1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 Øyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * Copyright (C) ST-Ericsson SA 2011 *
18 * michel.jaouen@stericsson.com : smp minimum support *
19 * *
20 * Copyright (C) Broadcom 2012 *
21 * ehunter@broadcom.com : Cortex-R4 support *
22 * *
23 * Copyright (C) 2013 Kamal Dasu *
24 * kdasu.kdev@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 * *
39 * Cortex-A8(tm) TRM, ARM DDI 0344H *
40 * Cortex-A9(tm) TRM, ARM DDI 0407F *
41 * Cortex-A4(tm) TRM, ARM DDI 0363E *
42 * Cortex-A15(tm)TRM, ARM DDI 0438C *
43 * *
44 ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "armv7a_mmu.h"
54 #include "target_request.h"
55 #include "target_type.h"
56 #include "arm_opcodes.h"
57 #include "arm_semihosting.h"
58 #include "jtag/interface.h"
59 #include "transport/transport.h"
60 #include "smp.h"
61 #include <helper/time_support.h>
62
63 static int cortex_a_poll(struct target *target);
64 static int cortex_a_debug_entry(struct target *target);
65 static int cortex_a_restore_context(struct target *target, bool bpwp);
66 static int cortex_a_set_breakpoint(struct target *target,
67 struct breakpoint *breakpoint, uint8_t matchmode);
68 static int cortex_a_set_context_breakpoint(struct target *target,
69 struct breakpoint *breakpoint, uint8_t matchmode);
70 static int cortex_a_set_hybrid_breakpoint(struct target *target,
71 struct breakpoint *breakpoint);
72 static int cortex_a_unset_breakpoint(struct target *target,
73 struct breakpoint *breakpoint);
74 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
75 uint32_t value, uint32_t *dscr);
76 static int cortex_a_mmu(struct target *target, int *enabled);
77 static int cortex_a_mmu_modify(struct target *target, int enable);
78 static int cortex_a_virt2phys(struct target *target,
79 target_addr_t virt, target_addr_t *phys);
80 static int cortex_a_read_cpu_memory(struct target *target,
81 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
82
83
84 /* restore cp15_control_reg at resume */
cortex_a_restore_cp15_control_reg(struct target * target)85 static int cortex_a_restore_cp15_control_reg(struct target *target)
86 {
87 int retval = ERROR_OK;
88 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
89 struct armv7a_common *armv7a = target_to_armv7a(target);
90
91 if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
92 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
93 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
94 retval = armv7a->arm.mcr(target, 15,
95 0, 0, /* op1, op2 */
96 1, 0, /* CRn, CRm */
97 cortex_a->cp15_control_reg);
98 }
99 return retval;
100 }
101
102 /*
103 * Set up ARM core for memory access.
104 * If !phys_access, switch to SVC mode and make sure MMU is on
105 * If phys_access, switch off mmu
106 */
cortex_a_prep_memaccess(struct target * target,int phys_access)107 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
108 {
109 struct armv7a_common *armv7a = target_to_armv7a(target);
110 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
111 int mmu_enabled = 0;
112
113 if (phys_access == 0) {
114 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
115 cortex_a_mmu(target, &mmu_enabled);
116 if (mmu_enabled)
117 cortex_a_mmu_modify(target, 1);
118 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
119 /* overwrite DACR to all-manager */
120 armv7a->arm.mcr(target, 15,
121 0, 0, 3, 0,
122 0xFFFFFFFF);
123 }
124 } else {
125 cortex_a_mmu(target, &mmu_enabled);
126 if (mmu_enabled)
127 cortex_a_mmu_modify(target, 0);
128 }
129 return ERROR_OK;
130 }
131
132 /*
133 * Restore ARM core after memory access.
134 * If !phys_access, switch to previous mode
135 * If phys_access, restore MMU setting
136 */
cortex_a_post_memaccess(struct target * target,int phys_access)137 static int cortex_a_post_memaccess(struct target *target, int phys_access)
138 {
139 struct armv7a_common *armv7a = target_to_armv7a(target);
140 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
141
142 if (phys_access == 0) {
143 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
144 /* restore */
145 armv7a->arm.mcr(target, 15,
146 0, 0, 3, 0,
147 cortex_a->cp15_dacr_reg);
148 }
149 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
150 } else {
151 int mmu_enabled = 0;
152 cortex_a_mmu(target, &mmu_enabled);
153 if (mmu_enabled)
154 cortex_a_mmu_modify(target, 1);
155 }
156 return ERROR_OK;
157 }
158
159
160 /* modify cp15_control_reg in order to enable or disable mmu for :
161 * - virt2phys address conversion
162 * - read or write memory in phys or virt address */
cortex_a_mmu_modify(struct target * target,int enable)163 static int cortex_a_mmu_modify(struct target *target, int enable)
164 {
165 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
166 struct armv7a_common *armv7a = target_to_armv7a(target);
167 int retval = ERROR_OK;
168 int need_write = 0;
169
170 if (enable) {
171 /* if mmu enabled at target stop and mmu not enable */
172 if (!(cortex_a->cp15_control_reg & 0x1U)) {
173 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
174 return ERROR_FAIL;
175 }
176 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
177 cortex_a->cp15_control_reg_curr |= 0x1U;
178 need_write = 1;
179 }
180 } else {
181 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
182 cortex_a->cp15_control_reg_curr &= ~0x1U;
183 need_write = 1;
184 }
185 }
186
187 if (need_write) {
188 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
189 enable ? "enable mmu" : "disable mmu",
190 cortex_a->cp15_control_reg_curr);
191
192 retval = armv7a->arm.mcr(target, 15,
193 0, 0, /* op1, op2 */
194 1, 0, /* CRn, CRm */
195 cortex_a->cp15_control_reg_curr);
196 }
197 return retval;
198 }
199
200 /*
201 * Cortex-A Basic debug access, very low level assumes state is saved
202 */
cortex_a_init_debug_access(struct target * target)203 static int cortex_a_init_debug_access(struct target *target)
204 {
205 struct armv7a_common *armv7a = target_to_armv7a(target);
206 uint32_t dscr;
207 int retval;
208
209 /* lock memory-mapped access to debug registers to prevent
210 * software interference */
211 retval = mem_ap_write_u32(armv7a->debug_ap,
212 armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
213 if (retval != ERROR_OK)
214 return retval;
215
216 /* Disable cacheline fills and force cache write-through in debug state */
217 retval = mem_ap_write_u32(armv7a->debug_ap,
218 armv7a->debug_base + CPUDBG_DSCCR, 0);
219 if (retval != ERROR_OK)
220 return retval;
221
222 /* Disable TLB lookup and refill/eviction in debug state */
223 retval = mem_ap_write_u32(armv7a->debug_ap,
224 armv7a->debug_base + CPUDBG_DSMCR, 0);
225 if (retval != ERROR_OK)
226 return retval;
227
228 retval = dap_run(armv7a->debug_ap->dap);
229 if (retval != ERROR_OK)
230 return retval;
231
232 /* Enabling of instruction execution in debug mode is done in debug_entry code */
233
234 /* Resync breakpoint registers */
235
236 /* Enable halt for breakpoint, watchpoint and vector catch */
237 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
238 armv7a->debug_base + CPUDBG_DSCR, &dscr);
239 if (retval != ERROR_OK)
240 return retval;
241 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
242 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
243 if (retval != ERROR_OK)
244 return retval;
245
246 /* Since this is likely called from init or reset, update target state information*/
247 return cortex_a_poll(target);
248 }
249
cortex_a_wait_instrcmpl(struct target * target,uint32_t * dscr,bool force)250 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
251 {
252 /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
253 * Writes final value of DSCR into *dscr. Pass force to force always
254 * reading DSCR at least once. */
255 struct armv7a_common *armv7a = target_to_armv7a(target);
256 int retval;
257
258 if (force) {
259 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
260 armv7a->debug_base + CPUDBG_DSCR, dscr);
261 if (retval != ERROR_OK) {
262 LOG_ERROR("Could not read DSCR register");
263 return retval;
264 }
265 }
266
267 retval = cortex_a_wait_dscr_bits(target, DSCR_INSTR_COMP, DSCR_INSTR_COMP, dscr);
268 if (retval != ERROR_OK)
269 LOG_ERROR("Error waiting for InstrCompl=1");
270 return retval;
271 }
272
273 /* To reduce needless round-trips, pass in a pointer to the current
274 * DSCR value. Initialize it to zero if you just need to know the
275 * value on return from this function; or DSCR_INSTR_COMP if you
276 * happen to know that no instruction is pending.
277 */
cortex_a_exec_opcode(struct target * target,uint32_t opcode,uint32_t * dscr_p)278 static int cortex_a_exec_opcode(struct target *target,
279 uint32_t opcode, uint32_t *dscr_p)
280 {
281 uint32_t dscr;
282 int retval;
283 struct armv7a_common *armv7a = target_to_armv7a(target);
284
285 dscr = dscr_p ? *dscr_p : 0;
286
287 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
288
289 /* Wait for InstrCompl bit to be set */
290 retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
291 if (retval != ERROR_OK)
292 return retval;
293
294 retval = mem_ap_write_u32(armv7a->debug_ap,
295 armv7a->debug_base + CPUDBG_ITR, opcode);
296 if (retval != ERROR_OK)
297 return retval;
298
299 /* Wait for InstrCompl bit to be set */
300 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
301 if (retval != ERROR_OK) {
302 LOG_ERROR("Error waiting for cortex_a_exec_opcode");
303 return retval;
304 }
305
306 if (dscr_p)
307 *dscr_p = dscr;
308
309 return retval;
310 }
311
312 /* Write to memory mapped registers directly with no cache or mmu handling */
cortex_a_dap_write_memap_register_u32(struct target * target,uint32_t address,uint32_t value)313 static int cortex_a_dap_write_memap_register_u32(struct target *target,
314 uint32_t address,
315 uint32_t value)
316 {
317 int retval;
318 struct armv7a_common *armv7a = target_to_armv7a(target);
319
320 retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
321
322 return retval;
323 }
324
325 /*
326 * Cortex-A implementation of Debug Programmer's Model
327 *
328 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
329 * so there's no need to poll for it before executing an instruction.
330 *
331 * NOTE that in several of these cases the "stall" mode might be useful.
332 * It'd let us queue a few operations together... prepare/finish might
333 * be the places to enable/disable that mode.
