1 /*
2 ** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $
3 ** Opcodes for Lua virtual machine
4 ** See Copyright Notice in lua.h
5 */
6 
7 #ifndef lopcodes_h
8 #define lopcodes_h
9 
10 #include "llimits.h"
11 
12 
13 /*===========================================================================
14   We assume that instructions are unsigned numbers.
15   All instructions have an opcode in the first 6 bits.
16   Instructions can have the following fields:
17 	`A' : 8 bits
18 	`B' : 9 bits
19 	`C' : 9 bits
20 	`Bx' : 18 bits (`B' and `C' together)
21 	`sBx' : signed Bx
22 
23   A signed argument is represented in excess K; that is, the number
24   value is the unsigned value minus K. K is exactly the maximum value
25   for that argument (so that -max is represented by 0, and +max is
26   represented by 2*max), which is half the maximum for the corresponding
27   unsigned argument.
28 ===========================================================================*/
29 
30 
31 enum OpMode {iABC, iABx, iAsBx};  /* basic instruction format */
32 
33 
34 /*
35 ** size and position of opcode arguments.
36 */
37 #define SIZE_C		9
38 #define SIZE_B		9
39 #define SIZE_Bx		(SIZE_C + SIZE_B)
40 #define SIZE_A		8
41 
42 #define SIZE_OP		6
43 
44 #define POS_OP		0
45 #define POS_A		(POS_OP + SIZE_OP)
46 #define POS_C		(POS_A + SIZE_A)
47 #define POS_B		(POS_C + SIZE_C)
48 #define POS_Bx		POS_C
49 
50 
51 /*
52 ** limits for opcode arguments.
53 ** we use (signed) int to manipulate most arguments,
54 ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
55 */
56 #if SIZE_Bx < LUAI_BITSINT-1
57 #define MAXARG_Bx        ((1<<SIZE_Bx)-1)
58 #define MAXARG_sBx        (MAXARG_Bx>>1)         /* `sBx' is signed */
59 #else
60 #define MAXARG_Bx        MAX_INT
61 #define MAXARG_sBx        MAX_INT
62 #endif
63 
64 
65 #define MAXARG_A        ((1<<SIZE_A)-1)
66 #define MAXARG_B        ((1<<SIZE_B)-1)
67 #define MAXARG_C        ((1<<SIZE_C)-1)
68 
69 
70 /* creates a mask with `n' 1 bits at position `p' */
71 #define MASK1(n,p)	((~((~(Instruction)0)<<n))<<p)
72 
73 /* creates a mask with `n' 0 bits at position `p' */
74 #define MASK0(n,p)	(~MASK1(n,p))
75 
76 /*
77 ** the following macros help to manipulate instructions
78 */
79 
80 #define GET_OPCODE(i)	(cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
81 #define SET_OPCODE(i,o)	((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
82 		((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
83 
84 #define GETARG_A(i)	(cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0)))
85 #define SETARG_A(i,u)	((i) = (((i)&MASK0(SIZE_A,POS_A)) | \
86 		((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))
87 
88 #define GETARG_B(i)	(cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0)))
89 #define SETARG_B(i,b)	((i) = (((i)&MASK0(SIZE_B,POS_B)) | \
90 		((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B))))
91 
92 #define GETARG_C(i)	(cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0)))
93 #define SETARG_C(i,b)	((i) = (((i)&MASK0(SIZE_C,POS_C)) | \
94 		((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C))))
95 
96 #define GETARG_Bx(i)	(cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0)))
97 #define SETARG_Bx(i,b)	((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \
98 		((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx))))
99 
100 #define GETARG_sBx(i)	(GETARG_Bx(i)-MAXARG_sBx)
101 #define SETARG_sBx(i,b)	SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
102 
103 
104 #define CREATE_ABC(o,a,b,c)	((cast(Instruction, o)<<POS_OP) \
105 			| (cast(Instruction, a)<<POS_A) \
106 			| (cast(Instruction, b)<<POS_B) \
107 			| (cast(Instruction, c)<<POS_C))
108 
109 #define CREATE_ABx(o,a,bc)	((cast(Instruction, o)<<POS_OP) \
110 			| (cast(Instruction, a)<<POS_A) \
111 			| (cast(Instruction, bc)<<POS_Bx))
112 
113 
114 /*
115 ** Macros to operate RK indices
116 */
117 
118 /* this bit 1 means constant (0 means register) */
119 #define BITRK		(1 << (SIZE_B - 1))
120 
121 /* test whether value is a constant */
122 #define ISK(x)		((x) & BITRK)
123 
124 /* gets the index of the constant */
125 #define INDEXK(r)	((int)(r) & ~BITRK)
126 
127 #define MAXINDEXRK	(BITRK - 1)
128 
129 /* code a constant index as a RK value */
130 #define RKASK(x)	((x) | BITRK)
131 
132 
133 /*
134 ** invalid register that fits in 8 bits
135 */
136 #define NO_REG		MAXARG_A
137 
138 
139 /*
140 ** R(x) - register
141 ** Kst(x) - constant (in constant table)
142 ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
143 */
144 
145 
146 /*
147 ** grep "ORDER OP" if you change these enums
