1 /*
2  *  The RSA public-key cryptosystem
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  */
19 
20 /*
21  *  The following sources were referenced in the design of this implementation
22  *  of the RSA algorithm:
23  *
24  *  [1] A method for obtaining digital signatures and public-key cryptosystems
25  *      R Rivest, A Shamir, and L Adleman
26  *      http://people.csail.mit.edu/rivest/pubs.html#RSA78
27  *
28  *  [2] Handbook of Applied Cryptography - 1997, Chapter 8
29  *      Menezes, van Oorschot and Vanstone
30  *
31  *  [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
32  *      Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
33  *      Stefan Mangard
34  *      https://arxiv.org/abs/1702.08719v2
35  *
36  */
37 
38 #include "common.h"
39 
40 #if defined(MBEDTLS_RSA_C)
41 
42 #include "mbedtls/rsa.h"
43 #include "mbedtls/rsa_internal.h"
44 #include "mbedtls/oid.h"
45 #include "mbedtls/platform_util.h"
46 #include "mbedtls/error.h"
47 
48 #include <string.h>
49 
50 #if defined(MBEDTLS_PKCS1_V21)
51 #include "mbedtls/md.h"
52 #endif
53 
54 #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__)
55 #include <stdlib.h>
56 #endif
57 
58 #if defined(MBEDTLS_PLATFORM_C)
59 #include "mbedtls/platform.h"
60 #else
61 #include <stdio.h>
62 #define mbedtls_printf printf
63 #define mbedtls_calloc calloc
64 #define mbedtls_free   free
65 #endif
66 
67 #if !defined(MBEDTLS_RSA_ALT)
68 
69 /* Parameter validation macros */
70 #define RSA_VALIDATE_RET( cond )                                       \
71     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
72 #define RSA_VALIDATE( cond )                                           \
73     MBEDTLS_INTERNAL_VALIDATE( cond )
74 
75 #if defined(MBEDTLS_PKCS1_V15)
76 /* constant-time buffer comparison */
mbedtls_safer_memcmp(const void * a,const void * b,size_t n)77 static inline int mbedtls_safer_memcmp( const void *a, const void *b, size_t n )
78 {
79     size_t i;
80     const unsigned char *A = (const unsigned char *) a;
81     const unsigned char *B = (const unsigned char *) b;
82     unsigned char diff = 0;
83 
84     for( i = 0; i < n; i++ )
85         diff |= A[i] ^ B[i];
86 
87     return( diff );
88 }
89 #endif /* MBEDTLS_PKCS1_V15 */
90 
mbedtls_rsa_import(mbedtls_rsa_context * ctx,const mbedtls_mpi * N,const mbedtls_mpi * P,const mbedtls_mpi * Q,const mbedtls_mpi * D,const mbedtls_mpi * E)91 int mbedtls_rsa_import( mbedtls_rsa_context *ctx,
92                         const mbedtls_mpi *N,
93                         const mbedtls_mpi *P, const mbedtls_mpi *Q,
94                         const mbedtls_mpi *D, const mbedtls_mpi *E )
95 {
96     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
97     RSA_VALIDATE_RET( ctx != NULL );
98 
99     if( ( N != NULL && ( ret = mbedtls_mpi_copy( &ctx->N, N ) ) != 0 ) ||
100         ( P != NULL && ( ret = mbedtls_mpi_copy( &ctx->P, P ) ) != 0 ) ||
101         ( Q != NULL && ( ret = mbedtls_mpi_copy( &ctx->Q, Q ) ) != 0 ) ||
102         ( D != NULL && ( ret = mbedtls_mpi_copy( &ctx->D, D ) ) != 0 ) ||
103         ( E != NULL && ( ret = mbedtls_mpi_copy( &ctx->E, E ) ) != 0 ) )
104     {
105         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
106     }
107 
108     if( N != NULL )
109         ctx->len = mbedtls_mpi_size( &ctx->N );
110 
111     return( 0 );
112 }
113 
mbedtls_rsa_import_raw(mbedtls_rsa_context * ctx,unsigned char const * N,size_t N_len,unsigned char const * P,size_t P_len,unsigned char const * Q,size_t Q_len,unsigned char const * D,size_t D_len,unsigned char const * E,size_t E_len)114 int mbedtls_rsa_import_raw( mbedtls_rsa_context *ctx,
115                             unsigned char const *N, size_t N_len,
116                             unsigned char const *P, size_t P_len,
117                             unsigned char const *Q, size_t Q_len,
118                             unsigned char const *D, size_t D_len,
119                             unsigned char const *E, size_t E_len )
120 {
121     int ret = 0;
122     RSA_VALIDATE_RET( ctx != NULL );
123 
124     if( N != NULL )
125     {
126         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->N, N, N_len ) );
127         ctx->len = mbedtls_mpi_size( &ctx->N );
128     }
129 
130     if( P != NULL )
131         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->P, P, P_len ) );
132 
133     if( Q != NULL )
134         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->Q, Q, Q_len ) );
135 
136     if( D != NULL )
137         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->D, D, D_len ) );
138 
139     if( E != NULL )
140         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->E, E, E_len ) );
141 
142 cleanup:
143 
144     if( ret != 0 )
145         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
146 
147     return( 0 );
148 }
149 
150 /*
151  * Checks whether the context fields are set in such a way
152  * that the RSA primitives will be able to execute without error.
153  * It does *not* make guarantees for consistency of the parameters.
154  */
rsa_check_context(mbedtls_rsa_context const * ctx,int is_priv,int blinding_needed)155 static int rsa_check_context( mbedtls_rsa_context const *ctx, int is_priv,
156                               int blinding_needed )
157 {
158 #if !defined(MBEDTLS_RSA_NO_CRT)
159     /* blinding_needed is only used for NO_CRT to decide whether
160      * P,Q need to be present or not. */
161     ((void) blinding_needed);
162 #endif
163 
164     if( ctx->len != mbedtls_mpi_size( &ctx->N ) ||
165         ctx->len > MBEDTLS_MPI_MAX_SIZE )
166     {
167         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
168     }
169 
170     /*
171      * 1. Modular exponentiation needs positive, odd moduli.
172      */
173 
174     /* Modular exponentiation wrt. N is always used for
175      * RSA public key operations. */
176     if( mbedtls_mpi_cmp_int( &ctx->N, 0 ) <= 0 ||
177         mbedtls_mpi_get_bit( &ctx->N, 0 ) == 0  )
178     {
179         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
180     }
181 
182 #if !defined(MBEDTLS_RSA_NO_CRT)
183     /* Modular exponentiation for P and Q is only
184      * used for private key operations and if CRT
185      * is used. */
186     if( is_priv &&
187         ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
188           mbedtls_mpi_get_bit( &ctx->P, 0 ) == 0 ||
189           mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ||
190           mbedtls_mpi_get_bit( &ctx->Q, 0 ) == 0  ) )
191     {
192         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
193     }
194 #endif /* !MBEDTLS_RSA_NO_CRT */
195 
196     /*
197      * 2. Exponents must be positive
198      */
199 
200     /* Always need E for public key operations */
201     if( mbedtls_mpi_cmp_int( &ctx->E, 0 ) <= 0 )
202         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
203 
204 #if defined(MBEDTLS_RSA_NO_CRT)
205     /* For private key operations, use D or DP & DQ
206      * as (unblinded) exponents. */
207     if( is_priv && mbedtls_mpi_cmp_int( &ctx->D, 0 ) <= 0 )
208         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
209 #else
210     if( is_priv &&
211         ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) <= 0 ||
212           mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) <= 0  ) )
213     {
214         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
215     }
216 #endif /* MBEDTLS_RSA_NO_CRT */
217 
218     /* Blinding shouldn't make exponents negative either,
219      * so check that P, Q >= 1 if that hasn't yet been
220      * done as part of 1. */
221 #if defined(MBEDTLS_RSA_NO_CRT)
222     if( is_priv && blinding_needed &&
223         ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
224           mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ) )
225     {
226         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
227     }
228 #endif
229 
230     /* It wouldn't lead to an error if it wasn't satisfied,
231      * but check for QP >= 1 nonetheless. */
232 #if !defined(MBEDTLS_RSA_NO_CRT)
233     if( is_priv &&
234         mbedtls_mpi_cmp_int( &ctx->QP, 0 ) <= 0 )
235     {
236         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
237     }
238 #endif
239 
240     return( 0 );
241 }
242 
mbedtls_rsa_complete(mbedtls_rsa_context * ctx)243 int mbedtls_rsa_complete( mbedtls_rsa_context *ctx )
244 {
245     int ret = 0;
246     int have_N, have_P, have_Q, have_D, have_E;
247 #if !defined(MBEDTLS_RSA_NO_CRT)
248     int have_DP, have_DQ, have_QP;
249 #endif
250     int n_missing, pq_missing, d_missing, is_pub, is_priv;
251 
252     RSA_VALIDATE_RET( ctx != NULL );
253 
254     have_N = ( mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 );
255     have_P = ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 );
256     have_Q = ( mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 );
257     have_D = ( mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 );
258     have_E = ( mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0 );
259 
260 #if !defined(MBEDTLS_RSA_NO_CRT)
261     have_DP = ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) != 0 );
262     have_DQ = ( mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) != 0 );
263     have_QP = ( mbedtls_mpi_cmp_int( &ctx->QP, 0 ) != 0 );
264 #endif
265 
266     /*
267      * Check whether provided parameters are enough
268      * to deduce all others. The following incomplete
269      * parameter sets for private keys are supported:
270      *
271      * (1) P, Q missing.
272      * (2) D and potentially N missing.
273      *
274      */
275 
276     n_missing  =              have_P &&  have_Q &&  have_D && have_E;
277     pq_missing =   have_N && !have_P && !have_Q &&  have_D && have_E;
278     d_missing  =              have_P &&  have_Q && !have_D && have_E;
279     is_pub     =   have_N && !have_P && !have_Q && !have_D && have_E;
280 
281     /* These three alternatives are mutually exclusive */
282     is_priv = n_missing || pq_missing || d_missing;
283 
284     if( !is_priv && !is_pub )
285         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
286 
287     /*
288      * Step 1: Deduce N if P, Q are provided.
289      */
290 
291     if( !have_N && have_P && have_Q )
292     {
293         if( ( ret = mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P,
294                                          &ctx->Q ) ) != 0 )
295         {
296             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
297         }
298 
299         ctx->len = mbedtls_mpi_size( &ctx->N );
300     }
301 
302     /*
303      * Step 2: Deduce and verify all remaining core parameters.
304      */
305 
306     if( pq_missing )
307     {
308         ret = mbedtls_rsa_deduce_primes( &ctx->N, &ctx->E, &ctx->D,
309                                          &ctx->P, &ctx->Q );
310         if( ret != 0 )
311             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
312 
313     }
314     else if( d_missing )
315     {
316         if( ( ret = mbedtls_rsa_deduce_private_exponent( &ctx->P,
317                                                          &ctx->Q,
318                                                          &ctx->E,
319                                                          &ctx->D ) ) != 0 )
320         {
321             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
322         }
323     }
324 
325     /*
326      * Step 3: Deduce all additional parameters specific
327      *         to our current RSA implementation.