334 */
335
dpm_to_a(struct arm_dpm * dpm)336 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
337 {
338 return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
339 }
340
cortex_a_write_dcc(struct cortex_a_common * a,uint32_t data)341 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
342 {
343 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
344 return mem_ap_write_u32(a->armv7a_common.debug_ap,
345 a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
346 }
347
cortex_a_read_dcc(struct cortex_a_common * a,uint32_t * data,uint32_t * dscr_p)348 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
349 uint32_t *dscr_p)
350 {
351 uint32_t dscr = DSCR_INSTR_COMP;
352 int retval;
353
354 if (dscr_p)
355 dscr = *dscr_p;
356
357 /* Wait for DTRRXfull */
358 retval = cortex_a_wait_dscr_bits(a->armv7a_common.arm.target,
359 DSCR_DTR_TX_FULL, DSCR_DTR_TX_FULL, &dscr);
360 if (retval != ERROR_OK) {
361 LOG_ERROR("Error waiting for read dcc");
362 return retval;
363 }
364
365 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
366 a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
367 if (retval != ERROR_OK)
368 return retval;
369 /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
370
371 if (dscr_p)
372 *dscr_p = dscr;
373
374 return retval;
375 }
376
cortex_a_dpm_prepare(struct arm_dpm * dpm)377 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
378 {
379 struct cortex_a_common *a = dpm_to_a(dpm);
380 uint32_t dscr;
381 int retval;
382
383 /* set up invariant: INSTR_COMP is set after ever DPM operation */
384 retval = cortex_a_wait_instrcmpl(dpm->arm->target, &dscr, true);
385 if (retval != ERROR_OK) {
386 LOG_ERROR("Error waiting for dpm prepare");
387 return retval;
388 }
389
390 /* this "should never happen" ... */
391 if (dscr & DSCR_DTR_RX_FULL) {
392 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
393 /* Clear DCCRX */
394 retval = cortex_a_exec_opcode(
395 a->armv7a_common.arm.target,
396 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
397 &dscr);
398 if (retval != ERROR_OK)
399 return retval;
400 }
401
402 return retval;
403 }
404
cortex_a_dpm_finish(struct arm_dpm * dpm)405 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
406 {
407 /* REVISIT what could be done here? */
408 return ERROR_OK;
409 }
410
cortex_a_instr_write_data_dcc(struct arm_dpm * dpm,uint32_t opcode,uint32_t data)411 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
412 uint32_t opcode, uint32_t data)
413 {
414 struct cortex_a_common *a = dpm_to_a(dpm);
415 int retval;
416 uint32_t dscr = DSCR_INSTR_COMP;
417
418 retval = cortex_a_write_dcc(a, data);
419 if (retval != ERROR_OK)
420 return retval;
421
422 return cortex_a_exec_opcode(
423 a->armv7a_common.arm.target,
424 opcode,
425 &dscr);
426 }
427
cortex_a_instr_write_data_rt_dcc(struct arm_dpm * dpm,uint8_t rt,uint32_t data)428 static int cortex_a_instr_write_data_rt_dcc(struct arm_dpm *dpm,
429 uint8_t rt, uint32_t data)
430 {
431 struct cortex_a_common *a = dpm_to_a(dpm);
432 uint32_t dscr = DSCR_INSTR_COMP;
433 int retval;
434
435 if (rt > 15)
436 return ERROR_TARGET_INVALID;
437
438 retval = cortex_a_write_dcc(a, data);
439 if (retval != ERROR_OK)
440 return retval;
441
442 /* DCCRX to Rt, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
443 return cortex_a_exec_opcode(
444 a->armv7a_common.arm.target,
445 ARMV4_5_MRC(14, 0, rt, 0, 5, 0),
446 &dscr);
447 }
448
cortex_a_instr_write_data_r0(struct arm_dpm * dpm,uint32_t opcode,uint32_t data)449 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
450 uint32_t opcode, uint32_t data)
451 {
452 struct cortex_a_common *a = dpm_to_a(dpm);
453 uint32_t dscr = DSCR_INSTR_COMP;
454 int retval;
455
456 retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data);
457 if (retval != ERROR_OK)
458 return retval;
459
460 /* then the opcode, taking data from R0 */
461 retval = cortex_a_exec_opcode(
462 a->armv7a_common.arm.target,
463 opcode,
464 &dscr);
465
466 return retval;
467 }
468
cortex_a_instr_cpsr_sync(struct arm_dpm * dpm)469 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
470 {
471 struct target *target = dpm->arm->target;
472 uint32_t dscr = DSCR_INSTR_COMP;
473
474 /* "Prefetch flush" after modifying execution status in CPSR */
475 return cortex_a_exec_opcode(target,
476 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
477 &dscr);
478 }
479
cortex_a_instr_read_data_dcc(struct arm_dpm * dpm,uint32_t opcode,uint32_t * data)480 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
481 uint32_t opcode, uint32_t *data)
482 {
483 struct cortex_a_common *a = dpm_to_a(dpm);
484 int retval;
485 uint32_t dscr = DSCR_INSTR_COMP;
486
487 /* the opcode, writing data to DCC */
488 retval = cortex_a_exec_opcode(
489 a->armv7a_common.arm.target,
490 opcode,
491 &dscr);
492 if (retval != ERROR_OK)
493 return retval;
494
495 return cortex_a_read_dcc(a, data, &dscr);
496 }
497
cortex_a_instr_read_data_rt_dcc(struct arm_dpm * dpm,uint8_t rt,uint32_t * data)498 static int cortex_a_instr_read_data_rt_dcc(struct arm_dpm *dpm,
499 uint8_t rt, uint32_t *data)
500 {
501 struct cortex_a_common *a = dpm_to_a(dpm);
502 uint32_t dscr = DSCR_INSTR_COMP;
503 int retval;
504
505 if (rt > 15)
506 return ERROR_TARGET_INVALID;
507
508 retval = cortex_a_exec_opcode(
509 a->armv7a_common.arm.target,
510 ARMV4_5_MCR(14, 0, rt, 0, 5, 0),
511 &dscr);
512 if (retval != ERROR_OK)
513 return retval;
514
515 return cortex_a_read_dcc(a, data, &dscr);
516 }
517
cortex_a_instr_read_data_r0(struct arm_dpm * dpm,uint32_t opcode,uint32_t * data)518 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
519 uint32_t opcode, uint32_t *data)
520 {
521 struct cortex_a_common *a = dpm_to_a(dpm);
522 uint32_t dscr = DSCR_INSTR_COMP;
523 int retval;
524
525 /* the opcode, writing data to R0 */
526 retval = cortex_a_exec_opcode(
527 a->armv7a_common.arm.target,
528 opcode,
529 &dscr);
530 if (retval != ERROR_OK)
531 return retval;
532
533 /* write R0 to DCC */
534 return cortex_a_instr_read_data_rt_dcc(dpm, 0, data);
535 }
536
cortex_a_bpwp_enable(struct arm_dpm * dpm,unsigned index_t,uint32_t addr,uint32_t control)537 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
538 uint32_t addr, uint32_t control)
539 {
540 struct cortex_a_common *a = dpm_to_a(dpm);
541 uint32_t vr = a->armv7a_common.debug_base;
542 uint32_t cr = a->armv7a_common.debug_base;
543 int retval;
544
545 switch (index_t) {
546 case 0 ... 15: /* breakpoints */
547 vr += CPUDBG_BVR_BASE;
548 cr += CPUDBG_BCR_BASE;
549 break;
550 case 16 ... 31: /* watchpoints */
551 vr += CPUDBG_WVR_BASE;
552 cr += CPUDBG_WCR_BASE;
553 index_t -= 16;
554 break;
555 default:
556 return ERROR_FAIL;
557 }
558 vr += 4 * index_t;
559 cr += 4 * index_t;
560
561 LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
562 (unsigned) vr, (unsigned) cr);
563
564 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
565 vr, addr);
566 if (retval != ERROR_OK)
567 return retval;
568 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
569 cr, control);
570 return retval;
571 }
572
cortex_a_bpwp_disable(struct arm_dpm * dpm,unsigned index_t)573 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
574 {
575 struct cortex_a_common *a = dpm_to_a(dpm);
576 uint32_t cr;
577
578 switch (index_t) {
579 case 0 ... 15:
580 cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
581 break;
582 case 16 ... 31:
583 cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
584 index_t -= 16;
585 break;
586 default:
587 return ERROR_FAIL;
588 }
589 cr += 4 * index_t;
590
591 LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
592
593 /* clear control register */
594 return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
595 }
596
cortex_a_dpm_setup(struct cortex_a_common * a,uint32_t didr)597 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
598 {
599 struct arm_dpm *dpm = &a->armv7a_common.dpm;
600 int retval;
601
602 dpm->arm = &a->armv7a_common.arm;
603 dpm->didr = didr;
604
605 dpm->prepare = cortex_a_dpm_prepare;
606 dpm->finish = cortex_a_dpm_finish;
607
608 dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
609 dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
610 dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
611
612 dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
613 dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
614
615 dpm->bpwp_enable = cortex_a_bpwp_enable;
616 dpm->bpwp_disable = cortex_a_bpwp_disable;
617
618 retval = arm_dpm_setup(dpm);
619 if (retval == ERROR_OK)
620 retval = arm_dpm_initialize(dpm);
621
622 return retval;
623 }
get_cortex_a(struct target * target,int32_t coreid)624 static struct target *get_cortex_a(struct target *target, int32_t coreid)
625 {
626 struct target_list *head;
627 struct target *curr;
628
629 head = target->head;
630 while (head != (struct target_list *)NULL) {
631 curr = head->target;
632 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
633 return curr;
634 head = head->next;
635 }
636 return target;
637 }
638 static int cortex_a_halt(struct target *target);
639
cortex_a_halt_smp(struct target * target)640 static int cortex_a_halt_smp(struct target *target)
641 {
642 int retval = 0;
643 struct target_list *head;
644 struct target *curr;
645 head = target->head;
646 while (head != (struct target_list *)NULL) {
647 curr = head->target;
648 if ((curr != target) && (curr->state != TARGET_HALTED)
649 && target_was_examined(curr))
650 retval += cortex_a_halt(curr);
651 head = head->next;
652 }
653 return retval;
654 }
655
update_halt_gdb(struct target * target)656 static int update_halt_gdb(struct target *target)
657 {
658 struct target *gdb_target = NULL;
659 struct target_list *head;
660 struct target *curr;
661 int retval = 0;
662
663 if (target->gdb_service && target->gdb_service->core[0] == -1) {
664 target->gdb_service->target = target;
665 target->gdb_service->core[0] = target->coreid;
666 retval += cortex_a_halt_smp(target);
667 }
668
669 if (target->gdb_service)
670 gdb_target = target->gdb_service->target;
671
672 foreach_smp_target(head, target->head) {
673 curr = head->target;
674 /* skip calling context */
675 if (curr == target)
676 continue;
677 if (!target_was_examined(curr))
678 continue;
679 /* skip targets that were already halted */
680 if (curr->state == TARGET_HALTED)
681 continue;
682 /* Skip gdb_target; it alerts GDB so has to be polled as last one */
683 if (curr == gdb_target)
684 continue;
685
686 /* avoid recursion in cortex_a_poll() */
687 curr->smp = 0;
688 cortex_a_poll(curr);
689 curr->smp = 1;
690 }
691
692 /* after all targets were updated, poll the gdb serving target */
693 if (gdb_target != NULL && gdb_target != target)
694 cortex_a_poll(gdb_target);
695 return retval;
696 }
697
698 /*
699 * Cortex-A Run control
700 */
701
cortex_a_poll(struct target * target)702 static int cortex_a_poll(struct target *target)
703 {
704 int retval = ERROR_OK;
705 uint32_t dscr;
706 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
707 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
708 enum target_state prev_target_state = target->state;
709 /* toggle to another core is done by gdb as follow */
710 /* maint packet J core_id */
711 /* continue */
712 /* the next polling trigger an halt event sent to gdb */
713 if ((target->state == TARGET_HALTED) && (target->smp) &&
714 (target->gdb_service) &&
715 (target->gdb_service->target == NULL)) {
716 target->gdb_service->target =
717 get_cortex_a(target, target->gdb_service->core[1]);
718 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
719 return retval;
720 }
721 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
722 armv7a->debug_base + CPUDBG_DSCR, &dscr);
723 if (retval != ERROR_OK)
724 return retval;
725 cortex_a->cpudbg_dscr = dscr;
726
727 if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
728 if (prev_target_state != TARGET_HALTED) {
729 /* We have a halting debug event */
730 LOG_DEBUG("Target halted");
731 target->state = TARGET_HALTED;
732
733 retval = cortex_a_debug_entry(target);
734 if (retval != ERROR_OK)
735 return retval;
736
737 if (target->smp) {
738 retval = update_halt_gdb(target);
739 if (retval != ERROR_OK)
740 return retval;
741 }
742
743 if (prev_target_state == TARGET_DEBUG_RUNNING) {
744 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
745 } else { /* prev_target_state is RUNNING, UNKNOWN or RESET */
746 if (arm_semihosting(target, &retval) != 0)
747 return retval;
748
749 target_call_event_callbacks(target,
750 TARGET_EVENT_HALTED);
751 }
752 }
753 } else
754 target->state = TARGET_RUNNING;
755
756 return retval;
757 }
758
cortex_a_halt(struct target * target)759 static int cortex_a_halt(struct target *target)
760 {
761 int retval;
762 uint32_t dscr;
763 struct armv7a_common *armv7a = target_to_armv7a(target);
764
765 /*
766 * Tell the core to be halted by writing DRCR with 0x1
767 * and then wait for the core to be halted.
