1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              S E M _ C H 3                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2018, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;   use Aspects;
27with Atree;     use Atree;
28with Checks;    use Checks;
29with Contracts; use Contracts;
30with Debug;     use Debug;
31with Elists;    use Elists;
32with Einfo;     use Einfo;
33with Errout;    use Errout;
34with Eval_Fat;  use Eval_Fat;
35with Exp_Ch3;   use Exp_Ch3;
36with Exp_Ch9;   use Exp_Ch9;
37with Exp_Disp;  use Exp_Disp;
38with Exp_Dist;  use Exp_Dist;
39with Exp_Tss;   use Exp_Tss;
40with Exp_Util;  use Exp_Util;
41with Freeze;    use Freeze;
42with Ghost;     use Ghost;
43with Itypes;    use Itypes;
44with Layout;    use Layout;
45with Lib;       use Lib;
46with Lib.Xref;  use Lib.Xref;
47with Namet;     use Namet;
48with Nmake;     use Nmake;
49with Opt;       use Opt;
50with Restrict;  use Restrict;
51with Rident;    use Rident;
52with Rtsfind;   use Rtsfind;
53with Sem;       use Sem;
54with Sem_Aux;   use Sem_Aux;
55with Sem_Case;  use Sem_Case;
56with Sem_Cat;   use Sem_Cat;
57with Sem_Ch6;   use Sem_Ch6;
58with Sem_Ch7;   use Sem_Ch7;
59with Sem_Ch8;   use Sem_Ch8;
60with Sem_Ch13;  use Sem_Ch13;
61with Sem_Dim;   use Sem_Dim;
62with Sem_Disp;  use Sem_Disp;
63with Sem_Dist;  use Sem_Dist;
64with Sem_Elab;  use Sem_Elab;
65with Sem_Elim;  use Sem_Elim;
66with Sem_Eval;  use Sem_Eval;
67with Sem_Mech;  use Sem_Mech;
68with Sem_Res;   use Sem_Res;
69with Sem_Smem;  use Sem_Smem;
70with Sem_Type;  use Sem_Type;
71with Sem_Util;  use Sem_Util;
72with Sem_Warn;  use Sem_Warn;
73with Stand;     use Stand;
74with Sinfo;     use Sinfo;
75with Sinput;    use Sinput;
76with Snames;    use Snames;
77with Targparm;  use Targparm;
78with Tbuild;    use Tbuild;
79with Ttypes;    use Ttypes;
80with Uintp;     use Uintp;
81with Urealp;    use Urealp;
82
83package body Sem_Ch3 is
84
85   -----------------------
86   -- Local Subprograms --
87   -----------------------
88
89   procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90   --  Ada 2005 (AI-251): Add the tag components corresponding to all the
91   --  abstract interface types implemented by a record type or a derived
92   --  record type.
93
94   procedure Build_Derived_Type
95     (N             : Node_Id;
96      Parent_Type   : Entity_Id;
97      Derived_Type  : Entity_Id;
98      Is_Completion : Boolean;
99      Derive_Subps  : Boolean := True);
100   --  Create and decorate a Derived_Type given the Parent_Type entity. N is
101   --  the N_Full_Type_Declaration node containing the derived type definition.
102   --  Parent_Type is the entity for the parent type in the derived type
103   --  definition and Derived_Type the actual derived type. Is_Completion must
104   --  be set to False if Derived_Type is the N_Defining_Identifier node in N
105   --  (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106   --  completion of a private type declaration. If Is_Completion is set to
107   --  True, N is the completion of a private type declaration and Derived_Type
108   --  is different from the defining identifier inside N (i.e. Derived_Type /=
109   --  Defining_Identifier (N)). Derive_Subps indicates whether the parent
110   --  subprograms should be derived. The only case where this parameter is
111   --  False is when Build_Derived_Type is recursively called to process an
112   --  implicit derived full type for a type derived from a private type (in
113   --  that case the subprograms must only be derived for the private view of
114   --  the type).
115   --
116   --  ??? These flags need a bit of re-examination and re-documentation:
117   --  ???  are they both necessary (both seem related to the recursion)?
118
119   procedure Build_Derived_Access_Type
120     (N            : Node_Id;
121      Parent_Type  : Entity_Id;
122      Derived_Type : Entity_Id);
123   --  Subsidiary procedure to Build_Derived_Type. For a derived access type,
124   --  create an implicit base if the parent type is constrained or if the
125   --  subtype indication has a constraint.
126
127   procedure Build_Derived_Array_Type
128     (N            : Node_Id;
129      Parent_Type  : Entity_Id;
130      Derived_Type : Entity_Id);
131   --  Subsidiary procedure to Build_Derived_Type. For a derived array type,
132   --  create an implicit base if the parent type is constrained or if the
133   --  subtype indication has a constraint.
134
135   procedure Build_Derived_Concurrent_Type
136     (N            : Node_Id;
137      Parent_Type  : Entity_Id;
138      Derived_Type : Entity_Id);
139   --  Subsidiary procedure to Build_Derived_Type. For a derived task or
140   --  protected type, inherit entries and protected subprograms, check
141   --  legality of discriminant constraints if any.
142
143   procedure Build_Derived_Enumeration_Type
144     (N            : Node_Id;
145      Parent_Type  : Entity_Id;
146      Derived_Type : Entity_Id);
147   --  Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148   --  type, we must create a new list of literals. Types derived from
149   --  Character and [Wide_]Wide_Character are special-cased.
150
151   procedure Build_Derived_Numeric_Type
152     (N            : Node_Id;
153      Parent_Type  : Entity_Id;
154      Derived_Type : Entity_Id);
155   --  Subsidiary procedure to Build_Derived_Type. For numeric types, create
156   --  an anonymous base type, and propagate constraint to subtype if needed.
157
158   procedure Build_Derived_Private_Type
159     (N             : Node_Id;
160      Parent_Type   : Entity_Id;
161      Derived_Type  : Entity_Id;
162      Is_Completion : Boolean;
163      Derive_Subps  : Boolean := True);
164   --  Subsidiary procedure to Build_Derived_Type. This procedure is complex
165   --  because the parent may or may not have a completion, and the derivation
166   --  may itself be a completion.
167
168   procedure Build_Derived_Record_Type
169     (N            : Node_Id;
170      Parent_Type  : Entity_Id;
171      Derived_Type : Entity_Id;
172      Derive_Subps : Boolean := True);
173   --  Subsidiary procedure used for tagged and untagged record types
174   --  by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175   --  All parameters are as in Build_Derived_Type except that N, in
176   --  addition to being an N_Full_Type_Declaration node, can also be an
177   --  N_Private_Extension_Declaration node. See the definition of this routine
178   --  for much more info. Derive_Subps indicates whether subprograms should be
179   --  derived from the parent type. The only case where Derive_Subps is False
180   --  is for an implicit derived full type for a type derived from a private
181   --  type (see Build_Derived_Type).
182
183   procedure Build_Discriminal (Discrim : Entity_Id);
184   --  Create the discriminal corresponding to discriminant Discrim, that is
185   --  the parameter corresponding to Discrim to be used in initialization
186   --  procedures for the type where Discrim is a discriminant. Discriminals
187   --  are not used during semantic analysis, and are not fully defined
188   --  entities until expansion. Thus they are not given a scope until
189   --  initialization procedures are built.
190
191   function Build_Discriminant_Constraints
192     (T           : Entity_Id;
193      Def         : Node_Id;
194      Derived_Def : Boolean := False) return Elist_Id;
195   --  Validate discriminant constraints and return the list of the constraints
196   --  in order of discriminant declarations, where T is the discriminated
197   --  unconstrained type. Def is the N_Subtype_Indication node where the
198   --  discriminants constraints for T are specified. Derived_Def is True
199   --  when building the discriminant constraints in a derived type definition
200   --  of the form "type D (...) is new T (xxx)". In this case T is the parent
201   --  type and Def is the constraint "(xxx)" on T and this routine sets the
202   --  Corresponding_Discriminant field of the discriminants in the derived
203   --  type D to point to the corresponding discriminants in the parent type T.
204
205   procedure Build_Discriminated_Subtype
206     (T           : Entity_Id;
207      Def_Id      : Entity_Id;
208      Elist       : Elist_Id;
209      Related_Nod : Node_Id;
210      For_Access  : Boolean := False);
211   --  Subsidiary procedure to Constrain_Discriminated_Type and to
212   --  Process_Incomplete_Dependents. Given
213   --
214   --     T (a possibly discriminated base type)
215   --     Def_Id (a very partially built subtype for T),
216   --
217   --  the call completes Def_Id to be the appropriate E_*_Subtype.
218   --
219   --  The Elist is the list of discriminant constraints if any (it is set
220   --  to No_Elist if T is not a discriminated type, and to an empty list if
221   --  T has discriminants but there are no discriminant constraints). The
222   --  Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223   --  The For_Access says whether or not this subtype is really constraining
224   --  an access type. That is its sole purpose is the designated type of an
225   --  access type -- in which case a Private_Subtype Is_For_Access_Subtype
226   --  is built to avoid freezing T when the access subtype is frozen.
227
228   function Build_Scalar_Bound
229     (Bound : Node_Id;
230      Par_T : Entity_Id;
231      Der_T : Entity_Id) return Node_Id;
232   --  The bounds of a derived scalar type are conversions of the bounds of
233   --  the parent type. Optimize the representation if the bounds are literals.
234   --  Needs a more complete spec--what are the parameters exactly, and what
235   --  exactly is the returned value, and how is Bound affected???
236
237   procedure Build_Underlying_Full_View
238     (N   : Node_Id;
239      Typ : Entity_Id;
240      Par : Entity_Id);
241   --  If the completion of a private type is itself derived from a private
242   --  type, or if the full view of a private subtype is itself private, the
243   --  back-end has no way to compute the actual size of this type. We build
244   --  an internal subtype declaration of the proper parent type to convey
245   --  this information. This extra mechanism is needed because a full
246   --  view cannot itself have a full view (it would get clobbered during
247   --  view exchanges).
248
249   procedure Check_Access_Discriminant_Requires_Limited
250     (D   : Node_Id;
251      Loc : Node_Id);
252   --  Check the restriction that the type to which an access discriminant
253   --  belongs must be a concurrent type or a descendant of a type with
254   --  the reserved word 'limited' in its declaration.
255
256   procedure Check_Anonymous_Access_Components
257      (Typ_Decl  : Node_Id;
258       Typ       : Entity_Id;
259       Prev      : Entity_Id;
260       Comp_List : Node_Id);
261   --  Ada 2005 AI-382: an access component in a record definition can refer to
262   --  the enclosing record, in which case it denotes the type itself, and not
263   --  the current instance of the type. We create an anonymous access type for
264   --  the component, and flag it as an access to a component, so accessibility
265   --  checks are properly performed on it. The declaration of the access type
266   --  is placed ahead of that of the record to prevent order-of-elaboration
267   --  circularity issues in Gigi. We create an incomplete type for the record
268   --  declaration, which is the designated type of the anonymous access.
269
270   procedure Check_Delta_Expression (E : Node_Id);
271   --  Check that the expression represented by E is suitable for use as a
272   --  delta expression, i.e. it is of real type and is static.
273
274   procedure Check_Digits_Expression (E : Node_Id);
275   --  Check that the expression represented by E is suitable for use as a
276   --  digits expression, i.e. it is of integer type, positive and static.
277
278   procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279   --  Validate the initialization of an object declaration. T is the required
280   --  type, and Exp is the initialization expression.
281
282   procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283   --  Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
284
285   procedure Check_Or_Process_Discriminants
286     (N    : Node_Id;
287      T    : Entity_Id;
288      Prev : Entity_Id := Empty);
289   --  If N is the full declaration of the completion T of an incomplete or
290   --  private type, check its discriminants (which are already known to be
291   --  conformant with those of the partial view, see Find_Type_Name),
292   --  otherwise process them. Prev is the entity of the partial declaration,
293   --  if any.
294
295   procedure Check_Real_Bound (Bound : Node_Id);
296   --  Check given bound for being of real type and static. If not, post an
297   --  appropriate message, and rewrite the bound with the real literal zero.
298
299   procedure Constant_Redeclaration
300     (Id : Entity_Id;
301      N  : Node_Id;
302      T  : out Entity_Id);
303   --  Various checks on legality of full declaration of deferred constant.
304   --  Id is the entity for the redeclaration, N is the N_Object_Declaration,
305   --  node. The caller has not yet set any attributes of this entity.
306
307   function Contain_Interface
308     (Iface  : Entity_Id;
309      Ifaces : Elist_Id) return Boolean;
310   --  Ada 2005: Determine whether Iface is present in the list Ifaces
311
312   procedure Convert_Scalar_Bounds
313     (N            : Node_Id;
314      Parent_Type  : Entity_Id;
315      Derived_Type : Entity_Id;
316      Loc          : Source_Ptr);
317   --  For derived scalar types, convert the bounds in the type definition to
318   --  the derived type, and complete their analysis. Given a constraint of the
319   --  form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320   --  T'Base, the parent_type. The bounds of the derived type (the anonymous
321   --  base) are copies of Lo and Hi. Finally, the bounds of the derived
322   --  subtype are conversions of those bounds to the derived_type, so that
323   --  their typing is consistent.
324
325   procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326   --  Copies attributes from array base type T2 to array base type T1. Copies
327   --  only attributes that apply to base types, but not subtypes.
328
329   procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330   --  Copies attributes from array subtype T2 to array subtype T1. Copies
331   --  attributes that apply to both subtypes and base types.
332
333   procedure Create_Constrained_Components
334     (Subt        : Entity_Id;
335      Decl_Node   : Node_Id;
336      Typ         : Entity_Id;
337      Constraints : Elist_Id);
338   --  Build the list of entities for a constrained discriminated record
339   --  subtype. If a component depends on a discriminant, replace its subtype
340   --  using the discriminant values in the discriminant constraint. Subt
341   --  is the defining identifier for the subtype whose list of constrained
342   --  entities we will create. Decl_Node is the type declaration node where
343   --  we will attach all the itypes created. Typ is the base discriminated
344   --  type for the subtype Subt. Constraints is the list of discriminant
345   --  constraints for Typ.
346
347   function Constrain_Component_Type
348     (Comp            : Entity_Id;
349      Constrained_Typ : Entity_Id;
350      Related_Node    : Node_Id;
351      Typ             : Entity_Id;
352      Constraints     : Elist_Id) return Entity_Id;
353   --  Given a discriminated base type Typ, a list of discriminant constraints,
354   --  Constraints, for Typ and a component Comp of Typ, create and return the
355   --  type corresponding to Etype (Comp) where all discriminant references
356   --  are replaced with the corresponding constraint. If Etype (Comp) contains
357   --  no discriminant references then it is returned as-is. Constrained_Typ
358   --  is the final constrained subtype to which the constrained component
359   --  belongs. Related_Node is the node where we attach all created itypes.
360
361   procedure Constrain_Access
362     (Def_Id      : in out Entity_Id;
363      S           : Node_Id;
364      Related_Nod : Node_Id);
365   --  Apply a list of constraints to an access type. If Def_Id is empty, it is
366   --  an anonymous type created for a subtype indication. In that case it is
367   --  created in the procedure and attached to Related_Nod.
368
369   procedure Constrain_Array
370     (Def_Id      : in out Entity_Id;
371      SI          : Node_Id;
372      Related_Nod : Node_Id;
373      Related_Id  : Entity_Id;
374      Suffix      : Character);
375   --  Apply a list of index constraints to an unconstrained array type. The
376   --  first parameter is the entity for the resulting subtype. A value of
377   --  Empty for Def_Id indicates that an implicit type must be created, but
378   --  creation is delayed (and must be done by this procedure) because other
379   --  subsidiary implicit types must be created first (which is why Def_Id
380   --  is an in/out parameter). The second parameter is a subtype indication
381   --  node for the constrained array to be created (e.g. something of the
382   --  form string (1 .. 10)). Related_Nod gives the place where this type
383   --  has to be inserted in the tree. The Related_Id and Suffix parameters
384   --  are used to build the associated Implicit type name.
385
386   procedure Constrain_Concurrent
387     (Def_Id      : in out Entity_Id;
388      SI          : Node_Id;
389      Related_Nod : Node_Id;
390      Related_Id  : Entity_Id;
391      Suffix      : Character);
392   --  Apply list of discriminant constraints to an unconstrained concurrent
393   --  type.
394   --
395   --    SI is the N_Subtype_Indication node containing the constraint and
396   --    the unconstrained type to constrain.
397   --
398   --    Def_Id is the entity for the resulting constrained subtype. A value
399   --    of Empty for Def_Id indicates that an implicit type must be created,
400   --    but creation is delayed (and must be done by this procedure) because
401   --    other subsidiary implicit types must be created first (which is why
402   --    Def_Id is an in/out parameter).
403   --
404   --    Related_Nod gives the place where this type has to be inserted
405   --    in the tree.
406   --
407   --  The last two arguments are used to create its external name if needed.
408
409   function Constrain_Corresponding_Record
410     (Prot_Subt   : Entity_Id;
411      Corr_Rec    : Entity_Id;
412      Related_Nod : Node_Id) return Entity_Id;
413   --  When constraining a protected type or task type with discriminants,
414   --  constrain the corresponding record with the same discriminant values.
415
416   procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
417   --  Constrain a decimal fixed point type with a digits constraint and/or a
418   --  range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
419
420   procedure Constrain_Discriminated_Type
421     (Def_Id      : Entity_Id;
422      S           : Node_Id;
423      Related_Nod : Node_Id;
424      For_Access  : Boolean := False);
425   --  Process discriminant constraints of composite type. Verify that values
426   --  have been provided for all discriminants, that the original type is
427   --  unconstrained, and that the types of the supplied expressions match
428   --  the discriminant types. The first three parameters are like in routine
429   --  Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
430   --  of For_Access.
431
432   procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
433   --  Constrain an enumeration type with a range constraint. This is identical
434   --  to Constrain_Integer, but for the Ekind of the resulting subtype.
435
436   procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
437   --  Constrain a floating point type with either a digits constraint
438   --  and/or a range constraint, building a E_Floating_Point_Subtype.
439
440   procedure Constrain_Index
441     (Index        : Node_Id;
442      S            : Node_Id;
443      Related_Nod  : Node_Id;
444      Related_Id   : Entity_Id;
445      Suffix       : Character;
446      Suffix_Index : Nat);
447   --  Process an index constraint S in a constrained array declaration. The
448   --  constraint can be a subtype name, or a range with or without an explicit
449   --  subtype mark. The index is the corresponding index of the unconstrained
450   --  array. The Related_Id and Suffix parameters are used to build the
451   --  associated Implicit type name.
452
453   procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
454   --  Build subtype of a signed or modular integer type
455
456   procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
457   --  Constrain an ordinary fixed point type with a range constraint, and
458   --  build an E_Ordinary_Fixed_Point_Subtype entity.
459
460   procedure Copy_And_Swap (Priv, Full : Entity_Id);
461   --  Copy the Priv entity into the entity of its full declaration then swap
462   --  the two entities in such a manner that the former private type is now
463   --  seen as a full type.
464
465   procedure Decimal_Fixed_Point_Type_Declaration
466     (T   : Entity_Id;
467      Def : Node_Id);
468   --  Create a new decimal fixed point type, and apply the constraint to
469   --  obtain a subtype of this new type.
470
471   procedure Complete_Private_Subtype
472     (Priv        : Entity_Id;
473      Full        : Entity_Id;
474      Full_Base   : Entity_Id;
475      Related_Nod : Node_Id);
476   --  Complete the implicit full view of a private subtype by setting the
477   --  appropriate semantic fields. If the full view of the parent is a record
478   --  type, build constrained components of subtype.
479
480   procedure Derive_Progenitor_Subprograms
481     (Parent_Type : Entity_Id;
482      Tagged_Type : Entity_Id);
483   --  Ada 2005 (AI-251): To complete type derivation, collect the primitive
484   --  operations of progenitors of Tagged_Type, and replace the subsidiary
485   --  subtypes with Tagged_Type, to build the specs of the inherited interface
486   --  primitives. The derived primitives are aliased to those of the
487   --  interface. This routine takes care also of transferring to the full view
488   --  subprograms associated with the partial view of Tagged_Type that cover
489   --  interface primitives.
490
491   procedure Derived_Standard_Character
492     (N             : Node_Id;
493      Parent_Type   : Entity_Id;
494      Derived_Type  : Entity_Id);
495   --  Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496   --  derivations from types Standard.Character and Standard.Wide_Character.
497
498   procedure Derived_Type_Declaration
499     (T             : Entity_Id;
500      N             : Node_Id;
501      Is_Completion : Boolean);
502   --  Process a derived type declaration. Build_Derived_Type is invoked
503   --  to process the actual derived type definition. Parameters N and
504   --  Is_Completion have the same meaning as in Build_Derived_Type.
505   --  T is the N_Defining_Identifier for the entity defined in the
506   --  N_Full_Type_Declaration node N, that is T is the derived type.
507
508   procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
509   --  Insert each literal in symbol table, as an overloadable identifier. Each
510   --  enumeration type is mapped into a sequence of integers, and each literal
511   --  is defined as a constant with integer value. If any of the literals are
512   --  character literals, the type is a character type, which means that
513   --  strings are legal aggregates for arrays of components of the type.
514
515   function Expand_To_Stored_Constraint
516     (Typ        : Entity_Id;
517      Constraint : Elist_Id) return Elist_Id;
518   --  Given a constraint (i.e. a list of expressions) on the discriminants of
519   --  Typ, expand it into a constraint on the stored discriminants and return
520   --  the new list of expressions constraining the stored discriminants.
521
522   function Find_Type_Of_Object
523     (Obj_Def     : Node_Id;
524      Related_Nod : Node_Id) return Entity_Id;
525   --  Get type entity for object referenced by Obj_Def, attaching the implicit
526   --  types generated to Related_Nod.
527
528   procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
529   --  Create a new float and apply the constraint to obtain subtype of it
530
531   function Has_Range_Constraint (N : Node_Id) return Boolean;
532   --  Given an N_Subtype_Indication node N, return True if a range constraint
533   --  is present, either directly, or as part of a digits or delta constraint.
534   --  In addition, a digits constraint in the decimal case returns True, since
535   --  it establishes a default range if no explicit range is present.
536
537   function Inherit_Components
538     (N             : Node_Id;
539      Parent_Base   : Entity_Id;
540      Derived_Base  : Entity_Id;
541      Is_Tagged     : Boolean;
542      Inherit_Discr : Boolean;
543      Discs         : Elist_Id) return Elist_Id;
544   --  Called from Build_Derived_Record_Type to inherit the components of
545   --  Parent_Base (a base type) into the Derived_Base (the derived base type).
546   --  For more information on derived types and component inheritance please
547   --  consult the comment above the body of Build_Derived_Record_Type.
548   --
549   --    N is the original derived type declaration
550   --
551   --    Is_Tagged is set if we are dealing with tagged types
552   --
553   --    If Inherit_Discr is set, Derived_Base inherits its discriminants from
554   --    Parent_Base, otherwise no discriminants are inherited.
555   --
556   --    Discs gives the list of constraints that apply to Parent_Base in the
557   --    derived type declaration. If Discs is set to No_Elist, then we have
558   --    the following situation:
559   --
560   --      type Parent (D1..Dn : ..) is [tagged] record ...;
561   --      type Derived is new Parent [with ...];
562   --
563   --    which gets treated as
564   --
565   --      type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
566   --
567   --  For untagged types the returned value is an association list. The list
568   --  starts from the association (Parent_Base => Derived_Base), and then it
569   --  contains a sequence of the associations of the form
570   --
571   --    (Old_Component => New_Component),
572   --
573   --  where Old_Component is the Entity_Id of a component in Parent_Base and
574   --  New_Component is the Entity_Id of the corresponding component in
575   --  Derived_Base. For untagged records, this association list is needed when
576   --  copying the record declaration for the derived base. In the tagged case
577   --  the value returned is irrelevant.
578
579   procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
580   --  Propagate static and dynamic predicate flags from a parent to the
581   --  subtype in a subtype declaration with and without constraints.
582
583   function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
584   --  Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585   --  Determine whether subprogram Subp is a procedure subject to pragma
586   --  Extensions_Visible with value False and has at least one controlling
587   --  parameter of mode OUT.
588
589   function Is_Valid_Constraint_Kind
590     (T_Kind          : Type_Kind;
591      Constraint_Kind : Node_Kind) return Boolean;
592   --  Returns True if it is legal to apply the given kind of constraint to the
593   --  given kind of type (index constraint to an array type, for example).
594
595   procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596   --  Create new modular type. Verify that modulus is in bounds
597
598   procedure New_Concatenation_Op (Typ : Entity_Id);
599   --  Create an abbreviated declaration for an operator in order to
600   --  materialize concatenation on array types.
601
602   procedure Ordinary_Fixed_Point_Type_Declaration
603     (T   : Entity_Id;
604      Def : Node_Id);
605   --  Create a new ordinary fixed point type, and apply the constraint to
606   --  obtain subtype of it.
607
608   procedure Prepare_Private_Subtype_Completion
609     (Id          : Entity_Id;
610      Related_Nod : Node_Id);
611   --  Id is a subtype of some private type. Creates the full declaration
612   --  associated with Id whenever possible, i.e. when the full declaration
613   --  of the base type is already known. Records each subtype into
614   --  Private_Dependents of the base type.
615
616   procedure Process_Incomplete_Dependents
617     (N      : Node_Id;
618      Full_T : Entity_Id;
619      Inc_T  : Entity_Id);
620   --  Process all entities that depend on an incomplete type. There include
621   --  subtypes, subprogram types that mention the incomplete type in their
622   --  profiles, and subprogram with access parameters that designate the
623   --  incomplete type.
624
625   --  Inc_T is the defining identifier of an incomplete type declaration, its
626   --  Ekind is E_Incomplete_Type.
627   --
628   --    N is the corresponding N_Full_Type_Declaration for Inc_T.
629   --
630   --    Full_T is N's defining identifier.
631   --
632   --  Subtypes of incomplete types with discriminants are completed when the
633   --  parent type is. This is simpler than private subtypes, because they can
634   --  only appear in the same scope, and there is no need to exchange views.
635   --  Similarly, access_to_subprogram types may have a parameter or a return
636   --  type that is an incomplete type, and that must be replaced with the
637   --  full type.
638   --
639   --  If the full type is tagged, subprogram with access parameters that
640   --  designated the incomplete may be primitive operations of the full type,
641   --  and have to be processed accordingly.
642
643   procedure Process_Real_Range_Specification (Def : Node_Id);
644   --  Given the type definition for a real type, this procedure processes and
645   --  checks the real range specification of this type definition if one is
646   --  present. If errors are found, error messages are posted, and the
647   --  Real_Range_Specification of Def is reset to Empty.
648
649   procedure Record_Type_Declaration
650     (T    : Entity_Id;
651      N    : Node_Id;
652      Prev : Entity_Id);
653   --  Process a record type declaration (for both untagged and tagged
654   --  records). Parameters T and N are exactly like in procedure
655   --  Derived_Type_Declaration, except that no flag Is_Completion is needed
656   --  for this routine. If this is the completion of an incomplete type
657   --  declaration, Prev is the entity of the incomplete declaration, used for
658   --  cross-referencing. Otherwise Prev = T.
659
660   procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
661   --  This routine is used to process the actual record type definition (both
662   --  for untagged and tagged records). Def is a record type definition node.
663   --  This procedure analyzes the components in this record type definition.
664   --  Prev_T is the entity for the enclosing record type. It is provided so
665   --  that its Has_Task flag can be set if any of the component have Has_Task
666   --  set. If the declaration is the completion of an incomplete type
667   --  declaration, Prev_T is the original incomplete type, whose full view is
668   --  the record type.
669
670   procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
671   --  Subsidiary to Build_Derived_Record_Type. For untagged records, we
672   --  build a copy of the declaration tree of the parent, and we create
673   --  independently the list of components for the derived type. Semantic
674   --  information uses the component entities, but record representation
675   --  clauses are validated on the declaration tree. This procedure replaces
676   --  discriminants and components in the declaration with those that have
677   --  been created by Inherit_Components.
678
679   procedure Set_Fixed_Range
680     (E   : Entity_Id;
681      Loc : Source_Ptr;
682      Lo  : Ureal;
683      Hi  : Ureal);
684   --  Build a range node with the given bounds and set it as the Scalar_Range
685   --  of the given fixed-point type entity. Loc is the source location used
686   --  for the constructed range. See body for further details.
687
688   procedure Set_Scalar_Range_For_Subtype
689     (Def_Id : Entity_Id;
690      R      : Node_Id;
691      Subt   : Entity_Id);
692   --  This routine is used to set the scalar range field for a subtype given
693   --  Def_Id, the entity for the subtype, and R, the range expression for the
694   --  scalar range. Subt provides the parent subtype to be used to analyze,
695   --  resolve, and check the given range.
696
697   procedure Set_Default_SSO (T : Entity_Id);
698   --  T is the entity for an array or record being declared. This procedure
699   --  sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
700   --  to the setting of Opt.Default_SSO.
701
702   procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
703   --  Create a new signed integer entity, and apply the constraint to obtain
704   --  the required first named subtype of this type.
705
706   procedure Set_Stored_Constraint_From_Discriminant_Constraint
707     (E : Entity_Id);
708   --  E is some record type. This routine computes E's Stored_Constraint
709   --  from its Discriminant_Constraint.
710
711   procedure Diagnose_Interface (N : Node_Id;  E : Entity_Id);
712   --  Check that an entity in a list of progenitors is an interface,
713   --  emit error otherwise.
714
715   -----------------------
716   -- Access_Definition --
717   -----------------------
718
719   function Access_Definition
720     (Related_Nod : Node_Id;
721      N           : Node_Id) return Entity_Id
722   is
723      Anon_Type           : Entity_Id;
724      Anon_Scope          : Entity_Id;
725      Desig_Type          : Entity_Id;
726      Enclosing_Prot_Type : Entity_Id := Empty;
727
728   begin
729      Check_SPARK_05_Restriction ("access type is not allowed", N);
730
731      if Is_Entry (Current_Scope)
732        and then Is_Task_Type (Etype (Scope (Current_Scope)))
733      then
734         Error_Msg_N ("task entries cannot have access parameters", N);
735         return Empty;
736      end if;
737
738      --  Ada 2005: For an object declaration the corresponding anonymous
739      --  type is declared in the current scope.
740
741      --  If the access definition is the return type of another access to
742      --  function, scope is the current one, because it is the one of the
743      --  current type declaration, except for the pathological case below.
744
745      if Nkind_In (Related_Nod, N_Object_Declaration,
746                                N_Access_Function_Definition)
747      then
748         Anon_Scope := Current_Scope;
749
750         --  A pathological case: function returning access functions that
751         --  return access functions, etc. Each anonymous access type created
752         --  is in the enclosing scope of the outermost function.
753
754         declare
755            Par : Node_Id;
756
757         begin
758            Par := Related_Nod;
759            while Nkind_In (Par, N_Access_Function_Definition,
760                                 N_Access_Definition)
761            loop
762               Par := Parent (Par);
763            end loop;
764
765            if Nkind (Par) = N_Function_Specification then
766               Anon_Scope := Scope (Defining_Entity (Par));
767            end if;
768         end;
769
770      --  For the anonymous function result case, retrieve the scope of the
771      --  function specification's associated entity rather than using the
772      --  current scope. The current scope will be the function itself if the
773      --  formal part is currently being analyzed, but will be the parent scope
774      --  in the case of a parameterless function, and we always want to use
775      --  the function's parent scope. Finally, if the function is a child
776      --  unit, we must traverse the tree to retrieve the proper entity.
777
778      elsif Nkind (Related_Nod) = N_Function_Specification
779        and then Nkind (Parent (N)) /= N_Parameter_Specification
780      then
781         --  If the current scope is a protected type, the anonymous access
782         --  is associated with one of the protected operations, and must
783         --  be available in the scope that encloses the protected declaration.
784         --  Otherwise the type is in the scope enclosing the subprogram.
785
786         --  If the function has formals, The return type of a subprogram
787         --  declaration is analyzed in the scope of the subprogram (see
788         --  Process_Formals) and thus the protected type, if present, is
789         --  the scope of the current function scope.
790
791         if Ekind (Current_Scope) = E_Protected_Type then
792            Enclosing_Prot_Type := Current_Scope;
793
794         elsif Ekind (Current_Scope) = E_Function
795           and then Ekind (Scope (Current_Scope)) = E_Protected_Type
796         then
797            Enclosing_Prot_Type := Scope (Current_Scope);
798         end if;
799
800         if Present (Enclosing_Prot_Type) then
801            Anon_Scope := Scope (Enclosing_Prot_Type);
802
803         else
804            Anon_Scope := Scope (Defining_Entity (Related_Nod));
805         end if;
806
807      --  For an access type definition, if the current scope is a child
808      --  unit it is the scope of the type.
809
810      elsif Is_Compilation_Unit (Current_Scope) then
811         Anon_Scope := Current_Scope;
812
813      --  For access formals, access components, and access discriminants, the
814      --  scope is that of the enclosing declaration,
815
816      else
817         Anon_Scope := Scope (Current_Scope);
818      end if;
819
820      Anon_Type :=
821        Create_Itype
822          (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
823
824      if All_Present (N)
825        and then Ada_Version >= Ada_2005
826      then
827         Error_Msg_N ("ALL is not permitted for anonymous access types", N);
828      end if;
829
830      --  Ada 2005 (AI-254): In case of anonymous access to subprograms call
831      --  the corresponding semantic routine
832
833      if Present (Access_To_Subprogram_Definition (N)) then
834
835         --  Compiler runtime units are compiled in Ada 2005 mode when building
836         --  the runtime library but must also be compilable in Ada 95 mode
837         --  (when bootstrapping the compiler).
838
839         Check_Compiler_Unit ("anonymous access to subprogram", N);
840
841         Access_Subprogram_Declaration
842           (T_Name => Anon_Type,
843            T_Def  => Access_To_Subprogram_Definition (N));
844
845         if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
846            Set_Ekind
847              (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
848         else
849            Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
850         end if;
851
852         Set_Can_Use_Internal_Rep
853           (Anon_Type, not Always_Compatible_Rep_On_Target);
854
855         --  If the anonymous access is associated with a protected operation,
856         --  create a reference to it after the enclosing protected definition
857         --  because the itype will be used in the subsequent bodies.
858
859         --  If the anonymous access itself is protected, a full type
860         --  declaratiton will be created for it, so that the equivalent
861         --  record type can be constructed. For further details, see
862         --  Replace_Anonymous_Access_To_Protected-Subprogram.
863
864         if Ekind (Current_Scope) = E_Protected_Type
865           and then not Protected_Present (Access_To_Subprogram_Definition (N))
866         then
867            Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
868         end if;
869
870         return Anon_Type;
871      end if;
872
873      Find_Type (Subtype_Mark (N));
874      Desig_Type := Entity (Subtype_Mark (N));
875
876      Set_Directly_Designated_Type (Anon_Type, Desig_Type);
877      Set_Etype (Anon_Type, Anon_Type);
878
879      --  Make sure the anonymous access type has size and alignment fields
880      --  set, as required by gigi. This is necessary in the case of the
881      --  Task_Body_Procedure.
882
883      if not Has_Private_Component (Desig_Type) then
884         Layout_Type (Anon_Type);
885      end if;
886
887      --  Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
888      --  from Ada 95 semantics. In Ada 2005, anonymous access must specify if
889      --  the null value is allowed. In Ada 95 the null value is never allowed.
890
891      if Ada_Version >= Ada_2005 then
892         Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
893      else
894         Set_Can_Never_Be_Null (Anon_Type, True);
895      end if;
896
897      --  The anonymous access type is as public as the discriminated type or
898      --  subprogram that defines it. It is imported (for back-end purposes)
899      --  if the designated type is.
900
901      Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
902
903      --  Ada 2005 (AI-231): Propagate the access-constant attribute
904
905      Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
906
907      --  The context is either a subprogram declaration, object declaration,
908      --  or an access discriminant, in a private or a full type declaration.
909      --  In the case of a subprogram, if the designated type is incomplete,
910      --  the operation will be a primitive operation of the full type, to be
911      --  updated subsequently. If the type is imported through a limited_with
912      --  clause, the subprogram is not a primitive operation of the type
913      --  (which is declared elsewhere in some other scope).
914
915      if Ekind (Desig_Type) = E_Incomplete_Type
916        and then not From_Limited_With (Desig_Type)
917        and then Is_Overloadable (Current_Scope)
918      then
919         Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
920         Set_Has_Delayed_Freeze (Current_Scope);
921      end if;
922
923      --  Ada 2005: If the designated type is an interface that may contain
924      --  tasks, create a Master entity for the declaration. This must be done
925      --  before expansion of the full declaration, because the declaration may
926      --  include an expression that is an allocator, whose expansion needs the
927      --  proper Master for the created tasks.
928
929      if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
930      then
931         if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
932         then
933            Build_Class_Wide_Master (Anon_Type);
934
935         --  Similarly, if the type is an anonymous access that designates
936         --  tasks, create a master entity for it in the current context.
937
938         elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
939         then
940            Build_Master_Entity (Defining_Identifier (Related_Nod));
941            Build_Master_Renaming (Anon_Type);
942         end if;
943      end if;
944
945      --  For a private component of a protected type, it is imperative that
946      --  the back-end elaborate the type immediately after the protected
947      --  declaration, because this type will be used in the declarations
948      --  created for the component within each protected body, so we must
949      --  create an itype reference for it now.
950
951      if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
952         Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
953
954      --  Similarly, if the access definition is the return result of a
955      --  function, create an itype reference for it because it will be used
956      --  within the function body. For a regular function that is not a
957      --  compilation unit, insert reference after the declaration. For a
958      --  protected operation, insert it after the enclosing protected type
959      --  declaration. In either case, do not create a reference for a type
960      --  obtained through a limited_with clause, because this would introduce
961      --  semantic dependencies.
962
963      --  Similarly, do not create a reference if the designated type is a
964      --  generic formal, because no use of it will reach the backend.
965
966      elsif Nkind (Related_Nod) = N_Function_Specification
967        and then not From_Limited_With (Desig_Type)
968        and then not Is_Generic_Type (Desig_Type)
969      then
970         if Present (Enclosing_Prot_Type) then
971            Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
972
973         elsif Is_List_Member (Parent (Related_Nod))
974           and then Nkind (Parent (N)) /= N_Parameter_Specification
975         then
976            Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
977         end if;
978
979      --  Finally, create an itype reference for an object declaration of an
980      --  anonymous access type. This is strictly necessary only for deferred
981      --  constants, but in any case will avoid out-of-scope problems in the
982      --  back-end.
983
984      elsif Nkind (Related_Nod) = N_Object_Declaration then
985         Build_Itype_Reference (Anon_Type, Related_Nod);
986      end if;
987
988      return Anon_Type;
989   end Access_Definition;
990
991   -----------------------------------
992   -- Access_Subprogram_Declaration --
993   -----------------------------------
994
995   procedure Access_Subprogram_Declaration
996     (T_Name : Entity_Id;
997      T_Def  : Node_Id)
998   is
999      procedure Check_For_Premature_Usage (Def : Node_Id);
1000      --  Check that type T_Name is not used, directly or recursively, as a
1001      --  parameter or a return type in Def. Def is either a subtype, an
1002      --  access_definition, or an access_to_subprogram_definition.
1003
1004      -------------------------------
1005      -- Check_For_Premature_Usage --
1006      -------------------------------
1007
1008      procedure Check_For_Premature_Usage (Def : Node_Id) is
1009         Param : Node_Id;
1010
1011      begin
1012         --  Check for a subtype mark
1013
1014         if Nkind (Def) in N_Has_Etype then
1015            if Etype (Def) = T_Name then
1016               Error_Msg_N
1017                 ("type& cannot be used before end of its declaration", Def);
1018            end if;
1019
1020         --  If this is not a subtype, then this is an access_definition
1021
1022         elsif Nkind (Def) = N_Access_Definition then
1023            if Present (Access_To_Subprogram_Definition (Def)) then
1024               Check_For_Premature_Usage
1025                 (Access_To_Subprogram_Definition (Def));
1026            else
1027               Check_For_Premature_Usage (Subtype_Mark (Def));
1028            end if;
1029
1030         --  The only cases left are N_Access_Function_Definition and
1031         --  N_Access_Procedure_Definition.
1032
1033         else
1034            if Present (Parameter_Specifications (Def)) then
1035               Param := First (Parameter_Specifications (Def));
1036               while Present (Param) loop
1037                  Check_For_Premature_Usage (Parameter_Type (Param));
1038                  Param := Next (Param);
1039               end loop;
1040            end if;
1041
1042            if Nkind (Def) = N_Access_Function_Definition then
1043               Check_For_Premature_Usage (Result_Definition (Def));
1044            end if;
1045         end if;
1046      end Check_For_Premature_Usage;
1047
1048      --  Local variables
1049
1050      Formals    : constant List_Id := Parameter_Specifications (T_Def);
1051      Formal     : Entity_Id;
1052      D_Ityp     : Node_Id;
1053      Desig_Type : constant Entity_Id :=
1054                     Create_Itype (E_Subprogram_Type, Parent (T_Def));
1055
1056   --  Start of processing for Access_Subprogram_Declaration
1057
1058   begin
1059      Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1060
1061      --  Associate the Itype node with the inner full-type declaration or
1062      --  subprogram spec or entry body. This is required to handle nested
1063      --  anonymous declarations. For example:
1064
1065      --      procedure P
1066      --       (X : access procedure
1067      --                     (Y : access procedure
1068      --                                   (Z : access T)))
1069
1070      D_Ityp := Associated_Node_For_Itype (Desig_Type);
1071      while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1072                                   N_Private_Type_Declaration,
1073                                   N_Private_Extension_Declaration,
1074                                   N_Procedure_Specification,
1075                                   N_Function_Specification,
1076                                   N_Entry_Body)
1077
1078                   or else
1079                 Nkind_In (D_Ityp, N_Object_Declaration,
1080                                   N_Object_Renaming_Declaration,
1081                                   N_Formal_Object_Declaration,
1082                                   N_Formal_Type_Declaration,
1083                                   N_Task_Type_Declaration,
1084                                   N_Protected_Type_Declaration))
1085      loop
1086         D_Ityp := Parent (D_Ityp);
1087         pragma Assert (D_Ityp /= Empty);
1088      end loop;
1089
1090      Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1091
1092      if Nkind_In (D_Ityp, N_Procedure_Specification,
1093                           N_Function_Specification)
1094      then
1095         Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1096
1097      elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1098                              N_Object_Declaration,
1099                              N_Object_Renaming_Declaration,
1100                              N_Formal_Type_Declaration)
1101      then
1102         Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1103      end if;
1104
1105      if Nkind (T_Def) = N_Access_Function_Definition then
1106         if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1107            declare
1108               Acc : constant Node_Id := Result_Definition (T_Def);
1109
1110            begin
1111               if Present (Access_To_Subprogram_Definition (Acc))
1112                 and then
1113                   Protected_Present (Access_To_Subprogram_Definition (Acc))
1114               then
1115                  Set_Etype
1116                    (Desig_Type,
1117                       Replace_Anonymous_Access_To_Protected_Subprogram
1118                         (T_Def));
1119
1120               else
1121                  Set_Etype
1122                    (Desig_Type,
1123                       Access_Definition (T_Def, Result_Definition (T_Def)));
1124               end if;
1125            end;
1126
1127         else
1128            Analyze (Result_Definition (T_Def));
1129
1130            declare
1131               Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1132
1133            begin
1134               --  If a null exclusion is imposed on the result type, then
1135               --  create a null-excluding itype (an access subtype) and use
1136               --  it as the function's Etype.
1137
1138               if Is_Access_Type (Typ)
1139                 and then Null_Exclusion_In_Return_Present (T_Def)
1140               then
1141                  Set_Etype (Desig_Type,
1142                    Create_Null_Excluding_Itype
1143                      (T           => Typ,
1144                       Related_Nod => T_Def,
1145                       Scope_Id    => Current_Scope));
1146
1147               else
1148                  if From_Limited_With (Typ) then
1149
1150                     --  AI05-151: Incomplete types are allowed in all basic
1151                     --  declarations, including access to subprograms.
1152
1153                     if Ada_Version >= Ada_2012 then
1154                        null;
1155
1156                     else
1157                        Error_Msg_NE
1158                         ("illegal use of incomplete type&",
1159                          Result_Definition (T_Def), Typ);
1160                     end if;
1161
1162                  elsif Ekind (Current_Scope) = E_Package
1163                    and then In_Private_Part (Current_Scope)
1164                  then
1165                     if Ekind (Typ) = E_Incomplete_Type then
1166                        Append_Elmt (Desig_Type, Private_Dependents (Typ));
1167
1168                     elsif Is_Class_Wide_Type (Typ)
1169                       and then Ekind (Etype (Typ)) = E_Incomplete_Type
1170                     then
1171                        Append_Elmt
1172                          (Desig_Type, Private_Dependents (Etype (Typ)));
1173                     end if;
1174                  end if;
1175
1176                  Set_Etype (Desig_Type, Typ);
1177               end if;
1178            end;
1179         end if;
1180
1181         if not (Is_Type (Etype (Desig_Type))) then
1182            Error_Msg_N
1183              ("expect type in function specification",
1184               Result_Definition (T_Def));
1185         end if;
1186
1187      else
1188         Set_Etype (Desig_Type, Standard_Void_Type);
1189      end if;
1190
1191      if Present (Formals) then
1192         Push_Scope (Desig_Type);
1193
1194         --  Some special tests here. These special tests can be removed
1195         --  if and when Itypes always have proper parent pointers to their
1196         --  declarations???
1197
1198         --  Special test 1) Link defining_identifier of formals. Required by
1199         --  First_Formal to provide its functionality.
1200
1201         declare
1202            F : Node_Id;
1203
1204         begin
1205            F := First (Formals);
1206
1207            --  In ASIS mode, the access_to_subprogram may be analyzed twice,
1208            --  when it is part of an unconstrained type and subtype expansion
1209            --  is disabled. To avoid back-end problems with shared profiles,
1210            --  use previous subprogram type as the designated type, and then
1211            --  remove scope added above.
1212
1213            if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1214            then
1215               Set_Etype                    (T_Name, T_Name);
1216               Init_Size_Align              (T_Name);
1217               Set_Directly_Designated_Type (T_Name,
1218                 Scope (Defining_Identifier (F)));
1219               End_Scope;
1220               return;
1221            end if;
1222
1223            while Present (F) loop
1224               if No (Parent (Defining_Identifier (F))) then
1225                  Set_Parent (Defining_Identifier (F), F);
1226               end if;
1227
1228               Next (F);
1229            end loop;
1230         end;
1231
1232         Process_Formals (Formals, Parent (T_Def));
1233
1234         --  Special test 2) End_Scope requires that the parent pointer be set
1235         --  to something reasonable, but Itypes don't have parent pointers. So
1236         --  we set it and then unset it ???
1237
1238         Set_Parent (Desig_Type, T_Name);
1239         End_Scope;
1240         Set_Parent (Desig_Type, Empty);
1241      end if;
1242
1243      --  Check for premature usage of the type being defined
1244
1245      Check_For_Premature_Usage (T_Def);
1246
1247      --  The return type and/or any parameter type may be incomplete. Mark the
1248      --  subprogram_type as depending on the incomplete type, so that it can
1249      --  be updated when the full type declaration is seen. This only applies
1250      --  to incomplete types declared in some enclosing scope, not to limited
1251      --  views from other packages.
1252
1253      --  Prior to Ada 2012, access to functions can only have in_parameters.
1254
1255      if Present (Formals) then
1256         Formal := First_Formal (Desig_Type);
1257         while Present (Formal) loop
1258            if Ekind (Formal) /= E_In_Parameter
1259              and then Nkind (T_Def) = N_Access_Function_Definition
1260              and then Ada_Version < Ada_2012
1261            then
1262               Error_Msg_N ("functions can only have IN parameters", Formal);
1263            end if;
1264
1265            if Ekind (Etype (Formal)) = E_Incomplete_Type
1266              and then In_Open_Scopes (Scope (Etype (Formal)))
1267            then
1268               Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1269               Set_Has_Delayed_Freeze (Desig_Type);
1270            end if;
1271
1272            Next_Formal (Formal);
1273         end loop;
1274      end if;
1275
1276      --  Check whether an indirect call without actuals may be possible. This
1277      --  is used when resolving calls whose result is then indexed.
1278
1279      May_Need_Actuals (Desig_Type);
1280
1281      --  If the return type is incomplete, this is legal as long as the type
1282      --  is declared in the current scope and will be completed in it (rather
1283      --  than being part of limited view).
1284
1285      if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1286        and then not Has_Delayed_Freeze (Desig_Type)
1287        and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1288      then
1289         Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1290         Set_Has_Delayed_Freeze (Desig_Type);
1291      end if;
1292
1293      Check_Delayed_Subprogram (Desig_Type);
1294
1295      if Protected_Present (T_Def) then
1296         Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1297         Set_Convention (Desig_Type, Convention_Protected);
1298      else
1299         Set_Ekind (T_Name, E_Access_Subprogram_Type);
1300      end if;
1301
1302      Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1303
1304      Set_Etype                    (T_Name, T_Name);
1305      Init_Size_Align              (T_Name);
1306      Set_Directly_Designated_Type (T_Name, Desig_Type);
1307
1308      Generate_Reference_To_Formals (T_Name);
1309
1310      --  Ada 2005 (AI-231): Propagate the null-excluding attribute
1311
1312      Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1313
1314      Check_Restriction (No_Access_Subprograms, T_Def);
1315   end Access_Subprogram_Declaration;
1316
1317   ----------------------------
1318   -- Access_Type_Declaration --
1319   ----------------------------
1320
1321   procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1322      P : constant Node_Id := Parent (Def);
1323      S : constant Node_Id := Subtype_Indication (Def);
1324
1325      Full_Desig : Entity_Id;
1326
1327   begin
1328      Check_SPARK_05_Restriction ("access type is not allowed", Def);
1329
1330      --  Check for permissible use of incomplete type
1331
1332      if Nkind (S) /= N_Subtype_Indication then
1333         Analyze (S);
1334
1335         if Present (Entity (S))
1336           and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1337         then
1338            Set_Directly_Designated_Type (T, Entity (S));
1339
1340            --  If the designated type is a limited view, we cannot tell if
1341            --  the full view contains tasks, and there is no way to handle
1342            --  that full view in a client. We create a master entity for the
1343            --  scope, which will be used when a client determines that one
1344            --  is needed.
1345
1346            if From_Limited_With (Entity (S))
1347              and then not Is_Class_Wide_Type (Entity (S))
1348            then
1349               Set_Ekind (T, E_Access_Type);
1350               Build_Master_Entity (T);
1351               Build_Master_Renaming (T);
1352            end if;
1353
1354         else
1355            Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1356         end if;
1357
1358         --  If the access definition is of the form: ACCESS NOT NULL ..
1359         --  the subtype indication must be of an access type. Create
1360         --  a null-excluding subtype of it.
1361
1362         if Null_Excluding_Subtype (Def) then
1363            if not Is_Access_Type (Entity (S)) then
1364               Error_Msg_N ("null exclusion must apply to access type", Def);
1365
1366            else
1367               declare
1368                  Loc  : constant Source_Ptr := Sloc (S);
1369                  Decl : Node_Id;
1370                  Nam  : constant Entity_Id := Make_Temporary (Loc, 'S');
1371
1372               begin
1373                  Decl :=
1374                    Make_Subtype_Declaration (Loc,
1375                      Defining_Identifier => Nam,
1376                      Subtype_Indication  =>
1377                        New_Occurrence_Of (Entity (S), Loc));
1378                  Set_Null_Exclusion_Present (Decl);
1379                  Insert_Before (Parent (Def), Decl);
1380                  Analyze (Decl);
1381                  Set_Entity (S, Nam);
1382               end;
1383            end if;
1384         end if;
1385
1386      else
1387         Set_Directly_Designated_Type (T,
1388           Process_Subtype (S, P, T, 'P'));
1389      end if;
1390
1391      if All_Present (Def) or Constant_Present (Def) then
1392         Set_Ekind (T, E_General_Access_Type);
1393      else
1394         Set_Ekind (T, E_Access_Type);
1395      end if;
1396
1397      Full_Desig := Designated_Type (T);
1398
1399      if Base_Type (Full_Desig) = T then
1400         Error_Msg_N ("access type cannot designate itself", S);
1401
1402      --  In Ada 2005, the type may have a limited view through some unit in
1403      --  its own context, allowing the following circularity that cannot be
1404      --  detected earlier.
1405
1406      elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1407      then
1408         Error_Msg_N
1409           ("access type cannot designate its own class-wide type", S);
1410
1411         --  Clean up indication of tagged status to prevent cascaded errors
1412
1413         Set_Is_Tagged_Type (T, False);
1414      end if;
1415
1416      Set_Etype (T, T);
1417
1418      --  If the type has appeared already in a with_type clause, it is frozen
1419      --  and the pointer size is already set. Else, initialize.
1420
1421      if not From_Limited_With (T) then
1422         Init_Size_Align (T);
1423      end if;
1424
1425      --  Note that Has_Task is always false, since the access type itself
1426      --  is not a task type. See Einfo for more description on this point.
1427      --  Exactly the same consideration applies to Has_Controlled_Component
1428      --  and to Has_Protected.
1429
1430      Set_Has_Task                 (T, False);
1431      Set_Has_Protected            (T, False);
1432      Set_Has_Timing_Event         (T, False);
1433      Set_Has_Controlled_Component (T, False);
1434
1435      --  Initialize field Finalization_Master explicitly to Empty, to avoid
1436      --  problems where an incomplete view of this entity has been previously
1437      --  established by a limited with and an overlaid version of this field
1438      --  (Stored_Constraint) was initialized for the incomplete view.
1439
1440      --  This reset is performed in most cases except where the access type
1441      --  has been created for the purposes of allocating or deallocating a
1442      --  build-in-place object. Such access types have explicitly set pools
1443      --  and finalization masters.
1444
1445      if No (Associated_Storage_Pool (T)) then
1446         Set_Finalization_Master (T, Empty);
1447      end if;
1448
1449      --  Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1450      --  attributes
1451
1452      Set_Can_Never_Be_Null  (T, Null_Exclusion_Present (Def));
1453      Set_Is_Access_Constant (T, Constant_Present (Def));
1454   end Access_Type_Declaration;
1455
1456   ----------------------------------
1457   -- Add_Interface_Tag_Components --
1458   ----------------------------------
1459
1460   procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1461      Loc      : constant Source_Ptr := Sloc (N);
1462      L        : List_Id;
1463      Last_Tag : Node_Id;
1464
1465      procedure Add_Tag (Iface : Entity_Id);
1466      --  Add tag for one of the progenitor interfaces
1467
1468      -------------
1469      -- Add_Tag --
1470      -------------
1471
1472      procedure Add_Tag (Iface : Entity_Id) is
1473         Decl   : Node_Id;
1474         Def    : Node_Id;
1475         Tag    : Entity_Id;
1476         Offset : Entity_Id;
1477
1478      begin
1479         pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1480
1481         --  This is a reasonable place to propagate predicates
1482
1483         if Has_Predicates (Iface) then
1484            Set_Has_Predicates (Typ);
1485         end if;
1486
1487         Def :=
1488           Make_Component_Definition (Loc,
1489             Aliased_Present    => True,
1490             Subtype_Indication =>
1491               New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1492
1493         Tag := Make_Temporary (Loc, 'V');
1494
1495         Decl :=
1496           Make_Component_Declaration (Loc,
1497             Defining_Identifier  => Tag,
1498             Component_Definition => Def);
1499
1500         Analyze_Component_Declaration (Decl);
1501
1502         Set_Analyzed (Decl);
1503         Set_Ekind               (Tag, E_Component);
1504         Set_Is_Tag              (Tag);
1505         Set_Is_Aliased          (Tag);
1506         Set_Related_Type        (Tag, Iface);
1507         Init_Component_Location (Tag);
1508
1509         pragma Assert (Is_Frozen (Iface));
1510
1511         Set_DT_Entry_Count    (Tag,
1512           DT_Entry_Count (First_Entity (Iface)));
1513
1514         if No (Last_Tag) then
1515            Prepend (Decl, L);
1516         else
1517            Insert_After (Last_Tag, Decl);
1518         end if;
1519
1520         Last_Tag := Decl;
1521
1522         --  If the ancestor has discriminants we need to give special support
1523         --  to store the offset_to_top value of the secondary dispatch tables.
1524         --  For this purpose we add a supplementary component just after the
1525         --  field that contains the tag associated with each secondary DT.
1526
1527         if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1528            Def :=
1529              Make_Component_Definition (Loc,
1530                Subtype_Indication =>
1531                  New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1532
1533            Offset := Make_Temporary (Loc, 'V');
1534
1535            Decl :=
1536              Make_Component_Declaration (Loc,
1537                Defining_Identifier  => Offset,
1538                Component_Definition => Def);
1539
1540            Analyze_Component_Declaration (Decl);
1541
1542            Set_Analyzed (Decl);
1543            Set_Ekind               (Offset, E_Component);
1544            Set_Is_Aliased          (Offset);
1545            Set_Related_Type        (Offset, Iface);
1546            Init_Component_Location (Offset);
1547            Insert_After (Last_Tag, Decl);
1548            Last_Tag := Decl;
1549         end if;
1550      end Add_Tag;
1551
1552      --  Local variables
1553
1554      Elmt : Elmt_Id;
1555      Ext  : Node_Id;
1556      Comp : Node_Id;
1557
1558   --  Start of processing for Add_Interface_Tag_Components
1559
1560   begin
1561      if not RTE_Available (RE_Interface_Tag) then
1562         Error_Msg
1563           ("(Ada 2005) interface types not supported by this run-time!",
1564            Sloc (N));
1565         return;
1566      end if;
1567
1568      if Ekind (Typ) /= E_Record_Type
1569        or else (Is_Concurrent_Record_Type (Typ)
1570                  and then Is_Empty_List (Abstract_Interface_List (Typ)))
1571        or else (not Is_Concurrent_Record_Type (Typ)
1572                  and then No (Interfaces (Typ))
1573                  and then Is_Empty_Elmt_List (Interfaces (Typ)))
1574      then
1575         return;
1576      end if;
1577
1578      --  Find the current last tag
1579
1580      if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1581         Ext := Record_Extension_Part (Type_Definition (N));
1582      else
1583         pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1584         Ext := Type_Definition (N);
1585      end if;
1586
1587      Last_Tag := Empty;
1588
1589      if not (Present (Component_List (Ext))) then
1590         Set_Null_Present (Ext, False);
1591         L := New_List;
1592         Set_Component_List (Ext,
1593           Make_Component_List (Loc,
1594             Component_Items => L,
1595             Null_Present => False));
1596      else
1597         if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1598            L := Component_Items
1599                   (Component_List
1600                     (Record_Extension_Part
1601                       (Type_Definition (N))));
1602         else
1603            L := Component_Items
1604                   (Component_List
1605                     (Type_Definition (N)));
1606         end if;
1607
1608         --  Find the last tag component
1609
1610         Comp := First (L);
1611         while Present (Comp) loop
1612            if Nkind (Comp) = N_Component_Declaration
1613              and then Is_Tag (Defining_Identifier (Comp))
1614            then
1615               Last_Tag := Comp;
1616            end if;
1617
1618            Next (Comp);
1619         end loop;
1620      end if;
1621
1622      --  At this point L references the list of components and Last_Tag
1623      --  references the current last tag (if any). Now we add the tag
1624      --  corresponding with all the interfaces that are not implemented
1625      --  by the parent.
1626
1627      if Present (Interfaces (Typ)) then
1628         Elmt := First_Elmt (Interfaces (Typ));
1629         while Present (Elmt) loop
1630            Add_Tag (Node (Elmt));
1631            Next_Elmt (Elmt);
1632         end loop;
1633      end if;
1634   end Add_Interface_Tag_Components;
1635
1636   -------------------------------------
1637   -- Add_Internal_Interface_Entities --
1638   -------------------------------------
1639
1640   procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1641      Elmt          : Elmt_Id;
1642      Iface         : Entity_Id;
1643      Iface_Elmt    : Elmt_Id;
1644      Iface_Prim    : Entity_Id;
1645      Ifaces_List   : Elist_Id;
1646      New_Subp      : Entity_Id := Empty;
1647      Prim          : Entity_Id;
1648      Restore_Scope : Boolean := False;
1649
1650   begin
1651      pragma Assert (Ada_Version >= Ada_2005
1652        and then Is_Record_Type (Tagged_Type)
1653        and then Is_Tagged_Type (Tagged_Type)
1654        and then Has_Interfaces (Tagged_Type)
1655        and then not Is_Interface (Tagged_Type));
1656
1657      --  Ensure that the internal entities are added to the scope of the type
1658
1659      if Scope (Tagged_Type) /= Current_Scope then
1660         Push_Scope (Scope (Tagged_Type));
1661         Restore_Scope := True;
1662      end if;
1663
1664      Collect_Interfaces (Tagged_Type, Ifaces_List);
1665
1666      Iface_Elmt := First_Elmt (Ifaces_List);
1667      while Present (Iface_Elmt) loop
1668         Iface := Node (Iface_Elmt);
1669
1670         --  Originally we excluded here from this processing interfaces that
1671         --  are parents of Tagged_Type because their primitives are located
1672         --  in the primary dispatch table (and hence no auxiliary internal
1673         --  entities are required to handle secondary dispatch tables in such
1674         --  case). However, these auxiliary entities are also required to
1675         --  handle derivations of interfaces in formals of generics (see
1676         --  Derive_Subprograms).
1677
1678         Elmt := First_Elmt (Primitive_Operations (Iface));
1679         while Present (Elmt) loop
1680            Iface_Prim := Node (Elmt);
1681
1682            if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1683               Prim :=
1684                 Find_Primitive_Covering_Interface
1685                   (Tagged_Type => Tagged_Type,
1686                    Iface_Prim  => Iface_Prim);
1687
1688               if No (Prim) and then Serious_Errors_Detected > 0 then
1689                  goto Continue;
1690               end if;
1691
1692               pragma Assert (Present (Prim));
1693
1694               --  Ada 2012 (AI05-0197): If the name of the covering primitive
1695               --  differs from the name of the interface primitive then it is
1696               --  a private primitive inherited from a parent type. In such
1697               --  case, given that Tagged_Type covers the interface, the
1698               --  inherited private primitive becomes visible. For such
1699               --  purpose we add a new entity that renames the inherited
1700               --  private primitive.
1701
1702               if Chars (Prim) /= Chars (Iface_Prim) then
1703                  pragma Assert (Has_Suffix (Prim, 'P'));
1704                  Derive_Subprogram
1705                    (New_Subp     => New_Subp,
1706                     Parent_Subp  => Iface_Prim,
1707                     Derived_Type => Tagged_Type,
1708                     Parent_Type  => Iface);
1709                  Set_Alias (New_Subp, Prim);
1710                  Set_Is_Abstract_Subprogram
1711                    (New_Subp, Is_Abstract_Subprogram (Prim));
1712               end if;
1713
1714               Derive_Subprogram
1715                 (New_Subp     => New_Subp,
1716                  Parent_Subp  => Iface_Prim,
1717                  Derived_Type => Tagged_Type,
1718                  Parent_Type  => Iface);
1719
1720               declare
1721                  Anc : Entity_Id;
1722               begin
1723                  if Is_Inherited_Operation (Prim)
1724                    and then Present (Alias (Prim))
1725                  then
1726                     Anc := Alias (Prim);
1727                  else
1728                     Anc := Overridden_Operation (Prim);
1729                  end if;
1730
1731                  --  Apply legality checks in RM 6.1.1 (10-13) concerning
1732                  --  nonconforming preconditions in both an ancestor and
1733                  --  a progenitor operation.
1734
1735                  --  If the operation is a primitive wrapper it is an explicit
1736                  --  (overriding) operqtion and all is fine.
1737
1738                  if Present (Anc)
1739                    and then Has_Non_Trivial_Precondition (Anc)
1740                    and then Has_Non_Trivial_Precondition (Iface_Prim)
1741                  then
1742                     if Is_Abstract_Subprogram (Prim)
1743                       or else
1744                         (Ekind (Prim) = E_Procedure
1745                           and then Nkind (Parent (Prim)) =
1746                                      N_Procedure_Specification
1747                           and then Null_Present (Parent (Prim)))
1748                       or else Is_Primitive_Wrapper (Prim)
1749                     then
1750                        null;
1751
1752                     --  The operation is inherited and must be overridden
1753
1754                     elsif not Comes_From_Source (Prim) then
1755                        Error_Msg_NE
1756                          ("&inherits non-conforming preconditions and must "
1757                           & "be overridden (RM 6.1.1 (10-16)",
1758                           Parent (Tagged_Type), Prim);
1759                     end if;
1760                  end if;
1761               end;
1762
1763               --  Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1764               --  associated with interface types. These entities are
1765               --  only registered in the list of primitives of its
1766               --  corresponding tagged type because they are only used
1767               --  to fill the contents of the secondary dispatch tables.
1768               --  Therefore they are removed from the homonym chains.
1769
1770               Set_Is_Hidden (New_Subp);
1771               Set_Is_Internal (New_Subp);
1772               Set_Alias (New_Subp, Prim);
1773               Set_Is_Abstract_Subprogram
1774                 (New_Subp, Is_Abstract_Subprogram (Prim));
1775               Set_Interface_Alias (New_Subp, Iface_Prim);
1776
1777               --  If the returned type is an interface then propagate it to
1778               --  the returned type. Needed by the thunk to generate the code
1779               --  which displaces "this" to reference the corresponding
1780               --  secondary dispatch table in the returned object.
1781
1782               if Is_Interface (Etype (Iface_Prim)) then
1783                  Set_Etype (New_Subp, Etype (Iface_Prim));
1784               end if;
1785
1786               --  Internal entities associated with interface types are only
1787               --  registered in the list of primitives of the tagged type.
1788               --  They are only used to fill the contents of the secondary
1789               --  dispatch tables. Therefore they are not needed in the
1790               --  homonym chains.
1791
1792               Remove_Homonym (New_Subp);
1793
1794               --  Hidden entities associated with interfaces must have set
1795               --  the Has_Delay_Freeze attribute to ensure that, in case
1796               --  of locally defined tagged types (or compiling with static
1797               --  dispatch tables generation disabled) the corresponding
1798               --  entry of the secondary dispatch table is filled when such
1799               --  an entity is frozen. This is an expansion activity that must
1800               --  be suppressed for ASIS because it leads to gigi elaboration
1801               --  issues in annotate mode.
1802
1803               if not ASIS_Mode then
1804                  Set_Has_Delayed_Freeze (New_Subp);
1805               end if;
1806            end if;
1807
1808            <<Continue>>
1809            Next_Elmt (Elmt);
1810         end loop;
1811
1812         Next_Elmt (Iface_Elmt);
1813      end loop;
1814
1815      if Restore_Scope then
1816         Pop_Scope;
1817      end if;
1818   end Add_Internal_Interface_Entities;
1819
1820   -----------------------------------
1821   -- Analyze_Component_Declaration --
1822   -----------------------------------
1823
1824   procedure Analyze_Component_Declaration (N : Node_Id) is
1825      Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1826      Id  : constant Entity_Id  := Defining_Identifier (N);
1827      E   : constant Node_Id    := Expression (N);
1828      Typ : constant Node_Id    :=
1829              Subtype_Indication (Component_Definition (N));
1830      T   : Entity_Id;
1831      P   : Entity_Id;
1832
1833      function Contains_POC (Constr : Node_Id) return Boolean;
1834      --  Determines whether a constraint uses the discriminant of a record
1835      --  type thus becoming a per-object constraint (POC).
1836
1837      function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1838      --  Typ is the type of the current component, check whether this type is
1839      --  a limited type. Used to validate declaration against that of
1840      --  enclosing record.
1841
1842      ------------------
1843      -- Contains_POC --
1844      ------------------
1845
1846      function Contains_POC (Constr : Node_Id) return Boolean is
1847      begin
1848         --  Prevent cascaded errors
1849
1850         if Error_Posted (Constr) then
1851            return False;
1852         end if;
1853
1854         case Nkind (Constr) is
1855            when N_Attribute_Reference =>
1856               return Attribute_Name (Constr) = Name_Access
1857                 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1858
1859            when N_Discriminant_Association =>
1860               return Denotes_Discriminant (Expression (Constr));
1861
1862            when N_Identifier =>
1863               return Denotes_Discriminant (Constr);
1864
1865            when N_Index_Or_Discriminant_Constraint =>
1866               declare
1867                  IDC : Node_Id;
1868
1869               begin
1870                  IDC := First (Constraints (Constr));
1871                  while Present (IDC) loop
1872
1873                     --  One per-object constraint is sufficient
1874
1875                     if Contains_POC (IDC) then
1876                        return True;
1877                     end if;
1878
1879                     Next (IDC);
1880                  end loop;
1881
1882                  return False;
1883               end;
1884
1885            when N_Range =>
1886               return Denotes_Discriminant (Low_Bound (Constr))
1887                        or else
1888                      Denotes_Discriminant (High_Bound (Constr));
1889
1890            when N_Range_Constraint =>
1891               return Denotes_Discriminant (Range_Expression (Constr));
1892
1893            when others =>
1894               return False;
1895         end case;
1896      end Contains_POC;
1897
1898      ----------------------
1899      -- Is_Known_Limited --
1900      ----------------------
1901
1902      function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1903         P : constant Entity_Id := Etype (Typ);
1904         R : constant Entity_Id := Root_Type (Typ);
1905
1906      begin
1907         if Is_Limited_Record (Typ) then
1908            return True;
1909
1910         --  If the root type is limited (and not a limited interface)
1911         --  so is the current type
1912
1913         elsif Is_Limited_Record (R)
1914           and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1915         then
1916            return True;
1917
1918         --  Else the type may have a limited interface progenitor, but a
1919         --  limited record parent.