328      */
329 
330 #if !defined(MBEDTLS_RSA_NO_CRT)
331     if( is_priv && ! ( have_DP && have_DQ && have_QP ) )
332     {
333         ret = mbedtls_rsa_deduce_crt( &ctx->P,  &ctx->Q,  &ctx->D,
334                                       &ctx->DP, &ctx->DQ, &ctx->QP );
335         if( ret != 0 )
336             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
337     }
338 #endif /* MBEDTLS_RSA_NO_CRT */
339 
340     /*
341      * Step 3: Basic sanity checks
342      */
343 
344     return( rsa_check_context( ctx, is_priv, 1 ) );
345 }
346 
mbedtls_rsa_export_raw(const mbedtls_rsa_context * ctx,unsigned char * N,size_t N_len,unsigned char * P,size_t P_len,unsigned char * Q,size_t Q_len,unsigned char * D,size_t D_len,unsigned char * E,size_t E_len)347 int mbedtls_rsa_export_raw( const mbedtls_rsa_context *ctx,
348                             unsigned char *N, size_t N_len,
349                             unsigned char *P, size_t P_len,
350                             unsigned char *Q, size_t Q_len,
351                             unsigned char *D, size_t D_len,
352                             unsigned char *E, size_t E_len )
353 {
354     int ret = 0;
355     int is_priv;
356     RSA_VALIDATE_RET( ctx != NULL );
357 
358     /* Check if key is private or public */
359     is_priv =
360         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
361         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
362         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
363         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
364         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
365 
366     if( !is_priv )
367     {
368         /* If we're trying to export private parameters for a public key,
369          * something must be wrong. */
370         if( P != NULL || Q != NULL || D != NULL )
371             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
372 
373     }
374 
375     if( N != NULL )
376         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->N, N, N_len ) );
377 
378     if( P != NULL )
379         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->P, P, P_len ) );
380 
381     if( Q != NULL )
382         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->Q, Q, Q_len ) );
383 
384     if( D != NULL )
385         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->D, D, D_len ) );
386 
387     if( E != NULL )
388         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->E, E, E_len ) );
389 
390 cleanup:
391 
392     return( ret );
393 }
394 
mbedtls_rsa_export(const mbedtls_rsa_context * ctx,mbedtls_mpi * N,mbedtls_mpi * P,mbedtls_mpi * Q,mbedtls_mpi * D,mbedtls_mpi * E)395 int mbedtls_rsa_export( const mbedtls_rsa_context *ctx,
396                         mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
397                         mbedtls_mpi *D, mbedtls_mpi *E )
398 {
399     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
400     int is_priv;
401     RSA_VALIDATE_RET( ctx != NULL );
402 
403     /* Check if key is private or public */
404     is_priv =
405         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
406         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
407         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
408         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
409         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
410 
411     if( !is_priv )
412     {
413         /* If we're trying to export private parameters for a public key,
414          * something must be wrong. */
415         if( P != NULL || Q != NULL || D != NULL )
416             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
417 
418     }
419 
420     /* Export all requested core parameters. */
421 
422     if( ( N != NULL && ( ret = mbedtls_mpi_copy( N, &ctx->N ) ) != 0 ) ||
423         ( P != NULL && ( ret = mbedtls_mpi_copy( P, &ctx->P ) ) != 0 ) ||
424         ( Q != NULL && ( ret = mbedtls_mpi_copy( Q, &ctx->Q ) ) != 0 ) ||
425         ( D != NULL && ( ret = mbedtls_mpi_copy( D, &ctx->D ) ) != 0 ) ||
426         ( E != NULL && ( ret = mbedtls_mpi_copy( E, &ctx->E ) ) != 0 ) )
427     {
428         return( ret );
429     }
430 
431     return( 0 );
432 }
433 
434 /*
435  * Export CRT parameters
436  * This must also be implemented if CRT is not used, for being able to
437  * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
438  * can be used in this case.
439  */
mbedtls_rsa_export_crt(const mbedtls_rsa_context * ctx,mbedtls_mpi * DP,mbedtls_mpi * DQ,mbedtls_mpi * QP)440 int mbedtls_rsa_export_crt( const mbedtls_rsa_context *ctx,
441                             mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP )
442 {
443     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
444     int is_priv;
445     RSA_VALIDATE_RET( ctx != NULL );
446 
447     /* Check if key is private or public */
448     is_priv =
449         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
450         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
451         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
452         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
453         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
454 
455     if( !is_priv )
456         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
457 
458 #if !defined(MBEDTLS_RSA_NO_CRT)
459     /* Export all requested blinding parameters. */
460     if( ( DP != NULL && ( ret = mbedtls_mpi_copy( DP, &ctx->DP ) ) != 0 ) ||
461         ( DQ != NULL && ( ret = mbedtls_mpi_copy( DQ, &ctx->DQ ) ) != 0 ) ||
462         ( QP != NULL && ( ret = mbedtls_mpi_copy( QP, &ctx->QP ) ) != 0 ) )
463     {
464         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
465     }
466 #else
467     if( ( ret = mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
468                                         DP, DQ, QP ) ) != 0 )
469     {
470         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
471     }
472 #endif
473 
474     return( 0 );
475 }
476 
477 /*
478  * Initialize an RSA context
479  */
mbedtls_rsa_init(mbedtls_rsa_context * ctx,int padding,int hash_id)480 void mbedtls_rsa_init( mbedtls_rsa_context *ctx,
481                int padding,
482                int hash_id )
483 {
484     RSA_VALIDATE( ctx != NULL );
485     RSA_VALIDATE( padding == MBEDTLS_RSA_PKCS_V15 ||
486                   padding == MBEDTLS_RSA_PKCS_V21 );
487 
488     memset( ctx, 0, sizeof( mbedtls_rsa_context ) );
489 
490     mbedtls_rsa_set_padding( ctx, padding, hash_id );
491 
492 #if defined(MBEDTLS_THREADING_C)
493     mbedtls_mutex_init( &ctx->mutex );
494 #endif
495 }
496 
497 /*
498  * Set padding for an existing RSA context
499  */
mbedtls_rsa_set_padding(mbedtls_rsa_context * ctx,int padding,int hash_id)500 void mbedtls_rsa_set_padding( mbedtls_rsa_context *ctx, int padding,
501                               int hash_id )
502 {
503     RSA_VALIDATE( ctx != NULL );
504     RSA_VALIDATE( padding == MBEDTLS_RSA_PKCS_V15 ||
505                   padding == MBEDTLS_RSA_PKCS_V21 );
506 
507     ctx->padding = padding;
508     ctx->hash_id = hash_id;
509 }
510 
511 /*
512  * Get length in bytes of RSA modulus
513  */
514 
mbedtls_rsa_get_len(const mbedtls_rsa_context * ctx)515 size_t mbedtls_rsa_get_len( const mbedtls_rsa_context *ctx )
516 {
517     return( ctx->len );
518 }
519 
520 
521 #if defined(MBEDTLS_GENPRIME)
522 
523 /*
524  * Generate an RSA keypair
525  *
526  * This generation method follows the RSA key pair generation procedure of
527  * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
528  */
mbedtls_rsa_gen_key(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,unsigned int nbits,int exponent)529 int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
530                  int (*f_rng)(void *, unsigned char *, size_t),
531                  void *p_rng,
532                  unsigned int nbits, int exponent )
533 {
534     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
535     mbedtls_mpi H, G, L;
536     int prime_quality = 0;
537     RSA_VALIDATE_RET( ctx != NULL );
538     RSA_VALIDATE_RET( f_rng != NULL );
539 
540     if( nbits < 128 || exponent < 3 || nbits % 2 != 0 )
541         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
542 
543     /*
544      * If the modulus is 1024 bit long or shorter, then the security strength of
545      * the RSA algorithm is less than or equal to 80 bits and therefore an error
546      * rate of 2^-80 is sufficient.
547      */
548     if( nbits > 1024 )
549         prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
550 
551     mbedtls_mpi_init( &H );
552     mbedtls_mpi_init( &G );
553     mbedtls_mpi_init( &L );
554 
555     /*
556      * find primes P and Q with Q < P so that:
557      * 1.  |P-Q| > 2^( nbits / 2 - 100 )
558      * 2.  GCD( E, (P-1)*(Q-1) ) == 1
559      * 3.  E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
560      */
561     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &ctx->E, exponent ) );
562 
563     do
564     {
565         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->P, nbits >> 1,
566                                                 prime_quality, f_rng, p_rng ) );
567 
568         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1,
569                                                 prime_quality, f_rng, p_rng ) );
570 
571         /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
572         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &H, &ctx->P, &ctx->Q ) );
573         if( mbedtls_mpi_bitlen( &H ) <= ( ( nbits >= 200 ) ? ( ( nbits >> 1 ) - 99 ) : 0 ) )
574             continue;
575 
576         /* not required by any standards, but some users rely on the fact that P > Q */
577         if( H.s < 0 )
578             mbedtls_mpi_swap( &ctx->P, &ctx->Q );
579 
580         /* Temporarily replace P,Q by P-1, Q-1 */
581         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->P, &ctx->P, 1 ) );
582         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->Q, &ctx->Q, 1 ) );
583         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &H, &ctx->P, &ctx->Q ) );
584 
585         /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
586         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->E, &H  ) );
587         if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
588             continue;
589 
590         /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
591         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->P, &ctx->Q ) );
592         MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &L, NULL, &H, &G ) );
593         MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->D, &ctx->E, &L ) );
594 
595         if( mbedtls_mpi_bitlen( &ctx->D ) <= ( ( nbits + 1 ) / 2 ) ) // (FIPS 186-4 §B.3.1 criterion 3(a))
596             continue;
597 
598         break;
599     }
600     while( 1 );
601 
602     /* Restore P,Q */
603     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->P,  &ctx->P, 1 ) );
604     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->Q,  &ctx->Q, 1 ) );
605 
606     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
607 
608     ctx->len = mbedtls_mpi_size( &ctx->N );
609 
610 #if !defined(MBEDTLS_RSA_NO_CRT)
611     /*
612      * DP = D mod (P - 1)
613      * DQ = D mod (Q - 1)
614      * QP = Q^-1 mod P
615      */
616     MBEDTLS_MPI_CHK( mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
617                                              &ctx->DP, &ctx->DQ, &ctx->QP ) );
618 #endif /* MBEDTLS_RSA_NO_CRT */
619 
620     /* Double-check */
621     MBEDTLS_MPI_CHK( mbedtls_rsa_check_privkey( ctx ) );
622 
623 cleanup:
624 
625     mbedtls_mpi_free( &H );
626     mbedtls_mpi_free( &G );
627     mbedtls_mpi_free( &L );
628 
629     if( ret != 0 )
630     {
631         mbedtls_rsa_free( ctx );
632         return( MBEDTLS_ERR_RSA_KEY_GEN_FAILED + ret );
633     }
634 
635     return( 0 );
636 }
637 
638 #endif /* MBEDTLS_GENPRIME */
639 
640 /*
641  * Check a public RSA key
642  */
mbedtls_rsa_check_pubkey(const mbedtls_rsa_context * ctx)643 int mbedtls_rsa_check_pubkey( const mbedtls_rsa_context *ctx )
644 {
645     RSA_VALIDATE_RET( ctx != NULL );
646 
647     if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) != 0 )
648         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
649 
650     if( mbedtls_mpi_bitlen( &ctx->N ) < 128 )
651     {
652         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
653     }
654 
655     if( mbedtls_mpi_get_bit( &ctx->E, 0 ) == 0 ||
656         mbedtls_mpi_bitlen( &ctx->E )     < 2  ||
657         mbedtls_mpi_cmp_mpi( &ctx->E, &ctx->N ) >= 0 )
658     {
659         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
660     }
661 
662     return( 0 );
663 }
664 
665 /*
666  * Check for the consistency of all fields in an RSA private key context
667  */
mbedtls_rsa_check_privkey(const mbedtls_rsa_context * ctx)668 int mbedtls_rsa_check_privkey( const mbedtls_rsa_context *ctx )
669 {
670     RSA_VALIDATE_RET( ctx != NULL );
671 
672     if( mbedtls_rsa_check_pubkey( ctx ) != 0 ||
673         rsa_check_context( ctx, 1 /* private */, 1 /* blinding */ ) != 0 )
674     {
675         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
676     }
677 
678     if( mbedtls_rsa_validate_params( &ctx->N, &ctx->P, &ctx->Q,
679                                      &ctx->D, &ctx->E, NULL, NULL ) != 0 )
680     {
681         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
682     }
683 
684 #if !defined(MBEDTLS_RSA_NO_CRT)
685     else if( mbedtls_rsa_validate_crt( &ctx->P, &ctx->Q, &ctx->D,
686                                        &ctx->DP, &ctx->DQ, &ctx->QP ) != 0 )
687     {
688         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
689     }
690 #endif
691 
692     return( 0 );
693 }
694 
695 /*
696  * Check if contexts holding a public and private key match
697  */
mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context * pub,const mbedtls_rsa_context * prv)698 int mbedtls_rsa_check_pub_priv( const mbedtls_rsa_context *pub,
699                                 const mbedtls_rsa_context *prv )
700 {
701     RSA_VALIDATE_RET( pub != NULL );
702     RSA_VALIDATE_RET( prv != NULL );
703 
704     if( mbedtls_rsa_check_pubkey( pub )  != 0 ||
705         mbedtls_rsa_check_privkey( prv ) != 0 )
706     {
707         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
708     }
709 
710     if( mbedtls_mpi_cmp_mpi( &pub->N, &prv->N ) != 0 ||
711         mbedtls_mpi_cmp_mpi( &pub->E, &prv->E ) != 0 )
712     {
713         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
714     }
715 
716     return( 0 );
717 }
718 
719 /*
720  * Do an RSA public key operation
721  */
mbedtls_rsa_public(mbedtls_rsa_context * ctx,const unsigned char * input,unsigned char * output)722 int mbedtls_rsa_public( mbedtls_rsa_context *ctx,
723                 const unsigned char *input,
724                 unsigned char *output )
725 {
726     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
727     size_t olen;
728     mbedtls_mpi T;
729     RSA_VALIDATE_RET( ctx != NULL );
730     RSA_VALIDATE_RET( input != NULL );
731     RSA_VALIDATE_RET( output != NULL );
732 
733     if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) )
734         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
735 
736     mbedtls_mpi_init( &T );
737 
738 #if defined(MBEDTLS_THREADING_C)
739     if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
740         return( ret );
741 #endif
742 
743     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
744 
745     if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
746     {
747         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
748         goto cleanup;
749     }
750 
751     olen = ctx->len;
752     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
753     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
754 
755 cleanup:
756 #if defined(MBEDTLS_THREADING_C)
757     if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
758         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
759 #endif
760 
761     mbedtls_mpi_free( &T );
762 
763     if( ret != 0 )
764         return( MBEDTLS_ERR_RSA_PUBLIC_FAILED + ret );
765 
766     return( 0 );
767 }
768 
769 /*
770  * Generate or update blinding values, see section 10 of:
771  *  KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
772  *  DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
773  *  Berlin Heidelberg, 1996. p. 104-113.