768 */
769 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
770 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
771 if (retval != ERROR_OK)
772 return retval;
773
774 dscr = 0; /* force read of dscr */
775 retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_HALTED,
776 DSCR_CORE_HALTED, &dscr);
777 if (retval != ERROR_OK) {
778 LOG_ERROR("Error waiting for halt");
779 return retval;
780 }
781
782 target->debug_reason = DBG_REASON_DBGRQ;
783
784 return ERROR_OK;
785 }
786
cortex_a_internal_restore(struct target * target,int current,target_addr_t * address,int handle_breakpoints,int debug_execution)787 static int cortex_a_internal_restore(struct target *target, int current,
788 target_addr_t *address, int handle_breakpoints, int debug_execution)
789 {
790 struct armv7a_common *armv7a = target_to_armv7a(target);
791 struct arm *arm = &armv7a->arm;
792 int retval;
793 uint32_t resume_pc;
794
795 if (!debug_execution)
796 target_free_all_working_areas(target);
797
798 #if 0
799 if (debug_execution) {
800 /* Disable interrupts */
801 /* We disable interrupts in the PRIMASK register instead of
802 * masking with C_MASKINTS,
803 * This is probably the same issue as Cortex-M3 Errata 377493:
804 * C_MASKINTS in parallel with disabled interrupts can cause
805 * local faults to not be taken. */
806 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
807 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = true;
808 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = true;
809
810 /* Make sure we are in Thumb mode */
811 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
812 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
813 32) | (1 << 24));
814 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = true;
815 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = true;
816 }
817 #endif
818
819 /* current = 1: continue on current pc, otherwise continue at <address> */
820 resume_pc = buf_get_u32(arm->pc->value, 0, 32);
821 if (!current)
822 resume_pc = *address;
823 else
824 *address = resume_pc;
825
826 /* Make sure that the Armv7 gdb thumb fixups does not
827 * kill the return address
828 */
829 switch (arm->core_state) {
830 case ARM_STATE_ARM:
831 resume_pc &= 0xFFFFFFFC;
832 break;
833 case ARM_STATE_THUMB:
834 case ARM_STATE_THUMB_EE:
835 /* When the return address is loaded into PC
836 * bit 0 must be 1 to stay in Thumb state
837 */
838 resume_pc |= 0x1;
839 break;
840 case ARM_STATE_JAZELLE:
841 LOG_ERROR("How do I resume into Jazelle state??");
842 return ERROR_FAIL;
843 case ARM_STATE_AARCH64:
844 LOG_ERROR("Shouldn't be in AARCH64 state");
845 return ERROR_FAIL;
846 }
847 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
848 buf_set_u32(arm->pc->value, 0, 32, resume_pc);
849 arm->pc->dirty = true;
850 arm->pc->valid = true;
851
852 /* restore dpm_mode at system halt */
853 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
854 /* called it now before restoring context because it uses cpu
855 * register r0 for restoring cp15 control register */
856 retval = cortex_a_restore_cp15_control_reg(target);
857 if (retval != ERROR_OK)
858 return retval;
859 retval = cortex_a_restore_context(target, handle_breakpoints);
860 if (retval != ERROR_OK)
861 return retval;
862 target->debug_reason = DBG_REASON_NOTHALTED;
863 target->state = TARGET_RUNNING;
864
865 /* registers are now invalid */
866 register_cache_invalidate(arm->core_cache);
867
868 #if 0
869 /* the front-end may request us not to handle breakpoints */
870 if (handle_breakpoints) {
871 /* Single step past breakpoint at current address */
872 breakpoint = breakpoint_find(target, resume_pc);
873 if (breakpoint) {
874 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
875 cortex_m3_unset_breakpoint(target, breakpoint);
876 cortex_m3_single_step_core(target);
877 cortex_m3_set_breakpoint(target, breakpoint);
878 }
879 }
880
881 #endif
882 return retval;
883 }
884
cortex_a_internal_restart(struct target * target)885 static int cortex_a_internal_restart(struct target *target)
886 {
887 struct armv7a_common *armv7a = target_to_armv7a(target);
888 struct arm *arm = &armv7a->arm;
889 int retval;
890 uint32_t dscr;
891 /*
892 * * Restart core and wait for it to be started. Clear ITRen and sticky
893 * * exception flags: see ARMv7 ARM, C5.9.
894 *
895 * REVISIT: for single stepping, we probably want to
896 * disable IRQs by default, with optional override...
897 */
898
899 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
900 armv7a->debug_base + CPUDBG_DSCR, &dscr);
901 if (retval != ERROR_OK)
902 return retval;
903
904 if ((dscr & DSCR_INSTR_COMP) == 0)
905 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
906
907 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
908 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
909 if (retval != ERROR_OK)
910 return retval;
911
912 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
913 armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
914 DRCR_CLEAR_EXCEPTIONS);
915 if (retval != ERROR_OK)
916 return retval;
917
918 dscr = 0; /* force read of dscr */
919 retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_RESTARTED,
920 DSCR_CORE_RESTARTED, &dscr);
921 if (retval != ERROR_OK) {
922 LOG_ERROR("Error waiting for resume");
923 return retval;
924 }
925
926 target->debug_reason = DBG_REASON_NOTHALTED;
927 target->state = TARGET_RUNNING;
928
929 /* registers are now invalid */
930 register_cache_invalidate(arm->core_cache);
931
932 return ERROR_OK;
933 }
934
cortex_a_restore_smp(struct target * target,int handle_breakpoints)935 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
936 {
937 int retval = 0;
938 struct target_list *head;
939 struct target *curr;
940 target_addr_t address;
941 head = target->head;
942 while (head != (struct target_list *)NULL) {
943 curr = head->target;
944 if ((curr != target) && (curr->state != TARGET_RUNNING)
945 && target_was_examined(curr)) {
946 /* resume current address , not in step mode */
947 retval += cortex_a_internal_restore(curr, 1, &address,
948 handle_breakpoints, 0);
949 retval += cortex_a_internal_restart(curr);
950 }
951 head = head->next;
952
953 }
954 return retval;
955 }
956
cortex_a_resume(struct target * target,int current,target_addr_t address,int handle_breakpoints,int debug_execution)957 static int cortex_a_resume(struct target *target, int current,
958 target_addr_t address, int handle_breakpoints, int debug_execution)
959 {
960 int retval = 0;
961 /* dummy resume for smp toggle in order to reduce gdb impact */
962 if ((target->smp) && (target->gdb_service->core[1] != -1)) {
963 /* simulate a start and halt of target */
964 target->gdb_service->target = NULL;
965 target->gdb_service->core[0] = target->gdb_service->core[1];
966 /* fake resume at next poll we play the target core[1], see poll*/
967 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
968 return 0;
969 }
970 cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
971 if (target->smp) {
972 target->gdb_service->core[0] = -1;
973 retval = cortex_a_restore_smp(target, handle_breakpoints);
974 if (retval != ERROR_OK)
975 return retval;
976 }
977 cortex_a_internal_restart(target);
978
979 if (!debug_execution) {
980 target->state = TARGET_RUNNING;
981 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
982 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
983 } else {
984 target->state = TARGET_DEBUG_RUNNING;
985 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
986 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
987 }
988
989 return ERROR_OK;
990 }
991
cortex_a_debug_entry(struct target * target)992 static int cortex_a_debug_entry(struct target *target)
993 {
994 uint32_t dscr;
995 int retval = ERROR_OK;
996 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
997 struct armv7a_common *armv7a = target_to_armv7a(target);
998 struct arm *arm = &armv7a->arm;
999
1000 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1001
1002 /* REVISIT surely we should not re-read DSCR !! */
1003 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1004 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1005 if (retval != ERROR_OK)
1006 return retval;
1007
1008 /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1009 * imprecise data aborts get discarded by issuing a Data
1010 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1011 */
1012
1013 /* Enable the ITR execution once we are in debug mode */
1014 dscr |= DSCR_ITR_EN;
1015 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1016 armv7a->debug_base + CPUDBG_DSCR, dscr);
1017 if (retval != ERROR_OK)
1018 return retval;
1019
1020 /* Examine debug reason */
1021 arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1022
1023 /* save address of instruction that triggered the watchpoint? */
1024 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1025 uint32_t wfar;
1026
1027 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1028 armv7a->debug_base + CPUDBG_WFAR,
1029 &wfar);
1030 if (retval != ERROR_OK)
1031 return retval;
1032 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1033 }
1034
1035 /* First load register accessible through core debug port */
1036 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1037 if (retval != ERROR_OK)
1038 return retval;
1039
1040 if (arm->spsr) {
1041 /* read SPSR */
1042 retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
1043 if (retval != ERROR_OK)
1044 return retval;
1045 }
1046
1047 #if 0
1048 /* TODO, Move this */
1049 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1050 cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1051 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1052
1053 cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1054 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1055
1056 cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1057 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1058 #endif
1059
1060 /* Are we in an exception handler */
1061 /* armv4_5->exception_number = 0; */
1062 if (armv7a->post_debug_entry) {
1063 retval = armv7a->post_debug_entry(target);
1064 if (retval != ERROR_OK)
1065 return retval;
1066 }
1067
1068 return retval;
1069 }
1070
cortex_a_post_debug_entry(struct target * target)1071 static int cortex_a_post_debug_entry(struct target *target)
1072 {
1073 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1074 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1075 int retval;
1076
1077 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1078 retval = armv7a->arm.mrc(target, 15,
1079 0, 0, /* op1, op2 */
1080 1, 0, /* CRn, CRm */
1081 &cortex_a->cp15_control_reg);
1082 if (retval != ERROR_OK)
1083 return retval;
1084 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1085 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1086
1087 if (!armv7a->is_armv7r)
1088 armv7a_read_ttbcr(target);
1089
1090 if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1091 armv7a_identify_cache(target);
1092
1093 if (armv7a->is_armv7r) {
1094 armv7a->armv7a_mmu.mmu_enabled = 0;
1095 } else {
1096 armv7a->armv7a_mmu.mmu_enabled =
1097 (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1098 }
1099 armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1100 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1101 armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1102 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1103 cortex_a->curr_mode = armv7a->arm.core_mode;
1104
1105 /* switch to SVC mode to read DACR */
1106 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1107 armv7a->arm.mrc(target, 15,
1108 0, 0, 3, 0,
1109 &cortex_a->cp15_dacr_reg);
1110
1111 LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1112 cortex_a->cp15_dacr_reg);
1113
1114 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1115 return ERROR_OK;
1116 }
1117
cortex_a_set_dscr_bits(struct target * target,unsigned long bit_mask,unsigned long value)1118 static int cortex_a_set_dscr_bits(struct target *target,
1119 unsigned long bit_mask, unsigned long value)
1120 {
1121 struct armv7a_common *armv7a = target_to_armv7a(target);
1122 uint32_t dscr;
1123
1124 /* Read DSCR */
1125 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1126 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1127 if (ERROR_OK != retval)
1128 return retval;
1129
1130 /* clear bitfield */
1131 dscr &= ~bit_mask;
1132 /* put new value */
1133 dscr |= value & bit_mask;
1134
1135 /* write new DSCR */
1136 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1137 armv7a->debug_base + CPUDBG_DSCR, dscr);
1138 return retval;
1139 }
1140
cortex_a_step(struct target * target,int current,target_addr_t address,int handle_breakpoints)1141 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1142 int handle_breakpoints)
1143 {
1144 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1145 struct armv7a_common *armv7a = target_to_armv7a(target);
1146 struct arm *arm = &armv7a->arm;
1147 struct breakpoint *breakpoint = NULL;
1148 struct breakpoint stepbreakpoint;
1149 struct reg *r;
1150 int retval;
1151
1152 if (target->state != TARGET_HALTED) {
1153 LOG_WARNING("target not halted");
1154 return ERROR_TARGET_NOT_HALTED;
1155 }
1156
1157 /* current = 1: continue on current pc, otherwise continue at <address> */
1158 r = arm->pc;
1159 if (!current)
1160 buf_set_u32(r->value, 0, 32, address);
1161 else
1162 address = buf_get_u32(r->value, 0, 32);
1163
1164 /* The front-end may request us not to handle breakpoints.
1165 * But since Cortex-A uses breakpoint for single step,
1166 * we MUST handle breakpoints.
