6973       NumThreadsVal =
6974           Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false);
6975       ThreadLimitVal = ThreadLimitVal
6976                            ? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal,
6977                                                                 ThreadLimitVal),
6978                                               NumThreadsVal, ThreadLimitVal)
6979                            : NumThreadsVal;
6980     }
6981     if (!ThreadLimitVal)
6982       ThreadLimitVal = Bld.getInt32(0);
6983     if (CondVal)
6984       return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1));
6985     return ThreadLimitVal;
6986   }
6987   case OMPD_target_teams_distribute_simd:
6988   case OMPD_target_simd:
6989     return Bld.getInt32(1);
6990   case OMPD_parallel:
6991   case OMPD_for:
6992   case OMPD_parallel_for:
6993   case OMPD_parallel_sections:
6994   case OMPD_for_simd:
6995   case OMPD_parallel_for_simd:
6996   case OMPD_cancel:
6997   case OMPD_cancellation_point:
6998   case OMPD_ordered:
6999   case OMPD_threadprivate:
7000   case OMPD_allocate:
7001   case OMPD_task:
7002   case OMPD_simd:
7003   case OMPD_sections:
7004   case OMPD_section:
7005   case OMPD_single:
7006   case OMPD_master:
7007   case OMPD_critical:
7008   case OMPD_taskyield:
7009   case OMPD_barrier:
7010   case OMPD_taskwait:
7011   case OMPD_taskgroup:
7012   case OMPD_atomic:
7013   case OMPD_flush:
7014   case OMPD_teams:
7015   case OMPD_target_data:
7016   case OMPD_target_exit_data:
7017   case OMPD_target_enter_data:
7018   case OMPD_distribute:
7019   case OMPD_distribute_simd:
7020   case OMPD_distribute_parallel_for:
7021   case OMPD_distribute_parallel_for_simd:
7022   case OMPD_teams_distribute:
7023   case OMPD_teams_distribute_simd:
7024   case OMPD_teams_distribute_parallel_for:
7025   case OMPD_teams_distribute_parallel_for_simd:
7026   case OMPD_target_update:
7027   case OMPD_declare_simd:
7028   case OMPD_declare_target:
7029   case OMPD_end_declare_target:
7030   case OMPD_declare_reduction:
7031   case OMPD_declare_mapper:
7032   case OMPD_taskloop:
7033   case OMPD_taskloop_simd:
7034   case OMPD_requires:
7035   case OMPD_unknown:
7036     break;
7037   }
7038   llvm_unreachable("Unsupported directive kind.");
7039 }
7040 
7041 namespace {
7042 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
7043 
7044 // Utility to handle information from clauses associated with a given
7045 // construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
7046 // It provides a convenient interface to obtain the information and generate
7047 // code for that information.
7048 class MappableExprsHandler {
7049 public:
7050   /// Values for bit flags used to specify the mapping type for
7051   /// offloading.
7052   enum OpenMPOffloadMappingFlags : uint64_t {
7053     /// No flags
7054     OMP_MAP_NONE = 0x0,
7055     /// Allocate memory on the device and move data from host to device.
7056     OMP_MAP_TO = 0x01,
7057     /// Allocate memory on the device and move data from device to host.
7058     OMP_MAP_FROM = 0x02,
7059     /// Always perform the requested mapping action on the element, even
7060     /// if it was already mapped before.
7061     OMP_MAP_ALWAYS = 0x04,
7062     /// Delete the element from the device environment, ignoring the
7063     /// current reference count associated with the element.
7064     OMP_MAP_DELETE = 0x08,
7065     /// The element being mapped is a pointer-pointee pair; both the
7066     /// pointer and the pointee should be mapped.
7067     OMP_MAP_PTR_AND_OBJ = 0x10,
7068     /// This flags signals that the base address of an entry should be
7069     /// passed to the target kernel as an argument.
7070     OMP_MAP_TARGET_PARAM = 0x20,
7071     /// Signal that the runtime library has to return the device pointer
7072     /// in the current position for the data being mapped. Used when we have the
7073     /// use_device_ptr clause.
7074     OMP_MAP_RETURN_PARAM = 0x40,
7075     /// This flag signals that the reference being passed is a pointer to
7076     /// private data.
7077     OMP_MAP_PRIVATE = 0x80,
7078     /// Pass the element to the device by value.
7079     OMP_MAP_LITERAL = 0x100,
7080     /// Implicit map
7081     OMP_MAP_IMPLICIT = 0x200,
7082     /// The 16 MSBs of the flags indicate whether the entry is member of some
7083     /// struct/class.
7084     OMP_MAP_MEMBER_OF = 0xffff000000000000,
7085     LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF),
7086   };
7087 
7088   /// Class that associates information with a base pointer to be passed to the
7089   /// runtime library.
7090   class BasePointerInfo {
7091     /// The base pointer.
7092     llvm::Value *Ptr = nullptr;
7093     /// The base declaration that refers to this device pointer, or null if
7094     /// there is none.
7095     const ValueDecl *DevPtrDecl = nullptr;
7096 
7097   public:
BasePointerInfo(llvm::Value * Ptr,const ValueDecl * DevPtrDecl=nullptr)7098     BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
7099         : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
operator *() const7100     llvm::Value *operator*() const { return Ptr; }
getDevicePtrDecl() const7101     const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
setDevicePtrDecl(const ValueDecl * D)7102     void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
7103   };
7104 
7105   using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>;
7106   using MapValuesArrayTy = SmallVector<llvm::Value *, 4>;
7107   using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>;
7108 
7109   /// Map between a struct and the its lowest & highest elements which have been
7110   /// mapped.
7111   /// [ValueDecl *] --> {LE(FieldIndex, Pointer),
7112   ///                    HE(FieldIndex, Pointer)}
7113   struct StructRangeInfoTy {
7114     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = {
7115         0, Address::invalid()};
7116     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = {
7117         0, Address::invalid()};
7118     Address Base = Address::invalid();
7119   };
7120 
7121 private:
7122   /// Kind that defines how a device pointer has to be returned.
7123   struct MapInfo {
7124     OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
7125     OpenMPMapClauseKind MapType = OMPC_MAP_unknown;
7126     ArrayRef<OpenMPMapModifierKind> MapModifiers;
7127     bool ReturnDevicePointer = false;
7128     bool IsImplicit = false;
7129 
7130     MapInfo() = default;
MapInfo__anon850272ab3411::MappableExprsHandler::MapInfo7131     MapInfo(
7132         OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7133         OpenMPMapClauseKind MapType,
7134         ArrayRef<OpenMPMapModifierKind> MapModifiers,
7135         bool ReturnDevicePointer, bool IsImplicit)
7136         : Components(Components), MapType(MapType), MapModifiers(MapModifiers),
7137           ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit) {}
7138   };
7139 
7140   /// If use_device_ptr is used on a pointer which is a struct member and there
7141   /// is no map information about it, then emission of that entry is deferred
7142   /// until the whole struct has been processed.
7143   struct DeferredDevicePtrEntryTy {
7144     const Expr *IE = nullptr;
7145     const ValueDecl *VD = nullptr;
7146 
DeferredDevicePtrEntryTy__anon850272ab3411::MappableExprsHandler::DeferredDevicePtrEntryTy7147     DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD)
7148         : IE(IE), VD(VD) {}
7149   };
7150 
7151   /// Directive from where the map clauses were extracted.
7152   const OMPExecutableDirective &CurDir;
7153 
7154   /// Function the directive is being generated for.
7155   CodeGenFunction &CGF;
7156 
7157   /// Set of all first private variables in the current directive.
7158   /// bool data is set to true if the variable is implicitly marked as
7159   /// firstprivate, false otherwise.
7160   llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls;
7161 
7162   /// Map between device pointer declarations and their expression components.
7163   /// The key value for declarations in 'this' is null.
7164   llvm::DenseMap<
7165       const ValueDecl *,
7166       SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
7167       DevPointersMap;
7168 
getExprTypeSize(const Expr * E) const7169   llvm::Value *getExprTypeSize(const Expr *E) const {
7170     QualType ExprTy = E->getType().getCanonicalType();
7171 
7172     // Reference types are ignored for mapping purposes.
7173     if (const auto *RefTy = ExprTy->getAs<ReferenceType>())
7174       ExprTy = RefTy->getPointeeType().getCanonicalType();
7175 
7176     // Given that an array section is considered a built-in type, we need to
7177     // do the calculation based on the length of the section instead of relying
7178     // on CGF.getTypeSize(E->getType()).
7179     if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
7180       QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
7181                             OAE->getBase()->IgnoreParenImpCasts())
7182                             .getCanonicalType();
7183 
7184       // If there is no length associated with the expression, that means we
7185       // are using the whole length of the base.
7186       if (!OAE->getLength() && OAE->getColonLoc().isValid())
7187         return CGF.getTypeSize(BaseTy);
7188 
7189       llvm::Value *ElemSize;
7190       if (const auto *PTy = BaseTy->getAs<PointerType>()) {
7191         ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
7192       } else {
7193         const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
7194         assert(ATy && "Expecting array type if not a pointer type.");
7195         ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
7196       }
7197 
7198       // If we don't have a length at this point, that is because we have an
7199       // array section with a single element.
7200       if (!OAE->getLength())
7201         return ElemSize;
7202 
7203       llvm::Value *LengthVal = CGF.EmitScalarExpr(OAE->getLength());
7204       LengthVal =
7205           CGF.Builder.CreateIntCast(LengthVal, CGF.SizeTy, /*isSigned=*/false);
7206       return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
7207     }
7208     return CGF.getTypeSize(ExprTy);
7209   }
7210 
7211   /// Return the corresponding bits for a given map clause modifier. Add
7212   /// a flag marking the map as a pointer if requested. Add a flag marking the
7213   /// map as the first one of a series of maps that relate to the same map
7214   /// expression.
getMapTypeBits(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,bool IsImplicit,bool AddPtrFlag,bool AddIsTargetParamFlag) const7215   OpenMPOffloadMappingFlags getMapTypeBits(
7216       OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
7217       bool IsImplicit, bool AddPtrFlag, bool AddIsTargetParamFlag) const {
7218     OpenMPOffloadMappingFlags Bits =
7219         IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE;
7220     switch (MapType) {
7221     case OMPC_MAP_alloc:
7222     case OMPC_MAP_release:
7223       // alloc and release is the default behavior in the runtime library,  i.e.
7224       // if we don't pass any bits alloc/release that is what the runtime is
7225       // going to do. Therefore, we don't need to signal anything for these two
7226       // type modifiers.
7227       break;
7228     case OMPC_MAP_to:
7229       Bits |= OMP_MAP_TO;
7230       break;
7231     case OMPC_MAP_from:
7232       Bits |= OMP_MAP_FROM;
7233       break;
7234     case OMPC_MAP_tofrom:
7235       Bits |= OMP_MAP_TO | OMP_MAP_FROM;
7236       break;
7237     case OMPC_MAP_delete:
7238       Bits |= OMP_MAP_DELETE;
7239       break;
7240     case OMPC_MAP_unknown:
7241       llvm_unreachable("Unexpected map type!");
7242     }
7243     if (AddPtrFlag)
7244       Bits |= OMP_MAP_PTR_AND_OBJ;
7245     if (AddIsTargetParamFlag)
7246       Bits |= OMP_MAP_TARGET_PARAM;
7247     if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always)
7248         != MapModifiers.end())
7249       Bits |= OMP_MAP_ALWAYS;
7250     return Bits;
7251   }
7252 
7253   /// Return true if the provided expression is a final array section. A
7254   /// final array section, is one whose length can't be proved to be one.
isFinalArraySectionExpression(const Expr * E) const7255   bool isFinalArraySectionExpression(const Expr *E) const {
7256     const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
7257 
7258     // It is not an array section and therefore not a unity-size one.
7259     if (!OASE)
7260       return false;
7261 
7262     // An array section with no colon always refer to a single element.
7263     if (OASE->getColonLoc().isInvalid())
7264       return false;
7265 
7266     const Expr *Length = OASE->getLength();
7267 
7268     // If we don't have a length we have to check if the array has size 1
7269     // for this dimension. Also, we should always expect a length if the
7270     // base type is pointer.
7271     if (!Length) {
7272       QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
7273                              OASE->getBase()->IgnoreParenImpCasts())
7274                              .getCanonicalType();
7275       if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
7276         return ATy->getSize().getSExtValue() != 1;
7277       // If we don't have a constant dimension length, we have to consider
7278       // the current section as having any size, so it is not necessarily
7279       // unitary. If it happen to be unity size, that's user fault.
7280       return true;
7281     }
7282 
7283     // Check if the length evaluates to 1.
7284     Expr::EvalResult Result;
7285     if (!Length->EvaluateAsInt(Result, CGF.getContext()))
7286       return true; // Can have more that size 1.
7287 
7288     llvm::APSInt ConstLength = Result.Val.getInt();
7289     return ConstLength.getSExtValue() != 1;
7290   }
7291 
7292   /// Generate the base pointers, section pointers, sizes and map type
7293   /// bits for the provided map type, map modifier, and expression components.
7294   /// \a IsFirstComponent should be set to true if the provided set of
7295   /// components is the first associated with a capture.
generateInfoForComponentList(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,OMPClauseMappableExprCommon::MappableExprComponentListRef Components,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types,StructRangeInfoTy & PartialStruct,bool IsFirstComponentList,bool IsImplicit,ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef> OverlappedElements=llvm::None) const7296   void generateInfoForComponentList(
7297       OpenMPMapClauseKind MapType,
7298       ArrayRef<OpenMPMapModifierKind> MapModifiers,
7299       OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7300       MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
7301       MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
7302       StructRangeInfoTy &PartialStruct, bool IsFirstComponentList,
7303       bool IsImplicit,
7304       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
7305           OverlappedElements = llvm::None) const {
7306     // The following summarizes what has to be generated for each map and the
7307     // types below. The generated information is expressed in this order:
7308     // base pointer, section pointer, size, flags
7309     // (to add to the ones that come from the map type and modifier).
7310     //
7311     // double d;
7312     // int i[100];
7313     // float *p;
7314     //
7315     // struct S1 {
7316     //   int i;
7317     //   float f[50];
7318     // }
7319     // struct S2 {
7320     //   int i;
7321     //   float f[50];
7322     //   S1 s;
7323     //   double *p;
7324     //   struct S2 *ps;
7325     // }
7326     // S2 s;
7327     // S2 *ps;
7328     //
7329     // map(d)
7330     // &d, &d, sizeof(double), TARGET_PARAM | TO | FROM
7331     //
7332     // map(i)
7333     // &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM
7334     //
7335     // map(i[1:23])
7336     // &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM
7337     //
7338     // map(p)
7339     // &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM
7340     //
7341     // map(p[1:24])
7342     // p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM
7343     //
7344     // map(s)
7345     // &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM
7346     //
7347     // map(s.i)
7348     // &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM
7349     //
7350     // map(s.s.f)
7351     // &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7352     //
7353     // map(s.p)
7354     // &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM
7355     //
7356     // map(to: s.p[:22])
7357     // &s, &(s.p), sizeof(double*), TARGET_PARAM (*)
7358     // &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**)
7359     // &(s.p), &(s.p[0]), 22*sizeof(double),
7360     //   MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
7361     // (*) alloc space for struct members, only this is a target parameter
7362     // (**) map the pointer (nothing to be mapped in this example) (the compiler
7363     //      optimizes this entry out, same in the examples below)
7364     // (***) map the pointee (map: to)
7365     //
7366     // map(s.ps)
7367     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7368     //
7369     // map(from: s.ps->s.i)
7370     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7371     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7372     // &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ  | FROM
7373     //
7374     // map(to: s.ps->ps)
7375     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7376     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7377     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ  | TO
7378     //
7379     // map(s.ps->ps->ps)
7380     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7381     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7382     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7383     // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7384     //
7385     // map(to: s.ps->ps->s.f[:22])
7386     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7387     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7388     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7389     // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7390     //
7391     // map(ps)
7392     // &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM
7393     //
7394     // map(ps->i)
7395     // ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM
7396     //
7397     // map(ps->s.f)
7398     // ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7399     //
7400     // map(from: ps->p)
7401     // ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM
7402     //
7403     // map(to: ps->p[:22])
7404     // ps, &(ps->p), sizeof(double*), TARGET_PARAM
7405     // ps, &(ps->p), sizeof(double*), MEMBER_OF(1)
7406     // &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO
7407     //
7408     // map(ps->ps)
7409     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7410     //
7411     // map(from: ps->ps->s.i)
7412     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7413     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7414     // &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7415     //
7416     // map(from: ps->ps->ps)
7417     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7418     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7419     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7420     //
7421     // map(ps->ps->ps->ps)
7422     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7423     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7424     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7425     // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7426     //
7427     // map(to: ps->ps->ps->s.f[:22])
7428     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7429     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7430     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7431     // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7432     //
7433     // map(to: s.f[:22]) map(from: s.p[:33])
7434     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) +
7435     //     sizeof(double*) (**), TARGET_PARAM
7436     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO
7437     // &s, &(s.p), sizeof(double*), MEMBER_OF(1)
7438     // &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7439     // (*) allocate contiguous space needed to fit all mapped members even if
7440     //     we allocate space for members not mapped (in this example,
7441     //     s.f[22..49] and s.s are not mapped, yet we must allocate space for
7442     //     them as well because they fall between &s.f[0] and &s.p)
7443     //
7444     // map(from: s.f[:22]) map(to: ps->p[:33])
7445     // &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM
7446     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7447     // ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*)
7448     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO
7449     // (*) the struct this entry pertains to is the 2nd element in the list of
7450     //     arguments, hence MEMBER_OF(2)
7451     //
7452     // map(from: s.f[:22], s.s) map(to: ps->p[:33])
7453     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM
7454     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM
7455     // &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM
7456     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7457     // ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*)
7458     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO
7459     // (*) the struct this entry pertains to is the 4th element in the list
7460     //     of arguments, hence MEMBER_OF(4)
7461 
7462     // Track if the map information being generated is the first for a capture.
7463     bool IsCaptureFirstInfo = IsFirstComponentList;
7464     // When the variable is on a declare target link or in a to clause with
7465     // unified memory, a reference is needed to hold the host/device address
7466     // of the variable.
7467     bool RequiresReference = false;
7468 
7469     // Scan the components from the base to the complete expression.
7470     auto CI = Components.rbegin();
7471     auto CE = Components.rend();
7472     auto I = CI;
7473 
7474     // Track if the map information being generated is the first for a list of
7475     // components.
7476     bool IsExpressionFirstInfo = true;
7477     Address BP = Address::invalid();
7478     const Expr *AssocExpr = I->getAssociatedExpression();
7479     const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr);
7480     const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7481 
7482     if (isa<MemberExpr>(AssocExpr)) {
7483       // The base is the 'this' pointer. The content of the pointer is going
7484       // to be the base of the field being mapped.
7485       BP = CGF.LoadCXXThisAddress();
7486     } else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) ||
7487                (OASE &&
7488                 isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) {
7489       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress();
7490     } else {
7491       // The base is the reference to the variable.
7492       // BP = &Var.
7493       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress();
7494       if (const auto *VD =
7495               dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) {
7496         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
7497                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
7498           if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
7499               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
7500                CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) {
7501             RequiresReference = true;
7502             BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
7503           }
7504         }
7505       }
7506 
7507       // If the variable is a pointer and is being dereferenced (i.e. is not
7508       // the last component), the base has to be the pointer itself, not its
7509       // reference. References are ignored for mapping purposes.