1920
1921         elsif R /= P and then Is_Limited_Record (P) then
1922            return True;
1923
1924         else
1925            return False;
1926         end if;
1927      end Is_Known_Limited;
1928
1929   --  Start of processing for Analyze_Component_Declaration
1930
1931   begin
1932      Generate_Definition (Id);
1933      Enter_Name (Id);
1934
1935      if Present (Typ) then
1936         T := Find_Type_Of_Object
1937                (Subtype_Indication (Component_Definition (N)), N);
1938
1939         if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1940            Check_SPARK_05_Restriction ("subtype mark required", Typ);
1941         end if;
1942
1943      --  Ada 2005 (AI-230): Access Definition case
1944
1945      else
1946         pragma Assert (Present
1947                          (Access_Definition (Component_Definition (N))));
1948
1949         T := Access_Definition
1950                (Related_Nod => N,
1951                 N => Access_Definition (Component_Definition (N)));
1952         Set_Is_Local_Anonymous_Access (T);
1953
1954         --  Ada 2005 (AI-254)
1955
1956         if Present (Access_To_Subprogram_Definition
1957                      (Access_Definition (Component_Definition (N))))
1958           and then Protected_Present (Access_To_Subprogram_Definition
1959                                        (Access_Definition
1960                                          (Component_Definition (N))))
1961         then
1962            T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1963         end if;
1964      end if;
1965
1966      --  If the subtype is a constrained subtype of the enclosing record,
1967      --  (which must have a partial view) the back-end does not properly
1968      --  handle the recursion. Rewrite the component declaration with an
1969      --  explicit subtype indication, which is acceptable to Gigi. We can copy
1970      --  the tree directly because side effects have already been removed from
1971      --  discriminant constraints.
1972
1973      if Ekind (T) = E_Access_Subtype
1974        and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1975        and then Comes_From_Source (T)
1976        and then Nkind (Parent (T)) = N_Subtype_Declaration
1977        and then Etype (Directly_Designated_Type (T)) = Current_Scope
1978      then
1979         Rewrite
1980           (Subtype_Indication (Component_Definition (N)),
1981             New_Copy_Tree (Subtype_Indication (Parent (T))));
1982         T := Find_Type_Of_Object
1983                 (Subtype_Indication (Component_Definition (N)), N);
1984      end if;
1985
1986      --  If the component declaration includes a default expression, then we
1987      --  check that the component is not of a limited type (RM 3.7(5)),
1988      --  and do the special preanalysis of the expression (see section on
1989      --  "Handling of Default and Per-Object Expressions" in the spec of
1990      --  package Sem).
1991
1992      if Present (E) then
1993         Check_SPARK_05_Restriction ("default expression is not allowed", E);
1994         Preanalyze_Default_Expression (E, T);
1995         Check_Initialization (T, E);
1996
1997         if Ada_Version >= Ada_2005
1998           and then Ekind (T) = E_Anonymous_Access_Type
1999           and then Etype (E) /= Any_Type
2000         then
2001            --  Check RM 3.9.2(9): "if the expected type for an expression is
2002            --  an anonymous access-to-specific tagged type, then the object
2003            --  designated by the expression shall not be dynamically tagged
2004            --  unless it is a controlling operand in a call on a dispatching
2005            --  operation"
2006
2007            if Is_Tagged_Type (Directly_Designated_Type (T))
2008              and then
2009                Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2010              and then
2011                Ekind (Directly_Designated_Type (Etype (E))) =
2012                  E_Class_Wide_Type
2013            then
2014               Error_Msg_N
2015                 ("access to specific tagged type required (RM 3.9.2(9))", E);
2016            end if;
2017
2018            --  (Ada 2005: AI-230): Accessibility check for anonymous
2019            --  components
2020
2021            if Type_Access_Level (Etype (E)) >
2022               Deepest_Type_Access_Level (T)
2023            then
2024               Error_Msg_N
2025                 ("expression has deeper access level than component " &
2026                  "(RM 3.10.2 (12.2))", E);
2027            end if;
2028
2029            --  The initialization expression is a reference to an access
2030            --  discriminant. The type of the discriminant is always deeper
2031            --  than any access type.
2032
2033            if Ekind (Etype (E)) = E_Anonymous_Access_Type
2034              and then Is_Entity_Name (E)
2035              and then Ekind (Entity (E)) = E_In_Parameter
2036              and then Present (Discriminal_Link (Entity (E)))
2037            then
2038               Error_Msg_N
2039                 ("discriminant has deeper accessibility level than target",
2040                  E);
2041            end if;
2042         end if;
2043      end if;
2044
2045      --  The parent type may be a private view with unknown discriminants,
2046      --  and thus unconstrained. Regular components must be constrained.
2047
2048      if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2049         if Is_Class_Wide_Type (T) then
2050            Error_Msg_N
2051               ("class-wide subtype with unknown discriminants" &
2052                 " in component declaration",
2053                 Subtype_Indication (Component_Definition (N)));
2054         else
2055            Error_Msg_N
2056              ("unconstrained subtype in component declaration",
2057               Subtype_Indication (Component_Definition (N)));
2058         end if;
2059
2060      --  Components cannot be abstract, except for the special case of
2061      --  the _Parent field (case of extending an abstract tagged type)
2062
2063      elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2064         Error_Msg_N ("type of a component cannot be abstract", N);
2065      end if;
2066
2067      Set_Etype (Id, T);
2068      Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2069
2070      --  The component declaration may have a per-object constraint, set
2071      --  the appropriate flag in the defining identifier of the subtype.
2072
2073      if Present (Subtype_Indication (Component_Definition (N))) then
2074         declare
2075            Sindic : constant Node_Id :=
2076                       Subtype_Indication (Component_Definition (N));
2077         begin
2078            if Nkind (Sindic) = N_Subtype_Indication
2079              and then Present (Constraint (Sindic))
2080              and then Contains_POC (Constraint (Sindic))
2081            then
2082               Set_Has_Per_Object_Constraint (Id);
2083            end if;
2084         end;
2085      end if;
2086
2087      --  Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2088      --  out some static checks.
2089
2090      if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2091         Null_Exclusion_Static_Checks (N);
2092      end if;
2093
2094      --  If this component is private (or depends on a private type), flag the
2095      --  record type to indicate that some operations are not available.
2096
2097      P := Private_Component (T);
2098
2099      if Present (P) then
2100
2101         --  Check for circular definitions
2102
2103         if P = Any_Type then
2104            Set_Etype (Id, Any_Type);
2105
2106         --  There is a gap in the visibility of operations only if the
2107         --  component type is not defined in the scope of the record type.
2108
2109         elsif Scope (P) = Scope (Current_Scope) then
2110            null;
2111
2112         elsif Is_Limited_Type (P) then
2113            Set_Is_Limited_Composite (Current_Scope);
2114
2115         else
2116            Set_Is_Private_Composite (Current_Scope);
2117         end if;
2118      end if;
2119
2120      if P /= Any_Type
2121        and then Is_Limited_Type (T)
2122        and then Chars (Id) /= Name_uParent
2123        and then Is_Tagged_Type (Current_Scope)
2124      then
2125         if Is_Derived_Type (Current_Scope)
2126           and then not Is_Known_Limited (Current_Scope)
2127         then
2128            Error_Msg_N
2129              ("extension of nonlimited type cannot have limited components",
2130               N);
2131
2132            if Is_Interface (Root_Type (Current_Scope)) then
2133               Error_Msg_N
2134                 ("\limitedness is not inherited from limited interface", N);
2135               Error_Msg_N ("\add LIMITED to type indication", N);
2136            end if;
2137
2138            Explain_Limited_Type (T, N);
2139            Set_Etype (Id, Any_Type);
2140            Set_Is_Limited_Composite (Current_Scope, False);
2141
2142         elsif not Is_Derived_Type (Current_Scope)
2143           and then not Is_Limited_Record (Current_Scope)
2144           and then not Is_Concurrent_Type (Current_Scope)
2145         then
2146            Error_Msg_N
2147              ("nonlimited tagged type cannot have limited components", N);
2148            Explain_Limited_Type (T, N);
2149            Set_Etype (Id, Any_Type);
2150            Set_Is_Limited_Composite (Current_Scope, False);
2151         end if;
2152      end if;
2153
2154      --  If the component is an unconstrained task or protected type with
2155      --  discriminants, the component and the enclosing record are limited
2156      --  and the component is constrained by its default values. Compute
2157      --  its actual subtype, else it may be allocated the maximum size by
2158      --  the backend, and possibly overflow.
2159
2160      if Is_Concurrent_Type (T)
2161        and then not Is_Constrained (T)
2162        and then Has_Discriminants (T)
2163        and then not Has_Discriminants (Current_Scope)
2164      then
2165         declare
2166            Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2167
2168         begin
2169            Set_Etype (Id, Act_T);
2170
2171            --  Rewrite component definition to use the constrained subtype
2172
2173            Rewrite (Component_Definition (N),
2174              Make_Component_Definition (Loc,
2175                Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2176         end;
2177      end if;
2178
2179      Set_Original_Record_Component (Id, Id);
2180
2181      if Has_Aspects (N) then
2182         Analyze_Aspect_Specifications (N, Id);
2183      end if;
2184
2185      Analyze_Dimension (N);
2186   end Analyze_Component_Declaration;
2187
2188   --------------------------
2189   -- Analyze_Declarations --
2190   --------------------------
2191
2192   procedure Analyze_Declarations (L : List_Id) is
2193      Decl : Node_Id;
2194
2195      procedure Adjust_Decl;
2196      --  Adjust Decl not to include implicit label declarations, since these
2197      --  have strange Sloc values that result in elaboration check problems.
2198      --  (They have the sloc of the label as found in the source, and that
2199      --  is ahead of the current declarative part).
2200
2201      procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2202      --  Create the subprogram bodies which verify the run-time semantics of
2203      --  the pragmas listed below for each elibigle type found in declarative
2204      --  list Decls. The pragmas are:
2205      --
2206      --    Default_Initial_Condition
2207      --    Invariant
2208      --    Type_Invariant
2209      --
2210      --  Context denotes the owner of the declarative list.
2211
2212      procedure Check_Entry_Contracts;
2213      --  Perform a pre-analysis of the pre- and postconditions of an entry
2214      --  declaration. This must be done before full resolution and creation
2215      --  of the parameter block, etc. to catch illegal uses within the
2216      --  contract expression. Full analysis of the expression is done when
2217      --  the contract is processed.
2218
2219      function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean;
2220      --  Check if a nested package has entities within it that rely on library
2221      --  level private types where the full view has not been completed for
2222      --  the purposes of checking if it is acceptable to freeze an expression
2223      --  function at the point of declaration.
2224
2225      procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2226      --  Determine whether Body_Decl denotes the body of a late controlled
2227      --  primitive (either Initialize, Adjust or Finalize). If this is the
2228      --  case, add a proper spec if the body lacks one. The spec is inserted
2229      --  before Body_Decl and immediately analyzed.
2230
2231      procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2232      --  Spec_Id is the entity of a package that may define abstract states,
2233      --  and in the case of a child unit, whose ancestors may define abstract
2234      --  states. If the states have partial visible refinement, remove the
2235      --  partial visibility of each constituent at the end of the package
2236      --  spec and body declarations.
2237
2238      procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2239      --  Spec_Id is the entity of a package that may define abstract states.
2240      --  If the states have visible refinement, remove the visibility of each
2241      --  constituent at the end of the package body declaration.
2242
2243      procedure Resolve_Aspects;
2244      --  Utility to resolve the expressions of aspects at the end of a list of
2245      --  declarations, or before a declaration that freezes previous entities,
2246      --  such as in a subprogram body.
2247
2248      -----------------
2249      -- Adjust_Decl --
2250      -----------------
2251
2252      procedure Adjust_Decl is
2253      begin
2254         while Present (Prev (Decl))
2255           and then Nkind (Decl) = N_Implicit_Label_Declaration
2256         loop
2257            Prev (Decl);
2258         end loop;
2259      end Adjust_Decl;
2260
2261      ----------------------------
2262      -- Build_Assertion_Bodies --
2263      ----------------------------
2264
2265      procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2266         procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2267         --  Create the subprogram bodies which verify the run-time semantics
2268         --  of the pragmas listed below for type Typ. The pragmas are:
2269         --
2270         --    Default_Initial_Condition
2271         --    Invariant
2272         --    Type_Invariant
2273
2274         -------------------------------------
2275         -- Build_Assertion_Bodies_For_Type --
2276         -------------------------------------
2277
2278         procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2279         begin
2280            --  Preanalyze and resolve the Default_Initial_Condition assertion
2281            --  expression at the end of the declarations to catch any errors.
2282
2283            if Has_DIC (Typ) then
2284               Build_DIC_Procedure_Body (Typ);
2285            end if;
2286
2287            if Nkind (Context) = N_Package_Specification then
2288
2289               --  Preanalyze and resolve the class-wide invariants of an
2290               --  interface at the end of whichever declarative part has the
2291               --  interface type. Note that an interface may be declared in
2292               --  any non-package declarative part, but reaching the end of
2293               --  such a declarative part will always freeze the type and
2294               --  generate the invariant procedure (see Freeze_Type).
2295
2296               if Is_Interface (Typ) then
2297
2298                  --  Interfaces are treated as the partial view of a private
2299                  --  type, in order to achieve uniformity with the general
2300                  --  case. As a result, an interface receives only a "partial"
2301                  --  invariant procedure, which is never called.
2302
2303                  if Has_Own_Invariants (Typ) then
2304                     Build_Invariant_Procedure_Body
2305                       (Typ               => Typ,
2306                        Partial_Invariant => True);
2307                  end if;
2308
2309               --  Preanalyze and resolve the invariants of a private type
2310               --  at the end of the visible declarations to catch potential
2311               --  errors. Inherited class-wide invariants are not included
2312               --  because they have already been resolved.
2313
2314               elsif Decls = Visible_Declarations (Context)
2315                 and then Ekind_In (Typ, E_Limited_Private_Type,
2316                                         E_Private_Type,
2317                                         E_Record_Type_With_Private)
2318                 and then Has_Own_Invariants (Typ)
2319               then
2320                  Build_Invariant_Procedure_Body
2321                    (Typ               => Typ,
2322                     Partial_Invariant => True);
2323
2324               --  Preanalyze and resolve the invariants of a private type's
2325               --  full view at the end of the private declarations to catch
2326               --  potential errors.
2327
2328               elsif Decls = Private_Declarations (Context)
2329                 and then not Is_Private_Type (Typ)
2330                 and then Has_Private_Declaration (Typ)
2331                 and then Has_Invariants (Typ)
2332               then
2333                  Build_Invariant_Procedure_Body (Typ);
2334               end if;
2335            end if;
2336         end Build_Assertion_Bodies_For_Type;
2337
2338         --  Local variables
2339
2340         Decl    : Node_Id;
2341         Decl_Id : Entity_Id;
2342
2343      --  Start of processing for Build_Assertion_Bodies
2344
2345      begin
2346         Decl := First (Decls);
2347         while Present (Decl) loop
2348            if Is_Declaration (Decl) then
2349               Decl_Id := Defining_Entity (Decl);
2350
2351               if Is_Type (Decl_Id) then
2352                  Build_Assertion_Bodies_For_Type (Decl_Id);
2353               end if;
2354            end if;
2355
2356            Next (Decl);
2357         end loop;
2358      end Build_Assertion_Bodies;
2359
2360      ---------------------------
2361      -- Check_Entry_Contracts --
2362      ---------------------------
2363
2364      procedure Check_Entry_Contracts is
2365         ASN : Node_Id;
2366         Ent : Entity_Id;
2367         Exp : Node_Id;
2368
2369      begin
2370         Ent := First_Entity (Current_Scope);
2371         while Present (Ent) loop
2372
2373            --  This only concerns entries with pre/postconditions
2374
2375            if Ekind (Ent) = E_Entry
2376              and then Present (Contract (Ent))
2377              and then Present (Pre_Post_Conditions (Contract (Ent)))
2378            then
2379               ASN := Pre_Post_Conditions (Contract (Ent));
2380               Push_Scope (Ent);
2381               Install_Formals (Ent);
2382
2383               --  Pre/postconditions are rewritten as Check pragmas. Analysis
2384               --  is performed on a copy of the pragma expression, to prevent
2385               --  modifying the original expression.
2386
2387               while Present (ASN) loop
2388                  if Nkind (ASN) = N_Pragma then
2389                     Exp :=
2390                       New_Copy_Tree
2391                         (Expression
2392                           (First (Pragma_Argument_Associations (ASN))));
2393                     Set_Parent (Exp, ASN);
2394
2395                     Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2396                  end if;
2397
2398                  ASN := Next_Pragma (ASN);
2399               end loop;
2400
2401               End_Scope;
2402            end if;
2403
2404            Next_Entity (Ent);
2405         end loop;
2406      end Check_Entry_Contracts;
2407
2408      ----------------------------------
2409      -- Contains_Lib_Incomplete_Type --
2410      ----------------------------------
2411
2412      function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean is
2413         Curr : Entity_Id;
2414
2415      begin
2416         --  Avoid looking through scopes that do not meet the precondition of
2417         --  Pkg not being within a library unit spec.
2418
2419         if not Is_Compilation_Unit (Pkg)
2420           and then not Is_Generic_Instance (Pkg)
2421           and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2422         then
2423            --  Loop through all entities in the current scope to identify
2424            --  an entity that depends on a private type.
2425
2426            Curr := First_Entity (Pkg);
2427            loop
2428               if Nkind (Curr) in N_Entity
2429                 and then Depends_On_Private (Curr)
2430               then
2431                  return True;
2432               end if;
2433
2434               exit when Last_Entity (Current_Scope) = Curr;
2435               Curr := Next_Entity (Curr);
2436            end loop;
2437         end if;
2438
2439         return False;
2440      end Contains_Lib_Incomplete_Type;
2441
2442      --------------------------------------
2443      -- Handle_Late_Controlled_Primitive --
2444      --------------------------------------
2445
2446      procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2447         Body_Spec : constant Node_Id    := Specification (Body_Decl);
2448         Body_Id   : constant Entity_Id  := Defining_Entity (Body_Spec);
2449         Loc       : constant Source_Ptr := Sloc (Body_Id);
2450         Params    : constant List_Id    :=
2451                       Parameter_Specifications (Body_Spec);
2452         Spec      : Node_Id;
2453         Spec_Id   : Entity_Id;
2454         Typ       : Node_Id;
2455
2456      begin
2457         --  Consider only procedure bodies whose name matches one of the three
2458         --  controlled primitives.
2459
2460         if Nkind (Body_Spec) /= N_Procedure_Specification
2461           or else not Nam_In (Chars (Body_Id), Name_Adjust,
2462                                                Name_Finalize,
2463                                                Name_Initialize)
2464         then
2465            return;
2466
2467         --  A controlled primitive must have exactly one formal which is not
2468         --  an anonymous access type.
2469
2470         elsif List_Length (Params) /= 1 then
2471            return;
2472         end if;
2473
2474         Typ := Parameter_Type (First (Params));
2475
2476         if Nkind (Typ) = N_Access_Definition then
2477            return;
2478         end if;
2479
2480         Find_Type (Typ);
2481
2482         --  The type of the formal must be derived from [Limited_]Controlled
2483
2484         if not Is_Controlled (Entity (Typ)) then
2485            return;
2486         end if;
2487
2488         --  Check whether a specification exists for this body. We do not
2489         --  analyze the spec of the body in full, because it will be analyzed
2490         --  again when the body is properly analyzed, and we cannot create
2491         --  duplicate entries in the formals chain. We look for an explicit
2492         --  specification because the body may be an overriding operation and
2493         --  an inherited spec may be present.
2494
2495         Spec_Id := Current_Entity (Body_Id);
2496
2497         while Present (Spec_Id) loop
2498            if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2499              and then Scope (Spec_Id) = Current_Scope
2500              and then Present (First_Formal (Spec_Id))
2501              and then No (Next_Formal (First_Formal (Spec_Id)))
2502              and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2503              and then Comes_From_Source (Spec_Id)
2504            then
2505               return;
2506            end if;
2507
2508            Spec_Id := Homonym (Spec_Id);
2509         end loop;
2510
2511         --  At this point the body is known to be a late controlled primitive.
2512         --  Generate a matching spec and insert it before the body. Note the
2513         --  use of Copy_Separate_Tree - we want an entirely separate semantic
2514         --  tree in this case.
2515
2516         Spec := Copy_Separate_Tree (Body_Spec);
2517
2518         --  Ensure that the subprogram declaration does not inherit the null
2519         --  indicator from the body as we now have a proper spec/body pair.
2520
2521         Set_Null_Present (Spec, False);
2522
2523         --  Ensure that the freeze node is inserted after the declaration of
2524         --  the primitive since its expansion will freeze the primitive.
2525
2526         Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2527
2528         Insert_Before_And_Analyze (Body_Decl, Decl);
2529      end Handle_Late_Controlled_Primitive;
2530
2531      ----------------------------------------
2532      -- Remove_Partial_Visible_Refinements --
2533      ----------------------------------------
2534
2535      procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2536         State_Elmt : Elmt_Id;
2537      begin
2538         if Present (Abstract_States (Spec_Id)) then
2539            State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2540            while Present (State_Elmt) loop
2541               Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2542               Next_Elmt (State_Elmt);
2543            end loop;
2544         end if;
2545
2546         --  For a child unit, also hide the partial state refinement from
2547         --  ancestor packages.
2548
2549         if Is_Child_Unit (Spec_Id) then
2550            Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2551         end if;
2552      end Remove_Partial_Visible_Refinements;
2553
2554      --------------------------------
2555      -- Remove_Visible_Refinements --
2556      --------------------------------
2557
2558      procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2559         State_Elmt : Elmt_Id;
2560      begin
2561         if Present (Abstract_States (Spec_Id)) then
2562            State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2563            while Present (State_Elmt) loop
2564               Set_Has_Visible_Refinement (Node (State_Elmt), False);
2565               Next_Elmt (State_Elmt);
2566            end loop;
2567         end if;
2568      end Remove_Visible_Refinements;
2569
2570      ---------------------
2571      -- Resolve_Aspects --
2572      ---------------------
2573
2574      procedure Resolve_Aspects is
2575         E : Entity_Id;
2576
2577      begin
2578         E := First_Entity (Current_Scope);
2579         while Present (E) loop
2580            Resolve_Aspect_Expressions (E);
2581            Next_Entity (E);
2582         end loop;
2583      end Resolve_Aspects;
2584
2585      --  Local variables
2586
2587      Context     : Node_Id   := Empty;
2588      Freeze_From : Entity_Id := Empty;
2589      Next_Decl   : Node_Id;
2590
2591      Body_Seen : Boolean := False;
2592      --  Flag set when the first body [stub] is encountered
2593
2594   --  Start of processing for Analyze_Declarations
2595
2596   begin
2597      if Restriction_Check_Required (SPARK_05) then
2598         Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2599      end if;
2600
2601      Decl := First (L);
2602      while Present (Decl) loop
2603
2604         --  Package spec cannot contain a package declaration in SPARK
2605
2606         if Nkind (Decl) = N_Package_Declaration
2607           and then Nkind (Parent (L)) = N_Package_Specification
2608         then
2609            Check_SPARK_05_Restriction
2610              ("package specification cannot contain a package declaration",
2611               Decl);
2612         end if;
2613
2614         --  Complete analysis of declaration
2615
2616         Analyze (Decl);
2617         Next_Decl := Next (Decl);
2618
2619         if No (Freeze_From) then
2620            Freeze_From := First_Entity (Current_Scope);
2621         end if;
2622
2623         --  At the end of a declarative part, freeze remaining entities
2624         --  declared in it. The end of the visible declarations of package
2625         --  specification is not the end of a declarative part if private
2626         --  declarations are present. The end of a package declaration is a
2627         --  freezing point only if it a library package. A task definition or
2628         --  protected type definition is not a freeze point either. Finally,
2629         --  we do not freeze entities in generic scopes, because there is no
2630         --  code generated for them and freeze nodes will be generated for
2631         --  the instance.
2632
2633         --  The end of a package instantiation is not a freeze point, but
2634         --  for now we make it one, because the generic body is inserted
2635         --  (currently) immediately after. Generic instantiations will not
2636         --  be a freeze point once delayed freezing of bodies is implemented.
2637         --  (This is needed in any case for early instantiations ???).
2638
2639         if No (Next_Decl) then
2640            if Nkind (Parent (L)) = N_Component_List then
2641               null;
2642
2643            elsif Nkind_In (Parent (L), N_Protected_Definition,
2644                                        N_Task_Definition)
2645            then
2646               Check_Entry_Contracts;
2647
2648            elsif Nkind (Parent (L)) /= N_Package_Specification then
2649               if Nkind (Parent (L)) = N_Package_Body then
2650                  Freeze_From := First_Entity (Current_Scope);
2651               end if;
2652
2653               --  There may have been several freezing points previously,
2654               --  for example object declarations or subprogram bodies, but
2655               --  at the end of a declarative part we check freezing from
2656               --  the beginning, even though entities may already be frozen,
2657               --  in order to perform visibility checks on delayed aspects.
2658
2659               Adjust_Decl;
2660
2661               --  If the current scope is a generic subprogram body. Skip the
2662               --  generic formal parameters that are not frozen here.
2663
2664               if Is_Subprogram (Current_Scope)
2665                 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
2666                            N_Generic_Subprogram_Declaration
2667                 and then Present (First_Entity (Current_Scope))
2668               then
2669                  while Is_Generic_Formal (Freeze_From) loop
2670                     Freeze_From := Next_Entity (Freeze_From);
2671                  end loop;
2672
2673                  Freeze_All (Freeze_From, Decl);
2674                  Freeze_From := Last_Entity (Current_Scope);
2675
2676               else
2677                  --  For declarations in a subprogram body there is no issue
2678                  --  with name resolution in aspect specifications, but in
2679                  --  ASIS mode we need to preanalyze aspect specifications
2680                  --  that may otherwise only be analyzed during expansion
2681                  --  (e.g. during generation of a related subprogram).
2682
2683                  if ASIS_Mode then
2684                     Resolve_Aspects;
2685                  end if;
2686
2687                  Freeze_All (First_Entity (Current_Scope), Decl);
2688                  Freeze_From := Last_Entity (Current_Scope);
2689               end if;
2690
2691            --  Current scope is a package specification
2692
2693            elsif Scope (Current_Scope) /= Standard_Standard
2694              and then not Is_Child_Unit (Current_Scope)
2695              and then No (Generic_Parent (Parent (L)))
2696            then
2697               --  ARM rule 13.1.1(11/3): usage names in aspect definitions are
2698               --  resolved at the end of the immediately enclosing declaration
2699               --  list (AI05-0183-1).
2700
2701               Resolve_Aspects;
2702
2703            elsif L /= Visible_Declarations (Parent (L))
2704              or else No (Private_Declarations (Parent (L)))
2705              or else Is_Empty_List (Private_Declarations (Parent (L)))
2706            then
2707               Adjust_Decl;
2708
2709               --  End of a package declaration
2710
2711               --  In compilation mode the expansion of freeze node takes care
2712               --  of resolving expressions of all aspects in the list. In ASIS
2713               --  mode this must be done explicitly.
2714
2715               if ASIS_Mode
2716                 and then Scope (Current_Scope) = Standard_Standard
2717               then
2718                  Resolve_Aspects;
2719               end if;
2720
2721               --  This is a freeze point because it is the end of a
2722               --  compilation unit.
2723
2724               Freeze_All (First_Entity (Current_Scope), Decl);
2725               Freeze_From := Last_Entity (Current_Scope);
2726
2727            --  At the end of the visible declarations the expressions in
2728            --  aspects of all entities declared so far must be resolved.
2729            --  The entities themselves might be frozen later, and the
2730            --  generated pragmas and attribute definition clauses analyzed
2731            --  in full at that point, but name resolution must take place
2732            --  now.
2733            --  In addition to being the proper semantics, this is mandatory
2734            --  within generic units, because global name capture requires
2735            --  those expressions to be analyzed, given that the generated
2736            --  pragmas do not appear in the original generic tree.
2737
2738            elsif Serious_Errors_Detected = 0 then
2739               Resolve_Aspects;
2740            end if;
2741
2742         --  If next node is a body then freeze all types before the body.
2743         --  An exception occurs for some expander-generated bodies. If these
2744         --  are generated at places where in general language rules would not
2745         --  allow a freeze point, then we assume that the expander has
2746         --  explicitly checked that all required types are properly frozen,
2747         --  and we do not cause general freezing here. This special circuit
2748         --  is used when the encountered body is marked as having already
2749         --  been analyzed.
2750
2751         --  In all other cases (bodies that come from source, and expander
2752         --  generated bodies that have not been analyzed yet), freeze all
2753         --  types now. Note that in the latter case, the expander must take
2754         --  care to attach the bodies at a proper place in the tree so as to
2755         --  not cause unwanted freezing at that point.
2756
2757         --  It is also necessary to check for a case where both an expression
2758         --  function is used and the current scope depends on an incomplete
2759         --  private type from a library unit, otherwise premature freezing of
2760         --  the private type will occur.
2761
2762         elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2763           and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2764                       or else not Was_Expression_Function (Next_Decl))
2765                      or else (not Is_Ignored_Ghost_Entity (Current_Scope)
2766                                and then not Contains_Lib_Incomplete_Type
2767                                               (Current_Scope)))
2768         then
2769            --  When a controlled type is frozen, the expander generates stream
2770            --  and controlled-type support routines. If the freeze is caused
2771            --  by the stand-alone body of Initialize, Adjust, or Finalize, the
2772            --  expander will end up using the wrong version of these routines,
2773            --  as the body has not been processed yet. To remedy this, detect
2774            --  a late controlled primitive and create a proper spec for it.
2775            --  This ensures that the primitive will override its inherited
2776            --  counterpart before the freeze takes place.
2777
2778            --  If the declaration we just processed is a body, do not attempt
2779            --  to examine Next_Decl as the late primitive idiom can only apply
2780            --  to the first encountered body.
2781
2782            --  The spec of the late primitive is not generated in ASIS mode to
2783            --  ensure a consistent list of primitives that indicates the true
2784            --  semantic structure of the program (which is not relevant when
2785            --  generating executable code).
2786
2787            --  ??? A cleaner approach may be possible and/or this solution
2788            --  could be extended to general-purpose late primitives, TBD.
2789
2790            if not ASIS_Mode
2791              and then not Body_Seen
2792              and then not Is_Body (Decl)
2793            then
2794               Body_Seen := True;
2795
2796               if Nkind (Next_Decl) = N_Subprogram_Body then
2797                  Handle_Late_Controlled_Primitive (Next_Decl);
2798               end if;
2799
2800            else
2801               --  In ASIS mode, if the next declaration is a body, complete
2802               --  the analysis of declarations so far.
2803
2804               Resolve_Aspects;
2805            end if;
2806
2807            Adjust_Decl;
2808
2809            --  The generated body of an expression function does not freeze,
2810            --  unless it is a completion, in which case only the expression
2811            --  itself freezes. This is handled when the body itself is
2812            --  analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2813
2814            Freeze_All (Freeze_From, Decl);
2815            Freeze_From := Last_Entity (Current_Scope);
2816         end if;
2817
2818         Decl := Next_Decl;
2819      end loop;
2820
2821      --  Post-freezing actions
2822
2823      if Present (L) then
2824         Context := Parent (L);
2825
2826         --  Certain contract annocations have forward visibility semantics and
2827         --  must be analyzed after all declarative items have been processed.
2828         --  This timing ensures that entities referenced by such contracts are
2829         --  visible.
2830
2831         --  Analyze the contract of an immediately enclosing package spec or
2832         --  body first because other contracts may depend on its information.
2833
2834         if Nkind (Context) = N_Package_Body then
2835            Analyze_Package_Body_Contract (Defining_Entity (Context));
2836
2837         elsif Nkind (Context) = N_Package_Specification then
2838            Analyze_Package_Contract (Defining_Entity (Context));
2839         end if;
2840
2841         --  Analyze the contracts of various constructs in the declarative
2842         --  list.
2843
2844         Analyze_Contracts (L);
2845
2846         if Nkind (Context) = N_Package_Body then
2847
2848            --  Ensure that all abstract states and objects declared in the
2849            --  state space of a package body are utilized as constituents.
2850
2851            Check_Unused_Body_States (Defining_Entity (Context));
2852
2853            --  State refinements are visible up to the end of the package body
2854            --  declarations. Hide the state refinements from visibility to
2855            --  restore the original state conditions.
2856
2857            Remove_Visible_Refinements (Corresponding_Spec (Context));
2858            Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2859
2860         elsif Nkind (Context) = N_Package_Specification then
2861
2862            --  Partial state refinements are visible up to the end of the
2863            --  package spec declarations. Hide the partial state refinements
2864            --  from visibility to restore the original state conditions.
2865
2866            Remove_Partial_Visible_Refinements (Defining_Entity (Context));
2867         end if;
2868
2869         --  Verify that all abstract states found in any package declared in
2870         --  the input declarative list have proper refinements. The check is
2871         --  performed only when the context denotes a block, entry, package,
2872         --  protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2873
2874         Check_State_Refinements (Context);
2875
2876         --  Create the subprogram bodies which verify the run-time semantics
2877         --  of pragmas Default_Initial_Condition and [Type_]Invariant for all
2878         --  types within the current declarative list. This ensures that all
2879         --  assertion expressions are preanalyzed and resolved at the end of
2880         --  the declarative part. Note that the resolution happens even when
2881         --  freezing does not take place.
2882
2883         Build_Assertion_Bodies (L, Context);
2884      end if;
2885   end Analyze_Declarations;
2886
2887   -----------------------------------
2888   -- Analyze_Full_Type_Declaration --
2889   -----------------------------------
2890
2891   procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2892      Def    : constant Node_Id   := Type_Definition (N);
2893      Def_Id : constant Entity_Id := Defining_Identifier (N);
2894      T      : Entity_Id;
2895      Prev   : Entity_Id;
2896
2897      Is_Remote : constant Boolean :=
2898                    (Is_Remote_Types (Current_Scope)
2899                       or else Is_Remote_Call_Interface (Current_Scope))
2900                      and then not (In_Private_Part (Current_Scope)
2901                                     or else In_Package_Body (Current_Scope));
2902
2903      procedure Check_Nonoverridable_Aspects;
2904      --  Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2905      --  be overridden, and can only be confirmed on derivation.
2906
2907      procedure Check_Ops_From_Incomplete_Type;
2908      --  If there is a tagged incomplete partial view of the type, traverse
2909      --  the primitives of the incomplete view and change the type of any
2910      --  controlling formals and result to indicate the full view. The
2911      --  primitives will be added to the full type's primitive operations
2912      --  list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2913      --  is called from Process_Incomplete_Dependents).
2914
2915      ----------------------------------
2916      -- Check_Nonoverridable_Aspects --
2917      ----------------------------------
2918
2919      procedure Check_Nonoverridable_Aspects is
2920         function Get_Aspect_Spec
2921           (Specs       : List_Id;
2922            Aspect_Name : Name_Id) return Node_Id;
2923         --  Check whether a list of aspect specifications includes an entry
2924         --  for a specific aspect. The list is either that of a partial or
2925         --  a full view.
2926
2927         ---------------------
2928         -- Get_Aspect_Spec --
2929         ---------------------
2930
2931         function Get_Aspect_Spec
2932           (Specs       : List_Id;
2933            Aspect_Name : Name_Id) return Node_Id
2934         is
2935            Spec : Node_Id;
2936
2937         begin
2938            Spec := First (Specs);
2939            while Present (Spec) loop
2940               if Chars (Identifier (Spec)) = Aspect_Name then
2941                  return Spec;
2942               end if;
2943               Next (Spec);
2944            end loop;
2945
2946            return Empty;
2947         end Get_Aspect_Spec;
2948
2949         --  Local variables
2950
2951         Prev_Aspects   : constant List_Id :=
2952                            Aspect_Specifications (Parent (Def_Id));
2953         Par_Type       : Entity_Id;
2954         Prev_Aspect    : Node_Id;
2955
2956      --  Start of processing for Check_Nonoverridable_Aspects
2957
2958      begin
2959         --  Get parent type of derived type. Note that Prev is the entity in
2960         --  the partial declaration, but its contents are now those of full
2961         --  view, while Def_Id reflects the partial view.
2962
2963         if Is_Private_Type (Def_Id) then
2964            Par_Type := Etype (Full_View (Def_Id));
2965         else
2966            Par_Type := Etype (Def_Id);
2967         end if;
2968
2969         --  If there is an inherited Implicit_Dereference, verify that it is
2970         --  made explicit in the partial view.
2971
2972         if Has_Discriminants (Base_Type (Par_Type))
2973           and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2974           and then Present (Discriminant_Specifications (Parent (Prev)))
2975           and then Present (Get_Reference_Discriminant (Par_Type))
2976         then
2977            Prev_Aspect :=
2978              Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2979
2980            if No (Prev_Aspect)
2981              and then Present
2982                         (Discriminant_Specifications
2983                           (Original_Node (Parent (Prev))))
2984            then
2985               Error_Msg_N
2986                 ("type does not inherit implicit dereference", Prev);
2987
2988            else
2989               --  If one of the views has the aspect specified, verify that it
2990               --  is consistent with that of the parent.
2991
2992               declare
2993                  Par_Discr  : constant Entity_Id :=
2994                                Get_Reference_Discriminant (Par_Type);
2995                  Cur_Discr  : constant Entity_Id :=
2996                                Get_Reference_Discriminant (Prev);
2997
2998               begin
2999                  if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
3000                     Error_Msg_N ("aspect incosistent with that of parent", N);
3001                  end if;
3002
3003                  --  Check that specification in partial view matches the
3004                  --  inherited aspect. Compare names directly because aspect
3005                  --  expression may not be analyzed.
3006
3007                  if Present (Prev_Aspect)
3008                    and then Nkind (Expression (Prev_Aspect)) = N_Identifier
3009                    and then Chars (Expression (Prev_Aspect)) /=
3010                               Chars (Cur_Discr)
3011                  then
3012                     Error_Msg_N
3013                       ("aspect incosistent with that of parent", N);
3014                  end if;
3015               end;
3016            end if;
3017         end if;
3018
3019         --  TBD : other nonoverridable aspects.
3020      end Check_Nonoverridable_Aspects;
3021
3022      ------------------------------------
3023      -- Check_Ops_From_Incomplete_Type --
3024      ------------------------------------
3025
3026      procedure Check_Ops_From_Incomplete_Type is
3027         Elmt   : Elmt_Id;
3028         Formal : Entity_Id;
3029         Op     : Entity_Id;
3030
3031      begin
3032         if Prev /= T
3033           and then Ekind (Prev) = E_Incomplete_Type
3034           and then Is_Tagged_Type (Prev)
3035           and then Is_Tagged_Type (T)
3036         then
3037            Elmt := First_Elmt (Primitive_Operations (Prev));
3038            while Present (Elmt) loop
3039               Op := Node (Elmt);
3040
3041               Formal := First_Formal (Op);
3042               while Present (Formal) loop
3043                  if Etype (Formal) = Prev then
3044                     Set_Etype (Formal, T);
3045                  end if;
3046
3047                  Next_Formal (Formal);
3048               end loop;
3049
3050               if Etype (Op) = Prev then
3051                  Set_Etype (Op, T);
3052               end if;
3053
3054               Next_Elmt (Elmt);
3055            end loop;
3056         end if;
3057      end Check_Ops_From_Incomplete_Type;
3058
3059   --  Start of processing for Analyze_Full_Type_Declaration
3060
3061   begin
3062      Prev := Find_Type_Name (N);
3063
3064      --  The full view, if present, now points to the current type. If there
3065      --  is an incomplete partial view, set a link to it, to simplify the
3066      --  retrieval of primitive operations of the type.
3067
3068      --  Ada 2005 (AI-50217): If the type was previously decorated when
3069      --  imported through a LIMITED WITH clause, it appears as incomplete
3070      --  but has no full view.
3071
3072      if Ekind (Prev) = E_Incomplete_Type
3073        and then Present (Full_View (Prev))
3074      then
3075         T := Full_View (Prev);
3076         Set_Incomplete_View (N, Parent (Prev));
3077      else
3078         T := Prev;
3079      end if;
3080
3081      Set_Is_Pure (T, Is_Pure (Current_Scope));
3082
3083      --  We set the flag Is_First_Subtype here. It is needed to set the
3084      --  corresponding flag for the Implicit class-wide-type created
3085      --  during tagged types processing.
3086
3087      Set_Is_First_Subtype (T, True);
3088
3089      --  Only composite types other than array types are allowed to have
3090      --  discriminants.
3091
3092      case Nkind (Def) is
3093
3094         --  For derived types, the rule will be checked once we've figured
3095         --  out the parent type.
3096
3097         when N_Derived_Type_Definition =>
3098            null;
3099
3100         --  For record types, discriminants are allowed, unless we are in
3101         --  SPARK.
3102
3103         when N_Record_Definition =>
3104            if Present (Discriminant_Specifications (N)) then
3105               Check_SPARK_05_Restriction
3106                 ("discriminant type is not allowed",
3107                  Defining_Identifier
3108                    (First (Discriminant_Specifications (N))));
3109            end if;
3110
3111         when others =>
3112            if Present (Discriminant_Specifications (N)) then
3113               Error_Msg_N
3114                 ("elementary or array type cannot have discriminants",
3115                  Defining_Identifier
3116                    (First (Discriminant_Specifications (N))));
3117            end if;
3118      end case;
3119
3120      --  Elaborate the type definition according to kind, and generate
3121      --  subsidiary (implicit) subtypes where needed. We skip this if it was
3122      --  already done (this happens during the reanalysis that follows a call
3123      --  to the high level optimizer).
3124
3125      if not Analyzed (T) then
3126         Set_Analyzed (T);
3127
3128         --  Set the SPARK mode from the current context
3129
3130         Set_SPARK_Pragma           (T, SPARK_Mode_Pragma);
3131         Set_SPARK_Pragma_Inherited (T);
3132
3133         case Nkind (Def) is
3134            when N_Access_To_Subprogram_Definition =>
3135               Access_Subprogram_Declaration (T, Def);
3136
3137               --  If this is a remote access to subprogram, we must create the
3138               --  equivalent fat pointer type, and related subprograms.
3139
3140               if Is_Remote then
3141                  Process_Remote_AST_Declaration (N);
3142               end if;
3143
3144               --  Validate categorization rule against access type declaration
3145               --  usually a violation in Pure unit, Shared_Passive unit.
3146
3147               Validate_Access_Type_Declaration (T, N);
3148
3149            when N_Access_To_Object_Definition =>
3150               Access_Type_Declaration (T, Def);
3151
3152               --  Validate categorization rule against access type declaration
3153               --  usually a violation in Pure unit, Shared_Passive unit.
3154
3155               Validate_Access_Type_Declaration (T, N);
3156
3157               --  If we are in a Remote_Call_Interface package and define a
3158               --  RACW, then calling stubs and specific stream attributes
3159               --  must be added.
3160
3161               if Is_Remote
3162                 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3163               then
3164                  Add_RACW_Features (Def_Id);
3165               end if;
3166
3167            when N_Array_Type_Definition =>
3168               Array_Type_Declaration (T, Def);
3169
3170            when N_Derived_Type_Definition =>
3171               Derived_Type_Declaration (T, N, T /= Def_Id);
3172
3173               --  Inherit predicates from parent, and protect against illegal
3174               --  derivations.
3175
3176               if Is_Type (T) and then Has_Predicates (T) then
3177                  Set_Has_Predicates (Def_Id);
3178               end if;
3179
3180               --  Save the scenario for examination by the ABE Processing
3181               --  phase.
3182
3183               Record_Elaboration_Scenario (N);
3184
3185            when N_Enumeration_Type_Definition =>
3186               Enumeration_Type_Declaration (T, Def);
3187
3188            when N_Floating_Point_Definition =>
3189               Floating_Point_Type_Declaration (T, Def);
3190
3191            when N_Decimal_Fixed_Point_Definition =>
3192               Decimal_Fixed_Point_Type_Declaration (T, Def);
3193
3194            when N_Ordinary_Fixed_Point_Definition =>
3195               Ordinary_Fixed_Point_Type_Declaration (T, Def);
3196
3197            when N_Signed_Integer_Type_Definition =>
3198               Signed_Integer_Type_Declaration (T, Def);
3199
3200            when N_Modular_Type_Definition =>
3201               Modular_Type_Declaration (T, Def);
3202
3203            when N_Record_Definition =>
3204               Record_Type_Declaration (T, N, Prev);
3205
3206            --  If declaration has a parse error, nothing to elaborate.
3207
3208            when N_Error =>
3209               null;
3210
3211            when others =>
3212               raise Program_Error;
3213         end case;
3214      end if;
3215
3216      if Etype (T) = Any_Type then
3217         return;
3218      end if;
3219
3220      --  Controlled type is not allowed in SPARK
3221
3222      if Is_Visibly_Controlled (T) then
3223         Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3224      end if;
3225
3226      --  Some common processing for all types
3227
3228      Set_Depends_On_Private (T, Has_Private_Component (T));
3229      Check_Ops_From_Incomplete_Type;
3230
3231      --  Both the declared entity, and its anonymous base type if one was
3232      --  created, need freeze nodes allocated.
3233
3234      declare
3235         B : constant Entity_Id := Base_Type (T);
3236
3237      begin
3238         --  In the case where the base type differs from the first subtype, we
3239         --  pre-allocate a freeze node, and set the proper link to the first
3240         --  subtype. Freeze_Entity will use this preallocated freeze node when
3241         --  it freezes the entity.
3242
3243         --  This does not apply if the base type is a generic type, whose
3244         --  declaration is independent of the current derived definition.
3245
3246         if B /= T and then not Is_Generic_Type (B) then
3247            Ensure_Freeze_Node (B);
3248            Set_First_Subtype_Link (Freeze_Node (B), T);
3249         end if;
3250
3251         --  A type that is imported through a limited_with clause cannot
3252         --  generate any code, and thus need not be frozen. However, an access
3253         --  type with an imported designated type needs a finalization list,
3254         --  which may be referenced in some other package that has non-limited
3255         --  visibility on the designated type. Thus we must create the
3256         --  finalization list at the point the access type is frozen, to
3257         --  prevent unsatisfied references at link time.
3258
3259         if not From_Limited_With (T) or else Is_Access_Type (T) then
3260            Set_Has_Delayed_Freeze (T);
3261         end if;
3262      end;
3263
3264      --  Case where T is the full declaration of some private type which has
3265      --  been swapped in Defining_Identifier (N).
3266
3267      if T /= Def_Id and then Is_Private_Type (Def_Id) then
3268         Process_Full_View (N, T, Def_Id);
3269
3270         --  Record the reference. The form of this is a little strange, since
3271         --  the full declaration has been swapped in. So the first parameter
3272         --  here represents the entity to which a reference is made which is
3273         --  the "real" entity, i.e. the one swapped in, and the second
3274         --  parameter provides the reference location.
3275
3276         --  Also, we want to kill Has_Pragma_Unreferenced temporarily here
3277         --  since we don't want a complaint about the full type being an
3278         --  unwanted reference to the private type
3279
3280         declare
3281            B : constant Boolean := Has_Pragma_Unreferenced (T);
3282         begin
3283            Set_Has_Pragma_Unreferenced (T, False);
3284            Generate_Reference (T, T, 'c');
3285            Set_Has_Pragma_Unreferenced (T, B);
3286         end;
3287
3288         Set_Completion_Referenced (Def_Id);
3289
3290      --  For completion of incomplete type, process incomplete dependents
3291      --  and always mark the full type as referenced (it is the incomplete
3292      --  type that we get for any real reference).
3293
3294      elsif Ekind (Prev) = E_Incomplete_Type then
3295         Process_Incomplete_Dependents (N, T, Prev);
3296         Generate_Reference (Prev, Def_Id, 'c');
3297         Set_Completion_Referenced (Def_Id);
3298
3299      --  If not private type or incomplete type completion, this is a real
3300      --  definition of a new entity, so record it.
3301
3302      else
3303         Generate_Definition (Def_Id);
3304      end if;
3305
3306      --  Propagate any pending access types whose finalization masters need to
3307      --  be fully initialized from the partial to the full view. Guard against
3308      --  an illegal full view that remains unanalyzed.
3309
3310      if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3311         Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3312      end if;
3313
3314      if Chars (Scope (Def_Id)) = Name_System
3315        and then Chars (Def_Id) = Name_Address
3316        and then In_Predefined_Unit (N)
3317      then
3318         Set_Is_Descendant_Of_Address (Def_Id);
3319         Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3320         Set_Is_Descendant_Of_Address (Prev);
3321      end if;
3322
3323      Set_Optimize_Alignment_Flags (Def_Id);
3324      Check_Eliminated (Def_Id);
3325
3326      --  If the declaration is a completion and aspects are present, apply
3327      --  them to the entity for the type which is currently the partial
3328      --  view, but which is the one that will be frozen.
3329
3330      if Has_Aspects (N) then
3331
3332         --  In most cases the partial view is a private type, and both views
3333         --  appear in different declarative parts. In the unusual case where
3334         --  the partial view is incomplete, perform the analysis on the
3335         --  full view, to prevent freezing anomalies with the corresponding
3336         --  class-wide type, which otherwise might be frozen before the
3337         --  dispatch table is built.
3338
3339         if Prev /= Def_Id
3340           and then Ekind (Prev) /= E_Incomplete_Type
3341         then
3342            Analyze_Aspect_Specifications (N, Prev);
3343
3344         --  Normal case
3345
3346         else
3347            Analyze_Aspect_Specifications (N, Def_Id);
3348         end if;
3349      end if;
3350
3351      if Is_Derived_Type (Prev)
3352        and then Def_Id /= Prev
3353      then
3354         Check_Nonoverridable_Aspects;
3355      end if;
3356   end Analyze_Full_Type_Declaration;
3357
3358   ----------------------------------
3359   -- Analyze_Incomplete_Type_Decl --
3360   ----------------------------------
3361
3362   procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3363      F : constant Boolean := Is_Pure (Current_Scope);
3364      T : Entity_Id;
3365
3366   begin
3367      Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3368
3369      Generate_Definition (Defining_Identifier (N));
3370
3371      --  Process an incomplete declaration. The identifier must not have been
3372      --  declared already in the scope. However, an incomplete declaration may
3373      --  appear in the private part of a package, for a private type that has
3374      --  already been declared.
3375
3376      --  In this case, the discriminants (if any) must match
3377
3378      T := Find_Type_Name (N);
3379
3380      Set_Ekind            (T, E_Incomplete_Type);
3381      Set_Etype            (T, T);
3382      Set_Is_First_Subtype (T);
3383      Init_Size_Align      (T);
3384
3385      --  Set the SPARK mode from the current context
3386
3387      Set_SPARK_Pragma           (T, SPARK_Mode_Pragma);
3388      Set_SPARK_Pragma_Inherited (T);
3389
3390      --  Ada 2005 (AI-326): Minimum decoration to give support to tagged
3391      --  incomplete types.
3392
3393      if Tagged_Present (N) then
3394         Set_Is_Tagged_Type (T, True);
3395         Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3396         Make_Class_Wide_Type (T);
3397         Set_Direct_Primitive_Operations (T, New_Elmt_List);
3398      end if;
3399
3400      Set_Stored_Constraint (T, No_Elist);
3401
3402      if Present (Discriminant_Specifications (N)) then
3403         Push_Scope (T);
3404         Process_Discriminants (N);
3405         End_Scope;
3406      end if;
3407
3408      --  If the type has discriminants, nontrivial subtypes may be declared
3409      --  before the full view of the type. The full views of those subtypes
3410      --  will be built after the full view of the type.
3411
3412      Set_Private_Dependents (T, New_Elmt_List);
3413      Set_Is_Pure            (T, F);
3414   end Analyze_Incomplete_Type_Decl;
3415
3416   -----------------------------------
3417   -- Analyze_Interface_Declaration --
3418   -----------------------------------
3419
3420   procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3421      CW : constant Entity_Id := Class_Wide_Type (T);
3422
3423   begin
3424      Set_Is_Tagged_Type (T);
3425      Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3426
3427      Set_Is_Limited_Record (T, Limited_Present (Def)
3428                                  or else Task_Present (Def)
3429                                  or else Protected_Present (Def)
3430                                  or else Synchronized_Present (Def));
3431
3432      --  Type is abstract if full declaration carries keyword, or if previous
3433      --  partial view did.
3434
3435      Set_Is_Abstract_Type (T);
3436      Set_Is_Interface (T);
3437
3438      --  Type is a limited interface if it includes the keyword limited, task,
3439      --  protected, or synchronized.
3440
3441      Set_Is_Limited_Interface
3442        (T, Limited_Present (Def)
3443              or else Protected_Present (Def)
3444              or else Synchronized_Present (Def)
3445              or else Task_Present (Def));
3446
3447      Set_Interfaces (T, New_Elmt_List);
3448      Set_Direct_Primitive_Operations (T, New_Elmt_List);
3449
3450      --  Complete the decoration of the class-wide entity if it was already
3451      --  built (i.e. during the creation of the limited view)
3452
3453      if Present (CW) then
3454         Set_Is_Interface (CW);
3455         Set_Is_Limited_Interface      (CW, Is_Limited_Interface (T));
3456      end if;
3457
3458      --  Check runtime support for synchronized interfaces
3459
3460      if (Is_Task_Interface (T)
3461           or else Is_Protected_Interface (T)
3462           or else Is_Synchronized_Interface (T))
3463        and then not RTE_Available (RE_Select_Specific_Data)
3464      then
3465         Error_Msg_CRT ("synchronized interfaces", T);
3466      end if;
3467   end Analyze_Interface_Declaration;
3468
3469   -----------------------------
3470   -- Analyze_Itype_Reference --
3471   -----------------------------
3472
3473   --  Nothing to do. This node is placed in the tree only for the benefit of
3474   --  back end processing, and has no effect on the semantic processing.
3475
3476   procedure Analyze_Itype_Reference (N : Node_Id) is
3477   begin
3478      pragma Assert (Is_Itype (Itype (N)));
3479      null;
3480   end Analyze_Itype_Reference;
3481
3482   --------------------------------
3483   -- Analyze_Number_Declaration --
3484   --------------------------------
3485
3486   procedure Analyze_Number_Declaration (N : Node_Id) is
3487      E     : constant Node_Id   := Expression (N);
3488      Id    : constant Entity_Id := Defining_Identifier (N);
3489      Index : Interp_Index;
3490      It    : Interp;
3491      T     : Entity_Id;
3492
3493   begin
3494      Generate_Definition (Id);
3495      Enter_Name (Id);
3496
3497      --  This is an optimization of a common case of an integer literal
3498
3499      if Nkind (E) = N_Integer_Literal then
3500         Set_Is_Static_Expression (E, True);
3501         Set_Etype                (E, Universal_Integer);
3502
3503         Set_Etype     (Id, Universal_Integer);
3504         Set_Ekind     (Id, E_Named_Integer);
3505         Set_Is_Frozen (Id, True);
3506         return;
3507      end if;
3508
3509      Set_Is_Pure (Id, Is_Pure (Current_Scope));
3510
3511      --  Process expression, replacing error by integer zero, to avoid
3512      --  cascaded errors or aborts further along in the processing
3513
3514      --  Replace Error by integer zero, which seems least likely to cause
3515      --  cascaded errors.
3516
3517      if E = Error then
3518         Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3519         Set_Error_Posted (E);
3520      end if;
3521
3522      Analyze (E);
3523
3524      --  Verify that the expression is static and numeric. If
3525      --  the expression is overloaded, we apply the preference
3526      --  rule that favors root numeric types.
3527
3528      if not Is_Overloaded (E) then
3529         T := Etype (E);
3530         if Has_Dynamic_Predicate_Aspect (T) then
3531            Error_Msg_N
3532              ("subtype has dynamic predicate, "
3533               & "not allowed in number declaration", N);
3534         end if;
3535
3536      else
3537         T := Any_Type;
3538
3539         Get_First_Interp (E, Index, It);
3540         while Present (It.Typ) loop
3541            if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3542              and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3543            then
3544               if T = Any_Type then
3545                  T := It.Typ;
3546
3547               elsif It.Typ = Universal_Real
3548                       or else
3549                     It.Typ = Universal_Integer
3550               then
3551                  --  Choose universal interpretation over any other
3552
3553                  T := It.Typ;
3554                  exit;
3555               end if;
3556            end if;
3557
3558            Get_Next_Interp (Index, It);
3559         end loop;
3560      end if;
3561
3562      if Is_Integer_Type (T) then
3563         Resolve (E, T);
3564         Set_Etype (Id, Universal_Integer);
3565         Set_Ekind (Id, E_Named_Integer);
3566
3567      elsif Is_Real_Type (T) then
3568
3569         --  Because the real value is converted to universal_real, this is a
3570         --  legal context for a universal fixed expression.
3571
3572         if T = Universal_Fixed then
3573            declare
3574               Loc  : constant Source_Ptr := Sloc (N);
3575               Conv : constant Node_Id := Make_Type_Conversion (Loc,
3576                        Subtype_Mark =>
3577                          New_Occurrence_Of (Universal_Real, Loc),
3578                        Expression => Relocate_Node (E));
3579
3580            begin
3581               Rewrite (E, Conv);
3582               Analyze (E);
3583            end;
3584
3585         elsif T = Any_Fixed then
3586            Error_Msg_N ("illegal context for mixed mode operation", E);
3587
3588            --  Expression is of the form : universal_fixed * integer. Try to
3589            --  resolve as universal_real.
3590
3591            T := Universal_Real;
3592            Set_Etype (E, T);
3593         end if;
3594
3595         Resolve (E, T);
3596         Set_Etype (Id, Universal_Real);
3597         Set_Ekind (Id, E_Named_Real);
3598
3599      else
3600         Wrong_Type (E, Any_Numeric);
3601         Resolve (E, T);
3602
3603         Set_Etype               (Id, T);
3604         Set_Ekind               (Id, E_Constant);
3605         Set_Never_Set_In_Source (Id, True);
3606         Set_Is_True_Constant    (Id, True);
3607         return;
3608      end if;
3609
3610      if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3611         Set_Etype (E, Etype (Id));
3612      end if;
3613
3614      if not Is_OK_Static_Expression (E) then
3615         Flag_Non_Static_Expr
3616           ("non-static expression used in number declaration!", E);
3617         Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3618         Set_Etype (E, Any_Type);
3619      end if;
3620
3621      Analyze_Dimension (N);
3622   end Analyze_Number_Declaration;
3623
3624   --------------------------------
3625   -- Analyze_Object_Declaration --
3626   --------------------------------
3627
3628   --  WARNING: This routine manages Ghost regions. Return statements must be
3629   --  replaced by gotos which jump to the end of the routine and restore the
3630   --  Ghost mode.
3631
3632   procedure Analyze_Object_Declaration (N : Node_Id) is
3633      Loc   : constant Source_Ptr := Sloc (N);
3634      Id    : constant Entity_Id  := Defining_Identifier (N);
3635      Act_T : Entity_Id;
3636      T     : Entity_Id;
3637
3638      E : Node_Id := Expression (N);
3639      --  E is set to Expression (N) throughout this routine. When Expression
3640      --  (N) is modified, E is changed accordingly.
3641
3642      Prev_Entity : Entity_Id := Empty;
3643
3644      procedure Check_Dynamic_Object (Typ : Entity_Id);
3645      --  A library-level object with non-static discriminant constraints may
3646      --  require dynamic allocation. The declaration is illegal if the
3647      --  profile includes the restriction No_Implicit_Heap_Allocations.
3648
3649      procedure Check_For_Null_Excluding_Components
3650        (Obj_Typ  : Entity_Id;
3651         Obj_Decl : Node_Id);
3652      --  Verify that each null-excluding component of object declaration
3653      --  Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3654      --  a compile-time warning if this is not the case.
3655
3656      function Count_Tasks (T : Entity_Id) return Uint;
3657      --  This function is called when a non-generic library level object of a
3658      --  task type is declared. Its function is to count the static number of
3659      --  tasks declared within the type (it is only called if Has_Task is set
3660      --  for T). As a side effect, if an array of tasks with non-static bounds
3661      --  or a variant record type is encountered, Check_Restriction is called
3662      --  indicating the count is unknown.
3663
3664      function Delayed_Aspect_Present return Boolean;
3665      --  If the declaration has an expression that is an aggregate, and it
3666      --  has aspects that require delayed analysis, the resolution of the
3667      --  aggregate must be deferred to the freeze point of the objet. This
3668      --  special processing was created for address clauses, but it must
3669      --  also apply to Alignment. This must be done before the aspect
3670      --  specifications are analyzed because we must handle the aggregate
3671      --  before the analysis of the object declaration is complete.
3672
3673      --  Any other relevant delayed aspects on object declarations ???
3674
3675      --------------------------
3676      -- Check_Dynamic_Object --
3677      --------------------------
3678
3679      procedure Check_Dynamic_Object (Typ : Entity_Id) is
3680         Comp     : Entity_Id;
3681         Obj_Type : Entity_Id;
3682
3683      begin
3684         Obj_Type := Typ;
3685
3686         if Is_Private_Type (Obj_Type)
3687            and then Present (Full_View (Obj_Type))
3688         then
3689            Obj_Type := Full_View (Obj_Type);
3690         end if;
3691
3692         if Known_Static_Esize (Obj_Type) then
3693            return;
3694         end if;
3695
3696         if Restriction_Active (No_Implicit_Heap_Allocations)
3697           and then Expander_Active
3698           and then Has_Discriminants (Obj_Type)
3699         then
3700            Comp := First_Component (Obj_Type);
3701            while Present (Comp) loop
3702               if Known_Static_Esize (Etype (Comp))
3703                 or else Size_Known_At_Compile_Time (Etype (Comp))
3704               then
3705                  null;
3706
3707               elsif not Discriminated_Size (Comp)
3708                 and then Comes_From_Source (Comp)
3709               then
3710                  Error_Msg_NE
3711                    ("component& of non-static size will violate restriction "
3712                     & "No_Implicit_Heap_Allocation?", N, Comp);
3713
3714               elsif Is_Record_Type (Etype (Comp)) then
3715                  Check_Dynamic_Object (Etype (Comp));
3716               end if;
3717
3718               Next_Component (Comp);
3719            end loop;
3720         end if;
3721      end Check_Dynamic_Object;
3722
3723      -----------------------------------------
3724      -- Check_For_Null_Excluding_Components --
3725      -----------------------------------------
3726
3727      procedure Check_For_Null_Excluding_Components
3728        (Obj_Typ  : Entity_Id;
3729         Obj_Decl : Node_Id)
3730      is
3731         procedure Check_Component
3732           (Comp_Typ   : Entity_Id;
3733            Comp_Decl  : Node_Id := Empty;
3734            Array_Comp : Boolean := False);
3735         --  Apply a compile-time null-exclusion check on a component denoted
3736         --  by its declaration Comp_Decl and type Comp_Typ, and all of its
3737         --  subcomponents (if any).
3738
3739         ---------------------
3740         -- Check_Component --
3741         ---------------------
3742
3743         procedure Check_Component
3744           (Comp_Typ  : Entity_Id;
3745            Comp_Decl : Node_Id := Empty;
3746            Array_Comp : Boolean := False)
3747         is
3748            Comp : Entity_Id;
3749            T    : Entity_Id;
3750
3751         begin
3752            --  Do not consider internally-generated components or those that
3753            --  are already initialized.
3754
3755            if Present (Comp_Decl)
3756              and then (not Comes_From_Source (Comp_Decl)
3757                         or else Present (Expression (Comp_Decl)))
3758            then
3759               return;
3760            end if;
3761
3762            if Is_Incomplete_Or_Private_Type (Comp_Typ)
3763              and then Present (Full_View (Comp_Typ))
3764            then
3765               T := Full_View (Comp_Typ);
3766            else
3767               T := Comp_Typ;
3768            end if;
3769
3770            --  Verify a component of a null-excluding access type
3771
3772            if Is_Access_Type (T)
3773              and then Can_Never_Be_Null (T)
3774            then
3775               if Comp_Decl = Obj_Decl then
3776                  Null_Exclusion_Static_Checks
3777                    (N          => Obj_Decl,
3778                     Comp       => Empty,
3779                     Array_Comp => Array_Comp);
3780
3781               else
3782                  Null_Exclusion_Static_Checks
3783                    (N          => Obj_Decl,
3784                     Comp       => Comp_Decl,
3785                     Array_Comp => Array_Comp);
3786               end if;
3787
3788            --  Check array components
3789
3790            elsif Is_Array_Type (T) then
3791
3792               --  There is no suitable component when the object is of an
3793               --  array type. However, a namable component may appear at some
3794               --  point during the recursive inspection, but not at the top
3795               --  level. At the top level just indicate array component case.
3796
3797               if Comp_Decl = Obj_Decl then
3798                  Check_Component (Component_Type (T), Array_Comp => True);
3799               else
3800                  Check_Component (Component_Type (T), Comp_Decl);
3801               end if;
3802
3803            --  Verify all components of type T
3804
3805            --  Note: No checks are performed on types with discriminants due
3806            --  to complexities involving variants. ???
3807
3808            elsif (Is_Concurrent_Type (T)
3809                    or else Is_Incomplete_Or_Private_Type (T)
3810                    or else Is_Record_Type (T))
3811               and then not Has_Discriminants (T)
3812            then
3813               Comp := First_Component (T);
3814               while Present (Comp) loop
3815                  Check_Component (Etype (Comp), Parent (Comp));
3816
3817                  Comp := Next_Component (Comp);
3818               end loop;
3819            end if;
3820         end Check_Component;
3821
3822      --  Start processing for Check_For_Null_Excluding_Components
3823
3824      begin
3825         Check_Component (Obj_Typ, Obj_Decl);
3826      end Check_For_Null_Excluding_Components;
3827
3828      -----------------
3829      -- Count_Tasks --
3830      -----------------
3831
3832      function Count_Tasks (T : Entity_Id) return Uint is
3833         C : Entity_Id;
3834         X : Node_Id;
3835         V : Uint;
3836
3837      begin
3838         if Is_Task_Type (T) then
3839            return Uint_1;
3840
3841         elsif Is_Record_Type (T) then
3842            if Has_Discriminants (T) then
3843               Check_Restriction (Max_Tasks, N);
3844               return Uint_0;
3845
3846            else
3847               V := Uint_0;
3848               C := First_Component (T);
3849               while Present (C) loop
3850                  V := V + Count_Tasks (Etype (C));
3851                  Next_Component (C);
3852               end loop;
3853
3854               return V;
3855            end if;
3856
3857         elsif Is_Array_Type (T) then
3858            X := First_Index (T);
3859            V := Count_Tasks (Component_Type (T));
3860            while Present (X) loop
3861               C := Etype (X);
3862
3863               if not Is_OK_Static_Subtype (C) then
3864                  Check_Restriction (Max_Tasks, N);
3865                  return Uint_0;
3866               else
3867                  V := V * (UI_Max (Uint_0,
3868                                    Expr_Value (Type_High_Bound (C)) -
3869                                    Expr_Value (Type_Low_Bound (C)) + Uint_1));
3870               end if;
3871
3872               Next_Index (X);
3873            end loop;
3874
3875            return V;
3876
3877         else
3878            return Uint_0;
3879         end if;
3880      end Count_Tasks;
3881
3882      ----------------------------
3883      -- Delayed_Aspect_Present --
3884      ----------------------------
3885
3886      function Delayed_Aspect_Present return Boolean is
3887         A    : Node_Id;
3888         A_Id : Aspect_Id;
3889
3890      begin
3891         if Present (Aspect_Specifications (N)) then
3892            A    := First (Aspect_Specifications (N));
3893            A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3894            while Present (A) loop
3895               if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3896                  return True;
3897               end if;
3898
3899               Next (A);
3900            end loop;
3901         end if;
3902
3903         return False;
3904      end Delayed_Aspect_Present;
3905
3906      --  Local variables
3907
3908      Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3909      --  Save the Ghost mode to restore on exit
3910
3911      Related_Id : Entity_Id;
3912
3913   --  Start of processing for Analyze_Object_Declaration
3914
3915   begin
3916      --  There are three kinds of implicit types generated by an
3917      --  object declaration:
3918
3919      --   1. Those generated by the original Object Definition
3920
3921      --   2. Those generated by the Expression
3922
3923      --   3. Those used to constrain the Object Definition with the
3924      --      expression constraints when the definition is unconstrained.
3925
3926      --  They must be generated in this order to avoid order of elaboration
3927      --  issues. Thus the first step (after entering the name) is to analyze
3928      --  the object definition.