1167 */
1168 handle_breakpoints = 1;
1169 if (handle_breakpoints) {
1170 breakpoint = breakpoint_find(target, address);
1171 if (breakpoint)
1172 cortex_a_unset_breakpoint(target, breakpoint);
1173 }
1174
1175 /* Setup single step breakpoint */
1176 stepbreakpoint.address = address;
1177 stepbreakpoint.asid = 0;
1178 stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1179 ? 2 : 4;
1180 stepbreakpoint.type = BKPT_HARD;
1181 stepbreakpoint.set = 0;
1182
1183 /* Disable interrupts during single step if requested */
1184 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1185 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1186 if (ERROR_OK != retval)
1187 return retval;
1188 }
1189
1190 /* Break on IVA mismatch */
1191 cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1192
1193 target->debug_reason = DBG_REASON_SINGLESTEP;
1194
1195 retval = cortex_a_resume(target, 1, address, 0, 0);
1196 if (retval != ERROR_OK)
1197 return retval;
1198
1199 int64_t then = timeval_ms();
1200 while (target->state != TARGET_HALTED) {
1201 retval = cortex_a_poll(target);
1202 if (retval != ERROR_OK)
1203 return retval;
1204 if (target->state == TARGET_HALTED)
1205 break;
1206 if (timeval_ms() > then + 1000) {
1207 LOG_ERROR("timeout waiting for target halt");
1208 return ERROR_FAIL;
1209 }
1210 }
1211
1212 cortex_a_unset_breakpoint(target, &stepbreakpoint);
1213
1214 /* Re-enable interrupts if they were disabled */
1215 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1216 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1217 if (ERROR_OK != retval)
1218 return retval;
1219 }
1220
1221
1222 target->debug_reason = DBG_REASON_BREAKPOINT;
1223
1224 if (breakpoint)
1225 cortex_a_set_breakpoint(target, breakpoint, 0);
1226
1227 if (target->state != TARGET_HALTED)
1228 LOG_DEBUG("target stepped");
1229
1230 return ERROR_OK;
1231 }
1232
cortex_a_restore_context(struct target * target,bool bpwp)1233 static int cortex_a_restore_context(struct target *target, bool bpwp)
1234 {
1235 struct armv7a_common *armv7a = target_to_armv7a(target);
1236
1237 LOG_DEBUG(" ");
1238
1239 if (armv7a->pre_restore_context)
1240 armv7a->pre_restore_context(target);
1241
1242 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1243 }
1244
1245 /*
1246 * Cortex-A Breakpoint and watchpoint functions
1247 */
1248
1249 /* Setup hardware Breakpoint Register Pair */
cortex_a_set_breakpoint(struct target * target,struct breakpoint * breakpoint,uint8_t matchmode)1250 static int cortex_a_set_breakpoint(struct target *target,
1251 struct breakpoint *breakpoint, uint8_t matchmode)
1252 {
1253 int retval;
1254 int brp_i = 0;
1255 uint32_t control;
1256 uint8_t byte_addr_select = 0x0F;
1257 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1258 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1259 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1260
1261 if (breakpoint->set) {
1262 LOG_WARNING("breakpoint already set");
1263 return ERROR_OK;
1264 }
1265
1266 if (breakpoint->type == BKPT_HARD) {
1267 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1268 brp_i++;
1269 if (brp_i >= cortex_a->brp_num) {
1270 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1271 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1272 }
1273 breakpoint->set = brp_i + 1;
1274 if (breakpoint->length == 2)
1275 byte_addr_select = (3 << (breakpoint->address & 0x02));
1276 control = ((matchmode & 0x7) << 20)
1277 | (byte_addr_select << 5)
1278 | (3 << 1) | 1;
1279 brp_list[brp_i].used = 1;
1280 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1281 brp_list[brp_i].control = control;
1282 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1283 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1284 brp_list[brp_i].value);
1285 if (retval != ERROR_OK)
1286 return retval;
1287 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1288 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1289 brp_list[brp_i].control);
1290 if (retval != ERROR_OK)
1291 return retval;
1292 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1293 brp_list[brp_i].control,
1294 brp_list[brp_i].value);
1295 } else if (breakpoint->type == BKPT_SOFT) {
1296 uint8_t code[4];
1297 /* length == 2: Thumb breakpoint */
1298 if (breakpoint->length == 2)
1299 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1300 else
1301 /* length == 3: Thumb-2 breakpoint, actual encoding is
1302 * a regular Thumb BKPT instruction but we replace a
1303 * 32bit Thumb-2 instruction, so fix-up the breakpoint
1304 * length
1305 */
1306 if (breakpoint->length == 3) {
1307 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1308 breakpoint->length = 4;
1309 } else
1310 /* length == 4, normal ARM breakpoint */
1311 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1312
1313 retval = target_read_memory(target,
1314 breakpoint->address & 0xFFFFFFFE,
1315 breakpoint->length, 1,
1316 breakpoint->orig_instr);
1317 if (retval != ERROR_OK)
1318 return retval;
1319
1320 /* make sure data cache is cleaned & invalidated down to PoC */
1321 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1322 armv7a_cache_flush_virt(target, breakpoint->address,
1323 breakpoint->length);
1324 }
1325
1326 retval = target_write_memory(target,
1327 breakpoint->address & 0xFFFFFFFE,
1328 breakpoint->length, 1, code);
1329 if (retval != ERROR_OK)
1330 return retval;
1331
1332 /* update i-cache at breakpoint location */
1333 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1334 breakpoint->length);
1335 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1336 breakpoint->length);
1337
1338 breakpoint->set = 0x11; /* Any nice value but 0 */
1339 }
1340
1341 return ERROR_OK;
1342 }
1343
cortex_a_set_context_breakpoint(struct target * target,struct breakpoint * breakpoint,uint8_t matchmode)1344 static int cortex_a_set_context_breakpoint(struct target *target,
1345 struct breakpoint *breakpoint, uint8_t matchmode)
1346 {
1347 int retval = ERROR_FAIL;
1348 int brp_i = 0;
1349 uint32_t control;
1350 uint8_t byte_addr_select = 0x0F;
1351 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1352 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1353 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1354
1355 if (breakpoint->set) {
1356 LOG_WARNING("breakpoint already set");
1357 return retval;
1358 }
1359 /*check available context BRPs*/
1360 while ((brp_list[brp_i].used ||
1361 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1362 brp_i++;
1363
1364 if (brp_i >= cortex_a->brp_num) {
1365 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1366 return ERROR_FAIL;
1367 }
1368
1369 breakpoint->set = brp_i + 1;
1370 control = ((matchmode & 0x7) << 20)
1371 | (byte_addr_select << 5)
1372 | (3 << 1) | 1;
1373 brp_list[brp_i].used = 1;
1374 brp_list[brp_i].value = (breakpoint->asid);
1375 brp_list[brp_i].control = control;
1376 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1377 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1378 brp_list[brp_i].value);
1379 if (retval != ERROR_OK)
1380 return retval;
1381 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1382 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1383 brp_list[brp_i].control);
1384 if (retval != ERROR_OK)
1385 return retval;
1386 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1387 brp_list[brp_i].control,
1388 brp_list[brp_i].value);
1389 return ERROR_OK;
1390
1391 }
1392
cortex_a_set_hybrid_breakpoint(struct target * target,struct breakpoint * breakpoint)1393 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1394 {
1395 int retval = ERROR_FAIL;
1396 int brp_1 = 0; /* holds the contextID pair */
1397 int brp_2 = 0; /* holds the IVA pair */
1398 uint32_t control_CTX, control_IVA;
1399 uint8_t CTX_byte_addr_select = 0x0F;
1400 uint8_t IVA_byte_addr_select = 0x0F;
1401 uint8_t CTX_machmode = 0x03;
1402 uint8_t IVA_machmode = 0x01;
1403 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1404 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1405 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1406
1407 if (breakpoint->set) {
1408 LOG_WARNING("breakpoint already set");
1409 return retval;
1410 }
1411 /*check available context BRPs*/
1412 while ((brp_list[brp_1].used ||
1413 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1414 brp_1++;
1415
1416 printf("brp(CTX) found num: %d\n", brp_1);
1417 if (brp_1 >= cortex_a->brp_num) {
1418 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1419 return ERROR_FAIL;
1420 }
1421
1422 while ((brp_list[brp_2].used ||
1423 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1424 brp_2++;
1425
1426 printf("brp(IVA) found num: %d\n", brp_2);
1427 if (brp_2 >= cortex_a->brp_num) {
1428 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1429 return ERROR_FAIL;
1430 }
1431
1432 breakpoint->set = brp_1 + 1;
1433 breakpoint->linked_BRP = brp_2;
1434 control_CTX = ((CTX_machmode & 0x7) << 20)
1435 | (brp_2 << 16)
1436 | (0 << 14)
1437 | (CTX_byte_addr_select << 5)
1438 | (3 << 1) | 1;
1439 brp_list[brp_1].used = 1;
1440 brp_list[brp_1].value = (breakpoint->asid);
1441 brp_list[brp_1].control = control_CTX;
1442 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1443 + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1444 brp_list[brp_1].value);
1445 if (retval != ERROR_OK)
1446 return retval;
1447 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1448 + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1449 brp_list[brp_1].control);
1450 if (retval != ERROR_OK)
1451 return retval;
1452
1453 control_IVA = ((IVA_machmode & 0x7) << 20)
1454 | (brp_1 << 16)
1455 | (IVA_byte_addr_select << 5)
1456 | (3 << 1) | 1;
1457 brp_list[brp_2].used = 1;
1458 brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1459 brp_list[brp_2].control = control_IVA;
1460 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1461 + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1462 brp_list[brp_2].value);
1463 if (retval != ERROR_OK)
1464 return retval;
1465 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1466 + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1467 brp_list[brp_2].control);
1468 if (retval != ERROR_OK)
1469 return retval;
1470
1471 return ERROR_OK;
1472 }
1473
cortex_a_unset_breakpoint(struct target * target,struct breakpoint * breakpoint)1474 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1475 {
1476 int retval;
1477 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1478 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1479 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1480
1481 if (!breakpoint->set) {
1482 LOG_WARNING("breakpoint not set");
1483 return ERROR_OK;
1484 }
1485
1486 if (breakpoint->type == BKPT_HARD) {
1487 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1488 int brp_i = breakpoint->set - 1;
1489 int brp_j = breakpoint->linked_BRP;
1490 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1491 LOG_DEBUG("Invalid BRP number in breakpoint");
1492 return ERROR_OK;
1493 }
1494 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1495 brp_list[brp_i].control, brp_list[brp_i].value);
1496 brp_list[brp_i].used = 0;
1497 brp_list[brp_i].value = 0;
1498 brp_list[brp_i].control = 0;
1499 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1500 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1501 brp_list[brp_i].control);
1502 if (retval != ERROR_OK)
1503 return retval;
1504 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1505 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1506 brp_list[brp_i].value);
1507 if (retval != ERROR_OK)
1508 return retval;
1509 if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1510 LOG_DEBUG("Invalid BRP number in breakpoint");
1511 return ERROR_OK;
1512 }
1513 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1514 brp_list[brp_j].control, brp_list[brp_j].value);
1515 brp_list[brp_j].used = 0;
1516 brp_list[brp_j].value = 0;
1517 brp_list[brp_j].control = 0;
1518 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1519 + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1520 brp_list[brp_j].control);
1521 if (retval != ERROR_OK)
1522 return retval;
1523 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1524 + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1525 brp_list[brp_j].value);
1526 if (retval != ERROR_OK)
1527 return retval;
1528 breakpoint->linked_BRP = 0;
1529 breakpoint->set = 0;
1530 return ERROR_OK;
1531
1532 } else {
1533 int brp_i = breakpoint->set - 1;
1534 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1535 LOG_DEBUG("Invalid BRP number in breakpoint");
1536 return ERROR_OK;
1537 }
1538 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1539 brp_list[brp_i].control, brp_list[brp_i].value);
1540 brp_list[brp_i].used = 0;
1541 brp_list[brp_i].value = 0;
1542 brp_list[brp_i].control = 0;
1543 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1544 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1545 brp_list[brp_i].control);
1546 if (retval != ERROR_OK)
1547 return retval;
1548 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1549 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1550 brp_list[brp_i].value);
1551 if (retval != ERROR_OK)
1552 return retval;
1553 breakpoint->set = 0;
1554 return ERROR_OK;
1555 }
1556 } else {
1557
1558 /* make sure data cache is cleaned & invalidated down to PoC */
1559 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1560 armv7a_cache_flush_virt(target, breakpoint->address,
1561 breakpoint->length);
1562 }
1563
1564 /* restore original instruction (kept in target endianness) */
1565 if (breakpoint->length == 4) {
1566 retval = target_write_memory(target,
1567 breakpoint->address & 0xFFFFFFFE,
1568 4, 1, breakpoint->orig_instr);
1569 if (retval != ERROR_OK)
1570 return retval;
1571 } else {
1572 retval = target_write_memory(target,
1573 breakpoint->address & 0xFFFFFFFE,
1574 2, 1, breakpoint->orig_instr);
1575 if (retval != ERROR_OK)
1576 return retval;
1577 }
1578
1579 /* update i-cache at breakpoint location */
1580 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1581 breakpoint->length);
1582 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1583 breakpoint->length);
1584 }
1585 breakpoint->set = 0;
1586
1587 return ERROR_OK;
1588 }
1589
cortex_a_add_breakpoint(struct target * target,struct breakpoint * breakpoint)1590 static int cortex_a_add_breakpoint(struct target *target,
1591 struct breakpoint *breakpoint)
1592 {
1593 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1594
1595 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1596 LOG_INFO("no hardware breakpoint available");
1597 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1598 }
1599
1600 if (breakpoint->type == BKPT_HARD)
1601 cortex_a->brp_num_available--;
1602
1603 return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1604 }
1605
cortex_a_add_context_breakpoint(struct target * target,struct breakpoint * breakpoint)1606 static int cortex_a_add_context_breakpoint(struct target *target,
1607 struct breakpoint *breakpoint)
1608 {
1609 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1610
1611 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1612 LOG_INFO("no hardware breakpoint available");
1613 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1614 }
1615
1616 if (breakpoint->type == BKPT_HARD)
1617 cortex_a->brp_num_available--;
1618
1619 return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1620 }
1621
cortex_a_add_hybrid_breakpoint(struct target * target,struct breakpoint * breakpoint)1622 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1623 struct breakpoint *breakpoint)
1624 {
1625 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1626
1627 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1628 LOG_INFO("no hardware breakpoint available");
1629 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1630 }
1631
1632 if (breakpoint->type == BKPT_HARD)
1633 cortex_a->brp_num_available--;
1634
1635 return cortex_a_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1636 }
1637
1638
cortex_a_remove_breakpoint(struct target * target,struct breakpoint * breakpoint)1639 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1640 {
1641 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1642
1643 #if 0
1644 /* It is perfectly possible to remove breakpoints while the target is running */
1645 if (target->state != TARGET_HALTED) {
1646 LOG_WARNING("target not halted");
1647 return ERROR_TARGET_NOT_HALTED;
1648 }
1649 #endif
1650
1651 if (breakpoint->set) {
1652 cortex_a_unset_breakpoint(target, breakpoint);
1653 if (breakpoint->type == BKPT_HARD)
1654 cortex_a->brp_num_available++;
1655 }
1656
1657
1658 return ERROR_OK;
1659 }
1660
1661 /*
1662 * Cortex-A Reset functions
1663 */
1664
cortex_a_assert_reset(struct target * target)1665 static int cortex_a_assert_reset(struct target *target)
1666 {
1667 struct armv7a_common *armv7a = target_to_armv7a(target);
1668
1669 LOG_DEBUG(" ");
1670
1671 /* FIXME when halt is requested, make it work somehow... */
1672
1673 /* This function can be called in "target not examined" state */
1674
1675 /* Issue some kind of warm reset. */
1676 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1677 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1678 else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1679 /* REVISIT handle "pulls" cases, if there's
1680 * hardware that needs them to work.