7510       QualType Ty =
7511           I->getAssociatedDeclaration()->getType().getNonReferenceType();
7512       if (Ty->isAnyPointerType() && std::next(I) != CE) {
7513         BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7514 
7515         // We do not need to generate individual map information for the
7516         // pointer, it can be associated with the combined storage.
7517         ++I;
7518       }
7519     }
7520 
7521     // Track whether a component of the list should be marked as MEMBER_OF some
7522     // combined entry (for partial structs). Only the first PTR_AND_OBJ entry
7523     // in a component list should be marked as MEMBER_OF, all subsequent entries
7524     // do not belong to the base struct. E.g.
7525     // struct S2 s;
7526     // s.ps->ps->ps->f[:]
7527     //   (1) (2) (3) (4)
7528     // ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a
7529     // PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3)
7530     // is the pointee of ps(2) which is not member of struct s, so it should not
7531     // be marked as such (it is still PTR_AND_OBJ).
7532     // The variable is initialized to false so that PTR_AND_OBJ entries which
7533     // are not struct members are not considered (e.g. array of pointers to
7534     // data).
7535     bool ShouldBeMemberOf = false;
7536 
7537     // Variable keeping track of whether or not we have encountered a component
7538     // in the component list which is a member expression. Useful when we have a
7539     // pointer or a final array section, in which case it is the previous
7540     // component in the list which tells us whether we have a member expression.
7541     // E.g. X.f[:]
7542     // While processing the final array section "[:]" it is "f" which tells us
7543     // whether we are dealing with a member of a declared struct.
7544     const MemberExpr *EncounteredME = nullptr;
7545 
7546     for (; I != CE; ++I) {
7547       // If the current component is member of a struct (parent struct) mark it.
7548       if (!EncounteredME) {
7549         EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression());
7550         // If we encounter a PTR_AND_OBJ entry from now on it should be marked
7551         // as MEMBER_OF the parent struct.
7552         if (EncounteredME)
7553           ShouldBeMemberOf = true;
7554       }
7555 
7556       auto Next = std::next(I);
7557 
7558       // We need to generate the addresses and sizes if this is the last
7559       // component, if the component is a pointer or if it is an array section
7560       // whose length can't be proved to be one. If this is a pointer, it
7561       // becomes the base address for the following components.
7562 
7563       // A final array section, is one whose length can't be proved to be one.
7564       bool IsFinalArraySection =
7565           isFinalArraySectionExpression(I->getAssociatedExpression());
7566 
7567       // Get information on whether the element is a pointer. Have to do a
7568       // special treatment for array sections given that they are built-in
7569       // types.
7570       const auto *OASE =
7571           dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
7572       bool IsPointer =
7573           (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE)
7574                        .getCanonicalType()
7575                        ->isAnyPointerType()) ||
7576           I->getAssociatedExpression()->getType()->isAnyPointerType();
7577 
7578       if (Next == CE || IsPointer || IsFinalArraySection) {
7579         // If this is not the last component, we expect the pointer to be
7580         // associated with an array expression or member expression.
7581         assert((Next == CE ||
7582                 isa<MemberExpr>(Next->getAssociatedExpression()) ||
7583                 isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
7584                 isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) &&
7585                "Unexpected expression");
7586 
7587         Address LB =
7588             CGF.EmitOMPSharedLValue(I->getAssociatedExpression()).getAddress();
7589 
7590         // If this component is a pointer inside the base struct then we don't
7591         // need to create any entry for it - it will be combined with the object
7592         // it is pointing to into a single PTR_AND_OBJ entry.
7593         bool IsMemberPointer =
7594             IsPointer && EncounteredME &&
7595             (dyn_cast<MemberExpr>(I->getAssociatedExpression()) ==
7596              EncounteredME);
7597         if (!OverlappedElements.empty()) {
7598           // Handle base element with the info for overlapped elements.
7599           assert(!PartialStruct.Base.isValid() && "The base element is set.");
7600           assert(Next == CE &&
7601                  "Expected last element for the overlapped elements.");
7602           assert(!IsPointer &&
7603                  "Unexpected base element with the pointer type.");
7604           // Mark the whole struct as the struct that requires allocation on the
7605           // device.
7606           PartialStruct.LowestElem = {0, LB};
7607           CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(
7608               I->getAssociatedExpression()->getType());
7609           Address HB = CGF.Builder.CreateConstGEP(
7610               CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LB,
7611                                                               CGF.VoidPtrTy),
7612               TypeSize.getQuantity() - 1);
7613           PartialStruct.HighestElem = {
7614               std::numeric_limits<decltype(
7615                   PartialStruct.HighestElem.first)>::max(),
7616               HB};
7617           PartialStruct.Base = BP;
7618           // Emit data for non-overlapped data.
7619           OpenMPOffloadMappingFlags Flags =
7620               OMP_MAP_MEMBER_OF |
7621               getMapTypeBits(MapType, MapModifiers, IsImplicit,
7622                              /*AddPtrFlag=*/false,
7623                              /*AddIsTargetParamFlag=*/false);
7624           LB = BP;
7625           llvm::Value *Size = nullptr;
7626           // Do bitcopy of all non-overlapped structure elements.
7627           for (OMPClauseMappableExprCommon::MappableExprComponentListRef
7628                    Component : OverlappedElements) {
7629             Address ComponentLB = Address::invalid();
7630             for (const OMPClauseMappableExprCommon::MappableComponent &MC :
7631                  Component) {
7632               if (MC.getAssociatedDeclaration()) {
7633                 ComponentLB =
7634                     CGF.EmitOMPSharedLValue(MC.getAssociatedExpression())
7635                         .getAddress();
7636                 Size = CGF.Builder.CreatePtrDiff(
7637                     CGF.EmitCastToVoidPtr(ComponentLB.getPointer()),
7638                     CGF.EmitCastToVoidPtr(LB.getPointer()));
7639                 break;
7640               }
7641             }
7642             BasePointers.push_back(BP.getPointer());
7643             Pointers.push_back(LB.getPointer());
7644             Sizes.push_back(CGF.Builder.CreateIntCast(Size, CGF.Int64Ty,
7645                                                       /*isSigned=*/true));
7646             Types.push_back(Flags);
7647             LB = CGF.Builder.CreateConstGEP(ComponentLB, 1);
7648           }
7649           BasePointers.push_back(BP.getPointer());
7650           Pointers.push_back(LB.getPointer());
7651           Size = CGF.Builder.CreatePtrDiff(
7652               CGF.EmitCastToVoidPtr(
7653                   CGF.Builder.CreateConstGEP(HB, 1).getPointer()),
7654               CGF.EmitCastToVoidPtr(LB.getPointer()));
7655           Sizes.push_back(
7656               CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7657           Types.push_back(Flags);
7658           break;
7659         }
7660         llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression());
7661         if (!IsMemberPointer) {
7662           BasePointers.push_back(BP.getPointer());
7663           Pointers.push_back(LB.getPointer());
7664           Sizes.push_back(
7665               CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7666 
7667           // We need to add a pointer flag for each map that comes from the
7668           // same expression except for the first one. We also need to signal
7669           // this map is the first one that relates with the current capture
7670           // (there is a set of entries for each capture).
7671           OpenMPOffloadMappingFlags Flags = getMapTypeBits(
7672               MapType, MapModifiers, IsImplicit,
7673               !IsExpressionFirstInfo || RequiresReference,
7674               IsCaptureFirstInfo && !RequiresReference);
7675 
7676           if (!IsExpressionFirstInfo) {
7677             // If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well,
7678             // then we reset the TO/FROM/ALWAYS/DELETE flags.
7679             if (IsPointer)
7680               Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS |
7681                          OMP_MAP_DELETE);
7682 
7683             if (ShouldBeMemberOf) {
7684               // Set placeholder value MEMBER_OF=FFFF to indicate that the flag
7685               // should be later updated with the correct value of MEMBER_OF.
7686               Flags |= OMP_MAP_MEMBER_OF;
7687               // From now on, all subsequent PTR_AND_OBJ entries should not be
7688               // marked as MEMBER_OF.
7689               ShouldBeMemberOf = false;
7690             }
7691           }
7692 
7693           Types.push_back(Flags);
7694         }
7695 
7696         // If we have encountered a member expression so far, keep track of the
7697         // mapped member. If the parent is "*this", then the value declaration
7698         // is nullptr.
7699         if (EncounteredME) {
7700           const auto *FD = dyn_cast<FieldDecl>(EncounteredME->getMemberDecl());
7701           unsigned FieldIndex = FD->getFieldIndex();
7702 
7703           // Update info about the lowest and highest elements for this struct
7704           if (!PartialStruct.Base.isValid()) {
7705             PartialStruct.LowestElem = {FieldIndex, LB};
7706             PartialStruct.HighestElem = {FieldIndex, LB};
7707             PartialStruct.Base = BP;
7708           } else if (FieldIndex < PartialStruct.LowestElem.first) {
7709             PartialStruct.LowestElem = {FieldIndex, LB};
7710           } else if (FieldIndex > PartialStruct.HighestElem.first) {
7711             PartialStruct.HighestElem = {FieldIndex, LB};
7712           }
7713         }
7714 
7715         // If we have a final array section, we are done with this expression.
7716         if (IsFinalArraySection)
7717           break;
7718 
7719         // The pointer becomes the base for the next element.
7720         if (Next != CE)
7721           BP = LB;
7722 
7723         IsExpressionFirstInfo = false;
7724         IsCaptureFirstInfo = false;
7725       }
7726     }
7727   }
7728 
7729   /// Return the adjusted map modifiers if the declaration a capture refers to
7730   /// appears in a first-private clause. This is expected to be used only with
7731   /// directives that start with 'target'.
7732   MappableExprsHandler::OpenMPOffloadMappingFlags
getMapModifiersForPrivateClauses(const CapturedStmt::Capture & Cap) const7733   getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const {
7734     assert(Cap.capturesVariable() && "Expected capture by reference only!");
7735 
7736     // A first private variable captured by reference will use only the
7737     // 'private ptr' and 'map to' flag. Return the right flags if the captured
7738     // declaration is known as first-private in this handler.
7739     if (FirstPrivateDecls.count(Cap.getCapturedVar())) {
7740       if (Cap.getCapturedVar()->getType().isConstant(CGF.getContext()) &&
7741           Cap.getCaptureKind() == CapturedStmt::VCK_ByRef)
7742         return MappableExprsHandler::OMP_MAP_ALWAYS |
7743                MappableExprsHandler::OMP_MAP_TO;
7744       if (Cap.getCapturedVar()->getType()->isAnyPointerType())
7745         return MappableExprsHandler::OMP_MAP_TO |
7746                MappableExprsHandler::OMP_MAP_PTR_AND_OBJ;
7747       return MappableExprsHandler::OMP_MAP_PRIVATE |
7748              MappableExprsHandler::OMP_MAP_TO;
7749     }
7750     return MappableExprsHandler::OMP_MAP_TO |
7751            MappableExprsHandler::OMP_MAP_FROM;
7752   }
7753 
getMemberOfFlag(unsigned Position)7754   static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) {
7755     // Member of is given by the 16 MSB of the flag, so rotate by 48 bits.
7756     return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
7757                                                   << 48);
7758   }
7759 
setCorrectMemberOfFlag(OpenMPOffloadMappingFlags & Flags,OpenMPOffloadMappingFlags MemberOfFlag)7760   static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags,
7761                                      OpenMPOffloadMappingFlags MemberOfFlag) {
7762     // If the entry is PTR_AND_OBJ but has not been marked with the special
7763     // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
7764     // marked as MEMBER_OF.
7765     if ((Flags & OMP_MAP_PTR_AND_OBJ) &&
7766         ((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF))
7767       return;
7768 
7769     // Reset the placeholder value to prepare the flag for the assignment of the
7770     // proper MEMBER_OF value.
7771     Flags &= ~OMP_MAP_MEMBER_OF;
7772     Flags |= MemberOfFlag;
7773   }
7774 
getPlainLayout(const CXXRecordDecl * RD,llvm::SmallVectorImpl<const FieldDecl * > & Layout,bool AsBase) const7775   void getPlainLayout(const CXXRecordDecl *RD,
7776                       llvm::SmallVectorImpl<const FieldDecl *> &Layout,
7777                       bool AsBase) const {
7778     const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD);
7779 
7780     llvm::StructType *St =
7781         AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType();
7782 
7783     unsigned NumElements = St->getNumElements();
7784     llvm::SmallVector<
7785         llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4>
7786         RecordLayout(NumElements);
7787 
7788     // Fill bases.
7789     for (const auto &I : RD->bases()) {
7790       if (I.isVirtual())
7791         continue;
7792       const auto *Base = I.getType()->getAsCXXRecordDecl();
7793       // Ignore empty bases.
7794       if (Base->isEmpty() || CGF.getContext()
7795                                  .getASTRecordLayout(Base)
7796                                  .getNonVirtualSize()
7797                                  .isZero())
7798         continue;
7799 
7800       unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base);
7801       RecordLayout[FieldIndex] = Base;
7802     }
7803     // Fill in virtual bases.
7804     for (const auto &I : RD->vbases()) {
7805       const auto *Base = I.getType()->getAsCXXRecordDecl();
7806       // Ignore empty bases.
7807       if (Base->isEmpty())
7808         continue;
7809       unsigned FieldIndex = RL.getVirtualBaseIndex(Base);
7810       if (RecordLayout[FieldIndex])
7811         continue;
7812       RecordLayout[FieldIndex] = Base;
7813     }
7814     // Fill in all the fields.
7815     assert(!RD->isUnion() && "Unexpected union.");
7816     for (const auto *Field : RD->fields()) {
7817       // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
7818       // will fill in later.)
7819       if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) {
7820         unsigned FieldIndex = RL.getLLVMFieldNo(Field);
7821         RecordLayout[FieldIndex] = Field;
7822       }
7823     }
7824     for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>
7825              &Data : RecordLayout) {
7826       if (Data.isNull())
7827         continue;
7828       if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>())
7829         getPlainLayout(Base, Layout, /*AsBase=*/true);
7830       else
7831         Layout.push_back(Data.get<const FieldDecl *>());
7832     }
7833   }
7834 
7835 public:
MappableExprsHandler(const OMPExecutableDirective & Dir,CodeGenFunction & CGF)7836   MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
7837       : CurDir(Dir), CGF(CGF) {
7838     // Extract firstprivate clause information.
7839     for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
7840       for (const auto *D : C->varlists())
7841         FirstPrivateDecls.try_emplace(
7842             cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit());
7843     // Extract device pointer clause information.
7844     for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
7845       for (auto L : C->component_lists())
7846         DevPointersMap[L.first].push_back(L.second);
7847   }
7848 
7849   /// Generate code for the combined entry if we have a partially mapped struct
7850   /// and take care of the mapping flags of the arguments corresponding to
7851   /// individual struct members.
emitCombinedEntry(MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types,MapFlagsArrayTy & CurTypes,const StructRangeInfoTy & PartialStruct) const7852   void emitCombinedEntry(MapBaseValuesArrayTy &BasePointers,
7853                          MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
7854                          MapFlagsArrayTy &Types, MapFlagsArrayTy &CurTypes,
7855                          const StructRangeInfoTy &PartialStruct) const {
7856     // Base is the base of the struct
7857     BasePointers.push_back(PartialStruct.Base.getPointer());
7858     // Pointer is the address of the lowest element
7859     llvm::Value *LB = PartialStruct.LowestElem.second.getPointer();
7860     Pointers.push_back(LB);
7861     // Size is (addr of {highest+1} element) - (addr of lowest element)
7862     llvm::Value *HB = PartialStruct.HighestElem.second.getPointer();
7863     llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1);
7864     llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy);
7865     llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy);
7866     llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr);
7867     llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty,
7868                                                   /*isSigned=*/false);
7869     Sizes.push_back(Size);
7870     // Map type is always TARGET_PARAM
7871     Types.push_back(OMP_MAP_TARGET_PARAM);
7872     // Remove TARGET_PARAM flag from the first element
7873     (*CurTypes.begin()) &= ~OMP_MAP_TARGET_PARAM;
7874 
7875     // All other current entries will be MEMBER_OF the combined entry
7876     // (except for PTR_AND_OBJ entries which do not have a placeholder value
7877     // 0xFFFF in the MEMBER_OF field).
7878     OpenMPOffloadMappingFlags MemberOfFlag =
7879         getMemberOfFlag(BasePointers.size() - 1);
7880     for (auto &M : CurTypes)
7881       setCorrectMemberOfFlag(M, MemberOfFlag);
7882   }
7883 
7884   /// Generate all the base pointers, section pointers, sizes and map
7885   /// types for the extracted mappable expressions. Also, for each item that
7886   /// relates with a device pointer, a pair of the relevant declaration and
7887   /// index where it occurs is appended to the device pointers info array.
generateAllInfo(MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types) const7888   void generateAllInfo(MapBaseValuesArrayTy &BasePointers,
7889                        MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
7890                        MapFlagsArrayTy &Types) const {
7891     // We have to process the component lists that relate with the same
7892     // declaration in a single chunk so that we can generate the map flags
7893     // correctly. Therefore, we organize all lists in a map.
7894     llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
7895 
7896     // Helper function to fill the information map for the different supported
7897     // clauses.
7898     auto &&InfoGen = [&Info](
7899         const ValueDecl *D,
7900         OMPClauseMappableExprCommon::MappableExprComponentListRef L,
7901         OpenMPMapClauseKind MapType,
7902         ArrayRef<OpenMPMapModifierKind> MapModifiers,
7903         bool ReturnDevicePointer, bool IsImplicit) {
7904       const ValueDecl *VD =
7905           D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
7906       Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer,
7907                             IsImplicit);
7908     };
7909 
7910     // FIXME: MSVC 2013 seems to require this-> to find member CurDir.
7911     for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>())
7912       for (const auto &L : C->component_lists()) {
7913         InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifiers(),
7914             /*ReturnDevicePointer=*/false, C->isImplicit());
7915       }
7916     for (const auto *C : this->CurDir.getClausesOfKind<OMPToClause>())
7917       for (const auto &L : C->component_lists()) {
7918         InfoGen(L.first, L.second, OMPC_MAP_to, llvm::None,
7919             /*ReturnDevicePointer=*/false, C->isImplicit());
7920       }
7921     for (const auto *C : this->CurDir.getClausesOfKind<OMPFromClause>())
7922       for (const auto &L : C->component_lists()) {
7923         InfoGen(L.first, L.second, OMPC_MAP_from, llvm::None,
7924             /*ReturnDevicePointer=*/false, C->isImplicit());
7925       }
7926 
7927     // Look at the use_device_ptr clause information and mark the existing map
7928     // entries as such. If there is no map information for an entry in the
7929     // use_device_ptr list, we create one with map type 'alloc' and zero size
7930     // section. It is the user fault if that was not mapped before. If there is
7931     // no map information and the pointer is a struct member, then we defer the
7932     // emission of that entry until the whole struct has been processed.
7933     llvm::MapVector<const ValueDecl *, SmallVector<DeferredDevicePtrEntryTy, 4>>
7934         DeferredInfo;
7935 
7936     // FIXME: MSVC 2013 seems to require this-> to find member CurDir.