3929
3930      if Constant_Present (N) then
3931         Prev_Entity := Current_Entity_In_Scope (Id);
3932
3933         if Present (Prev_Entity)
3934           and then
3935             --  If the homograph is an implicit subprogram, it is overridden
3936             --  by the current declaration.
3937
3938             ((Is_Overloadable (Prev_Entity)
3939                and then Is_Inherited_Operation (Prev_Entity))
3940
3941               --  The current object is a discriminal generated for an entry
3942               --  family index. Even though the index is a constant, in this
3943               --  particular context there is no true constant redeclaration.
3944               --  Enter_Name will handle the visibility.
3945
3946               or else
3947                 (Is_Discriminal (Id)
3948                   and then Ekind (Discriminal_Link (Id)) =
3949                                              E_Entry_Index_Parameter)
3950
3951               --  The current object is the renaming for a generic declared
3952               --  within the instance.
3953
3954               or else
3955                 (Ekind (Prev_Entity) = E_Package
3956                   and then Nkind (Parent (Prev_Entity)) =
3957                                               N_Package_Renaming_Declaration
3958                   and then not Comes_From_Source (Prev_Entity)
3959                   and then
3960                     Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3961
3962               --  The entity may be a homonym of a private component of the
3963               --  enclosing protected object, for which we create a local
3964               --  renaming declaration. The declaration is legal, even if
3965               --  useless when it just captures that component.
3966
3967               or else
3968                 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3969                   and then Nkind (Parent (Prev_Entity)) =
3970                              N_Object_Renaming_Declaration))
3971         then
3972            Prev_Entity := Empty;
3973         end if;
3974      end if;
3975
3976      if Present (Prev_Entity) then
3977
3978         --  The object declaration is Ghost when it completes a deferred Ghost
3979         --  constant.
3980
3981         Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3982
3983         Constant_Redeclaration (Id, N, T);
3984
3985         Generate_Reference (Prev_Entity, Id, 'c');
3986         Set_Completion_Referenced (Id);
3987
3988         if Error_Posted (N) then
3989
3990            --  Type mismatch or illegal redeclaration; do not analyze
3991            --  expression to avoid cascaded errors.
3992
3993            T := Find_Type_Of_Object (Object_Definition (N), N);
3994            Set_Etype (Id, T);
3995            Set_Ekind (Id, E_Variable);
3996            goto Leave;
3997         end if;
3998
3999      --  In the normal case, enter identifier at the start to catch premature
4000      --  usage in the initialization expression.
4001
4002      else
4003         Generate_Definition (Id);
4004         Enter_Name (Id);
4005
4006         Mark_Coextensions (N, Object_Definition (N));
4007
4008         T := Find_Type_Of_Object (Object_Definition (N), N);
4009
4010         if Nkind (Object_Definition (N)) = N_Access_Definition
4011           and then Present
4012                      (Access_To_Subprogram_Definition (Object_Definition (N)))
4013           and then Protected_Present
4014                      (Access_To_Subprogram_Definition (Object_Definition (N)))
4015         then
4016            T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
4017         end if;
4018
4019         if Error_Posted (Id) then
4020            Set_Etype (Id, T);
4021            Set_Ekind (Id, E_Variable);
4022            goto Leave;
4023         end if;
4024      end if;
4025
4026      --  Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
4027      --  out some static checks.
4028
4029      if Ada_Version >= Ada_2005 then
4030
4031         --  In case of aggregates we must also take care of the correct
4032         --  initialization of nested aggregates bug this is done at the
4033         --  point of the analysis of the aggregate (see sem_aggr.adb) ???
4034
4035         if Can_Never_Be_Null (T) then
4036            if Present (Expression (N))
4037              and then Nkind (Expression (N)) = N_Aggregate
4038            then
4039               null;
4040
4041            else
4042               declare
4043                  Save_Typ : constant Entity_Id := Etype (Id);
4044               begin
4045                  Set_Etype (Id, T); --  Temp. decoration for static checks
4046                  Null_Exclusion_Static_Checks (N);
4047                  Set_Etype (Id, Save_Typ);
4048               end;
4049            end if;
4050
4051         --  We might be dealing with an object of a composite type containing
4052         --  null-excluding components without an aggregate, so we must verify
4053         --  that such components have default initialization.
4054
4055         else
4056            Check_For_Null_Excluding_Components (T, N);
4057         end if;
4058      end if;
4059
4060      --  Object is marked pure if it is in a pure scope
4061
4062      Set_Is_Pure (Id, Is_Pure (Current_Scope));
4063
4064      --  If deferred constant, make sure context is appropriate. We detect
4065      --  a deferred constant as a constant declaration with no expression.
4066      --  A deferred constant can appear in a package body if its completion
4067      --  is by means of an interface pragma.
4068
4069      if Constant_Present (N) and then No (E) then
4070
4071         --  A deferred constant may appear in the declarative part of the
4072         --  following constructs:
4073
4074         --     blocks
4075         --     entry bodies
4076         --     extended return statements
4077         --     package specs
4078         --     package bodies
4079         --     subprogram bodies
4080         --     task bodies
4081
4082         --  When declared inside a package spec, a deferred constant must be
4083         --  completed by a full constant declaration or pragma Import. In all
4084         --  other cases, the only proper completion is pragma Import. Extended
4085         --  return statements are flagged as invalid contexts because they do
4086         --  not have a declarative part and so cannot accommodate the pragma.
4087
4088         if Ekind (Current_Scope) = E_Return_Statement then
4089            Error_Msg_N
4090              ("invalid context for deferred constant declaration (RM 7.4)",
4091               N);
4092            Error_Msg_N
4093              ("\declaration requires an initialization expression",
4094                N);
4095            Set_Constant_Present (N, False);
4096
4097         --  In Ada 83, deferred constant must be of private type
4098
4099         elsif not Is_Private_Type (T) then
4100            if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4101               Error_Msg_N
4102                 ("(Ada 83) deferred constant must be private type", N);
4103            end if;
4104         end if;
4105
4106      --  If not a deferred constant, then the object declaration freezes
4107      --  its type, unless the object is of an anonymous type and has delayed
4108      --  aspects. In that case the type is frozen when the object itself is.
4109
4110      else
4111         Check_Fully_Declared (T, N);
4112
4113         if Has_Delayed_Aspects (Id)
4114           and then Is_Array_Type (T)
4115           and then Is_Itype (T)
4116         then
4117            Set_Has_Delayed_Freeze (T);
4118         else
4119            Freeze_Before (N, T);
4120         end if;
4121      end if;
4122
4123      --  If the object was created by a constrained array definition, then
4124      --  set the link in both the anonymous base type and anonymous subtype
4125      --  that are built to represent the array type to point to the object.
4126
4127      if Nkind (Object_Definition (Declaration_Node (Id))) =
4128                        N_Constrained_Array_Definition
4129      then
4130         Set_Related_Array_Object (T, Id);
4131         Set_Related_Array_Object (Base_Type (T), Id);
4132      end if;
4133
4134      --  Special checks for protected objects not at library level
4135
4136      if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4137         Check_Restriction (No_Local_Protected_Objects, Id);
4138
4139         --  Protected objects with interrupt handlers must be at library level
4140
4141         --  Ada 2005: This test is not needed (and the corresponding clause
4142         --  in the RM is removed) because accessibility checks are sufficient
4143         --  to make handlers not at the library level illegal.
4144
4145         --  AI05-0303: The AI is in fact a binding interpretation, and thus
4146         --  applies to the '95 version of the language as well.
4147
4148         if Is_Protected_Type (T)
4149           and then Has_Interrupt_Handler (T)
4150           and then Ada_Version < Ada_95
4151         then
4152            Error_Msg_N
4153              ("interrupt object can only be declared at library level", Id);
4154         end if;
4155      end if;
4156
4157      --  Check for violation of No_Local_Timing_Events
4158
4159      if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4160         Check_Restriction (No_Local_Timing_Events, Id);
4161      end if;
4162
4163      --  The actual subtype of the object is the nominal subtype, unless
4164      --  the nominal one is unconstrained and obtained from the expression.
4165
4166      Act_T := T;
4167
4168      --  These checks should be performed before the initialization expression
4169      --  is considered, so that the Object_Definition node is still the same
4170      --  as in source code.
4171
4172      --  In SPARK, the nominal subtype is always given by a subtype mark
4173      --  and must not be unconstrained. (The only exception to this is the
4174      --  acceptance of declarations of constants of type String.)
4175
4176      if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4177      then
4178         Check_SPARK_05_Restriction
4179           ("subtype mark required", Object_Definition (N));
4180
4181      elsif Is_Array_Type (T)
4182        and then not Is_Constrained (T)
4183        and then T /= Standard_String
4184      then
4185         Check_SPARK_05_Restriction
4186           ("subtype mark of constrained type expected",
4187            Object_Definition (N));
4188      end if;
4189
4190      if Is_Library_Level_Entity (Id) then
4191         Check_Dynamic_Object (T);
4192      end if;
4193
4194      --  There are no aliased objects in SPARK
4195
4196      if Aliased_Present (N) then
4197         Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4198      end if;
4199
4200      --  Process initialization expression if present and not in error
4201
4202      if Present (E) and then E /= Error then
4203
4204         --  Generate an error in case of CPP class-wide object initialization.
4205         --  Required because otherwise the expansion of the class-wide
4206         --  assignment would try to use 'size to initialize the object
4207         --  (primitive that is not available in CPP tagged types).
4208
4209         if Is_Class_Wide_Type (Act_T)
4210           and then
4211             (Is_CPP_Class (Root_Type (Etype (Act_T)))
4212               or else
4213                 (Present (Full_View (Root_Type (Etype (Act_T))))
4214                   and then
4215                     Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4216         then
4217            Error_Msg_N
4218              ("predefined assignment not available for 'C'P'P tagged types",
4219               E);
4220         end if;
4221
4222         Mark_Coextensions (N, E);
4223         Analyze (E);
4224
4225         --  In case of errors detected in the analysis of the expression,
4226         --  decorate it with the expected type to avoid cascaded errors
4227
4228         if No (Etype (E)) then
4229            Set_Etype (E, T);
4230         end if;
4231
4232         --  If an initialization expression is present, then we set the
4233         --  Is_True_Constant flag. It will be reset if this is a variable
4234         --  and it is indeed modified.
4235
4236         Set_Is_True_Constant (Id, True);
4237
4238         --  If we are analyzing a constant declaration, set its completion
4239         --  flag after analyzing and resolving the expression.
4240
4241         if Constant_Present (N) then
4242            Set_Has_Completion (Id);
4243         end if;
4244
4245         --  Set type and resolve (type may be overridden later on). Note:
4246         --  Ekind (Id) must still be E_Void at this point so that incorrect
4247         --  early usage within E is properly diagnosed.
4248
4249         Set_Etype (Id, T);
4250
4251         --  If the expression is an aggregate we must look ahead to detect
4252         --  the possible presence of an address clause, and defer resolution
4253         --  and expansion of the aggregate to the freeze point of the entity.
4254
4255         --  This is not always legal because the aggregate may contain other
4256         --  references that need freezing, e.g. references to other entities
4257         --  with address clauses. In any case, when compiling with -gnatI the
4258         --  presence of the address clause must be ignored.
4259
4260         if Comes_From_Source (N)
4261           and then Expander_Active
4262           and then Nkind (E) = N_Aggregate
4263           and then
4264             ((Present (Following_Address_Clause (N))
4265                            and then not Ignore_Rep_Clauses)
4266              or else Delayed_Aspect_Present)
4267         then
4268            Set_Etype (E, T);
4269
4270         else
4271            Resolve (E, T);
4272         end if;
4273
4274         --  No further action needed if E is a call to an inlined function
4275         --  which returns an unconstrained type and it has been expanded into
4276         --  a procedure call. In that case N has been replaced by an object
4277         --  declaration without initializing expression and it has been
4278         --  analyzed (see Expand_Inlined_Call).
4279
4280         if Back_End_Inlining
4281           and then Expander_Active
4282           and then Nkind (E) = N_Function_Call
4283           and then Nkind (Name (E)) in N_Has_Entity
4284           and then Is_Inlined (Entity (Name (E)))
4285           and then not Is_Constrained (Etype (E))
4286           and then Analyzed (N)
4287           and then No (Expression (N))
4288         then
4289            goto Leave;
4290         end if;
4291
4292         --  If E is null and has been replaced by an N_Raise_Constraint_Error
4293         --  node (which was marked already-analyzed), we need to set the type
4294         --  to something other than Any_Access in order to keep gigi happy.
4295
4296         if Etype (E) = Any_Access then
4297            Set_Etype (E, T);
4298         end if;
4299
4300         --  If the object is an access to variable, the initialization
4301         --  expression cannot be an access to constant.
4302
4303         if Is_Access_Type (T)
4304           and then not Is_Access_Constant (T)
4305           and then Is_Access_Type (Etype (E))
4306           and then Is_Access_Constant (Etype (E))
4307         then
4308            Error_Msg_N
4309              ("access to variable cannot be initialized with an "
4310               & "access-to-constant expression", E);
4311         end if;
4312
4313         if not Assignment_OK (N) then
4314            Check_Initialization (T, E);
4315         end if;
4316
4317         Check_Unset_Reference (E);
4318
4319         --  If this is a variable, then set current value. If this is a
4320         --  declared constant of a scalar type with a static expression,
4321         --  indicate that it is always valid.
4322
4323         if not Constant_Present (N) then
4324            if Compile_Time_Known_Value (E) then
4325               Set_Current_Value (Id, E);
4326            end if;
4327
4328         elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4329            Set_Is_Known_Valid (Id);
4330         end if;
4331
4332         --  Deal with setting of null flags
4333
4334         if Is_Access_Type (T) then
4335            if Known_Non_Null (E) then
4336               Set_Is_Known_Non_Null (Id, True);
4337            elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4338               Set_Is_Known_Null (Id, True);
4339            end if;
4340         end if;
4341
4342         --  Check incorrect use of dynamically tagged expressions
4343
4344         if Is_Tagged_Type (T) then
4345            Check_Dynamically_Tagged_Expression
4346              (Expr        => E,
4347               Typ         => T,
4348               Related_Nod => N);
4349         end if;
4350
4351         Apply_Scalar_Range_Check (E, T);
4352         Apply_Static_Length_Check (E, T);
4353
4354         if Nkind (Original_Node (N)) = N_Object_Declaration
4355           and then Comes_From_Source (Original_Node (N))
4356
4357           --  Only call test if needed
4358
4359           and then Restriction_Check_Required (SPARK_05)
4360           and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4361         then
4362            Check_SPARK_05_Restriction
4363              ("initialization expression is not appropriate", E);
4364         end if;
4365
4366         --  A formal parameter of a specific tagged type whose related
4367         --  subprogram is subject to pragma Extensions_Visible with value
4368         --  "False" cannot be implicitly converted to a class-wide type by
4369         --  means of an initialization expression (SPARK RM 6.1.7(3)). Do
4370         --  not consider internally generated expressions.
4371
4372         if Is_Class_Wide_Type (T)
4373           and then Comes_From_Source (E)
4374           and then Is_EVF_Expression (E)
4375         then
4376            Error_Msg_N
4377              ("formal parameter cannot be implicitly converted to "
4378               & "class-wide type when Extensions_Visible is False", E);
4379         end if;
4380      end if;
4381
4382      --  If the No_Streams restriction is set, check that the type of the
4383      --  object is not, and does not contain, any subtype derived from
4384      --  Ada.Streams.Root_Stream_Type. Note that we guard the call to
4385      --  Has_Stream just for efficiency reasons. There is no point in
4386      --  spending time on a Has_Stream check if the restriction is not set.
4387
4388      if Restriction_Check_Required (No_Streams) then
4389         if Has_Stream (T) then
4390            Check_Restriction (No_Streams, N);
4391         end if;
4392      end if;
4393
4394      --  Deal with predicate check before we start to do major rewriting. It
4395      --  is OK to initialize and then check the initialized value, since the
4396      --  object goes out of scope if we get a predicate failure. Note that we
4397      --  do this in the analyzer and not the expander because the analyzer
4398      --  does some substantial rewriting in some cases.
4399
4400      --  We need a predicate check if the type has predicates that are not
4401      --  ignored, and if either there is an initializing expression, or for
4402      --  default initialization when we have at least one case of an explicit
4403      --  default initial value and then this is not an internal declaration
4404      --  whose initialization comes later (as for an aggregate expansion).
4405
4406      if not Suppress_Assignment_Checks (N)
4407        and then Present (Predicate_Function (T))
4408        and then not Predicates_Ignored (T)
4409        and then not No_Initialization (N)
4410        and then
4411          (Present (E)
4412            or else
4413              Is_Partially_Initialized_Type (T, Include_Implicit => False))
4414      then
4415         --  If the type has a static predicate and the expression is known at
4416         --  compile time, see if the expression satisfies the predicate.
4417
4418         if Present (E) then
4419            Check_Expression_Against_Static_Predicate (E, T);
4420         end if;
4421
4422         --  If the type is a null record and there is no explicit initial
4423         --  expression, no predicate check applies.
4424
4425         if No (E) and then Is_Null_Record_Type (T) then
4426            null;
4427
4428         --  Do not generate a predicate check if the initialization expression
4429         --  is a type conversion because the conversion has been subjected to
4430         --  the same check. This is a small optimization which avoid redundant
4431         --  checks.
4432
4433         elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4434            null;
4435
4436         else
4437            Insert_After (N,
4438              Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4439         end if;
4440      end if;
4441
4442      --  Case of unconstrained type
4443
4444      if not Is_Definite_Subtype (T) then
4445
4446         --  In SPARK, a declaration of unconstrained type is allowed
4447         --  only for constants of type string.
4448
4449         if Is_String_Type (T) and then not Constant_Present (N) then
4450            Check_SPARK_05_Restriction
4451              ("declaration of object of unconstrained type not allowed", N);
4452         end if;
4453
4454         --  Nothing to do in deferred constant case
4455
4456         if Constant_Present (N) and then No (E) then
4457            null;
4458
4459         --  Case of no initialization present
4460
4461         elsif No (E) then
4462            if No_Initialization (N) then
4463               null;
4464
4465            elsif Is_Class_Wide_Type (T) then
4466               Error_Msg_N
4467                 ("initialization required in class-wide declaration ", N);
4468
4469            else
4470               Error_Msg_N
4471                 ("unconstrained subtype not allowed (need initialization)",
4472                  Object_Definition (N));
4473
4474               if Is_Record_Type (T) and then Has_Discriminants (T) then
4475                  Error_Msg_N
4476                    ("\provide initial value or explicit discriminant values",
4477                     Object_Definition (N));
4478
4479                  Error_Msg_NE
4480                    ("\or give default discriminant values for type&",
4481                     Object_Definition (N), T);
4482
4483               elsif Is_Array_Type (T) then
4484                  Error_Msg_N
4485                    ("\provide initial value or explicit array bounds",
4486                     Object_Definition (N));
4487               end if;
4488            end if;
4489
4490         --  Case of initialization present but in error. Set initial
4491         --  expression as absent (but do not make above complaints)
4492
4493         elsif E = Error then
4494            Set_Expression (N, Empty);
4495            E := Empty;
4496
4497         --  Case of initialization present
4498
4499         else
4500            --  Check restrictions in Ada 83
4501
4502            if not Constant_Present (N) then
4503
4504               --  Unconstrained variables not allowed in Ada 83 mode
4505
4506               if Ada_Version = Ada_83
4507                 and then Comes_From_Source (Object_Definition (N))
4508               then
4509                  Error_Msg_N
4510                    ("(Ada 83) unconstrained variable not allowed",
4511                     Object_Definition (N));
4512               end if;
4513            end if;
4514
4515            --  Now we constrain the variable from the initializing expression
4516
4517            --  If the expression is an aggregate, it has been expanded into
4518            --  individual assignments. Retrieve the actual type from the
4519            --  expanded construct.
4520
4521            if Is_Array_Type (T)
4522              and then No_Initialization (N)
4523              and then Nkind (Original_Node (E)) = N_Aggregate
4524            then
4525               Act_T := Etype (E);
4526
4527            --  In case of class-wide interface object declarations we delay
4528            --  the generation of the equivalent record type declarations until
4529            --  its expansion because there are cases in they are not required.
4530
4531            elsif Is_Interface (T) then
4532               null;
4533
4534            --  In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4535            --  we should prevent the generation of another Itype with the
4536            --  same name as the one already generated, or we end up with
4537            --  two identical types in GNATprove.
4538
4539            elsif GNATprove_Mode then
4540               null;
4541
4542            --  If the type is an unchecked union, no subtype can be built from
4543            --  the expression. Rewrite declaration as a renaming, which the
4544            --  back-end can handle properly. This is a rather unusual case,
4545            --  because most unchecked_union declarations have default values
4546            --  for discriminants and are thus not indefinite.
4547
4548            elsif Is_Unchecked_Union (T) then
4549               if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4550                  Set_Ekind (Id, E_Constant);
4551               else
4552                  Set_Ekind (Id, E_Variable);
4553               end if;
4554
4555               Rewrite (N,
4556                 Make_Object_Renaming_Declaration (Loc,
4557                   Defining_Identifier => Id,
4558                   Subtype_Mark        => New_Occurrence_Of (T, Loc),
4559                   Name                => E));
4560
4561               Set_Renamed_Object (Id, E);
4562               Freeze_Before (N, T);
4563               Set_Is_Frozen (Id);
4564               goto Leave;
4565
4566            else
4567               --  Ensure that the generated subtype has a unique external name
4568               --  when the related object is public. This guarantees that the
4569               --  subtype and its bounds will not be affected by switches or
4570               --  pragmas that may offset the internal counter due to extra
4571               --  generated code.
4572
4573               if Is_Public (Id) then
4574                  Related_Id := Id;
4575               else
4576                  Related_Id := Empty;
4577               end if;
4578
4579               Expand_Subtype_From_Expr
4580                 (N             => N,
4581                  Unc_Type      => T,
4582                  Subtype_Indic => Object_Definition (N),
4583                  Exp           => E,
4584                  Related_Id    => Related_Id);
4585
4586               Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4587            end if;
4588
4589            Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4590
4591            if Aliased_Present (N) then
4592               Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4593            end if;
4594
4595            Freeze_Before (N, Act_T);
4596            Freeze_Before (N, T);
4597         end if;
4598
4599      elsif Is_Array_Type (T)
4600        and then No_Initialization (N)
4601        and then (Nkind (Original_Node (E)) = N_Aggregate
4602                   or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4603                             and then Nkind (Original_Node (Expression
4604                                        (Original_Node (E)))) = N_Aggregate))
4605      then
4606         if not Is_Entity_Name (Object_Definition (N)) then
4607            Act_T := Etype (E);
4608            Check_Compile_Time_Size (Act_T);
4609
4610            if Aliased_Present (N) then
4611               Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4612            end if;
4613         end if;
4614
4615         --  When the given object definition and the aggregate are specified
4616         --  independently, and their lengths might differ do a length check.
4617         --  This cannot happen if the aggregate is of the form (others =>...)
4618
4619         if not Is_Constrained (T) then
4620            null;
4621
4622         elsif Nkind (E) = N_Raise_Constraint_Error then
4623
4624            --  Aggregate is statically illegal. Place back in declaration
4625
4626            Set_Expression (N, E);
4627            Set_No_Initialization (N, False);
4628
4629         elsif T = Etype (E) then
4630            null;
4631
4632         elsif Nkind (E) = N_Aggregate
4633           and then Present (Component_Associations (E))
4634           and then Present (Choice_List (First (Component_Associations (E))))
4635           and then
4636             Nkind (First (Choice_List (First (Component_Associations (E))))) =
4637               N_Others_Choice
4638         then
4639            null;
4640
4641         else
4642            Apply_Length_Check (E, T);
4643         end if;
4644
4645      --  If the type is limited unconstrained with defaulted discriminants and
4646      --  there is no expression, then the object is constrained by the
4647      --  defaults, so it is worthwhile building the corresponding subtype.
4648
4649      elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4650        and then not Is_Constrained (T)
4651        and then Has_Discriminants (T)
4652      then
4653         if No (E) then
4654            Act_T := Build_Default_Subtype (T, N);
4655         else
4656            --  Ada 2005: A limited object may be initialized by means of an
4657            --  aggregate. If the type has default discriminants it has an
4658            --  unconstrained nominal type, Its actual subtype will be obtained
4659            --  from the aggregate, and not from the default discriminants.
4660
4661            Act_T := Etype (E);
4662         end if;
4663
4664         Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4665
4666      elsif Nkind (E) = N_Function_Call
4667        and then Constant_Present (N)
4668        and then Has_Unconstrained_Elements (Etype (E))
4669      then
4670         --  The back-end has problems with constants of a discriminated type
4671         --  with defaults, if the initial value is a function call. We
4672         --  generate an intermediate temporary that will receive a reference
4673         --  to the result of the call. The initialization expression then
4674         --  becomes a dereference of that temporary.
4675
4676         Remove_Side_Effects (E);
4677
4678      --  If this is a constant declaration of an unconstrained type and
4679      --  the initialization is an aggregate, we can use the subtype of the
4680      --  aggregate for the declared entity because it is immutable.
4681
4682      elsif not Is_Constrained (T)
4683        and then Has_Discriminants (T)
4684        and then Constant_Present (N)
4685        and then not Has_Unchecked_Union (T)
4686        and then Nkind (E) = N_Aggregate
4687      then
4688         Act_T := Etype (E);
4689      end if;
4690
4691      --  Check No_Wide_Characters restriction
4692
4693      Check_Wide_Character_Restriction (T, Object_Definition (N));
4694
4695      --  Indicate this is not set in source. Certainly true for constants, and
4696      --  true for variables so far (will be reset for a variable if and when
4697      --  we encounter a modification in the source).
4698
4699      Set_Never_Set_In_Source (Id);
4700
4701      --  Now establish the proper kind and type of the object
4702
4703      if Constant_Present (N) then
4704         Set_Ekind            (Id, E_Constant);
4705         Set_Is_True_Constant (Id);
4706
4707      else
4708         Set_Ekind (Id, E_Variable);
4709
4710         --  A variable is set as shared passive if it appears in a shared
4711         --  passive package, and is at the outer level. This is not done for
4712         --  entities generated during expansion, because those are always
4713         --  manipulated locally.
4714
4715         if Is_Shared_Passive (Current_Scope)
4716           and then Is_Library_Level_Entity (Id)
4717           and then Comes_From_Source (Id)
4718         then
4719            Set_Is_Shared_Passive (Id);
4720            Check_Shared_Var (Id, T, N);
4721         end if;
4722
4723         --  Set Has_Initial_Value if initializing expression present. Note
4724         --  that if there is no initializing expression, we leave the state
4725         --  of this flag unchanged (usually it will be False, but notably in
4726         --  the case of exception choice variables, it will already be true).
4727
4728         if Present (E) then
4729            Set_Has_Initial_Value (Id);
4730         end if;
4731      end if;
4732
4733      --  Set the SPARK mode from the current context (may be overwritten later
4734      --  with explicit pragma).
4735
4736      Set_SPARK_Pragma           (Id, SPARK_Mode_Pragma);
4737      Set_SPARK_Pragma_Inherited (Id);
4738
4739      --  Preserve relevant elaboration-related attributes of the context which
4740      --  are no longer available or very expensive to recompute once analysis,
4741      --  resolution, and expansion are over.
4742
4743      Mark_Elaboration_Attributes
4744        (N_Id   => Id,
4745         Checks => True);
4746
4747      --  Initialize alignment and size and capture alignment setting
4748
4749      Init_Alignment               (Id);
4750      Init_Esize                   (Id);
4751      Set_Optimize_Alignment_Flags (Id);
4752
4753      --  Deal with aliased case
4754
4755      if Aliased_Present (N) then
4756         Set_Is_Aliased (Id);
4757
4758         --  If the object is aliased and the type is unconstrained with
4759         --  defaulted discriminants and there is no expression, then the
4760         --  object is constrained by the defaults, so it is worthwhile
4761         --  building the corresponding subtype.
4762
4763         --  Ada 2005 (AI-363): If the aliased object is discriminated and
4764         --  unconstrained, then only establish an actual subtype if the
4765         --  nominal subtype is indefinite. In definite cases the object is
4766         --  unconstrained in Ada 2005.
4767
4768         if No (E)
4769           and then Is_Record_Type (T)
4770           and then not Is_Constrained (T)
4771           and then Has_Discriminants (T)
4772           and then (Ada_Version < Ada_2005
4773                      or else not Is_Definite_Subtype (T))
4774         then
4775            Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4776         end if;
4777      end if;
4778
4779      --  Now we can set the type of the object
4780
4781      Set_Etype (Id, Act_T);
4782
4783      --  Non-constant object is marked to be treated as volatile if type is
4784      --  volatile and we clear the Current_Value setting that may have been
4785      --  set above. Doing so for constants isn't required and might interfere
4786      --  with possible uses of the object as a static expression in contexts
4787      --  incompatible with volatility (e.g. as a case-statement alternative).
4788
4789      if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4790         Set_Treat_As_Volatile (Id);
4791         Set_Current_Value (Id, Empty);
4792      end if;
4793
4794      --  Deal with controlled types
4795
4796      if Has_Controlled_Component (Etype (Id))
4797        or else Is_Controlled (Etype (Id))
4798      then
4799         if not Is_Library_Level_Entity (Id) then
4800            Check_Restriction (No_Nested_Finalization, N);
4801         else
4802            Validate_Controlled_Object (Id);
4803         end if;
4804      end if;
4805
4806      if Has_Task (Etype (Id)) then
4807         Check_Restriction (No_Tasking, N);
4808
4809         --  Deal with counting max tasks
4810
4811         --  Nothing to do if inside a generic
4812
4813         if Inside_A_Generic then
4814            null;
4815
4816         --  If library level entity, then count tasks
4817
4818         elsif Is_Library_Level_Entity (Id) then
4819            Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4820
4821         --  If not library level entity, then indicate we don't know max
4822         --  tasks and also check task hierarchy restriction and blocking
4823         --  operation (since starting a task is definitely blocking).
4824
4825         else
4826            Check_Restriction (Max_Tasks, N);
4827            Check_Restriction (No_Task_Hierarchy, N);
4828            Check_Potentially_Blocking_Operation (N);
4829         end if;
4830
4831         --  A rather specialized test. If we see two tasks being declared
4832         --  of the same type in the same object declaration, and the task
4833         --  has an entry with an address clause, we know that program error
4834         --  will be raised at run time since we can't have two tasks with
4835         --  entries at the same address.
4836
4837         if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4838            declare
4839               E : Entity_Id;
4840
4841            begin
4842               E := First_Entity (Etype (Id));
4843               while Present (E) loop
4844                  if Ekind (E) = E_Entry
4845                    and then Present (Get_Attribute_Definition_Clause
4846                                        (E, Attribute_Address))
4847                  then
4848                     Error_Msg_Warn := SPARK_Mode /= On;
4849                     Error_Msg_N
4850                       ("more than one task with same entry address<<", N);
4851                     Error_Msg_N ("\Program_Error [<<", N);
4852                     Insert_Action (N,
4853                       Make_Raise_Program_Error (Loc,
4854                         Reason => PE_Duplicated_Entry_Address));
4855                     exit;
4856                  end if;
4857
4858                  Next_Entity (E);
4859               end loop;
4860            end;
4861         end if;
4862      end if;
4863
4864      --  Some simple constant-propagation: if the expression is a constant
4865      --  string initialized with a literal, share the literal. This avoids
4866      --  a run-time copy.
4867
4868      if Present (E)
4869        and then Is_Entity_Name (E)
4870        and then Ekind (Entity (E)) = E_Constant
4871        and then Base_Type (Etype (E)) = Standard_String
4872      then
4873         declare
4874            Val : constant Node_Id := Constant_Value (Entity (E));
4875         begin
4876            if Present (Val) and then Nkind (Val) = N_String_Literal then
4877               Rewrite (E, New_Copy (Val));
4878            end if;
4879         end;
4880      end if;
4881
4882      --  Another optimization: if the nominal subtype is unconstrained and
4883      --  the expression is a function call that returns an unconstrained
4884      --  type, rewrite the declaration as a renaming of the result of the
4885      --  call. The exceptions below are cases where the copy is expected,
4886      --  either by the back end (Aliased case) or by the semantics, as for
4887      --  initializing controlled types or copying tags for class-wide types.
4888
4889      if Present (E)
4890        and then Nkind (E) = N_Explicit_Dereference
4891        and then Nkind (Original_Node (E)) = N_Function_Call
4892        and then not Is_Library_Level_Entity (Id)
4893        and then not Is_Constrained (Underlying_Type (T))
4894        and then not Is_Aliased (Id)
4895        and then not Is_Class_Wide_Type (T)
4896        and then not Is_Controlled (T)
4897        and then not Has_Controlled_Component (Base_Type (T))
4898        and then Expander_Active
4899      then
4900         Rewrite (N,
4901           Make_Object_Renaming_Declaration (Loc,
4902             Defining_Identifier => Id,
4903             Access_Definition   => Empty,
4904             Subtype_Mark        => New_Occurrence_Of
4905                                      (Base_Type (Etype (Id)), Loc),
4906             Name                => E));
4907
4908         Set_Renamed_Object (Id, E);
4909
4910         --  Force generation of debugging information for the constant and for
4911         --  the renamed function call.
4912
4913         Set_Debug_Info_Needed (Id);
4914         Set_Debug_Info_Needed (Entity (Prefix (E)));
4915      end if;
4916
4917      if Present (Prev_Entity)
4918        and then Is_Frozen (Prev_Entity)
4919        and then not Error_Posted (Id)
4920      then
4921         Error_Msg_N ("full constant declaration appears too late", N);
4922      end if;
4923
4924      Check_Eliminated (Id);
4925
4926      --  Deal with setting In_Private_Part flag if in private part
4927
4928      if Ekind (Scope (Id)) = E_Package
4929        and then In_Private_Part (Scope (Id))
4930      then
4931         Set_In_Private_Part (Id);
4932      end if;
4933
4934   <<Leave>>
4935      --  Initialize the refined state of a variable here because this is a
4936      --  common destination for legal and illegal object declarations.
4937
4938      if Ekind (Id) = E_Variable then
4939         Set_Encapsulating_State (Id, Empty);
4940      end if;
4941
4942      if Has_Aspects (N) then
4943         Analyze_Aspect_Specifications (N, Id);
4944      end if;
4945
4946      Analyze_Dimension (N);
4947
4948      --  Verify whether the object declaration introduces an illegal hidden
4949      --  state within a package subject to a null abstract state.
4950
4951      if Ekind (Id) = E_Variable then
4952         Check_No_Hidden_State (Id);
4953      end if;
4954
4955      Restore_Ghost_Mode (Saved_GM);
4956   end Analyze_Object_Declaration;
4957
4958   ---------------------------
4959   -- Analyze_Others_Choice --
4960   ---------------------------
4961
4962   --  Nothing to do for the others choice node itself, the semantic analysis
4963   --  of the others choice will occur as part of the processing of the parent
4964
4965   procedure Analyze_Others_Choice (N : Node_Id) is
4966      pragma Warnings (Off, N);
4967   begin
4968      null;
4969   end Analyze_Others_Choice;
4970
4971   -------------------------------------------
4972   -- Analyze_Private_Extension_Declaration --
4973   -------------------------------------------
4974
4975   procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4976      Indic       : constant Node_Id   := Subtype_Indication (N);
4977      T           : constant Entity_Id := Defining_Identifier (N);
4978      Iface       : Entity_Id;
4979      Iface_Elmt  : Elmt_Id;
4980      Parent_Base : Entity_Id;
4981      Parent_Type : Entity_Id;
4982
4983   begin
4984      --  Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4985
4986      if Is_Non_Empty_List (Interface_List (N)) then
4987         declare
4988            Intf : Node_Id;
4989            T    : Entity_Id;
4990
4991         begin
4992            Intf := First (Interface_List (N));
4993            while Present (Intf) loop
4994               T := Find_Type_Of_Subtype_Indic (Intf);
4995
4996               Diagnose_Interface (Intf, T);
4997               Next (Intf);
4998            end loop;
4999         end;
5000      end if;
5001
5002      Generate_Definition (T);
5003
5004      --  For other than Ada 2012, just enter the name in the current scope
5005
5006      if Ada_Version < Ada_2012 then
5007         Enter_Name (T);
5008
5009      --  Ada 2012 (AI05-0162): Enter the name in the current scope handling
5010      --  case of private type that completes an incomplete type.
5011
5012      else
5013         declare
5014            Prev : Entity_Id;
5015
5016         begin
5017            Prev := Find_Type_Name (N);
5018
5019            pragma Assert (Prev = T
5020              or else (Ekind (Prev) = E_Incomplete_Type
5021                        and then Present (Full_View (Prev))
5022                        and then Full_View (Prev) = T));
5023         end;
5024      end if;
5025
5026      Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
5027      Parent_Base := Base_Type (Parent_Type);
5028
5029      if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
5030         Set_Ekind (T, Ekind (Parent_Type));
5031         Set_Etype (T, Any_Type);
5032         goto Leave;
5033
5034      elsif not Is_Tagged_Type (Parent_Type) then
5035         Error_Msg_N
5036           ("parent of type extension must be a tagged type ", Indic);
5037         goto Leave;
5038
5039      elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
5040         Error_Msg_N ("premature derivation of incomplete type", Indic);
5041         goto Leave;
5042
5043      elsif Is_Concurrent_Type (Parent_Type) then
5044         Error_Msg_N
5045           ("parent type of a private extension cannot be a synchronized "
5046            & "tagged type (RM 3.9.1 (3/1))", N);
5047
5048         Set_Etype              (T, Any_Type);
5049         Set_Ekind              (T, E_Limited_Private_Type);
5050         Set_Private_Dependents (T, New_Elmt_List);
5051         Set_Error_Posted       (T);
5052         goto Leave;
5053      end if;
5054
5055      --  Perhaps the parent type should be changed to the class-wide type's
5056      --  specific type in this case to prevent cascading errors ???
5057
5058      if Is_Class_Wide_Type (Parent_Type) then
5059         Error_Msg_N
5060           ("parent of type extension must not be a class-wide type", Indic);
5061         goto Leave;
5062      end if;
5063
5064      if (not Is_Package_Or_Generic_Package (Current_Scope)
5065           and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5066        or else In_Private_Part (Current_Scope)
5067      then
5068         Error_Msg_N ("invalid context for private extension", N);
5069      end if;
5070
5071      --  Set common attributes
5072
5073      Set_Is_Pure          (T, Is_Pure (Current_Scope));
5074      Set_Scope            (T, Current_Scope);
5075      Set_Ekind            (T, E_Record_Type_With_Private);
5076      Init_Size_Align      (T);
5077      Set_Default_SSO      (T);
5078      Set_No_Reordering    (T, No_Component_Reordering);
5079
5080      Set_Etype            (T,                Parent_Base);
5081      Propagate_Concurrent_Flags (T, Parent_Base);
5082
5083      Set_Convention       (T, Convention     (Parent_Type));
5084      Set_First_Rep_Item   (T, First_Rep_Item (Parent_Type));
5085      Set_Is_First_Subtype (T);
5086      Make_Class_Wide_Type (T);
5087
5088      --  Set the SPARK mode from the current context
5089
5090      Set_SPARK_Pragma           (T, SPARK_Mode_Pragma);
5091      Set_SPARK_Pragma_Inherited (T);
5092
5093      if Unknown_Discriminants_Present (N) then
5094         Set_Discriminant_Constraint (T, No_Elist);
5095      end if;
5096
5097      Build_Derived_Record_Type (N, Parent_Type, T);
5098
5099      --  A private extension inherits the Default_Initial_Condition pragma
5100      --  coming from any parent type within the derivation chain.
5101
5102      if Has_DIC (Parent_Type) then
5103         Set_Has_Inherited_DIC (T);
5104      end if;
5105
5106      --  A private extension inherits any class-wide invariants coming from a
5107      --  parent type or an interface. Note that the invariant procedure of the
5108      --  parent type should not be inherited because the private extension may
5109      --  define invariants of its own.
5110
5111      if Has_Inherited_Invariants (Parent_Type)
5112        or else Has_Inheritable_Invariants (Parent_Type)
5113      then
5114         Set_Has_Inherited_Invariants (T);
5115
5116      elsif Present (Interfaces (T)) then
5117         Iface_Elmt := First_Elmt (Interfaces (T));
5118         while Present (Iface_Elmt) loop
5119            Iface := Node (Iface_Elmt);
5120
5121            if Has_Inheritable_Invariants (Iface) then
5122               Set_Has_Inherited_Invariants (T);
5123               exit;
5124            end if;
5125
5126            Next_Elmt (Iface_Elmt);
5127         end loop;
5128      end if;
5129
5130      --  Ada 2005 (AI-443): Synchronized private extension or a rewritten
5131      --  synchronized formal derived type.
5132
5133      if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5134         Set_Is_Limited_Record (T);
5135
5136         --  Formal derived type case
5137
5138         if Is_Generic_Type (T) then
5139
5140            --  The parent must be a tagged limited type or a synchronized
5141            --  interface.
5142
5143            if (not Is_Tagged_Type (Parent_Type)
5144                 or else not Is_Limited_Type (Parent_Type))
5145              and then
5146                (not Is_Interface (Parent_Type)
5147                  or else not Is_Synchronized_Interface (Parent_Type))
5148            then
5149               Error_Msg_NE
5150                 ("parent type of & must be tagged limited or synchronized",
5151                  N, T);
5152            end if;
5153
5154            --  The progenitors (if any) must be limited or synchronized
5155            --  interfaces.
5156
5157            if Present (Interfaces (T)) then
5158               Iface_Elmt := First_Elmt (Interfaces (T));
5159               while Present (Iface_Elmt) loop
5160                  Iface := Node (Iface_Elmt);
5161
5162                  if not Is_Limited_Interface (Iface)
5163                    and then not Is_Synchronized_Interface (Iface)
5164                  then
5165                     Error_Msg_NE
5166                       ("progenitor & must be limited or synchronized",
5167                        N, Iface);
5168                  end if;
5169
5170                  Next_Elmt (Iface_Elmt);
5171               end loop;
5172            end if;
5173
5174         --  Regular derived extension, the parent must be a limited or
5175         --  synchronized interface.
5176
5177         else
5178            if not Is_Interface (Parent_Type)
5179              or else (not Is_Limited_Interface (Parent_Type)
5180                        and then not Is_Synchronized_Interface (Parent_Type))
5181            then
5182               Error_Msg_NE
5183                 ("parent type of & must be limited interface", N, T);
5184            end if;
5185         end if;
5186
5187      --  A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5188      --  extension with a synchronized parent must be explicitly declared
5189      --  synchronized, because the full view will be a synchronized type.
5190      --  This must be checked before the check for limited types below,
5191      --  to ensure that types declared limited are not allowed to extend
5192      --  synchronized interfaces.
5193
5194      elsif Is_Interface (Parent_Type)
5195        and then Is_Synchronized_Interface (Parent_Type)
5196        and then not Synchronized_Present (N)
5197      then
5198         Error_Msg_NE
5199           ("private extension of& must be explicitly synchronized",
5200             N, Parent_Type);
5201
5202      elsif Limited_Present (N) then
5203         Set_Is_Limited_Record (T);
5204
5205         if not Is_Limited_Type (Parent_Type)
5206           and then
5207             (not Is_Interface (Parent_Type)
5208               or else not Is_Limited_Interface (Parent_Type))
5209         then
5210            Error_Msg_NE ("parent type& of limited extension must be limited",
5211              N, Parent_Type);
5212         end if;
5213      end if;
5214
5215      --  Remember that its parent type has a private extension. Used to warn
5216      --  on public primitives of the parent type defined after its private
5217      --  extensions (see Check_Dispatching_Operation).
5218
5219      Set_Has_Private_Extension (Parent_Type);
5220
5221   <<Leave>>
5222      if Has_Aspects (N) then
5223         Analyze_Aspect_Specifications (N, T);
5224      end if;
5225   end Analyze_Private_Extension_Declaration;
5226
5227   ---------------------------------
5228   -- Analyze_Subtype_Declaration --
5229   ---------------------------------
5230
5231   procedure Analyze_Subtype_Declaration
5232     (N    : Node_Id;
5233      Skip : Boolean := False)
5234   is
5235      Id       : constant Entity_Id := Defining_Identifier (N);
5236      R_Checks : Check_Result;
5237      T        : Entity_Id;
5238
5239   begin
5240      Generate_Definition (Id);
5241      Set_Is_Pure (Id, Is_Pure (Current_Scope));
5242      Init_Size_Align (Id);
5243
5244      --  The following guard condition on Enter_Name is to handle cases where
5245      --  the defining identifier has already been entered into the scope but
5246      --  the declaration as a whole needs to be analyzed.
5247
5248      --  This case in particular happens for derived enumeration types. The
5249      --  derived enumeration type is processed as an inserted enumeration type
5250      --  declaration followed by a rewritten subtype declaration. The defining
5251      --  identifier, however, is entered into the name scope very early in the
5252      --  processing of the original type declaration and therefore needs to be
5253      --  avoided here, when the created subtype declaration is analyzed. (See
5254      --  Build_Derived_Types)
5255
5256      --  This also happens when the full view of a private type is derived
5257      --  type with constraints. In this case the entity has been introduced
5258      --  in the private declaration.
5259
5260      --  Finally this happens in some complex cases when validity checks are
5261      --  enabled, where the same subtype declaration may be analyzed twice.
5262      --  This can happen if the subtype is created by the pre-analysis of
5263      --  an attribute tht gives the range of a loop statement, and the loop
5264      --  itself appears within an if_statement that will be rewritten during
5265      --  expansion.
5266
5267      if Skip
5268        or else (Present (Etype (Id))
5269                  and then (Is_Private_Type (Etype (Id))
5270                             or else Is_Task_Type (Etype (Id))
5271                             or else Is_Rewrite_Substitution (N)))
5272      then
5273         null;
5274
5275      elsif Current_Entity (Id) = Id then
5276         null;
5277
5278      else
5279         Enter_Name (Id);
5280      end if;
5281
5282      T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5283
5284      --  Class-wide equivalent types of records with unknown discriminants
5285      --  involve the generation of an itype which serves as the private view
5286      --  of a constrained record subtype. In such cases the base type of the
5287      --  current subtype we are processing is the private itype. Use the full
5288      --  of the private itype when decorating various attributes.
5289
5290      if Is_Itype (T)
5291        and then Is_Private_Type (T)
5292        and then Present (Full_View (T))
5293      then
5294         T := Full_View (T);
5295      end if;
5296
5297      --  Inherit common attributes
5298
5299      Set_Is_Volatile       (Id, Is_Volatile       (T));
5300      Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5301      Set_Is_Generic_Type   (Id, Is_Generic_Type   (Base_Type (T)));
5302      Set_Convention        (Id, Convention        (T));
5303
5304      --  If ancestor has predicates then so does the subtype, and in addition
5305      --  we must delay the freeze to properly arrange predicate inheritance.
5306
5307      --  The Ancestor_Type test is really unpleasant, there seem to be cases
5308      --  in which T = ID, so the above tests and assignments do nothing???
5309
5310      if Has_Predicates (T)
5311        or else (Present (Ancestor_Subtype (T))
5312                  and then Has_Predicates (Ancestor_Subtype (T)))
5313      then
5314         Set_Has_Predicates (Id);
5315         Set_Has_Delayed_Freeze (Id);
5316
5317         --  Generated subtypes inherit the predicate function from the parent
5318         --  (no aspects to examine on the generated declaration).
5319
5320         if not Comes_From_Source (N) then
5321            Set_Ekind (Id, Ekind (T));
5322
5323            if Present (Predicate_Function (T)) then
5324               Set_Predicate_Function (Id, Predicate_Function (T));
5325
5326            elsif Present (Ancestor_Subtype (T))
5327              and then Has_Predicates (Ancestor_Subtype (T))
5328              and then Present (Predicate_Function (Ancestor_Subtype (T)))
5329            then
5330               Set_Predicate_Function (Id,
5331                 Predicate_Function (Ancestor_Subtype (T)));
5332            end if;
5333         end if;
5334      end if;
5335
5336      --  Subtype of Boolean cannot have a constraint in SPARK
5337
5338      if Is_Boolean_Type (T)
5339        and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5340      then
5341         Check_SPARK_05_Restriction
5342           ("subtype of Boolean cannot have constraint", N);
5343      end if;
5344
5345      if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5346         declare
5347            Cstr     : constant Node_Id := Constraint (Subtype_Indication (N));
5348            One_Cstr : Node_Id;
5349            Low      : Node_Id;
5350            High     : Node_Id;
5351
5352         begin
5353            if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5354               One_Cstr := First (Constraints (Cstr));
5355               while Present (One_Cstr) loop
5356
5357                  --  Index or discriminant constraint in SPARK must be a
5358                  --  subtype mark.
5359
5360                  if not
5361                    Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5362                  then
5363                     Check_SPARK_05_Restriction
5364                       ("subtype mark required", One_Cstr);
5365
5366                  --  String subtype must have a lower bound of 1 in SPARK.
5367                  --  Note that we do not need to test for the non-static case
5368                  --  here, since that was already taken care of in
5369                  --  Process_Range_Expr_In_Decl.
5370
5371                  elsif Base_Type (T) = Standard_String then
5372                     Get_Index_Bounds (One_Cstr, Low, High);
5373
5374                     if Is_OK_Static_Expression (Low)
5375                       and then Expr_Value (Low) /= 1
5376                     then
5377                        Check_SPARK_05_Restriction
5378                          ("String subtype must have lower bound of 1", N);
5379                     end if;
5380                  end if;
5381
5382                  Next (One_Cstr);
5383               end loop;
5384            end if;
5385         end;
5386      end if;
5387
5388      --  In the case where there is no constraint given in the subtype
5389      --  indication, Process_Subtype just returns the Subtype_Mark, so its
5390      --  semantic attributes must be established here.
5391
5392      if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5393         Set_Etype (Id, Base_Type (T));
5394
5395         --  Subtype of unconstrained array without constraint is not allowed
5396         --  in SPARK.
5397
5398         if Is_Array_Type (T) and then not Is_Constrained (T) then
5399            Check_SPARK_05_Restriction
5400              ("subtype of unconstrained array must have constraint", N);
5401         end if;
5402
5403         case Ekind (T) is
5404            when Array_Kind =>
5405               Set_Ekind                     (Id, E_Array_Subtype);
5406               Copy_Array_Subtype_Attributes (Id, T);
5407
5408            when Decimal_Fixed_Point_Kind =>
5409               Set_Ekind                (Id, E_Decimal_Fixed_Point_Subtype);
5410               Set_Digits_Value         (Id, Digits_Value       (T));
5411               Set_Delta_Value          (Id, Delta_Value        (T));
5412               Set_Scale_Value          (Id, Scale_Value        (T));
5413               Set_Small_Value          (Id, Small_Value        (T));
5414               Set_Scalar_Range         (Id, Scalar_Range       (T));
5415               Set_Machine_Radix_10     (Id, Machine_Radix_10   (T));
5416               Set_Is_Constrained       (Id, Is_Constrained     (T));
5417               Set_Is_Known_Valid       (Id, Is_Known_Valid     (T));
5418               Set_RM_Size              (Id, RM_Size            (T));
5419
5420            when Enumeration_Kind =>
5421               Set_Ekind                (Id, E_Enumeration_Subtype);
5422               Set_First_Literal        (Id, First_Literal (Base_Type (T)));
5423               Set_Scalar_Range         (Id, Scalar_Range       (T));
5424               Set_Is_Character_Type    (Id, Is_Character_Type  (T));
5425               Set_Is_Constrained       (Id, Is_Constrained     (T));
5426               Set_Is_Known_Valid       (Id, Is_Known_Valid     (T));
5427               Set_RM_Size              (Id, RM_Size            (T));
5428               Inherit_Predicate_Flags  (Id, T);
5429
5430            when Ordinary_Fixed_Point_Kind =>
5431               Set_Ekind                (Id, E_Ordinary_Fixed_Point_Subtype);
5432               Set_Scalar_Range         (Id, Scalar_Range       (T));
5433               Set_Small_Value          (Id, Small_Value        (T));
5434               Set_Delta_Value          (Id, Delta_Value        (T));
5435               Set_Is_Constrained       (Id, Is_Constrained     (T));
5436               Set_Is_Known_Valid       (Id, Is_Known_Valid     (T));
5437               Set_RM_Size              (Id, RM_Size            (T));
5438
5439            when Float_Kind =>
5440               Set_Ekind                (Id, E_Floating_Point_Subtype);
5441               Set_Scalar_Range         (Id, Scalar_Range       (T));
5442               Set_Digits_Value         (Id, Digits_Value       (T));
5443               Set_Is_Constrained       (Id, Is_Constrained     (T));
5444
5445               --  If the floating point type has dimensions, these will be
5446               --  inherited subsequently when Analyze_Dimensions is called.
5447
5448            when Signed_Integer_Kind =>
5449               Set_Ekind                (Id, E_Signed_Integer_Subtype);
5450               Set_Scalar_Range         (Id, Scalar_Range       (T));
5451               Set_Is_Constrained       (Id, Is_Constrained     (T));
5452               Set_Is_Known_Valid       (Id, Is_Known_Valid     (T));
5453               Set_RM_Size              (Id, RM_Size            (T));
5454               Inherit_Predicate_Flags  (Id, T);
5455
5456            when Modular_Integer_Kind =>
5457               Set_Ekind                (Id, E_Modular_Integer_Subtype);
5458               Set_Scalar_Range         (Id, Scalar_Range       (T));
5459               Set_Is_Constrained       (Id, Is_Constrained     (T));
5460               Set_Is_Known_Valid       (Id, Is_Known_Valid     (T));
5461               Set_RM_Size              (Id, RM_Size            (T));
5462               Inherit_Predicate_Flags  (Id, T);
5463
5464            when Class_Wide_Kind =>
5465               Set_Ekind                (Id, E_Class_Wide_Subtype);
5466               Set_Class_Wide_Type      (Id, Class_Wide_Type    (T));
5467               Set_Cloned_Subtype       (Id, T);
5468               Set_Is_Tagged_Type       (Id, True);
5469               Set_Has_Unknown_Discriminants
5470                                        (Id, True);
5471               Set_No_Tagged_Streams_Pragma
5472                                        (Id, No_Tagged_Streams_Pragma (T));
5473
5474               if Ekind (T) = E_Class_Wide_Subtype then
5475                  Set_Equivalent_Type   (Id, Equivalent_Type    (T));
5476               end if;
5477
5478            when E_Record_Subtype
5479               | E_Record_Type
5480            =>
5481               Set_Ekind                (Id, E_Record_Subtype);
5482
5483               if Ekind (T) = E_Record_Subtype
5484                 and then Present (Cloned_Subtype (T))
5485               then
5486                  Set_Cloned_Subtype    (Id, Cloned_Subtype (T));
5487               else
5488                  Set_Cloned_Subtype    (Id, T);
5489               end if;
5490
5491               Set_First_Entity         (Id, First_Entity       (T));
5492               Set_Last_Entity          (Id, Last_Entity        (T));
5493               Set_Has_Discriminants    (Id, Has_Discriminants  (T));
5494               Set_Is_Constrained       (Id, Is_Constrained     (T));
5495               Set_Is_Limited_Record    (Id, Is_Limited_Record  (T));
5496               Set_Has_Implicit_Dereference
5497                                        (Id, Has_Implicit_Dereference (T));
5498               Set_Has_Unknown_Discriminants
5499                                        (Id, Has_Unknown_Discriminants (T));
5500
5501               if Has_Discriminants (T) then
5502                  Set_Discriminant_Constraint
5503                                        (Id, Discriminant_Constraint (T));
5504                  Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5505
5506               elsif Has_Unknown_Discriminants (Id) then
5507                  Set_Discriminant_Constraint (Id, No_Elist);
5508               end if;
5509
5510               if Is_Tagged_Type (T) then
5511                  Set_Is_Tagged_Type    (Id, True);
5512                  Set_No_Tagged_Streams_Pragma
5513                                        (Id, No_Tagged_Streams_Pragma (T));
5514                  Set_Is_Abstract_Type  (Id, Is_Abstract_Type (T));
5515                  Set_Direct_Primitive_Operations
5516                                        (Id, Direct_Primitive_Operations (T));
5517                  Set_Class_Wide_Type   (Id, Class_Wide_Type (T));
5518
5519                  if Is_Interface (T) then
5520                     Set_Is_Interface (Id);
5521                     Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5522                  end if;
5523               end if;
5524
5525            when Private_Kind =>
5526               Set_Ekind              (Id, Subtype_Kind (Ekind        (T)));
5527               Set_Has_Discriminants  (Id, Has_Discriminants          (T));
5528               Set_Is_Constrained     (Id, Is_Constrained             (T));
5529               Set_First_Entity       (Id, First_Entity               (T));
5530               Set_Last_Entity        (Id, Last_Entity                (T));
5531               Set_Private_Dependents (Id, New_Elmt_List);
5532               Set_Is_Limited_Record  (Id, Is_Limited_Record          (T));
5533               Set_Has_Implicit_Dereference
5534                                      (Id, Has_Implicit_Dereference   (T));
5535               Set_Has_Unknown_Discriminants
5536                                      (Id, Has_Unknown_Discriminants  (T));
5537               Set_Known_To_Have_Preelab_Init
5538                                      (Id, Known_To_Have_Preelab_Init (T));
5539
5540               if Is_Tagged_Type (T) then
5541                  Set_Is_Tagged_Type              (Id);
5542                  Set_No_Tagged_Streams_Pragma    (Id,
5543                    No_Tagged_Streams_Pragma (T));
5544                  Set_Is_Abstract_Type            (Id, Is_Abstract_Type (T));
5545                  Set_Class_Wide_Type             (Id, Class_Wide_Type  (T));
5546                  Set_Direct_Primitive_Operations (Id,
5547                    Direct_Primitive_Operations (T));
5548               end if;
5549
5550               --  In general the attributes of the subtype of a private type
5551               --  are the attributes of the partial view of parent. However,
5552               --  the full view may be a discriminated type, and the subtype
5553               --  must share the discriminant constraint to generate correct
5554               --  calls to initialization procedures.
5555
5556               if Has_Discriminants (T) then
5557                  Set_Discriminant_Constraint
5558                    (Id, Discriminant_Constraint (T));
5559                  Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5560
5561               elsif Present (Full_View (T))
5562                 and then Has_Discriminants (Full_View (T))
5563               then
5564                  Set_Discriminant_Constraint
5565                    (Id, Discriminant_Constraint (Full_View (T)));
5566                  Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5567
5568                  --  This would seem semantically correct, but apparently
5569                  --  generates spurious errors about missing components ???
5570
5571                  --  Set_Has_Discriminants (Id);
5572               end if;
5573
5574               Prepare_Private_Subtype_Completion (Id, N);
5575
5576               --  If this is the subtype of a constrained private type with
5577               --  discriminants that has got a full view and we also have
5578               --  built a completion just above, show that the completion
5579               --  is a clone of the full view to the back-end.
5580
5581               if Has_Discriminants (T)
5582                  and then not Has_Unknown_Discriminants (T)
5583                  and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5584                  and then Present (Full_View (T))
5585                  and then Present (Full_View (Id))
5586               then
5587                  Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5588               end if;
5589
5590            when Access_Kind =>
5591               Set_Ekind             (Id, E_Access_Subtype);
5592               Set_Is_Constrained    (Id, Is_Constrained        (T));
5593               Set_Is_Access_Constant
5594                                     (Id, Is_Access_Constant    (T));
5595               Set_Directly_Designated_Type
5596                                     (Id, Designated_Type       (T));
5597               Set_Can_Never_Be_Null (Id, Can_Never_Be_Null     (T));
5598
5599               --  A Pure library_item must not contain the declaration of a
5600               --  named access type, except within a subprogram, generic
5601               --  subprogram, task unit, or protected unit, or if it has
5602               --  a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5603
5604               if Comes_From_Source (Id)
5605                 and then In_Pure_Unit
5606                 and then not In_Subprogram_Task_Protected_Unit
5607                 and then not No_Pool_Assigned (Id)
5608               then
5609                  Error_Msg_N
5610                    ("named access types not allowed in pure unit", N);
5611               end if;
5612
5613            when Concurrent_Kind =>
5614               Set_Ekind                (Id, Subtype_Kind (Ekind   (T)));
5615               Set_Corresponding_Record_Type (Id,
5616                                         Corresponding_Record_Type (T));
5617               Set_First_Entity         (Id, First_Entity          (T));
5618               Set_First_Private_Entity (Id, First_Private_Entity  (T));
5619               Set_Has_Discriminants    (Id, Has_Discriminants     (T));
5620               Set_Is_Constrained       (Id, Is_Constrained        (T));
5621               Set_Is_Tagged_Type       (Id, Is_Tagged_Type        (T));
5622               Set_Last_Entity          (Id, Last_Entity           (T));
5623
5624               if Is_Tagged_Type (T) then
5625                  Set_No_Tagged_Streams_Pragma
5626                    (Id, No_Tagged_Streams_Pragma (T));
5627               end if;
5628
5629               if Has_Discriminants (T) then
5630                  Set_Discriminant_Constraint
5631                    (Id, Discriminant_Constraint (T));
5632                  Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5633               end if;
5634
5635            when Incomplete_Kind =>
5636               if Ada_Version >= Ada_2005 then
5637
5638                  --  In Ada 2005 an incomplete type can be explicitly tagged:
5639                  --  propagate indication. Note that we also have to include
5640                  --  subtypes for Ada 2012 extended use of incomplete types.
5641
5642                  Set_Ekind              (Id, E_Incomplete_Subtype);
5643                  Set_Is_Tagged_Type     (Id, Is_Tagged_Type (T));
5644                  Set_Private_Dependents (Id, New_Elmt_List);
5645
5646                  if Is_Tagged_Type (Id) then
5647                     Set_No_Tagged_Streams_Pragma
5648                       (Id, No_Tagged_Streams_Pragma (T));
5649                     Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5650                  end if;
5651
5652                  --  Ada 2005 (AI-412): Decorate an incomplete subtype of an
5653                  --  incomplete type visible through a limited with clause.
5654
5655                  if From_Limited_With (T)
5656                    and then Present (Non_Limited_View (T))
5657                  then
5658                     Set_From_Limited_With (Id);
5659                     Set_Non_Limited_View  (Id, Non_Limited_View (T));
5660
5661                  --  Ada 2005 (AI-412): Add the regular incomplete subtype
5662                  --  to the private dependents of the original incomplete
5663                  --  type for future transformation.
5664
5665                  else
5666                     Append_Elmt (Id, Private_Dependents (T));
5667                  end if;
5668
5669               --  If the subtype name denotes an incomplete type an error
5670               --  was already reported by Process_Subtype.
5671
5672               else
5673                  Set_Etype (Id, Any_Type);
5674               end if;
5675
5676            when others =>
5677               raise Program_Error;
5678         end case;
5679      end if;
5680
5681      if Etype (Id) = Any_Type then
5682         goto Leave;
5683      end if;
5684
5685      --  Some common processing on all types
5686
5687      Set_Size_Info      (Id, T);
5688      Set_First_Rep_Item (Id, First_Rep_Item (T));
5689
5690      --  If the parent type is a generic actual, so is the subtype. This may
5691      --  happen in a nested instance. Why Comes_From_Source test???
5692
5693      if not Comes_From_Source (N) then
5694         Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5695      end if;
5696
5697      --  If this is a subtype declaration for an actual in an instance,
5698      --  inherit static and dynamic predicates if any.
5699
5700      --  If declaration has no aspect specifications, inherit predicate
5701      --  info as well. Unclear how to handle the case of both specified
5702      --  and inherited predicates ??? Other inherited aspects, such as
5703      --  invariants, should be OK, but the combination with later pragmas
5704      --  may also require special merging.
5705
5706      if Has_Predicates (T)
5707        and then Present (Predicate_Function (T))
5708        and then
5709          ((In_Instance and then not Comes_From_Source (N))
5710             or else No (Aspect_Specifications (N)))
5711      then
5712         Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5713
5714         if Has_Static_Predicate (T) then
5715            Set_Has_Static_Predicate (Id);
5716            Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5717         end if;
5718      end if;
5719
5720      --  Remaining processing depends on characteristics of base type
5721
5722      T := Etype (Id);
5723
5724      Set_Is_Immediately_Visible   (Id, True);
5725      Set_Depends_On_Private       (Id, Has_Private_Component (T));
5726      Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5727
5728      if Is_Interface (T) then
5729         Set_Is_Interface (Id);
5730      end if;
5731
5732      if Present (Generic_Parent_Type (N))
5733        and then
5734          (Nkind (Parent (Generic_Parent_Type (N))) /=
5735                                              N_Formal_Type_Declaration
5736            or else Nkind (Formal_Type_Definition
5737                            (Parent (Generic_Parent_Type (N)))) /=
5738                                              N_Formal_Private_Type_Definition)
5739      then
5740         if Is_Tagged_Type (Id) then
5741
5742            --  If this is a generic actual subtype for a synchronized type,
5743            --  the primitive operations are those of the corresponding record
5744            --  for which there is a separate subtype declaration.
5745
5746            if Is_Concurrent_Type (Id) then
5747               null;
5748            elsif Is_Class_Wide_Type (Id) then
5749               Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5750            else
5751               Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5752            end if;
5753
5754         elsif Scope (Etype (Id)) /= Standard_Standard then
5755            Derive_Subprograms (Generic_Parent_Type (N), Id);
5756         end if;
5757      end if;
5758
5759      if Is_Private_Type (T) and then Present (Full_View (T)) then
5760         Conditional_Delay (Id, Full_View (T));
5761
5762      --  The subtypes of components or subcomponents of protected types
5763      --  do not need freeze nodes, which would otherwise appear in the
5764      --  wrong scope (before the freeze node for the protected type). The
5765      --  proper subtypes are those of the subcomponents of the corresponding
5766      --  record.
5767
5768      elsif Ekind (Scope (Id)) /= E_Protected_Type
5769        and then Present (Scope (Scope (Id))) -- error defense
5770        and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5771      then
5772         Conditional_Delay (Id, T);
5773      end if;
5774
5775      --  If we have a subtype of an incomplete type whose full type is a
5776      --  derived numeric type, we need to have a freeze node for the subtype.
5777      --  Otherwise gigi will complain while computing the (static) bounds of
5778      --  the subtype.
5779
5780      if Is_Itype (T)
5781        and then Is_Elementary_Type (Id)
5782        and then Etype (Id) /= Id
5783      then
5784         declare
5785            Partial : constant Entity_Id :=
5786                        Incomplete_Or_Partial_View (First_Subtype (Id));
5787         begin
5788            if Present (Partial)
5789              and then Ekind (Partial) = E_Incomplete_Type
5790            then
5791               Set_Has_Delayed_Freeze (Id);
5792            end if;
5793         end;
5794      end if;
5795
5796      --  Check that Constraint_Error is raised for a scalar subtype indication
5797      --  when the lower or upper bound of a non-null range lies outside the
5798      --  range of the type mark.
5799
5800      if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5801         if Is_Scalar_Type (Etype (Id))
5802           and then Scalar_Range (Id) /=
5803                    Scalar_Range
5804                      (Etype (Subtype_Mark (Subtype_Indication (N))))
5805         then
5806            Apply_Range_Check
5807              (Scalar_Range (Id),
5808               Etype (Subtype_Mark (Subtype_Indication (N))));
5809
5810         --  In the array case, check compatibility for each index
5811
5812         elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5813         then
5814            --  This really should be a subprogram that finds the indications
5815            --  to check???
5816
5817            declare
5818               Subt_Index   : Node_Id := First_Index (Id);
5819               Target_Index : Node_Id :=
5820                                First_Index (Etype
5821                                  (Subtype_Mark (Subtype_Indication (N))));
5822               Has_Dyn_Chk  : Boolean := Has_Dynamic_Range_Check (N);
5823
5824            begin
5825               while Present (Subt_Index) loop
5826                  if ((Nkind (Subt_Index) = N_Identifier
5827                        and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5828                       or else Nkind (Subt_Index) = N_Subtype_Indication)
5829                    and then
5830                      Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5831                  then
5832                     declare
5833                        Target_Typ : constant Entity_Id :=
5834                                       Etype (Target_Index);
5835                     begin
5836                        R_Checks :=
5837                          Get_Range_Checks
5838                            (Scalar_Range (Etype (Subt_Index)),
5839                             Target_Typ,
5840                             Etype (Subt_Index),
5841                             Defining_Identifier (N));
5842
5843                        --  Reset Has_Dynamic_Range_Check on the subtype to
5844                        --  prevent elision of the index check due to a dynamic
5845                        --  check generated for a preceding index (needed since
5846                        --  Insert_Range_Checks tries to avoid generating
5847                        --  redundant checks on a given declaration).
5848
5849                        Set_Has_Dynamic_Range_Check (N, False);
5850
5851                        Insert_Range_Checks
5852                          (R_Checks,
5853                           N,
5854                           Target_Typ,
5855                           Sloc (Defining_Identifier (N)));
5856
5857                        --  Record whether this index involved a dynamic check
5858
5859                        Has_Dyn_Chk :=
5860                          Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5861                     end;
5862                  end if;
5863
5864                  Next_Index (Subt_Index);
5865                  Next_Index (Target_Index);
5866               end loop;
5867
5868               --  Finally, mark whether the subtype involves dynamic checks
5869
5870               Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5871            end;
5872         end if;
5873      end if;
5874
5875      Set_Optimize_Alignment_Flags (Id);
5876      Check_Eliminated (Id);
5877
5878   <<Leave>>
5879      if Has_Aspects (N) then
5880         Analyze_Aspect_Specifications (N, Id);
5881      end if;
5882
5883      Analyze_Dimension (N);
5884
5885      --  Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5886      --  indications on composite types where the constraints are dynamic.