774  */
rsa_prepare_blinding(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)775 static int rsa_prepare_blinding( mbedtls_rsa_context *ctx,
776                  int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
777 {
778     int ret, count = 0;
779     mbedtls_mpi R;
780 
781     mbedtls_mpi_init( &R );
782 
783     if( ctx->Vf.p != NULL )
784     {
785         /* We already have blinding values, just update them by squaring */
786         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) );
787         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
788         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) );
789         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) );
790 
791         goto cleanup;
792     }
793 
794     /* Unblinding value: Vf = random number, invertible mod N */
795     do {
796         if( count++ > 10 )
797         {
798             ret = MBEDTLS_ERR_RSA_RNG_FAILED;
799             goto cleanup;
800         }
801 
802         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) );
803 
804         /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */
805         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, ctx->len - 1, f_rng, p_rng ) );
806         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vf, &R ) );
807         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
808 
809         /* At this point, Vi is invertible mod N if and only if both Vf and R
810          * are invertible mod N. If one of them isn't, we don't need to know
811          * which one, we just loop and choose new values for both of them.
812          * (Each iteration succeeds with overwhelming probability.) */
813         ret = mbedtls_mpi_inv_mod( &ctx->Vi, &ctx->Vi, &ctx->N );
814         if( ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
815             goto cleanup;
816 
817     } while( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
818 
819     /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */
820     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &R ) );
821     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
822 
823     /* Blinding value: Vi = Vf^(-e) mod N
824      * (Vi already contains Vf^-1 at this point) */
825     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) );
826 
827 
828 cleanup:
829     mbedtls_mpi_free( &R );
830 
831     return( ret );
832 }
833 
834 /*
835  * Exponent blinding supposed to prevent side-channel attacks using multiple
836  * traces of measurements to recover the RSA key. The more collisions are there,
837  * the more bits of the key can be recovered. See [3].
838  *
839  * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
840  * observations on avarage.
841  *
842  * For example with 28 byte blinding to achieve 2 collisions the adversary has
843  * to make 2^112 observations on avarage.
844  *
845  * (With the currently (as of 2017 April) known best algorithms breaking 2048
846  * bit RSA requires approximately as much time as trying out 2^112 random keys.
847  * Thus in this sense with 28 byte blinding the security is not reduced by
848  * side-channel attacks like the one in [3])
849  *
850  * This countermeasure does not help if the key recovery is possible with a
851  * single trace.
852  */
853 #define RSA_EXPONENT_BLINDING 28
854 
855 /*
856  * Do an RSA private key operation
857  */
mbedtls_rsa_private(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * input,unsigned char * output)858 int mbedtls_rsa_private( mbedtls_rsa_context *ctx,
859                  int (*f_rng)(void *, unsigned char *, size_t),
860                  void *p_rng,
861                  const unsigned char *input,
862                  unsigned char *output )
863 {
864     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
865     size_t olen;
866 
867     /* Temporary holding the result */
868     mbedtls_mpi T;
869 
870     /* Temporaries holding P-1, Q-1 and the
871      * exponent blinding factor, respectively. */
872     mbedtls_mpi P1, Q1, R;
873 
874 #if !defined(MBEDTLS_RSA_NO_CRT)
875     /* Temporaries holding the results mod p resp. mod q. */
876     mbedtls_mpi TP, TQ;
877 
878     /* Temporaries holding the blinded exponents for
879      * the mod p resp. mod q computation (if used). */
880     mbedtls_mpi DP_blind, DQ_blind;
881 
882     /* Pointers to actual exponents to be used - either the unblinded
883      * or the blinded ones, depending on the presence of a PRNG. */
884     mbedtls_mpi *DP = &ctx->DP;
885     mbedtls_mpi *DQ = &ctx->DQ;
886 #else
887     /* Temporary holding the blinded exponent (if used). */
888     mbedtls_mpi D_blind;
889 
890     /* Pointer to actual exponent to be used - either the unblinded
891      * or the blinded one, depending on the presence of a PRNG. */
892     mbedtls_mpi *D = &ctx->D;
893 #endif /* MBEDTLS_RSA_NO_CRT */
894 
895     /* Temporaries holding the initial input and the double
896      * checked result; should be the same in the end. */
897     mbedtls_mpi I, C;
898 
899     RSA_VALIDATE_RET( ctx != NULL );
900     RSA_VALIDATE_RET( input  != NULL );
901     RSA_VALIDATE_RET( output != NULL );
902 
903     if( rsa_check_context( ctx, 1             /* private key checks */,
904                                 f_rng != NULL /* blinding y/n       */ ) != 0 )
905     {
906         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
907     }
908 
909 #if defined(MBEDTLS_THREADING_C)
910     if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
911         return( ret );
912 #endif
913 
914     /* MPI Initialization */
915     mbedtls_mpi_init( &T );
916 
917     mbedtls_mpi_init( &P1 );
918     mbedtls_mpi_init( &Q1 );
919     mbedtls_mpi_init( &R );
920 
921     if( f_rng != NULL )
922     {
923 #if defined(MBEDTLS_RSA_NO_CRT)
924         mbedtls_mpi_init( &D_blind );
925 #else
926         mbedtls_mpi_init( &DP_blind );
927         mbedtls_mpi_init( &DQ_blind );
928 #endif
929     }
930 
931 #if !defined(MBEDTLS_RSA_NO_CRT)
932     mbedtls_mpi_init( &TP ); mbedtls_mpi_init( &TQ );
933 #endif
934 
935     mbedtls_mpi_init( &I );
936     mbedtls_mpi_init( &C );
937 
938     /* End of MPI initialization */
939 
940     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
941     if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
942     {
943         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
944         goto cleanup;
945     }
946 
947     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &I, &T ) );
948 
949     if( f_rng != NULL )
950     {
951         /*
952          * Blinding
953          * T = T * Vi mod N
954          */
955         MBEDTLS_MPI_CHK( rsa_prepare_blinding( ctx, f_rng, p_rng ) );
956         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vi ) );
957         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
958 
959         /*
960          * Exponent blinding
961          */
962         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &P1, &ctx->P, 1 ) );
963         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &Q1, &ctx->Q, 1 ) );
964 
965 #if defined(MBEDTLS_RSA_NO_CRT)
966         /*
967          * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
968          */
969         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
970                          f_rng, p_rng ) );
971         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &P1, &Q1 ) );
972         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &D_blind, &R ) );
973         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &D_blind, &D_blind, &ctx->D ) );
974 
975         D = &D_blind;
976 #else
977         /*
978          * DP_blind = ( P - 1 ) * R + DP
979          */
980         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
981                          f_rng, p_rng ) );
982         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DP_blind, &P1, &R ) );
983         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DP_blind, &DP_blind,
984                     &ctx->DP ) );
985 
986         DP = &DP_blind;
987 
988         /*
989          * DQ_blind = ( Q - 1 ) * R + DQ
990          */
991         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
992                          f_rng, p_rng ) );
993         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DQ_blind, &Q1, &R ) );
994         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DQ_blind, &DQ_blind,
995                     &ctx->DQ ) );
996 
997         DQ = &DQ_blind;
998 #endif /* MBEDTLS_RSA_NO_CRT */
999     }
1000 
1001 #if defined(MBEDTLS_RSA_NO_CRT)
1002     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, D, &ctx->N, &ctx->RN ) );
1003 #else
1004     /*
1005      * Faster decryption using the CRT
1006      *
1007      * TP = input ^ dP mod P
1008      * TQ = input ^ dQ mod Q
1009      */
1010 
1011     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TP, &T, DP, &ctx->P, &ctx->RP ) );
1012     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TQ, &T, DQ, &ctx->Q, &ctx->RQ ) );
1013 
1014     /*
1015      * T = (TP - TQ) * (Q^-1 mod P) mod P
1016      */
1017     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &TP, &TQ ) );
1018     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->QP ) );
1019     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &TP, &ctx->P ) );
1020 
1021     /*
1022      * T = TQ + T * Q
1023      */
1024     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->Q ) );
1025     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &TQ, &TP ) );
1026 #endif /* MBEDTLS_RSA_NO_CRT */
1027 
1028     if( f_rng != NULL )
1029     {
1030         /*
1031          * Unblind
1032          * T = T * Vf mod N
1033          */
1034         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vf ) );
1035         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
1036     }
1037 
1038     /* Verify the result to prevent glitching attacks. */
1039     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &C, &T, &ctx->E,
1040                                           &ctx->N, &ctx->RN ) );
1041     if( mbedtls_mpi_cmp_mpi( &C, &I ) != 0 )
1042     {
1043         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
1044         goto cleanup;
1045     }
1046 
1047     olen = ctx->len;
1048     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
1049 
1050 cleanup:
1051 #if defined(MBEDTLS_THREADING_C)
1052     if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
1053         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
1054 #endif
1055 
1056     mbedtls_mpi_free( &P1 );
1057     mbedtls_mpi_free( &Q1 );
1058     mbedtls_mpi_free( &R );
1059 
1060     if( f_rng != NULL )
1061     {
1062 #if defined(MBEDTLS_RSA_NO_CRT)
1063         mbedtls_mpi_free( &D_blind );
1064 #else
1065         mbedtls_mpi_free( &DP_blind );
1066         mbedtls_mpi_free( &DQ_blind );
1067 #endif
1068     }
1069 
1070     mbedtls_mpi_free( &T );
1071 
1072 #if !defined(MBEDTLS_RSA_NO_CRT)
1073     mbedtls_mpi_free( &TP ); mbedtls_mpi_free( &TQ );
1074 #endif
1075 
1076     mbedtls_mpi_free( &C );
1077     mbedtls_mpi_free( &I );
1078 
1079     if( ret != 0 )
1080         return( MBEDTLS_ERR_RSA_PRIVATE_FAILED + ret );
1081 
1082     return( 0 );
1083 }
1084 
1085 #if defined(MBEDTLS_PKCS1_V21)
1086 /**
1087  * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
1088  *
1089  * \param dst       buffer to mask
1090  * \param dlen      length of destination buffer
1091  * \param src       source of the mask generation
1092  * \param slen      length of the source buffer
1093  * \param md_ctx    message digest context to use
1094  */
mgf_mask(unsigned char * dst,size_t dlen,unsigned char * src,size_t slen,mbedtls_md_context_t * md_ctx)1095 static int mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src,
1096                       size_t slen, mbedtls_md_context_t *md_ctx )
1097 {
1098     unsigned char mask[MBEDTLS_MD_MAX_SIZE];
1099     unsigned char counter[4];
1100     unsigned char *p;
1101     unsigned int hlen;
1102     size_t i, use_len;
1103     int ret = 0;
1104 
1105     memset( mask, 0, MBEDTLS_MD_MAX_SIZE );
1106     memset( counter, 0, 4 );
1107 
1108     hlen = mbedtls_md_get_size( md_ctx->md_info );
1109 
1110     /* Generate and apply dbMask */
1111     p = dst;
1112 
1113     while( dlen > 0 )
1114     {
1115         use_len = hlen;
1116         if( dlen < hlen )
1117             use_len = dlen;
1118 
1119         if( ( ret = mbedtls_md_starts( md_ctx ) ) != 0 )
1120             goto exit;