7937     for (const auto *C :
7938         this->CurDir.getClausesOfKind<OMPUseDevicePtrClause>()) {
7939       for (const auto &L : C->component_lists()) {
7940         assert(!L.second.empty() && "Not expecting empty list of components!");
7941         const ValueDecl *VD = L.second.back().getAssociatedDeclaration();
7942         VD = cast<ValueDecl>(VD->getCanonicalDecl());
7943         const Expr *IE = L.second.back().getAssociatedExpression();
7944         // If the first component is a member expression, we have to look into
7945         // 'this', which maps to null in the map of map information. Otherwise
7946         // look directly for the information.
7947         auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
7948 
7949         // We potentially have map information for this declaration already.
7950         // Look for the first set of components that refer to it.
7951         if (It != Info.end()) {
7952           auto CI = std::find_if(
7953               It->second.begin(), It->second.end(), [VD](const MapInfo &MI) {
7954                 return MI.Components.back().getAssociatedDeclaration() == VD;
7955               });
7956           // If we found a map entry, signal that the pointer has to be returned
7957           // and move on to the next declaration.
7958           if (CI != It->second.end()) {
7959             CI->ReturnDevicePointer = true;
7960             continue;
7961           }
7962         }
7963 
7964         // We didn't find any match in our map information - generate a zero
7965         // size array section - if the pointer is a struct member we defer this
7966         // action until the whole struct has been processed.
7967         // FIXME: MSVC 2013 seems to require this-> to find member CGF.
7968         if (isa<MemberExpr>(IE)) {
7969           // Insert the pointer into Info to be processed by
7970           // generateInfoForComponentList. Because it is a member pointer
7971           // without a pointee, no entry will be generated for it, therefore
7972           // we need to generate one after the whole struct has been processed.
7973           // Nonetheless, generateInfoForComponentList must be called to take
7974           // the pointer into account for the calculation of the range of the
7975           // partial struct.
7976           InfoGen(nullptr, L.second, OMPC_MAP_unknown, llvm::None,
7977                   /*ReturnDevicePointer=*/false, C->isImplicit());
7978           DeferredInfo[nullptr].emplace_back(IE, VD);
7979         } else {
7980           llvm::Value *Ptr = this->CGF.EmitLoadOfScalar(
7981               this->CGF.EmitLValue(IE), IE->getExprLoc());
7982           BasePointers.emplace_back(Ptr, VD);
7983           Pointers.push_back(Ptr);
7984           Sizes.push_back(llvm::Constant::getNullValue(this->CGF.Int64Ty));
7985           Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_TARGET_PARAM);
7986         }
7987       }
7988     }
7989 
7990     for (const auto &M : Info) {
7991       // We need to know when we generate information for the first component
7992       // associated with a capture, because the mapping flags depend on it.
7993       bool IsFirstComponentList = true;
7994 
7995       // Temporary versions of arrays
7996       MapBaseValuesArrayTy CurBasePointers;
7997       MapValuesArrayTy CurPointers;
7998       MapValuesArrayTy CurSizes;
7999       MapFlagsArrayTy CurTypes;
8000       StructRangeInfoTy PartialStruct;
8001 
8002       for (const MapInfo &L : M.second) {
8003         assert(!L.Components.empty() &&
8004                "Not expecting declaration with no component lists.");
8005 
8006         // Remember the current base pointer index.
8007         unsigned CurrentBasePointersIdx = CurBasePointers.size();
8008         // FIXME: MSVC 2013 seems to require this-> to find the member method.
8009         this->generateInfoForComponentList(
8010             L.MapType, L.MapModifiers, L.Components, CurBasePointers,
8011             CurPointers, CurSizes, CurTypes, PartialStruct,
8012             IsFirstComponentList, L.IsImplicit);
8013 
8014         // If this entry relates with a device pointer, set the relevant
8015         // declaration and add the 'return pointer' flag.
8016         if (L.ReturnDevicePointer) {
8017           assert(CurBasePointers.size() > CurrentBasePointersIdx &&
8018                  "Unexpected number of mapped base pointers.");
8019 
8020           const ValueDecl *RelevantVD =
8021               L.Components.back().getAssociatedDeclaration();
8022           assert(RelevantVD &&
8023                  "No relevant declaration related with device pointer??");
8024 
8025           CurBasePointers[CurrentBasePointersIdx].setDevicePtrDecl(RelevantVD);
8026           CurTypes[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM;
8027         }
8028         IsFirstComponentList = false;
8029       }
8030 
8031       // Append any pending zero-length pointers which are struct members and
8032       // used with use_device_ptr.
8033       auto CI = DeferredInfo.find(M.first);
8034       if (CI != DeferredInfo.end()) {
8035         for (const DeferredDevicePtrEntryTy &L : CI->second) {
8036           llvm::Value *BasePtr = this->CGF.EmitLValue(L.IE).getPointer();
8037           llvm::Value *Ptr = this->CGF.EmitLoadOfScalar(
8038               this->CGF.EmitLValue(L.IE), L.IE->getExprLoc());
8039           CurBasePointers.emplace_back(BasePtr, L.VD);
8040           CurPointers.push_back(Ptr);
8041           CurSizes.push_back(llvm::Constant::getNullValue(this->CGF.Int64Ty));
8042           // Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the placeholder
8043           // value MEMBER_OF=FFFF so that the entry is later updated with the
8044           // correct value of MEMBER_OF.
8045           CurTypes.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM |
8046                              OMP_MAP_MEMBER_OF);
8047         }
8048       }
8049 
8050       // If there is an entry in PartialStruct it means we have a struct with
8051       // individual members mapped. Emit an extra combined entry.
8052       if (PartialStruct.Base.isValid())
8053         emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes,
8054                           PartialStruct);
8055 
8056       // We need to append the results of this capture to what we already have.
8057       BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
8058       Pointers.append(CurPointers.begin(), CurPointers.end());
8059       Sizes.append(CurSizes.begin(), CurSizes.end());
8060       Types.append(CurTypes.begin(), CurTypes.end());
8061     }
8062   }
8063 
8064   /// Emit capture info for lambdas for variables captured by reference.
generateInfoForLambdaCaptures(const ValueDecl * VD,llvm::Value * Arg,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types,llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers) const8065   void generateInfoForLambdaCaptures(
8066       const ValueDecl *VD, llvm::Value *Arg, MapBaseValuesArrayTy &BasePointers,
8067       MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
8068       MapFlagsArrayTy &Types,
8069       llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const {
8070     const auto *RD = VD->getType()
8071                          .getCanonicalType()
8072                          .getNonReferenceType()
8073                          ->getAsCXXRecordDecl();
8074     if (!RD || !RD->isLambda())
8075       return;
8076     Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD));
8077     LValue VDLVal = CGF.MakeAddrLValue(
8078         VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
8079     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
8080     FieldDecl *ThisCapture = nullptr;
8081     RD->getCaptureFields(Captures, ThisCapture);
8082     if (ThisCapture) {
8083       LValue ThisLVal =
8084           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
8085       LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture);
8086       LambdaPointers.try_emplace(ThisLVal.getPointer(), VDLVal.getPointer());
8087       BasePointers.push_back(ThisLVal.getPointer());
8088       Pointers.push_back(ThisLValVal.getPointer());
8089       Sizes.push_back(
8090           CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
8091                                     CGF.Int64Ty, /*isSigned=*/true));
8092       Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8093                       OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8094     }
8095     for (const LambdaCapture &LC : RD->captures()) {
8096       if (!LC.capturesVariable())
8097         continue;
8098       const VarDecl *VD = LC.getCapturedVar();
8099       if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType())
8100         continue;
8101       auto It = Captures.find(VD);
8102       assert(It != Captures.end() && "Found lambda capture without field.");
8103       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
8104       if (LC.getCaptureKind() == LCK_ByRef) {
8105         LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second);
8106         LambdaPointers.try_emplace(VarLVal.getPointer(), VDLVal.getPointer());
8107         BasePointers.push_back(VarLVal.getPointer());
8108         Pointers.push_back(VarLValVal.getPointer());
8109         Sizes.push_back(CGF.Builder.CreateIntCast(
8110             CGF.getTypeSize(
8111                 VD->getType().getCanonicalType().getNonReferenceType()),
8112             CGF.Int64Ty, /*isSigned=*/true));
8113       } else {
8114         RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation());
8115         LambdaPointers.try_emplace(VarLVal.getPointer(), VDLVal.getPointer());
8116         BasePointers.push_back(VarLVal.getPointer());
8117         Pointers.push_back(VarRVal.getScalarVal());
8118         Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0));
8119       }
8120       Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8121                       OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8122     }
8123   }
8124 
8125   /// Set correct indices for lambdas captures.
adjustMemberOfForLambdaCaptures(const llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapFlagsArrayTy & Types) const8126   void adjustMemberOfForLambdaCaptures(
8127       const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers,
8128       MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
8129       MapFlagsArrayTy &Types) const {
8130     for (unsigned I = 0, E = Types.size(); I < E; ++I) {
8131       // Set correct member_of idx for all implicit lambda captures.
8132       if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8133                        OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT))
8134         continue;
8135       llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]);
8136       assert(BasePtr && "Unable to find base lambda address.");
8137       int TgtIdx = -1;
8138       for (unsigned J = I; J > 0; --J) {
8139         unsigned Idx = J - 1;
8140         if (Pointers[Idx] != BasePtr)
8141           continue;
8142         TgtIdx = Idx;
8143         break;
8144       }
8145       assert(TgtIdx != -1 && "Unable to find parent lambda.");
8146       // All other current entries will be MEMBER_OF the combined entry
8147       // (except for PTR_AND_OBJ entries which do not have a placeholder value
8148       // 0xFFFF in the MEMBER_OF field).
8149       OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx);
8150       setCorrectMemberOfFlag(Types[I], MemberOfFlag);
8151     }
8152   }
8153 
8154   /// Generate the base pointers, section pointers, sizes and map types
8155   /// associated to a given capture.
generateInfoForCapture(const CapturedStmt::Capture * Cap,llvm::Value * Arg,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types,StructRangeInfoTy & PartialStruct) const8156   void generateInfoForCapture(const CapturedStmt::Capture *Cap,
8157                               llvm::Value *Arg,
8158                               MapBaseValuesArrayTy &BasePointers,
8159                               MapValuesArrayTy &Pointers,
8160                               MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
8161                               StructRangeInfoTy &PartialStruct) const {
8162     assert(!Cap->capturesVariableArrayType() &&
8163            "Not expecting to generate map info for a variable array type!");
8164 
8165     // We need to know when we generating information for the first component
8166     const ValueDecl *VD = Cap->capturesThis()
8167                               ? nullptr
8168                               : Cap->getCapturedVar()->getCanonicalDecl();
8169 
8170     // If this declaration appears in a is_device_ptr clause we just have to
8171     // pass the pointer by value. If it is a reference to a declaration, we just
8172     // pass its value.
8173     if (DevPointersMap.count(VD)) {
8174       BasePointers.emplace_back(Arg, VD);
8175       Pointers.push_back(Arg);
8176       Sizes.push_back(
8177           CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
8178                                     CGF.Int64Ty, /*isSigned=*/true));
8179       Types.push_back(OMP_MAP_LITERAL | OMP_MAP_TARGET_PARAM);
8180       return;
8181     }
8182 
8183     using MapData =
8184         std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef,
8185                    OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool>;
8186     SmallVector<MapData, 4> DeclComponentLists;
8187     // FIXME: MSVC 2013 seems to require this-> to find member CurDir.
8188     for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) {
8189       for (const auto &L : C->decl_component_lists(VD)) {
8190         assert(L.first == VD &&
8191                "We got information for the wrong declaration??");
8192         assert(!L.second.empty() &&
8193                "Not expecting declaration with no component lists.");
8194         DeclComponentLists.emplace_back(L.second, C->getMapType(),
8195                                         C->getMapTypeModifiers(),
8196                                         C->isImplicit());
8197       }
8198     }
8199 
8200     // Find overlapping elements (including the offset from the base element).
8201     llvm::SmallDenseMap<
8202         const MapData *,
8203         llvm::SmallVector<
8204             OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>,
8205         4>
8206         OverlappedData;
8207     size_t Count = 0;
8208     for (const MapData &L : DeclComponentLists) {
8209       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8210       OpenMPMapClauseKind MapType;
8211       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8212       bool IsImplicit;
8213       std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
8214       ++Count;
8215       for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) {
8216         OMPClauseMappableExprCommon::MappableExprComponentListRef Components1;
8217         std::tie(Components1, MapType, MapModifiers, IsImplicit) = L1;
8218         auto CI = Components.rbegin();
8219         auto CE = Components.rend();
8220         auto SI = Components1.rbegin();
8221         auto SE = Components1.rend();
8222         for (; CI != CE && SI != SE; ++CI, ++SI) {
8223           if (CI->getAssociatedExpression()->getStmtClass() !=
8224               SI->getAssociatedExpression()->getStmtClass())
8225             break;
8226           // Are we dealing with different variables/fields?
8227           if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
8228             break;
8229         }
8230         // Found overlapping if, at least for one component, reached the head of
8231         // the components list.
8232         if (CI == CE || SI == SE) {
8233           assert((CI != CE || SI != SE) &&
8234                  "Unexpected full match of the mapping components.");
8235           const MapData &BaseData = CI == CE ? L : L1;
8236           OMPClauseMappableExprCommon::MappableExprComponentListRef SubData =
8237               SI == SE ? Components : Components1;
8238           auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData);
8239           OverlappedElements.getSecond().push_back(SubData);
8240         }
8241       }
8242     }
8243     // Sort the overlapped elements for each item.
8244     llvm::SmallVector<const FieldDecl *, 4> Layout;
8245     if (!OverlappedData.empty()) {
8246       if (const auto *CRD =
8247               VD->getType().getCanonicalType()->getAsCXXRecordDecl())
8248         getPlainLayout(CRD, Layout, /*AsBase=*/false);
8249       else {
8250         const auto *RD = VD->getType().getCanonicalType()->getAsRecordDecl();
8251         Layout.append(RD->field_begin(), RD->field_end());
8252       }
8253     }
8254     for (auto &Pair : OverlappedData) {
8255       llvm::sort(
8256           Pair.getSecond(),
8257           [&Layout](
8258               OMPClauseMappableExprCommon::MappableExprComponentListRef First,
8259               OMPClauseMappableExprCommon::MappableExprComponentListRef
8260                   Second) {
8261             auto CI = First.rbegin();
8262             auto CE = First.rend();
8263             auto SI = Second.rbegin();
8264             auto SE = Second.rend();
8265             for (; CI != CE && SI != SE; ++CI, ++SI) {
8266               if (CI->getAssociatedExpression()->getStmtClass() !=
8267                   SI->getAssociatedExpression()->getStmtClass())
8268                 break;
8269               // Are we dealing with different variables/fields?
8270               if (CI->getAssociatedDeclaration() !=
8271                   SI->getAssociatedDeclaration())
8272                 break;
8273             }
8274 
8275             // Lists contain the same elements.
8276             if (CI == CE && SI == SE)
8277               return false;
8278 
8279             // List with less elements is less than list with more elements.
8280             if (CI == CE || SI == SE)
8281               return CI == CE;
8282 
8283             const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration());
8284             const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration());
8285             if (FD1->getParent() == FD2->getParent())
8286               return FD1->getFieldIndex() < FD2->getFieldIndex();
8287             const auto It =
8288                 llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) {
8289                   return FD == FD1 || FD == FD2;
8290                 });
8291             return *It == FD1;
8292           });
8293     }
8294 
8295     // Associated with a capture, because the mapping flags depend on it.
8296     // Go through all of the elements with the overlapped elements.
8297     for (const auto &Pair : OverlappedData) {
8298       const MapData &L = *Pair.getFirst();
8299       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8300       OpenMPMapClauseKind MapType;
8301       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8302       bool IsImplicit;
8303       std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
8304       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
8305           OverlappedComponents = Pair.getSecond();
8306       bool IsFirstComponentList = true;
8307       generateInfoForComponentList(MapType, MapModifiers, Components,
8308                                    BasePointers, Pointers, Sizes, Types,
8309                                    PartialStruct, IsFirstComponentList,
8310                                    IsImplicit, OverlappedComponents);
8311     }
8312     // Go through other elements without overlapped elements.
8313     bool IsFirstComponentList = OverlappedData.empty();
8314     for (const MapData &L : DeclComponentLists) {
8315       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8316       OpenMPMapClauseKind MapType;
8317       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8318       bool IsImplicit;
8319       std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
8320       auto It = OverlappedData.find(&L);
8321       if (It == OverlappedData.end())
8322         generateInfoForComponentList(MapType, MapModifiers, Components,
8323                                      BasePointers, Pointers, Sizes, Types,
8324                                      PartialStruct, IsFirstComponentList,
8325                                      IsImplicit);
8326       IsFirstComponentList = false;
8327     }
8328   }
8329 
8330   /// Generate the base pointers, section pointers, sizes and map types
8331   /// associated with the declare target link variables.
generateInfoForDeclareTargetLink(MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types) const8332   void generateInfoForDeclareTargetLink(MapBaseValuesArrayTy &BasePointers,
8333                                         MapValuesArrayTy &Pointers,
8334                                         MapValuesArrayTy &Sizes,
8335                                         MapFlagsArrayTy &Types) const {
8336     // Map other list items in the map clause which are not captured variables
8337     // but "declare target link" global variables.
8338     for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) {
8339       for (const auto &L : C->component_lists()) {
8340         if (!L.first)
8341           continue;
8342         const auto *VD = dyn_cast<VarDecl>(L.first);
8343         if (!VD)
8344           continue;
8345         llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
8346             OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
8347         if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
8348             !Res || *Res != OMPDeclareTargetDeclAttr::MT_Link)
8349           continue;
8350         StructRangeInfoTy PartialStruct;
8351         generateInfoForComponentList(
8352             C->getMapType(), C->getMapTypeModifiers(), L.second, BasePointers,
8353             Pointers, Sizes, Types, PartialStruct,
8354             /*IsFirstComponentList=*/true, C->isImplicit());
8355         assert(!PartialStruct.Base.isValid() &&
8356                "No partial structs for declare target link expected.");
8357       }
8358     }
8359   }
8360 
8361   /// Generate the default map information for a given capture \a CI,
8362   /// record field declaration \a RI and captured value \a CV.
generateDefaultMapInfo(const CapturedStmt::Capture & CI,const FieldDecl & RI,llvm::Value * CV,MapBaseValuesArrayTy & CurBasePointers,MapValuesArrayTy & CurPointers,MapValuesArrayTy & CurSizes,MapFlagsArrayTy & CurMapTypes) const8363   void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
8364                               const FieldDecl &RI, llvm::Value *CV,
8365                               MapBaseValuesArrayTy &CurBasePointers,
8366                               MapValuesArrayTy &CurPointers,
8367                               MapValuesArrayTy &CurSizes,
8368                               MapFlagsArrayTy &CurMapTypes) const {
8369     bool IsImplicit = true;
8370     // Do the default mapping.
8371     if (CI.capturesThis()) {
8372       CurBasePointers.push_back(CV);
8373       CurPointers.push_back(CV);
8374       const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
8375       CurSizes.push_back(
8376           CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()),
8377                                     CGF.Int64Ty, /*isSigned=*/true));
8378       // Default map type.