5887      --  Note that object declarations and aggregates generate implicit
5888      --  subtype declarations, which this covers. One special case is that the
5889      --  implicitly generated "=" for discriminated types includes an
5890      --  offending subtype declaration, which is harmless, so we ignore it
5891      --  here.
5892
5893      if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5894         declare
5895            Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5896         begin
5897            if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5898              and then not (Is_Internal (Id)
5899                             and then Is_TSS (Scope (Id),
5900                                              TSS_Composite_Equality))
5901              and then not Within_Init_Proc
5902              and then not All_Composite_Constraints_Static (Cstr)
5903            then
5904               Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5905            end if;
5906         end;
5907      end if;
5908   end Analyze_Subtype_Declaration;
5909
5910   --------------------------------
5911   -- Analyze_Subtype_Indication --
5912   --------------------------------
5913
5914   procedure Analyze_Subtype_Indication (N : Node_Id) is
5915      T : constant Entity_Id := Subtype_Mark (N);
5916      R : constant Node_Id   := Range_Expression (Constraint (N));
5917
5918   begin
5919      Analyze (T);
5920
5921      if R /= Error then
5922         Analyze (R);
5923         Set_Etype (N, Etype (R));
5924         Resolve (R, Entity (T));
5925      else
5926         Set_Error_Posted (R);
5927         Set_Error_Posted (T);
5928      end if;
5929   end Analyze_Subtype_Indication;
5930
5931   --------------------------
5932   -- Analyze_Variant_Part --
5933   --------------------------
5934
5935   procedure Analyze_Variant_Part (N : Node_Id) is
5936      Discr_Name : Node_Id;
5937      Discr_Type : Entity_Id;
5938
5939      procedure Process_Variant (A : Node_Id);
5940      --  Analyze declarations for a single variant
5941
5942      package Analyze_Variant_Choices is
5943        new Generic_Analyze_Choices (Process_Variant);
5944      use Analyze_Variant_Choices;
5945
5946      ---------------------
5947      -- Process_Variant --
5948      ---------------------
5949
5950      procedure Process_Variant (A : Node_Id) is
5951         CL : constant Node_Id := Component_List (A);
5952      begin
5953         if not Null_Present (CL) then
5954            Analyze_Declarations (Component_Items (CL));
5955
5956            if Present (Variant_Part (CL)) then
5957               Analyze (Variant_Part (CL));
5958            end if;
5959         end if;
5960      end Process_Variant;
5961
5962   --  Start of processing for Analyze_Variant_Part
5963
5964   begin
5965      Discr_Name := Name (N);
5966      Analyze (Discr_Name);
5967
5968      --  If Discr_Name bad, get out (prevent cascaded errors)
5969
5970      if Etype (Discr_Name) = Any_Type then
5971         return;
5972      end if;
5973
5974      --  Check invalid discriminant in variant part
5975
5976      if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5977         Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5978      end if;
5979
5980      Discr_Type := Etype (Entity (Discr_Name));
5981
5982      if not Is_Discrete_Type (Discr_Type) then
5983         Error_Msg_N
5984           ("discriminant in a variant part must be of a discrete type",
5985             Name (N));
5986         return;
5987      end if;
5988
5989      --  Now analyze the choices, which also analyzes the declarations that
5990      --  are associated with each choice.
5991
5992      Analyze_Choices (Variants (N), Discr_Type);
5993
5994      --  Note: we used to instantiate and call Check_Choices here to check
5995      --  that the choices covered the discriminant, but it's too early to do
5996      --  that because of statically predicated subtypes, whose analysis may
5997      --  be deferred to their freeze point which may be as late as the freeze
5998      --  point of the containing record. So this call is now to be found in
5999      --  Freeze_Record_Declaration.
6000
6001   end Analyze_Variant_Part;
6002
6003   ----------------------------
6004   -- Array_Type_Declaration --
6005   ----------------------------
6006
6007   procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
6008      Component_Def : constant Node_Id := Component_Definition (Def);
6009      Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
6010      P             : constant Node_Id := Parent (Def);
6011      Element_Type  : Entity_Id;
6012      Implicit_Base : Entity_Id;
6013      Index         : Node_Id;
6014      Nb_Index      : Nat;
6015      Priv          : Entity_Id;
6016      Related_Id    : Entity_Id := Empty;
6017
6018   begin
6019      if Nkind (Def) = N_Constrained_Array_Definition then
6020         Index := First (Discrete_Subtype_Definitions (Def));
6021      else
6022         Index := First (Subtype_Marks (Def));
6023      end if;
6024
6025      --  Find proper names for the implicit types which may be public. In case
6026      --  of anonymous arrays we use the name of the first object of that type
6027      --  as prefix.
6028
6029      if No (T) then
6030         Related_Id := Defining_Identifier (P);
6031      else
6032         Related_Id := T;
6033      end if;
6034
6035      Nb_Index := 1;
6036      while Present (Index) loop
6037         Analyze (Index);
6038
6039         --  Test for odd case of trying to index a type by the type itself
6040
6041         if Is_Entity_Name (Index) and then Entity (Index) = T then
6042            Error_Msg_N ("type& cannot be indexed by itself", Index);
6043            Set_Entity (Index, Standard_Boolean);
6044            Set_Etype (Index, Standard_Boolean);
6045         end if;
6046
6047         --  Check SPARK restriction requiring a subtype mark
6048
6049         if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
6050            Check_SPARK_05_Restriction ("subtype mark required", Index);
6051         end if;
6052
6053         --  Add a subtype declaration for each index of private array type
6054         --  declaration whose etype is also private. For example:
6055
6056         --     package Pkg is
6057         --        type Index is private;
6058         --     private
6059         --        type Table is array (Index) of ...
6060         --     end;
6061
6062         --  This is currently required by the expander for the internally
6063         --  generated equality subprogram of records with variant parts in
6064         --  which the etype of some component is such private type.
6065
6066         if Ekind (Current_Scope) = E_Package
6067           and then In_Private_Part (Current_Scope)
6068           and then Has_Private_Declaration (Etype (Index))
6069         then
6070            declare
6071               Loc   : constant Source_Ptr := Sloc (Def);
6072               Decl  : Entity_Id;
6073               New_E : Entity_Id;
6074
6075            begin
6076               New_E := Make_Temporary (Loc, 'T');
6077               Set_Is_Internal (New_E);
6078
6079               Decl :=
6080                 Make_Subtype_Declaration (Loc,
6081                   Defining_Identifier => New_E,
6082                   Subtype_Indication  =>
6083                     New_Occurrence_Of (Etype (Index), Loc));
6084
6085               Insert_Before (Parent (Def), Decl);
6086               Analyze (Decl);
6087               Set_Etype (Index, New_E);
6088
6089               --  If the index is a range or a subtype indication it carries
6090               --  no entity. Example:
6091
6092               --     package Pkg is
6093               --        type T is private;
6094               --     private
6095               --        type T is new Natural;
6096               --        Table : array (T(1) .. T(10)) of Boolean;
6097               --     end Pkg;
6098
6099               --  Otherwise the type of the reference is its entity.
6100
6101               if Is_Entity_Name (Index) then
6102                  Set_Entity (Index, New_E);
6103               end if;
6104            end;
6105         end if;
6106
6107         Make_Index (Index, P, Related_Id, Nb_Index);
6108
6109         --  Check error of subtype with predicate for index type
6110
6111         Bad_Predicated_Subtype_Use
6112           ("subtype& has predicate, not allowed as index subtype",
6113            Index, Etype (Index));
6114
6115         --  Move to next index
6116
6117         Next_Index (Index);
6118         Nb_Index := Nb_Index + 1;
6119      end loop;
6120
6121      --  Process subtype indication if one is present
6122
6123      if Present (Component_Typ) then
6124         Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6125
6126         Set_Etype (Component_Typ, Element_Type);
6127
6128         if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6129            Check_SPARK_05_Restriction
6130              ("subtype mark required", Component_Typ);
6131         end if;
6132
6133      --  Ada 2005 (AI-230): Access Definition case
6134
6135      else pragma Assert (Present (Access_Definition (Component_Def)));
6136
6137         --  Indicate that the anonymous access type is created by the
6138         --  array type declaration.
6139
6140         Element_Type := Access_Definition
6141                           (Related_Nod => P,
6142                            N           => Access_Definition (Component_Def));
6143         Set_Is_Local_Anonymous_Access (Element_Type);
6144
6145         --  Propagate the parent. This field is needed if we have to generate
6146         --  the master_id associated with an anonymous access to task type
6147         --  component (see Expand_N_Full_Type_Declaration.Build_Master)
6148
6149         Set_Parent (Element_Type, Parent (T));
6150
6151         --  Ada 2005 (AI-230): In case of components that are anonymous access
6152         --  types the level of accessibility depends on the enclosing type
6153         --  declaration
6154
6155         Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6156
6157         --  Ada 2005 (AI-254)
6158
6159         declare
6160            CD : constant Node_Id :=
6161                   Access_To_Subprogram_Definition
6162                     (Access_Definition (Component_Def));
6163         begin
6164            if Present (CD) and then Protected_Present (CD) then
6165               Element_Type :=
6166                 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6167            end if;
6168         end;
6169      end if;
6170
6171      --  Constrained array case
6172
6173      if No (T) then
6174         T := Create_Itype (E_Void, P, Related_Id, 'T');
6175      end if;
6176
6177      if Nkind (Def) = N_Constrained_Array_Definition then
6178
6179         --  Establish Implicit_Base as unconstrained base type
6180
6181         Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6182
6183         Set_Etype              (Implicit_Base, Implicit_Base);
6184         Set_Scope              (Implicit_Base, Current_Scope);
6185         Set_Has_Delayed_Freeze (Implicit_Base);
6186         Set_Default_SSO        (Implicit_Base);
6187
6188         --  The constrained array type is a subtype of the unconstrained one
6189
6190         Set_Ekind              (T, E_Array_Subtype);
6191         Init_Size_Align        (T);
6192         Set_Etype              (T, Implicit_Base);
6193         Set_Scope              (T, Current_Scope);
6194         Set_Is_Constrained     (T);
6195         Set_First_Index        (T,
6196           First (Discrete_Subtype_Definitions (Def)));
6197         Set_Has_Delayed_Freeze (T);
6198
6199         --  Complete setup of implicit base type
6200
6201         Set_Component_Size (Implicit_Base, Uint_0);
6202         Set_Component_Type (Implicit_Base, Element_Type);
6203         Set_Finalize_Storage_Only
6204                            (Implicit_Base,
6205                              Finalize_Storage_Only (Element_Type));
6206         Set_First_Index    (Implicit_Base, First_Index (T));
6207         Set_Has_Controlled_Component
6208                            (Implicit_Base,
6209                              Has_Controlled_Component (Element_Type)
6210                                or else Is_Controlled (Element_Type));
6211         Set_Packed_Array_Impl_Type
6212                            (Implicit_Base, Empty);
6213
6214         Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6215
6216      --  Unconstrained array case
6217
6218      else
6219         Set_Ekind                    (T, E_Array_Type);
6220         Init_Size_Align              (T);
6221         Set_Etype                    (T, T);
6222         Set_Scope                    (T, Current_Scope);
6223         Set_Component_Size           (T, Uint_0);
6224         Set_Is_Constrained           (T, False);
6225         Set_First_Index              (T, First (Subtype_Marks (Def)));
6226         Set_Has_Delayed_Freeze       (T, True);
6227         Propagate_Concurrent_Flags   (T, Element_Type);
6228         Set_Has_Controlled_Component (T, Has_Controlled_Component
6229                                                        (Element_Type)
6230                                            or else
6231                                          Is_Controlled (Element_Type));
6232         Set_Finalize_Storage_Only    (T, Finalize_Storage_Only
6233                                                        (Element_Type));
6234         Set_Default_SSO              (T);
6235      end if;
6236
6237      --  Common attributes for both cases
6238
6239      Set_Component_Type (Base_Type (T), Element_Type);
6240      Set_Packed_Array_Impl_Type (T, Empty);
6241
6242      if Aliased_Present (Component_Definition (Def)) then
6243         Check_SPARK_05_Restriction
6244           ("aliased is not allowed", Component_Definition (Def));
6245         Set_Has_Aliased_Components (Etype (T));
6246      end if;
6247
6248      --  Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6249      --  array type to ensure that objects of this type are initialized.
6250
6251      if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6252         Set_Can_Never_Be_Null (T);
6253
6254         if Null_Exclusion_Present (Component_Definition (Def))
6255
6256            --  No need to check itypes because in their case this check was
6257            --  done at their point of creation
6258
6259           and then not Is_Itype (Element_Type)
6260         then
6261            Error_Msg_N
6262              ("`NOT NULL` not allowed (null already excluded)",
6263               Subtype_Indication (Component_Definition (Def)));
6264         end if;
6265      end if;
6266
6267      Priv := Private_Component (Element_Type);
6268
6269      if Present (Priv) then
6270
6271         --  Check for circular definitions
6272
6273         if Priv = Any_Type then
6274            Set_Component_Type (Etype (T), Any_Type);
6275
6276         --  There is a gap in the visibility of operations on the composite
6277         --  type only if the component type is defined in a different scope.
6278
6279         elsif Scope (Priv) = Current_Scope then
6280            null;
6281
6282         elsif Is_Limited_Type (Priv) then
6283            Set_Is_Limited_Composite (Etype (T));
6284            Set_Is_Limited_Composite (T);
6285         else
6286            Set_Is_Private_Composite (Etype (T));
6287            Set_Is_Private_Composite (T);
6288         end if;
6289      end if;
6290
6291      --  A syntax error in the declaration itself may lead to an empty index
6292      --  list, in which case do a minimal patch.
6293
6294      if No (First_Index (T)) then
6295         Error_Msg_N ("missing index definition in array type declaration", T);
6296
6297         declare
6298            Indexes : constant List_Id :=
6299                        New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6300         begin
6301            Set_Discrete_Subtype_Definitions (Def, Indexes);
6302            Set_First_Index (T, First (Indexes));
6303            return;
6304         end;
6305      end if;
6306
6307      --  Create a concatenation operator for the new type. Internal array
6308      --  types created for packed entities do not need such, they are
6309      --  compatible with the user-defined type.
6310
6311      if Number_Dimensions (T) = 1
6312        and then not Is_Packed_Array_Impl_Type (T)
6313      then
6314         New_Concatenation_Op (T);
6315      end if;
6316
6317      --  In the case of an unconstrained array the parser has already verified
6318      --  that all the indexes are unconstrained but we still need to make sure
6319      --  that the element type is constrained.
6320
6321      if not Is_Definite_Subtype (Element_Type) then
6322         Error_Msg_N
6323           ("unconstrained element type in array declaration",
6324            Subtype_Indication (Component_Def));
6325
6326      elsif Is_Abstract_Type (Element_Type) then
6327         Error_Msg_N
6328           ("the type of a component cannot be abstract",
6329            Subtype_Indication (Component_Def));
6330      end if;
6331
6332      --  There may be an invariant declared for the component type, but
6333      --  the construction of the component invariant checking procedure
6334      --  takes place during expansion.
6335   end Array_Type_Declaration;
6336
6337   ------------------------------------------------------
6338   -- Replace_Anonymous_Access_To_Protected_Subprogram --
6339   ------------------------------------------------------
6340
6341   function Replace_Anonymous_Access_To_Protected_Subprogram
6342     (N : Node_Id) return Entity_Id
6343   is
6344      Loc : constant Source_Ptr := Sloc (N);
6345
6346      Curr_Scope : constant Scope_Stack_Entry :=
6347                     Scope_Stack.Table (Scope_Stack.Last);
6348
6349      Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6350
6351      Acc : Node_Id;
6352      --  Access definition in declaration
6353
6354      Comp : Node_Id;
6355      --  Object definition or formal definition with an access definition
6356
6357      Decl : Node_Id;
6358      --  Declaration of anonymous access to subprogram type
6359
6360      Spec : Node_Id;
6361      --  Original specification in access to subprogram
6362
6363      P : Node_Id;
6364
6365   begin
6366      Set_Is_Internal (Anon);
6367
6368      case Nkind (N) is
6369         when N_Constrained_Array_Definition
6370            | N_Component_Declaration
6371            | N_Unconstrained_Array_Definition
6372         =>
6373            Comp := Component_Definition (N);
6374            Acc  := Access_Definition (Comp);
6375
6376         when N_Discriminant_Specification =>
6377            Comp := Discriminant_Type (N);
6378            Acc  := Comp;
6379
6380         when N_Parameter_Specification =>
6381            Comp := Parameter_Type (N);
6382            Acc  := Comp;
6383
6384         when N_Access_Function_Definition  =>
6385            Comp := Result_Definition (N);
6386            Acc  := Comp;
6387
6388         when N_Object_Declaration  =>
6389            Comp := Object_Definition (N);
6390            Acc  := Comp;
6391
6392         when N_Function_Specification =>
6393            Comp := Result_Definition (N);
6394            Acc  := Comp;
6395
6396         when others =>
6397            raise Program_Error;
6398      end case;
6399
6400      Spec := Access_To_Subprogram_Definition (Acc);
6401
6402      Decl :=
6403        Make_Full_Type_Declaration (Loc,
6404          Defining_Identifier => Anon,
6405          Type_Definition     => Copy_Separate_Tree (Spec));
6406
6407      Mark_Rewrite_Insertion (Decl);
6408
6409      --  In ASIS mode, analyze the profile on the original node, because
6410      --  the separate copy does not provide enough links to recover the
6411      --  original tree. Analysis is limited to type annotations, within
6412      --  a temporary scope that serves as an anonymous subprogram to collect
6413      --  otherwise useless temporaries and itypes.
6414
6415      if ASIS_Mode then
6416         declare
6417            Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6418
6419         begin
6420            if Nkind (Spec) = N_Access_Function_Definition then
6421               Set_Ekind (Typ, E_Function);
6422            else
6423               Set_Ekind (Typ, E_Procedure);
6424            end if;
6425
6426            Set_Parent (Typ, N);
6427            Set_Scope  (Typ, Current_Scope);
6428            Push_Scope (Typ);
6429
6430            --  Nothing to do if procedure is parameterless
6431
6432            if Present (Parameter_Specifications (Spec)) then
6433               Process_Formals (Parameter_Specifications (Spec), Spec);
6434            end if;
6435
6436            if Nkind (Spec) = N_Access_Function_Definition then
6437               declare
6438                  Def : constant Node_Id := Result_Definition (Spec);
6439
6440               begin
6441                  --  The result might itself be an anonymous access type, so
6442                  --  have to recurse.
6443
6444                  if Nkind (Def) = N_Access_Definition then
6445                     if Present (Access_To_Subprogram_Definition (Def)) then
6446                        Set_Etype
6447                          (Def,
6448                           Replace_Anonymous_Access_To_Protected_Subprogram
6449                            (Spec));
6450                     else
6451                        Find_Type (Subtype_Mark (Def));
6452                     end if;
6453
6454                  else
6455                     Find_Type (Def);
6456                  end if;
6457               end;
6458            end if;
6459
6460            End_Scope;
6461         end;
6462      end if;
6463
6464      --  Insert the new declaration in the nearest enclosing scope. If the
6465      --  parent is a body and N is its return type, the declaration belongs
6466      --  in the enclosing scope. Likewise if N is the type of a parameter.
6467
6468      P := Parent (N);
6469
6470      if Nkind (N) = N_Function_Specification
6471        and then Nkind (P) = N_Subprogram_Body
6472      then
6473         P := Parent (P);
6474      elsif Nkind (N) = N_Parameter_Specification
6475        and then Nkind (P) in N_Subprogram_Specification
6476        and then Nkind (Parent (P)) = N_Subprogram_Body
6477      then
6478         P := Parent (Parent (P));
6479      end if;
6480
6481      while Present (P) and then not Has_Declarations (P) loop
6482         P := Parent (P);
6483      end loop;
6484
6485      pragma Assert (Present (P));
6486
6487      if Nkind (P) = N_Package_Specification then
6488         Prepend (Decl, Visible_Declarations (P));
6489      else
6490         Prepend (Decl, Declarations (P));
6491      end if;
6492
6493      --  Replace the anonymous type with an occurrence of the new declaration.
6494      --  In all cases the rewritten node does not have the null-exclusion
6495      --  attribute because (if present) it was already inherited by the
6496      --  anonymous entity (Anon). Thus, in case of components we do not
6497      --  inherit this attribute.
6498
6499      if Nkind (N) = N_Parameter_Specification then
6500         Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6501         Set_Etype (Defining_Identifier (N), Anon);
6502         Set_Null_Exclusion_Present (N, False);
6503
6504      elsif Nkind (N) = N_Object_Declaration then
6505         Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6506         Set_Etype (Defining_Identifier (N), Anon);
6507
6508      elsif Nkind (N) = N_Access_Function_Definition then
6509         Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6510
6511      elsif Nkind (N) = N_Function_Specification then
6512         Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6513         Set_Etype (Defining_Unit_Name (N), Anon);
6514
6515      else
6516         Rewrite (Comp,
6517           Make_Component_Definition (Loc,
6518             Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6519      end if;
6520
6521      Mark_Rewrite_Insertion (Comp);
6522
6523      if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6524        or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6525                  and then not Is_Type (Current_Scope))
6526      then
6527
6528         --  Declaration can be analyzed in the current scope.
6529
6530         Analyze (Decl);
6531
6532      else
6533         --  Temporarily remove the current scope (record or subprogram) from
6534         --  the stack to add the new declarations to the enclosing scope.
6535         --  The anonymous entity is an Itype with the proper attributes.
6536
6537         Scope_Stack.Decrement_Last;
6538         Analyze (Decl);
6539         Set_Is_Itype (Anon);
6540         Set_Associated_Node_For_Itype (Anon, N);
6541         Scope_Stack.Append (Curr_Scope);
6542      end if;
6543
6544      Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6545      Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6546      return Anon;
6547   end Replace_Anonymous_Access_To_Protected_Subprogram;
6548
6549   -------------------------------
6550   -- Build_Derived_Access_Type --
6551   -------------------------------
6552
6553   procedure Build_Derived_Access_Type
6554     (N            : Node_Id;
6555      Parent_Type  : Entity_Id;
6556      Derived_Type : Entity_Id)
6557   is
6558      S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6559
6560      Desig_Type      : Entity_Id;
6561      Discr           : Entity_Id;
6562      Discr_Con_Elist : Elist_Id;
6563      Discr_Con_El    : Elmt_Id;
6564      Subt            : Entity_Id;
6565
6566   begin
6567      --  Set the designated type so it is available in case this is an access
6568      --  to a self-referential type, e.g. a standard list type with a next
6569      --  pointer. Will be reset after subtype is built.
6570
6571      Set_Directly_Designated_Type
6572        (Derived_Type, Designated_Type (Parent_Type));
6573
6574      Subt := Process_Subtype (S, N);
6575
6576      if Nkind (S) /= N_Subtype_Indication
6577        and then Subt /= Base_Type (Subt)
6578      then
6579         Set_Ekind (Derived_Type, E_Access_Subtype);
6580      end if;
6581
6582      if Ekind (Derived_Type) = E_Access_Subtype then
6583         declare
6584            Pbase      : constant Entity_Id := Base_Type (Parent_Type);
6585            Ibase      : constant Entity_Id :=
6586                           Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6587            Svg_Chars  : constant Name_Id   := Chars (Ibase);
6588            Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6589
6590         begin
6591            Copy_Node (Pbase, Ibase);
6592
6593            --  Restore Itype status after Copy_Node
6594
6595            Set_Is_Itype (Ibase);
6596            Set_Associated_Node_For_Itype (Ibase, N);
6597
6598            Set_Chars             (Ibase, Svg_Chars);
6599            Set_Next_Entity       (Ibase, Svg_Next_E);
6600            Set_Sloc              (Ibase, Sloc (Derived_Type));
6601            Set_Scope             (Ibase, Scope (Derived_Type));
6602            Set_Freeze_Node       (Ibase, Empty);
6603            Set_Is_Frozen         (Ibase, False);
6604            Set_Comes_From_Source (Ibase, False);
6605            Set_Is_First_Subtype  (Ibase, False);
6606
6607            Set_Etype (Ibase, Pbase);
6608            Set_Etype (Derived_Type, Ibase);
6609         end;
6610      end if;
6611
6612      Set_Directly_Designated_Type
6613        (Derived_Type, Designated_Type (Subt));
6614
6615      Set_Is_Constrained     (Derived_Type, Is_Constrained (Subt));
6616      Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6617      Set_Size_Info          (Derived_Type,                     Parent_Type);
6618      Set_RM_Size            (Derived_Type, RM_Size            (Parent_Type));
6619      Set_Depends_On_Private (Derived_Type,
6620                              Has_Private_Component (Derived_Type));
6621      Conditional_Delay      (Derived_Type, Subt);
6622
6623      --  Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6624      --  that it is not redundant.
6625
6626      if Null_Exclusion_Present (Type_Definition (N)) then
6627         Set_Can_Never_Be_Null (Derived_Type);
6628
6629      elsif Can_Never_Be_Null (Parent_Type) then
6630         Set_Can_Never_Be_Null (Derived_Type);
6631      end if;
6632
6633      --  Note: we do not copy the Storage_Size_Variable, since we always go to
6634      --  the root type for this information.
6635
6636      --  Apply range checks to discriminants for derived record case
6637      --  ??? THIS CODE SHOULD NOT BE HERE REALLY.
6638
6639      Desig_Type := Designated_Type (Derived_Type);
6640
6641      if Is_Composite_Type (Desig_Type)
6642        and then (not Is_Array_Type (Desig_Type))
6643        and then Has_Discriminants (Desig_Type)
6644        and then Base_Type (Desig_Type) /= Desig_Type
6645      then
6646         Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6647         Discr_Con_El := First_Elmt (Discr_Con_Elist);
6648
6649         Discr := First_Discriminant (Base_Type (Desig_Type));
6650         while Present (Discr_Con_El) loop
6651            Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6652            Next_Elmt (Discr_Con_El);
6653            Next_Discriminant (Discr);
6654         end loop;
6655      end if;
6656   end Build_Derived_Access_Type;
6657
6658   ------------------------------
6659   -- Build_Derived_Array_Type --
6660   ------------------------------
6661
6662   procedure Build_Derived_Array_Type
6663     (N            : Node_Id;
6664      Parent_Type  : Entity_Id;
6665      Derived_Type : Entity_Id)
6666   is
6667      Loc           : constant Source_Ptr := Sloc (N);
6668      Tdef          : constant Node_Id    := Type_Definition (N);
6669      Indic         : constant Node_Id    := Subtype_Indication (Tdef);
6670      Parent_Base   : constant Entity_Id  := Base_Type (Parent_Type);
6671      Implicit_Base : Entity_Id           := Empty;
6672      New_Indic     : Node_Id;
6673
6674      procedure Make_Implicit_Base;
6675      --  If the parent subtype is constrained, the derived type is a subtype
6676      --  of an implicit base type derived from the parent base.
6677
6678      ------------------------
6679      -- Make_Implicit_Base --
6680      ------------------------
6681
6682      procedure Make_Implicit_Base is
6683      begin
6684         Implicit_Base :=
6685           Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6686
6687         Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6688         Set_Etype (Implicit_Base, Parent_Base);
6689
6690         Copy_Array_Subtype_Attributes   (Implicit_Base, Parent_Base);
6691         Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6692
6693         Set_Has_Delayed_Freeze (Implicit_Base, True);
6694      end Make_Implicit_Base;
6695
6696   --  Start of processing for Build_Derived_Array_Type
6697
6698   begin
6699      if not Is_Constrained (Parent_Type) then
6700         if Nkind (Indic) /= N_Subtype_Indication then
6701            Set_Ekind (Derived_Type, E_Array_Type);
6702
6703            Copy_Array_Subtype_Attributes   (Derived_Type, Parent_Type);
6704            Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6705
6706            Set_Has_Delayed_Freeze (Derived_Type, True);
6707
6708         else
6709            Make_Implicit_Base;
6710            Set_Etype (Derived_Type, Implicit_Base);
6711
6712            New_Indic :=
6713              Make_Subtype_Declaration (Loc,
6714                Defining_Identifier => Derived_Type,
6715                Subtype_Indication  =>
6716                  Make_Subtype_Indication (Loc,
6717                    Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6718                    Constraint => Constraint (Indic)));
6719
6720            Rewrite (N, New_Indic);
6721            Analyze (N);
6722         end if;
6723
6724      else
6725         if Nkind (Indic) /= N_Subtype_Indication then
6726            Make_Implicit_Base;
6727
6728            Set_Ekind                     (Derived_Type, Ekind (Parent_Type));
6729            Set_Etype                     (Derived_Type, Implicit_Base);
6730            Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6731
6732         else
6733            Error_Msg_N ("illegal constraint on constrained type", Indic);
6734         end if;
6735      end if;
6736
6737      --  If parent type is not a derived type itself, and is declared in
6738      --  closed scope (e.g. a subprogram), then we must explicitly introduce
6739      --  the new type's concatenation operator since Derive_Subprograms
6740      --  will not inherit the parent's operator. If the parent type is
6741      --  unconstrained, the operator is of the unconstrained base type.
6742
6743      if Number_Dimensions (Parent_Type) = 1
6744        and then not Is_Limited_Type (Parent_Type)
6745        and then not Is_Derived_Type (Parent_Type)
6746        and then not Is_Package_Or_Generic_Package
6747                       (Scope (Base_Type (Parent_Type)))
6748      then
6749         if not Is_Constrained (Parent_Type)
6750           and then Is_Constrained (Derived_Type)
6751         then
6752            New_Concatenation_Op (Implicit_Base);
6753         else
6754            New_Concatenation_Op (Derived_Type);
6755         end if;
6756      end if;
6757   end Build_Derived_Array_Type;
6758
6759   -----------------------------------
6760   -- Build_Derived_Concurrent_Type --
6761   -----------------------------------
6762
6763   procedure Build_Derived_Concurrent_Type
6764     (N            : Node_Id;
6765      Parent_Type  : Entity_Id;
6766      Derived_Type : Entity_Id)
6767   is
6768      Loc : constant Source_Ptr := Sloc (N);
6769
6770      Corr_Record      : constant Entity_Id := Make_Temporary (Loc, 'C');
6771      Corr_Decl        : Node_Id;
6772      Corr_Decl_Needed : Boolean;
6773      --  If the derived type has fewer discriminants than its parent, the
6774      --  corresponding record is also a derived type, in order to account for
6775      --  the bound discriminants. We create a full type declaration for it in
6776      --  this case.
6777
6778      Constraint_Present : constant Boolean :=
6779                             Nkind (Subtype_Indication (Type_Definition (N))) =
6780                                                          N_Subtype_Indication;
6781
6782      D_Constraint   : Node_Id;
6783      New_Constraint : Elist_Id := No_Elist;
6784      Old_Disc       : Entity_Id;
6785      New_Disc       : Entity_Id;
6786      New_N          : Node_Id;
6787
6788   begin
6789      Set_Stored_Constraint (Derived_Type, No_Elist);
6790      Corr_Decl_Needed := False;
6791      Old_Disc := Empty;
6792
6793      if Present (Discriminant_Specifications (N))
6794        and then Constraint_Present
6795      then
6796         Old_Disc := First_Discriminant (Parent_Type);
6797         New_Disc := First (Discriminant_Specifications (N));
6798         while Present (New_Disc) and then Present (Old_Disc) loop
6799            Next_Discriminant (Old_Disc);
6800            Next (New_Disc);
6801         end loop;
6802      end if;
6803
6804      if Present (Old_Disc) and then Expander_Active then
6805
6806         --  The new type has fewer discriminants, so we need to create a new
6807         --  corresponding record, which is derived from the corresponding
6808         --  record of the parent, and has a stored constraint that captures
6809         --  the values of the discriminant constraints. The corresponding
6810         --  record is needed only if expander is active and code generation is
6811         --  enabled.
6812
6813         --  The type declaration for the derived corresponding record has the
6814         --  same discriminant part and constraints as the current declaration.
6815         --  Copy the unanalyzed tree to build declaration.
6816
6817         Corr_Decl_Needed := True;
6818         New_N := Copy_Separate_Tree (N);
6819
6820         Corr_Decl :=
6821           Make_Full_Type_Declaration (Loc,
6822             Defining_Identifier         => Corr_Record,
6823             Discriminant_Specifications =>
6824                Discriminant_Specifications (New_N),
6825             Type_Definition             =>
6826               Make_Derived_Type_Definition (Loc,
6827                 Subtype_Indication =>
6828                   Make_Subtype_Indication (Loc,
6829                     Subtype_Mark =>
6830                        New_Occurrence_Of
6831                          (Corresponding_Record_Type (Parent_Type), Loc),
6832                     Constraint   =>
6833                       Constraint
6834                         (Subtype_Indication (Type_Definition (New_N))))));
6835      end if;
6836
6837      --  Copy Storage_Size and Relative_Deadline variables if task case
6838
6839      if Is_Task_Type (Parent_Type) then
6840         Set_Storage_Size_Variable (Derived_Type,
6841           Storage_Size_Variable (Parent_Type));
6842         Set_Relative_Deadline_Variable (Derived_Type,
6843           Relative_Deadline_Variable (Parent_Type));
6844      end if;
6845
6846      if Present (Discriminant_Specifications (N)) then
6847         Push_Scope (Derived_Type);
6848         Check_Or_Process_Discriminants (N, Derived_Type);
6849
6850         if Constraint_Present then
6851            New_Constraint :=
6852              Expand_To_Stored_Constraint
6853                (Parent_Type,
6854                 Build_Discriminant_Constraints
6855                   (Parent_Type,
6856                    Subtype_Indication (Type_Definition (N)), True));
6857         end if;
6858
6859         End_Scope;
6860
6861      elsif Constraint_Present then
6862
6863         --  Build constrained subtype, copying the constraint, and derive
6864         --  from it to create a derived constrained type.
6865
6866         declare
6867            Loc  : constant Source_Ptr := Sloc (N);
6868            Anon : constant Entity_Id :=
6869                     Make_Defining_Identifier (Loc,
6870                       Chars => New_External_Name (Chars (Derived_Type), 'T'));
6871            Decl : Node_Id;
6872
6873         begin
6874            Decl :=
6875              Make_Subtype_Declaration (Loc,
6876                Defining_Identifier => Anon,
6877                Subtype_Indication =>
6878                  New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6879            Insert_Before (N, Decl);
6880            Analyze (Decl);
6881
6882            Rewrite (Subtype_Indication (Type_Definition (N)),
6883              New_Occurrence_Of (Anon, Loc));
6884            Set_Analyzed (Derived_Type, False);
6885            Analyze (N);
6886            return;
6887         end;
6888      end if;
6889
6890      --  By default, operations and private data are inherited from parent.
6891      --  However, in the presence of bound discriminants, a new corresponding
6892      --  record will be created, see below.
6893
6894      Set_Has_Discriminants
6895        (Derived_Type, Has_Discriminants         (Parent_Type));
6896      Set_Corresponding_Record_Type
6897        (Derived_Type, Corresponding_Record_Type (Parent_Type));
6898
6899      --  Is_Constrained is set according the parent subtype, but is set to
6900      --  False if the derived type is declared with new discriminants.
6901
6902      Set_Is_Constrained
6903        (Derived_Type,
6904         (Is_Constrained (Parent_Type) or else Constraint_Present)
6905           and then not Present (Discriminant_Specifications (N)));
6906
6907      if Constraint_Present then
6908         if not Has_Discriminants (Parent_Type) then
6909            Error_Msg_N ("untagged parent must have discriminants", N);
6910
6911         elsif Present (Discriminant_Specifications (N)) then
6912
6913            --  Verify that new discriminants are used to constrain old ones
6914
6915            D_Constraint :=
6916              First
6917                (Constraints
6918                  (Constraint (Subtype_Indication (Type_Definition (N)))));
6919
6920            Old_Disc := First_Discriminant (Parent_Type);
6921
6922            while Present (D_Constraint) loop
6923               if Nkind (D_Constraint) /= N_Discriminant_Association then
6924
6925                  --  Positional constraint. If it is a reference to a new
6926                  --  discriminant, it constrains the corresponding old one.
6927
6928                  if Nkind (D_Constraint) = N_Identifier then
6929                     New_Disc := First_Discriminant (Derived_Type);
6930                     while Present (New_Disc) loop
6931                        exit when Chars (New_Disc) = Chars (D_Constraint);
6932                        Next_Discriminant (New_Disc);
6933                     end loop;
6934
6935                     if Present (New_Disc) then
6936                        Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6937                     end if;
6938                  end if;
6939
6940                  Next_Discriminant (Old_Disc);
6941
6942                  --  if this is a named constraint, search by name for the old
6943                  --  discriminants constrained by the new one.
6944
6945               elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6946
6947                  --  Find new discriminant with that name
6948
6949                  New_Disc := First_Discriminant (Derived_Type);
6950                  while Present (New_Disc) loop
6951                     exit when
6952                       Chars (New_Disc) = Chars (Expression (D_Constraint));
6953                     Next_Discriminant (New_Disc);
6954                  end loop;
6955
6956                  if Present (New_Disc) then
6957
6958                     --  Verify that new discriminant renames some discriminant
6959                     --  of the parent type, and associate the new discriminant
6960                     --  with one or more old ones that it renames.
6961
6962                     declare
6963                        Selector : Node_Id;
6964
6965                     begin
6966                        Selector := First (Selector_Names (D_Constraint));
6967                        while Present (Selector) loop
6968                           Old_Disc := First_Discriminant (Parent_Type);
6969                           while Present (Old_Disc) loop
6970                              exit when Chars (Old_Disc) = Chars (Selector);
6971                              Next_Discriminant (Old_Disc);
6972                           end loop;
6973
6974                           if Present (Old_Disc) then
6975                              Set_Corresponding_Discriminant
6976                                (New_Disc, Old_Disc);
6977                           end if;
6978
6979                           Next (Selector);
6980                        end loop;
6981                     end;
6982                  end if;
6983               end if;
6984
6985               Next (D_Constraint);
6986            end loop;
6987
6988            New_Disc := First_Discriminant (Derived_Type);
6989            while Present (New_Disc) loop
6990               if No (Corresponding_Discriminant (New_Disc)) then
6991                  Error_Msg_NE
6992                    ("new discriminant& must constrain old one", N, New_Disc);
6993
6994               elsif not
6995                 Subtypes_Statically_Compatible
6996                   (Etype (New_Disc),
6997                    Etype (Corresponding_Discriminant (New_Disc)))
6998               then
6999                  Error_Msg_NE
7000                    ("& not statically compatible with parent discriminant",
7001                      N, New_Disc);
7002               end if;
7003
7004               Next_Discriminant (New_Disc);
7005            end loop;
7006         end if;
7007
7008      elsif Present (Discriminant_Specifications (N)) then
7009         Error_Msg_N
7010           ("missing discriminant constraint in untagged derivation", N);
7011      end if;
7012
7013      --  The entity chain of the derived type includes the new discriminants
7014      --  but shares operations with the parent.
7015
7016      if Present (Discriminant_Specifications (N)) then
7017         Old_Disc := First_Discriminant (Parent_Type);
7018         while Present (Old_Disc) loop
7019            if No (Next_Entity (Old_Disc))
7020              or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
7021            then
7022               Set_Next_Entity
7023                 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
7024               exit;
7025            end if;
7026
7027            Next_Discriminant (Old_Disc);
7028         end loop;
7029
7030      else
7031         Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
7032         if Has_Discriminants (Parent_Type) then
7033            Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7034            Set_Discriminant_Constraint (
7035              Derived_Type, Discriminant_Constraint (Parent_Type));
7036         end if;
7037      end if;
7038
7039      Set_Last_Entity  (Derived_Type, Last_Entity  (Parent_Type));
7040
7041      Set_Has_Completion (Derived_Type);
7042
7043      if Corr_Decl_Needed then
7044         Set_Stored_Constraint (Derived_Type, New_Constraint);
7045         Insert_After (N, Corr_Decl);
7046         Analyze (Corr_Decl);
7047         Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
7048      end if;
7049   end Build_Derived_Concurrent_Type;
7050
7051   ------------------------------------
7052   -- Build_Derived_Enumeration_Type --
7053   ------------------------------------
7054
7055   procedure Build_Derived_Enumeration_Type
7056     (N            : Node_Id;
7057      Parent_Type  : Entity_Id;
7058      Derived_Type : Entity_Id)
7059   is
7060      Loc           : constant Source_Ptr := Sloc (N);
7061      Def           : constant Node_Id    := Type_Definition (N);
7062      Indic         : constant Node_Id    := Subtype_Indication (Def);
7063      Implicit_Base : Entity_Id;
7064      Literal       : Entity_Id;
7065      New_Lit       : Entity_Id;
7066      Literals_List : List_Id;
7067      Type_Decl     : Node_Id;
7068      Hi, Lo        : Node_Id;
7069      Rang_Expr     : Node_Id;
7070
7071   begin
7072      --  Since types Standard.Character and Standard.[Wide_]Wide_Character do
7073      --  not have explicit literals lists we need to process types derived
7074      --  from them specially. This is handled by Derived_Standard_Character.
7075      --  If the parent type is a generic type, there are no literals either,
7076      --  and we construct the same skeletal representation as for the generic
7077      --  parent type.
7078
7079      if Is_Standard_Character_Type (Parent_Type) then
7080         Derived_Standard_Character (N, Parent_Type, Derived_Type);
7081
7082      elsif Is_Generic_Type (Root_Type (Parent_Type)) then
7083         declare
7084            Lo : Node_Id;
7085            Hi : Node_Id;
7086
7087         begin
7088            if Nkind (Indic) /= N_Subtype_Indication then
7089               Lo :=
7090                  Make_Attribute_Reference (Loc,
7091                    Attribute_Name => Name_First,
7092                    Prefix         => New_Occurrence_Of (Derived_Type, Loc));
7093               Set_Etype (Lo, Derived_Type);
7094
7095               Hi :=
7096                  Make_Attribute_Reference (Loc,
7097                    Attribute_Name => Name_Last,
7098                    Prefix         => New_Occurrence_Of (Derived_Type, Loc));
7099               Set_Etype (Hi, Derived_Type);
7100
7101               Set_Scalar_Range (Derived_Type,
7102                  Make_Range (Loc,
7103                    Low_Bound  => Lo,
7104                    High_Bound => Hi));
7105            else
7106
7107               --   Analyze subtype indication and verify compatibility
7108               --   with parent type.
7109
7110               if Base_Type (Process_Subtype (Indic, N)) /=
7111                  Base_Type (Parent_Type)
7112               then
7113                  Error_Msg_N
7114                    ("illegal constraint for formal discrete type", N);
7115               end if;
7116            end if;
7117         end;
7118
7119      else
7120         --  If a constraint is present, analyze the bounds to catch
7121         --  premature usage of the derived literals.
7122
7123         if Nkind (Indic) = N_Subtype_Indication
7124           and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7125         then
7126            Analyze (Low_Bound  (Range_Expression (Constraint (Indic))));
7127            Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7128         end if;
7129
7130         --  Introduce an implicit base type for the derived type even if there
7131         --  is no constraint attached to it, since this seems closer to the
7132         --  Ada semantics. Build a full type declaration tree for the derived
7133         --  type using the implicit base type as the defining identifier. The
7134         --  build a subtype declaration tree which applies the constraint (if
7135         --  any) have it replace the derived type declaration.
7136
7137         Literal := First_Literal (Parent_Type);
7138         Literals_List := New_List;
7139         while Present (Literal)
7140           and then Ekind (Literal) = E_Enumeration_Literal
7141         loop
7142            --  Literals of the derived type have the same representation as
7143            --  those of the parent type, but this representation can be
7144            --  overridden by an explicit representation clause. Indicate
7145            --  that there is no explicit representation given yet. These
7146            --  derived literals are implicit operations of the new type,
7147            --  and can be overridden by explicit ones.
7148
7149            if Nkind (Literal) = N_Defining_Character_Literal then
7150               New_Lit :=
7151                 Make_Defining_Character_Literal (Loc, Chars (Literal));
7152            else
7153               New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7154            end if;
7155
7156            Set_Ekind                (New_Lit, E_Enumeration_Literal);
7157            Set_Enumeration_Pos      (New_Lit, Enumeration_Pos (Literal));
7158            Set_Enumeration_Rep      (New_Lit, Enumeration_Rep (Literal));
7159            Set_Enumeration_Rep_Expr (New_Lit, Empty);
7160            Set_Alias                (New_Lit, Literal);
7161            Set_Is_Known_Valid       (New_Lit, True);
7162
7163            Append (New_Lit, Literals_List);
7164            Next_Literal (Literal);
7165         end loop;
7166
7167         Implicit_Base :=
7168           Make_Defining_Identifier (Sloc (Derived_Type),
7169             Chars => New_External_Name (Chars (Derived_Type), 'B'));
7170
7171         --  Indicate the proper nature of the derived type. This must be done
7172         --  before analysis of the literals, to recognize cases when a literal
7173         --  may be hidden by a previous explicit function definition (cf.
7174         --  c83031a).
7175
7176         Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7177         Set_Etype (Derived_Type, Implicit_Base);
7178
7179         Type_Decl :=
7180           Make_Full_Type_Declaration (Loc,
7181             Defining_Identifier => Implicit_Base,
7182             Discriminant_Specifications => No_List,
7183             Type_Definition =>
7184               Make_Enumeration_Type_Definition (Loc, Literals_List));
7185
7186         Mark_Rewrite_Insertion (Type_Decl);
7187         Insert_Before (N, Type_Decl);
7188         Analyze (Type_Decl);
7189
7190         --  The anonymous base now has a full declaration, but this base
7191         --  is not a first subtype.
7192
7193         Set_Is_First_Subtype (Implicit_Base, False);
7194
7195         --  After the implicit base is analyzed its Etype needs to be changed
7196         --  to reflect the fact that it is derived from the parent type which
7197         --  was ignored during analysis. We also set the size at this point.
7198
7199         Set_Etype (Implicit_Base, Parent_Type);
7200
7201         Set_Size_Info      (Implicit_Base,                 Parent_Type);
7202         Set_RM_Size        (Implicit_Base, RM_Size        (Parent_Type));
7203         Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7204
7205         --  Copy other flags from parent type
7206
7207         Set_Has_Non_Standard_Rep
7208                            (Implicit_Base, Has_Non_Standard_Rep
7209                                                           (Parent_Type));
7210         Set_Has_Pragma_Ordered
7211                            (Implicit_Base, Has_Pragma_Ordered
7212                                                           (Parent_Type));
7213         Set_Has_Delayed_Freeze (Implicit_Base);
7214
7215         --  Process the subtype indication including a validation check on the
7216         --  constraint, if any. If a constraint is given, its bounds must be
7217         --  implicitly converted to the new type.
7218
7219         if Nkind (Indic) = N_Subtype_Indication then
7220            declare
7221               R : constant Node_Id :=
7222                     Range_Expression (Constraint (Indic));
7223
7224            begin
7225               if Nkind (R) = N_Range then
7226                  Hi := Build_Scalar_Bound
7227                          (High_Bound (R), Parent_Type, Implicit_Base);
7228                  Lo := Build_Scalar_Bound
7229                          (Low_Bound  (R), Parent_Type, Implicit_Base);
7230
7231               else
7232                  --  Constraint is a Range attribute. Replace with explicit
7233                  --  mention of the bounds of the prefix, which must be a
7234                  --  subtype.
7235
7236                  Analyze (Prefix (R));
7237                  Hi :=
7238                    Convert_To (Implicit_Base,
7239                      Make_Attribute_Reference (Loc,
7240                        Attribute_Name => Name_Last,
7241                        Prefix =>
7242                          New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7243
7244                  Lo :=
7245                    Convert_To (Implicit_Base,
7246                      Make_Attribute_Reference (Loc,
7247                        Attribute_Name => Name_First,
7248                        Prefix =>
7249                          New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7250               end if;
7251            end;
7252
7253         else
7254            Hi :=
7255              Build_Scalar_Bound
7256                (Type_High_Bound (Parent_Type),
7257                 Parent_Type, Implicit_Base);
7258            Lo :=
7259               Build_Scalar_Bound
7260                 (Type_Low_Bound (Parent_Type),
7261                  Parent_Type, Implicit_Base);
7262         end if;
7263
7264         Rang_Expr :=
7265           Make_Range (Loc,
7266             Low_Bound  => Lo,
7267             High_Bound => Hi);
7268
7269         --  If we constructed a default range for the case where no range
7270         --  was given, then the expressions in the range must not freeze
7271         --  since they do not correspond to expressions in the source.
7272         --  However, if the type inherits predicates the expressions will
7273         --  be elaborated earlier and must freeze.
7274
7275         if Nkind (Indic) /= N_Subtype_Indication
7276           and then not Has_Predicates (Derived_Type)
7277         then
7278            Set_Must_Not_Freeze (Lo);
7279            Set_Must_Not_Freeze (Hi);
7280            Set_Must_Not_Freeze (Rang_Expr);
7281         end if;
7282
7283         Rewrite (N,
7284           Make_Subtype_Declaration (Loc,
7285             Defining_Identifier => Derived_Type,
7286             Subtype_Indication =>
7287               Make_Subtype_Indication (Loc,
7288                 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7289                 Constraint =>
7290                   Make_Range_Constraint (Loc,
7291                     Range_Expression => Rang_Expr))));
7292
7293         Analyze (N);
7294
7295         --  Propagate the aspects from the original type declaration to the
7296         --  declaration of the implicit base.
7297
7298         Move_Aspects (From => Original_Node (N), To => Type_Decl);
7299
7300         --  Apply a range check. Since this range expression doesn't have an
7301         --  Etype, we have to specifically pass the Source_Typ parameter. Is
7302         --  this right???
7303
7304         if Nkind (Indic) = N_Subtype_Indication then
7305            Apply_Range_Check
7306              (Range_Expression (Constraint (Indic)), Parent_Type,
7307               Source_Typ => Entity (Subtype_Mark (Indic)));
7308         end if;
7309      end if;
7310   end Build_Derived_Enumeration_Type;
7311
7312   --------------------------------
7313   -- Build_Derived_Numeric_Type --
7314   --------------------------------
7315
7316   procedure Build_Derived_Numeric_Type
7317     (N            : Node_Id;
7318      Parent_Type  : Entity_Id;
7319      Derived_Type : Entity_Id)
7320   is
7321      Loc           : constant Source_Ptr := Sloc (N);
7322      Tdef          : constant Node_Id    := Type_Definition (N);
7323      Indic         : constant Node_Id    := Subtype_Indication (Tdef);
7324      Parent_Base   : constant Entity_Id  := Base_Type (Parent_Type);
7325      No_Constraint : constant Boolean    := Nkind (Indic) /=
7326                                                  N_Subtype_Indication;
7327      Implicit_Base : Entity_Id;
7328
7329      Lo : Node_Id;
7330      Hi : Node_Id;
7331
7332   begin
7333      --  Process the subtype indication including a validation check on
7334      --  the constraint if any.
7335
7336      Discard_Node (Process_Subtype (Indic, N));
7337
7338      --  Introduce an implicit base type for the derived type even if there
7339      --  is no constraint attached to it, since this seems closer to the Ada
7340      --  semantics.
7341
7342      Implicit_Base :=
7343        Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7344
7345      Set_Etype          (Implicit_Base, Parent_Base);
7346      Set_Ekind          (Implicit_Base, Ekind          (Parent_Base));
7347      Set_Size_Info      (Implicit_Base,                 Parent_Base);
7348      Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7349      Set_Parent         (Implicit_Base, Parent (Derived_Type));
7350      Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7351
7352      --  Set RM Size for discrete type or decimal fixed-point type
7353      --  Ordinary fixed-point is excluded, why???
7354
7355      if Is_Discrete_Type (Parent_Base)
7356        or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7357      then
7358         Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7359      end if;
7360
7361      Set_Has_Delayed_Freeze (Implicit_Base);
7362
7363      Lo := New_Copy_Tree (Type_Low_Bound  (Parent_Base));
7364      Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7365
7366      Set_Scalar_Range (Implicit_Base,
7367        Make_Range (Loc,
7368          Low_Bound  => Lo,
7369          High_Bound => Hi));
7370
7371      if Has_Infinities (Parent_Base) then
7372         Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7373      end if;
7374
7375      --  The Derived_Type, which is the entity of the declaration, is a
7376      --  subtype of the implicit base. Its Ekind is a subtype, even in the
7377      --  absence of an explicit constraint.
7378
7379      Set_Etype (Derived_Type, Implicit_Base);
7380
7381      --  If we did not have a constraint, then the Ekind is set from the
7382      --  parent type (otherwise Process_Subtype has set the bounds)
7383
7384      if No_Constraint then
7385         Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7386      end if;
7387
7388      --  If we did not have a range constraint, then set the range from the
7389      --  parent type. Otherwise, the Process_Subtype call has set the bounds.
7390
7391      if No_Constraint or else not Has_Range_Constraint (Indic) then
7392         Set_Scalar_Range (Derived_Type,
7393           Make_Range (Loc,
7394             Low_Bound  => New_Copy_Tree (Type_Low_Bound  (Parent_Type)),
7395             High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7396         Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7397
7398         if Has_Infinities (Parent_Type) then
7399            Set_Includes_Infinities (Scalar_Range (Derived_Type));
7400         end if;
7401
7402         Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7403      end if;
7404
7405      Set_Is_Descendant_Of_Address (Derived_Type,
7406        Is_Descendant_Of_Address (Parent_Type));
7407      Set_Is_Descendant_Of_Address (Implicit_Base,
7408        Is_Descendant_Of_Address (Parent_Type));
7409
7410      --  Set remaining type-specific fields, depending on numeric type
7411
7412      if Is_Modular_Integer_Type (Parent_Type) then
7413         Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7414
7415         Set_Non_Binary_Modulus
7416           (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7417
7418         Set_Is_Known_Valid
7419           (Implicit_Base, Is_Known_Valid (Parent_Base));
7420
7421      elsif Is_Floating_Point_Type (Parent_Type) then
7422
7423         --  Digits of base type is always copied from the digits value of
7424         --  the parent base type, but the digits of the derived type will
7425         --  already have been set if there was a constraint present.
7426
7427         Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7428         Set_Float_Rep    (Implicit_Base, Float_Rep    (Parent_Base));
7429
7430         if No_Constraint then
7431            Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7432         end if;
7433
7434      elsif Is_Fixed_Point_Type (Parent_Type) then
7435
7436         --  Small of base type and derived type are always copied from the
7437         --  parent base type, since smalls never change. The delta of the
7438         --  base type is also copied from the parent base type. However the
7439         --  delta of the derived type will have been set already if a
7440         --  constraint was present.
7441
7442         Set_Small_Value (Derived_Type,  Small_Value (Parent_Base));
7443         Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7444         Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7445
7446         if No_Constraint then
7447            Set_Delta_Value (Derived_Type,  Delta_Value (Parent_Type));
7448         end if;
7449
7450         --  The scale and machine radix in the decimal case are always
7451         --  copied from the parent base type.
7452
7453         if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7454            Set_Scale_Value (Derived_Type,  Scale_Value (Parent_Base));
7455            Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7456
7457            Set_Machine_Radix_10
7458              (Derived_Type,  Machine_Radix_10 (Parent_Base));
7459            Set_Machine_Radix_10
7460              (Implicit_Base, Machine_Radix_10 (Parent_Base));
7461
7462            Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7463
7464            if No_Constraint then
7465               Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7466
7467            else
7468               --  the analysis of the subtype_indication sets the
7469               --  digits value of the derived type.
7470
7471               null;
7472            end if;
7473         end if;
7474      end if;
7475
7476      if Is_Integer_Type (Parent_Type) then
7477         Set_Has_Shift_Operator
7478           (Implicit_Base, Has_Shift_Operator (Parent_Type));
7479      end if;
7480
7481      --  The type of the bounds is that of the parent type, and they
7482      --  must be converted to the derived type.
7483
7484      Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7485
7486      --  The implicit_base should be frozen when the derived type is frozen,
7487      --  but note that it is used in the conversions of the bounds. For fixed
7488      --  types we delay the determination of the bounds until the proper
7489      --  freezing point. For other numeric types this is rejected by GCC, for
7490      --  reasons that are currently unclear (???), so we choose to freeze the
7491      --  implicit base now. In the case of integers and floating point types
7492      --  this is harmless because subsequent representation clauses cannot
7493      --  affect anything, but it is still baffling that we cannot use the
7494      --  same mechanism for all derived numeric types.
7495
7496      --  There is a further complication: actually some representation
7497      --  clauses can affect the implicit base type. For example, attribute
7498      --  definition clauses for stream-oriented attributes need to set the
7499      --  corresponding TSS entries on the base type, and this normally
7500      --  cannot be done after the base type is frozen, so the circuitry in
7501      --  Sem_Ch13.New_Stream_Subprogram must account for this possibility
7502      --  and not use Set_TSS in this case.
7503
7504      --  There are also consequences for the case of delayed representation
7505      --  aspects for some cases. For example, a Size aspect is delayed and
7506      --  should not be evaluated to the freeze point. This early freezing
7507      --  means that the size attribute evaluation happens too early???
7508
7509      if Is_Fixed_Point_Type (Parent_Type) then
7510         Conditional_Delay (Implicit_Base, Parent_Type);
7511      else
7512         Freeze_Before (N, Implicit_Base);
7513      end if;
7514   end Build_Derived_Numeric_Type;
7515
7516   --------------------------------
7517   -- Build_Derived_Private_Type --
7518   --------------------------------
7519
7520   procedure Build_Derived_Private_Type
7521     (N             : Node_Id;
7522      Parent_Type   : Entity_Id;
7523      Derived_Type  : Entity_Id;
7524      Is_Completion : Boolean;
7525      Derive_Subps  : Boolean := True)
7526   is
7527      Loc       : constant Source_Ptr := Sloc (N);
7528      Par_Base  : constant Entity_Id  := Base_Type (Parent_Type);
7529      Par_Scope : constant Entity_Id  := Scope (Par_Base);
7530      Full_N    : constant Node_Id    := New_Copy_Tree (N);
7531      Full_Der  : Entity_Id           := New_Copy (Derived_Type);
7532      Full_P    : Entity_Id;
7533
7534      procedure Build_Full_Derivation;
7535      --  Build full derivation, i.e. derive from the full view
7536
7537      procedure Copy_And_Build;
7538      --  Copy derived type declaration, replace parent with its full view,
7539      --  and build derivation
7540
7541      ---------------------------
7542      -- Build_Full_Derivation --
7543      ---------------------------
7544
7545      procedure Build_Full_Derivation is
7546      begin
7547         --  If parent scope is not open, install the declarations
7548
7549         if not In_Open_Scopes (Par_Scope) then
7550            Install_Private_Declarations (Par_Scope);
7551            Install_Visible_Declarations (Par_Scope);
7552            Copy_And_Build;
7553            Uninstall_Declarations (Par_Scope);
7554
7555         --  If parent scope is open and in another unit, and parent has a
7556         --  completion, then the derivation is taking place in the visible
7557         --  part of a child unit. In that case retrieve the full view of
7558         --  the parent momentarily.
7559
7560         elsif not In_Same_Source_Unit (N, Parent_Type) then
7561            Full_P := Full_View (Parent_Type);
7562            Exchange_Declarations (Parent_Type);
7563            Copy_And_Build;
7564            Exchange_Declarations (Full_P);
7565
7566         --  Otherwise it is a local derivation
7567
7568         else
7569            Copy_And_Build;
7570         end if;
7571      end Build_Full_Derivation;
7572
7573      --------------------
7574      -- Copy_And_Build --
7575      --------------------
7576
7577      procedure Copy_And_Build is
7578         Full_Parent : Entity_Id := Parent_Type;
7579
7580      begin
7581         --  If the parent is itself derived from another private type,
7582         --  installing the private declarations has not affected its
7583         --  privacy status, so use its own full view explicitly.
7584
7585         if Is_Private_Type (Full_Parent)
7586           and then Present (Full_View (Full_Parent))
7587         then
7588            Full_Parent := Full_View (Full_Parent);
7589         end if;
7590
7591         --  And its underlying full view if necessary
7592
7593         if Is_Private_Type (Full_Parent)
7594           and then Present (Underlying_Full_View (Full_Parent))
7595         then
7596            Full_Parent := Underlying_Full_View (Full_Parent);
7597         end if;
7598
7599         --  For record, access and most enumeration types, derivation from
7600         --  the full view requires a fully-fledged declaration. In the other
7601         --  cases, just use an itype.
7602
7603         if Ekind (Full_Parent) in Record_Kind
7604           or else Ekind (Full_Parent) in Access_Kind
7605           or else
7606             (Ekind (Full_Parent) in Enumeration_Kind
7607               and then not Is_Standard_Character_Type (Full_Parent)
7608               and then not Is_Generic_Type (Root_Type (Full_Parent)))
7609         then
7610            --  Copy and adjust declaration to provide a completion for what
7611            --  is originally a private declaration. Indicate that full view
7612            --  is internally generated.
7613
7614            Set_Comes_From_Source (Full_N, False);
7615            Set_Comes_From_Source (Full_Der, False);
7616            Set_Parent (Full_Der, Full_N);
7617            Set_Defining_Identifier (Full_N, Full_Der);
7618
7619            --  If there are no constraints, adjust the subtype mark
7620
7621            if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7622                                                       N_Subtype_Indication
7623            then
7624               Set_Subtype_Indication
7625                 (Type_Definition (Full_N),
7626                  New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7627            end if;
7628
7629            Insert_After (N, Full_N);
7630
7631            --  Build full view of derived type from full view of parent which
7632            --  is now installed. Subprograms have been derived on the partial
7633            --  view, the completion does not derive them anew.
7634
7635            if Ekind (Full_Parent) in Record_Kind then
7636
7637               --  If parent type is tagged, the completion inherits the proper
7638               --  primitive operations.
7639
7640               if Is_Tagged_Type (Parent_Type) then
7641                  Build_Derived_Record_Type
7642                    (Full_N, Full_Parent, Full_Der, Derive_Subps);
7643               else
7644                  Build_Derived_Record_Type
7645                    (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7646               end if;
7647
7648            else
7649               Build_Derived_Type
7650                 (Full_N, Full_Parent, Full_Der,
7651                  Is_Completion => False, Derive_Subps => False);
7652            end if;
7653
7654            --  The full declaration has been introduced into the tree and
7655            --  processed in the step above. It should not be analyzed again
7656            --  (when encountered later in the current list of declarations)
7657            --  to prevent spurious name conflicts. The full entity remains
7658            --  invisible.
7659
7660            Set_Analyzed (Full_N);
7661
7662         else
7663            Full_Der :=
7664              Make_Defining_Identifier (Sloc (Derived_Type),
7665                Chars => Chars (Derived_Type));
7666            Set_Is_Itype (Full_Der);
7667            Set_Associated_Node_For_Itype (Full_Der, N);
7668            Set_Parent (Full_Der, N);
7669            Build_Derived_Type
7670              (N, Full_Parent, Full_Der,
7671               Is_Completion => False, Derive_Subps => False);
7672         end if;
7673
7674         Set_Has_Private_Declaration (Full_Der);
7675         Set_Has_Private_Declaration (Derived_Type);
7676
7677         Set_Scope                (Full_Der, Scope (Derived_Type));
7678         Set_Is_First_Subtype     (Full_Der, Is_First_Subtype (Derived_Type));
7679         Set_Has_Size_Clause      (Full_Der, False);
7680         Set_Has_Alignment_Clause (Full_Der, False);
7681         Set_Has_Delayed_Freeze   (Full_Der);
7682         Set_Is_Frozen            (Full_Der, False);
7683         Set_Freeze_Node          (Full_Der, Empty);
7684         Set_Depends_On_Private   (Full_Der, Has_Private_Component (Full_Der));
7685         Set_Is_Public            (Full_Der, Is_Public (Derived_Type));
7686
7687         --  The convention on the base type may be set in the private part
7688         --  and not propagated to the subtype until later, so we obtain the
7689         --  convention from the base type of the parent.
7690
7691         Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7692      end Copy_And_Build;
7693
7694   --  Start of processing for Build_Derived_Private_Type
7695
7696   begin
7697      if Is_Tagged_Type (Parent_Type) then
7698         Full_P := Full_View (Parent_Type);
7699
7700         --  A type extension of a type with unknown discriminants is an
7701         --  indefinite type that the back-end cannot handle directly.
7702         --  We treat it as a private type, and build a completion that is
7703         --  derived from the full view of the parent, and hopefully has
7704         --  known discriminants.
7705
7706         --  If the full view of the parent type has an underlying record view,
7707         --  use it to generate the underlying record view of this derived type
7708         --  (required for chains of derivations with unknown discriminants).
7709
7710         --  Minor optimization: we avoid the generation of useless underlying
7711         --  record view entities if the private type declaration has unknown
7712         --  discriminants but its corresponding full view has no
7713         --  discriminants.
7714
7715         if Has_Unknown_Discriminants (Parent_Type)
7716           and then Present (Full_P)
7717           and then (Has_Discriminants (Full_P)
7718                      or else Present (Underlying_Record_View (Full_P)))
7719           and then not In_Open_Scopes (Par_Scope)
7720           and then Expander_Active
7721         then
7722            declare
7723               Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7724               New_Ext  : constant Node_Id :=
7725                            Copy_Separate_Tree
7726                              (Record_Extension_Part (Type_Definition (N)));
7727               Decl     : Node_Id;
7728
7729            begin
7730               Build_Derived_Record_Type
7731                 (N, Parent_Type, Derived_Type, Derive_Subps);
7732
7733               --  Build anonymous completion, as a derivation from the full
7734               --  view of the parent. This is not a completion in the usual
7735               --  sense, because the current type is not private.
7736
7737               Decl :=
7738                 Make_Full_Type_Declaration (Loc,
7739                   Defining_Identifier => Full_Der,
7740                   Type_Definition     =>
7741                     Make_Derived_Type_Definition (Loc,
7742                       Subtype_Indication =>
7743                         New_Copy_Tree
7744                           (Subtype_Indication (Type_Definition (N))),
7745                       Record_Extension_Part => New_Ext));
7746
7747               --  If the parent type has an underlying record view, use it
7748               --  here to build the new underlying record view.
7749
7750               if Present (Underlying_Record_View (Full_P)) then
7751                  pragma Assert
7752                    (Nkind (Subtype_Indication (Type_Definition (Decl)))
7753                       = N_Identifier);
7754                  Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7755                    Underlying_Record_View (Full_P));
7756               end if;
7757
7758               Install_Private_Declarations (Par_Scope);
7759               Install_Visible_Declarations (Par_Scope);
7760               Insert_Before (N, Decl);
7761
7762               --  Mark entity as an underlying record view before analysis,
7763               --  to avoid generating the list of its primitive operations
7764               --  (which is not really required for this entity) and thus
7765               --  prevent spurious errors associated with missing overriding
7766               --  of abstract primitives (overridden only for Derived_Type).
7767
7768               Set_Ekind (Full_Der, E_Record_Type);
7769               Set_Is_Underlying_Record_View (Full_Der);
7770               Set_Default_SSO (Full_Der);
7771               Set_No_Reordering (Full_Der, No_Component_Reordering);
7772
7773               Analyze (Decl);
7774
7775               pragma Assert (Has_Discriminants (Full_Der)
7776                 and then not Has_Unknown_Discriminants (Full_Der));
7777
7778               Uninstall_Declarations (Par_Scope);
7779
7780               --  Freeze the underlying record view, to prevent generation of
7781               --  useless dispatching information, which is simply shared with
7782               --  the real derived type.
7783
7784               Set_Is_Frozen (Full_Der);
7785
7786               --  If the derived type has access discriminants, create
7787               --  references to their anonymous types now, to prevent
7788               --  back-end problems when their first use is in generated
7789               --  bodies of primitives.
7790
7791               declare
7792                  E : Entity_Id;
7793
7794               begin
7795                  E := First_Entity (Full_Der);
7796
7797                  while Present (E) loop
7798                     if Ekind (E) = E_Discriminant
7799                       and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7800                     then
7801                        Build_Itype_Reference (Etype (E), Decl);
7802                     end if;
7803
7804                     Next_Entity (E);
7805                  end loop;
7806               end;
7807
7808               --  Set up links between real entity and underlying record view
7809
7810               Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7811               Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7812            end;
7813
7814         --  If discriminants are known, build derived record
7815
7816         else
7817            Build_Derived_Record_Type
7818              (N, Parent_Type, Derived_Type, Derive_Subps);
7819         end if;
7820
7821         return;
7822
7823      elsif Has_Discriminants (Parent_Type) then
7824
7825         --  Build partial view of derived type from partial view of parent.
7826         --  This must be done before building the full derivation because the
7827         --  second derivation will modify the discriminants of the first and
7828         --  the discriminants are chained with the rest of the components in
7829         --  the full derivation.