148 */
149 
150 typedef enum {
151 /*----------------------------------------------------------------------
152 name		args	description
153 ------------------------------------------------------------------------*/
154 OP_MOVE,/*	A B	R(A) := R(B)					*/
155 OP_LOADK,/*	A Bx	R(A) := Kst(Bx)					*/
156 OP_LOADBOOL,/*	A B C	R(A) := (Bool)B; if (C) pc++			*/
157 OP_LOADNIL,/*	A B	R(A) := ... := R(B) := nil			*/
158 OP_GETUPVAL,/*	A B	R(A) := UpValue[B]				*/
159 
160 OP_GETGLOBAL,/*	A Bx	R(A) := Gbl[Kst(Bx)]				*/
161 OP_GETTABLE,/*	A B C	R(A) := R(B)[RK(C)]				*/
162 
163 OP_SETGLOBAL,/*	A Bx	Gbl[Kst(Bx)] := R(A)				*/
164 OP_SETUPVAL,/*	A B	UpValue[B] := R(A)				*/
165 OP_SETTABLE,/*	A B C	R(A)[RK(B)] := RK(C)				*/
166 
167 OP_NEWTABLE,/*	A B C	R(A) := {} (size = B,C)				*/
168 
169 OP_SELF,/*	A B C	R(A+1) := R(B); R(A) := R(B)[RK(C)]		*/
170 
171 OP_ADD,/*	A B C	R(A) := RK(B) + RK(C)				*/
172 OP_SUB,/*	A B C	R(A) := RK(B) - RK(C)				*/
173 OP_MUL,/*	A B C	R(A) := RK(B) * RK(C)				*/
174 OP_DIV,/*	A B C	R(A) := RK(B) / RK(C)				*/
175 OP_MOD,/*	A B C	R(A) := RK(B) % RK(C)				*/
176 OP_POW,/*	A B C	R(A) := RK(B) ^ RK(C)				*/
177 OP_UNM,/*	A B	R(A) := -R(B)					*/
178 OP_NOT,/*	A B	R(A) := not R(B)				*/
179 OP_LEN,/*	A B	R(A) := length of R(B)				*/
180 
181 OP_CONCAT,/*	A B C	R(A) := R(B).. ... ..R(C)			*/
182 
183 OP_JMP,/*	sBx	pc+=sBx					*/
184 
185 OP_EQ,/*	A B C	if ((RK(B) == RK(C)) ~= A) then pc++		*/
186 OP_LT,/*	A B C	if ((RK(B) <  RK(C)) ~= A) then pc++  		*/
187 OP_LE,/*	A B C	if ((RK(B) <= RK(C)) ~= A) then pc++  		*/
188 
189 OP_TEST,/*	A C	if not (R(A) <=> C) then pc++			*/
190 OP_TESTSET,/*	A B C	if (R(B) <=> C) then R(A) := R(B) else pc++	*/
191 
192 OP_CALL,/*	A B C	R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
193 OP_TAILCALL,/*	A B C	return R(A)(R(A+1), ... ,R(A+B-1))		*/
194 OP_RETURN,/*	A B	return R(A), ... ,R(A+B-2)	(see note)	*/
195 
196 OP_FORLOOP,/*	A sBx	R(A)+=R(A+2);
197 			if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
198 OP_FORPREP,/*	A sBx	R(A)-=R(A+2); pc+=sBx				*/
199 
200 OP_TFORLOOP,/*	A C	R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
201                         if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++	*/
202 OP_SETLIST,/*	A B C	R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B	*/
203 
204 OP_CLOSE,/*	A 	close all variables in the stack up to (>=) R(A)*/
205 OP_CLOSURE,/*	A Bx	R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n))	*/
206 
207 OP_VARARG/*	A B	R(A), R(A+1), ..., R(A+B-1) = vararg		*/
208 } OpCode;
209 
210 
211 #define NUM_OPCODES	(cast(int, OP_VARARG) + 1)
212 
213 
214 
215 /*===========================================================================
216   Notes:
217   (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1,
218       and can be 0: OP_CALL then sets `top' to last_result+1, so
219       next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.
220 
221   (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
222       set top (like in OP_CALL with C == 0).
223 
224   (*) In OP_RETURN, if (B == 0) then return up to `top'
225 
226   (*) In OP_SETLIST, if (B == 0) then B = `top';
227       if (C == 0) then next `instruction' is real C
228 
229   (*) For comparisons, A specifies what condition the test should accept
230       (true or false).
231 
232   (*) All `skips' (pc++) assume that next instruction is a jump
233 ===========================================================================*/
234 
235 
236 /*
237 ** masks for instruction properties. The format is:
238 ** bits 0-1: op mode
239 ** bits 2-3: C arg mode
240 ** bits 4-5: B arg mode
241 ** bit 6: instruction set register A
242 ** bit 7: operator is a test
243 */
244 
245 enum OpArgMask {
246   OpArgN,  /* argument is not used */
247   OpArgU,  /* argument is used */
248   OpArgR,  /* argument is a register or a jump offset */
249   OpArgK   /* argument is a constant or register/constant */
250 };
251 
252 LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES];
253 
254 #define getOpMode(m)	(cast(enum OpMode, luaP_opmodes[m] & 3))
255 #define getBMode(m)	(cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
256 #define getCMode(m)	(cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
257 #define testAMode(m)	(luaP_opmodes[m] & (1 << 6))
258 #define testTMode(m)	(luaP_opmodes[m] & (1 << 7))
259 
260 
261 LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1];  /* opcode names */
262 
263 
264 /* number of list items to accumulate before a SETLIST instruction */
265 #define LFIELDS_PER_FLUSH	50
266 
267 
268 #endif
269