8379       CurMapTypes.push_back(OMP_MAP_TO | OMP_MAP_FROM);
8380     } else if (CI.capturesVariableByCopy()) {
8381       CurBasePointers.push_back(CV);
8382       CurPointers.push_back(CV);
8383       if (!RI.getType()->isAnyPointerType()) {
8384         // We have to signal to the runtime captures passed by value that are
8385         // not pointers.
8386         CurMapTypes.push_back(OMP_MAP_LITERAL);
8387         CurSizes.push_back(CGF.Builder.CreateIntCast(
8388             CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true));
8389       } else {
8390         // Pointers are implicitly mapped with a zero size and no flags
8391         // (other than first map that is added for all implicit maps).
8392         CurMapTypes.push_back(OMP_MAP_NONE);
8393         CurSizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
8394       }
8395       const VarDecl *VD = CI.getCapturedVar();
8396       auto I = FirstPrivateDecls.find(VD);
8397       if (I != FirstPrivateDecls.end())
8398         IsImplicit = I->getSecond();
8399     } else {
8400       assert(CI.capturesVariable() && "Expected captured reference.");
8401       const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr());
8402       QualType ElementType = PtrTy->getPointeeType();
8403       CurSizes.push_back(CGF.Builder.CreateIntCast(
8404           CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true));
8405       // The default map type for a scalar/complex type is 'to' because by
8406       // default the value doesn't have to be retrieved. For an aggregate
8407       // type, the default is 'tofrom'.
8408       CurMapTypes.push_back(getMapModifiersForPrivateClauses(CI));
8409       const VarDecl *VD = CI.getCapturedVar();
8410       auto I = FirstPrivateDecls.find(VD);
8411       if (I != FirstPrivateDecls.end() &&
8412           VD->getType().isConstant(CGF.getContext())) {
8413         llvm::Constant *Addr =
8414             CGF.CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(CGF, VD);
8415         // Copy the value of the original variable to the new global copy.
8416         CGF.Builder.CreateMemCpy(
8417             CGF.MakeNaturalAlignAddrLValue(Addr, ElementType).getAddress(),
8418             Address(CV, CGF.getContext().getTypeAlignInChars(ElementType)),
8419             CurSizes.back(), /*IsVolatile=*/false);
8420         // Use new global variable as the base pointers.
8421         CurBasePointers.push_back(Addr);
8422         CurPointers.push_back(Addr);
8423       } else {
8424         CurBasePointers.push_back(CV);
8425         if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) {
8426           Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue(
8427               CV, ElementType, CGF.getContext().getDeclAlign(VD),
8428               AlignmentSource::Decl));
8429           CurPointers.push_back(PtrAddr.getPointer());
8430         } else {
8431           CurPointers.push_back(CV);
8432         }
8433       }
8434       if (I != FirstPrivateDecls.end())
8435         IsImplicit = I->getSecond();
8436     }
8437     // Every default map produces a single argument which is a target parameter.
8438     CurMapTypes.back() |= OMP_MAP_TARGET_PARAM;
8439 
8440     // Add flag stating this is an implicit map.
8441     if (IsImplicit)
8442       CurMapTypes.back() |= OMP_MAP_IMPLICIT;
8443   }
8444 };
8445 } // anonymous namespace
8446 
8447 /// Emit the arrays used to pass the captures and map information to the
8448 /// offloading runtime library. If there is no map or capture information,
8449 /// return nullptr by reference.
8450 static void
emitOffloadingArrays(CodeGenFunction & CGF,MappableExprsHandler::MapBaseValuesArrayTy & BasePointers,MappableExprsHandler::MapValuesArrayTy & Pointers,MappableExprsHandler::MapValuesArrayTy & Sizes,MappableExprsHandler::MapFlagsArrayTy & MapTypes,CGOpenMPRuntime::TargetDataInfo & Info)8451 emitOffloadingArrays(CodeGenFunction &CGF,
8452                      MappableExprsHandler::MapBaseValuesArrayTy &BasePointers,
8453                      MappableExprsHandler::MapValuesArrayTy &Pointers,
8454                      MappableExprsHandler::MapValuesArrayTy &Sizes,
8455                      MappableExprsHandler::MapFlagsArrayTy &MapTypes,
8456                      CGOpenMPRuntime::TargetDataInfo &Info) {
8457   CodeGenModule &CGM = CGF.CGM;
8458   ASTContext &Ctx = CGF.getContext();
8459 
8460   // Reset the array information.
8461   Info.clearArrayInfo();
8462   Info.NumberOfPtrs = BasePointers.size();
8463 
8464   if (Info.NumberOfPtrs) {
8465     // Detect if we have any capture size requiring runtime evaluation of the
8466     // size so that a constant array could be eventually used.
8467     bool hasRuntimeEvaluationCaptureSize = false;
8468     for (llvm::Value *S : Sizes)
8469       if (!isa<llvm::Constant>(S)) {
8470         hasRuntimeEvaluationCaptureSize = true;
8471         break;
8472       }
8473 
8474     llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
8475     QualType PointerArrayType =
8476         Ctx.getConstantArrayType(Ctx.VoidPtrTy, PointerNumAP, ArrayType::Normal,
8477                                  /*IndexTypeQuals=*/0);
8478 
8479     Info.BasePointersArray =
8480         CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
8481     Info.PointersArray =
8482         CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
8483 
8484     // If we don't have any VLA types or other types that require runtime
8485     // evaluation, we can use a constant array for the map sizes, otherwise we
8486     // need to fill up the arrays as we do for the pointers.
8487     QualType Int64Ty =
8488         Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
8489     if (hasRuntimeEvaluationCaptureSize) {
8490       QualType SizeArrayType =
8491           Ctx.getConstantArrayType(Int64Ty, PointerNumAP, ArrayType::Normal,
8492                                    /*IndexTypeQuals=*/0);
8493       Info.SizesArray =
8494           CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
8495     } else {
8496       // We expect all the sizes to be constant, so we collect them to create
8497       // a constant array.
8498       SmallVector<llvm::Constant *, 16> ConstSizes;
8499       for (llvm::Value *S : Sizes)
8500         ConstSizes.push_back(cast<llvm::Constant>(S));
8501 
8502       auto *SizesArrayInit = llvm::ConstantArray::get(
8503           llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes);
8504       std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"});
8505       auto *SizesArrayGbl = new llvm::GlobalVariable(
8506           CGM.getModule(), SizesArrayInit->getType(),
8507           /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
8508           SizesArrayInit, Name);
8509       SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
8510       Info.SizesArray = SizesArrayGbl;
8511     }
8512 
8513     // The map types are always constant so we don't need to generate code to
8514     // fill arrays. Instead, we create an array constant.
8515     SmallVector<uint64_t, 4> Mapping(MapTypes.size(), 0);
8516     llvm::copy(MapTypes, Mapping.begin());
8517     llvm::Constant *MapTypesArrayInit =
8518         llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping);
8519     std::string MaptypesName =
8520         CGM.getOpenMPRuntime().getName({"offload_maptypes"});
8521     auto *MapTypesArrayGbl = new llvm::GlobalVariable(
8522         CGM.getModule(), MapTypesArrayInit->getType(),
8523         /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
8524         MapTypesArrayInit, MaptypesName);
8525     MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
8526     Info.MapTypesArray = MapTypesArrayGbl;
8527 
8528     for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
8529       llvm::Value *BPVal = *BasePointers[I];
8530       llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
8531           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8532           Info.BasePointersArray, 0, I);
8533       BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
8534           BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0));
8535       Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
8536       CGF.Builder.CreateStore(BPVal, BPAddr);
8537 
8538       if (Info.requiresDevicePointerInfo())
8539         if (const ValueDecl *DevVD = BasePointers[I].getDevicePtrDecl())
8540           Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr);
8541 
8542       llvm::Value *PVal = Pointers[I];
8543       llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
8544           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8545           Info.PointersArray, 0, I);
8546       P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
8547           P, PVal->getType()->getPointerTo(/*AddrSpace=*/0));
8548       Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
8549       CGF.Builder.CreateStore(PVal, PAddr);
8550 
8551       if (hasRuntimeEvaluationCaptureSize) {
8552         llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
8553             llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
8554             Info.SizesArray,
8555             /*Idx0=*/0,
8556             /*Idx1=*/I);
8557         Address SAddr(S, Ctx.getTypeAlignInChars(Int64Ty));
8558         CGF.Builder.CreateStore(
8559             CGF.Builder.CreateIntCast(Sizes[I], CGM.Int64Ty, /*isSigned=*/true),
8560             SAddr);
8561       }
8562     }
8563   }
8564 }
8565 /// Emit the arguments to be passed to the runtime library based on the
8566 /// arrays of pointers, sizes and map types.
emitOffloadingArraysArgument(CodeGenFunction & CGF,llvm::Value * & BasePointersArrayArg,llvm::Value * & PointersArrayArg,llvm::Value * & SizesArrayArg,llvm::Value * & MapTypesArrayArg,CGOpenMPRuntime::TargetDataInfo & Info)8567 static void emitOffloadingArraysArgument(
8568     CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
8569     llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
8570     llvm::Value *&MapTypesArrayArg, CGOpenMPRuntime::TargetDataInfo &Info) {
8571   CodeGenModule &CGM = CGF.CGM;
8572   if (Info.NumberOfPtrs) {
8573     BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8574         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8575         Info.BasePointersArray,
8576         /*Idx0=*/0, /*Idx1=*/0);
8577     PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8578         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8579         Info.PointersArray,
8580         /*Idx0=*/0,
8581         /*Idx1=*/0);
8582     SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8583         llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray,
8584         /*Idx0=*/0, /*Idx1=*/0);
8585     MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8586         llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
8587         Info.MapTypesArray,
8588         /*Idx0=*/0,
8589         /*Idx1=*/0);
8590   } else {
8591     BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
8592     PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
8593     SizesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
8594     MapTypesArrayArg =
8595         llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
8596   }
8597 }
8598 
8599 /// Check for inner distribute directive.
8600 static const OMPExecutableDirective *
getNestedDistributeDirective(ASTContext & Ctx,const OMPExecutableDirective & D)8601 getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) {
8602   const auto *CS = D.getInnermostCapturedStmt();
8603   const auto *Body =
8604       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
8605   const Stmt *ChildStmt =
8606       CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
8607 
8608   if (const auto *NestedDir =
8609           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
8610     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
8611     switch (D.getDirectiveKind()) {
8612     case OMPD_target:
8613       if (isOpenMPDistributeDirective(DKind))
8614         return NestedDir;
8615       if (DKind == OMPD_teams) {
8616         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
8617             /*IgnoreCaptured=*/true);
8618         if (!Body)
8619           return nullptr;
8620         ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
8621         if (const auto *NND =
8622                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
8623           DKind = NND->getDirectiveKind();
8624           if (isOpenMPDistributeDirective(DKind))
8625             return NND;
8626         }
8627       }
8628       return nullptr;
8629     case OMPD_target_teams:
8630       if (isOpenMPDistributeDirective(DKind))
8631         return NestedDir;
8632       return nullptr;
8633     case OMPD_target_parallel:
8634     case OMPD_target_simd:
8635     case OMPD_target_parallel_for:
8636     case OMPD_target_parallel_for_simd:
8637       return nullptr;
8638     case OMPD_target_teams_distribute:
8639     case OMPD_target_teams_distribute_simd:
8640     case OMPD_target_teams_distribute_parallel_for:
8641     case OMPD_target_teams_distribute_parallel_for_simd:
8642     case OMPD_parallel:
8643     case OMPD_for:
8644     case OMPD_parallel_for:
8645     case OMPD_parallel_sections:
8646     case OMPD_for_simd:
8647     case OMPD_parallel_for_simd:
8648     case OMPD_cancel:
8649     case OMPD_cancellation_point:
8650     case OMPD_ordered:
8651     case OMPD_threadprivate:
8652     case OMPD_allocate:
8653     case OMPD_task:
8654     case OMPD_simd:
8655     case OMPD_sections:
8656     case OMPD_section:
8657     case OMPD_single:
8658     case OMPD_master:
8659     case OMPD_critical:
8660     case OMPD_taskyield:
8661     case OMPD_barrier:
8662     case OMPD_taskwait:
8663     case OMPD_taskgroup:
8664     case OMPD_atomic:
8665     case OMPD_flush:
8666     case OMPD_teams:
8667     case OMPD_target_data:
8668     case OMPD_target_exit_data:
8669     case OMPD_target_enter_data:
8670     case OMPD_distribute:
8671     case OMPD_distribute_simd:
8672     case OMPD_distribute_parallel_for:
8673     case OMPD_distribute_parallel_for_simd:
8674     case OMPD_teams_distribute:
8675     case OMPD_teams_distribute_simd:
8676     case OMPD_teams_distribute_parallel_for:
8677     case OMPD_teams_distribute_parallel_for_simd:
8678     case OMPD_target_update:
8679     case OMPD_declare_simd:
8680     case OMPD_declare_target:
8681     case OMPD_end_declare_target:
8682     case OMPD_declare_reduction:
8683     case OMPD_declare_mapper:
8684     case OMPD_taskloop:
8685     case OMPD_taskloop_simd:
8686     case OMPD_requires:
8687     case OMPD_unknown:
8688       llvm_unreachable("Unexpected directive.");
8689     }
8690   }
8691 
8692   return nullptr;
8693 }
8694 
emitTargetNumIterationsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * Device,const llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> & SizeEmitter)8695 void CGOpenMPRuntime::emitTargetNumIterationsCall(
8696     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *Device,
8697     const llvm::function_ref<llvm::Value *(
8698         CodeGenFunction &CGF, const OMPLoopDirective &D)> &SizeEmitter) {
8699   OpenMPDirectiveKind Kind = D.getDirectiveKind();
8700   const OMPExecutableDirective *TD = &D;
8701   // Get nested teams distribute kind directive, if any.
8702   if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind))
8703     TD = getNestedDistributeDirective(CGM.getContext(), D);
8704   if (!TD)
8705     return;
8706   const auto *LD = cast<OMPLoopDirective>(TD);
8707   auto &&CodeGen = [LD, &Device, &SizeEmitter, this](CodeGenFunction &CGF,
8708                                                      PrePostActionTy &) {
8709     llvm::Value *NumIterations = SizeEmitter(CGF, *LD);
8710 
8711     // Emit device ID if any.
8712     llvm::Value *DeviceID;
8713     if (Device)
8714       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
8715                                            CGF.Int64Ty, /*isSigned=*/true);
8716     else
8717       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
8718 
8719     llvm::Value *Args[] = {DeviceID, NumIterations};
8720     CGF.EmitRuntimeCall(
8721         createRuntimeFunction(OMPRTL__kmpc_push_target_tripcount), Args);
8722   };
8723   emitInlinedDirective(CGF, OMPD_unknown, CodeGen);
8724 }
8725 
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,const Expr * Device)8726 void CGOpenMPRuntime::emitTargetCall(CodeGenFunction &CGF,
8727                                      const OMPExecutableDirective &D,
8728                                      llvm::Function *OutlinedFn,
8729                                      llvm::Value *OutlinedFnID,
8730                                      const Expr *IfCond, const Expr *Device) {
8731   if (!CGF.HaveInsertPoint())
8732     return;
8733 
8734   assert(OutlinedFn && "Invalid outlined function!");
8735 
8736   const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>();
8737   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
8738   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
8739   auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF,
8740                                             PrePostActionTy &) {
8741     CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
8742   };
8743   emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen);
8744 
8745   CodeGenFunction::OMPTargetDataInfo InputInfo;
8746   llvm::Value *MapTypesArray = nullptr;
8747   // Fill up the pointer arrays and transfer execution to the device.
8748   auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo,
8749                     &MapTypesArray, &CS, RequiresOuterTask,
8750                     &CapturedVars](CodeGenFunction &CGF, PrePostActionTy &) {
8751     // On top of the arrays that were filled up, the target offloading call
8752     // takes as arguments the device id as well as the host pointer. The host
8753     // pointer is used by the runtime library to identify the current target
8754     // region, so it only has to be unique and not necessarily point to
8755     // anything. It could be the pointer to the outlined function that
8756     // implements the target region, but we aren't using that so that the
8757     // compiler doesn't need to keep that, and could therefore inline the host
8758     // function if proven worthwhile during optimization.
8759 
8760     // From this point on, we need to have an ID of the target region defined.
8761     assert(OutlinedFnID && "Invalid outlined function ID!");
8762 
8763     // Emit device ID if any.
8764     llvm::Value *DeviceID;
8765     if (Device) {
8766       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
8767                                            CGF.Int64Ty, /*isSigned=*/true);
8768     } else {
8769       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
8770     }
8771 
8772     // Emit the number of elements in the offloading arrays.
8773     llvm::Value *PointerNum =
8774         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
8775 
8776     // Return value of the runtime offloading call.
8777     llvm::Value *Return;
8778 
8779     llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D);
8780     llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D);
8781 
8782     bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
8783     // The target region is an outlined function launched by the runtime
8784     // via calls __tgt_target() or __tgt_target_teams().
8785     //
8786     // __tgt_target() launches a target region with one team and one thread,
8787     // executing a serial region.  This master thread may in turn launch
8788     // more threads within its team upon encountering a parallel region,
8789     // however, no additional teams can be launched on the device.
8790     //
8791     // __tgt_target_teams() launches a target region with one or more teams,
8792     // each with one or more threads.  This call is required for target
8793     // constructs such as:
8794     //  'target teams'
8795     //  'target' / 'teams'
8796     //  'target teams distribute parallel for'
8797     //  'target parallel'
8798     // and so on.
8799     //
8800     // Note that on the host and CPU targets, the runtime implementation of
8801     // these calls simply call the outlined function without forking threads.
8802     // The outlined functions themselves have runtime calls to
8803     // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
8804     // the compiler in emitTeamsCall() and emitParallelCall().
8805     //
8806     // In contrast, on the NVPTX target, the implementation of
8807     // __tgt_target_teams() launches a GPU kernel with the requested number
8808     // of teams and threads so no additional calls to the runtime are required.
8809     if (NumTeams) {
8810       // If we have NumTeams defined this means that we have an enclosed teams
8811       // region. Therefore we also expect to have NumThreads defined. These two
8812       // values should be defined in the presence of a teams directive,
8813       // regardless of having any clauses associated. If the user is using teams
8814       // but no clauses, these two values will be the default that should be
8815       // passed to the runtime library - a 32-bit integer with the value zero.
8816       assert(NumThreads && "Thread limit expression should be available along "
8817                            "with number of teams.");
8818       llvm::Value *OffloadingArgs[] = {DeviceID,
8819                                        OutlinedFnID,
8820                                        PointerNum,
8821                                        InputInfo.BasePointersArray.getPointer(),
8822                                        InputInfo.PointersArray.getPointer(),
8823                                        InputInfo.SizesArray.getPointer(),
8824                                        MapTypesArray,
8825                                        NumTeams,
8826                                        NumThreads};
8827       Return = CGF.EmitRuntimeCall(
8828           createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_teams_nowait
8829                                           : OMPRTL__tgt_target_teams),
8830           OffloadingArgs);
8831     } else {
8832       llvm::Value *OffloadingArgs[] = {DeviceID,
8833                                        OutlinedFnID,
8834                                        PointerNum,
8835                                        InputInfo.BasePointersArray.getPointer(),
8836                                        InputInfo.PointersArray.getPointer(),
8837                                        InputInfo.SizesArray.getPointer(),
8838                                        MapTypesArray};
8839       Return = CGF.EmitRuntimeCall(
8840           createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_nowait
8841                                           : OMPRTL__tgt_target),
8842           OffloadingArgs);
8843     }
8844 
8845     // Check the error code and execute the host version if required.