7830
7831         Build_Derived_Record_Type
7832           (N, Parent_Type, Derived_Type, Derive_Subps);
7833
7834         --  Build the full derivation if this is not the anonymous derived
7835         --  base type created by Build_Derived_Record_Type in the constrained
7836         --  case (see point 5. of its head comment) since we build it for the
7837         --  derived subtype. And skip it for protected types altogether, as
7838         --  gigi does not use these types directly.
7839
7840         if Present (Full_View (Parent_Type))
7841           and then not Is_Itype (Derived_Type)
7842           and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7843         then
7844            declare
7845               Der_Base   : constant Entity_Id := Base_Type (Derived_Type);
7846               Discr      : Entity_Id;
7847               Last_Discr : Entity_Id;
7848
7849            begin
7850               --  If this is not a completion, construct the implicit full
7851               --  view by deriving from the full view of the parent type.
7852               --  But if this is a completion, the derived private type
7853               --  being built is a full view and the full derivation can
7854               --  only be its underlying full view.
7855
7856               Build_Full_Derivation;
7857
7858               if not Is_Completion then
7859                  Set_Full_View (Derived_Type, Full_Der);
7860               else
7861                  Set_Underlying_Full_View (Derived_Type, Full_Der);
7862                  Set_Is_Underlying_Full_View (Full_Der);
7863               end if;
7864
7865               if not Is_Base_Type (Derived_Type) then
7866                  Set_Full_View (Der_Base, Base_Type (Full_Der));
7867               end if;
7868
7869               --  Copy the discriminant list from full view to the partial
7870               --  view (base type and its subtype). Gigi requires that the
7871               --  partial and full views have the same discriminants.
7872
7873               --  Note that since the partial view points to discriminants
7874               --  in the full view, their scope will be that of the full
7875               --  view. This might cause some front end problems and need
7876               --  adjustment???
7877
7878               Discr := First_Discriminant (Base_Type (Full_Der));
7879               Set_First_Entity (Der_Base, Discr);
7880
7881               loop
7882                  Last_Discr := Discr;
7883                  Next_Discriminant (Discr);
7884                  exit when No (Discr);
7885               end loop;
7886
7887               Set_Last_Entity (Der_Base, Last_Discr);
7888               Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7889               Set_Last_Entity  (Derived_Type, Last_Entity  (Der_Base));
7890            end;
7891         end if;
7892
7893      elsif Present (Full_View (Parent_Type))
7894        and then Has_Discriminants (Full_View (Parent_Type))
7895      then
7896         if Has_Unknown_Discriminants (Parent_Type)
7897           and then Nkind (Subtype_Indication (Type_Definition (N))) =
7898                                                         N_Subtype_Indication
7899         then
7900            Error_Msg_N
7901              ("cannot constrain type with unknown discriminants",
7902               Subtype_Indication (Type_Definition (N)));
7903            return;
7904         end if;
7905
7906         --  If this is not a completion, construct the implicit full view by
7907         --  deriving from the full view of the parent type. But if this is a
7908         --  completion, the derived private type being built is a full view
7909         --  and the full derivation can only be its underlying full view.
7910
7911         Build_Full_Derivation;
7912
7913         if not Is_Completion then
7914            Set_Full_View (Derived_Type, Full_Der);
7915         else
7916            Set_Underlying_Full_View (Derived_Type, Full_Der);
7917            Set_Is_Underlying_Full_View (Full_Der);
7918         end if;
7919
7920         --  In any case, the primitive operations are inherited from the
7921         --  parent type, not from the internal full view.
7922
7923         Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7924
7925         if Derive_Subps then
7926            Derive_Subprograms (Parent_Type, Derived_Type);
7927         end if;
7928
7929         Set_Stored_Constraint (Derived_Type, No_Elist);
7930         Set_Is_Constrained
7931           (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7932
7933      else
7934         --  Untagged type, No discriminants on either view
7935
7936         if Nkind (Subtype_Indication (Type_Definition (N))) =
7937                                                   N_Subtype_Indication
7938         then
7939            Error_Msg_N
7940              ("illegal constraint on type without discriminants", N);
7941         end if;
7942
7943         if Present (Discriminant_Specifications (N))
7944           and then Present (Full_View (Parent_Type))
7945           and then not Is_Tagged_Type (Full_View (Parent_Type))
7946         then
7947            Error_Msg_N ("cannot add discriminants to untagged type", N);
7948         end if;
7949
7950         Set_Stored_Constraint (Derived_Type, No_Elist);
7951         Set_Is_Constrained    (Derived_Type, Is_Constrained (Parent_Type));
7952
7953         Set_Is_Controlled_Active
7954           (Derived_Type, Is_Controlled_Active     (Parent_Type));
7955
7956         Set_Disable_Controlled
7957           (Derived_Type, Disable_Controlled       (Parent_Type));
7958
7959         Set_Has_Controlled_Component
7960           (Derived_Type, Has_Controlled_Component (Parent_Type));
7961
7962         --  Direct controlled types do not inherit Finalize_Storage_Only flag
7963
7964         if not Is_Controlled (Parent_Type) then
7965            Set_Finalize_Storage_Only
7966              (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7967         end if;
7968
7969         --  If this is not a completion, construct the implicit full view by
7970         --  deriving from the full view of the parent type.
7971
7972         --  ??? If the parent is untagged private and its completion is
7973         --  tagged, this mechanism will not work because we cannot derive from
7974         --  the tagged full view unless we have an extension.
7975
7976         if Present (Full_View (Parent_Type))
7977           and then not Is_Tagged_Type (Full_View (Parent_Type))
7978           and then not Is_Completion
7979         then
7980            Build_Full_Derivation;
7981            Set_Full_View (Derived_Type, Full_Der);
7982         end if;
7983      end if;
7984
7985      Set_Has_Unknown_Discriminants (Derived_Type,
7986        Has_Unknown_Discriminants (Parent_Type));
7987
7988      if Is_Private_Type (Derived_Type) then
7989         Set_Private_Dependents (Derived_Type, New_Elmt_List);
7990      end if;
7991
7992      --  If the parent base type is in scope, add the derived type to its
7993      --  list of private dependents, because its full view may become
7994      --  visible subsequently (in a nested private part, a body, or in a
7995      --  further child unit).
7996
7997      if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7998         Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7999
8000         --  Check for unusual case where a type completed by a private
8001         --  derivation occurs within a package nested in a child unit, and
8002         --  the parent is declared in an ancestor.
8003
8004         if Is_Child_Unit (Scope (Current_Scope))
8005           and then Is_Completion
8006           and then In_Private_Part (Current_Scope)
8007           and then Scope (Parent_Type) /= Current_Scope
8008
8009           --  Note that if the parent has a completion in the private part,
8010           --  (which is itself a derivation from some other private type)
8011           --  it is that completion that is visible, there is no full view
8012           --  available, and no special processing is needed.
8013
8014           and then Present (Full_View (Parent_Type))
8015         then
8016            --  In this case, the full view of the parent type will become
8017            --  visible in the body of the enclosing child, and only then will
8018            --  the current type be possibly non-private. Build an underlying
8019            --  full view that will be installed when the enclosing child body
8020            --  is compiled.
8021
8022            if Present (Underlying_Full_View (Derived_Type)) then
8023               Full_Der := Underlying_Full_View (Derived_Type);
8024            else
8025               Build_Full_Derivation;
8026               Set_Underlying_Full_View (Derived_Type, Full_Der);
8027               Set_Is_Underlying_Full_View (Full_Der);
8028            end if;
8029
8030            --  The full view will be used to swap entities on entry/exit to
8031            --  the body, and must appear in the entity list for the package.
8032
8033            Append_Entity (Full_Der, Scope (Derived_Type));
8034         end if;
8035      end if;
8036   end Build_Derived_Private_Type;
8037
8038   -------------------------------
8039   -- Build_Derived_Record_Type --
8040   -------------------------------
8041
8042   --  1. INTRODUCTION
8043
8044   --  Ideally we would like to use the same model of type derivation for
8045   --  tagged and untagged record types. Unfortunately this is not quite
8046   --  possible because the semantics of representation clauses is different
8047   --  for tagged and untagged records under inheritance. Consider the
8048   --  following:
8049
8050   --     type R (...) is [tagged] record ... end record;
8051   --     type T (...) is new R (...) [with ...];
8052
8053   --  The representation clauses for T can specify a completely different
8054   --  record layout from R's. Hence the same component can be placed in two
8055   --  very different positions in objects of type T and R. If R and T are
8056   --  tagged types, representation clauses for T can only specify the layout
8057   --  of non inherited components, thus components that are common in R and T
8058   --  have the same position in objects of type R and T.
8059
8060   --  This has two implications. The first is that the entire tree for R's
8061   --  declaration needs to be copied for T in the untagged case, so that T
8062   --  can be viewed as a record type of its own with its own representation
8063   --  clauses. The second implication is the way we handle discriminants.
8064   --  Specifically, in the untagged case we need a way to communicate to Gigi
8065   --  what are the real discriminants in the record, while for the semantics
8066   --  we need to consider those introduced by the user to rename the
8067   --  discriminants in the parent type. This is handled by introducing the
8068   --  notion of stored discriminants. See below for more.
8069
8070   --  Fortunately the way regular components are inherited can be handled in
8071   --  the same way in tagged and untagged types.
8072
8073   --  To complicate things a bit more the private view of a private extension
8074   --  cannot be handled in the same way as the full view (for one thing the
8075   --  semantic rules are somewhat different). We will explain what differs
8076   --  below.
8077
8078   --  2. DISCRIMINANTS UNDER INHERITANCE
8079
8080   --  The semantic rules governing the discriminants of derived types are
8081   --  quite subtle.
8082
8083   --   type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
8084   --      [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
8085
8086   --  If parent type has discriminants, then the discriminants that are
8087   --  declared in the derived type are [3.4 (11)]:
8088
8089   --  o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8090   --    there is one;
8091
8092   --  o Otherwise, each discriminant of the parent type (implicitly declared
8093   --    in the same order with the same specifications). In this case, the
8094   --    discriminants are said to be "inherited", or if unknown in the parent
8095   --    are also unknown in the derived type.
8096
8097   --  Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8098
8099   --  o The parent subtype must be constrained;
8100
8101   --  o If the parent type is not a tagged type, then each discriminant of
8102   --    the derived type must be used in the constraint defining a parent
8103   --    subtype. [Implementation note: This ensures that the new discriminant
8104   --    can share storage with an existing discriminant.]
8105
8106   --  For the derived type each discriminant of the parent type is either
8107   --  inherited, constrained to equal some new discriminant of the derived
8108   --  type, or constrained to the value of an expression.
8109
8110   --  When inherited or constrained to equal some new discriminant, the
8111   --  parent discriminant and the discriminant of the derived type are said
8112   --  to "correspond".
8113
8114   --  If a discriminant of the parent type is constrained to a specific value
8115   --  in the derived type definition, then the discriminant is said to be
8116   --  "specified" by that derived type definition.
8117
8118   --  3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8119
8120   --  We have spoken about stored discriminants in point 1 (introduction)
8121   --  above. There are two sorts of stored discriminants: implicit and
8122   --  explicit. As long as the derived type inherits the same discriminants as
8123   --  the root record type, stored discriminants are the same as regular
8124   --  discriminants, and are said to be implicit. However, if any discriminant
8125   --  in the root type was renamed in the derived type, then the derived
8126   --  type will contain explicit stored discriminants. Explicit stored
8127   --  discriminants are discriminants in addition to the semantically visible
8128   --  discriminants defined for the derived type. Stored discriminants are
8129   --  used by Gigi to figure out what are the physical discriminants in
8130   --  objects of the derived type (see precise definition in einfo.ads).
8131   --  As an example, consider the following:
8132
8133   --           type R  (D1, D2, D3 : Int) is record ... end record;
8134   --           type T1 is new R;
8135   --           type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8136   --           type T3 is new T2;
8137   --           type T4 (Y : Int) is new T3 (Y, 99);
8138
8139   --  The following table summarizes the discriminants and stored
8140   --  discriminants in R and T1 through T4:
8141
8142   --   Type      Discrim     Stored Discrim  Comment
8143   --    R      (D1, D2, D3)   (D1, D2, D3)   Girder discrims implicit in R
8144   --    T1     (D1, D2, D3)   (D1, D2, D3)   Girder discrims implicit in T1
8145   --    T2     (X1, X2)       (D1, D2, D3)   Girder discrims EXPLICIT in T2
8146   --    T3     (X1, X2)       (D1, D2, D3)   Girder discrims EXPLICIT in T3
8147   --    T4     (Y)            (D1, D2, D3)   Girder discrims EXPLICIT in T4
8148
8149   --  Field Corresponding_Discriminant (abbreviated CD below) allows us to
8150   --  find the corresponding discriminant in the parent type, while
8151   --  Original_Record_Component (abbreviated ORC below) the actual physical
8152   --  component that is renamed. Finally the field Is_Completely_Hidden
8153   --  (abbreviated ICH below) is set for all explicit stored discriminants
8154   --  (see einfo.ads for more info). For the above example this gives:
8155
8156   --                 Discrim     CD        ORC     ICH
8157   --                 ^^^^^^^     ^^        ^^^     ^^^
8158   --                 D1 in R    empty     itself    no
8159   --                 D2 in R    empty     itself    no
8160   --                 D3 in R    empty     itself    no
8161
8162   --                 D1 in T1  D1 in R    itself    no
8163   --                 D2 in T1  D2 in R    itself    no
8164   --                 D3 in T1  D3 in R    itself    no
8165
8166   --                 X1 in T2  D3 in T1  D3 in T2   no
8167   --                 X2 in T2  D1 in T1  D1 in T2   no
8168   --                 D1 in T2   empty    itself    yes
8169   --                 D2 in T2   empty    itself    yes
8170   --                 D3 in T2   empty    itself    yes
8171
8172   --                 X1 in T3  X1 in T2  D3 in T3   no
8173   --                 X2 in T3  X2 in T2  D1 in T3   no
8174   --                 D1 in T3   empty    itself    yes
8175   --                 D2 in T3   empty    itself    yes
8176   --                 D3 in T3   empty    itself    yes
8177
8178   --                 Y  in T4  X1 in T3  D3 in T4   no
8179   --                 D1 in T4   empty    itself    yes
8180   --                 D2 in T4   empty    itself    yes
8181   --                 D3 in T4   empty    itself    yes
8182
8183   --  4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8184
8185   --  Type derivation for tagged types is fairly straightforward. If no
8186   --  discriminants are specified by the derived type, these are inherited
8187   --  from the parent. No explicit stored discriminants are ever necessary.
8188   --  The only manipulation that is done to the tree is that of adding a
8189   --  _parent field with parent type and constrained to the same constraint
8190   --  specified for the parent in the derived type definition. For instance:
8191
8192   --           type R  (D1, D2, D3 : Int) is tagged record ... end record;
8193   --           type T1 is new R with null record;
8194   --           type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8195
8196   --  are changed into:
8197
8198   --           type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8199   --              _parent : R (D1, D2, D3);
8200   --           end record;
8201
8202   --           type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8203   --              _parent : T1 (X2, 88, X1);
8204   --           end record;
8205
8206   --  The discriminants actually present in R, T1 and T2 as well as their CD,
8207   --  ORC and ICH fields are:
8208
8209   --                 Discrim     CD        ORC     ICH
8210   --                 ^^^^^^^     ^^        ^^^     ^^^
8211   --                 D1 in R    empty     itself    no
8212   --                 D2 in R    empty     itself    no
8213   --                 D3 in R    empty     itself    no
8214
8215   --                 D1 in T1  D1 in R    D1 in R   no
8216   --                 D2 in T1  D2 in R    D2 in R   no
8217   --                 D3 in T1  D3 in R    D3 in R   no
8218
8219   --                 X1 in T2  D3 in T1   D3 in R   no
8220   --                 X2 in T2  D1 in T1   D1 in R   no
8221
8222   --  5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8223   --
8224   --  Regardless of whether we dealing with a tagged or untagged type
8225   --  we will transform all derived type declarations of the form
8226   --
8227   --               type T is new R (...) [with ...];
8228   --  or
8229   --               subtype S is R (...);
8230   --               type T is new S [with ...];
8231   --  into
8232   --               type BT is new R [with ...];
8233   --               subtype T is BT (...);
8234   --
8235   --  That is, the base derived type is constrained only if it has no
8236   --  discriminants. The reason for doing this is that GNAT's semantic model
8237   --  assumes that a base type with discriminants is unconstrained.
8238   --
8239   --  Note that, strictly speaking, the above transformation is not always
8240   --  correct. Consider for instance the following excerpt from ACVC b34011a:
8241   --
8242   --       procedure B34011A is
8243   --          type REC (D : integer := 0) is record
8244   --             I : Integer;
8245   --          end record;
8246
8247   --          package P is
8248   --             type T6 is new Rec;
8249   --             function F return T6;
8250   --          end P;
8251
8252   --          use P;
8253   --          package Q6 is
8254   --             type U is new T6 (Q6.F.I);                   -- ERROR: Q6.F.
8255   --          end Q6;
8256   --
8257   --  The definition of Q6.U is illegal. However transforming Q6.U into
8258
8259   --             type BaseU is new T6;
8260   --             subtype U is BaseU (Q6.F.I)
8261
8262   --  turns U into a legal subtype, which is incorrect. To avoid this problem
8263   --  we always analyze the constraint (in this case (Q6.F.I)) before applying
8264   --  the transformation described above.
8265
8266   --  There is another instance where the above transformation is incorrect.
8267   --  Consider:
8268
8269   --          package Pack is
8270   --             type Base (D : Integer) is tagged null record;
8271   --             procedure P (X : Base);
8272
8273   --             type Der is new Base (2) with null record;
8274   --             procedure P (X : Der);
8275   --          end Pack;
8276
8277   --  Then the above transformation turns this into
8278
8279   --             type Der_Base is new Base with null record;
8280   --             --  procedure P (X : Base) is implicitly inherited here
8281   --             --  as procedure P (X : Der_Base).
8282
8283   --             subtype Der is Der_Base (2);
8284   --             procedure P (X : Der);
8285   --             --  The overriding of P (X : Der_Base) is illegal since we
8286   --             --  have a parameter conformance problem.
8287
8288   --  To get around this problem, after having semantically processed Der_Base
8289   --  and the rewritten subtype declaration for Der, we copy Der_Base field
8290   --  Discriminant_Constraint from Der so that when parameter conformance is
8291   --  checked when P is overridden, no semantic errors are flagged.
8292
8293   --  6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8294
8295   --  Regardless of whether we are dealing with a tagged or untagged type
8296   --  we will transform all derived type declarations of the form
8297
8298   --               type R (D1, .., Dn : ...) is [tagged] record ...;
8299   --               type T is new R [with ...];
8300   --  into
8301   --               type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8302
8303   --  The reason for such transformation is that it allows us to implement a
8304   --  very clean form of component inheritance as explained below.
8305
8306   --  Note that this transformation is not achieved by direct tree rewriting
8307   --  and manipulation, but rather by redoing the semantic actions that the
8308   --  above transformation will entail. This is done directly in routine
8309   --  Inherit_Components.
8310
8311   --  7. TYPE DERIVATION AND COMPONENT INHERITANCE
8312
8313   --  In both tagged and untagged derived types, regular non discriminant
8314   --  components are inherited in the derived type from the parent type. In
8315   --  the absence of discriminants component, inheritance is straightforward
8316   --  as components can simply be copied from the parent.
8317
8318   --  If the parent has discriminants, inheriting components constrained with
8319   --  these discriminants requires caution. Consider the following example:
8320
8321   --      type R  (D1, D2 : Positive) is [tagged] record
8322   --         S : String (D1 .. D2);
8323   --      end record;
8324
8325   --      type T1                is new R        [with null record];
8326   --      type T2 (X : positive) is new R (1, X) [with null record];
8327
8328   --  As explained in 6. above, T1 is rewritten as
8329   --      type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8330   --  which makes the treatment for T1 and T2 identical.
8331
8332   --  What we want when inheriting S, is that references to D1 and D2 in R are
8333   --  replaced with references to their correct constraints, i.e. D1 and D2 in
8334   --  T1 and 1 and X in T2. So all R's discriminant references are replaced
8335   --  with either discriminant references in the derived type or expressions.
8336   --  This replacement is achieved as follows: before inheriting R's
8337   --  components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8338   --  created in the scope of T1 (resp. scope of T2) so that discriminants D1
8339   --  and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8340   --  For T2, for instance, this has the effect of replacing String (D1 .. D2)
8341   --  by String (1 .. X).
8342
8343   --  8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8344
8345   --  We explain here the rules governing private type extensions relevant to
8346   --  type derivation. These rules are explained on the following example:
8347
8348   --      type D [(...)] is new A [(...)] with private;      <-- partial view
8349   --      type D [(...)] is new P [(...)] with null record;  <-- full view
8350
8351   --  Type A is called the ancestor subtype of the private extension.
8352   --  Type P is the parent type of the full view of the private extension. It
8353   --  must be A or a type derived from A.
8354
8355   --  The rules concerning the discriminants of private type extensions are
8356   --  [7.3(10-13)]:
8357
8358   --  o If a private extension inherits known discriminants from the ancestor
8359   --    subtype, then the full view must also inherit its discriminants from
8360   --    the ancestor subtype and the parent subtype of the full view must be
8361   --    constrained if and only if the ancestor subtype is constrained.
8362
8363   --  o If a partial view has unknown discriminants, then the full view may
8364   --    define a definite or an indefinite subtype, with or without
8365   --    discriminants.
8366
8367   --  o If a partial view has neither known nor unknown discriminants, then
8368   --    the full view must define a definite subtype.
8369
8370   --  o If the ancestor subtype of a private extension has constrained
8371   --    discriminants, then the parent subtype of the full view must impose a
8372   --    statically matching constraint on those discriminants.
8373
8374   --  This means that only the following forms of private extensions are
8375   --  allowed:
8376
8377   --      type D is new A with private;      <-- partial view
8378   --      type D is new P with null record;  <-- full view
8379
8380   --  If A has no discriminants than P has no discriminants, otherwise P must
8381   --  inherit A's discriminants.
8382
8383   --      type D is new A (...) with private;      <-- partial view
8384   --      type D is new P (:::) with null record;  <-- full view
8385
8386   --  P must inherit A's discriminants and (...) and (:::) must statically
8387   --  match.
8388
8389   --      subtype A is R (...);
8390   --      type D is new A with private;      <-- partial view
8391   --      type D is new P with null record;  <-- full view
8392
8393   --  P must have inherited R's discriminants and must be derived from A or
8394   --  any of its subtypes.
8395
8396   --      type D (..) is new A with private;              <-- partial view
8397   --      type D (..) is new P [(:::)] with null record;  <-- full view
8398
8399   --  No specific constraints on P's discriminants or constraint (:::).
8400   --  Note that A can be unconstrained, but the parent subtype P must either
8401   --  be constrained or (:::) must be present.
8402
8403   --      type D (..) is new A [(...)] with private;      <-- partial view
8404   --      type D (..) is new P [(:::)] with null record;  <-- full view
8405
8406   --  P's constraints on A's discriminants must statically match those
8407   --  imposed by (...).
8408
8409   --  9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8410
8411   --  The full view of a private extension is handled exactly as described
8412   --  above. The model chose for the private view of a private extension is
8413   --  the same for what concerns discriminants (i.e. they receive the same
8414   --  treatment as in the tagged case). However, the private view of the
8415   --  private extension always inherits the components of the parent base,
8416   --  without replacing any discriminant reference. Strictly speaking this is
8417   --  incorrect. However, Gigi never uses this view to generate code so this
8418   --  is a purely semantic issue. In theory, a set of transformations similar
8419   --  to those given in 5. and 6. above could be applied to private views of
8420   --  private extensions to have the same model of component inheritance as
8421   --  for non private extensions. However, this is not done because it would
8422   --  further complicate private type processing. Semantically speaking, this
8423   --  leaves us in an uncomfortable situation. As an example consider:
8424
8425   --          package Pack is
8426   --             type R (D : integer) is tagged record
8427   --                S : String (1 .. D);
8428   --             end record;
8429   --             procedure P (X : R);
8430   --             type T is new R (1) with private;
8431   --          private
8432   --             type T is new R (1) with null record;
8433   --          end;
8434
8435   --  This is transformed into:
8436
8437   --          package Pack is
8438   --             type R (D : integer) is tagged record
8439   --                S : String (1 .. D);
8440   --             end record;
8441   --             procedure P (X : R);
8442   --             type T is new R (1) with private;
8443   --          private
8444   --             type BaseT is new R with null record;
8445   --             subtype  T is BaseT (1);
8446   --          end;
8447
8448   --  (strictly speaking the above is incorrect Ada)
8449
8450   --  From the semantic standpoint the private view of private extension T
8451   --  should be flagged as constrained since one can clearly have
8452   --
8453   --             Obj : T;
8454   --
8455   --  in a unit withing Pack. However, when deriving subprograms for the
8456   --  private view of private extension T, T must be seen as unconstrained
8457   --  since T has discriminants (this is a constraint of the current
8458   --  subprogram derivation model). Thus, when processing the private view of
8459   --  a private extension such as T, we first mark T as unconstrained, we
8460   --  process it, we perform program derivation and just before returning from
8461   --  Build_Derived_Record_Type we mark T as constrained.
8462
8463   --  ??? Are there are other uncomfortable cases that we will have to
8464   --      deal with.
8465
8466   --  10. RECORD_TYPE_WITH_PRIVATE complications
8467
8468   --  Types that are derived from a visible record type and have a private
8469   --  extension present other peculiarities. They behave mostly like private
8470   --  types, but if they have primitive operations defined, these will not
8471   --  have the proper signatures for further inheritance, because other
8472   --  primitive operations will use the implicit base that we define for
8473   --  private derivations below. This affect subprogram inheritance (see
8474   --  Derive_Subprograms for details). We also derive the implicit base from
8475   --  the base type of the full view, so that the implicit base is a record
8476   --  type and not another private type, This avoids infinite loops.
8477
8478   procedure Build_Derived_Record_Type
8479     (N            : Node_Id;
8480      Parent_Type  : Entity_Id;
8481      Derived_Type : Entity_Id;
8482      Derive_Subps : Boolean := True)
8483   is
8484      Discriminant_Specs : constant Boolean :=
8485                             Present (Discriminant_Specifications (N));
8486      Is_Tagged          : constant Boolean := Is_Tagged_Type (Parent_Type);
8487      Loc                : constant Source_Ptr := Sloc (N);
8488      Private_Extension  : constant Boolean :=
8489                             Nkind (N) = N_Private_Extension_Declaration;
8490      Assoc_List         : Elist_Id;
8491      Constraint_Present : Boolean;
8492      Constrs            : Elist_Id;
8493      Discrim            : Entity_Id;
8494      Indic              : Node_Id;
8495      Inherit_Discrims   : Boolean := False;
8496      Last_Discrim       : Entity_Id;
8497      New_Base           : Entity_Id;
8498      New_Decl           : Node_Id;
8499      New_Discrs         : Elist_Id;
8500      New_Indic          : Node_Id;
8501      Parent_Base        : Entity_Id;
8502      Save_Etype         : Entity_Id;
8503      Save_Discr_Constr  : Elist_Id;
8504      Save_Next_Entity   : Entity_Id;
8505      Type_Def           : Node_Id;
8506
8507      Discs : Elist_Id := New_Elmt_List;
8508      --  An empty Discs list means that there were no constraints in the
8509      --  subtype indication or that there was an error processing it.
8510
8511   begin
8512      if Ekind (Parent_Type) = E_Record_Type_With_Private
8513        and then Present (Full_View (Parent_Type))
8514        and then Has_Discriminants (Parent_Type)
8515      then
8516         Parent_Base := Base_Type (Full_View (Parent_Type));
8517      else
8518         Parent_Base := Base_Type (Parent_Type);
8519      end if;
8520
8521      --  AI05-0115: if this is a derivation from a private type in some
8522      --  other scope that may lead to invisible components for the derived
8523      --  type, mark it accordingly.
8524
8525      if Is_Private_Type (Parent_Type) then
8526         if Scope (Parent_Base) = Scope (Derived_Type) then
8527            null;
8528
8529         elsif In_Open_Scopes (Scope (Parent_Base))
8530           and then In_Private_Part (Scope (Parent_Base))
8531         then
8532            null;
8533
8534         else
8535            Set_Has_Private_Ancestor (Derived_Type);
8536         end if;
8537
8538      else
8539         Set_Has_Private_Ancestor
8540           (Derived_Type, Has_Private_Ancestor (Parent_Type));
8541      end if;
8542
8543      --  Before we start the previously documented transformations, here is
8544      --  little fix for size and alignment of tagged types. Normally when we
8545      --  derive type D from type P, we copy the size and alignment of P as the
8546      --  default for D, and in the absence of explicit representation clauses
8547      --  for D, the size and alignment are indeed the same as the parent.
8548
8549      --  But this is wrong for tagged types, since fields may be added, and
8550      --  the default size may need to be larger, and the default alignment may
8551      --  need to be larger.
8552
8553      --  We therefore reset the size and alignment fields in the tagged case.
8554      --  Note that the size and alignment will in any case be at least as
8555      --  large as the parent type (since the derived type has a copy of the
8556      --  parent type in the _parent field)
8557
8558      --  The type is also marked as being tagged here, which is needed when
8559      --  processing components with a self-referential anonymous access type
8560      --  in the call to Check_Anonymous_Access_Components below. Note that
8561      --  this flag is also set later on for completeness.
8562
8563      if Is_Tagged then
8564         Set_Is_Tagged_Type (Derived_Type);
8565         Init_Size_Align    (Derived_Type);
8566      end if;
8567
8568      --  STEP 0a: figure out what kind of derived type declaration we have
8569
8570      if Private_Extension then
8571         Type_Def := N;
8572         Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8573         Set_Default_SSO (Derived_Type);
8574         Set_No_Reordering (Derived_Type, No_Component_Reordering);
8575
8576      else
8577         Type_Def := Type_Definition (N);
8578
8579         --  Ekind (Parent_Base) is not necessarily E_Record_Type since
8580         --  Parent_Base can be a private type or private extension. However,
8581         --  for tagged types with an extension the newly added fields are
8582         --  visible and hence the Derived_Type is always an E_Record_Type.
8583         --  (except that the parent may have its own private fields).
8584         --  For untagged types we preserve the Ekind of the Parent_Base.
8585
8586         if Present (Record_Extension_Part (Type_Def)) then
8587            Set_Ekind (Derived_Type, E_Record_Type);
8588            Set_Default_SSO (Derived_Type);
8589            Set_No_Reordering (Derived_Type, No_Component_Reordering);
8590
8591            --  Create internal access types for components with anonymous
8592            --  access types.
8593
8594            if Ada_Version >= Ada_2005 then
8595               Check_Anonymous_Access_Components
8596                 (N, Derived_Type, Derived_Type,
8597                   Component_List (Record_Extension_Part (Type_Def)));
8598            end if;
8599
8600         else
8601            Set_Ekind (Derived_Type, Ekind (Parent_Base));
8602         end if;
8603      end if;
8604
8605      --  Indic can either be an N_Identifier if the subtype indication
8606      --  contains no constraint or an N_Subtype_Indication if the subtype
8607      --  indication has a constraint.
8608
8609      Indic := Subtype_Indication (Type_Def);
8610      Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8611
8612      --  Check that the type has visible discriminants. The type may be
8613      --  a private type with unknown discriminants whose full view has
8614      --  discriminants which are invisible.
8615
8616      if Constraint_Present then
8617         if not Has_Discriminants (Parent_Base)
8618           or else
8619             (Has_Unknown_Discriminants (Parent_Base)
8620               and then Is_Private_Type (Parent_Base))
8621         then
8622            Error_Msg_N
8623              ("invalid constraint: type has no discriminant",
8624                 Constraint (Indic));
8625
8626            Constraint_Present := False;
8627            Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8628
8629         elsif Is_Constrained (Parent_Type) then
8630            Error_Msg_N
8631               ("invalid constraint: parent type is already constrained",
8632                  Constraint (Indic));
8633
8634            Constraint_Present := False;
8635            Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8636         end if;
8637      end if;
8638
8639      --  STEP 0b: If needed, apply transformation given in point 5. above
8640
8641      if not Private_Extension
8642        and then Has_Discriminants (Parent_Type)
8643        and then not Discriminant_Specs
8644        and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8645      then
8646         --  First, we must analyze the constraint (see comment in point 5.)
8647         --  The constraint may come from the subtype indication of the full
8648         --  declaration.
8649
8650         if Constraint_Present then
8651            New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8652
8653         --  If there is no explicit constraint, there might be one that is
8654         --  inherited from a constrained parent type. In that case verify that
8655         --  it conforms to the constraint in the partial view. In perverse
8656         --  cases the parent subtypes of the partial and full view can have
8657         --  different constraints.
8658
8659         elsif Present (Stored_Constraint (Parent_Type)) then
8660            New_Discrs := Stored_Constraint (Parent_Type);
8661
8662         else
8663            New_Discrs := No_Elist;
8664         end if;
8665
8666         if Has_Discriminants (Derived_Type)
8667           and then Has_Private_Declaration (Derived_Type)
8668           and then Present (Discriminant_Constraint (Derived_Type))
8669           and then Present (New_Discrs)
8670         then
8671            --  Verify that constraints of the full view statically match
8672            --  those given in the partial view.
8673
8674            declare
8675               C1, C2 : Elmt_Id;
8676
8677            begin
8678               C1 := First_Elmt (New_Discrs);
8679               C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8680               while Present (C1) and then Present (C2) loop
8681                  if Fully_Conformant_Expressions (Node (C1), Node (C2))
8682                    or else
8683                      (Is_OK_Static_Expression (Node (C1))
8684                        and then Is_OK_Static_Expression (Node (C2))
8685                        and then
8686                          Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8687                  then
8688                     null;
8689
8690                  else
8691                     if Constraint_Present then
8692                        Error_Msg_N
8693                          ("constraint not conformant to previous declaration",
8694                           Node (C1));
8695                     else
8696                        Error_Msg_N
8697                          ("constraint of full view is incompatible "
8698                           & "with partial view", N);
8699                     end if;
8700                  end if;
8701
8702                  Next_Elmt (C1);
8703                  Next_Elmt (C2);
8704               end loop;
8705            end;
8706         end if;
8707
8708         --  Insert and analyze the declaration for the unconstrained base type
8709
8710         New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8711
8712         New_Decl :=
8713           Make_Full_Type_Declaration (Loc,
8714              Defining_Identifier => New_Base,
8715              Type_Definition     =>
8716                Make_Derived_Type_Definition (Loc,
8717                  Abstract_Present      => Abstract_Present (Type_Def),
8718                  Limited_Present       => Limited_Present (Type_Def),
8719                  Subtype_Indication    =>
8720                    New_Occurrence_Of (Parent_Base, Loc),
8721                  Record_Extension_Part =>
8722                    Relocate_Node (Record_Extension_Part (Type_Def)),
8723                  Interface_List        => Interface_List (Type_Def)));
8724
8725         Set_Parent (New_Decl, Parent (N));
8726         Mark_Rewrite_Insertion (New_Decl);
8727         Insert_Before (N, New_Decl);
8728
8729         --  In the extension case, make sure ancestor is frozen appropriately
8730         --  (see also non-discriminated case below).
8731
8732         if Present (Record_Extension_Part (Type_Def))
8733           or else Is_Interface (Parent_Base)
8734         then
8735            Freeze_Before (New_Decl, Parent_Type);
8736         end if;
8737
8738         --  Note that this call passes False for the Derive_Subps parameter
8739         --  because subprogram derivation is deferred until after creating
8740         --  the subtype (see below).
8741
8742         Build_Derived_Type
8743           (New_Decl, Parent_Base, New_Base,
8744            Is_Completion => False, Derive_Subps => False);
8745
8746         --  ??? This needs re-examination to determine whether the
8747         --  above call can simply be replaced by a call to Analyze.
8748
8749         Set_Analyzed (New_Decl);
8750
8751         --  Insert and analyze the declaration for the constrained subtype
8752
8753         if Constraint_Present then
8754            New_Indic :=
8755              Make_Subtype_Indication (Loc,
8756                Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8757                Constraint   => Relocate_Node (Constraint (Indic)));
8758
8759         else
8760            declare
8761               Constr_List : constant List_Id := New_List;
8762               C           : Elmt_Id;
8763               Expr        : Node_Id;
8764
8765            begin
8766               C := First_Elmt (Discriminant_Constraint (Parent_Type));
8767               while Present (C) loop
8768                  Expr := Node (C);
8769
8770                  --  It is safe here to call New_Copy_Tree since we called
8771                  --  Force_Evaluation on each constraint previously
8772                  --  in Build_Discriminant_Constraints.
8773
8774                  Append (New_Copy_Tree (Expr), To => Constr_List);
8775
8776                  Next_Elmt (C);
8777               end loop;
8778
8779               New_Indic :=
8780                 Make_Subtype_Indication (Loc,
8781                   Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8782                   Constraint   =>
8783                     Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8784            end;
8785         end if;
8786
8787         Rewrite (N,
8788           Make_Subtype_Declaration (Loc,
8789             Defining_Identifier => Derived_Type,
8790             Subtype_Indication  => New_Indic));
8791
8792         Analyze (N);
8793
8794         --  Derivation of subprograms must be delayed until the full subtype
8795         --  has been established, to ensure proper overriding of subprograms
8796         --  inherited by full types. If the derivations occurred as part of
8797         --  the call to Build_Derived_Type above, then the check for type
8798         --  conformance would fail because earlier primitive subprograms
8799         --  could still refer to the full type prior the change to the new
8800         --  subtype and hence would not match the new base type created here.
8801         --  Subprograms are not derived, however, when Derive_Subps is False
8802         --  (since otherwise there could be redundant derivations).
8803
8804         if Derive_Subps then
8805            Derive_Subprograms (Parent_Type, Derived_Type);
8806         end if;
8807
8808         --  For tagged types the Discriminant_Constraint of the new base itype
8809         --  is inherited from the first subtype so that no subtype conformance
8810         --  problem arise when the first subtype overrides primitive
8811         --  operations inherited by the implicit base type.
8812
8813         if Is_Tagged then
8814            Set_Discriminant_Constraint
8815              (New_Base, Discriminant_Constraint (Derived_Type));
8816         end if;
8817
8818         return;
8819      end if;
8820
8821      --  If we get here Derived_Type will have no discriminants or it will be
8822      --  a discriminated unconstrained base type.
8823
8824      --  STEP 1a: perform preliminary actions/checks for derived tagged types
8825
8826      if Is_Tagged then
8827
8828         --  The parent type is frozen for non-private extensions (RM 13.14(7))
8829         --  The declaration of a specific descendant of an interface type
8830         --  freezes the interface type (RM 13.14).
8831
8832         if not Private_Extension or else Is_Interface (Parent_Base) then
8833            Freeze_Before (N, Parent_Type);
8834         end if;
8835
8836         --  In Ada 2005 (AI-344), the restriction that a derived tagged type
8837         --  cannot be declared at a deeper level than its parent type is
8838         --  removed. The check on derivation within a generic body is also
8839         --  relaxed, but there's a restriction that a derived tagged type
8840         --  cannot be declared in a generic body if it's derived directly
8841         --  or indirectly from a formal type of that generic.
8842
8843         if Ada_Version >= Ada_2005 then
8844            if Present (Enclosing_Generic_Body (Derived_Type)) then
8845               declare
8846                  Ancestor_Type : Entity_Id;
8847
8848               begin
8849                  --  Check to see if any ancestor of the derived type is a
8850                  --  formal type.
8851
8852                  Ancestor_Type := Parent_Type;
8853                  while not Is_Generic_Type (Ancestor_Type)
8854                    and then Etype (Ancestor_Type) /= Ancestor_Type
8855                  loop
8856                     Ancestor_Type := Etype (Ancestor_Type);
8857                  end loop;
8858
8859                  --  If the derived type does have a formal type as an
8860                  --  ancestor, then it's an error if the derived type is
8861                  --  declared within the body of the generic unit that
8862                  --  declares the formal type in its generic formal part. It's
8863                  --  sufficient to check whether the ancestor type is declared
8864                  --  inside the same generic body as the derived type (such as
8865                  --  within a nested generic spec), in which case the
8866                  --  derivation is legal. If the formal type is declared
8867                  --  outside of that generic body, then it's guaranteed that
8868                  --  the derived type is declared within the generic body of
8869                  --  the generic unit declaring the formal type.
8870
8871                  if Is_Generic_Type (Ancestor_Type)
8872                    and then Enclosing_Generic_Body (Ancestor_Type) /=
8873                               Enclosing_Generic_Body (Derived_Type)
8874                  then
8875                     Error_Msg_NE
8876                       ("parent type of& must not be descendant of formal type"
8877                          & " of an enclosing generic body",
8878                            Indic, Derived_Type);
8879                  end if;
8880               end;
8881            end if;
8882
8883         elsif Type_Access_Level (Derived_Type) /=
8884                 Type_Access_Level (Parent_Type)
8885           and then not Is_Generic_Type (Derived_Type)
8886         then
8887            if Is_Controlled (Parent_Type) then
8888               Error_Msg_N
8889                 ("controlled type must be declared at the library level",
8890                  Indic);
8891            else
8892               Error_Msg_N
8893                 ("type extension at deeper accessibility level than parent",
8894                  Indic);
8895            end if;
8896
8897         else
8898            declare
8899               GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8900            begin
8901               if Present (GB)
8902                 and then GB /= Enclosing_Generic_Body (Parent_Base)
8903               then
8904                  Error_Msg_NE
8905                    ("parent type of& must not be outside generic body"
8906                       & " (RM 3.9.1(4))",
8907                         Indic, Derived_Type);
8908               end if;
8909            end;
8910         end if;
8911      end if;
8912
8913      --  Ada 2005 (AI-251)
8914
8915      if Ada_Version >= Ada_2005 and then Is_Tagged then
8916
8917         --  "The declaration of a specific descendant of an interface type
8918         --  freezes the interface type" (RM 13.14).
8919
8920         declare
8921            Iface : Node_Id;
8922         begin
8923            if Is_Non_Empty_List (Interface_List (Type_Def)) then
8924               Iface := First (Interface_List (Type_Def));
8925               while Present (Iface) loop
8926                  Freeze_Before (N, Etype (Iface));
8927                  Next (Iface);
8928               end loop;
8929            end if;
8930         end;
8931      end if;
8932
8933      --  STEP 1b : preliminary cleanup of the full view of private types
8934
8935      --  If the type is already marked as having discriminants, then it's the
8936      --  completion of a private type or private extension and we need to
8937      --  retain the discriminants from the partial view if the current
8938      --  declaration has Discriminant_Specifications so that we can verify
8939      --  conformance. However, we must remove any existing components that
8940      --  were inherited from the parent (and attached in Copy_And_Swap)
8941      --  because the full type inherits all appropriate components anyway, and
8942      --  we do not want the partial view's components interfering.
8943
8944      if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8945         Discrim := First_Discriminant (Derived_Type);
8946         loop
8947            Last_Discrim := Discrim;
8948            Next_Discriminant (Discrim);
8949            exit when No (Discrim);
8950         end loop;
8951
8952         Set_Last_Entity (Derived_Type, Last_Discrim);
8953
8954      --  In all other cases wipe out the list of inherited components (even
8955      --  inherited discriminants), it will be properly rebuilt here.
8956
8957      else
8958         Set_First_Entity (Derived_Type, Empty);
8959         Set_Last_Entity  (Derived_Type, Empty);
8960      end if;
8961
8962      --  STEP 1c: Initialize some flags for the Derived_Type
8963
8964      --  The following flags must be initialized here so that
8965      --  Process_Discriminants can check that discriminants of tagged types do
8966      --  not have a default initial value and that access discriminants are
8967      --  only specified for limited records. For completeness, these flags are
8968      --  also initialized along with all the other flags below.
8969
8970      --  AI-419: Limitedness is not inherited from an interface parent, so to
8971      --  be limited in that case the type must be explicitly declared as
8972      --  limited. However, task and protected interfaces are always limited.
8973
8974      if Limited_Present (Type_Def) then
8975         Set_Is_Limited_Record (Derived_Type);
8976
8977      elsif Is_Limited_Record (Parent_Type)
8978        or else (Present (Full_View (Parent_Type))
8979                  and then Is_Limited_Record (Full_View (Parent_Type)))
8980      then
8981         if not Is_Interface (Parent_Type)
8982           or else Is_Synchronized_Interface (Parent_Type)
8983           or else Is_Protected_Interface (Parent_Type)
8984           or else Is_Task_Interface (Parent_Type)
8985         then
8986            Set_Is_Limited_Record (Derived_Type);
8987         end if;
8988      end if;
8989
8990      --  STEP 2a: process discriminants of derived type if any
8991
8992      Push_Scope (Derived_Type);
8993
8994      if Discriminant_Specs then
8995         Set_Has_Unknown_Discriminants (Derived_Type, False);
8996
8997         --  The following call initializes fields Has_Discriminants and
8998         --  Discriminant_Constraint, unless we are processing the completion
8999         --  of a private type declaration.
9000
9001         Check_Or_Process_Discriminants (N, Derived_Type);
9002
9003         --  For untagged types, the constraint on the Parent_Type must be
9004         --  present and is used to rename the discriminants.
9005
9006         if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
9007            Error_Msg_N ("untagged parent must have discriminants", Indic);
9008
9009         elsif not Is_Tagged and then not Constraint_Present then
9010            Error_Msg_N
9011              ("discriminant constraint needed for derived untagged records",
9012               Indic);
9013
9014         --  Otherwise the parent subtype must be constrained unless we have a
9015         --  private extension.
9016
9017         elsif not Constraint_Present
9018           and then not Private_Extension
9019           and then not Is_Constrained (Parent_Type)
9020         then
9021            Error_Msg_N
9022              ("unconstrained type not allowed in this context", Indic);
9023
9024         elsif Constraint_Present then
9025            --  The following call sets the field Corresponding_Discriminant
9026            --  for the discriminants in the Derived_Type.
9027
9028            Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
9029
9030            --  For untagged types all new discriminants must rename
9031            --  discriminants in the parent. For private extensions new
9032            --  discriminants cannot rename old ones (implied by [7.3(13)]).
9033
9034            Discrim := First_Discriminant (Derived_Type);
9035            while Present (Discrim) loop
9036               if not Is_Tagged
9037                 and then No (Corresponding_Discriminant (Discrim))
9038               then
9039                  Error_Msg_N
9040                    ("new discriminants must constrain old ones", Discrim);
9041
9042               elsif Private_Extension
9043                 and then Present (Corresponding_Discriminant (Discrim))
9044               then
9045                  Error_Msg_N
9046                    ("only static constraints allowed for parent"
9047                     & " discriminants in the partial view", Indic);
9048                  exit;
9049               end if;
9050
9051               --  If a new discriminant is used in the constraint, then its
9052               --  subtype must be statically compatible with the parent
9053               --  discriminant's subtype (3.7(15)).
9054
9055               --  However, if the record contains an array constrained by
9056               --  the discriminant but with some different bound, the compiler
9057               --  tries to create a smaller range for the discriminant type.
9058               --  (See exp_ch3.Adjust_Discriminants). In this case, where
9059               --  the discriminant type is a scalar type, the check must use
9060               --  the original discriminant type in the parent declaration.
9061
9062               declare
9063                  Corr_Disc : constant Entity_Id :=
9064                                Corresponding_Discriminant (Discrim);
9065                  Disc_Type : constant Entity_Id := Etype (Discrim);
9066                  Corr_Type : Entity_Id;
9067
9068               begin
9069                  if Present (Corr_Disc) then
9070                     if Is_Scalar_Type (Disc_Type) then
9071                        Corr_Type :=
9072                           Entity (Discriminant_Type (Parent (Corr_Disc)));
9073                     else
9074                        Corr_Type := Etype (Corr_Disc);
9075                     end if;
9076
9077                     if not
9078                        Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
9079                     then
9080                        Error_Msg_N
9081                          ("subtype must be compatible "
9082                           & "with parent discriminant",
9083                           Discrim);
9084                     end if;
9085                  end if;
9086               end;
9087
9088               Next_Discriminant (Discrim);
9089            end loop;
9090
9091            --  Check whether the constraints of the full view statically
9092            --  match those imposed by the parent subtype [7.3(13)].
9093
9094            if Present (Stored_Constraint (Derived_Type)) then
9095               declare
9096                  C1, C2 : Elmt_Id;
9097
9098               begin
9099                  C1 := First_Elmt (Discs);
9100                  C2 := First_Elmt (Stored_Constraint (Derived_Type));
9101                  while Present (C1) and then Present (C2) loop
9102                     if not
9103                       Fully_Conformant_Expressions (Node (C1), Node (C2))
9104                     then
9105                        Error_Msg_N
9106                          ("not conformant with previous declaration",
9107                           Node (C1));
9108                     end if;
9109
9110                     Next_Elmt (C1);
9111                     Next_Elmt (C2);
9112                  end loop;
9113               end;
9114            end if;
9115         end if;
9116
9117      --  STEP 2b: No new discriminants, inherit discriminants if any
9118
9119      else
9120         if Private_Extension then
9121            Set_Has_Unknown_Discriminants
9122              (Derived_Type,
9123               Has_Unknown_Discriminants (Parent_Type)
9124                 or else Unknown_Discriminants_Present (N));
9125
9126         --  The partial view of the parent may have unknown discriminants,
9127         --  but if the full view has discriminants and the parent type is
9128         --  in scope they must be inherited.
9129
9130         elsif Has_Unknown_Discriminants (Parent_Type)
9131           and then
9132            (not Has_Discriminants (Parent_Type)
9133              or else not In_Open_Scopes (Scope (Parent_Base)))
9134         then
9135            Set_Has_Unknown_Discriminants (Derived_Type);
9136         end if;
9137
9138         if not Has_Unknown_Discriminants (Derived_Type)
9139           and then not Has_Unknown_Discriminants (Parent_Base)
9140           and then Has_Discriminants (Parent_Type)
9141         then
9142            Inherit_Discrims := True;
9143            Set_Has_Discriminants
9144              (Derived_Type, True);
9145            Set_Discriminant_Constraint
9146              (Derived_Type, Discriminant_Constraint (Parent_Base));
9147         end if;
9148
9149         --  The following test is true for private types (remember
9150         --  transformation 5. is not applied to those) and in an error
9151         --  situation.
9152
9153         if Constraint_Present then
9154            Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9155         end if;
9156
9157         --  For now mark a new derived type as constrained only if it has no
9158         --  discriminants. At the end of Build_Derived_Record_Type we properly
9159         --  set this flag in the case of private extensions. See comments in
9160         --  point 9. just before body of Build_Derived_Record_Type.
9161
9162         Set_Is_Constrained
9163           (Derived_Type,
9164            not (Inherit_Discrims
9165                  or else Has_Unknown_Discriminants (Derived_Type)));
9166      end if;
9167
9168      --  STEP 3: initialize fields of derived type
9169
9170      Set_Is_Tagged_Type    (Derived_Type, Is_Tagged);
9171      Set_Stored_Constraint (Derived_Type, No_Elist);
9172
9173      --  Ada 2005 (AI-251): Private type-declarations can implement interfaces
9174      --  but cannot be interfaces
9175
9176      if not Private_Extension
9177         and then Ekind (Derived_Type) /= E_Private_Type
9178         and then Ekind (Derived_Type) /= E_Limited_Private_Type
9179      then
9180         if Interface_Present (Type_Def) then
9181            Analyze_Interface_Declaration (Derived_Type, Type_Def);
9182         end if;
9183
9184         Set_Interfaces (Derived_Type, No_Elist);
9185      end if;
9186
9187      --  Fields inherited from the Parent_Type
9188
9189      Set_Has_Specified_Layout
9190        (Derived_Type, Has_Specified_Layout     (Parent_Type));
9191      Set_Is_Limited_Composite
9192        (Derived_Type, Is_Limited_Composite     (Parent_Type));
9193      Set_Is_Private_Composite
9194        (Derived_Type, Is_Private_Composite     (Parent_Type));
9195
9196      if Is_Tagged_Type (Parent_Type) then
9197         Set_No_Tagged_Streams_Pragma
9198           (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9199      end if;
9200
9201      --  Fields inherited from the Parent_Base
9202
9203      Set_Has_Controlled_Component
9204        (Derived_Type, Has_Controlled_Component (Parent_Base));
9205      Set_Has_Non_Standard_Rep
9206        (Derived_Type, Has_Non_Standard_Rep     (Parent_Base));
9207      Set_Has_Primitive_Operations
9208        (Derived_Type, Has_Primitive_Operations (Parent_Base));
9209
9210      --  Set fields for private derived types
9211
9212      if Is_Private_Type (Derived_Type) then
9213         Set_Depends_On_Private (Derived_Type, True);
9214         Set_Private_Dependents (Derived_Type, New_Elmt_List);
9215      end if;
9216
9217      --  Inherit fields for non-private types. If this is the completion of a
9218      --  derivation from a private type, the parent itself is private and the
9219      --  attributes come from its full view, which must be present.
9220
9221      if Is_Record_Type (Derived_Type) then
9222         declare
9223            Parent_Full : Entity_Id;
9224
9225         begin
9226            if Is_Private_Type (Parent_Base)
9227              and then not Is_Record_Type (Parent_Base)
9228            then
9229               Parent_Full := Full_View (Parent_Base);
9230            else
9231               Parent_Full := Parent_Base;
9232            end if;
9233
9234            Set_Component_Alignment
9235              (Derived_Type, Component_Alignment        (Parent_Full));
9236            Set_C_Pass_By_Copy
9237              (Derived_Type, C_Pass_By_Copy             (Parent_Full));
9238            Set_Has_Complex_Representation
9239              (Derived_Type, Has_Complex_Representation (Parent_Full));
9240
9241            --  For untagged types, inherit the layout by default to avoid
9242            --  costly changes of representation for type conversions.
9243
9244            if not Is_Tagged then
9245               Set_Is_Packed     (Derived_Type, Is_Packed     (Parent_Full));
9246               Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full));
9247            end if;
9248         end;
9249      end if;
9250
9251      --  Set fields for tagged types
9252
9253      if Is_Tagged then
9254         Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9255
9256         --  All tagged types defined in Ada.Finalization are controlled
9257
9258         if Chars (Scope (Derived_Type)) = Name_Finalization
9259           and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9260           and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9261         then
9262            Set_Is_Controlled_Active (Derived_Type);
9263         else
9264            Set_Is_Controlled_Active
9265              (Derived_Type, Is_Controlled_Active (Parent_Base));
9266         end if;
9267
9268         --  Minor optimization: there is no need to generate the class-wide
9269         --  entity associated with an underlying record view.
9270
9271         if not Is_Underlying_Record_View (Derived_Type) then
9272            Make_Class_Wide_Type (Derived_Type);
9273         end if;
9274
9275         Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9276
9277         if Has_Discriminants (Derived_Type)
9278           and then Constraint_Present
9279         then
9280            Set_Stored_Constraint
9281              (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9282         end if;
9283
9284         if Ada_Version >= Ada_2005 then
9285            declare
9286               Ifaces_List : Elist_Id;
9287
9288            begin
9289               --  Checks rules 3.9.4 (13/2 and 14/2)
9290
9291               if Comes_From_Source (Derived_Type)
9292                 and then not Is_Private_Type (Derived_Type)
9293                 and then Is_Interface (Parent_Type)
9294                 and then not Is_Interface (Derived_Type)
9295               then
9296                  if Is_Task_Interface (Parent_Type) then
9297                     Error_Msg_N
9298                       ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9299                        Derived_Type);
9300
9301                  elsif Is_Protected_Interface (Parent_Type) then
9302                     Error_Msg_N
9303                       ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9304                        Derived_Type);
9305                  end if;
9306               end if;
9307
9308               --  Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9309
9310               Check_Interfaces (N, Type_Def);
9311
9312               --  Ada 2005 (AI-251): Collect the list of progenitors that are
9313               --  not already in the parents.
9314
9315               Collect_Interfaces
9316                 (T               => Derived_Type,
9317                  Ifaces_List     => Ifaces_List,
9318                  Exclude_Parents => True);
9319
9320               Set_Interfaces (Derived_Type, Ifaces_List);
9321
9322               --  If the derived type is the anonymous type created for
9323               --  a declaration whose parent has a constraint, propagate
9324               --  the interface list to the source type. This must be done
9325               --  prior to the completion of the analysis of the source type
9326               --  because the components in the extension may contain current
9327               --  instances whose legality depends on some ancestor.
9328
9329               if Is_Itype (Derived_Type) then
9330                  declare
9331                     Def : constant Node_Id :=
9332                             Associated_Node_For_Itype (Derived_Type);
9333                  begin
9334                     if Present (Def)
9335                       and then Nkind (Def) = N_Full_Type_Declaration
9336                     then
9337                        Set_Interfaces
9338                          (Defining_Identifier (Def), Ifaces_List);
9339                     end if;
9340                  end;
9341               end if;
9342
9343               --  A type extension is automatically Ghost when one of its
9344               --  progenitors is Ghost (SPARK RM 6.9(9)). This property is
9345               --  also inherited when the parent type is Ghost, but this is
9346               --  done in Build_Derived_Type as the mechanism also handles
9347               --  untagged derivations.
9348
9349               if Implements_Ghost_Interface (Derived_Type) then
9350                  Set_Is_Ghost_Entity (Derived_Type);
9351               end if;
9352            end;
9353         end if;
9354      end if;
9355
9356      --  STEP 4: Inherit components from the parent base and constrain them.
9357      --          Apply the second transformation described in point 6. above.
9358
9359      if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9360        or else not Has_Discriminants (Parent_Type)
9361        or else not Is_Constrained (Parent_Type)
9362      then
9363         Constrs := Discs;
9364      else
9365         Constrs := Discriminant_Constraint (Parent_Type);
9366      end if;
9367
9368      Assoc_List :=
9369        Inherit_Components
9370          (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9371
9372      --  STEP 5a: Copy the parent record declaration for untagged types
9373
9374      Set_Has_Implicit_Dereference
9375        (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9376
9377      if not Is_Tagged then
9378
9379         --  Discriminant_Constraint (Derived_Type) has been properly
9380         --  constructed. Save it and temporarily set it to Empty because we
9381         --  do not want the call to New_Copy_Tree below to mess this list.
9382
9383         if Has_Discriminants (Derived_Type) then
9384            Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9385            Set_Discriminant_Constraint (Derived_Type, No_Elist);
9386         else
9387            Save_Discr_Constr := No_Elist;
9388         end if;
9389
9390         --  Save the Etype field of Derived_Type. It is correctly set now,
9391         --  but the call to New_Copy tree may remap it to point to itself,
9392         --  which is not what we want. Ditto for the Next_Entity field.
9393
9394         Save_Etype       := Etype (Derived_Type);
9395         Save_Next_Entity := Next_Entity (Derived_Type);
9396
9397         --  Assoc_List maps all stored discriminants in the Parent_Base to
9398         --  stored discriminants in the Derived_Type. It is fundamental that
9399         --  no types or itypes with discriminants other than the stored
9400         --  discriminants appear in the entities declared inside
9401         --  Derived_Type, since the back end cannot deal with it.
9402
9403         New_Decl :=
9404           New_Copy_Tree
9405             (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9406         Copy_Dimensions_Of_Components (Derived_Type);
9407
9408         --  Restore the fields saved prior to the New_Copy_Tree call
9409         --  and compute the stored constraint.
9410
9411         Set_Etype       (Derived_Type, Save_Etype);
9412         Set_Next_Entity (Derived_Type, Save_Next_Entity);
9413
9414         if Has_Discriminants (Derived_Type) then
9415            Set_Discriminant_Constraint
9416              (Derived_Type, Save_Discr_Constr);
9417            Set_Stored_Constraint
9418              (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9419            Replace_Components (Derived_Type, New_Decl);
9420         end if;
9421
9422         --  Insert the new derived type declaration
9423
9424         Rewrite (N, New_Decl);
9425
9426      --  STEP 5b: Complete the processing for record extensions in generics
9427
9428      --  There is no completion for record extensions declared in the
9429      --  parameter part of a generic, so we need to complete processing for
9430      --  these generic record extensions here. The Record_Type_Definition call
9431      --  will change the Ekind of the components from E_Void to E_Component.
9432
9433      elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9434         Record_Type_Definition (Empty, Derived_Type);
9435
9436      --  STEP 5c: Process the record extension for non private tagged types
9437
9438      elsif not Private_Extension then
9439         Expand_Record_Extension (Derived_Type, Type_Def);
9440
9441         --  Note : previously in ASIS mode we set the Parent_Subtype of the
9442         --  derived type to propagate some semantic information. This led
9443         --  to other ASIS failures and has been removed.
9444
9445         --  Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9446         --  implemented interfaces if we are in expansion mode
9447
9448         if Expander_Active
9449           and then Has_Interfaces (Derived_Type)
9450         then
9451            Add_Interface_Tag_Components (N, Derived_Type);
9452         end if;
9453
9454         --  Analyze the record extension
9455
9456         Record_Type_Definition
9457           (Record_Extension_Part (Type_Def), Derived_Type);
9458      end if;
9459
9460      End_Scope;
9461
9462      --  Nothing else to do if there is an error in the derivation.
9463      --  An unusual case: the full view may be derived from a type in an
9464      --  instance, when the partial view was used illegally as an actual
9465      --  in that instance, leading to a circular definition.
9466
9467      if Etype (Derived_Type) = Any_Type
9468        or else Etype (Parent_Type) = Derived_Type
9469      then
9470         return;
9471      end if;
9472
9473      --  Set delayed freeze and then derive subprograms, we need to do
9474      --  this in this order so that derived subprograms inherit the
9475      --  derived freeze if necessary.
9476
9477      Set_Has_Delayed_Freeze (Derived_Type);
9478
9479      if Derive_Subps then
9480         Derive_Subprograms (Parent_Type, Derived_Type);
9481      end if;
9482
9483      --  If we have a private extension which defines a constrained derived
9484      --  type mark as constrained here after we have derived subprograms. See
9485      --  comment on point 9. just above the body of Build_Derived_Record_Type.
9486
9487      if Private_Extension and then Inherit_Discrims then
9488         if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9489            Set_Is_Constrained          (Derived_Type, True);
9490            Set_Discriminant_Constraint (Derived_Type, Discs);
9491
9492         elsif Is_Constrained (Parent_Type) then
9493            Set_Is_Constrained
9494              (Derived_Type, True);
9495            Set_Discriminant_Constraint
9496              (Derived_Type, Discriminant_Constraint (Parent_Type));
9497         end if;
9498      end if;
9499
9500      --  Update the class-wide type, which shares the now-completed entity
9501      --  list with its specific type. In case of underlying record views,
9502      --  we do not generate the corresponding class wide entity.
9503
9504      if Is_Tagged
9505        and then not Is_Underlying_Record_View (Derived_Type)
9506      then
9507         Set_First_Entity
9508           (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9509         Set_Last_Entity
9510           (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9511      end if;
9512
9513      Check_Function_Writable_Actuals (N);
9514   end Build_Derived_Record_Type;
9515
9516   ------------------------
9517   -- Build_Derived_Type --
9518   ------------------------
9519
9520   procedure Build_Derived_Type
9521     (N             : Node_Id;
9522      Parent_Type   : Entity_Id;
9523      Derived_Type  : Entity_Id;
9524      Is_Completion : Boolean;
9525      Derive_Subps  : Boolean := True)
9526   is
9527      Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9528
9529   begin
9530      --  Set common attributes
9531
9532      Set_Scope                  (Derived_Type, Current_Scope);
9533      Set_Etype                  (Derived_Type,        Parent_Base);
9534      Set_Ekind                  (Derived_Type, Ekind (Parent_Base));
9535      Propagate_Concurrent_Flags (Derived_Type,        Parent_Base);
9536
9537      Set_Size_Info (Derived_Type,          Parent_Type);
9538      Set_RM_Size   (Derived_Type, RM_Size (Parent_Type));
9539
9540      Set_Is_Controlled_Active
9541        (Derived_Type, Is_Controlled_Active (Parent_Type));
9542
9543      Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9544      Set_Is_Tagged_Type     (Derived_Type, Is_Tagged_Type     (Parent_Type));
9545      Set_Is_Volatile        (Derived_Type, Is_Volatile        (Parent_Type));
9546
9547      if Is_Tagged_Type (Derived_Type) then
9548         Set_No_Tagged_Streams_Pragma
9549           (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9550      end if;
9551
9552      --  If the parent has primitive routines, set the derived type link
9553
9554      if Has_Primitive_Operations (Parent_Type) then
9555         Set_Derived_Type_Link (Parent_Base, Derived_Type);
9556      end if;
9557
9558      --  If the parent type is a private subtype, the convention on the base
9559      --  type may be set in the private part, and not propagated to the
9560      --  subtype until later, so we obtain the convention from the base type.
9561
9562      Set_Convention (Derived_Type, Convention (Parent_Base));
9563
9564      --  Set SSO default for record or array type
9565
9566      if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9567        and then Is_Base_Type (Derived_Type)
9568      then
9569         Set_Default_SSO (Derived_Type);
9570      end if;
9571
9572      --  A derived type inherits the Default_Initial_Condition pragma coming
9573      --  from any parent type within the derivation chain.
9574
9575      if Has_DIC (Parent_Type) then
9576         Set_Has_Inherited_DIC (Derived_Type);
9577      end if;
9578
9579      --  A derived type inherits any class-wide invariants coming from a
9580      --  parent type or an interface. Note that the invariant procedure of
9581      --  the parent type should not be inherited because the derived type may
9582      --  define invariants of its own.
9583
9584      if not Is_Interface (Derived_Type) then
9585         if Has_Inherited_Invariants (Parent_Type)
9586           or else Has_Inheritable_Invariants (Parent_Type)
9587         then
9588            Set_Has_Inherited_Invariants (Derived_Type);
9589
9590         elsif Is_Concurrent_Type (Derived_Type)
9591           or else Is_Tagged_Type (Derived_Type)
9592         then
9593            declare
9594               Iface      : Entity_Id;
9595               Ifaces     : Elist_Id;
9596               Iface_Elmt : Elmt_Id;
9597
9598            begin
9599               Collect_Interfaces
9600                 (T               => Derived_Type,
9601                  Ifaces_List     => Ifaces,
9602                  Exclude_Parents => True);
9603
9604               if Present (Ifaces) then
9605                  Iface_Elmt := First_Elmt (Ifaces);
9606                  while Present (Iface_Elmt) loop
9607                     Iface := Node (Iface_Elmt);
9608
9609                     if Has_Inheritable_Invariants (Iface) then
9610                        Set_Has_Inherited_Invariants (Derived_Type);
9611                        exit;
9612                     end if;
9613
9614                     Next_Elmt (Iface_Elmt);
9615                  end loop;
9616               end if;
9617            end;
9618         end if;
9619      end if;
9620
9621      --  We similarly inherit predicates. Note that for scalar derived types
9622      --  the predicate is inherited from the first subtype, and not from its
9623      --  (anonymous) base type.
9624
9625      if Has_Predicates (Parent_Type)
9626        or else Has_Predicates (First_Subtype (Parent_Type))
9627      then
9628         Set_Has_Predicates (Derived_Type);
9629      end if;
9630
9631      --  The derived type inherits representation clauses from the parent
9632      --  type, and from any interfaces.
9633
9634      Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9635
9636      declare
9637         Iface : Node_Id := First (Abstract_Interface_List (Derived_Type));
9638      begin
9639         while Present (Iface) loop
9640            Inherit_Rep_Item_Chain (Derived_Type, Entity (Iface));
9641            Next (Iface);
9642         end loop;
9643      end;
9644
9645      --  If the parent type has delayed rep aspects, then mark the derived
9646      --  type as possibly inheriting a delayed rep aspect.
9647
9648      if Has_Delayed_Rep_Aspects (Parent_Type) then
9649         Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9650      end if;
9651
9652      --  A derived type becomes Ghost when its parent type is also Ghost
9653      --  (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9654      --  directly inherited because the Ghost policy in effect may differ.
9655
9656      if Is_Ghost_Entity (Parent_Type) then
9657         Set_Is_Ghost_Entity (Derived_Type);
9658      end if;
9659
9660      --  Type dependent processing
9661
9662      case Ekind (Parent_Type) is
9663         when Numeric_Kind =>
9664            Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9665
9666         when Array_Kind =>
9667            Build_Derived_Array_Type (N, Parent_Type,  Derived_Type);
9668
9669         when Class_Wide_Kind
9670            | E_Record_Subtype
9671            | E_Record_Type
9672         =>
9673            Build_Derived_Record_Type
9674              (N, Parent_Type, Derived_Type, Derive_Subps);
9675            return;
9676
9677         when Enumeration_Kind =>
9678            Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9679
9680         when Access_Kind =>
9681            Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9682
9683         when Incomplete_Or_Private_Kind =>
9684            Build_Derived_Private_Type
9685              (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9686
9687            --  For discriminated types, the derivation includes deriving
9688            --  primitive operations. For others it is done below.
9689
9690            if Is_Tagged_Type (Parent_Type)
9691              or else Has_Discriminants (Parent_Type)
9692              or else (Present (Full_View (Parent_Type))
9693                        and then Has_Discriminants (Full_View (Parent_Type)))
9694            then
9695               return;
9696            end if;
9697
9698         when Concurrent_Kind =>
9699            Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9700
9701         when others =>
9702            raise Program_Error;
9703      end case;
9704
9705      --  Nothing more to do if some error occurred
9706
9707      if Etype (Derived_Type) = Any_Type then
9708         return;
9709      end if;
9710
9711      --  Set delayed freeze and then derive subprograms, we need to do this
9712      --  in this order so that derived subprograms inherit the derived freeze
9713      --  if necessary.