1121         if( ( ret = mbedtls_md_update( md_ctx, src, slen ) ) != 0 )
1122             goto exit;
1123         if( ( ret = mbedtls_md_update( md_ctx, counter, 4 ) ) != 0 )
1124             goto exit;
1125         if( ( ret = mbedtls_md_finish( md_ctx, mask ) ) != 0 )
1126             goto exit;
1127 
1128         for( i = 0; i < use_len; ++i )
1129             *p++ ^= mask[i];
1130 
1131         counter[3]++;
1132 
1133         dlen -= use_len;
1134     }
1135 
1136 exit:
1137     mbedtls_platform_zeroize( mask, sizeof( mask ) );
1138 
1139     return( ret );
1140 }
1141 #endif /* MBEDTLS_PKCS1_V21 */
1142 
1143 #if defined(MBEDTLS_PKCS1_V21)
1144 /*
1145  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
1146  */
mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,const unsigned char * label,size_t label_len,size_t ilen,const unsigned char * input,unsigned char * output)1147 int mbedtls_rsa_rsaes_oaep_encrypt( mbedtls_rsa_context *ctx,
1148                             int (*f_rng)(void *, unsigned char *, size_t),
1149                             void *p_rng,
1150                             int mode,
1151                             const unsigned char *label, size_t label_len,
1152                             size_t ilen,
1153                             const unsigned char *input,
1154                             unsigned char *output )
1155 {
1156     size_t olen;
1157     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1158     unsigned char *p = output;
1159     unsigned int hlen;
1160     const mbedtls_md_info_t *md_info;
1161     mbedtls_md_context_t md_ctx;
1162 
1163     RSA_VALIDATE_RET( ctx != NULL );
1164     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1165                       mode == MBEDTLS_RSA_PUBLIC );
1166     RSA_VALIDATE_RET( output != NULL );
1167     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1168     RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1169 
1170     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1171         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1172 
1173     if( f_rng == NULL )
1174         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1175 
1176     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1177     if( md_info == NULL )
1178         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1179 
1180     olen = ctx->len;
1181     hlen = mbedtls_md_get_size( md_info );
1182 
1183     /* first comparison checks for overflow */
1184     if( ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2 )
1185         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1186 
1187     memset( output, 0, olen );
1188 
1189     *p++ = 0;
1190 
1191     /* Generate a random octet string seed */
1192     if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
1193         return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
1194 
1195     p += hlen;
1196 
1197     /* Construct DB */
1198     if( ( ret = mbedtls_md( md_info, label, label_len, p ) ) != 0 )
1199         return( ret );
1200     p += hlen;
1201     p += olen - 2 * hlen - 2 - ilen;
1202     *p++ = 1;
1203     if( ilen != 0 )
1204         memcpy( p, input, ilen );
1205 
1206     mbedtls_md_init( &md_ctx );
1207     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1208         goto exit;
1209 
1210     /* maskedDB: Apply dbMask to DB */
1211     if( ( ret = mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
1212                           &md_ctx ) ) != 0 )
1213         goto exit;
1214 
1215     /* maskedSeed: Apply seedMask to seed */
1216     if( ( ret = mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
1217                           &md_ctx ) ) != 0 )
1218         goto exit;
1219 
1220 exit:
1221     mbedtls_md_free( &md_ctx );
1222 
1223     if( ret != 0 )
1224         return( ret );
1225 
1226     return( ( mode == MBEDTLS_RSA_PUBLIC )
1227             ? mbedtls_rsa_public(  ctx, output, output )
1228             : mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
1229 }
1230 #endif /* MBEDTLS_PKCS1_V21 */
1231 
1232 #if defined(MBEDTLS_PKCS1_V15)
1233 /*
1234  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
1235  */
mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t ilen,const unsigned char * input,unsigned char * output)1236 int mbedtls_rsa_rsaes_pkcs1_v15_encrypt( mbedtls_rsa_context *ctx,
1237                                  int (*f_rng)(void *, unsigned char *, size_t),
1238                                  void *p_rng,
1239                                  int mode, size_t ilen,
1240                                  const unsigned char *input,
1241                                  unsigned char *output )
1242 {
1243     size_t nb_pad, olen;
1244     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1245     unsigned char *p = output;
1246 
1247     RSA_VALIDATE_RET( ctx != NULL );
1248     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1249                       mode == MBEDTLS_RSA_PUBLIC );
1250     RSA_VALIDATE_RET( output != NULL );
1251     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1252 
1253     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1254         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1255 
1256     olen = ctx->len;
1257 
1258     /* first comparison checks for overflow */
1259     if( ilen + 11 < ilen || olen < ilen + 11 )
1260         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1261 
1262     nb_pad = olen - 3 - ilen;
1263 
1264     *p++ = 0;
1265     if( mode == MBEDTLS_RSA_PUBLIC )
1266     {
1267         if( f_rng == NULL )
1268             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1269 
1270         *p++ = MBEDTLS_RSA_CRYPT;
1271 
1272         while( nb_pad-- > 0 )
1273         {
1274             int rng_dl = 100;
1275 
1276             do {
1277                 ret = f_rng( p_rng, p, 1 );
1278             } while( *p == 0 && --rng_dl && ret == 0 );
1279 
1280             /* Check if RNG failed to generate data */
1281             if( rng_dl == 0 || ret != 0 )
1282                 return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
1283 
1284             p++;
1285         }
1286     }
1287     else
1288     {
1289         *p++ = MBEDTLS_RSA_SIGN;
1290 
1291         while( nb_pad-- > 0 )
1292             *p++ = 0xFF;
1293     }
1294 
1295     *p++ = 0;
1296     if( ilen != 0 )
1297         memcpy( p, input, ilen );
1298 
1299     return( ( mode == MBEDTLS_RSA_PUBLIC )
1300             ? mbedtls_rsa_public(  ctx, output, output )
1301             : mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
1302 }
1303 #endif /* MBEDTLS_PKCS1_V15 */
1304 
1305 /*
1306  * Add the message padding, then do an RSA operation
1307  */
mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t ilen,const unsigned char * input,unsigned char * output)1308 int mbedtls_rsa_pkcs1_encrypt( mbedtls_rsa_context *ctx,
1309                        int (*f_rng)(void *, unsigned char *, size_t),
1310                        void *p_rng,
1311                        int mode, size_t ilen,
1312                        const unsigned char *input,
1313                        unsigned char *output )
1314 {
1315     RSA_VALIDATE_RET( ctx != NULL );
1316     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1317                       mode == MBEDTLS_RSA_PUBLIC );
1318     RSA_VALIDATE_RET( output != NULL );
1319     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1320 
1321     switch( ctx->padding )
1322     {
1323 #if defined(MBEDTLS_PKCS1_V15)
1324         case MBEDTLS_RSA_PKCS_V15:
1325             return mbedtls_rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng, mode, ilen,
1326                                                 input, output );
1327 #endif
1328 
1329 #if defined(MBEDTLS_PKCS1_V21)
1330         case MBEDTLS_RSA_PKCS_V21:
1331             return mbedtls_rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, mode, NULL, 0,
1332                                            ilen, input, output );
1333 #endif
1334 
1335         default:
1336             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1337     }
1338 }
1339 
1340 #if defined(MBEDTLS_PKCS1_V21)
1341 /*
1342  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
1343  */
mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,const unsigned char * label,size_t label_len,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1344 int mbedtls_rsa_rsaes_oaep_decrypt( mbedtls_rsa_context *ctx,
1345                             int (*f_rng)(void *, unsigned char *, size_t),
1346                             void *p_rng,
1347                             int mode,
1348                             const unsigned char *label, size_t label_len,
1349                             size_t *olen,
1350                             const unsigned char *input,
1351                             unsigned char *output,
1352                             size_t output_max_len )
1353 {
1354     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1355     size_t ilen, i, pad_len;
1356     unsigned char *p, bad, pad_done;
1357     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1358     unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
1359     unsigned int hlen;
1360     const mbedtls_md_info_t *md_info;
1361     mbedtls_md_context_t md_ctx;
1362 
1363     RSA_VALIDATE_RET( ctx != NULL );
1364     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1365                       mode == MBEDTLS_RSA_PUBLIC );
1366     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1367     RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1368     RSA_VALIDATE_RET( input != NULL );
1369     RSA_VALIDATE_RET( olen != NULL );
1370 
1371     /*
1372      * Parameters sanity checks
1373      */
1374     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1375         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1376 
1377     ilen = ctx->len;
1378 
1379     if( ilen < 16 || ilen > sizeof( buf ) )
1380         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1381 
1382     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1383     if( md_info == NULL )
1384         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1385 
1386     hlen = mbedtls_md_get_size( md_info );
1387 
1388     // checking for integer underflow
1389     if( 2 * hlen + 2 > ilen )
1390         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1391 
1392     /*
1393      * RSA operation
1394      */
1395     ret = ( mode == MBEDTLS_RSA_PUBLIC )
1396           ? mbedtls_rsa_public(  ctx, input, buf )
1397           : mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1398 
1399     if( ret != 0 )
1400         goto cleanup;
1401 
1402     /*
1403      * Unmask data and generate lHash
1404      */
1405     mbedtls_md_init( &md_ctx );
1406     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1407     {
1408         mbedtls_md_free( &md_ctx );
1409         goto cleanup;
1410     }
1411 
1412     /* seed: Apply seedMask to maskedSeed */
1413     if( ( ret = mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
1414                           &md_ctx ) ) != 0 ||
1415     /* DB: Apply dbMask to maskedDB */
1416         ( ret = mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
1417                           &md_ctx ) ) != 0 )
1418     {
1419         mbedtls_md_free( &md_ctx );
1420         goto cleanup;
1421     }
1422 
1423     mbedtls_md_free( &md_ctx );
1424 
1425     /* Generate lHash */
1426     if( ( ret = mbedtls_md( md_info, label, label_len, lhash ) ) != 0 )
1427         goto cleanup;
1428 
1429     /*
1430      * Check contents, in "constant-time"
1431      */
1432     p = buf;
1433     bad = 0;
1434 
1435     bad |= *p++; /* First byte must be 0 */
1436 
1437     p += hlen; /* Skip seed */
1438 
1439     /* Check lHash */
1440     for( i = 0; i < hlen; i++ )
1441         bad |= lhash[i] ^ *p++;
1442 
1443     /* Get zero-padding len, but always read till end of buffer
1444      * (minus one, for the 01 byte) */
1445     pad_len = 0;
1446     pad_done = 0;
1447     for( i = 0; i < ilen - 2 * hlen - 2; i++ )
1448     {
1449         pad_done |= p[i];
1450         pad_len += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
1451     }
1452 
1453     p += pad_len;
1454     bad |= *p++ ^ 0x01;
1455 
1456     /*
1457      * The only information "leaked" is whether the padding was correct or not
1458      * (eg, no data is copied if it was not correct). This meets the
1459      * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
1460      * the different error conditions.