8846     llvm::BasicBlock *OffloadFailedBlock =
8847         CGF.createBasicBlock("omp_offload.failed");
8848     llvm::BasicBlock *OffloadContBlock =
8849         CGF.createBasicBlock("omp_offload.cont");
8850     llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return);
8851     CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
8852 
8853     CGF.EmitBlock(OffloadFailedBlock);
8854     if (RequiresOuterTask) {
8855       CapturedVars.clear();
8856       CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
8857     }
8858     emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
8859     CGF.EmitBranch(OffloadContBlock);
8860 
8861     CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
8862   };
8863 
8864   // Notify that the host version must be executed.
8865   auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars,
8866                     RequiresOuterTask](CodeGenFunction &CGF,
8867                                        PrePostActionTy &) {
8868     if (RequiresOuterTask) {
8869       CapturedVars.clear();
8870       CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
8871     }
8872     emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
8873   };
8874 
8875   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
8876                           &CapturedVars, RequiresOuterTask,
8877                           &CS](CodeGenFunction &CGF, PrePostActionTy &) {
8878     // Fill up the arrays with all the captured variables.
8879     MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
8880     MappableExprsHandler::MapValuesArrayTy Pointers;
8881     MappableExprsHandler::MapValuesArrayTy Sizes;
8882     MappableExprsHandler::MapFlagsArrayTy MapTypes;
8883 
8884     // Get mappable expression information.
8885     MappableExprsHandler MEHandler(D, CGF);
8886     llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers;
8887 
8888     auto RI = CS.getCapturedRecordDecl()->field_begin();
8889     auto CV = CapturedVars.begin();
8890     for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
8891                                               CE = CS.capture_end();
8892          CI != CE; ++CI, ++RI, ++CV) {
8893       MappableExprsHandler::MapBaseValuesArrayTy CurBasePointers;
8894       MappableExprsHandler::MapValuesArrayTy CurPointers;
8895       MappableExprsHandler::MapValuesArrayTy CurSizes;
8896       MappableExprsHandler::MapFlagsArrayTy CurMapTypes;
8897       MappableExprsHandler::StructRangeInfoTy PartialStruct;
8898 
8899       // VLA sizes are passed to the outlined region by copy and do not have map
8900       // information associated.
8901       if (CI->capturesVariableArrayType()) {
8902         CurBasePointers.push_back(*CV);
8903         CurPointers.push_back(*CV);
8904         CurSizes.push_back(CGF.Builder.CreateIntCast(
8905             CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true));
8906         // Copy to the device as an argument. No need to retrieve it.
8907         CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_LITERAL |
8908                               MappableExprsHandler::OMP_MAP_TARGET_PARAM |
8909                               MappableExprsHandler::OMP_MAP_IMPLICIT);
8910       } else {
8911         // If we have any information in the map clause, we use it, otherwise we
8912         // just do a default mapping.
8913         MEHandler.generateInfoForCapture(CI, *CV, CurBasePointers, CurPointers,
8914                                          CurSizes, CurMapTypes, PartialStruct);
8915         if (CurBasePointers.empty())
8916           MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers,
8917                                            CurPointers, CurSizes, CurMapTypes);
8918         // Generate correct mapping for variables captured by reference in
8919         // lambdas.
8920         if (CI->capturesVariable())
8921           MEHandler.generateInfoForLambdaCaptures(
8922               CI->getCapturedVar(), *CV, CurBasePointers, CurPointers, CurSizes,
8923               CurMapTypes, LambdaPointers);
8924       }
8925       // We expect to have at least an element of information for this capture.
8926       assert(!CurBasePointers.empty() &&
8927              "Non-existing map pointer for capture!");
8928       assert(CurBasePointers.size() == CurPointers.size() &&
8929              CurBasePointers.size() == CurSizes.size() &&
8930              CurBasePointers.size() == CurMapTypes.size() &&
8931              "Inconsistent map information sizes!");
8932 
8933       // If there is an entry in PartialStruct it means we have a struct with
8934       // individual members mapped. Emit an extra combined entry.
8935       if (PartialStruct.Base.isValid())
8936         MEHandler.emitCombinedEntry(BasePointers, Pointers, Sizes, MapTypes,
8937                                     CurMapTypes, PartialStruct);
8938 
8939       // We need to append the results of this capture to what we already have.
8940       BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
8941       Pointers.append(CurPointers.begin(), CurPointers.end());
8942       Sizes.append(CurSizes.begin(), CurSizes.end());
8943       MapTypes.append(CurMapTypes.begin(), CurMapTypes.end());
8944     }
8945     // Adjust MEMBER_OF flags for the lambdas captures.
8946     MEHandler.adjustMemberOfForLambdaCaptures(LambdaPointers, BasePointers,
8947                                               Pointers, MapTypes);
8948     // Map other list items in the map clause which are not captured variables
8949     // but "declare target link" global variables.
8950     MEHandler.generateInfoForDeclareTargetLink(BasePointers, Pointers, Sizes,
8951                                                MapTypes);
8952 
8953     TargetDataInfo Info;
8954     // Fill up the arrays and create the arguments.
8955     emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
8956     emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
8957                                  Info.PointersArray, Info.SizesArray,
8958                                  Info.MapTypesArray, Info);
8959     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
8960     InputInfo.BasePointersArray =
8961         Address(Info.BasePointersArray, CGM.getPointerAlign());
8962     InputInfo.PointersArray =
8963         Address(Info.PointersArray, CGM.getPointerAlign());
8964     InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign());
8965     MapTypesArray = Info.MapTypesArray;
8966     if (RequiresOuterTask)
8967       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
8968     else
8969       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
8970   };
8971 
8972   auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask](
8973                              CodeGenFunction &CGF, PrePostActionTy &) {
8974     if (RequiresOuterTask) {
8975       CodeGenFunction::OMPTargetDataInfo InputInfo;
8976       CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo);
8977     } else {
8978       emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen);
8979     }
8980   };
8981 
8982   // If we have a target function ID it means that we need to support
8983   // offloading, otherwise, just execute on the host. We need to execute on host
8984   // regardless of the conditional in the if clause if, e.g., the user do not
8985   // specify target triples.
8986   if (OutlinedFnID) {
8987     if (IfCond) {
8988       emitOMPIfClause(CGF, IfCond, TargetThenGen, TargetElseGen);
8989     } else {
8990       RegionCodeGenTy ThenRCG(TargetThenGen);
8991       ThenRCG(CGF);
8992     }
8993   } else {
8994     RegionCodeGenTy ElseRCG(TargetElseGen);
8995     ElseRCG(CGF);
8996   }
8997 }
8998 
scanForTargetRegionsFunctions(const Stmt * S,StringRef ParentName)8999 void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
9000                                                     StringRef ParentName) {
9001   if (!S)
9002     return;
9003 
9004   // Codegen OMP target directives that offload compute to the device.
9005   bool RequiresDeviceCodegen =
9006       isa<OMPExecutableDirective>(S) &&
9007       isOpenMPTargetExecutionDirective(
9008           cast<OMPExecutableDirective>(S)->getDirectiveKind());
9009 
9010   if (RequiresDeviceCodegen) {
9011     const auto &E = *cast<OMPExecutableDirective>(S);
9012     unsigned DeviceID;
9013     unsigned FileID;
9014     unsigned Line;
9015     getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID,
9016                              FileID, Line);
9017 
9018     // Is this a target region that should not be emitted as an entry point? If
9019     // so just signal we are done with this target region.
9020     if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
9021                                                             ParentName, Line))
9022       return;
9023 
9024     switch (E.getDirectiveKind()) {
9025     case OMPD_target:
9026       CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName,
9027                                                    cast<OMPTargetDirective>(E));
9028       break;
9029     case OMPD_target_parallel:
9030       CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
9031           CGM, ParentName, cast<OMPTargetParallelDirective>(E));
9032       break;
9033     case OMPD_target_teams:
9034       CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
9035           CGM, ParentName, cast<OMPTargetTeamsDirective>(E));
9036       break;
9037     case OMPD_target_teams_distribute:
9038       CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
9039           CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E));
9040       break;
9041     case OMPD_target_teams_distribute_simd:
9042       CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
9043           CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E));
9044       break;
9045     case OMPD_target_parallel_for:
9046       CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
9047           CGM, ParentName, cast<OMPTargetParallelForDirective>(E));
9048       break;
9049     case OMPD_target_parallel_for_simd:
9050       CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
9051           CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E));
9052       break;
9053     case OMPD_target_simd:
9054       CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
9055           CGM, ParentName, cast<OMPTargetSimdDirective>(E));
9056       break;
9057     case OMPD_target_teams_distribute_parallel_for:
9058       CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
9059           CGM, ParentName,
9060           cast<OMPTargetTeamsDistributeParallelForDirective>(E));
9061       break;
9062     case OMPD_target_teams_distribute_parallel_for_simd:
9063       CodeGenFunction::
9064           EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
9065               CGM, ParentName,
9066               cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E));
9067       break;
9068     case OMPD_parallel:
9069     case OMPD_for:
9070     case OMPD_parallel_for:
9071     case OMPD_parallel_sections:
9072     case OMPD_for_simd:
9073     case OMPD_parallel_for_simd:
9074     case OMPD_cancel:
9075     case OMPD_cancellation_point:
9076     case OMPD_ordered:
9077     case OMPD_threadprivate:
9078     case OMPD_allocate:
9079     case OMPD_task:
9080     case OMPD_simd:
9081     case OMPD_sections:
9082     case OMPD_section:
9083     case OMPD_single:
9084     case OMPD_master:
9085     case OMPD_critical:
9086     case OMPD_taskyield:
9087     case OMPD_barrier:
9088     case OMPD_taskwait:
9089     case OMPD_taskgroup:
9090     case OMPD_atomic:
9091     case OMPD_flush:
9092     case OMPD_teams:
9093     case OMPD_target_data:
9094     case OMPD_target_exit_data:
9095     case OMPD_target_enter_data:
9096     case OMPD_distribute:
9097     case OMPD_distribute_simd:
9098     case OMPD_distribute_parallel_for:
9099     case OMPD_distribute_parallel_for_simd:
9100     case OMPD_teams_distribute:
9101     case OMPD_teams_distribute_simd:
9102     case OMPD_teams_distribute_parallel_for:
9103     case OMPD_teams_distribute_parallel_for_simd:
9104     case OMPD_target_update:
9105     case OMPD_declare_simd:
9106     case OMPD_declare_target:
9107     case OMPD_end_declare_target:
9108     case OMPD_declare_reduction:
9109     case OMPD_declare_mapper:
9110     case OMPD_taskloop:
9111     case OMPD_taskloop_simd:
9112     case OMPD_requires:
9113     case OMPD_unknown:
9114       llvm_unreachable("Unknown target directive for OpenMP device codegen.");
9115     }
9116     return;
9117   }
9118 
9119   if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) {
9120     if (!E->hasAssociatedStmt() || !E->getAssociatedStmt())
9121       return;
9122 
9123     scanForTargetRegionsFunctions(
9124         E->getInnermostCapturedStmt()->getCapturedStmt(), ParentName);
9125     return;
9126   }
9127 
9128   // If this is a lambda function, look into its body.
9129   if (const auto *L = dyn_cast<LambdaExpr>(S))
9130     S = L->getBody();
9131 
9132   // Keep looking for target regions recursively.
9133   for (const Stmt *II : S->children())
9134     scanForTargetRegionsFunctions(II, ParentName);
9135 }
9136 
emitTargetFunctions(GlobalDecl GD)9137 bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
9138   // If emitting code for the host, we do not process FD here. Instead we do
9139   // the normal code generation.
9140   if (!CGM.getLangOpts().OpenMPIsDevice)
9141     return false;
9142 
9143   const ValueDecl *VD = cast<ValueDecl>(GD.getDecl());
9144   StringRef Name = CGM.getMangledName(GD);
9145   // Try to detect target regions in the function.
9146   if (const auto *FD = dyn_cast<FunctionDecl>(VD))
9147     scanForTargetRegionsFunctions(FD->getBody(), Name);
9148 
9149   // Do not to emit function if it is not marked as declare target.
9150   return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) &&
9151          AlreadyEmittedTargetFunctions.count(Name) == 0;
9152 }
9153 
emitTargetGlobalVariable(GlobalDecl GD)9154 bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
9155   if (!CGM.getLangOpts().OpenMPIsDevice)
9156     return false;
9157 
9158   // Check if there are Ctors/Dtors in this declaration and look for target
9159   // regions in it. We use the complete variant to produce the kernel name
9160   // mangling.
9161   QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
9162   if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
9163     for (const CXXConstructorDecl *Ctor : RD->ctors()) {
9164       StringRef ParentName =
9165           CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
9166       scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
9167     }
9168     if (const CXXDestructorDecl *Dtor = RD->getDestructor()) {
9169       StringRef ParentName =
9170           CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
9171       scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
9172     }
9173   }
9174 
9175   // Do not to emit variable if it is not marked as declare target.
9176   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
9177       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
9178           cast<VarDecl>(GD.getDecl()));
9179   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
9180       (*Res == OMPDeclareTargetDeclAttr::MT_To &&
9181        HasRequiresUnifiedSharedMemory)) {
9182     DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl()));
9183     return true;
9184   }
9185   return false;
9186 }
9187 
9188 llvm::Constant *
registerTargetFirstprivateCopy(CodeGenFunction & CGF,const VarDecl * VD)9189 CGOpenMPRuntime::registerTargetFirstprivateCopy(CodeGenFunction &CGF,
9190                                                 const VarDecl *VD) {
9191   assert(VD->getType().isConstant(CGM.getContext()) &&
9192          "Expected constant variable.");
9193   StringRef VarName;
9194   llvm::Constant *Addr;
9195   llvm::GlobalValue::LinkageTypes Linkage;
9196   QualType Ty = VD->getType();
9197   SmallString<128> Buffer;
9198   {
9199     unsigned DeviceID;
9200     unsigned FileID;
9201     unsigned Line;
9202     getTargetEntryUniqueInfo(CGM.getContext(), VD->getLocation(), DeviceID,
9203                              FileID, Line);
9204     llvm::raw_svector_ostream OS(Buffer);
9205     OS << "__omp_offloading_firstprivate_" << llvm::format("_%x", DeviceID)
9206        << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
9207     VarName = OS.str();
9208   }
9209   Linkage = llvm::GlobalValue::InternalLinkage;
9210   Addr =
9211       getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(Ty), VarName,
9212                                   getDefaultFirstprivateAddressSpace());
9213   cast<llvm::GlobalValue>(Addr)->setLinkage(Linkage);
9214   CharUnits VarSize = CGM.getContext().getTypeSizeInChars(Ty);
9215   CGM.addCompilerUsedGlobal(cast<llvm::GlobalValue>(Addr));
9216   OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
9217       VarName, Addr, VarSize,
9218       OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo, Linkage);
9219   return Addr;
9220 }
9221 
registerTargetGlobalVariable(const VarDecl * VD,llvm::Constant * Addr)9222 void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD,
9223                                                    llvm::Constant *Addr) {
9224   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
9225       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
9226   if (!Res) {
9227     if (CGM.getLangOpts().OpenMPIsDevice) {
9228       // Register non-target variables being emitted in device code (debug info
9229       // may cause this).
9230       StringRef VarName = CGM.getMangledName(VD);
9231       EmittedNonTargetVariables.try_emplace(VarName, Addr);
9232     }
9233     return;
9234   }
9235   // Register declare target variables.
9236   OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags;
9237   StringRef VarName;
9238   CharUnits VarSize;
9239   llvm::GlobalValue::LinkageTypes Linkage;
9240 
9241   if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
9242       !HasRequiresUnifiedSharedMemory) {
9243     Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
9244     VarName = CGM.getMangledName(VD);
9245     if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) {
9246       VarSize = CGM.getContext().getTypeSizeInChars(VD->getType());
9247       assert(!VarSize.isZero() && "Expected non-zero size of the variable");
9248     } else {
9249       VarSize = CharUnits::Zero();
9250     }
9251     Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false);
9252     // Temp solution to prevent optimizations of the internal variables.
9253     if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) {
9254       std::string RefName = getName({VarName, "ref"});
9255       if (!CGM.GetGlobalValue(RefName)) {
9256         llvm::Constant *AddrRef =
9257             getOrCreateInternalVariable(Addr->getType(), RefName);
9258         auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef);
9259         GVAddrRef->setConstant(/*Val=*/true);
9260         GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage);
9261         GVAddrRef->setInitializer(Addr);
9262         CGM.addCompilerUsedGlobal(GVAddrRef);
9263       }
9264     }
9265   } else {
9266     assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
9267             (*Res == OMPDeclareTargetDeclAttr::MT_To &&
9268              HasRequiresUnifiedSharedMemory)) &&
9269            "Declare target attribute must link or to with unified memory.");
9270     if (*Res == OMPDeclareTargetDeclAttr::MT_Link)
9271       Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink;
9272     else
9273       Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
9274 
9275     if (CGM.getLangOpts().OpenMPIsDevice) {
9276       VarName = Addr->getName();
9277       Addr = nullptr;
9278     } else {
9279       VarName = getAddrOfDeclareTargetVar(VD).getName();
9280       Addr = cast<llvm::Constant>(getAddrOfDeclareTargetVar(VD).getPointer());
9281     }
9282     VarSize = CGM.getPointerSize();
9283     Linkage = llvm::GlobalValue::WeakAnyLinkage;
9284   }
9285 
9286   OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
9287       VarName, Addr, VarSize, Flags, Linkage);
9288 }
9289 
emitTargetGlobal(GlobalDecl GD)9290 bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
9291   if (isa<FunctionDecl>(GD.getDecl()) ||
9292       isa<OMPDeclareReductionDecl>(GD.getDecl()))
9293     return emitTargetFunctions(GD);
9294 
9295   return emitTargetGlobalVariable(GD);
9296 }
9297 
emitDeferredTargetDecls() const9298 void CGOpenMPRuntime::emitDeferredTargetDecls() const {
9299   for (const VarDecl *VD : DeferredGlobalVariables) {
9300     llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
9301         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
9302     if (!Res)
9303       continue;
9304     if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
9305         !HasRequiresUnifiedSharedMemory) {
9306       CGM.EmitGlobal(VD);
9307     } else {
9308       assert((*Res == OMPDeclareTargetDeclAttr::MT_Link ||
9309               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
9310                HasRequiresUnifiedSharedMemory)) &&
9311              "Expected link clause or to clause with unified memory.");
9312       (void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
9313     }
9314   }
9315 }
9316 
adjustTargetSpecificDataForLambdas(CodeGenFunction & CGF,const OMPExecutableDirective & D) const9317 void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas(
9318     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
9319   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
9320          " Expected target-based directive.");
9321 }
9322 
checkArchForUnifiedAddressing(const OMPRequiresDecl * D)9323 void CGOpenMPRuntime::checkArchForUnifiedAddressing(
9324     const OMPRequiresDecl *D) {
9325   for (const OMPClause *Clause : D->clauselists()) {
9326     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
9327       HasRequiresUnifiedSharedMemory = true;
9328       break;
9329     }
9330   }
9331 }
9332 
hasAllocateAttributeForGlobalVar(const VarDecl * VD,LangAS & AS)9333 bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
9334                                                        LangAS &AS) {
9335   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
9336     return false;
9337   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
9338   switch(A->getAllocatorType()) {
9339   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
9340   // Not supported, fallback to the default mem space.