9714
9715      Set_Has_Delayed_Freeze (Derived_Type);
9716
9717      if Derive_Subps then
9718         Derive_Subprograms (Parent_Type, Derived_Type);
9719      end if;
9720
9721      Set_Has_Primitive_Operations
9722        (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9723   end Build_Derived_Type;
9724
9725   -----------------------
9726   -- Build_Discriminal --
9727   -----------------------
9728
9729   procedure Build_Discriminal (Discrim : Entity_Id) is
9730      D_Minal : Entity_Id;
9731      CR_Disc : Entity_Id;
9732
9733   begin
9734      --  A discriminal has the same name as the discriminant
9735
9736      D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9737
9738      Set_Ekind     (D_Minal, E_In_Parameter);
9739      Set_Mechanism (D_Minal, Default_Mechanism);
9740      Set_Etype     (D_Minal, Etype (Discrim));
9741      Set_Scope     (D_Minal, Current_Scope);
9742      Set_Parent    (D_Minal, Parent (Discrim));
9743
9744      Set_Discriminal (Discrim, D_Minal);
9745      Set_Discriminal_Link (D_Minal, Discrim);
9746
9747      --  For task types, build at once the discriminants of the corresponding
9748      --  record, which are needed if discriminants are used in entry defaults
9749      --  and in family bounds.
9750
9751      if Is_Concurrent_Type (Current_Scope)
9752           or else
9753         Is_Limited_Type    (Current_Scope)
9754      then
9755         CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9756
9757         Set_Ekind            (CR_Disc, E_In_Parameter);
9758         Set_Mechanism        (CR_Disc, Default_Mechanism);
9759         Set_Etype            (CR_Disc, Etype (Discrim));
9760         Set_Scope            (CR_Disc, Current_Scope);
9761         Set_Discriminal_Link (CR_Disc, Discrim);
9762         Set_CR_Discriminant  (Discrim, CR_Disc);
9763      end if;
9764   end Build_Discriminal;
9765
9766   ------------------------------------
9767   -- Build_Discriminant_Constraints --
9768   ------------------------------------
9769
9770   function Build_Discriminant_Constraints
9771     (T           : Entity_Id;
9772      Def         : Node_Id;
9773      Derived_Def : Boolean := False) return Elist_Id
9774   is
9775      C        : constant Node_Id := Constraint (Def);
9776      Nb_Discr : constant Nat     := Number_Discriminants (T);
9777
9778      Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9779      --  Saves the expression corresponding to a given discriminant in T
9780
9781      function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9782      --  Return the Position number within array Discr_Expr of a discriminant
9783      --  D within the discriminant list of the discriminated type T.
9784
9785      procedure Process_Discriminant_Expression
9786         (Expr : Node_Id;
9787          D    : Entity_Id);
9788      --  If this is a discriminant constraint on a partial view, do not
9789      --  generate an overflow check on the discriminant expression. The check
9790      --  will be generated when constraining the full view. Otherwise the
9791      --  backend creates duplicate symbols for the temporaries corresponding
9792      --  to the expressions to be checked, causing spurious assembler errors.
9793
9794      ------------------
9795      -- Pos_Of_Discr --
9796      ------------------
9797
9798      function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9799         Disc : Entity_Id;
9800
9801      begin
9802         Disc := First_Discriminant (T);
9803         for J in Discr_Expr'Range loop
9804            if Disc = D then
9805               return J;
9806            end if;
9807
9808            Next_Discriminant (Disc);
9809         end loop;
9810
9811         --  Note: Since this function is called on discriminants that are
9812         --  known to belong to the discriminated type, falling through the
9813         --  loop with no match signals an internal compiler error.
9814
9815         raise Program_Error;
9816      end Pos_Of_Discr;
9817
9818      -------------------------------------
9819      -- Process_Discriminant_Expression --
9820      -------------------------------------
9821
9822      procedure Process_Discriminant_Expression
9823         (Expr : Node_Id;
9824          D    : Entity_Id)
9825      is
9826         BDT : constant Entity_Id := Base_Type (Etype (D));
9827
9828      begin
9829         --  If this is a discriminant constraint on a partial view, do
9830         --  not generate an overflow on the discriminant expression. The
9831         --  check will be generated when constraining the full view.
9832
9833         if Is_Private_Type (T)
9834           and then Present (Full_View (T))
9835         then
9836            Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9837         else
9838            Analyze_And_Resolve (Expr, BDT);
9839         end if;
9840      end Process_Discriminant_Expression;
9841
9842      --  Declarations local to Build_Discriminant_Constraints
9843
9844      Discr : Entity_Id;
9845      E     : Entity_Id;
9846      Elist : constant Elist_Id := New_Elmt_List;
9847
9848      Constr   : Node_Id;
9849      Expr     : Node_Id;
9850      Id       : Node_Id;
9851      Position : Nat;
9852      Found    : Boolean;
9853
9854      Discrim_Present : Boolean := False;
9855
9856   --  Start of processing for Build_Discriminant_Constraints
9857
9858   begin
9859      --  The following loop will process positional associations only.
9860      --  For a positional association, the (single) discriminant is
9861      --  implicitly specified by position, in textual order (RM 3.7.2).
9862
9863      Discr  := First_Discriminant (T);
9864      Constr := First (Constraints (C));
9865      for D in Discr_Expr'Range loop
9866         exit when Nkind (Constr) = N_Discriminant_Association;
9867
9868         if No (Constr) then
9869            Error_Msg_N ("too few discriminants given in constraint", C);
9870            return New_Elmt_List;
9871
9872         elsif Nkind (Constr) = N_Range
9873           or else (Nkind (Constr) = N_Attribute_Reference
9874                     and then Attribute_Name (Constr) = Name_Range)
9875         then
9876            Error_Msg_N
9877              ("a range is not a valid discriminant constraint", Constr);
9878            Discr_Expr (D) := Error;
9879
9880         else
9881            Process_Discriminant_Expression (Constr, Discr);
9882            Discr_Expr (D) := Constr;
9883         end if;
9884
9885         Next_Discriminant (Discr);
9886         Next (Constr);
9887      end loop;
9888
9889      if No (Discr) and then Present (Constr) then
9890         Error_Msg_N ("too many discriminants given in constraint", Constr);
9891         return New_Elmt_List;
9892      end if;
9893
9894      --  Named associations can be given in any order, but if both positional
9895      --  and named associations are used in the same discriminant constraint,
9896      --  then positional associations must occur first, at their normal
9897      --  position. Hence once a named association is used, the rest of the
9898      --  discriminant constraint must use only named associations.
9899
9900      while Present (Constr) loop
9901
9902         --  Positional association forbidden after a named association
9903
9904         if Nkind (Constr) /= N_Discriminant_Association then
9905            Error_Msg_N ("positional association follows named one", Constr);
9906            return New_Elmt_List;
9907
9908         --  Otherwise it is a named association
9909
9910         else
9911            --  E records the type of the discriminants in the named
9912            --  association. All the discriminants specified in the same name
9913            --  association must have the same type.
9914
9915            E := Empty;
9916
9917            --  Search the list of discriminants in T to see if the simple name
9918            --  given in the constraint matches any of them.
9919
9920            Id := First (Selector_Names (Constr));
9921            while Present (Id) loop
9922               Found := False;
9923
9924               --  If Original_Discriminant is present, we are processing a
9925               --  generic instantiation and this is an instance node. We need
9926               --  to find the name of the corresponding discriminant in the
9927               --  actual record type T and not the name of the discriminant in
9928               --  the generic formal. Example:
9929
9930               --    generic
9931               --       type G (D : int) is private;
9932               --    package P is
9933               --       subtype W is G (D => 1);
9934               --    end package;
9935               --    type Rec (X : int) is record ... end record;
9936               --    package Q is new P (G => Rec);
9937
9938               --  At the point of the instantiation, formal type G is Rec
9939               --  and therefore when reanalyzing "subtype W is G (D => 1);"
9940               --  which really looks like "subtype W is Rec (D => 1);" at
9941               --  the point of instantiation, we want to find the discriminant
9942               --  that corresponds to D in Rec, i.e. X.
9943
9944               if Present (Original_Discriminant (Id))
9945                 and then In_Instance
9946               then
9947                  Discr := Find_Corresponding_Discriminant (Id, T);
9948                  Found := True;
9949
9950               else
9951                  Discr := First_Discriminant (T);
9952                  while Present (Discr) loop
9953                     if Chars (Discr) = Chars (Id) then
9954                        Found := True;
9955                        exit;
9956                     end if;
9957
9958                     Next_Discriminant (Discr);
9959                  end loop;
9960
9961                  if not Found then
9962                     Error_Msg_N ("& does not match any discriminant", Id);
9963                     return New_Elmt_List;
9964
9965                  --  If the parent type is a generic formal, preserve the
9966                  --  name of the discriminant for subsequent instances.
9967                  --  see comment at the beginning of this if statement.
9968
9969                  elsif Is_Generic_Type (Root_Type (T)) then
9970                     Set_Original_Discriminant (Id, Discr);
9971                  end if;
9972               end if;
9973
9974               Position := Pos_Of_Discr (T, Discr);
9975
9976               if Present (Discr_Expr (Position)) then
9977                  Error_Msg_N ("duplicate constraint for discriminant&", Id);
9978
9979               else
9980                  --  Each discriminant specified in the same named association
9981                  --  must be associated with a separate copy of the
9982                  --  corresponding expression.
9983
9984                  if Present (Next (Id)) then
9985                     Expr := New_Copy_Tree (Expression (Constr));
9986                     Set_Parent (Expr, Parent (Expression (Constr)));
9987                  else
9988                     Expr := Expression (Constr);
9989                  end if;
9990
9991                  Discr_Expr (Position) := Expr;
9992                  Process_Discriminant_Expression (Expr, Discr);
9993               end if;
9994
9995               --  A discriminant association with more than one discriminant
9996               --  name is only allowed if the named discriminants are all of
9997               --  the same type (RM 3.7.1(8)).
9998
9999               if E = Empty then
10000                  E := Base_Type (Etype (Discr));
10001
10002               elsif Base_Type (Etype (Discr)) /= E then
10003                  Error_Msg_N
10004                    ("all discriminants in an association " &
10005                     "must have the same type", Id);
10006               end if;
10007
10008               Next (Id);
10009            end loop;
10010         end if;
10011
10012         Next (Constr);
10013      end loop;
10014
10015      --  A discriminant constraint must provide exactly one value for each
10016      --  discriminant of the type (RM 3.7.1(8)).
10017
10018      for J in Discr_Expr'Range loop
10019         if No (Discr_Expr (J)) then
10020            Error_Msg_N ("too few discriminants given in constraint", C);
10021            return New_Elmt_List;
10022         end if;
10023      end loop;
10024
10025      --  Determine if there are discriminant expressions in the constraint
10026
10027      for J in Discr_Expr'Range loop
10028         if Denotes_Discriminant
10029              (Discr_Expr (J), Check_Concurrent => True)
10030         then
10031            Discrim_Present := True;
10032         end if;
10033      end loop;
10034
10035      --  Build an element list consisting of the expressions given in the
10036      --  discriminant constraint and apply the appropriate checks. The list
10037      --  is constructed after resolving any named discriminant associations
10038      --  and therefore the expressions appear in the textual order of the
10039      --  discriminants.
10040
10041      Discr := First_Discriminant (T);
10042      for J in Discr_Expr'Range loop
10043         if Discr_Expr (J) /= Error then
10044            Append_Elmt (Discr_Expr (J), Elist);
10045
10046            --  If any of the discriminant constraints is given by a
10047            --  discriminant and we are in a derived type declaration we
10048            --  have a discriminant renaming. Establish link between new
10049            --  and old discriminant. The new discriminant has an implicit
10050            --  dereference if the old one does.
10051
10052            if Denotes_Discriminant (Discr_Expr (J)) then
10053               if Derived_Def then
10054                  declare
10055                     New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
10056
10057                  begin
10058                     Set_Corresponding_Discriminant (New_Discr, Discr);
10059                     Set_Has_Implicit_Dereference (New_Discr,
10060                       Has_Implicit_Dereference (Discr));
10061                  end;
10062               end if;
10063
10064            --  Force the evaluation of non-discriminant expressions.
10065            --  If we have found a discriminant in the constraint 3.4(26)
10066            --  and 3.8(18) demand that no range checks are performed are
10067            --  after evaluation. If the constraint is for a component
10068            --  definition that has a per-object constraint, expressions are
10069            --  evaluated but not checked either. In all other cases perform
10070            --  a range check.
10071
10072            else
10073               if Discrim_Present then
10074                  null;
10075
10076               elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
10077                 and then Has_Per_Object_Constraint
10078                            (Defining_Identifier (Parent (Parent (Def))))
10079               then
10080                  null;
10081
10082               elsif Is_Access_Type (Etype (Discr)) then
10083                  Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
10084
10085               else
10086                  Apply_Range_Check (Discr_Expr (J), Etype (Discr));
10087               end if;
10088
10089               Force_Evaluation (Discr_Expr (J));
10090            end if;
10091
10092            --  Check that the designated type of an access discriminant's
10093            --  expression is not a class-wide type unless the discriminant's
10094            --  designated type is also class-wide.
10095
10096            if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10097              and then not Is_Class_Wide_Type
10098                             (Designated_Type (Etype (Discr)))
10099              and then Etype (Discr_Expr (J)) /= Any_Type
10100              and then Is_Class_Wide_Type
10101                         (Designated_Type (Etype (Discr_Expr (J))))
10102            then
10103               Wrong_Type (Discr_Expr (J), Etype (Discr));
10104
10105            elsif Is_Access_Type (Etype (Discr))
10106              and then not Is_Access_Constant (Etype (Discr))
10107              and then Is_Access_Type (Etype (Discr_Expr (J)))
10108              and then Is_Access_Constant (Etype (Discr_Expr (J)))
10109            then
10110               Error_Msg_NE
10111                 ("constraint for discriminant& must be access to variable",
10112                  Def, Discr);
10113            end if;
10114         end if;
10115
10116         Next_Discriminant (Discr);
10117      end loop;
10118
10119      return Elist;
10120   end Build_Discriminant_Constraints;
10121
10122   ---------------------------------
10123   -- Build_Discriminated_Subtype --
10124   ---------------------------------
10125
10126   procedure Build_Discriminated_Subtype
10127     (T           : Entity_Id;
10128      Def_Id      : Entity_Id;
10129      Elist       : Elist_Id;
10130      Related_Nod : Node_Id;
10131      For_Access  : Boolean := False)
10132   is
10133      Has_Discrs  : constant Boolean := Has_Discriminants (T);
10134      Constrained : constant Boolean :=
10135                      (Has_Discrs
10136                         and then not Is_Empty_Elmt_List (Elist)
10137                         and then not Is_Class_Wide_Type (T))
10138                        or else Is_Constrained (T);
10139
10140   begin
10141      if Ekind (T) = E_Record_Type then
10142         if For_Access then
10143            Set_Ekind (Def_Id, E_Private_Subtype);
10144            Set_Is_For_Access_Subtype (Def_Id, True);
10145         else
10146            Set_Ekind (Def_Id, E_Record_Subtype);
10147         end if;
10148
10149         --  Inherit preelaboration flag from base, for types for which it
10150         --  may have been set: records, private types, protected types.
10151
10152         Set_Known_To_Have_Preelab_Init
10153           (Def_Id, Known_To_Have_Preelab_Init (T));
10154
10155      elsif Ekind (T) = E_Task_Type then
10156         Set_Ekind (Def_Id, E_Task_Subtype);
10157
10158      elsif Ekind (T) = E_Protected_Type then
10159         Set_Ekind (Def_Id, E_Protected_Subtype);
10160         Set_Known_To_Have_Preelab_Init
10161           (Def_Id, Known_To_Have_Preelab_Init (T));
10162
10163      elsif Is_Private_Type (T) then
10164         Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10165         Set_Known_To_Have_Preelab_Init
10166           (Def_Id, Known_To_Have_Preelab_Init (T));
10167
10168         --  Private subtypes may have private dependents
10169
10170         Set_Private_Dependents (Def_Id, New_Elmt_List);
10171
10172      elsif Is_Class_Wide_Type (T) then
10173         Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10174
10175      else
10176         --  Incomplete type. Attach subtype to list of dependents, to be
10177         --  completed with full view of parent type,  unless is it the
10178         --  designated subtype of a record component within an init_proc.
10179         --  This last case arises for a component of an access type whose
10180         --  designated type is incomplete (e.g. a Taft Amendment type).
10181         --  The designated subtype is within an inner scope, and needs no
10182         --  elaboration, because only the access type is needed in the
10183         --  initialization procedure.
10184
10185         if Ekind (T) = E_Incomplete_Type then
10186            Set_Ekind (Def_Id, E_Incomplete_Subtype);
10187         else
10188            Set_Ekind (Def_Id, Ekind (T));
10189         end if;
10190
10191         if For_Access and then Within_Init_Proc then
10192            null;
10193         else
10194            Append_Elmt (Def_Id, Private_Dependents (T));
10195         end if;
10196      end if;
10197
10198      Set_Etype             (Def_Id, T);
10199      Init_Size_Align       (Def_Id);
10200      Set_Has_Discriminants (Def_Id, Has_Discrs);
10201      Set_Is_Constrained    (Def_Id, Constrained);
10202
10203      Set_First_Entity      (Def_Id, First_Entity   (T));
10204      Set_Last_Entity       (Def_Id, Last_Entity    (T));
10205      Set_Has_Implicit_Dereference
10206                            (Def_Id, Has_Implicit_Dereference (T));
10207      Set_Has_Pragma_Unreferenced_Objects
10208                            (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10209
10210      --  If the subtype is the completion of a private declaration, there may
10211      --  have been representation clauses for the partial view, and they must
10212      --  be preserved. Build_Derived_Type chains the inherited clauses with
10213      --  the ones appearing on the extension. If this comes from a subtype
10214      --  declaration, all clauses are inherited.
10215
10216      if No (First_Rep_Item (Def_Id)) then
10217         Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10218      end if;
10219
10220      if Is_Tagged_Type (T) then
10221         Set_Is_Tagged_Type (Def_Id);
10222         Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10223         Make_Class_Wide_Type (Def_Id);
10224      end if;
10225
10226      Set_Stored_Constraint (Def_Id, No_Elist);
10227
10228      if Has_Discrs then
10229         Set_Discriminant_Constraint (Def_Id, Elist);
10230         Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10231      end if;
10232
10233      if Is_Tagged_Type (T) then
10234
10235         --  Ada 2005 (AI-251): In case of concurrent types we inherit the
10236         --  concurrent record type (which has the list of primitive
10237         --  operations).
10238
10239         if Ada_Version >= Ada_2005
10240           and then Is_Concurrent_Type (T)
10241         then
10242            Set_Corresponding_Record_Type (Def_Id,
10243               Corresponding_Record_Type (T));
10244         else
10245            Set_Direct_Primitive_Operations (Def_Id,
10246              Direct_Primitive_Operations (T));
10247         end if;
10248
10249         Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10250      end if;
10251
10252      --  Subtypes introduced by component declarations do not need to be
10253      --  marked as delayed, and do not get freeze nodes, because the semantics
10254      --  verifies that the parents of the subtypes are frozen before the
10255      --  enclosing record is frozen.
10256
10257      if not Is_Type (Scope (Def_Id)) then
10258         Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10259
10260         if Is_Private_Type (T)
10261           and then Present (Full_View (T))
10262         then
10263            Conditional_Delay (Def_Id, Full_View (T));
10264         else
10265            Conditional_Delay (Def_Id, T);
10266         end if;
10267      end if;
10268
10269      if Is_Record_Type (T) then
10270         Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10271
10272         if Has_Discrs
10273           and then not Is_Empty_Elmt_List (Elist)
10274           and then not For_Access
10275         then
10276            Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10277
10278         elsif not For_Access then
10279            Set_Cloned_Subtype (Def_Id, T);
10280         end if;
10281      end if;
10282   end Build_Discriminated_Subtype;
10283
10284   ---------------------------
10285   -- Build_Itype_Reference --
10286   ---------------------------
10287
10288   procedure Build_Itype_Reference
10289     (Ityp : Entity_Id;
10290      Nod  : Node_Id)
10291   is
10292      IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10293   begin
10294
10295      --  Itype references are only created for use by the back-end
10296
10297      if Inside_A_Generic then
10298         return;
10299      else
10300         Set_Itype (IR, Ityp);
10301
10302         --  If Nod is a library unit entity, then Insert_After won't work,
10303         --  because Nod is not a member of any list. Therefore, we use
10304         --  Add_Global_Declaration in this case. This can happen if we have a
10305         --  build-in-place library function.
10306
10307         if (Nkind (Nod) in N_Entity and then Is_Compilation_Unit (Nod))
10308           or else
10309             (Nkind (Nod) = N_Defining_Program_Unit_Name
10310               and then Is_Compilation_Unit (Defining_Identifier (Nod)))
10311         then
10312            Add_Global_Declaration (IR);
10313         else
10314            Insert_After (Nod, IR);
10315         end if;
10316      end if;
10317   end Build_Itype_Reference;
10318
10319   ------------------------
10320   -- Build_Scalar_Bound --
10321   ------------------------
10322
10323   function Build_Scalar_Bound
10324     (Bound : Node_Id;
10325      Par_T : Entity_Id;
10326      Der_T : Entity_Id) return Node_Id
10327   is
10328      New_Bound : Entity_Id;
10329
10330   begin
10331      --  Note: not clear why this is needed, how can the original bound
10332      --  be unanalyzed at this point? and if it is, what business do we
10333      --  have messing around with it? and why is the base type of the
10334      --  parent type the right type for the resolution. It probably is
10335      --  not. It is OK for the new bound we are creating, but not for
10336      --  the old one??? Still if it never happens, no problem.
10337
10338      Analyze_And_Resolve (Bound, Base_Type (Par_T));
10339
10340      if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10341         New_Bound := New_Copy (Bound);
10342         Set_Etype (New_Bound, Der_T);
10343         Set_Analyzed (New_Bound);
10344
10345      elsif Is_Entity_Name (Bound) then
10346         New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10347
10348      --  The following is almost certainly wrong. What business do we have
10349      --  relocating a node (Bound) that is presumably still attached to
10350      --  the tree elsewhere???
10351
10352      else
10353         New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10354      end if;
10355
10356      Set_Etype (New_Bound, Der_T);
10357      return New_Bound;
10358   end Build_Scalar_Bound;
10359
10360   --------------------------------
10361   -- Build_Underlying_Full_View --
10362   --------------------------------
10363
10364   procedure Build_Underlying_Full_View
10365     (N   : Node_Id;
10366      Typ : Entity_Id;
10367      Par : Entity_Id)
10368   is
10369      Loc  : constant Source_Ptr := Sloc (N);
10370      Subt : constant Entity_Id :=
10371               Make_Defining_Identifier
10372                 (Loc, New_External_Name (Chars (Typ), 'S'));
10373
10374      Constr : Node_Id;
10375      Indic  : Node_Id;
10376      C      : Node_Id;
10377      Id     : Node_Id;
10378
10379      procedure Set_Discriminant_Name (Id : Node_Id);
10380      --  If the derived type has discriminants, they may rename discriminants
10381      --  of the parent. When building the full view of the parent, we need to
10382      --  recover the names of the original discriminants if the constraint is
10383      --  given by named associations.
10384
10385      ---------------------------
10386      -- Set_Discriminant_Name --
10387      ---------------------------
10388
10389      procedure Set_Discriminant_Name (Id : Node_Id) is
10390         Disc : Entity_Id;
10391
10392      begin
10393         Set_Original_Discriminant (Id, Empty);
10394
10395         if Has_Discriminants (Typ) then
10396            Disc := First_Discriminant (Typ);
10397            while Present (Disc) loop
10398               if Chars (Disc) = Chars (Id)
10399                 and then Present (Corresponding_Discriminant (Disc))
10400               then
10401                  Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10402               end if;
10403               Next_Discriminant (Disc);
10404            end loop;
10405         end if;
10406      end Set_Discriminant_Name;
10407
10408   --  Start of processing for Build_Underlying_Full_View
10409
10410   begin
10411      if Nkind (N) = N_Full_Type_Declaration then
10412         Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10413
10414      elsif Nkind (N) = N_Subtype_Declaration then
10415         Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10416
10417      elsif Nkind (N) = N_Component_Declaration then
10418         Constr :=
10419           New_Copy_Tree
10420             (Constraint (Subtype_Indication (Component_Definition (N))));
10421
10422      else
10423         raise Program_Error;
10424      end if;
10425
10426      C := First (Constraints (Constr));
10427      while Present (C) loop
10428         if Nkind (C) = N_Discriminant_Association then
10429            Id := First (Selector_Names (C));
10430            while Present (Id) loop
10431               Set_Discriminant_Name (Id);
10432               Next (Id);
10433            end loop;
10434         end if;
10435
10436         Next (C);
10437      end loop;
10438
10439      Indic :=
10440        Make_Subtype_Declaration (Loc,
10441          Defining_Identifier => Subt,
10442          Subtype_Indication  =>
10443            Make_Subtype_Indication (Loc,
10444              Subtype_Mark => New_Occurrence_Of (Par, Loc),
10445              Constraint   => New_Copy_Tree (Constr)));
10446
10447      --  If this is a component subtype for an outer itype, it is not
10448      --  a list member, so simply set the parent link for analysis: if
10449      --  the enclosing type does not need to be in a declarative list,
10450      --  neither do the components.
10451
10452      if Is_List_Member (N)
10453        and then Nkind (N) /= N_Component_Declaration
10454      then
10455         Insert_Before (N, Indic);
10456      else
10457         Set_Parent (Indic, Parent (N));
10458      end if;
10459
10460      Analyze (Indic);
10461      Set_Underlying_Full_View (Typ, Full_View (Subt));
10462      Set_Is_Underlying_Full_View (Full_View (Subt));
10463   end Build_Underlying_Full_View;
10464
10465   -------------------------------
10466   -- Check_Abstract_Overriding --
10467   -------------------------------
10468
10469   procedure Check_Abstract_Overriding (T : Entity_Id) is
10470      Alias_Subp : Entity_Id;
10471      Elmt       : Elmt_Id;
10472      Op_List    : Elist_Id;
10473      Subp       : Entity_Id;
10474      Type_Def   : Node_Id;
10475
10476      procedure Check_Pragma_Implemented (Subp : Entity_Id);
10477      --  Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10478      --  which has pragma Implemented already set. Check whether Subp's entity
10479      --  kind conforms to the implementation kind of the overridden routine.
10480
10481      procedure Check_Pragma_Implemented
10482        (Subp       : Entity_Id;
10483         Iface_Subp : Entity_Id);
10484      --  Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10485      --  Iface_Subp and both entities have pragma Implemented already set on
10486      --  them. Check whether the two implementation kinds are conforming.
10487
10488      procedure Inherit_Pragma_Implemented
10489        (Subp       : Entity_Id;
10490         Iface_Subp : Entity_Id);
10491      --  Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10492      --  subprogram Iface_Subp which has been marked by pragma Implemented.
10493      --  Propagate the implementation kind of Iface_Subp to Subp.
10494
10495      ------------------------------
10496      -- Check_Pragma_Implemented --
10497      ------------------------------
10498
10499      procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10500         Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10501         Impl_Kind   : constant Name_Id   := Implementation_Kind (Iface_Alias);
10502         Subp_Alias  : constant Entity_Id := Alias (Subp);
10503         Contr_Typ   : Entity_Id;
10504         Impl_Subp   : Entity_Id;
10505
10506      begin
10507         --  Subp must have an alias since it is a hidden entity used to link
10508         --  an interface subprogram to its overriding counterpart.
10509
10510         pragma Assert (Present (Subp_Alias));
10511
10512         --  Handle aliases to synchronized wrappers
10513
10514         Impl_Subp := Subp_Alias;
10515
10516         if Is_Primitive_Wrapper (Impl_Subp) then
10517            Impl_Subp := Wrapped_Entity (Impl_Subp);
10518         end if;
10519
10520         --  Extract the type of the controlling formal
10521
10522         Contr_Typ := Etype (First_Formal (Subp_Alias));
10523
10524         if Is_Concurrent_Record_Type (Contr_Typ) then
10525            Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10526         end if;
10527
10528         --  An interface subprogram whose implementation kind is By_Entry must
10529         --  be implemented by an entry.
10530
10531         if Impl_Kind = Name_By_Entry
10532           and then Ekind (Impl_Subp) /= E_Entry
10533         then
10534            Error_Msg_Node_2 := Iface_Alias;
10535            Error_Msg_NE
10536              ("type & must implement abstract subprogram & with an entry",
10537               Subp_Alias, Contr_Typ);
10538
10539         elsif Impl_Kind = Name_By_Protected_Procedure then
10540
10541            --  An interface subprogram whose implementation kind is By_
10542            --  Protected_Procedure cannot be implemented by a primitive
10543            --  procedure of a task type.
10544
10545            if Ekind (Contr_Typ) /= E_Protected_Type then
10546               Error_Msg_Node_2 := Contr_Typ;
10547               Error_Msg_NE
10548                 ("interface subprogram & cannot be implemented by a " &
10549                  "primitive procedure of task type &", Subp_Alias,
10550                  Iface_Alias);
10551
10552            --  An interface subprogram whose implementation kind is By_
10553            --  Protected_Procedure must be implemented by a procedure.
10554
10555            elsif Ekind (Impl_Subp) /= E_Procedure then
10556               Error_Msg_Node_2 := Iface_Alias;
10557               Error_Msg_NE
10558                 ("type & must implement abstract subprogram & with a " &
10559                  "procedure", Subp_Alias, Contr_Typ);
10560
10561            elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10562              and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10563            then
10564               Error_Msg_Name_1 := Impl_Kind;
10565               Error_Msg_N
10566                ("overriding operation& must have synchronization%",
10567                 Subp_Alias);
10568            end if;
10569
10570         --  If primitive has Optional synchronization, overriding operation
10571         --  must match if it has an explicit synchronization..
10572
10573         elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10574           and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10575         then
10576               Error_Msg_Name_1 := Impl_Kind;
10577               Error_Msg_N
10578                ("overriding operation& must have syncrhonization%",
10579                 Subp_Alias);
10580         end if;
10581      end Check_Pragma_Implemented;
10582
10583      ------------------------------
10584      -- Check_Pragma_Implemented --
10585      ------------------------------
10586
10587      procedure Check_Pragma_Implemented
10588        (Subp       : Entity_Id;
10589         Iface_Subp : Entity_Id)
10590      is
10591         Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10592         Subp_Kind  : constant Name_Id := Implementation_Kind (Subp);
10593
10594      begin
10595         --  Ada 2012 (AI05-0030): The implementation kinds of an overridden
10596         --  and overriding subprogram are different. In general this is an
10597         --  error except when the implementation kind of the overridden
10598         --  subprograms is By_Any or Optional.
10599
10600         if Iface_Kind /= Subp_Kind
10601           and then Iface_Kind /= Name_By_Any
10602           and then Iface_Kind /= Name_Optional
10603         then
10604            if Iface_Kind = Name_By_Entry then
10605               Error_Msg_N
10606                 ("incompatible implementation kind, overridden subprogram " &
10607                  "is marked By_Entry", Subp);
10608            else
10609               Error_Msg_N
10610                 ("incompatible implementation kind, overridden subprogram " &
10611                  "is marked By_Protected_Procedure", Subp);
10612            end if;
10613         end if;
10614      end Check_Pragma_Implemented;
10615
10616      --------------------------------
10617      -- Inherit_Pragma_Implemented --
10618      --------------------------------
10619
10620      procedure Inherit_Pragma_Implemented
10621        (Subp       : Entity_Id;
10622         Iface_Subp : Entity_Id)
10623      is
10624         Iface_Kind : constant Name_Id    := Implementation_Kind (Iface_Subp);
10625         Loc        : constant Source_Ptr := Sloc (Subp);
10626         Impl_Prag  : Node_Id;
10627
10628      begin
10629         --  Since the implementation kind is stored as a representation item
10630         --  rather than a flag, create a pragma node.
10631
10632         Impl_Prag :=
10633           Make_Pragma (Loc,
10634             Chars                        => Name_Implemented,
10635             Pragma_Argument_Associations => New_List (
10636               Make_Pragma_Argument_Association (Loc,
10637                 Expression => New_Occurrence_Of (Subp, Loc)),
10638
10639               Make_Pragma_Argument_Association (Loc,
10640                 Expression => Make_Identifier (Loc, Iface_Kind))));
10641
10642         --  The pragma doesn't need to be analyzed because it is internally
10643         --  built. It is safe to directly register it as a rep item since we
10644         --  are only interested in the characters of the implementation kind.
10645
10646         Record_Rep_Item (Subp, Impl_Prag);
10647      end Inherit_Pragma_Implemented;
10648
10649   --  Start of processing for Check_Abstract_Overriding
10650
10651   begin
10652      Op_List := Primitive_Operations (T);
10653
10654      --  Loop to check primitive operations
10655
10656      Elmt := First_Elmt (Op_List);
10657      while Present (Elmt) loop
10658         Subp := Node (Elmt);
10659         Alias_Subp := Alias (Subp);
10660
10661         --  Inherited subprograms are identified by the fact that they do not
10662         --  come from source, and the associated source location is the
10663         --  location of the first subtype of the derived type.
10664
10665         --  Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10666         --  subprograms that "require overriding".
10667
10668         --  Special exception, do not complain about failure to override the
10669         --  stream routines _Input and _Output, as well as the primitive
10670         --  operations used in dispatching selects since we always provide
10671         --  automatic overridings for these subprograms.
10672
10673         --  The partial view of T may have been a private extension, for
10674         --  which inherited functions dispatching on result are abstract.
10675         --  If the full view is a null extension, there is no need for
10676         --  overriding in Ada 2005, but wrappers need to be built for them
10677         --  (see exp_ch3, Build_Controlling_Function_Wrappers).
10678
10679         if Is_Null_Extension (T)
10680           and then Has_Controlling_Result (Subp)
10681           and then Ada_Version >= Ada_2005
10682           and then Present (Alias_Subp)
10683           and then not Comes_From_Source (Subp)
10684           and then not Is_Abstract_Subprogram (Alias_Subp)
10685           and then not Is_Access_Type (Etype (Subp))
10686         then
10687            null;
10688
10689         --  Ada 2005 (AI-251): Internal entities of interfaces need no
10690         --  processing because this check is done with the aliased
10691         --  entity
10692
10693         elsif Present (Interface_Alias (Subp)) then
10694            null;
10695
10696         elsif (Is_Abstract_Subprogram (Subp)
10697                 or else Requires_Overriding (Subp)
10698                 or else
10699                   (Has_Controlling_Result (Subp)
10700                     and then Present (Alias_Subp)
10701                     and then not Comes_From_Source (Subp)
10702                     and then Sloc (Subp) = Sloc (First_Subtype (T))))
10703           and then not Is_TSS (Subp, TSS_Stream_Input)
10704           and then not Is_TSS (Subp, TSS_Stream_Output)
10705           and then not Is_Abstract_Type (T)
10706           and then not Is_Predefined_Interface_Primitive (Subp)
10707
10708            --  Ada 2005 (AI-251): Do not consider hidden entities associated
10709            --  with abstract interface types because the check will be done
10710            --  with the aliased entity (otherwise we generate a duplicated
10711            --  error message).
10712
10713           and then not Present (Interface_Alias (Subp))
10714         then
10715            if Present (Alias_Subp) then
10716
10717               --  Only perform the check for a derived subprogram when the
10718               --  type has an explicit record extension. This avoids incorrect
10719               --  flagging of abstract subprograms for the case of a type
10720               --  without an extension that is derived from a formal type
10721               --  with a tagged actual (can occur within a private part).
10722
10723               --  Ada 2005 (AI-391): In the case of an inherited function with
10724               --  a controlling result of the type, the rule does not apply if
10725               --  the type is a null extension (unless the parent function
10726               --  itself is abstract, in which case the function must still be
10727               --  be overridden). The expander will generate an overriding
10728               --  wrapper function calling the parent subprogram (see
10729               --  Exp_Ch3.Make_Controlling_Wrapper_Functions).
10730
10731               Type_Def := Type_Definition (Parent (T));
10732
10733               if Nkind (Type_Def) = N_Derived_Type_Definition
10734                 and then Present (Record_Extension_Part (Type_Def))
10735                 and then
10736                   (Ada_Version < Ada_2005
10737                      or else not Is_Null_Extension (T)
10738                      or else Ekind (Subp) = E_Procedure
10739                      or else not Has_Controlling_Result (Subp)
10740                      or else Is_Abstract_Subprogram (Alias_Subp)
10741                      or else Requires_Overriding (Subp)
10742                      or else Is_Access_Type (Etype (Subp)))
10743               then
10744                  --  Avoid reporting error in case of abstract predefined
10745                  --  primitive inherited from interface type because the
10746                  --  body of internally generated predefined primitives
10747                  --  of tagged types are generated later by Freeze_Type
10748
10749                  if Is_Interface (Root_Type (T))
10750                    and then Is_Abstract_Subprogram (Subp)
10751                    and then Is_Predefined_Dispatching_Operation (Subp)
10752                    and then not Comes_From_Source (Ultimate_Alias (Subp))
10753                  then
10754                     null;
10755
10756                  --  A null extension is not obliged to override an inherited
10757                  --  procedure subject to pragma Extensions_Visible with value
10758                  --  False and at least one controlling OUT parameter
10759                  --  (SPARK RM 6.1.7(6)).
10760
10761                  elsif Is_Null_Extension (T)
10762                    and then Is_EVF_Procedure (Subp)
10763                  then
10764                     null;
10765
10766                  else
10767                     Error_Msg_NE
10768                       ("type must be declared abstract or & overridden",
10769                        T, Subp);
10770
10771                     --  Traverse the whole chain of aliased subprograms to
10772                     --  complete the error notification. This is especially
10773                     --  useful for traceability of the chain of entities when
10774                     --  the subprogram corresponds with an interface
10775                     --  subprogram (which may be defined in another package).
10776
10777                     if Present (Alias_Subp) then
10778                        declare
10779                           E : Entity_Id;
10780
10781                        begin
10782                           E := Subp;
10783                           while Present (Alias (E)) loop
10784
10785                              --  Avoid reporting redundant errors on entities
10786                              --  inherited from interfaces
10787
10788                              if Sloc (E) /= Sloc (T) then
10789                                 Error_Msg_Sloc := Sloc (E);
10790                                 Error_Msg_NE
10791                                   ("\& has been inherited #", T, Subp);
10792                              end if;
10793
10794                              E := Alias (E);
10795                           end loop;
10796
10797                           Error_Msg_Sloc := Sloc (E);
10798
10799                           --  AI05-0068: report if there is an overriding
10800                           --  non-abstract subprogram that is invisible.
10801
10802                           if Is_Hidden (E)
10803                             and then not Is_Abstract_Subprogram (E)
10804                           then
10805                              Error_Msg_NE
10806                                ("\& subprogram# is not visible",
10807                                 T, Subp);
10808
10809                           --  Clarify the case where a non-null extension must
10810                           --  override inherited procedure subject to pragma
10811                           --  Extensions_Visible with value False and at least
10812                           --  one controlling OUT param.
10813
10814                           elsif Is_EVF_Procedure (E) then
10815                              Error_Msg_NE
10816                                ("\& # is subject to Extensions_Visible False",
10817                                 T, Subp);
10818
10819                           else
10820                              Error_Msg_NE
10821                                ("\& has been inherited from subprogram #",
10822                                 T, Subp);
10823                           end if;
10824                        end;
10825                     end if;
10826                  end if;
10827
10828               --  Ada 2005 (AI-345): Protected or task type implementing
10829               --  abstract interfaces.
10830
10831               elsif Is_Concurrent_Record_Type (T)
10832                 and then Present (Interfaces (T))
10833               then
10834                  --  There is no need to check here RM 9.4(11.9/3) since we
10835                  --  are processing the corresponding record type and the
10836                  --  mode of the overriding subprograms was verified by
10837                  --  Check_Conformance when the corresponding concurrent
10838                  --  type declaration was analyzed.
10839
10840                  Error_Msg_NE
10841                    ("interface subprogram & must be overridden", T, Subp);
10842
10843                  --  Examine primitive operations of synchronized type to find
10844                  --  homonyms that have the wrong profile.
10845
10846                  declare
10847                     Prim : Entity_Id;
10848
10849                  begin
10850                     Prim := First_Entity (Corresponding_Concurrent_Type (T));
10851                     while Present (Prim) loop
10852                        if Chars (Prim) = Chars (Subp) then
10853                           Error_Msg_NE
10854                             ("profile is not type conformant with prefixed "
10855                              & "view profile of inherited operation&",
10856                              Prim, Subp);
10857                        end if;
10858
10859                        Next_Entity (Prim);
10860                     end loop;
10861                  end;
10862               end if;
10863
10864            else
10865               Error_Msg_Node_2 := T;
10866               Error_Msg_N
10867                 ("abstract subprogram& not allowed for type&", Subp);
10868
10869               --  Also post unconditional warning on the type (unconditional
10870               --  so that if there are more than one of these cases, we get
10871               --  them all, and not just the first one).
10872
10873               Error_Msg_Node_2 := Subp;
10874               Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10875            end if;
10876
10877         --  A subprogram subject to pragma Extensions_Visible with value
10878         --  "True" cannot override a subprogram subject to the same pragma
10879         --  with value "False" (SPARK RM 6.1.7(5)).
10880
10881         elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10882           and then Present (Overridden_Operation (Subp))
10883           and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10884                    Extensions_Visible_False
10885         then
10886            Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10887            Error_Msg_N
10888              ("subprogram & with Extensions_Visible True cannot override "
10889               & "subprogram # with Extensions_Visible False", Subp);
10890         end if;
10891
10892         --  Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10893
10894         --  Subp is an expander-generated procedure which maps an interface
10895         --  alias to a protected wrapper. The interface alias is flagged by
10896         --  pragma Implemented. Ensure that Subp is a procedure when the
10897         --  implementation kind is By_Protected_Procedure or an entry when
10898         --  By_Entry.
10899
10900         if Ada_Version >= Ada_2012
10901           and then Is_Hidden (Subp)
10902           and then Present (Interface_Alias (Subp))
10903           and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10904         then
10905            Check_Pragma_Implemented (Subp);
10906         end if;
10907
10908         --  Subp is an interface primitive which overrides another interface
10909         --  primitive marked with pragma Implemented.
10910
10911         if Ada_Version >= Ada_2012
10912           and then Present (Overridden_Operation (Subp))
10913           and then Has_Rep_Pragma
10914                      (Overridden_Operation (Subp), Name_Implemented)
10915         then
10916            --  If the overriding routine is also marked by Implemented, check
10917            --  that the two implementation kinds are conforming.
10918
10919            if Has_Rep_Pragma (Subp, Name_Implemented) then
10920               Check_Pragma_Implemented
10921                 (Subp       => Subp,
10922                  Iface_Subp => Overridden_Operation (Subp));
10923
10924            --  Otherwise the overriding routine inherits the implementation
10925            --  kind from the overridden subprogram.
10926
10927            else
10928               Inherit_Pragma_Implemented
10929                 (Subp       => Subp,
10930                  Iface_Subp => Overridden_Operation (Subp));
10931            end if;
10932         end if;
10933
10934         --  If the operation is a wrapper for a synchronized primitive, it
10935         --  may be called indirectly through a dispatching select. We assume
10936         --  that it will be referenced elsewhere indirectly, and suppress
10937         --  warnings about an unused entity.
10938
10939         if Is_Primitive_Wrapper (Subp)
10940           and then Present (Wrapped_Entity (Subp))
10941         then
10942            Set_Referenced (Wrapped_Entity (Subp));
10943         end if;
10944
10945         Next_Elmt (Elmt);
10946      end loop;
10947   end Check_Abstract_Overriding;
10948
10949   ------------------------------------------------
10950   -- Check_Access_Discriminant_Requires_Limited --
10951   ------------------------------------------------
10952
10953   procedure Check_Access_Discriminant_Requires_Limited
10954     (D   : Node_Id;
10955      Loc : Node_Id)
10956   is
10957   begin
10958      --  A discriminant_specification for an access discriminant shall appear
10959      --  only in the declaration for a task or protected type, or for a type
10960      --  with the reserved word 'limited' in its definition or in one of its
10961      --  ancestors (RM 3.7(10)).
10962
10963      --  AI-0063: The proper condition is that type must be immutably limited,
10964      --  or else be a partial view.
10965
10966      if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10967         if Is_Limited_View (Current_Scope)
10968           or else
10969             (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10970               and then Limited_Present (Parent (Current_Scope)))
10971         then
10972            null;
10973
10974         else
10975            Error_Msg_N
10976              ("access discriminants allowed only for limited types", Loc);
10977         end if;
10978      end if;
10979   end Check_Access_Discriminant_Requires_Limited;
10980
10981   -----------------------------------
10982   -- Check_Aliased_Component_Types --
10983   -----------------------------------
10984
10985   procedure Check_Aliased_Component_Types (T : Entity_Id) is
10986      C : Entity_Id;
10987
10988   begin
10989      --  ??? Also need to check components of record extensions, but not
10990      --  components of protected types (which are always limited).
10991
10992      --  Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10993      --  types to be unconstrained. This is safe because it is illegal to
10994      --  create access subtypes to such types with explicit discriminant
10995      --  constraints.
10996
10997      if not Is_Limited_Type (T) then
10998         if Ekind (T) = E_Record_Type then
10999            C := First_Component (T);
11000            while Present (C) loop
11001               if Is_Aliased (C)
11002                 and then Has_Discriminants (Etype (C))
11003                 and then not Is_Constrained (Etype (C))
11004                 and then not In_Instance_Body
11005                 and then Ada_Version < Ada_2005
11006               then
11007                  Error_Msg_N
11008                    ("aliased component must be constrained (RM 3.6(11))",
11009                      C);
11010               end if;
11011
11012               Next_Component (C);
11013            end loop;
11014
11015         elsif Ekind (T) = E_Array_Type then
11016            if Has_Aliased_Components (T)
11017              and then Has_Discriminants (Component_Type (T))
11018              and then not Is_Constrained (Component_Type (T))
11019              and then not In_Instance_Body
11020              and then Ada_Version < Ada_2005
11021            then
11022               Error_Msg_N
11023                 ("aliased component type must be constrained (RM 3.6(11))",
11024                    T);
11025            end if;
11026         end if;
11027      end if;
11028   end Check_Aliased_Component_Types;
11029
11030   ---------------------------------------
11031   -- Check_Anonymous_Access_Components --
11032   ---------------------------------------
11033
11034   procedure Check_Anonymous_Access_Components
11035      (Typ_Decl  : Node_Id;
11036       Typ       : Entity_Id;
11037       Prev      : Entity_Id;
11038       Comp_List : Node_Id)
11039   is
11040      Loc         : constant Source_Ptr := Sloc (Typ_Decl);
11041      Anon_Access : Entity_Id;
11042      Acc_Def     : Node_Id;
11043      Comp        : Node_Id;
11044      Comp_Def    : Node_Id;
11045      Decl        : Node_Id;
11046      Type_Def    : Node_Id;
11047
11048      procedure Build_Incomplete_Type_Declaration;
11049      --  If the record type contains components that include an access to the
11050      --  current record, then create an incomplete type declaration for the
11051      --  record, to be used as the designated type of the anonymous access.
11052      --  This is done only once, and only if there is no previous partial
11053      --  view of the type.
11054
11055      function Designates_T (Subt : Node_Id) return Boolean;
11056      --  Check whether a node designates the enclosing record type, or 'Class
11057      --  of that type
11058
11059      function Mentions_T (Acc_Def : Node_Id) return Boolean;
11060      --  Check whether an access definition includes a reference to
11061      --  the enclosing record type. The reference can be a subtype mark
11062      --  in the access definition itself, a 'Class attribute reference, or
11063      --  recursively a reference appearing in a parameter specification
11064      --  or result definition of an access_to_subprogram definition.
11065
11066      --------------------------------------
11067      -- Build_Incomplete_Type_Declaration --
11068      --------------------------------------
11069
11070      procedure Build_Incomplete_Type_Declaration is
11071         Decl  : Node_Id;
11072         Inc_T : Entity_Id;
11073         H     : Entity_Id;
11074
11075         --  Is_Tagged indicates whether the type is tagged. It is tagged if
11076         --  it's "is new ... with record" or else "is tagged record ...".
11077
11078         Is_Tagged : constant Boolean :=
11079             (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
11080               and then
11081                 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
11082           or else
11083             (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
11084               and then Tagged_Present (Type_Definition (Typ_Decl)));
11085
11086      begin
11087         --  If there is a previous partial view, no need to create a new one
11088         --  If the partial view, given by Prev, is incomplete,  If Prev is
11089         --  a private declaration, full declaration is flagged accordingly.
11090
11091         if Prev /= Typ then
11092            if Is_Tagged then
11093               Make_Class_Wide_Type (Prev);
11094               Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
11095               Set_Etype (Class_Wide_Type (Typ), Typ);
11096            end if;
11097
11098            return;
11099
11100         elsif Has_Private_Declaration (Typ) then
11101
11102            --  If we refer to T'Class inside T, and T is the completion of a
11103            --  private type, then make sure the class-wide type exists.
11104
11105            if Is_Tagged then
11106               Make_Class_Wide_Type (Typ);
11107            end if;
11108
11109            return;
11110
11111         --  If there was a previous anonymous access type, the incomplete
11112         --  type declaration will have been created already.
11113
11114         elsif Present (Current_Entity (Typ))
11115           and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11116           and then Full_View (Current_Entity (Typ)) = Typ
11117         then
11118            if Is_Tagged
11119              and then Comes_From_Source (Current_Entity (Typ))
11120              and then not Is_Tagged_Type (Current_Entity (Typ))
11121            then
11122               Make_Class_Wide_Type (Typ);
11123               Error_Msg_N
11124                 ("incomplete view of tagged type should be declared tagged??",
11125                  Parent (Current_Entity (Typ)));
11126            end if;
11127            return;
11128
11129         else
11130            Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11131            Decl  := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11132
11133            --  Type has already been inserted into the current scope. Remove
11134            --  it, and add incomplete declaration for type, so that subsequent
11135            --  anonymous access types can use it. The entity is unchained from
11136            --  the homonym list and from immediate visibility. After analysis,
11137            --  the entity in the incomplete declaration becomes immediately
11138            --  visible in the record declaration that follows.
11139
11140            H := Current_Entity (Typ);
11141
11142            if H = Typ then
11143               Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11144            else
11145               while Present (H)
11146                 and then Homonym (H) /= Typ
11147               loop
11148                  H := Homonym (Typ);
11149               end loop;
11150
11151               Set_Homonym (H, Homonym (Typ));
11152            end if;
11153
11154            Insert_Before (Typ_Decl, Decl);
11155            Analyze (Decl);
11156            Set_Full_View (Inc_T, Typ);
11157
11158            if Is_Tagged then
11159
11160               --  Create a common class-wide type for both views, and set the
11161               --  Etype of the class-wide type to the full view.
11162
11163               Make_Class_Wide_Type (Inc_T);
11164               Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11165               Set_Etype (Class_Wide_Type (Typ), Typ);
11166            end if;
11167         end if;
11168      end Build_Incomplete_Type_Declaration;
11169
11170      ------------------
11171      -- Designates_T --
11172      ------------------
11173
11174      function Designates_T (Subt : Node_Id) return Boolean is
11175         Type_Id : constant Name_Id := Chars (Typ);
11176
11177         function Names_T (Nam : Node_Id) return Boolean;
11178         --  The record type has not been introduced in the current scope
11179         --  yet, so we must examine the name of the type itself, either
11180         --  an identifier T, or an expanded name of the form P.T, where
11181         --  P denotes the current scope.
11182
11183         -------------
11184         -- Names_T --
11185         -------------
11186
11187         function Names_T (Nam : Node_Id) return Boolean is
11188         begin
11189            if Nkind (Nam) = N_Identifier then
11190               return Chars (Nam) = Type_Id;
11191
11192            elsif Nkind (Nam) = N_Selected_Component then
11193               if Chars (Selector_Name (Nam)) = Type_Id then
11194                  if Nkind (Prefix (Nam)) = N_Identifier then
11195                     return Chars (Prefix (Nam)) = Chars (Current_Scope);
11196
11197                  elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11198                     return Chars (Selector_Name (Prefix (Nam))) =
11199                            Chars (Current_Scope);
11200                  else
11201                     return False;
11202                  end if;
11203
11204               else
11205                  return False;
11206               end if;
11207
11208            else
11209               return False;
11210            end if;
11211         end Names_T;
11212
11213      --  Start of processing for Designates_T
11214
11215      begin
11216         if Nkind (Subt) = N_Identifier then
11217            return Chars (Subt) = Type_Id;
11218
11219            --  Reference can be through an expanded name which has not been
11220            --  analyzed yet, and which designates enclosing scopes.
11221
11222         elsif Nkind (Subt) = N_Selected_Component then
11223            if Names_T (Subt) then
11224               return True;
11225
11226            --  Otherwise it must denote an entity that is already visible.
11227            --  The access definition may name a subtype of the enclosing
11228            --  type, if there is a previous incomplete declaration for it.
11229
11230            else
11231               Find_Selected_Component (Subt);
11232               return
11233                 Is_Entity_Name (Subt)
11234                   and then Scope (Entity (Subt)) = Current_Scope
11235                   and then
11236                     (Chars (Base_Type (Entity (Subt))) = Type_Id
11237                       or else
11238                         (Is_Class_Wide_Type (Entity (Subt))
11239                           and then
11240                             Chars (Etype (Base_Type (Entity (Subt)))) =
11241                                                                  Type_Id));
11242            end if;
11243
11244         --  A reference to the current type may appear as the prefix of
11245         --  a 'Class attribute.
11246
11247         elsif Nkind (Subt) = N_Attribute_Reference
11248           and then Attribute_Name (Subt) = Name_Class
11249         then
11250            return Names_T (Prefix (Subt));
11251
11252         else
11253            return False;
11254         end if;
11255      end Designates_T;
11256
11257      ----------------
11258      -- Mentions_T --
11259      ----------------
11260
11261      function Mentions_T (Acc_Def : Node_Id) return Boolean is
11262         Param_Spec : Node_Id;
11263
11264         Acc_Subprg : constant Node_Id :=
11265                        Access_To_Subprogram_Definition (Acc_Def);
11266
11267      begin
11268         if No (Acc_Subprg) then
11269            return Designates_T (Subtype_Mark (Acc_Def));
11270         end if;
11271
11272         --  Component is an access_to_subprogram: examine its formals,
11273         --  and result definition in the case of an access_to_function.
11274
11275         Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11276         while Present (Param_Spec) loop
11277            if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11278              and then Mentions_T (Parameter_Type (Param_Spec))
11279            then
11280               return True;
11281
11282            elsif Designates_T (Parameter_Type (Param_Spec)) then
11283               return True;
11284            end if;
11285
11286            Next (Param_Spec);
11287         end loop;
11288
11289         if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11290            if Nkind (Result_Definition (Acc_Subprg)) =
11291                 N_Access_Definition
11292            then
11293               return Mentions_T (Result_Definition (Acc_Subprg));
11294            else
11295               return Designates_T (Result_Definition (Acc_Subprg));
11296            end if;
11297         end if;
11298
11299         return False;
11300      end Mentions_T;
11301
11302   --  Start of processing for Check_Anonymous_Access_Components
11303
11304   begin
11305      if No (Comp_List) then
11306         return;
11307      end if;
11308
11309      Comp := First (Component_Items (Comp_List));
11310      while Present (Comp) loop
11311         if Nkind (Comp) = N_Component_Declaration
11312           and then Present
11313             (Access_Definition (Component_Definition (Comp)))
11314           and then
11315             Mentions_T (Access_Definition (Component_Definition (Comp)))
11316         then
11317            Comp_Def := Component_Definition (Comp);
11318            Acc_Def :=
11319              Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11320
11321            Build_Incomplete_Type_Declaration;
11322            Anon_Access := Make_Temporary (Loc, 'S');
11323
11324            --  Create a declaration for the anonymous access type: either
11325            --  an access_to_object or an access_to_subprogram.
11326
11327            if Present (Acc_Def) then
11328               if Nkind (Acc_Def) = N_Access_Function_Definition then
11329                  Type_Def :=
11330                    Make_Access_Function_Definition (Loc,
11331                      Parameter_Specifications =>
11332                        Parameter_Specifications (Acc_Def),
11333                      Result_Definition        => Result_Definition (Acc_Def));
11334               else
11335                  Type_Def :=
11336                    Make_Access_Procedure_Definition (Loc,
11337                      Parameter_Specifications =>
11338                        Parameter_Specifications (Acc_Def));
11339               end if;
11340
11341            else
11342               Type_Def :=
11343                 Make_Access_To_Object_Definition (Loc,
11344                   Subtype_Indication =>
11345                      Relocate_Node
11346                        (Subtype_Mark (Access_Definition (Comp_Def))));
11347
11348               Set_Constant_Present
11349                 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11350               Set_All_Present
11351                 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11352            end if;
11353
11354            Set_Null_Exclusion_Present
11355              (Type_Def,
11356               Null_Exclusion_Present (Access_Definition (Comp_Def)));
11357
11358            Decl :=
11359              Make_Full_Type_Declaration (Loc,
11360                Defining_Identifier => Anon_Access,
11361                Type_Definition     => Type_Def);
11362
11363            Insert_Before (Typ_Decl, Decl);
11364            Analyze (Decl);
11365
11366            --  If an access to subprogram, create the extra formals
11367
11368            if Present (Acc_Def) then
11369               Create_Extra_Formals (Designated_Type (Anon_Access));
11370
11371            --  If an access to object, preserve entity of designated type,
11372            --  for ASIS use, before rewriting the component definition.
11373
11374            else
11375               declare
11376                  Desig : Entity_Id;
11377
11378               begin
11379                  Desig := Entity (Subtype_Indication (Type_Def));
11380
11381                  --  If the access definition is to the current  record,
11382                  --  the visible entity at this point is an  incomplete
11383                  --  type. Retrieve the full view to simplify  ASIS queries
11384
11385                  if Ekind (Desig) = E_Incomplete_Type then
11386                     Desig := Full_View (Desig);
11387                  end if;
11388
11389                  Set_Entity
11390                    (Subtype_Mark (Access_Definition  (Comp_Def)), Desig);
11391               end;
11392            end if;
11393
11394            Rewrite (Comp_Def,
11395              Make_Component_Definition (Loc,
11396                Subtype_Indication =>
11397               New_Occurrence_Of (Anon_Access, Loc)));
11398
11399            if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11400               Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11401            else
11402               Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11403            end if;
11404
11405            Set_Is_Local_Anonymous_Access (Anon_Access);
11406         end if;
11407
11408         Next (Comp);
11409      end loop;
11410
11411      if Present (Variant_Part (Comp_List)) then
11412         declare
11413            V : Node_Id;
11414         begin
11415            V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11416            while Present (V) loop
11417               Check_Anonymous_Access_Components
11418                 (Typ_Decl, Typ, Prev, Component_List (V));
11419               Next_Non_Pragma (V);
11420            end loop;
11421         end;
11422      end if;
11423   end Check_Anonymous_Access_Components;
11424
11425   ----------------------
11426   -- Check_Completion --
11427   ----------------------
11428
11429   procedure Check_Completion (Body_Id : Node_Id := Empty) is
11430      E : Entity_Id;
11431
11432      procedure Post_Error;
11433      --  Post error message for lack of completion for entity E
11434
11435      ----------------
11436      -- Post_Error --
11437      ----------------
11438
11439      procedure Post_Error is
11440         procedure Missing_Body;
11441         --  Output missing body message
11442
11443         ------------------
11444         -- Missing_Body --
11445         ------------------
11446
11447         procedure Missing_Body is
11448         begin
11449            --  Spec is in same unit, so we can post on spec
11450
11451            if In_Same_Source_Unit (Body_Id, E) then
11452               Error_Msg_N ("missing body for &", E);
11453
11454            --  Spec is in a separate unit, so we have to post on the body
11455
11456            else
11457               Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11458            end if;
11459         end Missing_Body;
11460
11461      --  Start of processing for Post_Error
11462
11463      begin
11464         if not Comes_From_Source (E) then
11465            if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11466
11467               --  It may be an anonymous protected type created for a
11468               --  single variable. Post error on variable, if present.
11469
11470               declare
11471                  Var : Entity_Id;
11472
11473               begin
11474                  Var := First_Entity (Current_Scope);
11475                  while Present (Var) loop
11476                     exit when Etype (Var) = E
11477                       and then Comes_From_Source (Var);
11478
11479                     Next_Entity (Var);
11480                  end loop;
11481
11482                  if Present (Var) then
11483                     E := Var;
11484                  end if;
11485               end;
11486            end if;
11487         end if;
11488
11489         --  If a generated entity has no completion, then either previous
11490         --  semantic errors have disabled the expansion phase, or else we had
11491         --  missing subunits, or else we are compiling without expansion,
11492         --  or else something is very wrong.
11493
11494         if not Comes_From_Source (E) then
11495            pragma Assert
11496              (Serious_Errors_Detected > 0
11497                or else Configurable_Run_Time_Violations > 0
11498                or else Subunits_Missing
11499                or else not Expander_Active);
11500            return;
11501
11502         --  Here for source entity
11503
11504         else
11505            --  Here if no body to post the error message, so we post the error
11506            --  on the declaration that has no completion. This is not really
11507            --  the right place to post it, think about this later ???
11508
11509            if No (Body_Id) then
11510               if Is_Type (E) then
11511                  Error_Msg_NE
11512                    ("missing full declaration for }", Parent (E), E);
11513               else
11514                  Error_Msg_NE ("missing body for &", Parent (E), E);
11515               end if;
11516
11517            --  Package body has no completion for a declaration that appears
11518            --  in the corresponding spec. Post error on the body, with a
11519            --  reference to the non-completed declaration.
11520
11521            else
11522               Error_Msg_Sloc := Sloc (E);
11523
11524               if Is_Type (E) then
11525                  Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11526
11527               elsif Is_Overloadable (E)
11528                 and then Current_Entity_In_Scope (E) /= E
11529               then
11530                  --  It may be that the completion is mistyped and appears as
11531                  --  a distinct overloading of the entity.
11532
11533                  declare
11534                     Candidate : constant Entity_Id :=
11535                                   Current_Entity_In_Scope (E);
11536                     Decl      : constant Node_Id :=
11537                                   Unit_Declaration_Node (Candidate);
11538
11539                  begin
11540                     if Is_Overloadable (Candidate)
11541                       and then Ekind (Candidate) = Ekind (E)
11542                       and then Nkind (Decl) = N_Subprogram_Body
11543                       and then Acts_As_Spec (Decl)
11544                     then
11545                        Check_Type_Conformant (Candidate, E);
11546
11547                     else
11548                        Missing_Body;
11549                     end if;
11550                  end;
11551
11552               else
11553                  Missing_Body;
11554               end if;
11555            end if;
11556         end if;
11557      end Post_Error;
11558
11559      --  Local variables
11560
11561      Pack_Id : constant Entity_Id := Current_Scope;
11562
11563   --  Start of processing for Check_Completion
11564
11565   begin
11566      E := First_Entity (Pack_Id);
11567      while Present (E) loop
11568         if Is_Intrinsic_Subprogram (E) then
11569            null;
11570
11571         --  The following situation requires special handling: a child unit
11572         --  that appears in the context clause of the body of its parent:
11573
11574         --    procedure Parent.Child (...);
11575
11576         --    with Parent.Child;
11577         --    package body Parent is
11578
11579         --  Here Parent.Child appears as a local entity, but should not be
11580         --  flagged as requiring completion, because it is a compilation
11581         --  unit.
11582
11583         --  Ignore missing completion for a subprogram that does not come from
11584         --  source (including the _Call primitive operation of RAS types,
11585         --  which has to have the flag Comes_From_Source for other purposes):
11586         --  we assume that the expander will provide the missing completion.
11587         --  In case of previous errors, other expansion actions that provide
11588         --  bodies for null procedures with not be invoked, so inhibit message
11589         --  in those cases.
11590
11591         --  Note that E_Operator is not in the list that follows, because
11592         --  this kind is reserved for predefined operators, that are
11593         --  intrinsic and do not need completion.
11594
11595         elsif Ekind_In (E, E_Function,
11596                            E_Procedure,
11597                            E_Generic_Function,
11598                            E_Generic_Procedure)
11599         then
11600            if Has_Completion (E) then
11601               null;
11602
11603            elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11604               null;
11605
11606            elsif Is_Subprogram (E)
11607              and then (not Comes_From_Source (E)
11608                         or else Chars (E) = Name_uCall)
11609            then
11610               null;
11611
11612            elsif
11613               Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11614            then
11615               null;
11616
11617            elsif Nkind (Parent (E)) = N_Procedure_Specification
11618              and then Null_Present (Parent (E))
11619              and then Serious_Errors_Detected > 0
11620            then
11621               null;
11622
11623            else
11624               Post_Error;
11625            end if;
11626
11627         elsif Is_Entry (E) then
11628            if not Has_Completion (E) and then
11629              (Ekind (Scope (E)) = E_Protected_Object
11630                or else Ekind (Scope (E)) = E_Protected_Type)
11631            then
11632               Post_Error;
11633            end if;
11634
11635         elsif Is_Package_Or_Generic_Package (E) then
11636            if Unit_Requires_Body (E) then
11637               if not Has_Completion (E)
11638                 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11639                                                       N_Compilation_Unit
11640               then
11641                  Post_Error;
11642               end if;
11643
11644            elsif not Is_Child_Unit (E) then
11645               May_Need_Implicit_Body (E);
11646            end if;
11647
11648         --  A formal incomplete type (Ada 2012) does not require a completion;
11649         --  other incomplete type declarations do.
11650
11651         elsif Ekind (E) = E_Incomplete_Type
11652           and then No (Underlying_Type (E))
11653           and then not Is_Generic_Type (E)
11654         then
11655            Post_Error;
11656
11657         elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11658           and then not Has_Completion (E)
11659         then
11660            Post_Error;
11661
11662         --  A single task declared in the current scope is a constant, verify
11663         --  that the body of its anonymous type is in the same scope. If the
11664         --  task is defined elsewhere, this may be a renaming declaration for
11665         --  which no completion is needed.
11666
11667         elsif Ekind (E) = E_Constant
11668           and then Ekind (Etype (E)) = E_Task_Type
11669           and then not Has_Completion (Etype (E))
11670           and then Scope (Etype (E)) = Current_Scope
11671         then
11672            Post_Error;
11673
11674         elsif Ekind (E) = E_Protected_Object
11675           and then not Has_Completion (Etype (E))
11676         then
11677            Post_Error;
11678
11679         elsif Ekind (E) = E_Record_Type then
11680            if Is_Tagged_Type (E) then
11681               Check_Abstract_Overriding (E);
11682               Check_Conventions (E);
11683            end if;
11684
11685            Check_Aliased_Component_Types (E);
11686
11687         elsif Ekind (E) = E_Array_Type then
11688            Check_Aliased_Component_Types (E);
11689
11690         end if;
11691
11692         Next_Entity (E);
11693      end loop;
11694   end Check_Completion;
11695
11696   ------------------------------------
11697   -- Check_CPP_Type_Has_No_Defaults --
11698   ------------------------------------
11699
11700   procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11701      Tdef  : constant Node_Id := Type_Definition (Declaration_Node (T));
11702      Clist : Node_Id;
11703      Comp  : Node_Id;
11704
11705   begin
11706      --  Obtain the component list
11707
11708      if Nkind (Tdef) = N_Record_Definition then
11709         Clist := Component_List (Tdef);
11710      else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11711         Clist := Component_List (Record_Extension_Part (Tdef));
11712      end if;
11713
11714      --  Check all components to ensure no default expressions
11715
11716      if Present (Clist) then
11717         Comp := First (Component_Items (Clist));
11718         while Present (Comp) loop
11719            if Present (Expression (Comp)) then
11720               Error_Msg_N
11721                 ("component of imported 'C'P'P type cannot have "
11722                  & "default expression", Expression (Comp));
11723            end if;
11724
11725            Next (Comp);
11726         end loop;
11727      end if;
11728   end Check_CPP_Type_Has_No_Defaults;
11729
11730   ----------------------------
11731   -- Check_Delta_Expression --
11732   ----------------------------
11733
11734   procedure Check_Delta_Expression (E : Node_Id) is
11735   begin
11736      if not (Is_Real_Type (Etype (E))) then
11737         Wrong_Type (E, Any_Real);
11738
11739      elsif not Is_OK_Static_Expression (E) then
11740         Flag_Non_Static_Expr
11741           ("non-static expression used for delta value!", E);
11742
11743      elsif not UR_Is_Positive (Expr_Value_R (E)) then
11744         Error_Msg_N ("delta expression must be positive", E);
11745
11746      else
11747         return;
11748      end if;
11749
11750      --  If any of above errors occurred, then replace the incorrect
11751      --  expression by the real 0.1, which should prevent further errors.