1681 */
1682
1683 /*
1684 * FIXME: fix reset when transport is not JTAG. This is a temporary
1685 * work-around for release v0.10 that is not intended to stay!
1686 */
1687 if (!transport_is_jtag() ||
1688 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1689 adapter_assert_reset();
1690
1691 } else {
1692 LOG_ERROR("%s: how to reset?", target_name(target));
1693 return ERROR_FAIL;
1694 }
1695
1696 /* registers are now invalid */
1697 if (target_was_examined(target))
1698 register_cache_invalidate(armv7a->arm.core_cache);
1699
1700 target->state = TARGET_RESET;
1701
1702 return ERROR_OK;
1703 }
1704
cortex_a_deassert_reset(struct target * target)1705 static int cortex_a_deassert_reset(struct target *target)
1706 {
1707 struct armv7a_common *armv7a = target_to_armv7a(target);
1708 int retval;
1709
1710 LOG_DEBUG(" ");
1711
1712 /* be certain SRST is off */
1713 adapter_deassert_reset();
1714
1715 if (target_was_examined(target)) {
1716 retval = cortex_a_poll(target);
1717 if (retval != ERROR_OK)
1718 return retval;
1719 }
1720
1721 if (target->reset_halt) {
1722 if (target->state != TARGET_HALTED) {
1723 LOG_WARNING("%s: ran after reset and before halt ...",
1724 target_name(target));
1725 if (target_was_examined(target)) {
1726 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1727 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
1728 if (retval != ERROR_OK)
1729 return retval;
1730 } else
1731 target->state = TARGET_UNKNOWN;
1732 }
1733 }
1734
1735 return ERROR_OK;
1736 }
1737
cortex_a_set_dcc_mode(struct target * target,uint32_t mode,uint32_t * dscr)1738 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1739 {
1740 /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1741 * New desired mode must be in mode. Current value of DSCR must be in
1742 * *dscr, which is updated with new value.
1743 *
1744 * This function elides actually sending the mode-change over the debug
1745 * interface if the mode is already set as desired.
1746 */
1747 uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1748 if (new_dscr != *dscr) {
1749 struct armv7a_common *armv7a = target_to_armv7a(target);
1750 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1751 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1752 if (retval == ERROR_OK)
1753 *dscr = new_dscr;
1754 return retval;
1755 } else {
1756 return ERROR_OK;
1757 }
1758 }
1759
cortex_a_wait_dscr_bits(struct target * target,uint32_t mask,uint32_t value,uint32_t * dscr)1760 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1761 uint32_t value, uint32_t *dscr)
1762 {
1763 /* Waits until the specified bit(s) of DSCR take on a specified value. */
1764 struct armv7a_common *armv7a = target_to_armv7a(target);
1765 int64_t then;
1766 int retval;
1767
1768 if ((*dscr & mask) == value)
1769 return ERROR_OK;
1770
1771 then = timeval_ms();
1772 while (1) {
1773 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1774 armv7a->debug_base + CPUDBG_DSCR, dscr);
1775 if (retval != ERROR_OK) {
1776 LOG_ERROR("Could not read DSCR register");
1777 return retval;
1778 }
1779 if ((*dscr & mask) == value)
1780 break;
1781 if (timeval_ms() > then + 1000) {
1782 LOG_ERROR("timeout waiting for DSCR bit change");
1783 return ERROR_FAIL;
1784 }
1785 }
1786 return ERROR_OK;
1787 }
1788
cortex_a_read_copro(struct target * target,uint32_t opcode,uint32_t * data,uint32_t * dscr)1789 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1790 uint32_t *data, uint32_t *dscr)
1791 {
1792 int retval;
1793 struct armv7a_common *armv7a = target_to_armv7a(target);
1794
1795 /* Move from coprocessor to R0. */
1796 retval = cortex_a_exec_opcode(target, opcode, dscr);
1797 if (retval != ERROR_OK)
1798 return retval;
1799
1800 /* Move from R0 to DTRTX. */
1801 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1802 if (retval != ERROR_OK)
1803 return retval;
1804
1805 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1806 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1807 * must also check TXfull_l). Most of the time this will be free
1808 * because TXfull_l will be set immediately and cached in dscr. */
1809 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1810 DSCR_DTRTX_FULL_LATCHED, dscr);
1811 if (retval != ERROR_OK)
1812 return retval;
1813
1814 /* Read the value transferred to DTRTX. */
1815 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1816 armv7a->debug_base + CPUDBG_DTRTX, data);
1817 if (retval != ERROR_OK)
1818 return retval;
1819
1820 return ERROR_OK;
1821 }
1822
cortex_a_read_dfar_dfsr(struct target * target,uint32_t * dfar,uint32_t * dfsr,uint32_t * dscr)1823 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
1824 uint32_t *dfsr, uint32_t *dscr)
1825 {
1826 int retval;
1827
1828 if (dfar) {
1829 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
1830 if (retval != ERROR_OK)
1831 return retval;
1832 }
1833
1834 if (dfsr) {
1835 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
1836 if (retval != ERROR_OK)
1837 return retval;
1838 }
1839
1840 return ERROR_OK;
1841 }
1842
cortex_a_write_copro(struct target * target,uint32_t opcode,uint32_t data,uint32_t * dscr)1843 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
1844 uint32_t data, uint32_t *dscr)
1845 {
1846 int retval;
1847 struct armv7a_common *armv7a = target_to_armv7a(target);
1848
1849 /* Write the value into DTRRX. */
1850 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1851 armv7a->debug_base + CPUDBG_DTRRX, data);
1852 if (retval != ERROR_OK)
1853 return retval;
1854
1855 /* Move from DTRRX to R0. */
1856 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
1857 if (retval != ERROR_OK)
1858 return retval;
1859
1860 /* Move from R0 to coprocessor. */
1861 retval = cortex_a_exec_opcode(target, opcode, dscr);
1862 if (retval != ERROR_OK)
1863 return retval;
1864
1865 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
1866 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
1867 * check RXfull_l). Most of the time this will be free because RXfull_l
1868 * will be cleared immediately and cached in dscr. */
1869 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
1870 if (retval != ERROR_OK)
1871 return retval;
1872
1873 return ERROR_OK;
1874 }
1875
cortex_a_write_dfar_dfsr(struct target * target,uint32_t dfar,uint32_t dfsr,uint32_t * dscr)1876 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
1877 uint32_t dfsr, uint32_t *dscr)
1878 {
1879 int retval;
1880
1881 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
1882 if (retval != ERROR_OK)
1883 return retval;
1884
1885 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
1886 if (retval != ERROR_OK)
1887 return retval;
1888
1889 return ERROR_OK;
1890 }
1891
cortex_a_dfsr_to_error_code(uint32_t dfsr)1892 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
1893 {
1894 uint32_t status, upper4;
1895
1896 if (dfsr & (1 << 9)) {
1897 /* LPAE format. */
1898 status = dfsr & 0x3f;
1899 upper4 = status >> 2;
1900 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
1901 return ERROR_TARGET_TRANSLATION_FAULT;
1902 else if (status == 33)
1903 return ERROR_TARGET_UNALIGNED_ACCESS;
1904 else
1905 return ERROR_TARGET_DATA_ABORT;
1906 } else {
1907 /* Normal format. */
1908 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
1909 if (status == 1)
1910 return ERROR_TARGET_UNALIGNED_ACCESS;
1911 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
1912 status == 9 || status == 11 || status == 13 || status == 15)
1913 return ERROR_TARGET_TRANSLATION_FAULT;
1914 else
1915 return ERROR_TARGET_DATA_ABORT;
1916 }
1917 }
1918
cortex_a_write_cpu_memory_slow(struct target * target,uint32_t size,uint32_t count,const uint8_t * buffer,uint32_t * dscr)1919 static int cortex_a_write_cpu_memory_slow(struct target *target,
1920 uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
1921 {
1922 /* Writes count objects of size size from *buffer. Old value of DSCR must
1923 * be in *dscr; updated to new value. This is slow because it works for
1924 * non-word-sized objects. Avoid unaligned accesses as they do not work
1925 * on memory address space without "Normal" attribute. If size == 4 and
1926 * the address is aligned, cortex_a_write_cpu_memory_fast should be
1927 * preferred.
1928 * Preconditions:
1929 * - Address is in R0.
1930 * - R0 is marked dirty.
1931 */
1932 struct armv7a_common *armv7a = target_to_armv7a(target);
1933 struct arm *arm = &armv7a->arm;
1934 int retval;
1935
1936 /* Mark register R1 as dirty, to use for transferring data. */
1937 arm_reg_current(arm, 1)->dirty = true;
1938
1939 /* Switch to non-blocking mode if not already in that mode. */
1940 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
1941 if (retval != ERROR_OK)
1942 return retval;
1943
1944 /* Go through the objects. */
1945 while (count) {
1946 /* Write the value to store into DTRRX. */
1947 uint32_t data, opcode;
1948 if (size == 1)
1949 data = *buffer;
1950 else if (size == 2)
1951 data = target_buffer_get_u16(target, buffer);
1952 else
1953 data = target_buffer_get_u32(target, buffer);
1954 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1955 armv7a->debug_base + CPUDBG_DTRRX, data);
1956 if (retval != ERROR_OK)
1957 return retval;
1958
1959 /* Transfer the value from DTRRX to R1. */
1960 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
1961 if (retval != ERROR_OK)
1962 return retval;
1963
1964 /* Write the value transferred to R1 into memory. */
1965 if (size == 1)
1966 opcode = ARMV4_5_STRB_IP(1, 0);
1967 else if (size == 2)
1968 opcode = ARMV4_5_STRH_IP(1, 0);
1969 else
1970 opcode = ARMV4_5_STRW_IP(1, 0);
1971 retval = cortex_a_exec_opcode(target, opcode, dscr);
1972 if (retval != ERROR_OK)
1973 return retval;
1974
1975 /* Check for faults and return early. */
1976 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
1977 return ERROR_OK; /* A data fault is not considered a system failure. */
1978
1979 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
1980 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1981 * must also check RXfull_l). Most of the time this will be free
1982 * because RXfull_l will be cleared immediately and cached in dscr. */
1983 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
1984 if (retval != ERROR_OK)
1985 return retval;
1986
1987 /* Advance. */
1988 buffer += size;
1989 --count;
1990 }
1991
1992 return ERROR_OK;
1993 }
1994
cortex_a_write_cpu_memory_fast(struct target * target,uint32_t count,const uint8_t * buffer,uint32_t * dscr)1995 static int cortex_a_write_cpu_memory_fast(struct target *target,
1996 uint32_t count, const uint8_t *buffer, uint32_t *dscr)
1997 {
1998 /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
1999 * in *dscr; updated to new value. This is fast but only works for
2000 * word-sized objects at aligned addresses.
2001 * Preconditions:
2002 * - Address is in R0 and must be a multiple of 4.
2003 * - R0 is marked dirty.