9341   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
9342   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
9343   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
9344   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
9345   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
9346   case OMPAllocateDeclAttr::OMPConstMemAlloc:
9347   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
9348     AS = LangAS::Default;
9349     return true;
9350   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
9351     llvm_unreachable("Expected predefined allocator for the variables with the "
9352                      "static storage.");
9353   }
9354   return false;
9355 }
9356 
hasRequiresUnifiedSharedMemory() const9357 bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const {
9358   return HasRequiresUnifiedSharedMemory;
9359 }
9360 
DisableAutoDeclareTargetRAII(CodeGenModule & CGM)9361 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII(
9362     CodeGenModule &CGM)
9363     : CGM(CGM) {
9364   if (CGM.getLangOpts().OpenMPIsDevice) {
9365     SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal;
9366     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false;
9367   }
9368 }
9369 
~DisableAutoDeclareTargetRAII()9370 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() {
9371   if (CGM.getLangOpts().OpenMPIsDevice)
9372     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal;
9373 }
9374 
markAsGlobalTarget(GlobalDecl GD)9375 bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) {
9376   if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal)
9377     return true;
9378 
9379   StringRef Name = CGM.getMangledName(GD);
9380   const auto *D = cast<FunctionDecl>(GD.getDecl());
9381   // Do not to emit function if it is marked as declare target as it was already
9382   // emitted.
9383   if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) {
9384     if (D->hasBody() && AlreadyEmittedTargetFunctions.count(Name) == 0) {
9385       if (auto *F = dyn_cast_or_null<llvm::Function>(CGM.GetGlobalValue(Name)))
9386         return !F->isDeclaration();
9387       return false;
9388     }
9389     return true;
9390   }
9391 
9392   return !AlreadyEmittedTargetFunctions.insert(Name).second;
9393 }
9394 
emitRequiresDirectiveRegFun()9395 llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() {
9396   // If we don't have entries or if we are emitting code for the device, we
9397   // don't need to do anything.
9398   if (CGM.getLangOpts().OMPTargetTriples.empty() ||
9399       CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice ||
9400       (OffloadEntriesInfoManager.empty() &&
9401        !HasEmittedDeclareTargetRegion &&
9402        !HasEmittedTargetRegion))
9403     return nullptr;
9404 
9405   // Create and register the function that handles the requires directives.
9406   ASTContext &C = CGM.getContext();
9407 
9408   llvm::Function *RequiresRegFn;
9409   {
9410     CodeGenFunction CGF(CGM);
9411     const auto &FI = CGM.getTypes().arrangeNullaryFunction();
9412     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
9413     std::string ReqName = getName({"omp_offloading", "requires_reg"});
9414     RequiresRegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, ReqName, FI);
9415     CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {});
9416     OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE;
9417     // TODO: check for other requires clauses.
9418     // The requires directive takes effect only when a target region is
9419     // present in the compilation unit. Otherwise it is ignored and not
9420     // passed to the runtime. This avoids the runtime from throwing an error
9421     // for mismatching requires clauses across compilation units that don't
9422     // contain at least 1 target region.
9423     assert((HasEmittedTargetRegion ||
9424             HasEmittedDeclareTargetRegion ||
9425             !OffloadEntriesInfoManager.empty()) &&
9426            "Target or declare target region expected.");
9427     if (HasRequiresUnifiedSharedMemory)
9428       Flags = OMP_REQ_UNIFIED_SHARED_MEMORY;
9429     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_register_requires),
9430         llvm::ConstantInt::get(CGM.Int64Ty, Flags));
9431     CGF.FinishFunction();
9432   }
9433   return RequiresRegFn;
9434 }
9435 
emitRegistrationFunction()9436 llvm::Function *CGOpenMPRuntime::emitRegistrationFunction() {
9437   // If we have offloading in the current module, we need to emit the entries
9438   // now and register the offloading descriptor.
9439   createOffloadEntriesAndInfoMetadata();
9440 
9441   // Create and register the offloading binary descriptors. This is the main
9442   // entity that captures all the information about offloading in the current
9443   // compilation unit.
9444   return createOffloadingBinaryDescriptorRegistration();
9445 }
9446 
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)9447 void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
9448                                     const OMPExecutableDirective &D,
9449                                     SourceLocation Loc,
9450                                     llvm::Function *OutlinedFn,
9451                                     ArrayRef<llvm::Value *> CapturedVars) {
9452   if (!CGF.HaveInsertPoint())
9453     return;
9454 
9455   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
9456   CodeGenFunction::RunCleanupsScope Scope(CGF);
9457 
9458   // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
9459   llvm::Value *Args[] = {
9460       RTLoc,
9461       CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
9462       CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
9463   llvm::SmallVector<llvm::Value *, 16> RealArgs;
9464   RealArgs.append(std::begin(Args), std::end(Args));
9465   RealArgs.append(CapturedVars.begin(), CapturedVars.end());
9466 
9467   llvm::FunctionCallee RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams);
9468   CGF.EmitRuntimeCall(RTLFn, RealArgs);
9469 }
9470 
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)9471 void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
9472                                          const Expr *NumTeams,
9473                                          const Expr *ThreadLimit,
9474                                          SourceLocation Loc) {
9475   if (!CGF.HaveInsertPoint())
9476     return;
9477 
9478   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
9479 
9480   llvm::Value *NumTeamsVal =
9481       NumTeams
9482           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
9483                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
9484           : CGF.Builder.getInt32(0);
9485 
9486   llvm::Value *ThreadLimitVal =
9487       ThreadLimit
9488           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
9489                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
9490           : CGF.Builder.getInt32(0);
9491 
9492   // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
9493   llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
9494                                      ThreadLimitVal};
9495   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams),
9496                       PushNumTeamsArgs);
9497 }
9498 
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,TargetDataInfo & Info)9499 void CGOpenMPRuntime::emitTargetDataCalls(
9500     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
9501     const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
9502   if (!CGF.HaveInsertPoint())
9503     return;
9504 
9505   // Action used to replace the default codegen action and turn privatization
9506   // off.
9507   PrePostActionTy NoPrivAction;
9508 
9509   // Generate the code for the opening of the data environment. Capture all the
9510   // arguments of the runtime call by reference because they are used in the
9511   // closing of the region.
9512   auto &&BeginThenGen = [this, &D, Device, &Info,
9513                          &CodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
9514     // Fill up the arrays with all the mapped variables.
9515     MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
9516     MappableExprsHandler::MapValuesArrayTy Pointers;
9517     MappableExprsHandler::MapValuesArrayTy Sizes;
9518     MappableExprsHandler::MapFlagsArrayTy MapTypes;
9519 
9520     // Get map clause information.
9521     MappableExprsHandler MCHandler(D, CGF);
9522     MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
9523 
9524     // Fill up the arrays and create the arguments.
9525     emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
9526 
9527     llvm::Value *BasePointersArrayArg = nullptr;
9528     llvm::Value *PointersArrayArg = nullptr;
9529     llvm::Value *SizesArrayArg = nullptr;
9530     llvm::Value *MapTypesArrayArg = nullptr;
9531     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
9532                                  SizesArrayArg, MapTypesArrayArg, Info);
9533 
9534     // Emit device ID if any.
9535     llvm::Value *DeviceID = nullptr;
9536     if (Device) {
9537       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
9538                                            CGF.Int64Ty, /*isSigned=*/true);
9539     } else {
9540       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
9541     }
9542 
9543     // Emit the number of elements in the offloading arrays.
9544     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
9545 
9546     llvm::Value *OffloadingArgs[] = {
9547         DeviceID,         PointerNum,    BasePointersArrayArg,
9548         PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
9549     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_begin),
9550                         OffloadingArgs);
9551 
9552     // If device pointer privatization is required, emit the body of the region
9553     // here. It will have to be duplicated: with and without privatization.
9554     if (!Info.CaptureDeviceAddrMap.empty())
9555       CodeGen(CGF);
9556   };
9557 
9558   // Generate code for the closing of the data region.
9559   auto &&EndThenGen = [this, Device, &Info](CodeGenFunction &CGF,
9560                                             PrePostActionTy &) {
9561     assert(Info.isValid() && "Invalid data environment closing arguments.");
9562 
9563     llvm::Value *BasePointersArrayArg = nullptr;
9564     llvm::Value *PointersArrayArg = nullptr;
9565     llvm::Value *SizesArrayArg = nullptr;
9566     llvm::Value *MapTypesArrayArg = nullptr;
9567     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
9568                                  SizesArrayArg, MapTypesArrayArg, Info);
9569 
9570     // Emit device ID if any.
9571     llvm::Value *DeviceID = nullptr;
9572     if (Device) {
9573       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
9574                                            CGF.Int64Ty, /*isSigned=*/true);
9575     } else {
9576       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
9577     }
9578 
9579     // Emit the number of elements in the offloading arrays.
9580     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
9581 
9582     llvm::Value *OffloadingArgs[] = {
9583         DeviceID,         PointerNum,    BasePointersArrayArg,
9584         PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
9585     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_end),
9586                         OffloadingArgs);
9587   };
9588 
9589   // If we need device pointer privatization, we need to emit the body of the
9590   // region with no privatization in the 'else' branch of the conditional.
9591   // Otherwise, we don't have to do anything.
9592   auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
9593                                                          PrePostActionTy &) {
9594     if (!Info.CaptureDeviceAddrMap.empty()) {
9595       CodeGen.setAction(NoPrivAction);
9596       CodeGen(CGF);
9597     }
9598   };
9599 
9600   // We don't have to do anything to close the region if the if clause evaluates
9601   // to false.
9602   auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
9603 
9604   if (IfCond) {
9605     emitOMPIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
9606   } else {
9607     RegionCodeGenTy RCG(BeginThenGen);
9608     RCG(CGF);
9609   }
9610 
9611   // If we don't require privatization of device pointers, we emit the body in
9612   // between the runtime calls. This avoids duplicating the body code.
9613   if (Info.CaptureDeviceAddrMap.empty()) {
9614     CodeGen.setAction(NoPrivAction);
9615     CodeGen(CGF);
9616   }
9617 
9618   if (IfCond) {
9619     emitOMPIfClause(CGF, IfCond, EndThenGen, EndElseGen);
9620   } else {
9621     RegionCodeGenTy RCG(EndThenGen);
9622     RCG(CGF);
9623   }
9624 }
9625 
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)9626 void CGOpenMPRuntime::emitTargetDataStandAloneCall(
9627     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
9628     const Expr *Device) {
9629   if (!CGF.HaveInsertPoint())
9630     return;
9631 
9632   assert((isa<OMPTargetEnterDataDirective>(D) ||
9633           isa<OMPTargetExitDataDirective>(D) ||
9634           isa<OMPTargetUpdateDirective>(D)) &&
9635          "Expecting either target enter, exit data, or update directives.");
9636 
9637   CodeGenFunction::OMPTargetDataInfo InputInfo;
9638   llvm::Value *MapTypesArray = nullptr;
9639   // Generate the code for the opening of the data environment.
9640   auto &&ThenGen = [this, &D, Device, &InputInfo,
9641                     &MapTypesArray](CodeGenFunction &CGF, PrePostActionTy &) {
9642     // Emit device ID if any.
9643     llvm::Value *DeviceID = nullptr;
9644     if (Device) {
9645       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
9646                                            CGF.Int64Ty, /*isSigned=*/true);
9647     } else {
9648       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
9649     }
9650 
9651     // Emit the number of elements in the offloading arrays.
9652     llvm::Constant *PointerNum =
9653         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
9654 
9655     llvm::Value *OffloadingArgs[] = {DeviceID,
9656                                      PointerNum,
9657                                      InputInfo.BasePointersArray.getPointer(),
9658                                      InputInfo.PointersArray.getPointer(),
9659                                      InputInfo.SizesArray.getPointer(),
9660                                      MapTypesArray};
9661 
9662     // Select the right runtime function call for each expected standalone
9663     // directive.
9664     const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
9665     OpenMPRTLFunction RTLFn;
9666     switch (D.getDirectiveKind()) {
9667     case OMPD_target_enter_data:
9668       RTLFn = HasNowait ? OMPRTL__tgt_target_data_begin_nowait
9669                         : OMPRTL__tgt_target_data_begin;
9670       break;
9671     case OMPD_target_exit_data:
9672       RTLFn = HasNowait ? OMPRTL__tgt_target_data_end_nowait
9673                         : OMPRTL__tgt_target_data_end;
9674       break;
9675     case OMPD_target_update:
9676       RTLFn = HasNowait ? OMPRTL__tgt_target_data_update_nowait
9677                         : OMPRTL__tgt_target_data_update;
9678       break;
9679     case OMPD_parallel:
9680     case OMPD_for:
9681     case OMPD_parallel_for:
9682     case OMPD_parallel_sections:
9683     case OMPD_for_simd:
9684     case OMPD_parallel_for_simd:
9685     case OMPD_cancel:
9686     case OMPD_cancellation_point:
9687     case OMPD_ordered:
9688     case OMPD_threadprivate:
9689     case OMPD_allocate:
9690     case OMPD_task:
9691     case OMPD_simd:
9692     case OMPD_sections:
9693     case OMPD_section:
9694     case OMPD_single:
9695     case OMPD_master:
9696     case OMPD_critical:
9697     case OMPD_taskyield:
9698     case OMPD_barrier:
9699     case OMPD_taskwait:
9700     case OMPD_taskgroup:
9701     case OMPD_atomic:
9702     case OMPD_flush:
9703     case OMPD_teams:
9704     case OMPD_target_data:
9705     case OMPD_distribute:
9706     case OMPD_distribute_simd:
9707     case OMPD_distribute_parallel_for:
9708     case OMPD_distribute_parallel_for_simd:
9709     case OMPD_teams_distribute:
9710     case OMPD_teams_distribute_simd:
9711     case OMPD_teams_distribute_parallel_for:
9712     case OMPD_teams_distribute_parallel_for_simd:
9713     case OMPD_declare_simd:
9714     case OMPD_declare_target:
9715     case OMPD_end_declare_target:
9716     case OMPD_declare_reduction:
9717     case OMPD_declare_mapper:
9718     case OMPD_taskloop:
9719     case OMPD_taskloop_simd:
9720     case OMPD_target:
9721     case OMPD_target_simd:
9722     case OMPD_target_teams_distribute:
9723     case OMPD_target_teams_distribute_simd:
9724     case OMPD_target_teams_distribute_parallel_for:
9725     case OMPD_target_teams_distribute_parallel_for_simd:
9726     case OMPD_target_teams:
9727     case OMPD_target_parallel:
9728     case OMPD_target_parallel_for:
9729     case OMPD_target_parallel_for_simd:
9730     case OMPD_requires:
9731     case OMPD_unknown:
9732       llvm_unreachable("Unexpected standalone target data directive.");
9733       break;
9734     }
9735     CGF.EmitRuntimeCall(createRuntimeFunction(RTLFn), OffloadingArgs);
9736   };
9737 
9738   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray](
9739                              CodeGenFunction &CGF, PrePostActionTy &) {
9740     // Fill up the arrays with all the mapped variables.
9741     MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
9742     MappableExprsHandler::MapValuesArrayTy Pointers;
9743     MappableExprsHandler::MapValuesArrayTy Sizes;
9744     MappableExprsHandler::MapFlagsArrayTy MapTypes;
9745 
9746     // Get map clause information.
9747     MappableExprsHandler MEHandler(D, CGF);
9748     MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
9749 
9750     TargetDataInfo Info;
9751     // Fill up the arrays and create the arguments.
9752     emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
9753     emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
9754                                  Info.PointersArray, Info.SizesArray,
9755                                  Info.MapTypesArray, Info);
9756     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
9757     InputInfo.BasePointersArray =
9758         Address(Info.BasePointersArray, CGM.getPointerAlign());
9759     InputInfo.PointersArray =
9760         Address(Info.PointersArray, CGM.getPointerAlign());
9761     InputInfo.SizesArray =
9762         Address(Info.SizesArray, CGM.getPointerAlign());
9763     MapTypesArray = Info.MapTypesArray;
9764     if (D.hasClausesOfKind<OMPDependClause>())
9765       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
9766     else
9767       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
9768   };
9769 
9770   if (IfCond) {
9771     emitOMPIfClause(CGF, IfCond, TargetThenGen,
9772                     [](CodeGenFunction &CGF, PrePostActionTy &) {});
9773   } else {
9774     RegionCodeGenTy ThenRCG(TargetThenGen);
9775     ThenRCG(CGF);
9776   }
9777 }
9778 
9779 namespace {
9780   /// Kind of parameter in a function with 'declare simd' directive.
9781   enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
9782   /// Attribute set of the parameter.
9783   struct ParamAttrTy {
9784     ParamKindTy Kind = Vector;
9785     llvm::APSInt StrideOrArg;
9786     llvm::APSInt Alignment;
9787   };
9788 } // namespace
9789 
evaluateCDTSize(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)9790 static unsigned evaluateCDTSize(const FunctionDecl *FD,
9791                                 ArrayRef<ParamAttrTy> ParamAttrs) {
9792   // Every vector variant of a SIMD-enabled function has a vector length (VLEN).
9793   // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
9794   // of that clause. The VLEN value must be power of 2.
9795   // In other case the notion of the function`s "characteristic data type" (CDT)
9796   // is used to compute the vector length.
9797   // CDT is defined in the following order:
9798   //   a) For non-void function, the CDT is the return type.
9799   //   b) If the function has any non-uniform, non-linear parameters, then the
9800   //   CDT is the type of the first such parameter.
9801   //   c) If the CDT determined by a) or b) above is struct, union, or class
9802   //   type which is pass-by-value (except for the type that maps to the
9803   //   built-in complex data type), the characteristic data type is int.
9804   //   d) If none of the above three cases is applicable, the CDT is int.
9805   // The VLEN is then determined based on the CDT and the size of vector
9806   // register of that ISA for which current vector version is generated. The
9807   // VLEN is computed using the formula below:
9808   //   VLEN  = sizeof(vector_register) / sizeof(CDT),
9809   // where vector register size specified in section 3.2.1 Registers and the
9810   // Stack Frame of original AMD64 ABI document.