1461      */
1462     if( bad != 0 )
1463     {
1464         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
1465         goto cleanup;
1466     }
1467 
1468     if( ilen - ( p - buf ) > output_max_len )
1469     {
1470         ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
1471         goto cleanup;
1472     }
1473 
1474     *olen = ilen - (p - buf);
1475     if( *olen != 0 )
1476         memcpy( output, p, *olen );
1477     ret = 0;
1478 
1479 cleanup:
1480     mbedtls_platform_zeroize( buf, sizeof( buf ) );
1481     mbedtls_platform_zeroize( lhash, sizeof( lhash ) );
1482 
1483     return( ret );
1484 }
1485 #endif /* MBEDTLS_PKCS1_V21 */
1486 
1487 #if defined(MBEDTLS_PKCS1_V15)
1488 /** Turn zero-or-nonzero into zero-or-all-bits-one, without branches.
1489  *
1490  * \param value     The value to analyze.
1491  * \return          Zero if \p value is zero, otherwise all-bits-one.
1492  */
all_or_nothing_int(unsigned value)1493 static unsigned all_or_nothing_int( unsigned value )
1494 {
1495     /* MSVC has a warning about unary minus on unsigned, but this is
1496      * well-defined and precisely what we want to do here */
1497 #if defined(_MSC_VER)
1498 #pragma warning( push )
1499 #pragma warning( disable : 4146 )
1500 #endif
1501     return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
1502 #if defined(_MSC_VER)
1503 #pragma warning( pop )
1504 #endif
1505 }
1506 
1507 /** Check whether a size is out of bounds, without branches.
1508  *
1509  * This is equivalent to `size > max`, but is likely to be compiled to
1510  * to code using bitwise operation rather than a branch.
1511  *
1512  * \param size      Size to check.
1513  * \param max       Maximum desired value for \p size.
1514  * \return          \c 0 if `size <= max`.
1515  * \return          \c 1 if `size > max`.
1516  */
size_greater_than(size_t size,size_t max)1517 static unsigned size_greater_than( size_t size, size_t max )
1518 {
1519     /* Return the sign bit (1 for negative) of (max - size). */
1520     return( ( max - size ) >> ( sizeof( size_t ) * 8 - 1 ) );
1521 }
1522 
1523 /** Choose between two integer values, without branches.
1524  *
1525  * This is equivalent to `cond ? if1 : if0`, but is likely to be compiled
1526  * to code using bitwise operation rather than a branch.
1527  *
1528  * \param cond      Condition to test.
1529  * \param if1       Value to use if \p cond is nonzero.
1530  * \param if0       Value to use if \p cond is zero.
1531  * \return          \c if1 if \p cond is nonzero, otherwise \c if0.
1532  */
if_int(unsigned cond,unsigned if1,unsigned if0)1533 static unsigned if_int( unsigned cond, unsigned if1, unsigned if0 )
1534 {
1535     unsigned mask = all_or_nothing_int( cond );
1536     return( ( mask & if1 ) | (~mask & if0 ) );
1537 }
1538 
1539 /** Shift some data towards the left inside a buffer without leaking
1540  * the length of the data through side channels.
1541  *
1542  * `mem_move_to_left(start, total, offset)` is functionally equivalent to
1543  * ```
1544  * memmove(start, start + offset, total - offset);
1545  * memset(start + offset, 0, total - offset);
1546  * ```
1547  * but it strives to use a memory access pattern (and thus total timing)
1548  * that does not depend on \p offset. This timing independence comes at
1549  * the expense of performance.
1550  *
1551  * \param start     Pointer to the start of the buffer.
1552  * \param total     Total size of the buffer.
1553  * \param offset    Offset from which to copy \p total - \p offset bytes.
1554  */
mem_move_to_left(void * start,size_t total,size_t offset)1555 static void mem_move_to_left( void *start,
1556                               size_t total,
1557                               size_t offset )
1558 {
1559     volatile unsigned char *buf = start;
1560     size_t i, n;
1561     if( total == 0 )
1562         return;
1563     for( i = 0; i < total; i++ )
1564     {
1565         unsigned no_op = size_greater_than( total - offset, i );
1566         /* The first `total - offset` passes are a no-op. The last
1567          * `offset` passes shift the data one byte to the left and
1568          * zero out the last byte. */
1569         for( n = 0; n < total - 1; n++ )
1570         {
1571             unsigned char current = buf[n];
1572             unsigned char next = buf[n+1];
1573             buf[n] = if_int( no_op, current, next );
1574         }
1575         buf[total-1] = if_int( no_op, buf[total-1], 0 );
1576     }
1577 }
1578 
1579 /*
1580  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
1581  */
mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1582 int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx,
1583                                  int (*f_rng)(void *, unsigned char *, size_t),
1584                                  void *p_rng,
1585                                  int mode, size_t *olen,
1586                                  const unsigned char *input,
1587                                  unsigned char *output,
1588                                  size_t output_max_len )
1589 {
1590     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1591     size_t ilen, i, plaintext_max_size;
1592     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1593     /* The following variables take sensitive values: their value must
1594      * not leak into the observable behavior of the function other than
1595      * the designated outputs (output, olen, return value). Otherwise
1596      * this would open the execution of the function to
1597      * side-channel-based variants of the Bleichenbacher padding oracle
1598      * attack. Potential side channels include overall timing, memory
1599      * access patterns (especially visible to an adversary who has access
1600      * to a shared memory cache), and branches (especially visible to
1601      * an adversary who has access to a shared code cache or to a shared
1602      * branch predictor). */
1603     size_t pad_count = 0;
1604     unsigned bad = 0;
1605     unsigned char pad_done = 0;
1606     size_t plaintext_size = 0;
1607     unsigned output_too_large;
1608 
1609     RSA_VALIDATE_RET( ctx != NULL );
1610     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1611                       mode == MBEDTLS_RSA_PUBLIC );
1612     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1613     RSA_VALIDATE_RET( input != NULL );
1614     RSA_VALIDATE_RET( olen != NULL );
1615 
1616     ilen = ctx->len;
1617     plaintext_max_size = ( output_max_len > ilen - 11 ?
1618                            ilen - 11 :
1619                            output_max_len );
1620 
1621     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1622         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1623 
1624     if( ilen < 16 || ilen > sizeof( buf ) )
1625         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1626 
1627     ret = ( mode == MBEDTLS_RSA_PUBLIC )
1628           ? mbedtls_rsa_public(  ctx, input, buf )
1629           : mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1630 
1631     if( ret != 0 )
1632         goto cleanup;
1633 
1634     /* Check and get padding length in constant time and constant
1635      * memory trace. The first byte must be 0. */
1636     bad |= buf[0];
1637 
1638     if( mode == MBEDTLS_RSA_PRIVATE )
1639     {
1640         /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
1641          * where PS must be at least 8 nonzero bytes. */
1642         bad |= buf[1] ^ MBEDTLS_RSA_CRYPT;
1643 
1644         /* Read the whole buffer. Set pad_done to nonzero if we find
1645          * the 0x00 byte and remember the padding length in pad_count. */
1646         for( i = 2; i < ilen; i++ )
1647         {
1648             pad_done  |= ((buf[i] | (unsigned char)-buf[i]) >> 7) ^ 1;
1649             pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
1650         }
1651     }
1652     else
1653     {
1654         /* Decode EMSA-PKCS1-v1_5 padding: 0x00 || 0x01 || PS || 0x00
1655          * where PS must be at least 8 bytes with the value 0xFF. */
1656         bad |= buf[1] ^ MBEDTLS_RSA_SIGN;
1657 
1658         /* Read the whole buffer. Set pad_done to nonzero if we find
1659          * the 0x00 byte and remember the padding length in pad_count.
1660          * If there's a non-0xff byte in the padding, the padding is bad. */
1661         for( i = 2; i < ilen; i++ )
1662         {
1663             pad_done |= if_int( buf[i], 0, 1 );
1664             pad_count += if_int( pad_done, 0, 1 );
1665             bad |= if_int( pad_done, 0, buf[i] ^ 0xFF );
1666         }
1667     }
1668 
1669     /* If pad_done is still zero, there's no data, only unfinished padding. */
1670     bad |= if_int( pad_done, 0, 1 );
1671 
1672     /* There must be at least 8 bytes of padding. */
1673     bad |= size_greater_than( 8, pad_count );
1674 
1675     /* If the padding is valid, set plaintext_size to the number of
1676      * remaining bytes after stripping the padding. If the padding
1677      * is invalid, avoid leaking this fact through the size of the
1678      * output: use the maximum message size that fits in the output
1679      * buffer. Do it without branches to avoid leaking the padding
1680      * validity through timing. RSA keys are small enough that all the
1681      * size_t values involved fit in unsigned int. */
1682     plaintext_size = if_int( bad,
1683                              (unsigned) plaintext_max_size,
1684                              (unsigned) ( ilen - pad_count - 3 ) );
1685 
1686     /* Set output_too_large to 0 if the plaintext fits in the output
1687      * buffer and to 1 otherwise. */
1688     output_too_large = size_greater_than( plaintext_size,
1689                                           plaintext_max_size );
1690 
1691     /* Set ret without branches to avoid timing attacks. Return:
1692      * - INVALID_PADDING if the padding is bad (bad != 0).
1693      * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
1694      *   plaintext does not fit in the output buffer.
1695      * - 0 if the padding is correct. */
1696     ret = - (int) if_int( bad, - MBEDTLS_ERR_RSA_INVALID_PADDING,
1697                   if_int( output_too_large, - MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
1698                           0 ) );
1699 
1700     /* If the padding is bad or the plaintext is too large, zero the
1701      * data that we're about to copy to the output buffer.
1702      * We need to copy the same amount of data
1703      * from the same buffer whether the padding is good or not to
1704      * avoid leaking the padding validity through overall timing or
1705      * through memory or cache access patterns. */
1706     bad = all_or_nothing_int( bad | output_too_large );
1707     for( i = 11; i < ilen; i++ )
1708         buf[i] &= ~bad;
1709 
1710     /* If the plaintext is too large, truncate it to the buffer size.