2004 */
2005 struct armv7a_common *armv7a = target_to_armv7a(target);
2006 int retval;
2007
2008 /* Switch to fast mode if not already in that mode. */
2009 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2010 if (retval != ERROR_OK)
2011 return retval;
2012
2013 /* Latch STC instruction. */
2014 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2015 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2016 if (retval != ERROR_OK)
2017 return retval;
2018
2019 /* Transfer all the data and issue all the instructions. */
2020 return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2021 4, count, armv7a->debug_base + CPUDBG_DTRRX);
2022 }
2023
cortex_a_write_cpu_memory(struct target * target,uint32_t address,uint32_t size,uint32_t count,const uint8_t * buffer)2024 static int cortex_a_write_cpu_memory(struct target *target,
2025 uint32_t address, uint32_t size,
2026 uint32_t count, const uint8_t *buffer)
2027 {
2028 /* Write memory through the CPU. */
2029 int retval, final_retval;
2030 struct armv7a_common *armv7a = target_to_armv7a(target);
2031 struct arm *arm = &armv7a->arm;
2032 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2033
2034 LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2035 address, size, count);
2036 if (target->state != TARGET_HALTED) {
2037 LOG_WARNING("target not halted");
2038 return ERROR_TARGET_NOT_HALTED;
2039 }
2040
2041 if (!count)
2042 return ERROR_OK;
2043
2044 /* Clear any abort. */
2045 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2046 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2047 if (retval != ERROR_OK)
2048 return retval;
2049
2050 /* Read DSCR. */
2051 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2052 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2053 if (retval != ERROR_OK)
2054 return retval;
2055
2056 /* Switch to non-blocking mode if not already in that mode. */
2057 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2058 if (retval != ERROR_OK)
2059 goto out;
2060
2061 /* Mark R0 as dirty. */
2062 arm_reg_current(arm, 0)->dirty = true;
2063
2064 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2065 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2066 if (retval != ERROR_OK)
2067 goto out;
2068
2069 /* Get the memory address into R0. */
2070 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2071 armv7a->debug_base + CPUDBG_DTRRX, address);
2072 if (retval != ERROR_OK)
2073 goto out;
2074 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2075 if (retval != ERROR_OK)
2076 goto out;
2077
2078 if (size == 4 && (address % 4) == 0) {
2079 /* We are doing a word-aligned transfer, so use fast mode. */
2080 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2081 } else {
2082 /* Use slow path. Adjust size for aligned accesses */
2083 switch (address % 4) {
2084 case 1:
2085 case 3:
2086 count *= size;
2087 size = 1;
2088 break;
2089 case 2:
2090 if (size == 4) {
2091 count *= 2;
2092 size = 2;
2093 }
2094 case 0:
2095 default:
2096 break;
2097 }
2098 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2099 }
2100
2101 out:
2102 final_retval = retval;
2103
2104 /* Switch to non-blocking mode if not already in that mode. */
2105 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2106 if (final_retval == ERROR_OK)
2107 final_retval = retval;
2108
2109 /* Wait for last issued instruction to complete. */
2110 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2111 if (final_retval == ERROR_OK)
2112 final_retval = retval;
2113
2114 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2115 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2116 * check RXfull_l). Most of the time this will be free because RXfull_l
2117 * will be cleared immediately and cached in dscr. However, don't do this
2118 * if there is fault, because then the instruction might not have completed
2119 * successfully. */
2120 if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2121 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2122 if (retval != ERROR_OK)
2123 return retval;
2124 }
2125
2126 /* If there were any sticky abort flags, clear them. */
2127 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2128 fault_dscr = dscr;
2129 mem_ap_write_atomic_u32(armv7a->debug_ap,
2130 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2131 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2132 } else {
2133 fault_dscr = 0;
2134 }
2135
2136 /* Handle synchronous data faults. */
2137 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2138 if (final_retval == ERROR_OK) {
2139 /* Final return value will reflect cause of fault. */
2140 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2141 if (retval == ERROR_OK) {
2142 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2143 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2144 } else
2145 final_retval = retval;
2146 }
2147 /* Fault destroyed DFAR/DFSR; restore them. */
2148 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2149 if (retval != ERROR_OK)
2150 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2151 }
2152
2153 /* Handle asynchronous data faults. */
2154 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2155 if (final_retval == ERROR_OK)
2156 /* No other error has been recorded so far, so keep this one. */
2157 final_retval = ERROR_TARGET_DATA_ABORT;
2158 }
2159
2160 /* If the DCC is nonempty, clear it. */
2161 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2162 uint32_t dummy;
2163 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2164 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2165 if (final_retval == ERROR_OK)
2166 final_retval = retval;
2167 }
2168 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2169 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2170 if (final_retval == ERROR_OK)
2171 final_retval = retval;
2172 }
2173
2174 /* Done. */
2175 return final_retval;
2176 }
2177
cortex_a_read_cpu_memory_slow(struct target * target,uint32_t size,uint32_t count,uint8_t * buffer,uint32_t * dscr)2178 static int cortex_a_read_cpu_memory_slow(struct target *target,
2179 uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2180 {
2181 /* Reads count objects of size size into *buffer. Old value of DSCR must be
2182 * in *dscr; updated to new value. This is slow because it works for
2183 * non-word-sized objects. Avoid unaligned accesses as they do not work
2184 * on memory address space without "Normal" attribute. If size == 4 and
2185 * the address is aligned, cortex_a_read_cpu_memory_fast should be
2186 * preferred.
2187 * Preconditions:
2188 * - Address is in R0.
2189 * - R0 is marked dirty.
2190 */
2191 struct armv7a_common *armv7a = target_to_armv7a(target);
2192 struct arm *arm = &armv7a->arm;
2193 int retval;
2194
2195 /* Mark register R1 as dirty, to use for transferring data. */
2196 arm_reg_current(arm, 1)->dirty = true;
2197
2198 /* Switch to non-blocking mode if not already in that mode. */
2199 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2200 if (retval != ERROR_OK)
2201 return retval;
2202
2203 /* Go through the objects. */
2204 while (count) {
2205 /* Issue a load of the appropriate size to R1. */
2206 uint32_t opcode, data;
2207 if (size == 1)
2208 opcode = ARMV4_5_LDRB_IP(1, 0);
2209 else if (size == 2)
2210 opcode = ARMV4_5_LDRH_IP(1, 0);
2211 else
2212 opcode = ARMV4_5_LDRW_IP(1, 0);
2213 retval = cortex_a_exec_opcode(target, opcode, dscr);
2214 if (retval != ERROR_OK)
2215 return retval;
2216
2217 /* Issue a write of R1 to DTRTX. */
2218 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2219 if (retval != ERROR_OK)
2220 return retval;
2221
2222 /* Check for faults and return early. */
2223 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2224 return ERROR_OK; /* A data fault is not considered a system failure. */
2225
2226 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2227 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2228 * must also check TXfull_l). Most of the time this will be free
2229 * because TXfull_l will be set immediately and cached in dscr. */
2230 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2231 DSCR_DTRTX_FULL_LATCHED, dscr);
2232 if (retval != ERROR_OK)
2233 return retval;
2234
2235 /* Read the value transferred to DTRTX into the buffer. */
2236 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2237 armv7a->debug_base + CPUDBG_DTRTX, &data);
2238 if (retval != ERROR_OK)
2239 return retval;
2240 if (size == 1)
2241 *buffer = (uint8_t) data;
2242 else if (size == 2)
2243 target_buffer_set_u16(target, buffer, (uint16_t) data);
2244 else
2245 target_buffer_set_u32(target, buffer, data);
2246
2247 /* Advance. */
2248 buffer += size;
2249 --count;
2250 }
2251
2252 return ERROR_OK;
2253 }
2254
cortex_a_read_cpu_memory_fast(struct target * target,uint32_t count,uint8_t * buffer,uint32_t * dscr)2255 static int cortex_a_read_cpu_memory_fast(struct target *target,
2256 uint32_t count, uint8_t *buffer, uint32_t *dscr)
2257 {
2258 /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2259 * *dscr; updated to new value. This is fast but only works for word-sized
2260 * objects at aligned addresses.
2261 * Preconditions:
2262 * - Address is in R0 and must be a multiple of 4.
2263 * - R0 is marked dirty.
2264 */
2265 struct armv7a_common *armv7a = target_to_armv7a(target);
2266 uint32_t u32;
2267 int retval;
2268
2269 /* Switch to non-blocking mode if not already in that mode. */
2270 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2271 if (retval != ERROR_OK)
2272 return retval;
2273
2274 /* Issue the LDC instruction via a write to ITR. */
2275 retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2276 if (retval != ERROR_OK)
2277 return retval;
2278
2279 count--;
2280
2281 if (count > 0) {
2282 /* Switch to fast mode if not already in that mode. */
2283 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2284 if (retval != ERROR_OK)
2285 return retval;
2286
2287 /* Latch LDC instruction. */
2288 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2289 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2290 if (retval != ERROR_OK)
2291 return retval;
2292
2293 /* Read the value transferred to DTRTX into the buffer. Due to fast
2294 * mode rules, this blocks until the instruction finishes executing and
2295 * then reissues the read instruction to read the next word from
2296 * memory. The last read of DTRTX in this call reads the second-to-last
2297 * word from memory and issues the read instruction for the last word.
2298 */
2299 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2300 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2301 if (retval != ERROR_OK)
2302 return retval;
2303
2304 /* Advance. */
2305 buffer += count * 4;
2306 }
2307
2308 /* Wait for last issued instruction to complete. */
2309 retval = cortex_a_wait_instrcmpl(target, dscr, false);
2310 if (retval != ERROR_OK)
2311 return retval;
2312
2313 /* Switch to non-blocking mode if not already in that mode. */
2314 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2315 if (retval != ERROR_OK)
2316 return retval;
2317
2318 /* Check for faults and return early. */
2319 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2320 return ERROR_OK; /* A data fault is not considered a system failure. */
2321
2322 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2323 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2324 * check TXfull_l). Most of the time this will be free because TXfull_l
2325 * will be set immediately and cached in dscr. */
2326 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2327 DSCR_DTRTX_FULL_LATCHED, dscr);
2328 if (retval != ERROR_OK)
2329 return retval;
2330
2331 /* Read the value transferred to DTRTX into the buffer. This is the last
2332 * word. */
2333 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2334 armv7a->debug_base + CPUDBG_DTRTX, &u32);
2335 if (retval != ERROR_OK)
2336 return retval;
2337 target_buffer_set_u32(target, buffer, u32);
2338
2339 return ERROR_OK;
2340 }
2341
cortex_a_read_cpu_memory(struct target * target,uint32_t address,uint32_t size,uint32_t count,uint8_t * buffer)2342 static int cortex_a_read_cpu_memory(struct target *target,
2343 uint32_t address, uint32_t size,
2344 uint32_t count, uint8_t *buffer)
2345 {
2346 /* Read memory through the CPU. */
2347 int retval, final_retval;
2348 struct armv7a_common *armv7a = target_to_armv7a(target);
2349 struct arm *arm = &armv7a->arm;
2350 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2351
2352 LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2353 address, size, count);
2354 if (target->state != TARGET_HALTED) {
2355 LOG_WARNING("target not halted");
2356 return ERROR_TARGET_NOT_HALTED;
2357 }
2358
2359 if (!count)
2360 return ERROR_OK;
2361
2362 /* Clear any abort. */
2363 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2364 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2365 if (retval != ERROR_OK)
2366 return retval;
2367
2368 /* Read DSCR */
2369 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2370 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2371 if (retval != ERROR_OK)
2372 return retval;
2373
2374 /* Switch to non-blocking mode if not already in that mode. */
2375 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2376 if (retval != ERROR_OK)
2377 goto out;
2378
2379 /* Mark R0 as dirty. */
2380 arm_reg_current(arm, 0)->dirty = true;
2381
2382 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2383 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2384 if (retval != ERROR_OK)
2385 goto out;
2386
2387 /* Get the memory address into R0. */
2388 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2389 armv7a->debug_base + CPUDBG_DTRRX, address);
2390 if (retval != ERROR_OK)
2391 goto out;
2392 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2393 if (retval != ERROR_OK)
2394 goto out;
2395
2396 if (size == 4 && (address % 4) == 0) {
2397 /* We are doing a word-aligned transfer, so use fast mode. */
2398 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2399 } else {
2400 /* Use slow path. Adjust size for aligned accesses */
2401 switch (address % 4) {
2402 case 1:
2403 case 3:
2404 count *= size;
2405 size = 1;
2406 break;
2407 case 2:
2408 if (size == 4) {
2409 count *= 2;
2410 size = 2;
2411 }
2412 break;
2413 case 0:
2414 default:
2415 break;
2416 }
2417 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2418 }
2419
2420 out:
2421 final_retval = retval;
2422
2423 /* Switch to non-blocking mode if not already in that mode. */
2424 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2425 if (final_retval == ERROR_OK)
2426 final_retval = retval;
2427
2428 /* Wait for last issued instruction to complete. */
2429 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2430 if (final_retval == ERROR_OK)
2431 final_retval = retval;
2432
2433 /* If there were any sticky abort flags, clear them. */
2434 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2435 fault_dscr = dscr;
2436 mem_ap_write_atomic_u32(armv7a->debug_ap,
2437 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2438 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2439 } else {
2440 fault_dscr = 0;
2441 }
2442
2443 /* Handle synchronous data faults. */
2444 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2445 if (final_retval == ERROR_OK) {
2446 /* Final return value will reflect cause of fault. */
2447 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2448 if (retval == ERROR_OK) {
2449 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2450 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2451 } else
2452 final_retval = retval;
2453 }
2454 /* Fault destroyed DFAR/DFSR; restore them. */
2455 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2456 if (retval != ERROR_OK)
2457 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2458 }
2459
2460 /* Handle asynchronous data faults. */
2461 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2462 if (final_retval == ERROR_OK)
2463 /* No other error has been recorded so far, so keep this one. */
2464 final_retval = ERROR_TARGET_DATA_ABORT;
2465 }
2466
2467 /* If the DCC is nonempty, clear it. */
2468 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2469 uint32_t dummy;
2470 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2471 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2472 if (final_retval == ERROR_OK)
2473 final_retval = retval;
2474 }
2475 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2476 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2477 if (final_retval == ERROR_OK)
2478 final_retval = retval;
2479 }
2480
2481 /* Done. */
2482 return final_retval;
2483 }
2484
2485
2486 /*
2487 * Cortex-A Memory access
2488 *
2489 * This is same Cortex-M3 but we must also use the correct
2490 * ap number for every access.