9811   QualType RetType = FD->getReturnType();
9812   if (RetType.isNull())
9813     return 0;
9814   ASTContext &C = FD->getASTContext();
9815   QualType CDT;
9816   if (!RetType.isNull() && !RetType->isVoidType()) {
9817     CDT = RetType;
9818   } else {
9819     unsigned Offset = 0;
9820     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
9821       if (ParamAttrs[Offset].Kind == Vector)
9822         CDT = C.getPointerType(C.getRecordType(MD->getParent()));
9823       ++Offset;
9824     }
9825     if (CDT.isNull()) {
9826       for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
9827         if (ParamAttrs[I + Offset].Kind == Vector) {
9828           CDT = FD->getParamDecl(I)->getType();
9829           break;
9830         }
9831       }
9832     }
9833   }
9834   if (CDT.isNull())
9835     CDT = C.IntTy;
9836   CDT = CDT->getCanonicalTypeUnqualified();
9837   if (CDT->isRecordType() || CDT->isUnionType())
9838     CDT = C.IntTy;
9839   return C.getTypeSize(CDT);
9840 }
9841 
9842 static void
emitX86DeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn,const llvm::APSInt & VLENVal,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State)9843 emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
9844                            const llvm::APSInt &VLENVal,
9845                            ArrayRef<ParamAttrTy> ParamAttrs,
9846                            OMPDeclareSimdDeclAttr::BranchStateTy State) {
9847   struct ISADataTy {
9848     char ISA;
9849     unsigned VecRegSize;
9850   };
9851   ISADataTy ISAData[] = {
9852       {
9853           'b', 128
9854       }, // SSE
9855       {
9856           'c', 256
9857       }, // AVX
9858       {
9859           'd', 256
9860       }, // AVX2
9861       {
9862           'e', 512
9863       }, // AVX512
9864   };
9865   llvm::SmallVector<char, 2> Masked;
9866   switch (State) {
9867   case OMPDeclareSimdDeclAttr::BS_Undefined:
9868     Masked.push_back('N');
9869     Masked.push_back('M');
9870     break;
9871   case OMPDeclareSimdDeclAttr::BS_Notinbranch:
9872     Masked.push_back('N');
9873     break;
9874   case OMPDeclareSimdDeclAttr::BS_Inbranch:
9875     Masked.push_back('M');
9876     break;
9877   }
9878   for (char Mask : Masked) {
9879     for (const ISADataTy &Data : ISAData) {
9880       SmallString<256> Buffer;
9881       llvm::raw_svector_ostream Out(Buffer);
9882       Out << "_ZGV" << Data.ISA << Mask;
9883       if (!VLENVal) {
9884         unsigned NumElts = evaluateCDTSize(FD, ParamAttrs);
9885         assert(NumElts && "Non-zero simdlen/cdtsize expected");
9886         Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts);
9887       } else {
9888         Out << VLENVal;
9889       }
9890       for (const ParamAttrTy &ParamAttr : ParamAttrs) {
9891         switch (ParamAttr.Kind){
9892         case LinearWithVarStride:
9893           Out << 's' << ParamAttr.StrideOrArg;
9894           break;
9895         case Linear:
9896           Out << 'l';
9897           if (!!ParamAttr.StrideOrArg)
9898             Out << ParamAttr.StrideOrArg;
9899           break;
9900         case Uniform:
9901           Out << 'u';
9902           break;
9903         case Vector:
9904           Out << 'v';
9905           break;
9906         }
9907         if (!!ParamAttr.Alignment)
9908           Out << 'a' << ParamAttr.Alignment;
9909       }
9910       Out << '_' << Fn->getName();
9911       Fn->addFnAttr(Out.str());
9912     }
9913   }
9914 }
9915 
9916 // This are the Functions that are needed to mangle the name of the
9917 // vector functions generated by the compiler, according to the rules
9918 // defined in the "Vector Function ABI specifications for AArch64",
9919 // available at
9920 // https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
9921 
9922 /// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI.
9923 ///
9924 /// TODO: Need to implement the behavior for reference marked with a
9925 /// var or no linear modifiers (1.b in the section). For this, we
9926 /// need to extend ParamKindTy to support the linear modifiers.
getAArch64MTV(QualType QT,ParamKindTy Kind)9927 static bool getAArch64MTV(QualType QT, ParamKindTy Kind) {
9928   QT = QT.getCanonicalType();
9929 
9930   if (QT->isVoidType())
9931     return false;
9932 
9933   if (Kind == ParamKindTy::Uniform)
9934     return false;
9935 
9936   if (Kind == ParamKindTy::Linear)
9937     return false;
9938 
9939   // TODO: Handle linear references with modifiers
9940 
9941   if (Kind == ParamKindTy::LinearWithVarStride)
9942     return false;
9943 
9944   return true;
9945 }
9946 
9947 /// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI.
getAArch64PBV(QualType QT,ASTContext & C)9948 static bool getAArch64PBV(QualType QT, ASTContext &C) {
9949   QT = QT.getCanonicalType();
9950   unsigned Size = C.getTypeSize(QT);
9951 
9952   // Only scalars and complex within 16 bytes wide set PVB to true.
9953   if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128)
9954     return false;
9955 
9956   if (QT->isFloatingType())
9957     return true;
9958 
9959   if (QT->isIntegerType())
9960     return true;
9961 
9962   if (QT->isPointerType())
9963     return true;
9964 
9965   // TODO: Add support for complex types (section 3.1.2, item 2).
9966 
9967   return false;
9968 }
9969 
9970 /// Computes the lane size (LS) of a return type or of an input parameter,
9971 /// as defined by `LS(P)` in 3.2.1 of the AAVFABI.
9972 /// TODO: Add support for references, section 3.2.1, item 1.
getAArch64LS(QualType QT,ParamKindTy Kind,ASTContext & C)9973 static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) {
9974   if (getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) {
9975     QualType PTy = QT.getCanonicalType()->getPointeeType();
9976     if (getAArch64PBV(PTy, C))
9977       return C.getTypeSize(PTy);
9978   }
9979   if (getAArch64PBV(QT, C))
9980     return C.getTypeSize(QT);
9981 
9982   return C.getTypeSize(C.getUIntPtrType());
9983 }
9984 
9985 // Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the
9986 // signature of the scalar function, as defined in 3.2.2 of the
9987 // AAVFABI.
9988 static std::tuple<unsigned, unsigned, bool>
getNDSWDS(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)9989 getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) {
9990   QualType RetType = FD->getReturnType().getCanonicalType();
9991 
9992   ASTContext &C = FD->getASTContext();
9993 
9994   bool OutputBecomesInput = false;
9995 
9996   llvm::SmallVector<unsigned, 8> Sizes;
9997   if (!RetType->isVoidType()) {
9998     Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C));
9999     if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {}))
10000       OutputBecomesInput = true;
10001   }
10002   for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
10003     QualType QT = FD->getParamDecl(I)->getType().getCanonicalType();
10004     Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C));
10005   }
10006 
10007   assert(!Sizes.empty() && "Unable to determine NDS and WDS.");
10008   // The LS of a function parameter / return value can only be a power
10009   // of 2, starting from 8 bits, up to 128.
10010   assert(std::all_of(Sizes.begin(), Sizes.end(),
10011                      [](unsigned Size) {
10012                        return Size == 8 || Size == 16 || Size == 32 ||
10013                               Size == 64 || Size == 128;
10014                      }) &&
10015          "Invalid size");
10016 
10017   return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)),
10018                          *std::max_element(std::begin(Sizes), std::end(Sizes)),
10019                          OutputBecomesInput);
10020 }
10021 
10022 /// Mangle the parameter part of the vector function name according to
10023 /// their OpenMP classification. The mangling function is defined in
10024 /// section 3.5 of the AAVFABI.
mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs)10025 static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) {
10026   SmallString<256> Buffer;
10027   llvm::raw_svector_ostream Out(Buffer);
10028   for (const auto &ParamAttr : ParamAttrs) {
10029     switch (ParamAttr.Kind) {
10030     case LinearWithVarStride:
10031       Out << "ls" << ParamAttr.StrideOrArg;
10032       break;
10033     case Linear:
10034       Out << 'l';
10035       // Don't print the step value if it is not present or if it is
10036       // equal to 1.
10037       if (!!ParamAttr.StrideOrArg && ParamAttr.StrideOrArg != 1)
10038         Out << ParamAttr.StrideOrArg;
10039       break;
10040     case Uniform:
10041       Out << 'u';
10042       break;
10043     case Vector:
10044       Out << 'v';
10045       break;
10046     }
10047 
10048     if (!!ParamAttr.Alignment)
10049       Out << 'a' << ParamAttr.Alignment;
10050   }
10051 
10052   return Out.str();
10053 }
10054 
10055 // Function used to add the attribute. The parameter `VLEN` is
10056 // templated to allow the use of "x" when targeting scalable functions
10057 // for SVE.
10058 template <typename T>
addAArch64VectorName(T VLEN,StringRef LMask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)10059 static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix,
10060                                  char ISA, StringRef ParSeq,
10061                                  StringRef MangledName, bool OutputBecomesInput,
10062                                  llvm::Function *Fn) {
10063   SmallString<256> Buffer;
10064   llvm::raw_svector_ostream Out(Buffer);
10065   Out << Prefix << ISA << LMask << VLEN;
10066   if (OutputBecomesInput)
10067     Out << "v";
10068   Out << ParSeq << "_" << MangledName;
10069   Fn->addFnAttr(Out.str());
10070 }
10071 
10072 // Helper function to generate the Advanced SIMD names depending on
10073 // the value of the NDS when simdlen is not present.
addAArch64AdvSIMDNDSNames(unsigned NDS,StringRef Mask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)10074 static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask,
10075                                       StringRef Prefix, char ISA,
10076                                       StringRef ParSeq, StringRef MangledName,
10077                                       bool OutputBecomesInput,
10078                                       llvm::Function *Fn) {
10079   switch (NDS) {
10080   case 8:
10081     addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
10082                          OutputBecomesInput, Fn);
10083     addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName,
10084                          OutputBecomesInput, Fn);
10085     break;
10086   case 16:
10087     addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
10088                          OutputBecomesInput, Fn);
10089     addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
10090                          OutputBecomesInput, Fn);
10091     break;
10092   case 32:
10093     addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
10094                          OutputBecomesInput, Fn);
10095     addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
10096                          OutputBecomesInput, Fn);
10097     break;
10098   case 64:
10099   case 128:
10100     addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
10101                          OutputBecomesInput, Fn);
10102     break;
10103   default:
10104     llvm_unreachable("Scalar type is too wide.");
10105   }
10106 }
10107 
10108 /// Emit vector function attributes for AArch64, as defined in the AAVFABI.
emitAArch64DeclareSimdFunction(CodeGenModule & CGM,const FunctionDecl * FD,unsigned UserVLEN,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State,StringRef MangledName,char ISA,unsigned VecRegSize,llvm::Function * Fn,SourceLocation SLoc)10109 static void emitAArch64DeclareSimdFunction(
10110     CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN,
10111     ArrayRef<ParamAttrTy> ParamAttrs,
10112     OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName,
10113     char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) {
10114 
10115   // Get basic data for building the vector signature.
10116   const auto Data = getNDSWDS(FD, ParamAttrs);
10117   const unsigned NDS = std::get<0>(Data);
10118   const unsigned WDS = std::get<1>(Data);
10119   const bool OutputBecomesInput = std::get<2>(Data);
10120 
10121   // Check the values provided via `simdlen` by the user.
10122   // 1. A `simdlen(1)` doesn't produce vector signatures,
10123   if (UserVLEN == 1) {
10124     unsigned DiagID = CGM.getDiags().getCustomDiagID(
10125         DiagnosticsEngine::Warning,
10126         "The clause simdlen(1) has no effect when targeting aarch64.");
10127     CGM.getDiags().Report(SLoc, DiagID);
10128     return;
10129   }
10130 
10131   // 2. Section 3.3.1, item 1: user input must be a power of 2 for
10132   // Advanced SIMD output.
10133   if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) {
10134     unsigned DiagID = CGM.getDiags().getCustomDiagID(
10135         DiagnosticsEngine::Warning, "The value specified in simdlen must be a "
10136                                     "power of 2 when targeting Advanced SIMD.");
10137     CGM.getDiags().Report(SLoc, DiagID);
10138     return;
10139   }
10140 
10141   // 3. Section 3.4.1. SVE fixed lengh must obey the architectural
10142   // limits.
10143   if (ISA == 's' && UserVLEN != 0) {
10144     if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) {
10145       unsigned DiagID = CGM.getDiags().getCustomDiagID(
10146           DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit "
10147                                       "lanes in the architectural constraints "
10148                                       "for SVE (min is 128-bit, max is "
10149                                       "2048-bit, by steps of 128-bit)");
10150       CGM.getDiags().Report(SLoc, DiagID) << WDS;
10151       return;
10152     }
10153   }
10154 
10155   // Sort out parameter sequence.
10156   const std::string ParSeq = mangleVectorParameters(ParamAttrs);
10157   StringRef Prefix = "_ZGV";
10158   // Generate simdlen from user input (if any).
10159   if (UserVLEN) {
10160     if (ISA == 's') {
10161       // SVE generates only a masked function.
10162       addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
10163                            OutputBecomesInput, Fn);
10164     } else {
10165       assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
10166       // Advanced SIMD generates one or two functions, depending on
10167       // the `[not]inbranch` clause.
10168       switch (State) {
10169       case OMPDeclareSimdDeclAttr::BS_Undefined:
10170         addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
10171                              OutputBecomesInput, Fn);
10172         addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
10173                              OutputBecomesInput, Fn);
10174         break;
10175       case OMPDeclareSimdDeclAttr::BS_Notinbranch:
10176         addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
10177                              OutputBecomesInput, Fn);
10178         break;
10179       case OMPDeclareSimdDeclAttr::BS_Inbranch:
10180         addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
10181                              OutputBecomesInput, Fn);
10182         break;
10183       }
10184     }
10185   } else {
10186     // If no user simdlen is provided, follow the AAVFABI rules for
10187     // generating the vector length.
10188     if (ISA == 's') {
10189       // SVE, section 3.4.1, item 1.
10190       addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName,
10191                            OutputBecomesInput, Fn);
10192     } else {
10193       assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
10194       // Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or
10195       // two vector names depending on the use of the clause
10196       // `[not]inbranch`.
10197       switch (State) {
10198       case OMPDeclareSimdDeclAttr::BS_Undefined:
10199         addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
10200                                   OutputBecomesInput, Fn);
10201         addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
10202                                   OutputBecomesInput, Fn);
10203         break;
10204       case OMPDeclareSimdDeclAttr::BS_Notinbranch:
10205         addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
10206                                   OutputBecomesInput, Fn);
10207         break;
10208       case OMPDeclareSimdDeclAttr::BS_Inbranch:
10209         addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
10210                                   OutputBecomesInput, Fn);
10211         break;
10212       }
10213     }
10214   }
10215 }
10216 
emitDeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn)10217 void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
10218                                               llvm::Function *Fn) {
10219   ASTContext &C = CGM.getContext();
10220   FD = FD->getMostRecentDecl();
10221   // Map params to their positions in function decl.
10222   llvm::DenseMap<const Decl *, unsigned> ParamPositions;
10223   if (isa<CXXMethodDecl>(FD))
10224     ParamPositions.try_emplace(FD, 0);
10225   unsigned ParamPos = ParamPositions.size();
10226   for (const ParmVarDecl *P : FD->parameters()) {
10227     ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos);
10228     ++ParamPos;
10229   }
10230   while (FD) {
10231     for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
10232       llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
10233       // Mark uniform parameters.
10234       for (const Expr *E : Attr->uniforms()) {
10235         E = E->IgnoreParenImpCasts();
10236         unsigned Pos;
10237         if (isa<CXXThisExpr>(E)) {
10238           Pos = ParamPositions[FD];
10239         } else {
10240           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
10241                                 ->getCanonicalDecl();
10242           Pos = ParamPositions[PVD];
10243         }
10244         ParamAttrs[Pos].Kind = Uniform;
10245       }
10246       // Get alignment info.
10247       auto NI = Attr->alignments_begin();
10248       for (const Expr *E : Attr->aligneds()) {
10249         E = E->IgnoreParenImpCasts();
10250         unsigned Pos;
10251         QualType ParmTy;
10252         if (isa<CXXThisExpr>(E)) {
10253           Pos = ParamPositions[FD];
10254           ParmTy = E->getType();
10255         } else {
10256           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
10257                                 ->getCanonicalDecl();
10258           Pos = ParamPositions[PVD];
10259           ParmTy = PVD->getType();
10260         }
10261         ParamAttrs[Pos].Alignment =
10262             (*NI)
10263                 ? (*NI)->EvaluateKnownConstInt(C)
10264                 : llvm::APSInt::getUnsigned(
10265                       C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
10266                           .getQuantity());
10267         ++NI;
10268       }
10269       // Mark linear parameters.
10270       auto SI = Attr->steps_begin();
10271       auto MI = Attr->modifiers_begin();
10272       for (const Expr *E : Attr->linears()) {
10273         E = E->IgnoreParenImpCasts();
10274         unsigned Pos;
10275         if (isa<CXXThisExpr>(E)) {
10276           Pos = ParamPositions[FD];
10277         } else {
10278           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
10279                                 ->getCanonicalDecl();
10280           Pos = ParamPositions[PVD];
10281         }
10282         ParamAttrTy &ParamAttr = ParamAttrs[Pos];
10283         ParamAttr.Kind = Linear;
10284         if (*SI) {
10285           Expr::EvalResult Result;
10286           if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) {
10287             if (const auto *DRE =
10288                     cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
10289               if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
10290                 ParamAttr.Kind = LinearWithVarStride;
10291                 ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
10292                     ParamPositions[StridePVD->getCanonicalDecl()]);
10293               }
10294             }
10295           } else {
10296             ParamAttr.StrideOrArg = Result.Val.getInt();
10297           }
10298         }
10299         ++SI;
10300         ++MI;
10301       }
10302       llvm::APSInt VLENVal;
10303       SourceLocation ExprLoc;
10304       const Expr *VLENExpr = Attr->getSimdlen();
10305       if (VLENExpr) {
10306         VLENVal = VLENExpr->EvaluateKnownConstInt(C);
10307         ExprLoc = VLENExpr->getExprLoc();
10308       }
10309       OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
10310       if (CGM.getTriple().getArch() == llvm::Triple::x86 ||
10311           CGM.getTriple().getArch() == llvm::Triple::x86_64) {
10312         emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
10313       } else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) {
10314         unsigned VLEN = VLENVal.getExtValue();
10315         StringRef MangledName = Fn->getName();
10316         if (CGM.getTarget().hasFeature("sve"))
10317           emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
10318                                          MangledName, 's', 128, Fn, ExprLoc);
10319         if (CGM.getTarget().hasFeature("neon"))
10320           emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
10321                                          MangledName, 'n', 128, Fn, ExprLoc);
10322       }
10323     }
10324     FD = FD->getPreviousDecl();
10325   }
10326 }
10327 
10328 namespace {
10329 /// Cleanup action for doacross support.