1711      * Copy anyway to avoid revealing the length through timing, because
1712      * revealing the length is as bad as revealing the padding validity
1713      * for a Bleichenbacher attack. */
1714     plaintext_size = if_int( output_too_large,
1715                              (unsigned) plaintext_max_size,
1716                              (unsigned) plaintext_size );
1717 
1718     /* Move the plaintext to the leftmost position where it can start in
1719      * the working buffer, i.e. make it start plaintext_max_size from
1720      * the end of the buffer. Do this with a memory access trace that
1721      * does not depend on the plaintext size. After this move, the
1722      * starting location of the plaintext is no longer sensitive
1723      * information. */
1724     mem_move_to_left( buf + ilen - plaintext_max_size,
1725                       plaintext_max_size,
1726                       plaintext_max_size - plaintext_size );
1727 
1728     /* Finally copy the decrypted plaintext plus trailing zeros into the output
1729      * buffer. If output_max_len is 0, then output may be an invalid pointer
1730      * and the result of memcpy() would be undefined; prevent undefined
1731      * behavior making sure to depend only on output_max_len (the size of the
1732      * user-provided output buffer), which is independent from plaintext
1733      * length, validity of padding, success of the decryption, and other
1734      * secrets. */
1735     if( output_max_len != 0 )
1736         memcpy( output, buf + ilen - plaintext_max_size, plaintext_max_size );
1737 
1738     /* Report the amount of data we copied to the output buffer. In case
1739      * of errors (bad padding or output too large), the value of *olen
1740      * when this function returns is not specified. Making it equivalent
1741      * to the good case limits the risks of leaking the padding validity. */
1742     *olen = plaintext_size;
1743 
1744 cleanup:
1745     mbedtls_platform_zeroize( buf, sizeof( buf ) );
1746 
1747     return( ret );
1748 }
1749 #endif /* MBEDTLS_PKCS1_V15 */
1750 
1751 /*
1752  * Do an RSA operation, then remove the message padding
1753  */
mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1754 int mbedtls_rsa_pkcs1_decrypt( mbedtls_rsa_context *ctx,
1755                        int (*f_rng)(void *, unsigned char *, size_t),
1756                        void *p_rng,
1757                        int mode, size_t *olen,
1758                        const unsigned char *input,
1759                        unsigned char *output,
1760                        size_t output_max_len)
1761 {
1762     RSA_VALIDATE_RET( ctx != NULL );
1763     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1764                       mode == MBEDTLS_RSA_PUBLIC );
1765     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1766     RSA_VALIDATE_RET( input != NULL );
1767     RSA_VALIDATE_RET( olen != NULL );
1768 
1769     switch( ctx->padding )
1770     {
1771 #if defined(MBEDTLS_PKCS1_V15)
1772         case MBEDTLS_RSA_PKCS_V15:
1773             return mbedtls_rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, mode, olen,
1774                                                 input, output, output_max_len );
1775 #endif
1776 
1777 #if defined(MBEDTLS_PKCS1_V21)
1778         case MBEDTLS_RSA_PKCS_V21:
1779             return mbedtls_rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, mode, NULL, 0,
1780                                            olen, input, output,
1781                                            output_max_len );
1782 #endif
1783 
1784         default:
1785             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1786     }
1787 }
1788 
1789 #if defined(MBEDTLS_PKCS1_V21)
1790 /*
1791  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
1792  */
mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)1793 int mbedtls_rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
1794                          int (*f_rng)(void *, unsigned char *, size_t),
1795                          void *p_rng,
1796                          int mode,
1797                          mbedtls_md_type_t md_alg,
1798                          unsigned int hashlen,
1799                          const unsigned char *hash,
1800                          unsigned char *sig )
1801 {
1802     size_t olen;
1803     unsigned char *p = sig;
1804     unsigned char salt[MBEDTLS_MD_MAX_SIZE];
1805     size_t slen, min_slen, hlen, offset = 0;
1806     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1807     size_t msb;
1808     const mbedtls_md_info_t *md_info;
1809     mbedtls_md_context_t md_ctx;
1810     RSA_VALIDATE_RET( ctx != NULL );
1811     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1812                       mode == MBEDTLS_RSA_PUBLIC );
1813     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
1814                         hashlen == 0 ) ||
1815                       hash != NULL );
1816     RSA_VALIDATE_RET( sig != NULL );
1817 
1818     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1819         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1820 
1821     if( f_rng == NULL )
1822         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1823 
1824     olen = ctx->len;
1825 
1826     if( md_alg != MBEDTLS_MD_NONE )
1827     {
1828         /* Gather length of hash to sign */
1829         md_info = mbedtls_md_info_from_type( md_alg );
1830         if( md_info == NULL )
1831             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1832 
1833         hashlen = mbedtls_md_get_size( md_info );
1834     }
1835 
1836     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1837     if( md_info == NULL )
1838         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1839 
1840     hlen = mbedtls_md_get_size( md_info );
1841 
1842     /* Calculate the largest possible salt length. Normally this is the hash
1843      * length, which is the maximum length the salt can have. If there is not
1844      * enough room, use the maximum salt length that fits. The constraint is
1845      * that the hash length plus the salt length plus 2 bytes must be at most
1846      * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017
1847      * (PKCS#1 v2.2) §9.1.1 step 3. */
1848     min_slen = hlen - 2;
1849     if( olen < hlen + min_slen + 2 )
1850         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1851     else if( olen >= hlen + hlen + 2 )
1852         slen = hlen;
1853     else
1854         slen = olen - hlen - 2;
1855 
1856     memset( sig, 0, olen );
1857 
1858     /* Generate salt of length slen */
1859     if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
1860         return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
1861 
1862     /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
1863     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1864     p += olen - hlen - slen - 2;
1865     *p++ = 0x01;
1866     memcpy( p, salt, slen );
1867     p += slen;
1868 
1869     mbedtls_md_init( &md_ctx );
1870     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1871         goto exit;
1872 
1873     /* Generate H = Hash( M' ) */
1874     if( ( ret = mbedtls_md_starts( &md_ctx ) ) != 0 )
1875         goto exit;
1876     if( ( ret = mbedtls_md_update( &md_ctx, p, 8 ) ) != 0 )
1877         goto exit;
1878     if( ( ret = mbedtls_md_update( &md_ctx, hash, hashlen ) ) != 0 )
1879         goto exit;
1880     if( ( ret = mbedtls_md_update( &md_ctx, salt, slen ) ) != 0 )
1881         goto exit;
1882     if( ( ret = mbedtls_md_finish( &md_ctx, p ) ) != 0 )
1883         goto exit;
1884 
1885     /* Compensate for boundary condition when applying mask */
1886     if( msb % 8 == 0 )
1887         offset = 1;
1888 
1889     /* maskedDB: Apply dbMask to DB */
1890     if( ( ret = mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen,
1891                           &md_ctx ) ) != 0 )
1892         goto exit;
1893 
1894     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1895     sig[0] &= 0xFF >> ( olen * 8 - msb );
1896 
1897     p += hlen;
1898     *p++ = 0xBC;
1899 
1900     mbedtls_platform_zeroize( salt, sizeof( salt ) );
1901 
1902 exit:
1903     mbedtls_md_free( &md_ctx );
1904 
1905     if( ret != 0 )
1906         return( ret );
1907 
1908     return( ( mode == MBEDTLS_RSA_PUBLIC )
1909             ? mbedtls_rsa_public(  ctx, sig, sig )
1910             : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig ) );
1911 }
1912 #endif /* MBEDTLS_PKCS1_V21 */
1913 
1914 #if defined(MBEDTLS_PKCS1_V15)
1915 /*
1916  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
1917  */
1918 
1919 /* Construct a PKCS v1.5 encoding of a hashed message
1920  *
1921  * This is used both for signature generation and verification.
1922  *
1923  * Parameters:
1924  * - md_alg:  Identifies the hash algorithm used to generate the given hash;
1925  *            MBEDTLS_MD_NONE if raw data is signed.
1926  * - hashlen: Length of hash in case hashlen is MBEDTLS_MD_NONE.
1927  * - hash:    Buffer containing the hashed message or the raw data.
1928  * - dst_len: Length of the encoded message.
1929  * - dst:     Buffer to hold the encoded message.
1930  *
1931  * Assumptions:
1932  * - hash has size hashlen if md_alg == MBEDTLS_MD_NONE.
1933  * - hash has size corresponding to md_alg if md_alg != MBEDTLS_MD_NONE.
1934  * - dst points to a buffer of size at least dst_len.
1935  *
1936  */
rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,size_t dst_len,unsigned char * dst)1937 static int rsa_rsassa_pkcs1_v15_encode( mbedtls_md_type_t md_alg,
1938                                         unsigned int hashlen,
1939                                         const unsigned char *hash,
1940                                         size_t dst_len,
1941                                         unsigned char *dst )
1942 {
1943     size_t oid_size  = 0;
1944     size_t nb_pad    = dst_len;
1945     unsigned char *p = dst;
1946     const char *oid  = NULL;
1947 
1948     /* Are we signing hashed or raw data? */
1949     if( md_alg != MBEDTLS_MD_NONE )
1950     {
1951         const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_alg );
1952         if( md_info == NULL )
1953             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1954 
1955         if( mbedtls_oid_get_oid_by_md( md_alg, &oid, &oid_size ) != 0 )
1956             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1957 
1958         hashlen = mbedtls_md_get_size( md_info );
1959 
1960         /* Double-check that 8 + hashlen + oid_size can be used as a
1961          * 1-byte ASN.1 length encoding and that there's no overflow. */
1962         if( 8 + hashlen + oid_size  >= 0x80         ||
1963             10 + hashlen            <  hashlen      ||
1964             10 + hashlen + oid_size <  10 + hashlen )
1965             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1966 
1967         /*
1968          * Static bounds check:
1969          * - Need 10 bytes for five tag-length pairs.
1970          *   (Insist on 1-byte length encodings to protect against variants of
1971          *    Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
1972          * - Need hashlen bytes for hash
1973          * - Need oid_size bytes for hash alg OID.
1974          */
1975         if( nb_pad < 10 + hashlen + oid_size )
1976             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1977         nb_pad -= 10 + hashlen + oid_size;
1978     }
1979     else
1980     {
1981         if( nb_pad < hashlen )
1982             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1983 
1984         nb_pad -= hashlen;
1985     }
1986 
1987     /* Need space for signature header and padding delimiter (3 bytes),
1988      * and 8 bytes for the minimal padding */
1989     if( nb_pad < 3 + 8 )
1990         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1991     nb_pad -= 3;
1992 
1993     /* Now nb_pad is the amount of memory to be filled
1994      * with padding, and at least 8 bytes long. */
1995 
1996     /* Write signature header and padding */
1997     *p++ = 0;
1998     *p++ = MBEDTLS_RSA_SIGN;
1999     memset( p, 0xFF, nb_pad );
2000     p += nb_pad;
2001     *p++ = 0;
2002 
2003     /* Are we signing raw data? */
2004     if( md_alg == MBEDTLS_MD_NONE )
2005     {
2006         memcpy( p, hash, hashlen );
2007         return( 0 );
2008     }
2009 
2010     /* Signing hashed data, add corresponding ASN.1 structure
2011      *
2012      * DigestInfo ::= SEQUENCE {
2013      *   digestAlgorithm DigestAlgorithmIdentifier,
2014      *   digest Digest }
2015      * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
2016      * Digest ::= OCTET STRING
2017      *
2018      * Schematic:
2019      * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID  + LEN [ OID  ]
2020      *                                 TAG-NULL + LEN [ NULL ] ]
2021      *                 TAG-OCTET + LEN [ HASH ] ]
2022      */
2023     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
2024     *p++ = (unsigned char)( 0x08 + oid_size + hashlen );
2025     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
2026     *p++ = (unsigned char)( 0x04 + oid_size );
2027     *p++ = MBEDTLS_ASN1_OID;
2028     *p++ = (unsigned char) oid_size;
2029     memcpy( p, oid, oid_size );
2030     p += oid_size;
2031     *p++ = MBEDTLS_ASN1_NULL;
2032     *p++ = 0x00;
2033     *p++ = MBEDTLS_ASN1_OCTET_STRING;
2034     *p++ = (unsigned char) hashlen;
2035     memcpy( p, hash, hashlen );
2036     p += hashlen;
2037 
2038     /* Just a sanity-check, should be automatic
2039      * after the initial bounds check. */
2040     if( p != dst + dst_len )
2041     {
2042         mbedtls_platform_zeroize( dst, dst_len );
2043         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2044     }
2045 
2046     return( 0 );
2047 }
2048 
2049 /*
2050  * Do an RSA operation to sign the message digest
2051  */
mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2052 int mbedtls_rsa_rsassa_pkcs1_v15_sign( mbedtls_rsa_context *ctx,
2053                                int (*f_rng)(void *, unsigned char *, size_t),
2054                                void *p_rng,
2055                                int mode,
2056                                mbedtls_md_type_t md_alg,
2057                                unsigned int hashlen,
2058                                const unsigned char *hash,
2059                                unsigned char *sig )
2060 {
2061     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2062     unsigned char *sig_try = NULL, *verif = NULL;
2063 
2064     RSA_VALIDATE_RET( ctx != NULL );
2065     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2066                       mode == MBEDTLS_RSA_PUBLIC );
2067     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2068                         hashlen == 0 ) ||
2069                       hash != NULL );
2070     RSA_VALIDATE_RET( sig != NULL );
2071 
2072     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
2073         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2074 
2075     /*
2076      * Prepare PKCS1-v1.5 encoding (padding and hash identifier)
2077      */
2078 
2079     if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash,
2080                                              ctx->len, sig ) ) != 0 )
2081         return( ret );
2082 
2083     /*
2084      * Call respective RSA primitive
2085      */
2086 
2087     if( mode == MBEDTLS_RSA_PUBLIC )
2088     {
2089         /* Skip verification on a public key operation */
2090         return( mbedtls_rsa_public( ctx, sig, sig ) );
2091     }
2092 
2093     /* Private key operation
2094      *
2095      * In order to prevent Lenstra's attack, make the signature in a
2096      * temporary buffer and check it before returning it.