2491 */
2492
cortex_a_read_phys_memory(struct target * target,target_addr_t address,uint32_t size,uint32_t count,uint8_t * buffer)2493 static int cortex_a_read_phys_memory(struct target *target,
2494 target_addr_t address, uint32_t size,
2495 uint32_t count, uint8_t *buffer)
2496 {
2497 int retval;
2498
2499 if (!count || !buffer)
2500 return ERROR_COMMAND_SYNTAX_ERROR;
2501
2502 LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2503 address, size, count);
2504
2505 /* read memory through the CPU */
2506 cortex_a_prep_memaccess(target, 1);
2507 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2508 cortex_a_post_memaccess(target, 1);
2509
2510 return retval;
2511 }
2512
cortex_a_read_memory(struct target * target,target_addr_t address,uint32_t size,uint32_t count,uint8_t * buffer)2513 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2514 uint32_t size, uint32_t count, uint8_t *buffer)
2515 {
2516 int retval;
2517
2518 /* cortex_a handles unaligned memory access */
2519 LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2520 address, size, count);
2521
2522 cortex_a_prep_memaccess(target, 0);
2523 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2524 cortex_a_post_memaccess(target, 0);
2525
2526 return retval;
2527 }
2528
cortex_a_write_phys_memory(struct target * target,target_addr_t address,uint32_t size,uint32_t count,const uint8_t * buffer)2529 static int cortex_a_write_phys_memory(struct target *target,
2530 target_addr_t address, uint32_t size,
2531 uint32_t count, const uint8_t *buffer)
2532 {
2533 int retval;
2534
2535 if (!count || !buffer)
2536 return ERROR_COMMAND_SYNTAX_ERROR;
2537
2538 LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2539 address, size, count);
2540
2541 /* write memory through the CPU */
2542 cortex_a_prep_memaccess(target, 1);
2543 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2544 cortex_a_post_memaccess(target, 1);
2545
2546 return retval;
2547 }
2548
cortex_a_write_memory(struct target * target,target_addr_t address,uint32_t size,uint32_t count,const uint8_t * buffer)2549 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2550 uint32_t size, uint32_t count, const uint8_t *buffer)
2551 {
2552 int retval;
2553
2554 /* cortex_a handles unaligned memory access */
2555 LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2556 address, size, count);
2557
2558 /* memory writes bypass the caches, must flush before writing */
2559 armv7a_cache_auto_flush_on_write(target, address, size * count);
2560
2561 cortex_a_prep_memaccess(target, 0);
2562 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2563 cortex_a_post_memaccess(target, 0);
2564 return retval;
2565 }
2566
cortex_a_read_buffer(struct target * target,target_addr_t address,uint32_t count,uint8_t * buffer)2567 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2568 uint32_t count, uint8_t *buffer)
2569 {
2570 uint32_t size;
2571
2572 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2573 * will have something to do with the size we leave to it. */
2574 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2575 if (address & size) {
2576 int retval = target_read_memory(target, address, size, 1, buffer);
2577 if (retval != ERROR_OK)
2578 return retval;
2579 address += size;
2580 count -= size;
2581 buffer += size;
2582 }
2583 }
2584
2585 /* Read the data with as large access size as possible. */
2586 for (; size > 0; size /= 2) {
2587 uint32_t aligned = count - count % size;
2588 if (aligned > 0) {
2589 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2590 if (retval != ERROR_OK)
2591 return retval;
2592 address += aligned;
2593 count -= aligned;
2594 buffer += aligned;
2595 }
2596 }
2597
2598 return ERROR_OK;
2599 }
2600
cortex_a_write_buffer(struct target * target,target_addr_t address,uint32_t count,const uint8_t * buffer)2601 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2602 uint32_t count, const uint8_t *buffer)
2603 {
2604 uint32_t size;
2605
2606 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2607 * will have something to do with the size we leave to it. */
2608 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2609 if (address & size) {
2610 int retval = target_write_memory(target, address, size, 1, buffer);
2611 if (retval != ERROR_OK)
2612 return retval;
2613 address += size;
2614 count -= size;
2615 buffer += size;
2616 }
2617 }
2618
2619 /* Write the data with as large access size as possible. */
2620 for (; size > 0; size /= 2) {
2621 uint32_t aligned = count - count % size;
2622 if (aligned > 0) {
2623 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2624 if (retval != ERROR_OK)
2625 return retval;
2626 address += aligned;
2627 count -= aligned;
2628 buffer += aligned;
2629 }
2630 }
2631
2632 return ERROR_OK;
2633 }
2634
cortex_a_handle_target_request(void * priv)2635 static int cortex_a_handle_target_request(void *priv)
2636 {
2637 struct target *target = priv;
2638 struct armv7a_common *armv7a = target_to_armv7a(target);
2639 int retval;
2640
2641 if (!target_was_examined(target))
2642 return ERROR_OK;
2643 if (!target->dbg_msg_enabled)
2644 return ERROR_OK;
2645
2646 if (target->state == TARGET_RUNNING) {
2647 uint32_t request;
2648 uint32_t dscr;
2649 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2650 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2651
2652 /* check if we have data */
2653 int64_t then = timeval_ms();
2654 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2655 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2656 armv7a->debug_base + CPUDBG_DTRTX, &request);
2657 if (retval == ERROR_OK) {
2658 target_request(target, request);
2659 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2660 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2661 }
2662 if (timeval_ms() > then + 1000) {
2663 LOG_ERROR("Timeout waiting for dtr tx full");
2664 return ERROR_FAIL;
2665 }
2666 }
2667 }
2668
2669 return ERROR_OK;
2670 }
2671
2672 /*
2673 * Cortex-A target information and configuration
2674 */
2675
cortex_a_examine_first(struct target * target)2676 static int cortex_a_examine_first(struct target *target)
2677 {
2678 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2679 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2680 struct adiv5_dap *swjdp = armv7a->arm.dap;
2681
2682 int i;
2683 int retval = ERROR_OK;
2684 uint32_t didr, cpuid, dbg_osreg, dbg_idpfr1;
2685
2686 /* Search for the APB-AP - it is needed for access to debug registers */
2687 retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2688 if (retval != ERROR_OK) {
2689 LOG_ERROR("Could not find APB-AP for debug access");
2690 return retval;
2691 }
2692
2693 retval = mem_ap_init(armv7a->debug_ap);
2694 if (retval != ERROR_OK) {
2695 LOG_ERROR("Could not initialize the APB-AP");
2696 return retval;
2697 }
2698
2699 armv7a->debug_ap->memaccess_tck = 80;
2700
2701 if (!target->dbgbase_set) {
2702 uint32_t dbgbase;
2703 /* Get ROM Table base */
2704 uint32_t apid;
2705 int32_t coreidx = target->coreid;
2706 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2707 target->cmd_name);
2708 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2709 if (retval != ERROR_OK)
2710 return retval;
2711 /* Lookup 0x15 -- Processor DAP */
2712 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2713 &armv7a->debug_base, &coreidx);
2714 if (retval != ERROR_OK) {
2715 LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2716 target->cmd_name);
2717 return retval;
2718 }
2719 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2720 target->coreid, armv7a->debug_base);
2721 } else
2722 armv7a->debug_base = target->dbgbase;
2723
2724 if ((armv7a->debug_base & (1UL<<31)) == 0)
2725 LOG_WARNING("Debug base address for target %s has bit 31 set to 0. Access to debug registers will likely fail!\n"
2726 "Please fix the target configuration.", target_name(target));
2727
2728 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2729 armv7a->debug_base + CPUDBG_DIDR, &didr);
2730 if (retval != ERROR_OK) {
2731 LOG_DEBUG("Examine %s failed", "DIDR");
2732 return retval;
2733 }
2734
2735 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2736 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2737 if (retval != ERROR_OK) {
2738 LOG_DEBUG("Examine %s failed", "CPUID");
2739 return retval;
2740 }
2741
2742 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2743 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2744
2745 cortex_a->didr = didr;
2746 cortex_a->cpuid = cpuid;
2747
2748 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2749 armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2750 if (retval != ERROR_OK)
2751 return retval;
2752 LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR 0x%" PRIx32, target->coreid, dbg_osreg);
2753
2754 if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
2755 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
2756 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2757 return ERROR_TARGET_INIT_FAILED;
2758 }
2759
2760 if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
2761 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
2762
2763 /* Read DBGOSLSR and check if OSLK is implemented */
2764 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2765 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2766 if (retval != ERROR_OK)
2767 return retval;
2768 LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
2769
2770 /* check if OS Lock is implemented */
2771 if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
2772 /* check if OS Lock is set */
2773 if (dbg_osreg & OSLSR_OSLK) {
2774 LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
2775
2776 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2777 armv7a->debug_base + CPUDBG_OSLAR,
2778 0);
2779 if (retval == ERROR_OK)
2780 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2781 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2782
2783 /* if we fail to access the register or cannot reset the OSLK bit, bail out */
2784 if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
2785 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
2786 target->coreid);
2787 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2788 return ERROR_TARGET_INIT_FAILED;
2789 }
2790 }
2791 }
2792
2793 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2794 armv7a->debug_base + CPUDBG_ID_PFR1, &dbg_idpfr1);
2795 if (retval != ERROR_OK)
2796 return retval;
2797
2798 if (dbg_idpfr1 & 0x000000f0) {
2799 LOG_DEBUG("target->coreid %" PRId32 " has security extensions",
2800 target->coreid);
2801 armv7a->arm.core_type = ARM_CORE_TYPE_SEC_EXT;
2802 }
2803 if (dbg_idpfr1 & 0x0000f000) {
2804 LOG_DEBUG("target->coreid %" PRId32 " has virtualization extensions",
2805 target->coreid);
2806 /*
2807 * overwrite and simplify the checks.