11752
11753      Rewrite (E,
11754        Make_Real_Literal (Sloc (E), Ureal_Tenth));
11755      Analyze_And_Resolve (E, Standard_Float);
11756   end Check_Delta_Expression;
11757
11758   -----------------------------
11759   -- Check_Digits_Expression --
11760   -----------------------------
11761
11762   procedure Check_Digits_Expression (E : Node_Id) is
11763   begin
11764      if not (Is_Integer_Type (Etype (E))) then
11765         Wrong_Type (E, Any_Integer);
11766
11767      elsif not Is_OK_Static_Expression (E) then
11768         Flag_Non_Static_Expr
11769           ("non-static expression used for digits value!", E);
11770
11771      elsif Expr_Value (E) <= 0 then
11772         Error_Msg_N ("digits value must be greater than zero", E);
11773
11774      else
11775         return;
11776      end if;
11777
11778      --  If any of above errors occurred, then replace the incorrect
11779      --  expression by the integer 1, which should prevent further errors.
11780
11781      Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11782      Analyze_And_Resolve (E, Standard_Integer);
11783
11784   end Check_Digits_Expression;
11785
11786   --------------------------
11787   -- Check_Initialization --
11788   --------------------------
11789
11790   procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11791   begin
11792      --  Special processing for limited types
11793
11794      if Is_Limited_Type (T)
11795        and then not In_Instance
11796        and then not In_Inlined_Body
11797      then
11798         if not OK_For_Limited_Init (T, Exp) then
11799
11800            --  In GNAT mode, this is just a warning, to allow it to be evilly
11801            --  turned off. Otherwise it is a real error.
11802
11803            if GNAT_Mode then
11804               Error_Msg_N
11805                 ("??cannot initialize entities of limited type!", Exp);
11806
11807            elsif Ada_Version < Ada_2005 then
11808
11809               --  The side effect removal machinery may generate illegal Ada
11810               --  code to avoid the usage of access types and 'reference in
11811               --  SPARK mode. Since this is legal code with respect to theorem
11812               --  proving, do not emit the error.
11813
11814               if GNATprove_Mode
11815                 and then Nkind (Exp) = N_Function_Call
11816                 and then Nkind (Parent (Exp)) = N_Object_Declaration
11817                 and then not Comes_From_Source
11818                                (Defining_Identifier (Parent (Exp)))
11819               then
11820                  null;
11821
11822               else
11823                  Error_Msg_N
11824                    ("cannot initialize entities of limited type", Exp);
11825                  Explain_Limited_Type (T, Exp);
11826               end if;
11827
11828            else
11829               --  Specialize error message according to kind of illegal
11830               --  initial expression.
11831
11832               if Nkind (Exp) = N_Type_Conversion
11833                 and then Nkind (Expression (Exp)) = N_Function_Call
11834               then
11835                  --  No error for internally-generated object declarations,
11836                  --  which can come from build-in-place assignment statements.
11837
11838                  if Nkind (Parent (Exp)) = N_Object_Declaration
11839                    and then not Comes_From_Source
11840                                   (Defining_Identifier (Parent (Exp)))
11841                  then
11842                     null;
11843
11844                  else
11845                     Error_Msg_N
11846                       ("illegal context for call to function with limited "
11847                        & "result", Exp);
11848                  end if;
11849
11850               else
11851                  Error_Msg_N
11852                    ("initialization of limited object requires aggregate or "
11853                     & "function call",  Exp);
11854               end if;
11855            end if;
11856         end if;
11857      end if;
11858
11859      --  In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11860      --  set unless we can be sure that no range check is required.
11861
11862      if (GNATprove_Mode or not Expander_Active)
11863        and then Is_Scalar_Type (T)
11864        and then not Is_In_Range (Exp, T, Assume_Valid => True)
11865      then
11866         Set_Do_Range_Check (Exp);
11867      end if;
11868   end Check_Initialization;
11869
11870   ----------------------
11871   -- Check_Interfaces --
11872   ----------------------
11873
11874   procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11875      Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11876
11877      Iface       : Node_Id;
11878      Iface_Def   : Node_Id;
11879      Iface_Typ   : Entity_Id;
11880      Parent_Node : Node_Id;
11881
11882      Is_Task : Boolean := False;
11883      --  Set True if parent type or any progenitor is a task interface
11884
11885      Is_Protected : Boolean := False;
11886      --  Set True if parent type or any progenitor is a protected interface
11887
11888      procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11889      --  Check that a progenitor is compatible with declaration. If an error
11890      --  message is output, it is posted on Error_Node.
11891
11892      ------------------
11893      -- Check_Ifaces --
11894      ------------------
11895
11896      procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11897         Iface_Id : constant Entity_Id :=
11898                      Defining_Identifier (Parent (Iface_Def));
11899         Type_Def : Node_Id;
11900
11901      begin
11902         if Nkind (N) = N_Private_Extension_Declaration then
11903            Type_Def := N;
11904         else
11905            Type_Def := Type_Definition (N);
11906         end if;
11907
11908         if Is_Task_Interface (Iface_Id) then
11909            Is_Task := True;
11910
11911         elsif Is_Protected_Interface (Iface_Id) then
11912            Is_Protected := True;
11913         end if;
11914
11915         if Is_Synchronized_Interface (Iface_Id) then
11916
11917            --  A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11918            --  extension derived from a synchronized interface must explicitly
11919            --  be declared synchronized, because the full view will be a
11920            --  synchronized type.
11921
11922            if Nkind (N) = N_Private_Extension_Declaration then
11923               if not Synchronized_Present (N) then
11924                  Error_Msg_NE
11925                    ("private extension of& must be explicitly synchronized",
11926                      N, Iface_Id);
11927               end if;
11928
11929            --  However, by 3.9.4(16/2), a full type that is a record extension
11930            --  is never allowed to derive from a synchronized interface (note
11931            --  that interfaces must be excluded from this check, because those
11932            --  are represented by derived type definitions in some cases).
11933
11934            elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11935              and then not Interface_Present (Type_Definition (N))
11936            then
11937               Error_Msg_N ("record extension cannot derive from synchronized "
11938                            & "interface", Error_Node);
11939            end if;
11940         end if;
11941
11942         --  Check that the characteristics of the progenitor are compatible
11943         --  with the explicit qualifier in the declaration.
11944         --  The check only applies to qualifiers that come from source.
11945         --  Limited_Present also appears in the declaration of corresponding
11946         --  records, and the check does not apply to them.
11947
11948         if Limited_Present (Type_Def)
11949           and then not
11950             Is_Concurrent_Record_Type (Defining_Identifier (N))
11951         then
11952            if Is_Limited_Interface (Parent_Type)
11953              and then not Is_Limited_Interface (Iface_Id)
11954            then
11955               Error_Msg_NE
11956                 ("progenitor & must be limited interface",
11957                   Error_Node, Iface_Id);
11958
11959            elsif
11960              (Task_Present (Iface_Def)
11961                or else Protected_Present (Iface_Def)
11962                or else Synchronized_Present (Iface_Def))
11963              and then Nkind (N) /= N_Private_Extension_Declaration
11964              and then not Error_Posted (N)
11965            then
11966               Error_Msg_NE
11967                 ("progenitor & must be limited interface",
11968                   Error_Node, Iface_Id);
11969            end if;
11970
11971         --  Protected interfaces can only inherit from limited, synchronized
11972         --  or protected interfaces.
11973
11974         elsif Nkind (N) = N_Full_Type_Declaration
11975           and then Protected_Present (Type_Def)
11976         then
11977            if Limited_Present (Iface_Def)
11978              or else Synchronized_Present (Iface_Def)
11979              or else Protected_Present (Iface_Def)
11980            then
11981               null;
11982
11983            elsif Task_Present (Iface_Def) then
11984               Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11985                            & "from task interface", Error_Node);
11986
11987            else
11988               Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11989                            & "from non-limited interface", Error_Node);
11990            end if;
11991
11992         --  Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11993         --  limited and synchronized.
11994
11995         elsif Synchronized_Present (Type_Def) then
11996            if Limited_Present (Iface_Def)
11997              or else Synchronized_Present (Iface_Def)
11998            then
11999               null;
12000
12001            elsif Protected_Present (Iface_Def)
12002              and then Nkind (N) /= N_Private_Extension_Declaration
12003            then
12004               Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12005                            & "from protected interface", Error_Node);
12006
12007            elsif Task_Present (Iface_Def)
12008              and then Nkind (N) /= N_Private_Extension_Declaration
12009            then
12010               Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12011                            & "from task interface", Error_Node);
12012
12013            elsif not Is_Limited_Interface (Iface_Id) then
12014               Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12015                            & "from non-limited interface", Error_Node);
12016            end if;
12017
12018         --  Ada 2005 (AI-345): Task interfaces can only inherit from limited,
12019         --  synchronized or task interfaces.
12020
12021         elsif Nkind (N) = N_Full_Type_Declaration
12022           and then Task_Present (Type_Def)
12023         then
12024            if Limited_Present (Iface_Def)
12025              or else Synchronized_Present (Iface_Def)
12026              or else Task_Present (Iface_Def)
12027            then
12028               null;
12029
12030            elsif Protected_Present (Iface_Def) then
12031               Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12032                            & "protected interface", Error_Node);
12033
12034            else
12035               Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12036                            & "non-limited interface", Error_Node);
12037            end if;
12038         end if;
12039      end Check_Ifaces;
12040
12041   --  Start of processing for Check_Interfaces
12042
12043   begin
12044      if Is_Interface (Parent_Type) then
12045         if Is_Task_Interface (Parent_Type) then
12046            Is_Task := True;
12047
12048         elsif Is_Protected_Interface (Parent_Type) then
12049            Is_Protected := True;
12050         end if;
12051      end if;
12052
12053      if Nkind (N) = N_Private_Extension_Declaration then
12054
12055         --  Check that progenitors are compatible with declaration
12056
12057         Iface := First (Interface_List (Def));
12058         while Present (Iface) loop
12059            Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12060
12061            Parent_Node := Parent (Base_Type (Iface_Typ));
12062            Iface_Def   := Type_Definition (Parent_Node);
12063
12064            if not Is_Interface (Iface_Typ) then
12065               Diagnose_Interface (Iface, Iface_Typ);
12066            else
12067               Check_Ifaces (Iface_Def, Iface);
12068            end if;
12069
12070            Next (Iface);
12071         end loop;
12072
12073         if Is_Task and Is_Protected then
12074            Error_Msg_N
12075              ("type cannot derive from task and protected interface", N);
12076         end if;
12077
12078         return;
12079      end if;
12080
12081      --  Full type declaration of derived type.
12082      --  Check compatibility with parent if it is interface type
12083
12084      if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12085        and then Is_Interface (Parent_Type)
12086      then
12087         Parent_Node := Parent (Parent_Type);
12088
12089         --  More detailed checks for interface varieties
12090
12091         Check_Ifaces
12092           (Iface_Def  => Type_Definition (Parent_Node),
12093            Error_Node => Subtype_Indication (Type_Definition (N)));
12094      end if;
12095
12096      Iface := First (Interface_List (Def));
12097      while Present (Iface) loop
12098         Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12099
12100         Parent_Node := Parent (Base_Type (Iface_Typ));
12101         Iface_Def   := Type_Definition (Parent_Node);
12102
12103         if not Is_Interface (Iface_Typ) then
12104            Diagnose_Interface (Iface, Iface_Typ);
12105
12106         else
12107            --  "The declaration of a specific descendant of an interface
12108            --   type freezes the interface type" RM 13.14
12109
12110            Freeze_Before (N, Iface_Typ);
12111            Check_Ifaces (Iface_Def, Error_Node => Iface);
12112         end if;
12113
12114         Next (Iface);
12115      end loop;
12116
12117      if Is_Task and Is_Protected then
12118         Error_Msg_N
12119           ("type cannot derive from task and protected interface", N);
12120      end if;
12121   end Check_Interfaces;
12122
12123   ------------------------------------
12124   -- Check_Or_Process_Discriminants --
12125   ------------------------------------
12126
12127   --  If an incomplete or private type declaration was already given for the
12128   --  type, the discriminants may have already been processed if they were
12129   --  present on the incomplete declaration. In this case a full conformance
12130   --  check has been performed in Find_Type_Name, and we then recheck here
12131   --  some properties that can't be checked on the partial view alone.
12132   --  Otherwise we call Process_Discriminants.
12133
12134   procedure Check_Or_Process_Discriminants
12135     (N    : Node_Id;
12136      T    : Entity_Id;
12137      Prev : Entity_Id := Empty)
12138   is
12139   begin
12140      if Has_Discriminants (T) then
12141
12142         --  Discriminants are already set on T if they were already present
12143         --  on the partial view. Make them visible to component declarations.
12144
12145         declare
12146            D : Entity_Id;
12147            --  Discriminant on T (full view) referencing expr on partial view
12148
12149            Prev_D : Entity_Id;
12150            --  Entity of corresponding discriminant on partial view
12151
12152            New_D : Node_Id;
12153            --  Discriminant specification for full view, expression is
12154            --  the syntactic copy on full view (which has been checked for
12155            --  conformance with partial view), only used here to post error
12156            --  message.
12157
12158         begin
12159            D     := First_Discriminant (T);
12160            New_D := First (Discriminant_Specifications (N));
12161            while Present (D) loop
12162               Prev_D := Current_Entity (D);
12163               Set_Current_Entity (D);
12164               Set_Is_Immediately_Visible (D);
12165               Set_Homonym (D, Prev_D);
12166
12167               --  Handle the case where there is an untagged partial view and
12168               --  the full view is tagged: must disallow discriminants with
12169               --  defaults, unless compiling for Ada 2012, which allows a
12170               --  limited tagged type to have defaulted discriminants (see
12171               --  AI05-0214). However, suppress error here if it was already
12172               --  reported on the default expression of the partial view.
12173
12174               if Is_Tagged_Type (T)
12175                 and then Present (Expression (Parent (D)))
12176                 and then (not Is_Limited_Type (Current_Scope)
12177                            or else Ada_Version < Ada_2012)
12178                 and then not Error_Posted (Expression (Parent (D)))
12179               then
12180                  if Ada_Version >= Ada_2012 then
12181                     Error_Msg_N
12182                       ("discriminants of nonlimited tagged type cannot have "
12183                        & "defaults",
12184                        Expression (New_D));
12185                  else
12186                     Error_Msg_N
12187                       ("discriminants of tagged type cannot have defaults",
12188                        Expression (New_D));
12189                  end if;
12190               end if;
12191
12192               --  Ada 2005 (AI-230): Access discriminant allowed in
12193               --  non-limited record types.
12194
12195               if Ada_Version < Ada_2005 then
12196
12197                  --  This restriction gets applied to the full type here. It
12198                  --  has already been applied earlier to the partial view.
12199
12200                  Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12201               end if;
12202
12203               Next_Discriminant (D);
12204               Next (New_D);
12205            end loop;
12206         end;
12207
12208      elsif Present (Discriminant_Specifications (N)) then
12209         Process_Discriminants (N, Prev);
12210      end if;
12211   end Check_Or_Process_Discriminants;
12212
12213   ----------------------
12214   -- Check_Real_Bound --
12215   ----------------------
12216
12217   procedure Check_Real_Bound (Bound : Node_Id) is
12218   begin
12219      if not Is_Real_Type (Etype (Bound)) then
12220         Error_Msg_N
12221           ("bound in real type definition must be of real type", Bound);
12222
12223      elsif not Is_OK_Static_Expression (Bound) then
12224         Flag_Non_Static_Expr
12225           ("non-static expression used for real type bound!", Bound);
12226
12227      else
12228         return;
12229      end if;
12230
12231      Rewrite
12232        (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12233      Analyze (Bound);
12234      Resolve (Bound, Standard_Float);
12235   end Check_Real_Bound;
12236
12237   ------------------------------
12238   -- Complete_Private_Subtype --
12239   ------------------------------
12240
12241   procedure Complete_Private_Subtype
12242     (Priv        : Entity_Id;
12243      Full        : Entity_Id;
12244      Full_Base   : Entity_Id;
12245      Related_Nod : Node_Id)
12246   is
12247      Save_Next_Entity : Entity_Id;
12248      Save_Homonym     : Entity_Id;
12249
12250   begin
12251      --  Set semantic attributes for (implicit) private subtype completion.
12252      --  If the full type has no discriminants, then it is a copy of the
12253      --  full view of the base. Otherwise, it is a subtype of the base with
12254      --  a possible discriminant constraint. Save and restore the original
12255      --  Next_Entity field of full to ensure that the calls to Copy_Node do
12256      --  not corrupt the entity chain.
12257
12258      --  Note that the type of the full view is the same entity as the type
12259      --  of the partial view. In this fashion, the subtype has access to the
12260      --  correct view of the parent.
12261
12262      Save_Next_Entity := Next_Entity (Full);
12263      Save_Homonym     := Homonym (Priv);
12264
12265      case Ekind (Full_Base) is
12266         when Class_Wide_Kind
12267            | Private_Kind
12268            | Protected_Kind
12269            | Task_Kind
12270            | E_Record_Subtype
12271            | E_Record_Type
12272         =>
12273            Copy_Node (Priv, Full);
12274
12275            Set_Has_Discriminants
12276                             (Full, Has_Discriminants (Full_Base));
12277            Set_Has_Unknown_Discriminants
12278                             (Full, Has_Unknown_Discriminants (Full_Base));
12279            Set_First_Entity (Full, First_Entity (Full_Base));
12280            Set_Last_Entity  (Full, Last_Entity (Full_Base));
12281
12282            --  If the underlying base type is constrained, we know that the
12283            --  full view of the subtype is constrained as well (the converse
12284            --  is not necessarily true).
12285
12286            if Is_Constrained (Full_Base) then
12287               Set_Is_Constrained (Full);
12288            end if;
12289
12290         when others =>
12291            Copy_Node (Full_Base, Full);
12292
12293            Set_Chars         (Full, Chars (Priv));
12294            Conditional_Delay (Full, Priv);
12295            Set_Sloc          (Full, Sloc (Priv));
12296      end case;
12297
12298      Set_Next_Entity               (Full, Save_Next_Entity);
12299      Set_Homonym                   (Full, Save_Homonym);
12300      Set_Associated_Node_For_Itype (Full, Related_Nod);
12301
12302      --  Set common attributes for all subtypes: kind, convention, etc.
12303
12304      Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12305      Set_Convention (Full, Convention (Full_Base));
12306
12307      --  The Etype of the full view is inconsistent. Gigi needs to see the
12308      --  structural full view, which is what the current scheme gives: the
12309      --  Etype of the full view is the etype of the full base. However, if the
12310      --  full base is a derived type, the full view then looks like a subtype
12311      --  of the parent, not a subtype of the full base. If instead we write:
12312
12313      --       Set_Etype (Full, Full_Base);
12314
12315      --  then we get inconsistencies in the front-end (confusion between
12316      --  views). Several outstanding bugs are related to this ???
12317
12318      Set_Is_First_Subtype (Full, False);
12319      Set_Scope            (Full, Scope (Priv));
12320      Set_Size_Info        (Full, Full_Base);
12321      Set_RM_Size          (Full, RM_Size (Full_Base));
12322      Set_Is_Itype         (Full);
12323
12324      --  A subtype of a private-type-without-discriminants, whose full-view
12325      --  has discriminants with default expressions, is not constrained.
12326
12327      if not Has_Discriminants (Priv) then
12328         Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12329
12330         if Has_Discriminants (Full_Base) then
12331            Set_Discriminant_Constraint
12332              (Full, Discriminant_Constraint (Full_Base));
12333
12334            --  The partial view may have been indefinite, the full view
12335            --  might not be.
12336
12337            Set_Has_Unknown_Discriminants
12338              (Full, Has_Unknown_Discriminants (Full_Base));
12339         end if;
12340      end if;
12341
12342      Set_First_Rep_Item     (Full, First_Rep_Item (Full_Base));
12343      Set_Depends_On_Private (Full, Has_Private_Component (Full));
12344
12345      --  Freeze the private subtype entity if its parent is delayed, and not
12346      --  already frozen. We skip this processing if the type is an anonymous
12347      --  subtype of a record component, or is the corresponding record of a
12348      --  protected type, since these are processed when the enclosing type
12349      --  is frozen. If the parent type is declared in a nested package then
12350      --  the freezing of the private and full views also happens later.
12351
12352      if not Is_Type (Scope (Full)) then
12353         if Is_Itype (Priv)
12354           and then In_Same_Source_Unit (Full, Full_Base)
12355           and then Scope (Full_Base) /= Scope (Full)
12356         then
12357            Set_Has_Delayed_Freeze (Full);
12358            Set_Has_Delayed_Freeze (Priv);
12359
12360         else
12361            Set_Has_Delayed_Freeze (Full,
12362              Has_Delayed_Freeze (Full_Base)
12363                and then not Is_Frozen (Full_Base));
12364         end if;
12365      end if;
12366
12367      Set_Freeze_Node (Full, Empty);
12368      Set_Is_Frozen (Full, False);
12369      Set_Full_View (Priv, Full);
12370
12371      if Has_Discriminants (Full) then
12372         Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12373         Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12374
12375         if Has_Unknown_Discriminants (Full) then
12376            Set_Discriminant_Constraint (Full, No_Elist);
12377         end if;
12378      end if;
12379
12380      if Ekind (Full_Base) = E_Record_Type
12381        and then Has_Discriminants (Full_Base)
12382        and then Has_Discriminants (Priv) -- might not, if errors
12383        and then not Has_Unknown_Discriminants (Priv)
12384        and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12385      then
12386         Create_Constrained_Components
12387           (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12388
12389      --  If the full base is itself derived from private, build a congruent
12390      --  subtype of its underlying type, for use by the back end. For a
12391      --  constrained record component, the declaration cannot be placed on
12392      --  the component list, but it must nevertheless be built an analyzed, to
12393      --  supply enough information for Gigi to compute the size of component.
12394
12395      elsif Ekind (Full_Base) in Private_Kind
12396        and then Is_Derived_Type (Full_Base)
12397        and then Has_Discriminants (Full_Base)
12398        and then (Ekind (Current_Scope) /= E_Record_Subtype)
12399      then
12400         if not Is_Itype (Priv)
12401           and then
12402             Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12403         then
12404            Build_Underlying_Full_View
12405              (Parent (Priv), Full, Etype (Full_Base));
12406
12407         elsif Nkind (Related_Nod) = N_Component_Declaration then
12408            Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12409         end if;
12410
12411      elsif Is_Record_Type (Full_Base) then
12412
12413         --  Show Full is simply a renaming of Full_Base
12414
12415         Set_Cloned_Subtype (Full, Full_Base);
12416      end if;
12417
12418      --  It is unsafe to share the bounds of a scalar type, because the Itype
12419      --  is elaborated on demand, and if a bound is non-static then different
12420      --  orders of elaboration in different units will lead to different
12421      --  external symbols.
12422
12423      if Is_Scalar_Type (Full_Base) then
12424         Set_Scalar_Range (Full,
12425           Make_Range (Sloc (Related_Nod),
12426             Low_Bound  =>
12427               Duplicate_Subexpr_No_Checks (Type_Low_Bound  (Full_Base)),
12428             High_Bound =>
12429               Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12430
12431         --  This completion inherits the bounds of the full parent, but if
12432         --  the parent is an unconstrained floating point type, so is the
12433         --  completion.
12434
12435         if Is_Floating_Point_Type (Full_Base) then
12436            Set_Includes_Infinities
12437             (Scalar_Range (Full), Has_Infinities (Full_Base));
12438         end if;
12439      end if;
12440
12441      --  ??? It seems that a lot of fields are missing that should be copied
12442      --  from Full_Base to Full. Here are some that are introduced in a
12443      --  non-disruptive way but a cleanup is necessary.
12444
12445      if Is_Tagged_Type (Full_Base) then
12446         Set_Is_Tagged_Type (Full);
12447         Set_Direct_Primitive_Operations
12448           (Full, Direct_Primitive_Operations (Full_Base));
12449         Set_No_Tagged_Streams_Pragma
12450           (Full, No_Tagged_Streams_Pragma (Full_Base));
12451
12452         --  Inherit class_wide type of full_base in case the partial view was
12453         --  not tagged. Otherwise it has already been created when the private
12454         --  subtype was analyzed.
12455
12456         if No (Class_Wide_Type (Full)) then
12457            Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12458         end if;
12459
12460      --  If this is a subtype of a protected or task type, constrain its
12461      --  corresponding record, unless this is a subtype without constraints,
12462      --  i.e. a simple renaming as with an actual subtype in an instance.
12463
12464      elsif Is_Concurrent_Type (Full_Base) then
12465         if Has_Discriminants (Full)
12466           and then Present (Corresponding_Record_Type (Full_Base))
12467           and then
12468             not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12469         then
12470            Set_Corresponding_Record_Type (Full,
12471              Constrain_Corresponding_Record
12472                (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12473
12474         else
12475            Set_Corresponding_Record_Type (Full,
12476              Corresponding_Record_Type (Full_Base));
12477         end if;
12478      end if;
12479
12480      --  Link rep item chain, and also setting of Has_Predicates from private
12481      --  subtype to full subtype, since we will need these on the full subtype
12482      --  to create the predicate function. Note that the full subtype may
12483      --  already have rep items, inherited from the full view of the base
12484      --  type, so we must be sure not to overwrite these entries.
12485
12486      declare
12487         Append    : Boolean;
12488         Item      : Node_Id;
12489         Next_Item : Node_Id;
12490         Priv_Item : Node_Id;
12491
12492      begin
12493         Item := First_Rep_Item (Full);
12494         Priv_Item := First_Rep_Item (Priv);
12495
12496         --  If no existing rep items on full type, we can just link directly
12497         --  to the list of items on the private type, if any exist.. Same if
12498         --  the rep items are only those inherited from the base
12499
12500         if (No (Item)
12501              or else Nkind (Item) /= N_Aspect_Specification
12502              or else Entity (Item) = Full_Base)
12503           and then Present (First_Rep_Item (Priv))
12504         then
12505            Set_First_Rep_Item (Full, Priv_Item);
12506
12507         --  Otherwise, search to the end of items currently linked to the full
12508         --  subtype and append the private items to the end. However, if Priv
12509         --  and Full already have the same list of rep items, then the append
12510         --  is not done, as that would create a circularity.
12511         --
12512         --  The partial view may have a predicate and the rep item lists of
12513         --  both views agree when inherited from the same ancestor. In that
12514         --  case, simply propagate the list from one view to the other.
12515         --  A more complex analysis needed here ???
12516
12517         elsif Present (Priv_Item)
12518           and then Item = Next_Rep_Item (Priv_Item)
12519         then
12520            Set_First_Rep_Item (Full, Priv_Item);
12521
12522         elsif Item /= Priv_Item then
12523            Append := True;
12524            loop
12525               Next_Item := Next_Rep_Item (Item);
12526               exit when No (Next_Item);
12527               Item := Next_Item;
12528
12529               --  If the private view has aspect specifications, the full view
12530               --  inherits them. Since these aspects may already have been
12531               --  attached to the full view during derivation, do not append
12532               --  them if already present.
12533
12534               if Item = First_Rep_Item (Priv) then
12535                  Append := False;
12536                  exit;
12537               end if;
12538            end loop;
12539
12540            --  And link the private type items at the end of the chain
12541
12542            if Append then
12543               Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12544            end if;
12545         end if;
12546      end;
12547
12548      --  Make sure Has_Predicates is set on full type if it is set on the
12549      --  private type. Note that it may already be set on the full type and
12550      --  if so, we don't want to unset it. Similarly, propagate information
12551      --  about delayed aspects, because the corresponding pragmas must be
12552      --  analyzed when one of the views is frozen. This last step is needed
12553      --  in particular when the full type is a scalar type for which an
12554      --  anonymous base type is constructed.
12555
12556      --  The predicate functions are generated either at the freeze point
12557      --  of the type or at the end of the visible part, and we must avoid
12558      --  generating them twice.
12559
12560      if Has_Predicates (Priv) then
12561         Set_Has_Predicates (Full);
12562
12563         if Present (Predicate_Function (Priv))
12564           and then No (Predicate_Function (Full))
12565         then
12566            Set_Predicate_Function (Full, Predicate_Function (Priv));
12567         end if;
12568      end if;
12569
12570      if Has_Delayed_Aspects (Priv) then
12571         Set_Has_Delayed_Aspects (Full);
12572      end if;
12573   end Complete_Private_Subtype;
12574
12575   ----------------------------
12576   -- Constant_Redeclaration --
12577   ----------------------------
12578
12579   procedure Constant_Redeclaration
12580     (Id : Entity_Id;
12581      N  : Node_Id;
12582      T  : out Entity_Id)
12583   is
12584      Prev    : constant Entity_Id := Current_Entity_In_Scope (Id);
12585      Obj_Def : constant Node_Id := Object_Definition (N);
12586      New_T   : Entity_Id;
12587
12588      procedure Check_Possible_Deferred_Completion
12589        (Prev_Id      : Entity_Id;
12590         Prev_Obj_Def : Node_Id;
12591         Curr_Obj_Def : Node_Id);
12592      --  Determine whether the two object definitions describe the partial
12593      --  and the full view of a constrained deferred constant. Generate
12594      --  a subtype for the full view and verify that it statically matches
12595      --  the subtype of the partial view.
12596
12597      procedure Check_Recursive_Declaration (Typ : Entity_Id);
12598      --  If deferred constant is an access type initialized with an allocator,
12599      --  check whether there is an illegal recursion in the definition,
12600      --  through a default value of some record subcomponent. This is normally
12601      --  detected when generating init procs, but requires this additional
12602      --  mechanism when expansion is disabled.
12603
12604      ----------------------------------------
12605      -- Check_Possible_Deferred_Completion --
12606      ----------------------------------------
12607
12608      procedure Check_Possible_Deferred_Completion
12609        (Prev_Id      : Entity_Id;
12610         Prev_Obj_Def : Node_Id;
12611         Curr_Obj_Def : Node_Id)
12612      is
12613      begin
12614         if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12615           and then Present (Constraint (Prev_Obj_Def))
12616           and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12617           and then Present (Constraint (Curr_Obj_Def))
12618         then
12619            declare
12620               Loc    : constant Source_Ptr := Sloc (N);
12621               Def_Id : constant Entity_Id  := Make_Temporary (Loc, 'S');
12622               Decl   : constant Node_Id    :=
12623                          Make_Subtype_Declaration (Loc,
12624                            Defining_Identifier => Def_Id,
12625                            Subtype_Indication  =>
12626                              Relocate_Node (Curr_Obj_Def));
12627
12628            begin
12629               Insert_Before_And_Analyze (N, Decl);
12630               Set_Etype (Id, Def_Id);
12631
12632               if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12633                  Error_Msg_Sloc := Sloc (Prev_Id);
12634                  Error_Msg_N ("subtype does not statically match deferred "
12635                               & "declaration #", N);
12636               end if;
12637            end;
12638         end if;
12639      end Check_Possible_Deferred_Completion;
12640
12641      ---------------------------------
12642      -- Check_Recursive_Declaration --
12643      ---------------------------------
12644
12645      procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12646         Comp : Entity_Id;
12647
12648      begin
12649         if Is_Record_Type (Typ) then
12650            Comp := First_Component (Typ);
12651            while Present (Comp) loop
12652               if Comes_From_Source (Comp) then
12653                  if Present (Expression (Parent (Comp)))
12654                    and then Is_Entity_Name (Expression (Parent (Comp)))
12655                    and then Entity (Expression (Parent (Comp))) = Prev
12656                  then
12657                     Error_Msg_Sloc := Sloc (Parent (Comp));
12658                     Error_Msg_NE
12659                       ("illegal circularity with declaration for & #",
12660                         N, Comp);
12661                     return;
12662
12663                  elsif Is_Record_Type (Etype (Comp)) then
12664                     Check_Recursive_Declaration (Etype (Comp));
12665                  end if;
12666               end if;
12667
12668               Next_Component (Comp);
12669            end loop;
12670         end if;
12671      end Check_Recursive_Declaration;
12672
12673   --  Start of processing for Constant_Redeclaration
12674
12675   begin
12676      if Nkind (Parent (Prev)) = N_Object_Declaration then
12677         if Nkind (Object_Definition
12678                     (Parent (Prev))) = N_Subtype_Indication
12679         then
12680            --  Find type of new declaration. The constraints of the two
12681            --  views must match statically, but there is no point in
12682            --  creating an itype for the full view.
12683
12684            if Nkind (Obj_Def) = N_Subtype_Indication then
12685               Find_Type (Subtype_Mark (Obj_Def));
12686               New_T := Entity (Subtype_Mark (Obj_Def));
12687
12688            else
12689               Find_Type (Obj_Def);
12690               New_T := Entity (Obj_Def);
12691            end if;
12692
12693            T := Etype (Prev);
12694
12695         else
12696            --  The full view may impose a constraint, even if the partial
12697            --  view does not, so construct the subtype.
12698
12699            New_T := Find_Type_Of_Object (Obj_Def, N);
12700            T     := New_T;
12701         end if;
12702
12703      else
12704         --  Current declaration is illegal, diagnosed below in Enter_Name
12705
12706         T := Empty;
12707         New_T := Any_Type;
12708      end if;
12709
12710      --  If previous full declaration or a renaming declaration exists, or if
12711      --  a homograph is present, let Enter_Name handle it, either with an
12712      --  error or with the removal of an overridden implicit subprogram.
12713      --  The previous one is a full declaration if it has an expression
12714      --  (which in the case of an aggregate is indicated by the Init flag).
12715
12716      if Ekind (Prev) /= E_Constant
12717        or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12718        or else Present (Expression (Parent (Prev)))
12719        or else Has_Init_Expression (Parent (Prev))
12720        or else Present (Full_View (Prev))
12721      then
12722         Enter_Name (Id);
12723
12724      --  Verify that types of both declarations match, or else that both types
12725      --  are anonymous access types whose designated subtypes statically match
12726      --  (as allowed in Ada 2005 by AI-385).
12727
12728      elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12729        and then
12730          (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12731             or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12732             or else Is_Access_Constant (Etype (New_T)) /=
12733                     Is_Access_Constant (Etype (Prev))
12734             or else Can_Never_Be_Null (Etype (New_T)) /=
12735                     Can_Never_Be_Null (Etype (Prev))
12736             or else Null_Exclusion_Present (Parent (Prev)) /=
12737                     Null_Exclusion_Present (Parent (Id))
12738             or else not Subtypes_Statically_Match
12739                           (Designated_Type (Etype (Prev)),
12740                            Designated_Type (Etype (New_T))))
12741      then
12742         Error_Msg_Sloc := Sloc (Prev);
12743         Error_Msg_N ("type does not match declaration#", N);
12744         Set_Full_View (Prev, Id);
12745         Set_Etype (Id, Any_Type);
12746
12747         --  A deferred constant whose type is an anonymous array is always
12748         --  illegal (unless imported). A detailed error message might be
12749         --  helpful for Ada beginners.
12750
12751         if Nkind (Object_Definition (Parent (Prev)))
12752            = N_Constrained_Array_Definition
12753           and then Nkind (Object_Definition (N))
12754              = N_Constrained_Array_Definition
12755         then
12756            Error_Msg_N ("\each anonymous array is a distinct type", N);
12757            Error_Msg_N ("a deferred constant must have a named type",
12758              Object_Definition (Parent (Prev)));
12759         end if;
12760
12761      elsif
12762        Null_Exclusion_Present (Parent (Prev))
12763          and then not Null_Exclusion_Present (N)
12764      then
12765         Error_Msg_Sloc := Sloc (Prev);
12766         Error_Msg_N ("null-exclusion does not match declaration#", N);
12767         Set_Full_View (Prev, Id);
12768         Set_Etype (Id, Any_Type);
12769
12770      --  If so, process the full constant declaration
12771
12772      else
12773         --  RM 7.4 (6): If the subtype defined by the subtype_indication in
12774         --  the deferred declaration is constrained, then the subtype defined
12775         --  by the subtype_indication in the full declaration shall match it
12776         --  statically.
12777
12778         Check_Possible_Deferred_Completion
12779           (Prev_Id      => Prev,
12780            Prev_Obj_Def => Object_Definition (Parent (Prev)),
12781            Curr_Obj_Def => Obj_Def);
12782
12783         Set_Full_View (Prev, Id);
12784         Set_Is_Public (Id, Is_Public (Prev));
12785         Set_Is_Internal (Id);
12786         Append_Entity (Id, Current_Scope);
12787
12788         --  Check ALIASED present if present before (RM 7.4(7))
12789
12790         if Is_Aliased (Prev)
12791           and then not Aliased_Present (N)
12792         then
12793            Error_Msg_Sloc := Sloc (Prev);
12794            Error_Msg_N ("ALIASED required (see declaration #)", N);
12795         end if;
12796
12797         --  Check that placement is in private part and that the incomplete
12798         --  declaration appeared in the visible part.
12799
12800         if Ekind (Current_Scope) = E_Package
12801           and then not In_Private_Part (Current_Scope)
12802         then
12803            Error_Msg_Sloc := Sloc (Prev);
12804            Error_Msg_N
12805              ("full constant for declaration # must be in private part", N);
12806
12807         elsif Ekind (Current_Scope) = E_Package
12808           and then
12809             List_Containing (Parent (Prev)) /=
12810               Visible_Declarations (Package_Specification (Current_Scope))
12811         then
12812            Error_Msg_N
12813              ("deferred constant must be declared in visible part",
12814                 Parent (Prev));
12815         end if;
12816
12817         if Is_Access_Type (T)
12818           and then Nkind (Expression (N)) = N_Allocator
12819         then
12820            Check_Recursive_Declaration (Designated_Type (T));
12821         end if;
12822
12823         --  A deferred constant is a visible entity. If type has invariants,
12824         --  verify that the initial value satisfies them. This is not done in
12825         --  GNATprove mode, as GNATprove handles invariant checks itself.
12826
12827         if Has_Invariants (T)
12828           and then Present (Invariant_Procedure (T))
12829           and then not GNATprove_Mode
12830         then
12831            Insert_After (N,
12832              Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12833         end if;
12834      end if;
12835   end Constant_Redeclaration;
12836
12837   ----------------------
12838   -- Constrain_Access --
12839   ----------------------
12840
12841   procedure Constrain_Access
12842     (Def_Id      : in out Entity_Id;
12843      S           : Node_Id;
12844      Related_Nod : Node_Id)
12845   is
12846      T             : constant Entity_Id := Entity (Subtype_Mark (S));
12847      Desig_Type    : constant Entity_Id := Designated_Type (T);
12848      Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12849      Constraint_OK : Boolean := True;
12850
12851   begin
12852      if Is_Array_Type (Desig_Type) then
12853         Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12854
12855      elsif (Is_Record_Type (Desig_Type)
12856              or else Is_Incomplete_Or_Private_Type (Desig_Type))
12857        and then not Is_Constrained (Desig_Type)
12858      then
12859         --  ??? The following code is a temporary bypass to ignore a
12860         --  discriminant constraint on access type if it is constraining
12861         --  the current record. Avoid creating the implicit subtype of the
12862         --  record we are currently compiling since right now, we cannot
12863         --  handle these. For now, just return the access type itself.
12864
12865         if Desig_Type = Current_Scope
12866           and then No (Def_Id)
12867         then
12868            Set_Ekind (Desig_Subtype, E_Record_Subtype);
12869            Def_Id := Entity (Subtype_Mark (S));
12870
12871            --  This call added to ensure that the constraint is analyzed
12872            --  (needed for a B test). Note that we still return early from
12873            --  this procedure to avoid recursive processing. ???
12874
12875            Constrain_Discriminated_Type
12876              (Desig_Subtype, S, Related_Nod, For_Access => True);
12877            return;
12878         end if;
12879
12880         --  Enforce rule that the constraint is illegal if there is an
12881         --  unconstrained view of the designated type. This means that the
12882         --  partial view (either a private type declaration or a derivation
12883         --  from a private type) has no discriminants. (Defect Report
12884         --  8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12885
12886         --  Rule updated for Ada 2005: The private type is said to have
12887         --  a constrained partial view, given that objects of the type
12888         --  can be declared. Furthermore, the rule applies to all access
12889         --  types, unlike the rule concerning default discriminants (see
12890         --  RM 3.7.1(7/3))
12891
12892         if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12893           and then Has_Private_Declaration (Desig_Type)
12894           and then In_Open_Scopes (Scope (Desig_Type))
12895           and then Has_Discriminants (Desig_Type)
12896         then
12897            declare
12898               Pack  : constant Node_Id :=
12899                         Unit_Declaration_Node (Scope (Desig_Type));
12900               Decls : List_Id;
12901               Decl  : Node_Id;
12902
12903            begin
12904               if Nkind (Pack) = N_Package_Declaration then
12905                  Decls := Visible_Declarations (Specification (Pack));
12906                  Decl := First (Decls);
12907                  while Present (Decl) loop
12908                     if (Nkind (Decl) = N_Private_Type_Declaration
12909                          and then Chars (Defining_Identifier (Decl)) =
12910                                                           Chars (Desig_Type))
12911
12912                       or else
12913                        (Nkind (Decl) = N_Full_Type_Declaration
12914                          and then
12915                            Chars (Defining_Identifier (Decl)) =
12916                                                     Chars (Desig_Type)
12917                          and then Is_Derived_Type (Desig_Type)
12918                          and then
12919                            Has_Private_Declaration (Etype (Desig_Type)))
12920                     then
12921                        if No (Discriminant_Specifications (Decl)) then
12922                           Error_Msg_N
12923                             ("cannot constrain access type if designated "
12924                              & "type has constrained partial view", S);
12925                        end if;
12926
12927                        exit;
12928                     end if;
12929
12930                     Next (Decl);
12931                  end loop;
12932               end if;
12933            end;
12934         end if;
12935
12936         Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12937           For_Access => True);
12938
12939      elsif Is_Concurrent_Type (Desig_Type)
12940        and then not Is_Constrained (Desig_Type)
12941      then
12942         Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12943
12944      else
12945         Error_Msg_N ("invalid constraint on access type", S);
12946
12947         --  We simply ignore an invalid constraint
12948
12949         Desig_Subtype := Desig_Type;
12950         Constraint_OK := False;
12951      end if;
12952
12953      if No (Def_Id) then
12954         Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12955      else
12956         Set_Ekind (Def_Id, E_Access_Subtype);
12957      end if;
12958
12959      if Constraint_OK then
12960         Set_Etype (Def_Id, Base_Type (T));
12961
12962         if Is_Private_Type (Desig_Type) then
12963            Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12964         end if;
12965      else
12966         Set_Etype (Def_Id, Any_Type);
12967      end if;
12968
12969      Set_Size_Info                (Def_Id, T);
12970      Set_Is_Constrained           (Def_Id, Constraint_OK);
12971      Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12972      Set_Depends_On_Private       (Def_Id, Has_Private_Component (Def_Id));
12973      Set_Is_Access_Constant       (Def_Id, Is_Access_Constant (T));
12974
12975      Conditional_Delay (Def_Id, T);
12976
12977      --  AI-363 : Subtypes of general access types whose designated types have
12978      --  default discriminants are disallowed. In instances, the rule has to
12979      --  be checked against the actual, of which T is the subtype. In a
12980      --  generic body, the rule is checked assuming that the actual type has
12981      --  defaulted discriminants.
12982
12983      if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12984         if Ekind (Base_Type (T)) = E_General_Access_Type
12985           and then Has_Defaulted_Discriminants (Desig_Type)
12986         then
12987            if Ada_Version < Ada_2005 then
12988               Error_Msg_N
12989                 ("access subtype of general access type would not " &
12990                  "be allowed in Ada 2005?y?", S);
12991            else
12992               Error_Msg_N
12993                 ("access subtype of general access type not allowed", S);
12994            end if;
12995
12996            Error_Msg_N ("\discriminants have defaults", S);
12997
12998         elsif Is_Access_Type (T)
12999           and then Is_Generic_Type (Desig_Type)
13000           and then Has_Discriminants (Desig_Type)
13001           and then In_Package_Body (Current_Scope)
13002         then
13003            if Ada_Version < Ada_2005 then
13004               Error_Msg_N
13005                 ("access subtype would not be allowed in generic body "
13006                  & "in Ada 2005?y?", S);
13007            else
13008               Error_Msg_N
13009                 ("access subtype not allowed in generic body", S);
13010            end if;
13011
13012            Error_Msg_N
13013              ("\designated type is a discriminated formal", S);
13014         end if;
13015      end if;
13016   end Constrain_Access;
13017
13018   ---------------------
13019   -- Constrain_Array --
13020   ---------------------
13021
13022   procedure Constrain_Array
13023     (Def_Id      : in out Entity_Id;
13024      SI          : Node_Id;
13025      Related_Nod : Node_Id;
13026      Related_Id  : Entity_Id;
13027      Suffix      : Character)
13028   is
13029      C                     : constant Node_Id := Constraint (SI);
13030      Number_Of_Constraints : Nat := 0;
13031      Index                 : Node_Id;
13032      S, T                  : Entity_Id;
13033      Constraint_OK         : Boolean := True;
13034
13035   begin
13036      T := Entity (Subtype_Mark (SI));
13037
13038      if Is_Access_Type (T) then
13039         T := Designated_Type (T);
13040      end if;
13041
13042      --  If an index constraint follows a subtype mark in a subtype indication
13043      --  then the type or subtype denoted by the subtype mark must not already
13044      --  impose an index constraint. The subtype mark must denote either an
13045      --  unconstrained array type or an access type whose designated type
13046      --  is such an array type... (RM 3.6.1)
13047
13048      if Is_Constrained (T) then
13049         Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
13050         Constraint_OK := False;
13051
13052      else
13053         S := First (Constraints (C));
13054         while Present (S) loop
13055            Number_Of_Constraints := Number_Of_Constraints + 1;
13056            Next (S);
13057         end loop;
13058
13059         --  In either case, the index constraint must provide a discrete
13060         --  range for each index of the array type and the type of each
13061         --  discrete range must be the same as that of the corresponding
13062         --  index. (RM 3.6.1)
13063
13064         if Number_Of_Constraints /= Number_Dimensions (T) then
13065            Error_Msg_NE ("incorrect number of index constraints for }", C, T);
13066            Constraint_OK := False;
13067
13068         else
13069            S := First (Constraints (C));
13070            Index := First_Index (T);
13071            Analyze (Index);
13072
13073            --  Apply constraints to each index type
13074
13075            for J in 1 .. Number_Of_Constraints loop
13076               Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
13077               Next (Index);
13078               Next (S);
13079            end loop;
13080
13081         end if;
13082      end if;
13083
13084      if No (Def_Id) then
13085         Def_Id :=
13086           Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
13087         Set_Parent (Def_Id, Related_Nod);
13088
13089      else
13090         Set_Ekind (Def_Id, E_Array_Subtype);
13091      end if;
13092
13093      Set_Size_Info      (Def_Id,                (T));
13094      Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13095      Set_Etype          (Def_Id, Base_Type      (T));
13096
13097      if Constraint_OK then
13098         Set_First_Index (Def_Id, First (Constraints (C)));
13099      else
13100         Set_First_Index (Def_Id, First_Index (T));
13101      end if;
13102
13103      Set_Is_Constrained     (Def_Id, True);
13104      Set_Is_Aliased         (Def_Id, Is_Aliased (T));
13105      Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13106
13107      Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
13108      Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
13109
13110      --  A subtype does not inherit the Packed_Array_Impl_Type of is parent.
13111      --  We need to initialize the attribute because if Def_Id is previously
13112      --  analyzed through a limited_with clause, it will have the attributes
13113      --  of an incomplete type, one of which is an Elist that overlaps the
13114      --  Packed_Array_Impl_Type field.
13115
13116      Set_Packed_Array_Impl_Type (Def_Id, Empty);
13117
13118      --  Build a freeze node if parent still needs one. Also make sure that
13119      --  the Depends_On_Private status is set because the subtype will need
13120      --  reprocessing at the time the base type does, and also we must set a
13121      --  conditional delay.
13122
13123      Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13124      Conditional_Delay (Def_Id, T);
13125   end Constrain_Array;
13126
13127   ------------------------------
13128   -- Constrain_Component_Type --
13129   ------------------------------
13130
13131   function Constrain_Component_Type
13132     (Comp            : Entity_Id;
13133      Constrained_Typ : Entity_Id;
13134      Related_Node    : Node_Id;
13135      Typ             : Entity_Id;
13136      Constraints     : Elist_Id) return Entity_Id
13137   is
13138      Loc         : constant Source_Ptr := Sloc (Constrained_Typ);
13139      Compon_Type : constant Entity_Id := Etype (Comp);
13140
13141      function Build_Constrained_Array_Type
13142        (Old_Type : Entity_Id) return Entity_Id;
13143      --  If Old_Type is an array type, one of whose indexes is constrained
13144      --  by a discriminant, build an Itype whose constraint replaces the
13145      --  discriminant with its value in the constraint.
13146
13147      function Build_Constrained_Discriminated_Type
13148        (Old_Type : Entity_Id) return Entity_Id;
13149      --  Ditto for record components
13150
13151      function Build_Constrained_Access_Type
13152        (Old_Type : Entity_Id) return Entity_Id;
13153      --  Ditto for access types. Makes use of previous two functions, to
13154      --  constrain designated type.
13155
13156      function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13157      --  T is an array or discriminated type, C is a list of constraints
13158      --  that apply to T. This routine builds the constrained subtype.
13159
13160      function Is_Discriminant (Expr : Node_Id) return Boolean;
13161      --  Returns True if Expr is a discriminant
13162
13163      function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13164      --  Find the value of discriminant Discrim in Constraint
13165
13166      -----------------------------------
13167      -- Build_Constrained_Access_Type --
13168      -----------------------------------
13169
13170      function Build_Constrained_Access_Type
13171        (Old_Type : Entity_Id) return Entity_Id
13172      is
13173         Desig_Type    : constant Entity_Id := Designated_Type (Old_Type);
13174         Itype         : Entity_Id;
13175         Desig_Subtype : Entity_Id;
13176         Scop          : Entity_Id;
13177
13178      begin
13179         --  if the original access type was not embedded in the enclosing
13180         --  type definition, there is no need to produce a new access
13181         --  subtype. In fact every access type with an explicit constraint
13182         --  generates an itype whose scope is the enclosing record.
13183
13184         if not Is_Type (Scope (Old_Type)) then
13185            return Old_Type;
13186
13187         elsif Is_Array_Type (Desig_Type) then
13188            Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13189
13190         elsif Has_Discriminants (Desig_Type) then
13191
13192            --  This may be an access type to an enclosing record type for
13193            --  which we are constructing the constrained components. Return
13194            --  the enclosing record subtype. This is not always correct,
13195            --  but avoids infinite recursion. ???
13196
13197            Desig_Subtype := Any_Type;
13198
13199            for J in reverse 0 .. Scope_Stack.Last loop
13200               Scop := Scope_Stack.Table (J).Entity;
13201
13202               if Is_Type (Scop)
13203                 and then Base_Type (Scop) = Base_Type (Desig_Type)
13204               then
13205                  Desig_Subtype := Scop;
13206               end if;
13207
13208               exit when not Is_Type (Scop);
13209            end loop;
13210
13211            if Desig_Subtype = Any_Type then
13212               Desig_Subtype :=
13213                 Build_Constrained_Discriminated_Type (Desig_Type);
13214            end if;
13215
13216         else
13217            return Old_Type;
13218         end if;
13219
13220         if Desig_Subtype /= Desig_Type then
13221
13222            --  The Related_Node better be here or else we won't be able
13223            --  to attach new itypes to a node in the tree.
13224
13225            pragma Assert (Present (Related_Node));
13226
13227            Itype := Create_Itype (E_Access_Subtype, Related_Node);
13228
13229            Set_Etype                    (Itype, Base_Type      (Old_Type));
13230            Set_Size_Info                (Itype,                (Old_Type));
13231            Set_Directly_Designated_Type (Itype, Desig_Subtype);
13232            Set_Depends_On_Private       (Itype, Has_Private_Component
13233                                                                (Old_Type));
13234            Set_Is_Access_Constant       (Itype, Is_Access_Constant
13235                                                                (Old_Type));
13236
13237            --  The new itype needs freezing when it depends on a not frozen
13238            --  type and the enclosing subtype needs freezing.
13239
13240            if Has_Delayed_Freeze (Constrained_Typ)
13241              and then not Is_Frozen (Constrained_Typ)
13242            then
13243               Conditional_Delay (Itype, Base_Type (Old_Type));
13244            end if;
13245
13246            return Itype;
13247
13248         else
13249            return Old_Type;
13250         end if;
13251      end Build_Constrained_Access_Type;
13252
13253      ----------------------------------
13254      -- Build_Constrained_Array_Type --
13255      ----------------------------------
13256
13257      function Build_Constrained_Array_Type
13258        (Old_Type : Entity_Id) return Entity_Id
13259      is
13260         Lo_Expr     : Node_Id;
13261         Hi_Expr     : Node_Id;
13262         Old_Index   : Node_Id;
13263         Range_Node  : Node_Id;
13264         Constr_List : List_Id;
13265
13266         Need_To_Create_Itype : Boolean := False;
13267
13268      begin
13269         Old_Index := First_Index (Old_Type);
13270         while Present (Old_Index) loop
13271            Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13272
13273            if Is_Discriminant (Lo_Expr)
13274                 or else
13275               Is_Discriminant (Hi_Expr)
13276            then
13277               Need_To_Create_Itype := True;
13278            end if;
13279
13280            Next_Index (Old_Index);
13281         end loop;
13282
13283         if Need_To_Create_Itype then
13284            Constr_List := New_List;
13285
13286            Old_Index := First_Index (Old_Type);
13287            while Present (Old_Index) loop
13288               Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13289
13290               if Is_Discriminant (Lo_Expr) then
13291                  Lo_Expr := Get_Discr_Value (Lo_Expr);
13292               end if;
13293
13294               if Is_Discriminant (Hi_Expr) then
13295                  Hi_Expr := Get_Discr_Value (Hi_Expr);
13296               end if;
13297
13298               Range_Node :=
13299                 Make_Range
13300                   (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13301
13302               Append (Range_Node, To => Constr_List);
13303
13304               Next_Index (Old_Index);
13305            end loop;
13306
13307            return Build_Subtype (Old_Type, Constr_List);
13308
13309         else
13310            return Old_Type;
13311         end if;
13312      end Build_Constrained_Array_Type;
13313
13314      ------------------------------------------
13315      -- Build_Constrained_Discriminated_Type --
13316      ------------------------------------------
13317
13318      function Build_Constrained_Discriminated_Type
13319        (Old_Type : Entity_Id) return Entity_Id
13320      is
13321         Expr           : Node_Id;
13322         Constr_List    : List_Id;
13323         Old_Constraint : Elmt_Id;
13324
13325         Need_To_Create_Itype : Boolean := False;
13326
13327      begin
13328         Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13329         while Present (Old_Constraint) loop
13330            Expr := Node (Old_Constraint);
13331
13332            if Is_Discriminant (Expr) then
13333               Need_To_Create_Itype := True;
13334            end if;
13335
13336            Next_Elmt (Old_Constraint);
13337         end loop;
13338
13339         if Need_To_Create_Itype then
13340            Constr_List := New_List;
13341
13342            Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13343            while Present (Old_Constraint) loop
13344               Expr := Node (Old_Constraint);
13345
13346               if Is_Discriminant (Expr) then
13347                  Expr := Get_Discr_Value (Expr);
13348               end if;
13349
13350               Append (New_Copy_Tree (Expr), To => Constr_List);
13351
13352               Next_Elmt (Old_Constraint);
13353            end loop;
13354
13355            return Build_Subtype (Old_Type, Constr_List);
13356
13357         else
13358            return Old_Type;
13359         end if;
13360      end Build_Constrained_Discriminated_Type;
13361
13362      -------------------
13363      -- Build_Subtype --
13364      -------------------
13365
13366      function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13367         Indic       : Node_Id;
13368         Subtyp_Decl : Node_Id;
13369         Def_Id      : Entity_Id;
13370         Btyp        : Entity_Id := Base_Type (T);
13371
13372      begin
13373         --  The Related_Node better be here or else we won't be able to
13374         --  attach new itypes to a node in the tree.
13375
13376         pragma Assert (Present (Related_Node));
13377
13378         --  If the view of the component's type is incomplete or private
13379         --  with unknown discriminants, then the constraint must be applied
13380         --  to the full type.
13381
13382         if Has_Unknown_Discriminants (Btyp)
13383           and then Present (Underlying_Type (Btyp))
13384         then
13385            Btyp := Underlying_Type (Btyp);
13386         end if;
13387
13388         Indic :=
13389           Make_Subtype_Indication (Loc,
13390             Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13391             Constraint   => Make_Index_Or_Discriminant_Constraint (Loc, C));
13392
13393         Def_Id := Create_Itype (Ekind (T), Related_Node);
13394
13395         Subtyp_Decl :=
13396           Make_Subtype_Declaration (Loc,
13397             Defining_Identifier => Def_Id,
13398             Subtype_Indication  => Indic);
13399
13400         Set_Parent (Subtyp_Decl, Parent (Related_Node));
13401
13402         --  Itypes must be analyzed with checks off (see package Itypes)
13403
13404         Analyze (Subtyp_Decl, Suppress => All_Checks);
13405
13406         return Def_Id;
13407      end Build_Subtype;
13408
13409      ---------------------
13410      -- Get_Discr_Value --
13411      ---------------------
13412
13413      function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13414         D : Entity_Id;
13415         E : Elmt_Id;
13416
13417      begin
13418         --  The discriminant may be declared for the type, in which case we
13419         --  find it by iterating over the list of discriminants. If the
13420         --  discriminant is inherited from a parent type, it appears as the
13421         --  corresponding discriminant of the current type. This will be the
13422         --  case when constraining an inherited component whose constraint is
13423         --  given by a discriminant of the parent.
13424
13425         D := First_Discriminant (Typ);
13426         E := First_Elmt (Constraints);
13427
13428         while Present (D) loop
13429            if D = Entity (Discrim)
13430              or else D = CR_Discriminant (Entity (Discrim))
13431              or else Corresponding_Discriminant (D) = Entity (Discrim)
13432            then
13433               return Node (E);
13434            end if;
13435
13436            Next_Discriminant (D);
13437            Next_Elmt (E);
13438         end loop;
13439
13440         --  The Corresponding_Discriminant mechanism is incomplete, because
13441         --  the correspondence between new and old discriminants is not one
13442         --  to one: one new discriminant can constrain several old ones. In
13443         --  that case, scan sequentially the stored_constraint, the list of
13444         --  discriminants of the parents, and the constraints.
13445
13446         --  Previous code checked for the present of the Stored_Constraint
13447         --  list for the derived type, but did not use it at all. Should it
13448         --  be present when the component is a discriminated task type?
13449
13450         if Is_Derived_Type (Typ)
13451           and then Scope (Entity (Discrim)) = Etype (Typ)
13452         then
13453            D := First_Discriminant (Etype (Typ));
13454            E := First_Elmt (Constraints);
13455            while Present (D) loop
13456               if D = Entity (Discrim) then
13457                  return Node (E);
13458               end if;
13459
13460               Next_Discriminant (D);
13461               Next_Elmt (E);
13462            end loop;
13463         end if;
13464
13465         --  Something is wrong if we did not find the value
13466
13467         raise Program_Error;
13468      end Get_Discr_Value;
13469
13470      ---------------------
13471      -- Is_Discriminant --
13472      ---------------------
13473
13474      function Is_Discriminant (Expr : Node_Id) return Boolean is
13475         Discrim_Scope : Entity_Id;
13476
13477      begin
13478         if Denotes_Discriminant (Expr) then
13479            Discrim_Scope := Scope (Entity (Expr));
13480
13481            --  Either we have a reference to one of Typ's discriminants,
13482
13483            pragma Assert (Discrim_Scope = Typ
13484
13485               --  or to the discriminants of the parent type, in the case
13486               --  of a derivation of a tagged type with variants.
13487
13488               or else Discrim_Scope = Etype (Typ)
13489               or else Full_View (Discrim_Scope) = Etype (Typ)
13490
13491               --  or same as above for the case where the discriminants
13492               --  were declared in Typ's private view.
13493
13494               or else (Is_Private_Type (Discrim_Scope)
13495                         and then Chars (Discrim_Scope) = Chars (Typ))
13496
13497               --  or else we are deriving from the full view and the
13498               --  discriminant is declared in the private entity.
13499
13500               or else (Is_Private_Type (Typ)
13501                         and then Chars (Discrim_Scope) = Chars (Typ))
13502
13503               --  Or we are constrained the corresponding record of a
13504               --  synchronized type that completes a private declaration.
13505
13506               or else (Is_Concurrent_Record_Type (Typ)
13507                         and then
13508                           Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13509
13510               --  or we have a class-wide type, in which case make sure the
13511               --  discriminant found belongs to the root type.
13512
13513               or else (Is_Class_Wide_Type (Typ)
13514                         and then Etype (Typ) = Discrim_Scope));
13515
13516            return True;
13517         end if;
13518
13519         --  In all other cases we have something wrong
13520
13521         return False;
13522      end Is_Discriminant;
13523
13524   --  Start of processing for Constrain_Component_Type
13525
13526   begin
13527      if Nkind (Parent (Comp)) = N_Component_Declaration
13528        and then Comes_From_Source (Parent (Comp))
13529        and then Comes_From_Source
13530          (Subtype_Indication (Component_Definition (Parent (Comp))))
13531        and then
13532          Is_Entity_Name
13533            (Subtype_Indication (Component_Definition (Parent (Comp))))
13534      then
13535         return Compon_Type;
13536
13537      elsif Is_Array_Type (Compon_Type) then
13538         return Build_Constrained_Array_Type (Compon_Type);
13539
13540      elsif Has_Discriminants (Compon_Type) then
13541         return Build_Constrained_Discriminated_Type (Compon_Type);
13542
13543      elsif Is_Access_Type (Compon_Type) then
13544         return Build_Constrained_Access_Type (Compon_Type);
13545
13546      else
13547         return Compon_Type;
13548      end if;
13549   end Constrain_Component_Type;
13550
13551   --------------------------
13552   -- Constrain_Concurrent --
13553   --------------------------
13554
13555   --  For concurrent types, the associated record value type carries the same
13556   --  discriminants, so when we constrain a concurrent type, we must constrain
13557   --  the corresponding record type as well.
13558
13559   procedure Constrain_Concurrent
13560     (Def_Id      : in out Entity_Id;
13561      SI          : Node_Id;
13562      Related_Nod : Node_Id;
13563      Related_Id  : Entity_Id;
13564      Suffix      : Character)
13565   is
13566      --  Retrieve Base_Type to ensure getting to the concurrent type in the
13567      --  case of a private subtype (needed when only doing semantic analysis).
13568
13569      T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13570      T_Val : Entity_Id;
13571
13572   begin
13573      if Is_Access_Type (T_Ent) then
13574         T_Ent := Designated_Type (T_Ent);
13575      end if;
13576
13577      T_Val := Corresponding_Record_Type (T_Ent);
13578
13579      if Present (T_Val) then
13580
13581         if No (Def_Id) then
13582            Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13583
13584            --  Elaborate itype now, as it may be used in a subsequent
13585            --  synchronized operation in another scope.
13586
13587            if Nkind (Related_Nod) = N_Full_Type_Declaration then
13588               Build_Itype_Reference (Def_Id, Related_Nod);
13589            end if;
13590         end if;
13591
13592         Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13593         Set_First_Private_Entity (Def_Id, First_Private_Entity (T_Ent));
13594
13595         Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13596         Set_Corresponding_Record_Type (Def_Id,
13597           Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13598
13599      else
13600         --  If there is no associated record, expansion is disabled and this
13601         --  is a generic context. Create a subtype in any case, so that
13602         --  semantic analysis can proceed.
13603
13604         if No (Def_Id) then
13605            Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13606         end if;
13607
13608         Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13609      end if;
13610   end Constrain_Concurrent;
13611
13612   ------------------------------------
13613   -- Constrain_Corresponding_Record --
13614   ------------------------------------
13615
13616   function Constrain_Corresponding_Record
13617     (Prot_Subt   : Entity_Id;
13618      Corr_Rec    : Entity_Id;
13619      Related_Nod : Node_Id) return Entity_Id
13620   is
13621      T_Sub : constant Entity_Id :=
13622                Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
13623
13624   begin
13625      Set_Etype             (T_Sub, Corr_Rec);
13626      Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13627      Set_Is_Constrained    (T_Sub, True);
13628      Set_First_Entity      (T_Sub, First_Entity (Corr_Rec));
13629      Set_Last_Entity       (T_Sub, Last_Entity  (Corr_Rec));
13630
13631      if Has_Discriminants (Prot_Subt) then -- False only if errors.
13632         Set_Discriminant_Constraint
13633           (T_Sub, Discriminant_Constraint (Prot_Subt));
13634         Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13635         Create_Constrained_Components
13636           (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13637      end if;
13638
13639      Set_Depends_On_Private      (T_Sub, Has_Private_Component (T_Sub));
13640
13641      if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13642         Conditional_Delay (T_Sub, Corr_Rec);
13643
13644      else
13645         --  This is a component subtype: it will be frozen in the context of
13646         --  the enclosing record's init_proc, so that discriminant references
13647         --  are resolved to discriminals. (Note: we used to skip freezing
13648         --  altogether in that case, which caused errors downstream for
13649         --  components of a bit packed array type).
13650
13651         Set_Has_Delayed_Freeze (T_Sub);
13652      end if;
13653
13654      return T_Sub;
13655   end Constrain_Corresponding_Record;
13656
13657   -----------------------
13658   -- Constrain_Decimal --
13659   -----------------------
13660
13661   procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13662      T           : constant Entity_Id  := Entity (Subtype_Mark (S));
13663      C           : constant Node_Id    := Constraint (S);
13664      Loc         : constant Source_Ptr := Sloc (C);
13665      Range_Expr  : Node_Id;
13666      Digits_Expr : Node_Id;
13667      Digits_Val  : Uint;
13668      Bound_Val   : Ureal;
13669
13670   begin
13671      Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13672
13673      if Nkind (C) = N_Range_Constraint then
13674         Range_Expr := Range_Expression (C);
13675         Digits_Val := Digits_Value (T);
13676
13677      else
13678         pragma Assert (Nkind (C) = N_Digits_Constraint);
13679
13680         Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13681
13682         Digits_Expr := Digits_Expression (C);
13683         Analyze_And_Resolve (Digits_Expr, Any_Integer);
13684
13685         Check_Digits_Expression (Digits_Expr);
13686         Digits_Val := Expr_Value (Digits_Expr);
13687
13688         if Digits_Val > Digits_Value (T) then
13689            Error_Msg_N
13690               ("digits expression is incompatible with subtype", C);
13691            Digits_Val := Digits_Value (T);
13692         end if;
13693
13694         if Present (Range_Constraint (C)) then
13695            Range_Expr := Range_Expression (Range_Constraint (C));
13696         else
13697            Range_Expr := Empty;
13698         end if;
13699      end if;
13700
13701      Set_Etype            (Def_Id, Base_Type        (T));
13702      Set_Size_Info        (Def_Id,                  (T));
13703      Set_First_Rep_Item   (Def_Id, First_Rep_Item   (T));
13704      Set_Delta_Value      (Def_Id, Delta_Value      (T));
13705      Set_Scale_Value      (Def_Id, Scale_Value      (T));
13706      Set_Small_Value      (Def_Id, Small_Value      (T));
13707      Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13708      Set_Digits_Value     (Def_Id, Digits_Val);
13709
13710      --  Manufacture range from given digits value if no range present
13711
13712      if No (Range_Expr) then
13713         Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13714         Range_Expr :=
13715           Make_Range (Loc,
13716             Low_Bound =>
13717               Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13718             High_Bound =>
13719               Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13720      end if;
13721
13722      Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13723      Set_Discrete_RM_Size (Def_Id);
13724
13725      --  Unconditionally delay the freeze, since we cannot set size
13726      --  information in all cases correctly until the freeze point.
13727
13728      Set_Has_Delayed_Freeze (Def_Id);
13729   end Constrain_Decimal;
13730
13731   ----------------------------------
13732   -- Constrain_Discriminated_Type --
13733   ----------------------------------
13734
13735   procedure Constrain_Discriminated_Type
13736     (Def_Id      : Entity_Id;
13737      S           : Node_Id;
13738      Related_Nod : Node_Id;
13739      For_Access  : Boolean := False)
13740   is
13741      E : Entity_Id := Entity (Subtype_Mark (S));
13742      T : Entity_Id;
13743
13744      procedure Fixup_Bad_Constraint;
13745      --  Called after finding a bad constraint, and after having posted an
13746      --  appropriate error message. The goal is to leave type Def_Id in as
13747      --  reasonable state as possible.
13748
13749      --------------------------
13750      -- Fixup_Bad_Constraint --
13751      --------------------------
13752
13753      procedure Fixup_Bad_Constraint is
13754      begin
13755         --  Set a reasonable Ekind for the entity, including incomplete types.
13756
13757         Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13758
13759         --  Set Etype to the known type, to reduce chances of cascaded errors
13760
13761         Set_Etype (Def_Id, E);
13762         Set_Error_Posted (Def_Id);
13763      end Fixup_Bad_Constraint;
13764
13765      --  Local variables
13766
13767      C      : Node_Id;
13768      Constr : Elist_Id := New_Elmt_List;
13769
13770   --  Start of processing for Constrain_Discriminated_Type
13771
13772   begin
13773      C := Constraint (S);
13774
13775      --  A discriminant constraint is only allowed in a subtype indication,
13776      --  after a subtype mark. This subtype mark must denote either a type
13777      --  with discriminants, or an access type whose designated type is a
13778      --  type with discriminants. A discriminant constraint specifies the
13779      --  values of these discriminants (RM 3.7.2(5)).