10330 class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
10331 public:
10332   static const int DoacrossFinArgs = 2;
10333 
10334 private:
10335   llvm::FunctionCallee RTLFn;
10336   llvm::Value *Args[DoacrossFinArgs];
10337 
10338 public:
DoacrossCleanupTy(llvm::FunctionCallee RTLFn,ArrayRef<llvm::Value * > CallArgs)10339   DoacrossCleanupTy(llvm::FunctionCallee RTLFn,
10340                     ArrayRef<llvm::Value *> CallArgs)
10341       : RTLFn(RTLFn) {
10342     assert(CallArgs.size() == DoacrossFinArgs);
10343     std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
10344   }
Emit(CodeGenFunction & CGF,Flags)10345   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
10346     if (!CGF.HaveInsertPoint())
10347       return;
10348     CGF.EmitRuntimeCall(RTLFn, Args);
10349   }
10350 };
10351 } // namespace
10352 
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)10353 void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
10354                                        const OMPLoopDirective &D,
10355                                        ArrayRef<Expr *> NumIterations) {
10356   if (!CGF.HaveInsertPoint())
10357     return;
10358 
10359   ASTContext &C = CGM.getContext();
10360   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
10361   RecordDecl *RD;
10362   if (KmpDimTy.isNull()) {
10363     // Build struct kmp_dim {  // loop bounds info casted to kmp_int64
10364     //  kmp_int64 lo; // lower
10365     //  kmp_int64 up; // upper
10366     //  kmp_int64 st; // stride
10367     // };
10368     RD = C.buildImplicitRecord("kmp_dim");
10369     RD->startDefinition();
10370     addFieldToRecordDecl(C, RD, Int64Ty);
10371     addFieldToRecordDecl(C, RD, Int64Ty);
10372     addFieldToRecordDecl(C, RD, Int64Ty);
10373     RD->completeDefinition();
10374     KmpDimTy = C.getRecordType(RD);
10375   } else {
10376     RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
10377   }
10378   llvm::APInt Size(/*numBits=*/32, NumIterations.size());
10379   QualType ArrayTy =
10380       C.getConstantArrayType(KmpDimTy, Size, ArrayType::Normal, 0);
10381 
10382   Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
10383   CGF.EmitNullInitialization(DimsAddr, ArrayTy);
10384   enum { LowerFD = 0, UpperFD, StrideFD };
10385   // Fill dims with data.
10386   for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) {
10387     LValue DimsLVal = CGF.MakeAddrLValue(
10388         CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy);
10389     // dims.upper = num_iterations;
10390     LValue UpperLVal = CGF.EmitLValueForField(
10391         DimsLVal, *std::next(RD->field_begin(), UpperFD));
10392     llvm::Value *NumIterVal =
10393         CGF.EmitScalarConversion(CGF.EmitScalarExpr(NumIterations[I]),
10394                                  D.getNumIterations()->getType(), Int64Ty,
10395                                  D.getNumIterations()->getExprLoc());
10396     CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
10397     // dims.stride = 1;
10398     LValue StrideLVal = CGF.EmitLValueForField(
10399         DimsLVal, *std::next(RD->field_begin(), StrideFD));
10400     CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
10401                           StrideLVal);
10402   }
10403 
10404   // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
10405   // kmp_int32 num_dims, struct kmp_dim * dims);
10406   llvm::Value *Args[] = {
10407       emitUpdateLocation(CGF, D.getBeginLoc()),
10408       getThreadID(CGF, D.getBeginLoc()),
10409       llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()),
10410       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
10411           CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(),
10412           CGM.VoidPtrTy)};
10413 
10414   llvm::FunctionCallee RTLFn =
10415       createRuntimeFunction(OMPRTL__kmpc_doacross_init);
10416   CGF.EmitRuntimeCall(RTLFn, Args);
10417   llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
10418       emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())};
10419   llvm::FunctionCallee FiniRTLFn =
10420       createRuntimeFunction(OMPRTL__kmpc_doacross_fini);
10421   CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
10422                                              llvm::makeArrayRef(FiniArgs));
10423 }
10424 
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)10425 void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
10426                                           const OMPDependClause *C) {
10427   QualType Int64Ty =
10428       CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
10429   llvm::APInt Size(/*numBits=*/32, C->getNumLoops());
10430   QualType ArrayTy = CGM.getContext().getConstantArrayType(
10431       Int64Ty, Size, ArrayType::Normal, 0);
10432   Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr");
10433   for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) {
10434     const Expr *CounterVal = C->getLoopData(I);
10435     assert(CounterVal);
10436     llvm::Value *CntVal = CGF.EmitScalarConversion(
10437         CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty,
10438         CounterVal->getExprLoc());
10439     CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I),
10440                           /*Volatile=*/false, Int64Ty);
10441   }
10442   llvm::Value *Args[] = {
10443       emitUpdateLocation(CGF, C->getBeginLoc()),
10444       getThreadID(CGF, C->getBeginLoc()),
10445       CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()};
10446   llvm::FunctionCallee RTLFn;
10447   if (C->getDependencyKind() == OMPC_DEPEND_source) {
10448     RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post);
10449   } else {
10450     assert(C->getDependencyKind() == OMPC_DEPEND_sink);
10451     RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait);
10452   }
10453   CGF.EmitRuntimeCall(RTLFn, Args);
10454 }
10455 
emitCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee Callee,ArrayRef<llvm::Value * > Args) const10456 void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc,
10457                                llvm::FunctionCallee Callee,
10458                                ArrayRef<llvm::Value *> Args) const {
10459   assert(Loc.isValid() && "Outlined function call location must be valid.");
10460   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
10461 
10462   if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) {
10463     if (Fn->doesNotThrow()) {
10464       CGF.EmitNounwindRuntimeCall(Fn, Args);
10465       return;
10466     }
10467   }
10468   CGF.EmitRuntimeCall(Callee, Args);
10469 }
10470 
emitOutlinedFunctionCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee OutlinedFn,ArrayRef<llvm::Value * > Args) const10471 void CGOpenMPRuntime::emitOutlinedFunctionCall(
10472     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
10473     ArrayRef<llvm::Value *> Args) const {
10474   emitCall(CGF, Loc, OutlinedFn, Args);
10475 }
10476 
emitFunctionProlog(CodeGenFunction & CGF,const Decl * D)10477 void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) {
10478   if (const auto *FD = dyn_cast<FunctionDecl>(D))
10479     if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD))
10480       HasEmittedDeclareTargetRegion = true;
10481 }
10482 
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const10483 Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF,
10484                                              const VarDecl *NativeParam,
10485                                              const VarDecl *TargetParam) const {
10486   return CGF.GetAddrOfLocalVar(NativeParam);
10487 }
10488 
10489 namespace {
10490 /// Cleanup action for allocate support.
10491 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
10492 public:
10493   static const int CleanupArgs = 3;
10494 
10495 private:
10496   llvm::FunctionCallee RTLFn;
10497   llvm::Value *Args[CleanupArgs];
10498 
10499 public:
OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn,ArrayRef<llvm::Value * > CallArgs)10500   OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn,
10501                        ArrayRef<llvm::Value *> CallArgs)
10502       : RTLFn(RTLFn) {
10503     assert(CallArgs.size() == CleanupArgs &&
10504            "Size of arguments does not match.");
10505     std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
10506   }
Emit(CodeGenFunction & CGF,Flags)10507   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
10508     if (!CGF.HaveInsertPoint())
10509       return;
10510     CGF.EmitRuntimeCall(RTLFn, Args);
10511   }
10512 };
10513 } // namespace
10514 
getAddressOfLocalVariable(CodeGenFunction & CGF,const VarDecl * VD)10515 Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF,
10516                                                    const VarDecl *VD) {
10517   if (!VD)
10518     return Address::invalid();
10519   const VarDecl *CVD = VD->getCanonicalDecl();
10520   if (!CVD->hasAttr<OMPAllocateDeclAttr>())
10521     return Address::invalid();
10522   const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
10523   // Use the default allocation.
10524   if (AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc &&
10525       !AA->getAllocator())
10526     return Address::invalid();
10527   llvm::Value *Size;
10528   CharUnits Align = CGM.getContext().getDeclAlign(CVD);
10529   if (CVD->getType()->isVariablyModifiedType()) {
10530     Size = CGF.getTypeSize(CVD->getType());
10531     // Align the size: ((size + align - 1) / align) * align
10532     Size = CGF.Builder.CreateNUWAdd(
10533         Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
10534     Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
10535     Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
10536   } else {
10537     CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
10538     Size = CGM.getSize(Sz.alignTo(Align));
10539   }
10540   llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc());
10541   assert(AA->getAllocator() &&
10542          "Expected allocator expression for non-default allocator.");
10543   llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
10544   // According to the standard, the original allocator type is a enum (integer).
10545   // Convert to pointer type, if required.
10546   if (Allocator->getType()->isIntegerTy())
10547     Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy);
10548   else if (Allocator->getType()->isPointerTy())
10549     Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator,
10550                                                                 CGM.VoidPtrTy);
10551   llvm::Value *Args[] = {ThreadID, Size, Allocator};
10552 
10553   llvm::Value *Addr =
10554       CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_alloc), Args,
10555                           CVD->getName() + ".void.addr");
10556   llvm::Value *FiniArgs[OMPAllocateCleanupTy::CleanupArgs] = {ThreadID, Addr,
10557                                                               Allocator};
10558   llvm::FunctionCallee FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_free);
10559 
10560   CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
10561                                                 llvm::makeArrayRef(FiniArgs));
10562   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
10563       Addr,
10564       CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())),
10565       CVD->getName() + ".addr");
10566   return Address(Addr, Align);
10567 }
10568 
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)10569 llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction(
10570     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
10571     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
10572   llvm_unreachable("Not supported in SIMD-only mode");
10573 }
10574 
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)10575 llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction(
10576     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
10577     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
10578   llvm_unreachable("Not supported in SIMD-only mode");
10579 }
10580 
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)10581 llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction(
10582     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
10583     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
10584     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
10585     bool Tied, unsigned &NumberOfParts) {
10586   llvm_unreachable("Not supported in SIMD-only mode");
10587 }
10588 
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)10589 void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF,
10590                                            SourceLocation Loc,
10591                                            llvm::Function *OutlinedFn,
10592                                            ArrayRef<llvm::Value *> CapturedVars,
10593                                            const Expr *IfCond) {
10594   llvm_unreachable("Not supported in SIMD-only mode");
10595 }
10596 
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)10597 void CGOpenMPSIMDRuntime::emitCriticalRegion(
10598     CodeGenFunction &CGF, StringRef CriticalName,
10599     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
10600     const Expr *Hint) {
10601   llvm_unreachable("Not supported in SIMD-only mode");
10602 }
10603 
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)10604 void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF,
10605                                            const RegionCodeGenTy &MasterOpGen,
10606                                            SourceLocation Loc) {
10607   llvm_unreachable("Not supported in SIMD-only mode");
10608 }
10609 
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)10610 void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
10611                                             SourceLocation Loc) {
10612   llvm_unreachable("Not supported in SIMD-only mode");
10613 }
10614 
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)10615 void CGOpenMPSIMDRuntime::emitTaskgroupRegion(
10616     CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen,
10617     SourceLocation Loc) {
10618   llvm_unreachable("Not supported in SIMD-only mode");
10619 }
10620 
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps)10621 void CGOpenMPSIMDRuntime::emitSingleRegion(
10622     CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen,
10623     SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars,
10624     ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs,
10625     ArrayRef<const Expr *> AssignmentOps) {
10626   llvm_unreachable("Not supported in SIMD-only mode");
10627 }
10628 
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)10629 void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF,
10630                                             const RegionCodeGenTy &OrderedOpGen,
10631                                             SourceLocation Loc,
10632                                             bool IsThreads) {
10633   llvm_unreachable("Not supported in SIMD-only mode");
10634 }
10635 
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)10636 void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF,
10637                                           SourceLocation Loc,
10638                                           OpenMPDirectiveKind Kind,
10639                                           bool EmitChecks,
10640                                           bool ForceSimpleCall) {
10641   llvm_unreachable("Not supported in SIMD-only mode");
10642 }
10643 
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)10644 void CGOpenMPSIMDRuntime::emitForDispatchInit(
10645     CodeGenFunction &CGF, SourceLocation Loc,
10646     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
10647     bool Ordered, const DispatchRTInput &DispatchValues) {
10648   llvm_unreachable("Not supported in SIMD-only mode");
10649 }
10650 
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)10651 void CGOpenMPSIMDRuntime::emitForStaticInit(
10652     CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind,
10653     const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) {
10654   llvm_unreachable("Not supported in SIMD-only mode");
10655 }
10656 
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const StaticRTInput & Values)10657 void CGOpenMPSIMDRuntime::emitDistributeStaticInit(
10658     CodeGenFunction &CGF, SourceLocation Loc,
10659     OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) {
10660   llvm_unreachable("Not supported in SIMD-only mode");
10661 }
10662 
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)10663 void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
10664                                                      SourceLocation Loc,
10665                                                      unsigned IVSize,
10666                                                      bool IVSigned) {
10667   llvm_unreachable("Not supported in SIMD-only mode");
10668 }
10669 
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)10670 void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF,
10671                                               SourceLocation Loc,
10672                                               OpenMPDirectiveKind DKind) {
10673   llvm_unreachable("Not supported in SIMD-only mode");
10674 }
10675 
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)10676 llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF,
10677                                               SourceLocation Loc,
10678                                               unsigned IVSize, bool IVSigned,
10679                                               Address IL, Address LB,
10680                                               Address UB, Address ST) {
10681   llvm_unreachable("Not supported in SIMD-only mode");
10682 }
10683 
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)10684 void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
10685                                                llvm::Value *NumThreads,
10686                                                SourceLocation Loc) {
10687   llvm_unreachable("Not supported in SIMD-only mode");
10688 }
10689 
emitProcBindClause(CodeGenFunction & CGF,OpenMPProcBindClauseKind ProcBind,SourceLocation Loc)10690 void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF,
10691                                              OpenMPProcBindClauseKind ProcBind,
10692                                              SourceLocation Loc) {
10693   llvm_unreachable("Not supported in SIMD-only mode");
10694 }
10695 
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)10696 Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
10697                                                     const VarDecl *VD,
10698                                                     Address VDAddr,
10699                                                     SourceLocation Loc) {
10700   llvm_unreachable("Not supported in SIMD-only mode");
10701 }
10702 
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)10703 llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition(
10704     const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit,
10705     CodeGenFunction *CGF) {
10706   llvm_unreachable("Not supported in SIMD-only mode");
10707 }
10708 
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)10709 Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate(
10710     CodeGenFunction &CGF, QualType VarType, StringRef Name) {
10711   llvm_unreachable("Not supported in SIMD-only mode");
10712 }
10713 
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * > Vars,SourceLocation Loc)10714 void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF,
10715                                     ArrayRef<const Expr *> Vars,
10716                                     SourceLocation Loc) {
10717   llvm_unreachable("Not supported in SIMD-only mode");
10718 }
10719 
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)10720 void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
10721                                        const OMPExecutableDirective &D,
10722                                        llvm::Function *TaskFunction,
10723                                        QualType SharedsTy, Address Shareds,
10724                                        const Expr *IfCond,
10725                                        const OMPTaskDataTy &Data) {
10726   llvm_unreachable("Not supported in SIMD-only mode");
10727 }
10728 
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)10729 void CGOpenMPSIMDRuntime::emitTaskLoopCall(
10730     CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D,
10731     llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds,
10732     const Expr *IfCond, const OMPTaskDataTy &Data) {
10733   llvm_unreachable("Not supported in SIMD-only mode");
10734 }
10735 
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)10736 void CGOpenMPSIMDRuntime::emitReduction(
10737     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
10738     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
10739     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
10740   assert(Options.SimpleReduction && "Only simple reduction is expected.");
10741   CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
10742                                  ReductionOps, Options);
10743 }
10744 
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)10745 llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit(
10746     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
10747     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
10748   llvm_unreachable("Not supported in SIMD-only mode");
10749 }
10750 
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)10751 void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
10752                                                   SourceLocation Loc,
10753                                                   ReductionCodeGen &RCG,
10754                                                   unsigned N) {
10755   llvm_unreachable("Not supported in SIMD-only mode");
10756 }
10757 
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)10758 Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF,
10759                                                   SourceLocation Loc,
10760                                                   llvm::Value *ReductionsPtr,
10761                                                   LValue SharedLVal) {
10762   llvm_unreachable("Not supported in SIMD-only mode");
10763 }
10764 
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc)10765 void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
10766                                            SourceLocation Loc) {
10767   llvm_unreachable("Not supported in SIMD-only mode");
10768 }
10769 
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)10770 void CGOpenMPSIMDRuntime::emitCancellationPointCall(
10771     CodeGenFunction &CGF, SourceLocation Loc,
10772     OpenMPDirectiveKind CancelRegion) {
10773   llvm_unreachable("Not supported in SIMD-only mode");
10774 }
10775 
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)10776 void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF,
10777                                          SourceLocation Loc, const Expr *IfCond,
10778                                          OpenMPDirectiveKind CancelRegion) {
10779   llvm_unreachable("Not supported in SIMD-only mode");
10780 }
10781 
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)10782 void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction(
10783     const OMPExecutableDirective &D, StringRef ParentName,
10784     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
10785     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
10786   llvm_unreachable("Not supported in SIMD-only mode");
10787 }
10788 
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,const Expr * Device)10789 void CGOpenMPSIMDRuntime::emitTargetCall(CodeGenFunction &CGF,
10790                                          const OMPExecutableDirective &D,
10791                                          llvm::Function *OutlinedFn,
10792                                          llvm::Value *OutlinedFnID,
10793                                          const Expr *IfCond,
10794                                          const Expr *Device) {
10795   llvm_unreachable("Not supported in SIMD-only mode");
10796 }
10797 
emitTargetFunctions(GlobalDecl GD)10798 bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) {
10799   llvm_unreachable("Not supported in SIMD-only mode");
10800 }
10801 
emitTargetGlobalVariable(GlobalDecl GD)10802 bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
10803   llvm_unreachable("Not supported in SIMD-only mode");
10804 }
10805 
emitTargetGlobal(GlobalDecl GD)10806 bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) {
10807   return false;
10808 }
10809 
emitRegistrationFunction()10810 llvm::Function *CGOpenMPSIMDRuntime::emitRegistrationFunction() {
10811   return nullptr;
10812 }
10813 
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)10814 void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF,
10815                                         const OMPExecutableDirective &D,
10816                                         SourceLocation Loc,
10817                                         llvm::Function *OutlinedFn,
10818                                         ArrayRef<llvm::Value *> CapturedVars) {
10819   llvm_unreachable("Not supported in SIMD-only mode");
10820 }
10821 
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)10822 void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
10823                                              const Expr *NumTeams,
10824                                              const Expr *ThreadLimit,
10825                                              SourceLocation Loc) {
10826   llvm_unreachable("Not supported in SIMD-only mode");
10827 }
10828 
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,TargetDataInfo & Info)10829 void CGOpenMPSIMDRuntime::emitTargetDataCalls(
10830     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10831     const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
10832   llvm_unreachable("Not supported in SIMD-only mode");
10833 }
10834 
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)10835 void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall(
10836     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10837     const Expr *Device) {
10838   llvm_unreachable("Not supported in SIMD-only mode");
10839 }
10840 
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)10841 void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF,
10842                                            const OMPLoopDirective &D,
10843                                            ArrayRef<Expr *> NumIterations) {
10844   llvm_unreachable("Not supported in SIMD-only mode");
10845 }
10846 
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)10847 void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
10848                                               const OMPDependClause *C) {
10849   llvm_unreachable("Not supported in SIMD-only mode");
10850 }
10851 
10852 const VarDecl *
translateParameter(const FieldDecl * FD,const VarDecl * NativeParam) const10853 CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD,
10854                                         const VarDecl *NativeParam) const {
10855   llvm_unreachable("Not supported in SIMD-only mode");
10856 }
10857 
10858 Address
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const10859 CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF,
10860                                          const VarDecl *NativeParam,
10861                                          const VarDecl *TargetParam) const {
10862   llvm_unreachable("Not supported in SIMD-only mode");
10863 }
10864