2097      */
2098 
2099     sig_try = mbedtls_calloc( 1, ctx->len );
2100     if( sig_try == NULL )
2101         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
2102 
2103     verif = mbedtls_calloc( 1, ctx->len );
2104     if( verif == NULL )
2105     {
2106         mbedtls_free( sig_try );
2107         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
2108     }
2109 
2110     MBEDTLS_MPI_CHK( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig_try ) );
2111     MBEDTLS_MPI_CHK( mbedtls_rsa_public( ctx, sig_try, verif ) );
2112 
2113     if( mbedtls_safer_memcmp( verif, sig, ctx->len ) != 0 )
2114     {
2115         ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
2116         goto cleanup;
2117     }
2118 
2119     memcpy( sig, sig_try, ctx->len );
2120 
2121 cleanup:
2122     mbedtls_free( sig_try );
2123     mbedtls_free( verif );
2124 
2125     return( ret );
2126 }
2127 #endif /* MBEDTLS_PKCS1_V15 */
2128 
2129 /*
2130  * Do an RSA operation to sign the message digest
2131  */
mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2132 int mbedtls_rsa_pkcs1_sign( mbedtls_rsa_context *ctx,
2133                     int (*f_rng)(void *, unsigned char *, size_t),
2134                     void *p_rng,
2135                     int mode,
2136                     mbedtls_md_type_t md_alg,
2137                     unsigned int hashlen,
2138                     const unsigned char *hash,
2139                     unsigned char *sig )
2140 {
2141     RSA_VALIDATE_RET( ctx != NULL );
2142     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2143                       mode == MBEDTLS_RSA_PUBLIC );
2144     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2145                         hashlen == 0 ) ||
2146                       hash != NULL );
2147     RSA_VALIDATE_RET( sig != NULL );
2148 
2149     switch( ctx->padding )
2150     {
2151 #if defined(MBEDTLS_PKCS1_V15)
2152         case MBEDTLS_RSA_PKCS_V15:
2153             return mbedtls_rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng, mode, md_alg,
2154                                               hashlen, hash, sig );
2155 #endif
2156 
2157 #if defined(MBEDTLS_PKCS1_V21)
2158         case MBEDTLS_RSA_PKCS_V21:
2159             return mbedtls_rsa_rsassa_pss_sign( ctx, f_rng, p_rng, mode, md_alg,
2160                                         hashlen, hash, sig );
2161 #endif
2162 
2163         default:
2164             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2165     }
2166 }
2167 
2168 #if defined(MBEDTLS_PKCS1_V21)
2169 /*
2170  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2171  */
mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,mbedtls_md_type_t mgf1_hash_id,int expected_salt_len,const unsigned char * sig)2172 int mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_rsa_context *ctx,
2173                                int (*f_rng)(void *, unsigned char *, size_t),
2174                                void *p_rng,
2175                                int mode,
2176                                mbedtls_md_type_t md_alg,
2177                                unsigned int hashlen,
2178                                const unsigned char *hash,
2179                                mbedtls_md_type_t mgf1_hash_id,
2180                                int expected_salt_len,
2181                                const unsigned char *sig )
2182 {
2183     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2184     size_t siglen;
2185     unsigned char *p;
2186     unsigned char *hash_start;
2187     unsigned char result[MBEDTLS_MD_MAX_SIZE];
2188     unsigned char zeros[8];
2189     unsigned int hlen;
2190     size_t observed_salt_len, msb;
2191     const mbedtls_md_info_t *md_info;
2192     mbedtls_md_context_t md_ctx;
2193     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
2194 
2195     RSA_VALIDATE_RET( ctx != NULL );
2196     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2197                       mode == MBEDTLS_RSA_PUBLIC );
2198     RSA_VALIDATE_RET( sig != NULL );
2199     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2200                         hashlen == 0 ) ||
2201                       hash != NULL );
2202 
2203     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
2204         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2205 
2206     siglen = ctx->len;
2207 
2208     if( siglen < 16 || siglen > sizeof( buf ) )
2209         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2210 
2211     ret = ( mode == MBEDTLS_RSA_PUBLIC )
2212           ? mbedtls_rsa_public(  ctx, sig, buf )
2213           : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, buf );
2214 
2215     if( ret != 0 )
2216         return( ret );
2217 
2218     p = buf;
2219 
2220     if( buf[siglen - 1] != 0xBC )
2221         return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2222 
2223     if( md_alg != MBEDTLS_MD_NONE )
2224     {
2225         /* Gather length of hash to sign */
2226         md_info = mbedtls_md_info_from_type( md_alg );
2227         if( md_info == NULL )
2228             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2229 
2230         hashlen = mbedtls_md_get_size( md_info );
2231     }
2232 
2233     md_info = mbedtls_md_info_from_type( mgf1_hash_id );
2234     if( md_info == NULL )
2235         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2236 
2237     hlen = mbedtls_md_get_size( md_info );
2238 
2239     memset( zeros, 0, 8 );
2240 
2241     /*
2242      * Note: EMSA-PSS verification is over the length of N - 1 bits
2243      */
2244     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
2245 
2246     if( buf[0] >> ( 8 - siglen * 8 + msb ) )
2247         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2248 
2249     /* Compensate for boundary condition when applying mask */
2250     if( msb % 8 == 0 )
2251     {
2252         p++;
2253         siglen -= 1;
2254     }
2255 
2256     if( siglen < hlen + 2 )
2257         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2258     hash_start = p + siglen - hlen - 1;
2259 
2260     mbedtls_md_init( &md_ctx );
2261     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
2262         goto exit;
2263 
2264     ret = mgf_mask( p, siglen - hlen - 1, hash_start, hlen, &md_ctx );
2265     if( ret != 0 )
2266         goto exit;
2267 
2268     buf[0] &= 0xFF >> ( siglen * 8 - msb );
2269 
2270     while( p < hash_start - 1 && *p == 0 )
2271         p++;
2272 
2273     if( *p++ != 0x01 )
2274     {
2275         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2276         goto exit;
2277     }
2278 
2279     observed_salt_len = hash_start - p;
2280 
2281     if( expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
2282         observed_salt_len != (size_t) expected_salt_len )
2283     {
2284         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2285         goto exit;
2286     }
2287 
2288     /*
2289      * Generate H = Hash( M' )
2290      */
2291     ret = mbedtls_md_starts( &md_ctx );
2292     if ( ret != 0 )
2293         goto exit;
2294     ret = mbedtls_md_update( &md_ctx, zeros, 8 );
2295     if ( ret != 0 )
2296         goto exit;
2297     ret = mbedtls_md_update( &md_ctx, hash, hashlen );
2298     if ( ret != 0 )
2299         goto exit;
2300     ret = mbedtls_md_update( &md_ctx, p, observed_salt_len );
2301     if ( ret != 0 )
2302         goto exit;
2303     ret = mbedtls_md_finish( &md_ctx, result );
2304     if ( ret != 0 )
2305         goto exit;
2306 
2307     if( memcmp( hash_start, result, hlen ) != 0 )
2308     {
2309         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2310         goto exit;
2311     }
2312 
2313 exit:
2314     mbedtls_md_free( &md_ctx );
2315 
2316     return( ret );
2317 }
2318 
2319 /*
2320  * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2321  */
mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2322 int mbedtls_rsa_rsassa_pss_verify( mbedtls_rsa_context *ctx,
2323                            int (*f_rng)(void *, unsigned char *, size_t),
2324                            void *p_rng,
2325                            int mode,
2326                            mbedtls_md_type_t md_alg,
2327                            unsigned int hashlen,
2328                            const unsigned char *hash,
2329                            const unsigned char *sig )
2330 {
2331     mbedtls_md_type_t mgf1_hash_id;
2332     RSA_VALIDATE_RET( ctx != NULL );
2333     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2334                       mode == MBEDTLS_RSA_PUBLIC );
2335     RSA_VALIDATE_RET( sig != NULL );
2336     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2337                         hashlen == 0 ) ||
2338                       hash != NULL );
2339 
2340     mgf1_hash_id = ( ctx->hash_id != MBEDTLS_MD_NONE )
2341                              ? (mbedtls_md_type_t) ctx->hash_id
2342                              : md_alg;
2343 
2344     return( mbedtls_rsa_rsassa_pss_verify_ext( ctx, f_rng, p_rng, mode,
2345                                        md_alg, hashlen, hash,
2346                                        mgf1_hash_id, MBEDTLS_RSA_SALT_LEN_ANY,
2347                                        sig ) );
2348 
2349 }
2350 #endif /* MBEDTLS_PKCS1_V21 */
2351 
2352 #if defined(MBEDTLS_PKCS1_V15)
2353 /*
2354  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
2355  */
mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2356 int mbedtls_rsa_rsassa_pkcs1_v15_verify( mbedtls_rsa_context *ctx,
2357                                  int (*f_rng)(void *, unsigned char *, size_t),
2358                                  void *p_rng,
2359                                  int mode,
2360                                  mbedtls_md_type_t md_alg,
2361                                  unsigned int hashlen,
2362                                  const unsigned char *hash,
2363                                  const unsigned char *sig )
2364 {
2365     int ret = 0;
2366     size_t sig_len;
2367     unsigned char *encoded = NULL, *encoded_expected = NULL;
2368 
2369     RSA_VALIDATE_RET( ctx != NULL );
2370     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2371                       mode == MBEDTLS_RSA_PUBLIC );
2372     RSA_VALIDATE_RET( sig != NULL );
2373     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2374                         hashlen == 0 ) ||
2375                       hash != NULL );
2376 
2377     sig_len = ctx->len;
2378 
2379     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
2380         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2381 
2382     /*
2383      * Prepare expected PKCS1 v1.5 encoding of hash.
2384      */
2385 
2386     if( ( encoded          = mbedtls_calloc( 1, sig_len ) ) == NULL ||
2387         ( encoded_expected = mbedtls_calloc( 1, sig_len ) ) == NULL )
2388     {
2389         ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
2390         goto cleanup;
2391     }
2392 
2393     if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash, sig_len,
2394                                              encoded_expected ) ) != 0 )
2395         goto cleanup;
2396 
2397     /*
2398      * Apply RSA primitive to get what should be PKCS1 encoded hash.