2808 * virtualization extensions require implementation of security extension
2809 */
2810 armv7a->arm.core_type = ARM_CORE_TYPE_VIRT_EXT;
2811 }
2812
2813 /* Avoid recreating the registers cache */
2814 if (!target_was_examined(target)) {
2815 retval = cortex_a_dpm_setup(cortex_a, didr);
2816 if (retval != ERROR_OK)
2817 return retval;
2818 }
2819
2820 /* Setup Breakpoint Register Pairs */
2821 cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
2822 cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
2823 cortex_a->brp_num_available = cortex_a->brp_num;
2824 free(cortex_a->brp_list);
2825 cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
2826 /* cortex_a->brb_enabled = ????; */
2827 for (i = 0; i < cortex_a->brp_num; i++) {
2828 cortex_a->brp_list[i].used = 0;
2829 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
2830 cortex_a->brp_list[i].type = BRP_NORMAL;
2831 else
2832 cortex_a->brp_list[i].type = BRP_CONTEXT;
2833 cortex_a->brp_list[i].value = 0;
2834 cortex_a->brp_list[i].control = 0;
2835 cortex_a->brp_list[i].BRPn = i;
2836 }
2837
2838 LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
2839
2840 /* select debug_ap as default */
2841 swjdp->apsel = armv7a->debug_ap->ap_num;
2842
2843 target_set_examined(target);
2844 return ERROR_OK;
2845 }
2846
cortex_a_examine(struct target * target)2847 static int cortex_a_examine(struct target *target)
2848 {
2849 int retval = ERROR_OK;
2850
2851 /* Reestablish communication after target reset */
2852 retval = cortex_a_examine_first(target);
2853
2854 /* Configure core debug access */
2855 if (retval == ERROR_OK)
2856 retval = cortex_a_init_debug_access(target);
2857
2858 return retval;
2859 }
2860
2861 /*
2862 * Cortex-A target creation and initialization
2863 */
2864
cortex_a_init_target(struct command_context * cmd_ctx,struct target * target)2865 static int cortex_a_init_target(struct command_context *cmd_ctx,
2866 struct target *target)
2867 {
2868 /* examine_first() does a bunch of this */
2869 arm_semihosting_init(target);
2870 return ERROR_OK;
2871 }
2872
cortex_a_init_arch_info(struct target * target,struct cortex_a_common * cortex_a,struct adiv5_dap * dap)2873 static int cortex_a_init_arch_info(struct target *target,
2874 struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
2875 {
2876 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2877
2878 /* Setup struct cortex_a_common */
2879 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2880 armv7a->arm.dap = dap;
2881
2882 /* register arch-specific functions */
2883 armv7a->examine_debug_reason = NULL;
2884
2885 armv7a->post_debug_entry = cortex_a_post_debug_entry;
2886
2887 armv7a->pre_restore_context = NULL;
2888
2889 armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
2890
2891
2892 /* arm7_9->handle_target_request = cortex_a_handle_target_request; */
2893
2894 /* REVISIT v7a setup should be in a v7a-specific routine */
2895 armv7a_init_arch_info(target, armv7a);
2896 target_register_timer_callback(cortex_a_handle_target_request, 1,
2897 TARGET_TIMER_TYPE_PERIODIC, target);
2898
2899 return ERROR_OK;
2900 }
2901
cortex_a_target_create(struct target * target,Jim_Interp * interp)2902 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
2903 {
2904 struct cortex_a_common *cortex_a;
2905 struct adiv5_private_config *pc;
2906
2907 if (target->private_config == NULL)
2908 return ERROR_FAIL;
2909
2910 pc = (struct adiv5_private_config *)target->private_config;
2911
2912 cortex_a = calloc(1, sizeof(struct cortex_a_common));
2913 if (cortex_a == NULL) {
2914 LOG_ERROR("Out of memory");
2915 return ERROR_FAIL;
2916 }
2917 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2918 cortex_a->armv7a_common.is_armv7r = false;
2919 cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
2920
2921 return cortex_a_init_arch_info(target, cortex_a, pc->dap);
2922 }
2923
cortex_r4_target_create(struct target * target,Jim_Interp * interp)2924 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
2925 {
2926 struct cortex_a_common *cortex_a;
2927 struct adiv5_private_config *pc;
2928
2929 pc = (struct adiv5_private_config *)target->private_config;
2930 if (adiv5_verify_config(pc) != ERROR_OK)
2931 return ERROR_FAIL;
2932
2933 cortex_a = calloc(1, sizeof(struct cortex_a_common));
2934 if (cortex_a == NULL) {
2935 LOG_ERROR("Out of memory");
2936 return ERROR_FAIL;
2937 }
2938 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2939 cortex_a->armv7a_common.is_armv7r = true;
2940
2941 return cortex_a_init_arch_info(target, cortex_a, pc->dap);
2942 }
2943
cortex_a_deinit_target(struct target * target)2944 static void cortex_a_deinit_target(struct target *target)
2945 {
2946 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2947 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2948 struct arm_dpm *dpm = &armv7a->dpm;
2949 uint32_t dscr;
2950 int retval;
2951
2952 if (target_was_examined(target)) {
2953 /* Disable halt for breakpoint, watchpoint and vector catch */
2954 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2955 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2956 if (retval == ERROR_OK)
2957 mem_ap_write_atomic_u32(armv7a->debug_ap,
2958 armv7a->debug_base + CPUDBG_DSCR,
2959 dscr & ~DSCR_HALT_DBG_MODE);
2960 }
2961
2962 free(cortex_a->brp_list);
2963 arm_free_reg_cache(dpm->arm);
2964 free(dpm->dbp);
2965 free(dpm->dwp);
2966 free(target->private_config);
2967 free(cortex_a);
2968 }
2969
cortex_a_mmu(struct target * target,int * enabled)2970 static int cortex_a_mmu(struct target *target, int *enabled)
2971 {
2972 struct armv7a_common *armv7a = target_to_armv7a(target);
2973
2974 if (target->state != TARGET_HALTED) {
2975 LOG_ERROR("%s: target not halted", __func__);
2976 return ERROR_TARGET_INVALID;
2977 }
2978
2979 if (armv7a->is_armv7r)
2980 *enabled = 0;
2981 else
2982 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
2983
2984 return ERROR_OK;
2985 }
2986
cortex_a_virt2phys(struct target * target,target_addr_t virt,target_addr_t * phys)2987 static int cortex_a_virt2phys(struct target *target,
2988 target_addr_t virt, target_addr_t *phys)
2989 {
2990 int retval;
2991 int mmu_enabled = 0;
2992
2993 /*
2994 * If the MMU was not enabled at debug entry, there is no
2995 * way of knowing if there was ever a valid configuration
2996 * for it and thus it's not safe to enable it. In this case,
2997 * just return the virtual address as physical.
2998 */
2999 cortex_a_mmu(target, &mmu_enabled);
3000 if (!mmu_enabled) {
3001 *phys = virt;
3002 return ERROR_OK;
3003 }
3004
3005 /* mmu must be enable in order to get a correct translation */
3006 retval = cortex_a_mmu_modify(target, 1);
3007 if (retval != ERROR_OK)
3008 return retval;
3009 return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
3010 phys, 1);
3011 }
3012
COMMAND_HANDLER(cortex_a_handle_cache_info_command)3013 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3014 {
3015 struct target *target = get_current_target(CMD_CTX);
3016 struct armv7a_common *armv7a = target_to_armv7a(target);
3017
3018 return armv7a_handle_cache_info_command(CMD,
3019 &armv7a->armv7a_mmu.armv7a_cache);
3020 }
3021
3022
COMMAND_HANDLER(cortex_a_handle_dbginit_command)3023 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3024 {
3025 struct target *target = get_current_target(CMD_CTX);
3026 if (!target_was_examined(target)) {
3027 LOG_ERROR("target not examined yet");
3028 return ERROR_FAIL;
3029 }
3030
3031 return cortex_a_init_debug_access(target);
3032 }
3033
COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)3034 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3035 {
3036 struct target *target = get_current_target(CMD_CTX);
3037 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3038
3039 static const Jim_Nvp nvp_maskisr_modes[] = {
3040 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3041 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3042 { .name = NULL, .value = -1 },
3043 };
3044 const Jim_Nvp *n;
3045
3046 if (CMD_ARGC > 0) {
3047 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3048 if (n->name == NULL) {
3049 LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3050 return ERROR_COMMAND_SYNTAX_ERROR;
3051 }
3052
3053 cortex_a->isrmasking_mode = n->value;
3054 }
3055
3056 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3057 command_print(CMD, "cortex_a interrupt mask %s", n->name);
3058
3059 return ERROR_OK;
3060 }
3061
COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)3062 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3063 {
3064 struct target *target = get_current_target(CMD_CTX);
3065 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3066
3067 static const Jim_Nvp nvp_dacrfixup_modes[] = {
3068 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3069 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3070 { .name = NULL, .value = -1 },
3071 };
3072 const Jim_Nvp *n;
3073
3074 if (CMD_ARGC > 0) {
3075 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3076 if (n->name == NULL)
3077 return ERROR_COMMAND_SYNTAX_ERROR;
3078 cortex_a->dacrfixup_mode = n->value;
3079
3080 }
3081
3082 n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3083 command_print(CMD, "cortex_a domain access control fixup %s", n->name);
3084
3085 return ERROR_OK;
3086 }
3087
3088 static const struct command_registration cortex_a_exec_command_handlers[] = {
3089 {
3090 .name = "cache_info",
3091 .handler = cortex_a_handle_cache_info_command,
3092 .mode = COMMAND_EXEC,
3093 .help = "display information about target caches",
3094 .usage = "",
3095 },
3096 {
3097 .name = "dbginit",
3098 .handler = cortex_a_handle_dbginit_command,
3099 .mode = COMMAND_EXEC,
3100 .help = "Initialize core debug",
3101 .usage = "",
3102 },
3103 {
3104 .name = "maskisr",
3105 .handler = handle_cortex_a_mask_interrupts_command,
3106 .mode = COMMAND_ANY,
3107 .help = "mask cortex_a interrupts",
3108 .usage = "['on'|'off']",
3109 },
3110 {
3111 .name = "dacrfixup",
3112 .handler = handle_cortex_a_dacrfixup_command,
3113 .mode = COMMAND_ANY,
3114 .help = "set domain access control (DACR) to all-manager "
3115 "on memory access",
3116 .usage = "['on'|'off']",
3117 },
3118 {
3119 .chain = armv7a_mmu_command_handlers,
3120 },
3121 {
3122 .chain = smp_command_handlers,
3123 },
3124
3125 COMMAND_REGISTRATION_DONE
3126 };
3127 static const struct command_registration cortex_a_command_handlers[] = {
3128 {
3129 .chain = arm_command_handlers,
3130 },
3131 {
3132 .chain = armv7a_command_handlers,
3133 },
3134 {
3135 .name = "cortex_a",
3136 .mode = COMMAND_ANY,
3137 .help = "Cortex-A command group",
3138 .usage = "",
3139 .chain = cortex_a_exec_command_handlers,
3140 },
3141 COMMAND_REGISTRATION_DONE
3142 };
3143
3144 struct target_type cortexa_target = {
3145 .name = "cortex_a",
3146 .deprecated_name = "cortex_a8",
3147
3148 .poll = cortex_a_poll,
3149 .arch_state = armv7a_arch_state,
3150
3151 .halt = cortex_a_halt,
3152 .resume = cortex_a_resume,
3153 .step = cortex_a_step,
3154
3155 .assert_reset = cortex_a_assert_reset,
3156 .deassert_reset = cortex_a_deassert_reset,
3157
3158 /* REVISIT allow exporting VFP3 registers ... */
3159 .get_gdb_arch = arm_get_gdb_arch,
3160 .get_gdb_reg_list = arm_get_gdb_reg_list,
3161
3162 .read_memory = cortex_a_read_memory,
3163 .write_memory = cortex_a_write_memory,
3164
3165 .read_buffer = cortex_a_read_buffer,
3166 .write_buffer = cortex_a_write_buffer,
3167
3168 .checksum_memory = arm_checksum_memory,
3169 .blank_check_memory = arm_blank_check_memory,
3170
3171 .run_algorithm = armv4_5_run_algorithm,
3172
3173 .add_breakpoint = cortex_a_add_breakpoint,
3174 .add_context_breakpoint = cortex_a_add_context_breakpoint,
3175 .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3176 .remove_breakpoint = cortex_a_remove_breakpoint,
3177 .add_watchpoint = NULL,
3178 .remove_watchpoint = NULL,
3179
3180 .commands = cortex_a_command_handlers,
3181 .target_create = cortex_a_target_create,
3182 .target_jim_configure = adiv5_jim_configure,
3183 .init_target = cortex_a_init_target,
3184 .examine = cortex_a_examine,
3185 .deinit_target = cortex_a_deinit_target,
3186
3187 .read_phys_memory = cortex_a_read_phys_memory,
3188 .write_phys_memory = cortex_a_write_phys_memory,
3189 .mmu = cortex_a_mmu,
3190 .virt2phys = cortex_a_virt2phys,
3191 };
3192
3193 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3194 {
3195 .name = "dbginit",
3196 .handler = cortex_a_handle_dbginit_command,
3197 .mode = COMMAND_EXEC,
3198 .help = "Initialize core debug",
3199 .usage = "",
3200 },
3201 {
3202 .name = "maskisr",
3203 .handler = handle_cortex_a_mask_interrupts_command,
3204 .mode = COMMAND_EXEC,
3205 .help = "mask cortex_r4 interrupts",
3206 .usage = "['on'|'off']",
3207 },
3208
3209 COMMAND_REGISTRATION_DONE
3210 };
3211 static const struct command_registration cortex_r4_command_handlers[] = {
3212 {
3213 .chain = arm_command_handlers,
3214 },
3215 {
3216 .name = "cortex_r4",
3217 .mode = COMMAND_ANY,
3218 .help = "Cortex-R4 command group",
3219 .usage = "",
3220 .chain = cortex_r4_exec_command_handlers,
3221 },
3222 COMMAND_REGISTRATION_DONE
3223 };
3224
3225 struct target_type cortexr4_target = {
3226 .name = "cortex_r4",
3227
3228 .poll = cortex_a_poll,
3229 .arch_state = armv7a_arch_state,
3230
3231 .halt = cortex_a_halt,
3232 .resume = cortex_a_resume,
3233 .step = cortex_a_step,
3234
3235 .assert_reset = cortex_a_assert_reset,
3236 .deassert_reset = cortex_a_deassert_reset,
3237
3238 /* REVISIT allow exporting VFP3 registers ... */
3239 .get_gdb_arch = arm_get_gdb_arch,
3240 .get_gdb_reg_list = arm_get_gdb_reg_list,
3241
3242 .read_memory = cortex_a_read_phys_memory,
3243 .write_memory = cortex_a_write_phys_memory,
3244
3245 .checksum_memory = arm_checksum_memory,
3246 .blank_check_memory = arm_blank_check_memory,
3247
3248 .run_algorithm = armv4_5_run_algorithm,
3249
3250 .add_breakpoint = cortex_a_add_breakpoint,
3251 .add_context_breakpoint = cortex_a_add_context_breakpoint,
3252 .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3253 .remove_breakpoint = cortex_a_remove_breakpoint,
3254 .add_watchpoint = NULL,
3255 .remove_watchpoint = NULL,
3256
3257 .commands = cortex_r4_command_handlers,
3258 .target_create = cortex_r4_target_create,
3259 .target_jim_configure = adiv5_jim_configure,
3260 .init_target = cortex_a_init_target,
3261 .examine = cortex_a_examine,
3262 .deinit_target = cortex_a_deinit_target,
3263 };
3264