2399      */
2400 
2401     ret = ( mode == MBEDTLS_RSA_PUBLIC )
2402           ? mbedtls_rsa_public(  ctx, sig, encoded )
2403           : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, encoded );
2404     if( ret != 0 )
2405         goto cleanup;
2406 
2407     /*
2408      * Compare
2409      */
2410 
2411     if( ( ret = mbedtls_safer_memcmp( encoded, encoded_expected,
2412                                       sig_len ) ) != 0 )
2413     {
2414         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2415         goto cleanup;
2416     }
2417 
2418 cleanup:
2419 
2420     if( encoded != NULL )
2421     {
2422         mbedtls_platform_zeroize( encoded, sig_len );
2423         mbedtls_free( encoded );
2424     }
2425 
2426     if( encoded_expected != NULL )
2427     {
2428         mbedtls_platform_zeroize( encoded_expected, sig_len );
2429         mbedtls_free( encoded_expected );
2430     }
2431 
2432     return( ret );
2433 }
2434 #endif /* MBEDTLS_PKCS1_V15 */
2435 
2436 /*
2437  * Do an RSA operation and check the message digest
2438  */
mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2439 int mbedtls_rsa_pkcs1_verify( mbedtls_rsa_context *ctx,
2440                       int (*f_rng)(void *, unsigned char *, size_t),
2441                       void *p_rng,
2442                       int mode,
2443                       mbedtls_md_type_t md_alg,
2444                       unsigned int hashlen,
2445                       const unsigned char *hash,
2446                       const unsigned char *sig )
2447 {
2448     RSA_VALIDATE_RET( ctx != NULL );
2449     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2450                       mode == MBEDTLS_RSA_PUBLIC );
2451     RSA_VALIDATE_RET( sig != NULL );
2452     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2453                         hashlen == 0 ) ||
2454                       hash != NULL );
2455 
2456     switch( ctx->padding )
2457     {
2458 #if defined(MBEDTLS_PKCS1_V15)
2459         case MBEDTLS_RSA_PKCS_V15:
2460             return mbedtls_rsa_rsassa_pkcs1_v15_verify( ctx, f_rng, p_rng, mode, md_alg,
2461                                                 hashlen, hash, sig );
2462 #endif
2463 
2464 #if defined(MBEDTLS_PKCS1_V21)
2465         case MBEDTLS_RSA_PKCS_V21:
2466             return mbedtls_rsa_rsassa_pss_verify( ctx, f_rng, p_rng, mode, md_alg,
2467                                           hashlen, hash, sig );
2468 #endif
2469 
2470         default:
2471             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2472     }
2473 }
2474 
2475 /*
2476  * Copy the components of an RSA key
2477  */
mbedtls_rsa_copy(mbedtls_rsa_context * dst,const mbedtls_rsa_context * src)2478 int mbedtls_rsa_copy( mbedtls_rsa_context *dst, const mbedtls_rsa_context *src )
2479 {
2480     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2481     RSA_VALIDATE_RET( dst != NULL );
2482     RSA_VALIDATE_RET( src != NULL );
2483 
2484     dst->ver = src->ver;
2485     dst->len = src->len;
2486 
2487     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->N, &src->N ) );
2488     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->E, &src->E ) );
2489 
2490     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->D, &src->D ) );
2491     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->P, &src->P ) );
2492     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Q, &src->Q ) );
2493 
2494 #if !defined(MBEDTLS_RSA_NO_CRT)
2495     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DP, &src->DP ) );
2496     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DQ, &src->DQ ) );
2497     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->QP, &src->QP ) );
2498     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RP, &src->RP ) );
2499     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RQ, &src->RQ ) );
2500 #endif
2501 
2502     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RN, &src->RN ) );
2503 
2504     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vi, &src->Vi ) );
2505     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vf, &src->Vf ) );
2506 
2507     dst->padding = src->padding;
2508     dst->hash_id = src->hash_id;
2509 
2510 cleanup:
2511     if( ret != 0 )
2512         mbedtls_rsa_free( dst );
2513 
2514     return( ret );
2515 }
2516 
2517 /*
2518  * Free the components of an RSA key
2519  */
mbedtls_rsa_free(mbedtls_rsa_context * ctx)2520 void mbedtls_rsa_free( mbedtls_rsa_context *ctx )
2521 {
2522     if( ctx == NULL )
2523         return;
2524 
2525     mbedtls_mpi_free( &ctx->Vi );
2526     mbedtls_mpi_free( &ctx->Vf );
2527     mbedtls_mpi_free( &ctx->RN );
2528     mbedtls_mpi_free( &ctx->D  );
2529     mbedtls_mpi_free( &ctx->Q  );
2530     mbedtls_mpi_free( &ctx->P  );
2531     mbedtls_mpi_free( &ctx->E  );
2532     mbedtls_mpi_free( &ctx->N  );
2533 
2534 #if !defined(MBEDTLS_RSA_NO_CRT)
2535     mbedtls_mpi_free( &ctx->RQ );
2536     mbedtls_mpi_free( &ctx->RP );
2537     mbedtls_mpi_free( &ctx->QP );
2538     mbedtls_mpi_free( &ctx->DQ );
2539     mbedtls_mpi_free( &ctx->DP );
2540 #endif /* MBEDTLS_RSA_NO_CRT */
2541 
2542 #if defined(MBEDTLS_THREADING_C)
2543     mbedtls_mutex_free( &ctx->mutex );
2544 #endif
2545 }
2546 
2547 #endif /* !MBEDTLS_RSA_ALT */
2548 
2549 #if defined(MBEDTLS_SELF_TEST)
2550 
2551 #include "mbedtls/sha1.h"
2552 
2553 /*
2554  * Example RSA-1024 keypair, for test purposes
2555  */
2556 #define KEY_LEN 128
2557 
2558 #define RSA_N   "9292758453063D803DD603D5E777D788" \
2559                 "8ED1D5BF35786190FA2F23EBC0848AEA" \
2560                 "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
2561                 "7130B9CED7ACDF54CFC7555AC14EEBAB" \
2562                 "93A89813FBF3C4F8066D2D800F7C38A8" \
2563                 "1AE31942917403FF4946B0A83D3D3E05" \
2564                 "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
2565                 "5E94BB77B07507233A0BC7BAC8F90F79"
2566 
2567 #define RSA_E   "10001"
2568 
2569 #define RSA_D   "24BF6185468786FDD303083D25E64EFC" \
2570                 "66CA472BC44D253102F8B4A9D3BFA750" \
2571                 "91386C0077937FE33FA3252D28855837" \
2572                 "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
2573                 "DF79C5CE07EE72C7F123142198164234" \
2574                 "CABB724CF78B8173B9F880FC86322407" \
2575                 "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
2576                 "071513A1E85B5DFA031F21ECAE91A34D"
2577 
2578 #define RSA_P   "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
2579                 "2C01CAD19EA484A87EA4377637E75500" \
2580                 "FCB2005C5C7DD6EC4AC023CDA285D796" \
2581                 "C3D9E75E1EFC42488BB4F1D13AC30A57"
2582 
2583 #define RSA_Q   "C000DF51A7C77AE8D7C7370C1FF55B69" \
2584                 "E211C2B9E5DB1ED0BF61D0D9899620F4" \
2585                 "910E4168387E3C30AA1E00C339A79508" \
2586                 "8452DD96A9A5EA5D9DCA68DA636032AF"
2587 
2588 #define PT_LEN  24
2589 #define RSA_PT  "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
2590                 "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
2591 
2592 #if defined(MBEDTLS_PKCS1_V15)
myrand(void * rng_state,unsigned char * output,size_t len)2593 static int myrand( void *rng_state, unsigned char *output, size_t len )
2594 {
2595 #if !defined(__OpenBSD__) && !defined(__NetBSD__)
2596     size_t i;
2597 
2598     if( rng_state != NULL )
2599         rng_state  = NULL;
2600 
2601     for( i = 0; i < len; ++i )
2602         output[i] = rand();
2603 #else
2604     if( rng_state != NULL )
2605         rng_state = NULL;
2606 
2607     arc4random_buf( output, len );
2608 #endif /* !OpenBSD && !NetBSD */
2609 
2610     return( 0 );
2611 }
2612 #endif /* MBEDTLS_PKCS1_V15 */
2613 
2614 /*
2615  * Checkup routine
2616  */
mbedtls_rsa_self_test(int verbose)2617 int mbedtls_rsa_self_test( int verbose )
2618 {
2619     int ret = 0;
2620 #if defined(MBEDTLS_PKCS1_V15)
2621     size_t len;
2622     mbedtls_rsa_context rsa;
2623     unsigned char rsa_plaintext[PT_LEN];
2624     unsigned char rsa_decrypted[PT_LEN];
2625     unsigned char rsa_ciphertext[KEY_LEN];
2626 #if defined(MBEDTLS_SHA1_C)
2627     unsigned char sha1sum[20];
2628 #endif
2629 
2630     mbedtls_mpi K;
2631 
2632     mbedtls_mpi_init( &K );
2633     mbedtls_rsa_init( &rsa, MBEDTLS_RSA_PKCS_V15, 0 );
2634 
2635     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_N  ) );
2636     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, &K, NULL, NULL, NULL, NULL ) );
2637     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_P  ) );
2638     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, &K, NULL, NULL, NULL ) );
2639     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_Q  ) );
2640     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, &K, NULL, NULL ) );
2641     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_D  ) );
2642     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, &K, NULL ) );
2643     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_E  ) );
2644     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, NULL, &K ) );
2645 
2646     MBEDTLS_MPI_CHK( mbedtls_rsa_complete( &rsa ) );
2647 
2648     if( verbose != 0 )
2649         mbedtls_printf( "  RSA key validation: " );
2650 
2651     if( mbedtls_rsa_check_pubkey(  &rsa ) != 0 ||
2652         mbedtls_rsa_check_privkey( &rsa ) != 0 )
2653     {
2654         if( verbose != 0 )
2655             mbedtls_printf( "failed\n" );
2656 
2657         ret = 1;
2658         goto cleanup;
2659     }
2660 
2661     if( verbose != 0 )
2662         mbedtls_printf( "passed\n  PKCS#1 encryption : " );
2663 
2664     memcpy( rsa_plaintext, RSA_PT, PT_LEN );
2665 
2666     if( mbedtls_rsa_pkcs1_encrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PUBLIC,
2667                                    PT_LEN, rsa_plaintext,
2668                                    rsa_ciphertext ) != 0 )
2669     {
2670         if( verbose != 0 )
2671             mbedtls_printf( "failed\n" );
2672 
2673         ret = 1;
2674         goto cleanup;
2675     }
2676 
2677     if( verbose != 0 )
2678         mbedtls_printf( "passed\n  PKCS#1 decryption : " );
2679 
2680     if( mbedtls_rsa_pkcs1_decrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PRIVATE,
2681                                    &len, rsa_ciphertext, rsa_decrypted,
2682                                    sizeof(rsa_decrypted) ) != 0 )
2683     {
2684         if( verbose != 0 )
2685             mbedtls_printf( "failed\n" );
2686 
2687         ret = 1;
2688         goto cleanup;
2689     }
2690 
2691     if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
2692     {
2693         if( verbose != 0 )
2694             mbedtls_printf( "failed\n" );
2695 
2696         ret = 1;
2697         goto cleanup;
2698     }
2699 
2700     if( verbose != 0 )
2701         mbedtls_printf( "passed\n" );
2702 
2703 #if defined(MBEDTLS_SHA1_C)
2704     if( verbose != 0 )
2705         mbedtls_printf( "  PKCS#1 data sign  : " );
2706 
2707     if( mbedtls_sha1_ret( rsa_plaintext, PT_LEN, sha1sum ) != 0 )
2708     {
2709         if( verbose != 0 )
2710             mbedtls_printf( "failed\n" );
2711 
2712         return( 1 );
2713     }
2714 
2715     if( mbedtls_rsa_pkcs1_sign( &rsa, myrand, NULL,
2716                                 MBEDTLS_RSA_PRIVATE, MBEDTLS_MD_SHA1, 0,
2717                                 sha1sum, rsa_ciphertext ) != 0 )
2718     {
2719         if( verbose != 0 )
2720             mbedtls_printf( "failed\n" );
2721 
2722         ret = 1;
2723         goto cleanup;
2724     }
2725 
2726     if( verbose != 0 )
2727         mbedtls_printf( "passed\n  PKCS#1 sig. verify: " );
2728 
2729     if( mbedtls_rsa_pkcs1_verify( &rsa, NULL, NULL,
2730                                   MBEDTLS_RSA_PUBLIC, MBEDTLS_MD_SHA1, 0,
2731                                   sha1sum, rsa_ciphertext ) != 0 )
2732     {
2733         if( verbose != 0 )
2734             mbedtls_printf( "failed\n" );
2735 
2736         ret = 1;
2737         goto cleanup;
2738     }
2739 
2740     if( verbose != 0 )
2741         mbedtls_printf( "passed\n" );
2742 #endif /* MBEDTLS_SHA1_C */
2743 
2744     if( verbose != 0 )
2745         mbedtls_printf( "\n" );
2746 
2747 cleanup:
2748     mbedtls_mpi_free( &K );
2749     mbedtls_rsa_free( &rsa );
2750 #else /* MBEDTLS_PKCS1_V15 */
2751     ((void) verbose);
2752 #endif /* MBEDTLS_PKCS1_V15 */
2753     return( ret );
2754 }
2755 
2756 #endif /* MBEDTLS_SELF_TEST */
2757 
2758 #endif /* MBEDTLS_RSA_C */
2759