13780
13781      T := Base_Type (Entity (Subtype_Mark (S)));
13782
13783      if Is_Access_Type (T) then
13784         T := Designated_Type (T);
13785      end if;
13786
13787      --  In an instance it may be necessary to retrieve the full view of a
13788      --  type with unknown discriminants, or a full view with defaulted
13789      --  discriminants. In other contexts the constraint is illegal.
13790
13791      if In_Instance
13792        and then Is_Private_Type (T)
13793        and then Present (Full_View (T))
13794        and then
13795          (Has_Unknown_Discriminants (T)
13796            or else
13797              (not Has_Discriminants (T)
13798                and then Has_Discriminants (Full_View (T))
13799                and then Present (Discriminant_Default_Value
13800                           (First_Discriminant (Full_View (T))))))
13801      then
13802         T := Full_View (T);
13803         E := Full_View (E);
13804      end if;
13805
13806      --  Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13807      --  generating an error for access-to-incomplete subtypes.
13808
13809      if Ada_Version >= Ada_2005
13810        and then Ekind (T) = E_Incomplete_Type
13811        and then Nkind (Parent (S)) = N_Subtype_Declaration
13812        and then not Is_Itype (Def_Id)
13813      then
13814         --  A little sanity check: emit an error message if the type has
13815         --  discriminants to begin with. Type T may be a regular incomplete
13816         --  type or imported via a limited with clause.
13817
13818         if Has_Discriminants (T)
13819           or else (From_Limited_With (T)
13820                     and then Present (Non_Limited_View (T))
13821                     and then Nkind (Parent (Non_Limited_View (T))) =
13822                                               N_Full_Type_Declaration
13823                     and then Present (Discriminant_Specifications
13824                                         (Parent (Non_Limited_View (T)))))
13825         then
13826            Error_Msg_N
13827              ("(Ada 2005) incomplete subtype may not be constrained", C);
13828         else
13829            Error_Msg_N ("invalid constraint: type has no discriminant", C);
13830         end if;
13831
13832         Fixup_Bad_Constraint;
13833         return;
13834
13835      --  Check that the type has visible discriminants. The type may be
13836      --  a private type with unknown discriminants whose full view has
13837      --  discriminants which are invisible.
13838
13839      elsif not Has_Discriminants (T)
13840        or else
13841          (Has_Unknown_Discriminants (T)
13842             and then Is_Private_Type (T))
13843      then
13844         Error_Msg_N ("invalid constraint: type has no discriminant", C);
13845         Fixup_Bad_Constraint;
13846         return;
13847
13848      elsif Is_Constrained (E)
13849        or else (Ekind (E) = E_Class_Wide_Subtype
13850                  and then Present (Discriminant_Constraint (E)))
13851      then
13852         Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13853         Fixup_Bad_Constraint;
13854         return;
13855      end if;
13856
13857      --  T may be an unconstrained subtype (e.g. a generic actual). Constraint
13858      --  applies to the base type.
13859
13860      T := Base_Type (T);
13861
13862      Constr := Build_Discriminant_Constraints (T, S);
13863
13864      --  If the list returned was empty we had an error in building the
13865      --  discriminant constraint. We have also already signalled an error
13866      --  in the incomplete type case
13867
13868      if Is_Empty_Elmt_List (Constr) then
13869         Fixup_Bad_Constraint;
13870         return;
13871      end if;
13872
13873      Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13874   end Constrain_Discriminated_Type;
13875
13876   ---------------------------
13877   -- Constrain_Enumeration --
13878   ---------------------------
13879
13880   procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13881      T : constant Entity_Id := Entity (Subtype_Mark (S));
13882      C : constant Node_Id   := Constraint (S);
13883
13884   begin
13885      Set_Ekind (Def_Id, E_Enumeration_Subtype);
13886
13887      Set_First_Literal     (Def_Id, First_Literal (Base_Type (T)));
13888
13889      Set_Etype             (Def_Id, Base_Type         (T));
13890      Set_Size_Info         (Def_Id,                   (T));
13891      Set_First_Rep_Item    (Def_Id, First_Rep_Item    (T));
13892      Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13893
13894      Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13895
13896      Set_Discrete_RM_Size (Def_Id);
13897   end Constrain_Enumeration;
13898
13899   ----------------------
13900   -- Constrain_Float --
13901   ----------------------
13902
13903   procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13904      T    : constant Entity_Id := Entity (Subtype_Mark (S));
13905      C    : Node_Id;
13906      D    : Node_Id;
13907      Rais : Node_Id;
13908
13909   begin
13910      Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13911
13912      Set_Etype          (Def_Id, Base_Type      (T));
13913      Set_Size_Info      (Def_Id,                (T));
13914      Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13915
13916      --  Process the constraint
13917
13918      C := Constraint (S);
13919
13920      --  Digits constraint present
13921
13922      if Nkind (C) = N_Digits_Constraint then
13923
13924         Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13925         Check_Restriction (No_Obsolescent_Features, C);
13926
13927         if Warn_On_Obsolescent_Feature then
13928            Error_Msg_N
13929              ("subtype digits constraint is an " &
13930               "obsolescent feature (RM J.3(8))?j?", C);
13931         end if;
13932
13933         D := Digits_Expression (C);
13934         Analyze_And_Resolve (D, Any_Integer);
13935         Check_Digits_Expression (D);
13936         Set_Digits_Value (Def_Id, Expr_Value (D));
13937
13938         --  Check that digits value is in range. Obviously we can do this
13939         --  at compile time, but it is strictly a runtime check, and of
13940         --  course there is an ACVC test that checks this.
13941
13942         if Digits_Value (Def_Id) > Digits_Value (T) then
13943            Error_Msg_Uint_1 := Digits_Value (T);
13944            Error_Msg_N ("??digits value is too large, maximum is ^", D);
13945            Rais :=
13946              Make_Raise_Constraint_Error (Sloc (D),
13947                Reason => CE_Range_Check_Failed);
13948            Insert_Action (Declaration_Node (Def_Id), Rais);
13949         end if;
13950
13951         C := Range_Constraint (C);
13952
13953      --  No digits constraint present
13954
13955      else
13956         Set_Digits_Value (Def_Id, Digits_Value (T));
13957      end if;
13958
13959      --  Range constraint present
13960
13961      if Nkind (C) = N_Range_Constraint then
13962         Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13963
13964      --  No range constraint present
13965
13966      else
13967         pragma Assert (No (C));
13968         Set_Scalar_Range (Def_Id, Scalar_Range (T));
13969      end if;
13970
13971      Set_Is_Constrained (Def_Id);
13972   end Constrain_Float;
13973
13974   ---------------------
13975   -- Constrain_Index --
13976   ---------------------
13977
13978   procedure Constrain_Index
13979     (Index        : Node_Id;
13980      S            : Node_Id;
13981      Related_Nod  : Node_Id;
13982      Related_Id   : Entity_Id;
13983      Suffix       : Character;
13984      Suffix_Index : Nat)
13985   is
13986      Def_Id : Entity_Id;
13987      R      : Node_Id := Empty;
13988      T      : constant Entity_Id := Etype (Index);
13989
13990   begin
13991      Def_Id :=
13992        Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13993      Set_Etype (Def_Id, Base_Type (T));
13994
13995      if Nkind (S) = N_Range
13996        or else
13997          (Nkind (S) = N_Attribute_Reference
13998            and then Attribute_Name (S) = Name_Range)
13999      then
14000         --  A Range attribute will be transformed into N_Range by Resolve
14001
14002         Analyze (S);
14003         Set_Etype (S, T);
14004         R := S;
14005
14006         Process_Range_Expr_In_Decl (R, T);
14007
14008         if not Error_Posted (S)
14009           and then
14010             (Nkind (S) /= N_Range
14011               or else not Covers (T, (Etype (Low_Bound (S))))
14012               or else not Covers (T, (Etype (High_Bound (S)))))
14013         then
14014            if Base_Type (T) /= Any_Type
14015              and then Etype (Low_Bound (S)) /= Any_Type
14016              and then Etype (High_Bound (S)) /= Any_Type
14017            then
14018               Error_Msg_N ("range expected", S);
14019            end if;
14020         end if;
14021
14022      elsif Nkind (S) = N_Subtype_Indication then
14023
14024         --  The parser has verified that this is a discrete indication
14025
14026         Resolve_Discrete_Subtype_Indication (S, T);
14027         Bad_Predicated_Subtype_Use
14028           ("subtype& has predicate, not allowed in index constraint",
14029            S, Entity (Subtype_Mark (S)));
14030
14031         R := Range_Expression (Constraint (S));
14032
14033         --  Capture values of bounds and generate temporaries for them if
14034         --  needed, since checks may cause duplication of the expressions
14035         --  which must not be reevaluated.
14036
14037         --  The forced evaluation removes side effects from expressions, which
14038         --  should occur also in GNATprove mode. Otherwise, we end up with
14039         --  unexpected insertions of actions at places where this is not
14040         --  supposed to occur, e.g. on default parameters of a call.
14041
14042         if Expander_Active or GNATprove_Mode then
14043            Force_Evaluation
14044              (Low_Bound (R),  Related_Id => Def_Id, Is_Low_Bound  => True);
14045            Force_Evaluation
14046              (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
14047         end if;
14048
14049      elsif Nkind (S) = N_Discriminant_Association then
14050
14051         --  Syntactically valid in subtype indication
14052
14053         Error_Msg_N ("invalid index constraint", S);
14054         Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14055         return;
14056
14057      --  Subtype_Mark case, no anonymous subtypes to construct
14058
14059      else
14060         Analyze (S);
14061
14062         if Is_Entity_Name (S) then
14063            if not Is_Type (Entity (S)) then
14064               Error_Msg_N ("expect subtype mark for index constraint", S);
14065
14066            elsif Base_Type (Entity (S)) /= Base_Type (T) then
14067               Wrong_Type (S, Base_Type (T));
14068
14069            --  Check error of subtype with predicate in index constraint
14070
14071            else
14072               Bad_Predicated_Subtype_Use
14073                 ("subtype& has predicate, not allowed in index constraint",
14074                  S, Entity (S));
14075            end if;
14076
14077            return;
14078
14079         else
14080            Error_Msg_N ("invalid index constraint", S);
14081            Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14082            return;
14083         end if;
14084      end if;
14085
14086      --  Complete construction of the Itype
14087
14088      if Is_Modular_Integer_Type (T) then
14089         Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14090
14091      elsif Is_Integer_Type (T) then
14092         Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14093
14094      else
14095         Set_Ekind (Def_Id, E_Enumeration_Subtype);
14096         Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14097         Set_First_Literal     (Def_Id, First_Literal (T));
14098      end if;
14099
14100      Set_Size_Info      (Def_Id,                (T));
14101      Set_RM_Size        (Def_Id, RM_Size        (T));
14102      Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14103
14104      Set_Scalar_Range   (Def_Id, R);
14105
14106      Set_Etype (S, Def_Id);
14107      Set_Discrete_RM_Size (Def_Id);
14108   end Constrain_Index;
14109
14110   -----------------------
14111   -- Constrain_Integer --
14112   -----------------------
14113
14114   procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
14115      T : constant Entity_Id := Entity (Subtype_Mark (S));
14116      C : constant Node_Id   := Constraint (S);
14117
14118   begin
14119      Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14120
14121      if Is_Modular_Integer_Type (T) then
14122         Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14123      else
14124         Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14125      end if;
14126
14127      Set_Etype            (Def_Id, Base_Type      (T));
14128      Set_Size_Info        (Def_Id,                (T));
14129      Set_First_Rep_Item   (Def_Id, First_Rep_Item (T));
14130      Set_Discrete_RM_Size (Def_Id);
14131   end Constrain_Integer;
14132
14133   ------------------------------
14134   -- Constrain_Ordinary_Fixed --
14135   ------------------------------
14136
14137   procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14138      T    : constant Entity_Id := Entity (Subtype_Mark (S));
14139      C    : Node_Id;
14140      D    : Node_Id;
14141      Rais : Node_Id;
14142
14143   begin
14144      Set_Ekind          (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14145      Set_Etype          (Def_Id, Base_Type      (T));
14146      Set_Size_Info      (Def_Id,                (T));
14147      Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14148      Set_Small_Value    (Def_Id, Small_Value    (T));
14149
14150      --  Process the constraint
14151
14152      C := Constraint (S);
14153
14154      --  Delta constraint present
14155
14156      if Nkind (C) = N_Delta_Constraint then
14157
14158         Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14159         Check_Restriction (No_Obsolescent_Features, C);
14160
14161         if Warn_On_Obsolescent_Feature then
14162            Error_Msg_S
14163              ("subtype delta constraint is an " &
14164               "obsolescent feature (RM J.3(7))?j?");
14165         end if;
14166
14167         D := Delta_Expression (C);
14168         Analyze_And_Resolve (D, Any_Real);
14169         Check_Delta_Expression (D);
14170         Set_Delta_Value (Def_Id, Expr_Value_R (D));
14171
14172         --  Check that delta value is in range. Obviously we can do this
14173         --  at compile time, but it is strictly a runtime check, and of
14174         --  course there is an ACVC test that checks this.
14175
14176         if Delta_Value (Def_Id) < Delta_Value (T) then
14177            Error_Msg_N ("??delta value is too small", D);
14178            Rais :=
14179              Make_Raise_Constraint_Error (Sloc (D),
14180                Reason => CE_Range_Check_Failed);
14181            Insert_Action (Declaration_Node (Def_Id), Rais);
14182         end if;
14183
14184         C := Range_Constraint (C);
14185
14186      --  No delta constraint present
14187
14188      else
14189         Set_Delta_Value (Def_Id, Delta_Value (T));
14190      end if;
14191
14192      --  Range constraint present
14193
14194      if Nkind (C) = N_Range_Constraint then
14195         Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14196
14197      --  No range constraint present
14198
14199      else
14200         pragma Assert (No (C));
14201         Set_Scalar_Range (Def_Id, Scalar_Range (T));
14202      end if;
14203
14204      Set_Discrete_RM_Size (Def_Id);
14205
14206      --  Unconditionally delay the freeze, since we cannot set size
14207      --  information in all cases correctly until the freeze point.
14208
14209      Set_Has_Delayed_Freeze (Def_Id);
14210   end Constrain_Ordinary_Fixed;
14211
14212   -----------------------
14213   -- Contain_Interface --
14214   -----------------------
14215
14216   function Contain_Interface
14217     (Iface  : Entity_Id;
14218      Ifaces : Elist_Id) return Boolean
14219   is
14220      Iface_Elmt : Elmt_Id;
14221
14222   begin
14223      if Present (Ifaces) then
14224         Iface_Elmt := First_Elmt (Ifaces);
14225         while Present (Iface_Elmt) loop
14226            if Node (Iface_Elmt) = Iface then
14227               return True;
14228            end if;
14229
14230            Next_Elmt (Iface_Elmt);
14231         end loop;
14232      end if;
14233
14234      return False;
14235   end Contain_Interface;
14236
14237   ---------------------------
14238   -- Convert_Scalar_Bounds --
14239   ---------------------------
14240
14241   procedure Convert_Scalar_Bounds
14242     (N            : Node_Id;
14243      Parent_Type  : Entity_Id;
14244      Derived_Type : Entity_Id;
14245      Loc          : Source_Ptr)
14246   is
14247      Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14248
14249      Lo  : Node_Id;
14250      Hi  : Node_Id;
14251      Rng : Node_Id;
14252
14253   begin
14254      --  Defend against previous errors
14255
14256      if No (Scalar_Range (Derived_Type)) then
14257         Check_Error_Detected;
14258         return;
14259      end if;
14260
14261      Lo := Build_Scalar_Bound
14262              (Type_Low_Bound (Derived_Type),
14263               Parent_Type, Implicit_Base);
14264
14265      Hi := Build_Scalar_Bound
14266              (Type_High_Bound (Derived_Type),
14267               Parent_Type, Implicit_Base);
14268
14269      Rng :=
14270        Make_Range (Loc,
14271          Low_Bound  => Lo,
14272          High_Bound => Hi);
14273
14274      Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14275
14276      Set_Parent (Rng, N);
14277      Set_Scalar_Range (Derived_Type, Rng);
14278
14279      --  Analyze the bounds
14280
14281      Analyze_And_Resolve (Lo, Implicit_Base);
14282      Analyze_And_Resolve (Hi, Implicit_Base);
14283
14284      --  Analyze the range itself, except that we do not analyze it if
14285      --  the bounds are real literals, and we have a fixed-point type.
14286      --  The reason for this is that we delay setting the bounds in this
14287      --  case till we know the final Small and Size values (see circuit
14288      --  in Freeze.Freeze_Fixed_Point_Type for further details).
14289
14290      if Is_Fixed_Point_Type (Parent_Type)
14291        and then Nkind (Lo) = N_Real_Literal
14292        and then Nkind (Hi) = N_Real_Literal
14293      then
14294         return;
14295
14296      --  Here we do the analysis of the range
14297
14298      --  Note: we do this manually, since if we do a normal Analyze and
14299      --  Resolve call, there are problems with the conversions used for
14300      --  the derived type range.
14301
14302      else
14303         Set_Etype    (Rng, Implicit_Base);
14304         Set_Analyzed (Rng, True);
14305      end if;
14306   end Convert_Scalar_Bounds;
14307
14308   -------------------
14309   -- Copy_And_Swap --
14310   -------------------
14311
14312   procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14313   begin
14314      --  Initialize new full declaration entity by copying the pertinent
14315      --  fields of the corresponding private declaration entity.
14316
14317      --  We temporarily set Ekind to a value appropriate for a type to
14318      --  avoid assert failures in Einfo from checking for setting type
14319      --  attributes on something that is not a type. Ekind (Priv) is an
14320      --  appropriate choice, since it allowed the attributes to be set
14321      --  in the first place. This Ekind value will be modified later.
14322
14323      Set_Ekind (Full, Ekind (Priv));
14324
14325      --  Also set Etype temporarily to Any_Type, again, in the absence
14326      --  of errors, it will be properly reset, and if there are errors,
14327      --  then we want a value of Any_Type to remain.
14328
14329      Set_Etype (Full, Any_Type);
14330
14331      --  Now start copying attributes
14332
14333      Set_Has_Discriminants          (Full, Has_Discriminants       (Priv));
14334
14335      if Has_Discriminants (Full) then
14336         Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14337         Set_Stored_Constraint       (Full, Stored_Constraint       (Priv));
14338      end if;
14339
14340      Set_First_Rep_Item             (Full, First_Rep_Item          (Priv));
14341      Set_Homonym                    (Full, Homonym                 (Priv));
14342      Set_Is_Immediately_Visible     (Full, Is_Immediately_Visible  (Priv));
14343      Set_Is_Public                  (Full, Is_Public               (Priv));
14344      Set_Is_Pure                    (Full, Is_Pure                 (Priv));
14345      Set_Is_Tagged_Type             (Full, Is_Tagged_Type          (Priv));
14346      Set_Has_Pragma_Unmodified      (Full, Has_Pragma_Unmodified   (Priv));
14347      Set_Has_Pragma_Unreferenced    (Full, Has_Pragma_Unreferenced (Priv));
14348      Set_Has_Pragma_Unreferenced_Objects
14349                                     (Full, Has_Pragma_Unreferenced_Objects
14350                                                                    (Priv));
14351
14352      Conditional_Delay              (Full,                          Priv);
14353
14354      if Is_Tagged_Type (Full) then
14355         Set_Direct_Primitive_Operations
14356           (Full, Direct_Primitive_Operations (Priv));
14357         Set_No_Tagged_Streams_Pragma
14358           (Full, No_Tagged_Streams_Pragma (Priv));
14359
14360         if Is_Base_Type (Priv) then
14361            Set_Class_Wide_Type      (Full, Class_Wide_Type         (Priv));
14362         end if;
14363      end if;
14364
14365      Set_Is_Volatile                (Full, Is_Volatile             (Priv));
14366      Set_Treat_As_Volatile          (Full, Treat_As_Volatile       (Priv));
14367      Set_Scope                      (Full, Scope                   (Priv));
14368      Set_Next_Entity                (Full, Next_Entity             (Priv));
14369      Set_First_Entity               (Full, First_Entity            (Priv));
14370      Set_Last_Entity                (Full, Last_Entity             (Priv));
14371
14372      --  If access types have been recorded for later handling, keep them in
14373      --  the full view so that they get handled when the full view freeze
14374      --  node is expanded.
14375
14376      if Present (Freeze_Node (Priv))
14377        and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14378      then
14379         Ensure_Freeze_Node (Full);
14380         Set_Access_Types_To_Process
14381           (Freeze_Node (Full),
14382            Access_Types_To_Process (Freeze_Node (Priv)));
14383      end if;
14384
14385      --  Swap the two entities. Now Private is the full type entity and Full
14386      --  is the private one. They will be swapped back at the end of the
14387      --  private part. This swapping ensures that the entity that is visible
14388      --  in the private part is the full declaration.
14389
14390      Exchange_Entities (Priv, Full);
14391      Append_Entity (Full, Scope (Full));
14392   end Copy_And_Swap;
14393
14394   -------------------------------------
14395   -- Copy_Array_Base_Type_Attributes --
14396   -------------------------------------
14397
14398   procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14399   begin
14400      Set_Component_Alignment      (T1, Component_Alignment      (T2));
14401      Set_Component_Type           (T1, Component_Type           (T2));
14402      Set_Component_Size           (T1, Component_Size           (T2));
14403      Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14404      Set_Has_Non_Standard_Rep     (T1, Has_Non_Standard_Rep     (T2));
14405      Propagate_Concurrent_Flags   (T1, T2);
14406      Set_Is_Packed                (T1, Is_Packed                (T2));
14407      Set_Has_Aliased_Components   (T1, Has_Aliased_Components   (T2));
14408      Set_Has_Atomic_Components    (T1, Has_Atomic_Components    (T2));
14409      Set_Has_Volatile_Components  (T1, Has_Volatile_Components  (T2));
14410   end Copy_Array_Base_Type_Attributes;
14411
14412   -----------------------------------
14413   -- Copy_Array_Subtype_Attributes --
14414   -----------------------------------
14415
14416   procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14417   begin
14418      Set_Size_Info (T1, T2);
14419
14420      Set_First_Index            (T1, First_Index            (T2));
14421      Set_Is_Aliased             (T1, Is_Aliased             (T2));
14422      Set_Is_Volatile            (T1, Is_Volatile            (T2));
14423      Set_Treat_As_Volatile      (T1, Treat_As_Volatile      (T2));
14424      Set_Is_Constrained         (T1, Is_Constrained         (T2));
14425      Set_Depends_On_Private     (T1, Has_Private_Component  (T2));
14426      Inherit_Rep_Item_Chain     (T1,                         T2);
14427      Set_Convention             (T1, Convention             (T2));
14428      Set_Is_Limited_Composite   (T1, Is_Limited_Composite   (T2));
14429      Set_Is_Private_Composite   (T1, Is_Private_Composite   (T2));
14430      Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14431   end Copy_Array_Subtype_Attributes;
14432
14433   -----------------------------------
14434   -- Create_Constrained_Components --
14435   -----------------------------------
14436
14437   procedure Create_Constrained_Components
14438     (Subt        : Entity_Id;
14439      Decl_Node   : Node_Id;
14440      Typ         : Entity_Id;
14441      Constraints : Elist_Id)
14442   is
14443      Loc         : constant Source_Ptr := Sloc (Subt);
14444      Comp_List   : constant Elist_Id   := New_Elmt_List;
14445      Parent_Type : constant Entity_Id  := Etype (Typ);
14446      Assoc_List  : constant List_Id    := New_List;
14447      Discr_Val   : Elmt_Id;
14448      Errors      : Boolean;
14449      New_C       : Entity_Id;
14450      Old_C       : Entity_Id;
14451      Is_Static   : Boolean := True;
14452
14453      procedure Collect_Fixed_Components (Typ : Entity_Id);
14454      --  Collect parent type components that do not appear in a variant part
14455
14456      procedure Create_All_Components;
14457      --  Iterate over Comp_List to create the components of the subtype
14458
14459      function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14460      --  Creates a new component from Old_Compon, copying all the fields from
14461      --  it, including its Etype, inserts the new component in the Subt entity
14462      --  chain and returns the new component.
14463
14464      function Is_Variant_Record (T : Entity_Id) return Boolean;
14465      --  If true, and discriminants are static, collect only components from
14466      --  variants selected by discriminant values.
14467
14468      ------------------------------
14469      -- Collect_Fixed_Components --
14470      ------------------------------
14471
14472      procedure Collect_Fixed_Components (Typ : Entity_Id) is
14473      begin
14474      --  Build association list for discriminants, and find components of the
14475      --  variant part selected by the values of the discriminants.
14476
14477         Old_C := First_Discriminant (Typ);
14478         Discr_Val := First_Elmt (Constraints);
14479         while Present (Old_C) loop
14480            Append_To (Assoc_List,
14481              Make_Component_Association (Loc,
14482                 Choices    => New_List (New_Occurrence_Of (Old_C, Loc)),
14483                 Expression => New_Copy (Node (Discr_Val))));
14484
14485            Next_Elmt (Discr_Val);
14486            Next_Discriminant (Old_C);
14487         end loop;
14488
14489         --  The tag and the possible parent component are unconditionally in
14490         --  the subtype.
14491
14492         if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14493            Old_C := First_Component (Typ);
14494            while Present (Old_C) loop
14495               if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14496                  Append_Elmt (Old_C, Comp_List);
14497               end if;
14498
14499               Next_Component (Old_C);
14500            end loop;
14501         end if;
14502      end Collect_Fixed_Components;
14503
14504      ---------------------------
14505      -- Create_All_Components --
14506      ---------------------------
14507
14508      procedure Create_All_Components is
14509         Comp : Elmt_Id;
14510
14511      begin
14512         Comp := First_Elmt (Comp_List);
14513         while Present (Comp) loop
14514            Old_C := Node (Comp);
14515            New_C := Create_Component (Old_C);
14516
14517            Set_Etype
14518              (New_C,
14519               Constrain_Component_Type
14520                 (Old_C, Subt, Decl_Node, Typ, Constraints));
14521            Set_Is_Public (New_C, Is_Public (Subt));
14522
14523            Next_Elmt (Comp);
14524         end loop;
14525      end Create_All_Components;
14526
14527      ----------------------
14528      -- Create_Component --
14529      ----------------------
14530
14531      function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14532         New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14533
14534      begin
14535         if Ekind (Old_Compon) = E_Discriminant
14536           and then Is_Completely_Hidden (Old_Compon)
14537         then
14538            --  This is a shadow discriminant created for a discriminant of
14539            --  the parent type, which needs to be present in the subtype.
14540            --  Give the shadow discriminant an internal name that cannot
14541            --  conflict with that of visible components.
14542
14543            Set_Chars (New_Compon, New_Internal_Name ('C'));
14544         end if;
14545
14546         --  Set the parent so we have a proper link for freezing etc. This is
14547         --  not a real parent pointer, since of course our parent does not own
14548         --  up to us and reference us, we are an illegitimate child of the
14549         --  original parent.
14550
14551         Set_Parent (New_Compon, Parent (Old_Compon));
14552
14553         --  We do not want this node marked as Comes_From_Source, since
14554         --  otherwise it would get first class status and a separate cross-
14555         --  reference line would be generated. Illegitimate children do not
14556         --  rate such recognition.
14557
14558         Set_Comes_From_Source (New_Compon, False);
14559
14560         --  But it is a real entity, and a birth certificate must be properly
14561         --  registered by entering it into the entity list.
14562
14563         Enter_Name (New_Compon);
14564
14565         return New_Compon;
14566      end Create_Component;
14567
14568      -----------------------
14569      -- Is_Variant_Record --
14570      -----------------------
14571
14572      function Is_Variant_Record (T : Entity_Id) return Boolean is
14573      begin
14574         return Nkind (Parent (T)) = N_Full_Type_Declaration
14575           and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14576           and then Present (Component_List (Type_Definition (Parent (T))))
14577           and then
14578             Present
14579               (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14580      end Is_Variant_Record;
14581
14582   --  Start of processing for Create_Constrained_Components
14583
14584   begin
14585      pragma Assert (Subt /= Base_Type (Subt));
14586      pragma Assert (Typ = Base_Type (Typ));
14587
14588      Set_First_Entity (Subt, Empty);
14589      Set_Last_Entity  (Subt, Empty);
14590
14591      --  Check whether constraint is fully static, in which case we can
14592      --  optimize the list of components.
14593
14594      Discr_Val := First_Elmt (Constraints);
14595      while Present (Discr_Val) loop
14596         if not Is_OK_Static_Expression (Node (Discr_Val)) then
14597            Is_Static := False;
14598            exit;
14599         end if;
14600
14601         Next_Elmt (Discr_Val);
14602      end loop;
14603
14604      Set_Has_Static_Discriminants (Subt, Is_Static);
14605
14606      Push_Scope (Subt);
14607
14608      --  Inherit the discriminants of the parent type
14609
14610      Add_Discriminants : declare
14611         Num_Disc : Nat;
14612         Num_Gird : Nat;
14613
14614      begin
14615         Num_Disc := 0;
14616         Old_C := First_Discriminant (Typ);
14617
14618         while Present (Old_C) loop
14619            Num_Disc := Num_Disc + 1;
14620            New_C := Create_Component (Old_C);
14621            Set_Is_Public (New_C, Is_Public (Subt));
14622            Next_Discriminant (Old_C);
14623         end loop;
14624
14625         --  For an untagged derived subtype, the number of discriminants may
14626         --  be smaller than the number of inherited discriminants, because
14627         --  several of them may be renamed by a single new discriminant or
14628         --  constrained. In this case, add the hidden discriminants back into
14629         --  the subtype, because they need to be present if the optimizer of
14630         --  the GCC 4.x back-end decides to break apart assignments between
14631         --  objects using the parent view into member-wise assignments.
14632
14633         Num_Gird := 0;
14634
14635         if Is_Derived_Type (Typ)
14636           and then not Is_Tagged_Type (Typ)
14637         then
14638            Old_C := First_Stored_Discriminant (Typ);
14639
14640            while Present (Old_C) loop
14641               Num_Gird := Num_Gird + 1;
14642               Next_Stored_Discriminant (Old_C);
14643            end loop;
14644         end if;
14645
14646         if Num_Gird > Num_Disc then
14647
14648            --  Find out multiple uses of new discriminants, and add hidden
14649            --  components for the extra renamed discriminants. We recognize
14650            --  multiple uses through the Corresponding_Discriminant of a
14651            --  new discriminant: if it constrains several old discriminants,
14652            --  this field points to the last one in the parent type. The
14653            --  stored discriminants of the derived type have the same name
14654            --  as those of the parent.
14655
14656            declare
14657               Constr    : Elmt_Id;
14658               New_Discr : Entity_Id;
14659               Old_Discr : Entity_Id;
14660
14661            begin
14662               Constr    := First_Elmt (Stored_Constraint (Typ));
14663               Old_Discr := First_Stored_Discriminant (Typ);
14664               while Present (Constr) loop
14665                  if Is_Entity_Name (Node (Constr))
14666                    and then Ekind (Entity (Node (Constr))) = E_Discriminant
14667                  then
14668                     New_Discr := Entity (Node (Constr));
14669
14670                     if Chars (Corresponding_Discriminant (New_Discr)) /=
14671                        Chars (Old_Discr)
14672                     then
14673                        --  The new discriminant has been used to rename a
14674                        --  subsequent old discriminant. Introduce a shadow
14675                        --  component for the current old discriminant.
14676
14677                        New_C := Create_Component (Old_Discr);
14678                        Set_Original_Record_Component (New_C, Old_Discr);
14679                     end if;
14680
14681                  else
14682                     --  The constraint has eliminated the old discriminant.
14683                     --  Introduce a shadow component.
14684
14685                     New_C := Create_Component (Old_Discr);
14686                     Set_Original_Record_Component (New_C, Old_Discr);
14687                  end if;
14688
14689                  Next_Elmt (Constr);
14690                  Next_Stored_Discriminant (Old_Discr);
14691               end loop;
14692            end;
14693         end if;
14694      end Add_Discriminants;
14695
14696      if Is_Static
14697        and then Is_Variant_Record (Typ)
14698      then
14699         Collect_Fixed_Components (Typ);
14700
14701         Gather_Components (
14702           Typ,
14703           Component_List (Type_Definition (Parent (Typ))),
14704           Governed_By   => Assoc_List,
14705           Into          => Comp_List,
14706           Report_Errors => Errors);
14707         pragma Assert (not Errors
14708           or else Serious_Errors_Detected > 0);
14709
14710         Create_All_Components;
14711
14712      --  If the subtype declaration is created for a tagged type derivation
14713      --  with constraints, we retrieve the record definition of the parent
14714      --  type to select the components of the proper variant.
14715
14716      elsif Is_Static
14717        and then Is_Tagged_Type (Typ)
14718        and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14719        and then
14720          Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14721        and then Is_Variant_Record (Parent_Type)
14722      then
14723         Collect_Fixed_Components (Typ);
14724
14725         Gather_Components
14726           (Typ,
14727            Component_List (Type_Definition (Parent (Parent_Type))),
14728            Governed_By   => Assoc_List,
14729            Into          => Comp_List,
14730            Report_Errors => Errors);
14731
14732         --  Note: previously there was a check at this point that no errors
14733         --  were detected. As a consequence of AI05-220 there may be an error
14734         --  if an inherited discriminant that controls a variant has a non-
14735         --  static constraint.
14736
14737         --  If the tagged derivation has a type extension, collect all the
14738         --  new components therein.
14739
14740         if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14741         then
14742            Old_C := First_Component (Typ);
14743            while Present (Old_C) loop
14744               if Original_Record_Component (Old_C) = Old_C
14745                 and then Chars (Old_C) /= Name_uTag
14746                 and then Chars (Old_C) /= Name_uParent
14747               then
14748                  Append_Elmt (Old_C, Comp_List);
14749               end if;
14750
14751               Next_Component (Old_C);
14752            end loop;
14753         end if;
14754
14755         Create_All_Components;
14756
14757      else
14758         --  If discriminants are not static, or if this is a multi-level type
14759         --  extension, we have to include all components of the parent type.
14760
14761         Old_C := First_Component (Typ);
14762         while Present (Old_C) loop
14763            New_C := Create_Component (Old_C);
14764
14765            Set_Etype
14766              (New_C,
14767               Constrain_Component_Type
14768                 (Old_C, Subt, Decl_Node, Typ, Constraints));
14769            Set_Is_Public (New_C, Is_Public (Subt));
14770
14771            Next_Component (Old_C);
14772         end loop;
14773      end if;
14774
14775      End_Scope;
14776   end Create_Constrained_Components;
14777
14778   ------------------------------------------
14779   -- Decimal_Fixed_Point_Type_Declaration --
14780   ------------------------------------------
14781
14782   procedure Decimal_Fixed_Point_Type_Declaration
14783     (T   : Entity_Id;
14784      Def : Node_Id)
14785   is
14786      Loc           : constant Source_Ptr := Sloc (Def);
14787      Digs_Expr     : constant Node_Id    := Digits_Expression (Def);
14788      Delta_Expr    : constant Node_Id    := Delta_Expression (Def);
14789      Implicit_Base : Entity_Id;
14790      Digs_Val      : Uint;
14791      Delta_Val     : Ureal;
14792      Scale_Val     : Uint;
14793      Bound_Val     : Ureal;
14794
14795   begin
14796      Check_SPARK_05_Restriction
14797        ("decimal fixed point type is not allowed", Def);
14798      Check_Restriction (No_Fixed_Point, Def);
14799
14800      --  Create implicit base type
14801
14802      Implicit_Base :=
14803        Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14804      Set_Etype (Implicit_Base, Implicit_Base);
14805
14806      --  Analyze and process delta expression
14807
14808      Analyze_And_Resolve (Delta_Expr, Universal_Real);
14809
14810      Check_Delta_Expression (Delta_Expr);
14811      Delta_Val := Expr_Value_R (Delta_Expr);
14812
14813      --  Check delta is power of 10, and determine scale value from it
14814
14815      declare
14816         Val : Ureal;
14817
14818      begin
14819         Scale_Val := Uint_0;
14820         Val := Delta_Val;
14821
14822         if Val < Ureal_1 then
14823            while Val < Ureal_1 loop
14824               Val := Val * Ureal_10;
14825               Scale_Val := Scale_Val + 1;
14826            end loop;
14827
14828            if Scale_Val > 18 then
14829               Error_Msg_N ("scale exceeds maximum value of 18", Def);
14830               Scale_Val := UI_From_Int (+18);
14831            end if;
14832
14833         else
14834            while Val > Ureal_1 loop
14835               Val := Val / Ureal_10;
14836               Scale_Val := Scale_Val - 1;
14837            end loop;
14838
14839            if Scale_Val < -18 then
14840               Error_Msg_N ("scale is less than minimum value of -18", Def);
14841               Scale_Val := UI_From_Int (-18);
14842            end if;
14843         end if;
14844
14845         if Val /= Ureal_1 then
14846            Error_Msg_N ("delta expression must be a power of 10", Def);
14847            Delta_Val := Ureal_10 ** (-Scale_Val);
14848         end if;
14849      end;
14850
14851      --  Set delta, scale and small (small = delta for decimal type)
14852
14853      Set_Delta_Value (Implicit_Base, Delta_Val);
14854      Set_Scale_Value (Implicit_Base, Scale_Val);
14855      Set_Small_Value (Implicit_Base, Delta_Val);
14856
14857      --  Analyze and process digits expression
14858
14859      Analyze_And_Resolve (Digs_Expr, Any_Integer);
14860      Check_Digits_Expression (Digs_Expr);
14861      Digs_Val := Expr_Value (Digs_Expr);
14862
14863      if Digs_Val > 18 then
14864         Digs_Val := UI_From_Int (+18);
14865         Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14866      end if;
14867
14868      Set_Digits_Value (Implicit_Base, Digs_Val);
14869      Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14870
14871      --  Set range of base type from digits value for now. This will be
14872      --  expanded to represent the true underlying base range by Freeze.
14873
14874      Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14875
14876      --  Note: We leave size as zero for now, size will be set at freeze
14877      --  time. We have to do this for ordinary fixed-point, because the size
14878      --  depends on the specified small, and we might as well do the same for
14879      --  decimal fixed-point.
14880
14881      pragma Assert (Esize (Implicit_Base) = Uint_0);
14882
14883      --  If there are bounds given in the declaration use them as the
14884      --  bounds of the first named subtype.
14885
14886      if Present (Real_Range_Specification (Def)) then
14887         declare
14888            RRS      : constant Node_Id := Real_Range_Specification (Def);
14889            Low      : constant Node_Id := Low_Bound (RRS);
14890            High     : constant Node_Id := High_Bound (RRS);
14891            Low_Val  : Ureal;
14892            High_Val : Ureal;
14893
14894         begin
14895            Analyze_And_Resolve (Low, Any_Real);
14896            Analyze_And_Resolve (High, Any_Real);
14897            Check_Real_Bound (Low);
14898            Check_Real_Bound (High);
14899            Low_Val := Expr_Value_R (Low);
14900            High_Val := Expr_Value_R (High);
14901
14902            if Low_Val < (-Bound_Val) then
14903               Error_Msg_N
14904                 ("range low bound too small for digits value", Low);
14905               Low_Val := -Bound_Val;
14906            end if;
14907
14908            if High_Val > Bound_Val then
14909               Error_Msg_N
14910                 ("range high bound too large for digits value", High);
14911               High_Val := Bound_Val;
14912            end if;
14913
14914            Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14915         end;
14916
14917      --  If no explicit range, use range that corresponds to given
14918      --  digits value. This will end up as the final range for the
14919      --  first subtype.
14920
14921      else
14922         Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14923      end if;
14924
14925      --  Complete entity for first subtype. The inheritance of the rep item
14926      --  chain ensures that SPARK-related pragmas are not clobbered when the
14927      --  decimal fixed point type acts as a full view of a private type.
14928
14929      Set_Ekind              (T, E_Decimal_Fixed_Point_Subtype);
14930      Set_Etype              (T, Implicit_Base);
14931      Set_Size_Info          (T, Implicit_Base);
14932      Inherit_Rep_Item_Chain (T, Implicit_Base);
14933      Set_Digits_Value       (T, Digs_Val);
14934      Set_Delta_Value        (T, Delta_Val);
14935      Set_Small_Value        (T, Delta_Val);
14936      Set_Scale_Value        (T, Scale_Val);
14937      Set_Is_Constrained     (T);
14938   end Decimal_Fixed_Point_Type_Declaration;
14939
14940   -----------------------------------
14941   -- Derive_Progenitor_Subprograms --
14942   -----------------------------------
14943
14944   procedure Derive_Progenitor_Subprograms
14945     (Parent_Type : Entity_Id;
14946      Tagged_Type : Entity_Id)
14947   is
14948      E          : Entity_Id;
14949      Elmt       : Elmt_Id;
14950      Iface      : Entity_Id;
14951      Iface_Elmt : Elmt_Id;
14952      Iface_Subp : Entity_Id;
14953      New_Subp   : Entity_Id := Empty;
14954      Prim_Elmt  : Elmt_Id;
14955      Subp       : Entity_Id;
14956      Typ        : Entity_Id;
14957
14958   begin
14959      pragma Assert (Ada_Version >= Ada_2005
14960        and then Is_Record_Type (Tagged_Type)
14961        and then Is_Tagged_Type (Tagged_Type)
14962        and then Has_Interfaces (Tagged_Type));
14963
14964      --  Step 1: Transfer to the full-view primitives associated with the
14965      --  partial-view that cover interface primitives. Conceptually this
14966      --  work should be done later by Process_Full_View; done here to
14967      --  simplify its implementation at later stages. It can be safely
14968      --  done here because interfaces must be visible in the partial and
14969      --  private view (RM 7.3(7.3/2)).
14970
14971      --  Small optimization: This work is only required if the parent may
14972      --  have entities whose Alias attribute reference an interface primitive.
14973      --  Such a situation may occur if the parent is an abstract type and the
14974      --  primitive has not been yet overridden or if the parent is a generic
14975      --  formal type covering interfaces.
14976
14977      --  If the tagged type is not abstract, it cannot have abstract
14978      --  primitives (the only entities in the list of primitives of
14979      --  non-abstract tagged types that can reference abstract primitives
14980      --  through its Alias attribute are the internal entities that have
14981      --  attribute Interface_Alias, and these entities are generated later
14982      --  by Add_Internal_Interface_Entities).
14983
14984      if In_Private_Part (Current_Scope)
14985        and then (Is_Abstract_Type (Parent_Type)
14986                    or else
14987                  Is_Generic_Type  (Parent_Type))
14988      then
14989         Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14990         while Present (Elmt) loop
14991            Subp := Node (Elmt);
14992
14993            --  At this stage it is not possible to have entities in the list
14994            --  of primitives that have attribute Interface_Alias.
14995
14996            pragma Assert (No (Interface_Alias (Subp)));
14997
14998            Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14999
15000            if Is_Interface (Typ) then
15001               E := Find_Primitive_Covering_Interface
15002                      (Tagged_Type => Tagged_Type,
15003                       Iface_Prim  => Subp);
15004
15005               if Present (E)
15006                 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
15007               then
15008                  Replace_Elmt (Elmt, E);
15009                  Remove_Homonym (Subp);
15010               end if;
15011            end if;
15012
15013            Next_Elmt (Elmt);
15014         end loop;
15015      end if;
15016
15017      --  Step 2: Add primitives of progenitors that are not implemented by
15018      --  parents of Tagged_Type.
15019
15020      if Present (Interfaces (Base_Type (Tagged_Type))) then
15021         Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
15022         while Present (Iface_Elmt) loop
15023            Iface := Node (Iface_Elmt);
15024
15025            Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
15026            while Present (Prim_Elmt) loop
15027               Iface_Subp := Node (Prim_Elmt);
15028
15029               --  Exclude derivation of predefined primitives except those
15030               --  that come from source, or are inherited from one that comes
15031               --  from source. Required to catch declarations of equality
15032               --  operators of interfaces. For example:
15033
15034               --     type Iface is interface;
15035               --     function "=" (Left, Right : Iface) return Boolean;
15036
15037               if not Is_Predefined_Dispatching_Operation (Iface_Subp)
15038                 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
15039               then
15040                  E := Find_Primitive_Covering_Interface
15041                         (Tagged_Type => Tagged_Type,
15042                          Iface_Prim  => Iface_Subp);
15043
15044                  --  If not found we derive a new primitive leaving its alias
15045                  --  attribute referencing the interface primitive.
15046
15047                  if No (E) then
15048                     Derive_Subprogram
15049                       (New_Subp, Iface_Subp, Tagged_Type, Iface);
15050
15051                  --  Ada 2012 (AI05-0197): If the covering primitive's name
15052                  --  differs from the name of the interface primitive then it
15053                  --  is a private primitive inherited from a parent type. In
15054                  --  such case, given that Tagged_Type covers the interface,
15055                  --  the inherited private primitive becomes visible. For such
15056                  --  purpose we add a new entity that renames the inherited
15057                  --  private primitive.
15058
15059                  elsif Chars (E) /= Chars (Iface_Subp) then
15060                     pragma Assert (Has_Suffix (E, 'P'));
15061                     Derive_Subprogram
15062                       (New_Subp, Iface_Subp, Tagged_Type, Iface);
15063                     Set_Alias (New_Subp, E);
15064                     Set_Is_Abstract_Subprogram (New_Subp,
15065                       Is_Abstract_Subprogram (E));
15066
15067                  --  Propagate to the full view interface entities associated
15068                  --  with the partial view.
15069
15070                  elsif In_Private_Part (Current_Scope)
15071                    and then Present (Alias (E))
15072                    and then Alias (E) = Iface_Subp
15073                    and then
15074                      List_Containing (Parent (E)) /=
15075                        Private_Declarations
15076                          (Specification
15077                            (Unit_Declaration_Node (Current_Scope)))
15078                  then
15079                     Append_Elmt (E, Primitive_Operations (Tagged_Type));
15080                  end if;
15081               end if;
15082
15083               Next_Elmt (Prim_Elmt);
15084            end loop;
15085
15086            Next_Elmt (Iface_Elmt);
15087         end loop;
15088      end if;
15089   end Derive_Progenitor_Subprograms;
15090
15091   -----------------------
15092   -- Derive_Subprogram --
15093   -----------------------
15094
15095   procedure Derive_Subprogram
15096     (New_Subp     : out Entity_Id;
15097      Parent_Subp  : Entity_Id;
15098      Derived_Type : Entity_Id;
15099      Parent_Type  : Entity_Id;
15100      Actual_Subp  : Entity_Id := Empty)
15101   is
15102      Formal : Entity_Id;
15103      --  Formal parameter of parent primitive operation
15104
15105      Formal_Of_Actual : Entity_Id;
15106      --  Formal parameter of actual operation, when the derivation is to
15107      --  create a renaming for a primitive operation of an actual in an
15108      --  instantiation.
15109
15110      New_Formal : Entity_Id;
15111      --  Formal of inherited operation
15112
15113      Visible_Subp : Entity_Id := Parent_Subp;
15114
15115      function Is_Private_Overriding return Boolean;
15116      --  If Subp is a private overriding of a visible operation, the inherited
15117      --  operation derives from the overridden op (even though its body is the
15118      --  overriding one) and the inherited operation is visible now. See
15119      --  sem_disp to see the full details of the handling of the overridden
15120      --  subprogram, which is removed from the list of primitive operations of
15121      --  the type. The overridden subprogram is saved locally in Visible_Subp,
15122      --  and used to diagnose abstract operations that need overriding in the
15123      --  derived type.
15124
15125      procedure Replace_Type (Id, New_Id : Entity_Id);
15126      --  When the type is an anonymous access type, create a new access type
15127      --  designating the derived type.
15128
15129      procedure Set_Derived_Name;
15130      --  This procedure sets the appropriate Chars name for New_Subp. This
15131      --  is normally just a copy of the parent name. An exception arises for
15132      --  type support subprograms, where the name is changed to reflect the
15133      --  name of the derived type, e.g. if type foo is derived from type bar,
15134      --  then a procedure barDA is derived with a name fooDA.
15135
15136      ---------------------------
15137      -- Is_Private_Overriding --
15138      ---------------------------
15139
15140      function Is_Private_Overriding return Boolean is
15141         Prev : Entity_Id;
15142
15143      begin
15144         --  If the parent is not a dispatching operation there is no
15145         --  need to investigate overridings
15146
15147         if not Is_Dispatching_Operation (Parent_Subp) then
15148            return False;
15149         end if;
15150
15151         --  The visible operation that is overridden is a homonym of the
15152         --  parent subprogram. We scan the homonym chain to find the one
15153         --  whose alias is the subprogram we are deriving.
15154
15155         Prev := Current_Entity (Parent_Subp);
15156         while Present (Prev) loop
15157            if Ekind (Prev) = Ekind (Parent_Subp)
15158              and then Alias (Prev) = Parent_Subp
15159              and then Scope (Parent_Subp) = Scope (Prev)
15160              and then not Is_Hidden (Prev)
15161            then
15162               Visible_Subp := Prev;
15163               return True;
15164            end if;
15165
15166            Prev := Homonym (Prev);
15167         end loop;
15168
15169         return False;
15170      end Is_Private_Overriding;
15171
15172      ------------------
15173      -- Replace_Type --
15174      ------------------
15175
15176      procedure Replace_Type (Id, New_Id : Entity_Id) is
15177         Id_Type  : constant Entity_Id := Etype (Id);
15178         Acc_Type : Entity_Id;
15179         Par      : constant Node_Id := Parent (Derived_Type);
15180
15181      begin
15182         --  When the type is an anonymous access type, create a new access
15183         --  type designating the derived type. This itype must be elaborated
15184         --  at the point of the derivation, not on subsequent calls that may
15185         --  be out of the proper scope for Gigi, so we insert a reference to
15186         --  it after the derivation.
15187
15188         if Ekind (Id_Type) = E_Anonymous_Access_Type then
15189            declare
15190               Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15191
15192            begin
15193               if Ekind (Desig_Typ) = E_Record_Type_With_Private
15194                 and then Present (Full_View (Desig_Typ))
15195                 and then not Is_Private_Type (Parent_Type)
15196               then
15197                  Desig_Typ := Full_View (Desig_Typ);
15198               end if;
15199
15200               if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15201
15202                  --  Ada 2005 (AI-251): Handle also derivations of abstract
15203                  --  interface primitives.
15204
15205                 or else (Is_Interface (Desig_Typ)
15206                           and then not Is_Class_Wide_Type (Desig_Typ))
15207               then
15208                  Acc_Type := New_Copy (Id_Type);
15209                  Set_Etype (Acc_Type, Acc_Type);
15210                  Set_Scope (Acc_Type, New_Subp);
15211
15212                  --  Set size of anonymous access type. If we have an access
15213                  --  to an unconstrained array, this is a fat pointer, so it
15214                  --  is sizes at twice addtress size.
15215
15216                  if Is_Array_Type (Desig_Typ)
15217                    and then not Is_Constrained (Desig_Typ)
15218                  then
15219                     Init_Size (Acc_Type, 2 * System_Address_Size);
15220
15221                  --  Other cases use a thin pointer
15222
15223                  else
15224                     Init_Size (Acc_Type, System_Address_Size);
15225                  end if;
15226
15227                  --  Set remaining characterstics of anonymous access type
15228
15229                  Init_Alignment (Acc_Type);
15230                  Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15231
15232                  Set_Etype (New_Id, Acc_Type);
15233                  Set_Scope (New_Id, New_Subp);
15234
15235                  --  Create a reference to it
15236
15237                  Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15238
15239               else
15240                  Set_Etype (New_Id, Id_Type);
15241               end if;
15242            end;
15243
15244         --  In Ada2012, a formal may have an incomplete type but the type
15245         --  derivation that inherits the primitive follows the full view.
15246
15247         elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15248           or else
15249             (Ekind (Id_Type) = E_Record_Type_With_Private
15250               and then Present (Full_View (Id_Type))
15251               and then
15252                 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15253           or else
15254             (Ada_Version >= Ada_2012
15255               and then Ekind (Id_Type) = E_Incomplete_Type
15256               and then Full_View (Id_Type) = Parent_Type)
15257         then
15258            --  Constraint checks on formals are generated during expansion,
15259            --  based on the signature of the original subprogram. The bounds
15260            --  of the derived type are not relevant, and thus we can use
15261            --  the base type for the formals. However, the return type may be
15262            --  used in a context that requires that the proper static bounds
15263            --  be used (a case statement, for example) and for those cases
15264            --  we must use the derived type (first subtype), not its base.
15265
15266            --  If the derived_type_definition has no constraints, we know that
15267            --  the derived type has the same constraints as the first subtype
15268            --  of the parent, and we can also use it rather than its base,
15269            --  which can lead to more efficient code.
15270
15271            if Etype (Id) = Parent_Type then
15272               if Is_Scalar_Type (Parent_Type)
15273                 and then
15274                   Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15275               then
15276                  Set_Etype (New_Id, Derived_Type);
15277
15278               elsif Nkind (Par) = N_Full_Type_Declaration
15279                 and then
15280                   Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15281                 and then
15282                   Is_Entity_Name
15283                     (Subtype_Indication (Type_Definition (Par)))
15284               then
15285                  Set_Etype (New_Id, Derived_Type);
15286
15287               else
15288                  Set_Etype (New_Id, Base_Type (Derived_Type));
15289               end if;
15290
15291            else
15292               Set_Etype (New_Id, Base_Type (Derived_Type));
15293            end if;
15294
15295         else
15296            Set_Etype (New_Id, Etype (Id));
15297         end if;
15298      end Replace_Type;
15299
15300      ----------------------
15301      -- Set_Derived_Name --
15302      ----------------------
15303
15304      procedure Set_Derived_Name is
15305         Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15306      begin
15307         if Nm = TSS_Null then
15308            Set_Chars (New_Subp, Chars (Parent_Subp));
15309         else
15310            Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15311         end if;
15312      end Set_Derived_Name;
15313
15314   --  Start of processing for Derive_Subprogram
15315
15316   begin
15317      New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15318      Set_Ekind (New_Subp, Ekind (Parent_Subp));
15319
15320      --  Check whether the inherited subprogram is a private operation that
15321      --  should be inherited but not yet made visible. Such subprograms can
15322      --  become visible at a later point (e.g., the private part of a public
15323      --  child unit) via Declare_Inherited_Private_Subprograms. If the
15324      --  following predicate is true, then this is not such a private
15325      --  operation and the subprogram simply inherits the name of the parent
15326      --  subprogram. Note the special check for the names of controlled
15327      --  operations, which are currently exempted from being inherited with
15328      --  a hidden name because they must be findable for generation of
15329      --  implicit run-time calls.
15330
15331      if not Is_Hidden (Parent_Subp)
15332        or else Is_Internal (Parent_Subp)
15333        or else Is_Private_Overriding
15334        or else Is_Internal_Name (Chars (Parent_Subp))
15335        or else (Is_Controlled (Parent_Type)
15336                  and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15337                                                        Name_Finalize,
15338                                                        Name_Initialize))
15339      then
15340         Set_Derived_Name;
15341
15342      --  An inherited dispatching equality will be overridden by an internally
15343      --  generated one, or by an explicit one, so preserve its name and thus
15344      --  its entry in the dispatch table. Otherwise, if Parent_Subp is a
15345      --  private operation it may become invisible if the full view has
15346      --  progenitors, and the dispatch table will be malformed.
15347      --  We check that the type is limited to handle the anomalous declaration
15348      --  of Limited_Controlled, which is derived from a non-limited type, and
15349      --  which is handled specially elsewhere as well.
15350
15351      elsif Chars (Parent_Subp) = Name_Op_Eq
15352        and then Is_Dispatching_Operation (Parent_Subp)
15353        and then Etype (Parent_Subp) = Standard_Boolean
15354        and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15355        and then
15356          Etype (First_Formal (Parent_Subp)) =
15357            Etype (Next_Formal (First_Formal (Parent_Subp)))
15358      then
15359         Set_Derived_Name;
15360
15361      --  If parent is hidden, this can be a regular derivation if the
15362      --  parent is immediately visible in a non-instantiating context,
15363      --  or if we are in the private part of an instance. This test
15364      --  should still be refined ???
15365
15366      --  The test for In_Instance_Not_Visible avoids inheriting the derived
15367      --  operation as a non-visible operation in cases where the parent
15368      --  subprogram might not be visible now, but was visible within the
15369      --  original generic, so it would be wrong to make the inherited
15370      --  subprogram non-visible now. (Not clear if this test is fully
15371      --  correct; are there any cases where we should declare the inherited
15372      --  operation as not visible to avoid it being overridden, e.g., when
15373      --  the parent type is a generic actual with private primitives ???)
15374
15375      --  (they should be treated the same as other private inherited
15376      --  subprograms, but it's not clear how to do this cleanly). ???
15377
15378      elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15379              and then Is_Immediately_Visible (Parent_Subp)
15380              and then not In_Instance)
15381        or else In_Instance_Not_Visible
15382      then
15383         Set_Derived_Name;
15384
15385      --  Ada 2005 (AI-251): Regular derivation if the parent subprogram
15386      --  overrides an interface primitive because interface primitives
15387      --  must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15388
15389      elsif Ada_Version >= Ada_2005
15390         and then Is_Dispatching_Operation (Parent_Subp)
15391         and then Present (Covered_Interface_Op (Parent_Subp))
15392      then
15393         Set_Derived_Name;
15394
15395      --  Otherwise, the type is inheriting a private operation, so enter it
15396      --  with a special name so it can't be overridden.
15397
15398      else
15399         Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15400      end if;
15401
15402      Set_Parent (New_Subp, Parent (Derived_Type));
15403
15404      if Present (Actual_Subp) then
15405         Replace_Type (Actual_Subp, New_Subp);
15406      else
15407         Replace_Type (Parent_Subp, New_Subp);
15408      end if;
15409
15410      Conditional_Delay (New_Subp, Parent_Subp);
15411
15412      --  If we are creating a renaming for a primitive operation of an
15413      --  actual of a generic derived type, we must examine the signature
15414      --  of the actual primitive, not that of the generic formal, which for
15415      --  example may be an interface. However the name and initial value
15416      --  of the inherited operation are those of the formal primitive.
15417
15418      Formal := First_Formal (Parent_Subp);
15419
15420      if Present (Actual_Subp) then
15421         Formal_Of_Actual := First_Formal (Actual_Subp);
15422      else
15423         Formal_Of_Actual := Empty;
15424      end if;
15425
15426      while Present (Formal) loop
15427         New_Formal := New_Copy (Formal);
15428
15429         --  Normally we do not go copying parents, but in the case of
15430         --  formals, we need to link up to the declaration (which is the
15431         --  parameter specification), and it is fine to link up to the
15432         --  original formal's parameter specification in this case.
15433
15434         Set_Parent (New_Formal, Parent (Formal));
15435         Append_Entity (New_Formal, New_Subp);
15436
15437         if Present (Formal_Of_Actual) then
15438            Replace_Type (Formal_Of_Actual, New_Formal);
15439            Next_Formal (Formal_Of_Actual);
15440         else
15441            Replace_Type (Formal, New_Formal);
15442         end if;
15443
15444         Next_Formal (Formal);
15445      end loop;
15446
15447      --  If this derivation corresponds to a tagged generic actual, then
15448      --  primitive operations rename those of the actual. Otherwise the
15449      --  primitive operations rename those of the parent type, If the parent
15450      --  renames an intrinsic operator, so does the new subprogram. We except
15451      --  concatenation, which is always properly typed, and does not get
15452      --  expanded as other intrinsic operations.
15453
15454      if No (Actual_Subp) then
15455         if Is_Intrinsic_Subprogram (Parent_Subp) then
15456            Set_Is_Intrinsic_Subprogram (New_Subp);
15457
15458            if Present (Alias (Parent_Subp))
15459              and then Chars (Parent_Subp) /= Name_Op_Concat
15460            then
15461               Set_Alias (New_Subp, Alias (Parent_Subp));
15462            else
15463               Set_Alias (New_Subp, Parent_Subp);
15464            end if;
15465
15466         else
15467            Set_Alias (New_Subp, Parent_Subp);
15468         end if;
15469
15470      else
15471         Set_Alias (New_Subp, Actual_Subp);
15472      end if;
15473
15474      --  Derived subprograms of a tagged type must inherit the convention
15475      --  of the parent subprogram (a requirement of AI-117). Derived
15476      --  subprograms of untagged types simply get convention Ada by default.
15477
15478      --  If the derived type is a tagged generic formal type with unknown
15479      --  discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15480
15481      --  However, if the type is derived from a generic formal, the further
15482      --  inherited subprogram has the convention of the non-generic ancestor.
15483      --  Otherwise there would be no way to override the operation.
15484      --  (This is subject to forthcoming ARG discussions).
15485
15486      if Is_Tagged_Type (Derived_Type) then
15487         if Is_Generic_Type (Derived_Type)
15488           and then Has_Unknown_Discriminants (Derived_Type)
15489         then
15490            Set_Convention (New_Subp, Convention_Intrinsic);
15491
15492         else
15493            if Is_Generic_Type (Parent_Type)
15494              and then Has_Unknown_Discriminants (Parent_Type)
15495            then
15496               Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15497            else
15498               Set_Convention (New_Subp, Convention (Parent_Subp));
15499            end if;
15500         end if;
15501      end if;
15502
15503      --  Predefined controlled operations retain their name even if the parent
15504      --  is hidden (see above), but they are not primitive operations if the
15505      --  ancestor is not visible, for example if the parent is a private
15506      --  extension completed with a controlled extension. Note that a full
15507      --  type that is controlled can break privacy: the flag Is_Controlled is
15508      --  set on both views of the type.
15509
15510      if Is_Controlled (Parent_Type)
15511        and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15512                                              Name_Adjust,
15513                                              Name_Finalize)
15514        and then Is_Hidden (Parent_Subp)
15515        and then not Is_Visibly_Controlled (Parent_Type)
15516      then
15517         Set_Is_Hidden (New_Subp);
15518      end if;
15519
15520      Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15521      Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15522
15523      if Ekind (Parent_Subp) = E_Procedure then
15524         Set_Is_Valued_Procedure
15525           (New_Subp, Is_Valued_Procedure (Parent_Subp));
15526      else
15527         Set_Has_Controlling_Result
15528           (New_Subp, Has_Controlling_Result (Parent_Subp));
15529      end if;
15530
15531      --  No_Return must be inherited properly. If this is overridden in the
15532      --  case of a dispatching operation, then a check is made in Sem_Disp
15533      --  that the overriding operation is also No_Return (no such check is
15534      --  required for the case of non-dispatching operation.
15535
15536      Set_No_Return (New_Subp, No_Return (Parent_Subp));
15537
15538      --  A derived function with a controlling result is abstract. If the
15539      --  Derived_Type is a nonabstract formal generic derived type, then
15540      --  inherited operations are not abstract: the required check is done at
15541      --  instantiation time. If the derivation is for a generic actual, the
15542      --  function is not abstract unless the actual is.
15543
15544      if Is_Generic_Type (Derived_Type)
15545        and then not Is_Abstract_Type (Derived_Type)
15546      then
15547         null;
15548
15549      --  Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15550      --  properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15551
15552      --  A subprogram subject to pragma Extensions_Visible with value False
15553      --  requires overriding if the subprogram has at least one controlling
15554      --  OUT parameter (SPARK RM 6.1.7(6)).
15555
15556      elsif Ada_Version >= Ada_2005
15557        and then (Is_Abstract_Subprogram (Alias (New_Subp))
15558                   or else (Is_Tagged_Type (Derived_Type)
15559                             and then Etype (New_Subp) = Derived_Type
15560                             and then not Is_Null_Extension (Derived_Type))
15561                   or else (Is_Tagged_Type (Derived_Type)
15562                             and then Ekind (Etype (New_Subp)) =
15563                                                       E_Anonymous_Access_Type
15564                             and then Designated_Type (Etype (New_Subp)) =
15565                                                        Derived_Type
15566                             and then not Is_Null_Extension (Derived_Type))
15567                   or else (Comes_From_Source (Alias (New_Subp))
15568                             and then Is_EVF_Procedure (Alias (New_Subp))))
15569        and then No (Actual_Subp)
15570      then
15571         if not Is_Tagged_Type (Derived_Type)
15572           or else Is_Abstract_Type (Derived_Type)
15573           or else Is_Abstract_Subprogram (Alias (New_Subp))
15574         then
15575            Set_Is_Abstract_Subprogram (New_Subp);
15576         else
15577            Set_Requires_Overriding (New_Subp);
15578         end if;
15579
15580      elsif Ada_Version < Ada_2005
15581        and then (Is_Abstract_Subprogram (Alias (New_Subp))
15582                   or else (Is_Tagged_Type (Derived_Type)
15583                             and then Etype (New_Subp) = Derived_Type
15584                             and then No (Actual_Subp)))
15585      then
15586         Set_Is_Abstract_Subprogram (New_Subp);
15587
15588      --  AI05-0097 : an inherited operation that dispatches on result is
15589      --  abstract if the derived type is abstract, even if the parent type
15590      --  is concrete and the derived type is a null extension.
15591
15592      elsif Has_Controlling_Result (Alias (New_Subp))
15593        and then Is_Abstract_Type (Etype (New_Subp))
15594      then
15595         Set_Is_Abstract_Subprogram (New_Subp);
15596
15597      --  Finally, if the parent type is abstract we must verify that all
15598      --  inherited operations are either non-abstract or overridden, or that
15599      --  the derived type itself is abstract (this check is performed at the
15600      --  end of a package declaration, in Check_Abstract_Overriding). A
15601      --  private overriding in the parent type will not be visible in the
15602      --  derivation if we are not in an inner package or in a child unit of
15603      --  the parent type, in which case the abstractness of the inherited
15604      --  operation is carried to the new subprogram.
15605
15606      elsif Is_Abstract_Type (Parent_Type)
15607        and then not In_Open_Scopes (Scope (Parent_Type))
15608        and then Is_Private_Overriding
15609        and then Is_Abstract_Subprogram (Visible_Subp)
15610      then
15611         if No (Actual_Subp) then
15612            Set_Alias (New_Subp, Visible_Subp);
15613            Set_Is_Abstract_Subprogram (New_Subp, True);
15614
15615         else
15616            --  If this is a derivation for an instance of a formal derived
15617            --  type, abstractness comes from the primitive operation of the
15618            --  actual, not from the operation inherited from the ancestor.
15619
15620            Set_Is_Abstract_Subprogram
15621              (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15622         end if;
15623      end if;
15624
15625      New_Overloaded_Entity (New_Subp, Derived_Type);
15626
15627      --  Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15628      --  preconditions and the derived type is abstract, the derived operation
15629      --  is abstract as well if parent subprogram is not abstract or null.
15630
15631      if Is_Abstract_Type (Derived_Type)
15632        and then Has_Non_Trivial_Precondition (Parent_Subp)
15633        and then Present (Interfaces (Derived_Type))
15634      then
15635
15636         --  Add useful attributes of subprogram before the freeze point,
15637         --  in case freezing is delayed or there are previous errors.
15638
15639         Set_Is_Dispatching_Operation (New_Subp);
15640
15641         declare
15642            Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15643
15644         begin
15645            if Present (Iface_Prim)
15646              and then Has_Non_Trivial_Precondition (Iface_Prim)
15647            then
15648               Set_Is_Abstract_Subprogram (New_Subp);
15649            end if;
15650         end;
15651      end if;
15652
15653      --  Check for case of a derived subprogram for the instantiation of a
15654      --  formal derived tagged type, if so mark the subprogram as dispatching
15655      --  and inherit the dispatching attributes of the actual subprogram. The
15656      --  derived subprogram is effectively renaming of the actual subprogram,
15657      --  so it needs to have the same attributes as the actual.
15658
15659      if Present (Actual_Subp)
15660        and then Is_Dispatching_Operation (Actual_Subp)
15661      then
15662         Set_Is_Dispatching_Operation (New_Subp);
15663
15664         if Present (DTC_Entity (Actual_Subp)) then
15665            Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15666            Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15667         end if;
15668      end if;
15669
15670      --  Indicate that a derived subprogram does not require a body and that
15671      --  it does not require processing of default expressions.
15672
15673      Set_Has_Completion (New_Subp);
15674      Set_Default_Expressions_Processed (New_Subp);
15675
15676      if Ekind (New_Subp) = E_Function then
15677         Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15678      end if;
15679   end Derive_Subprogram;
15680
15681   ------------------------
15682   -- Derive_Subprograms --
15683   ------------------------
15684
15685   procedure Derive_Subprograms
15686     (Parent_Type    : Entity_Id;
15687      Derived_Type   : Entity_Id;
15688      Generic_Actual : Entity_Id := Empty)
15689   is
15690      Op_List : constant Elist_Id :=
15691                  Collect_Primitive_Operations (Parent_Type);
15692
15693      function Check_Derived_Type return Boolean;
15694      --  Check that all the entities derived from Parent_Type are found in
15695      --  the list of primitives of Derived_Type exactly in the same order.
15696
15697      procedure Derive_Interface_Subprogram
15698        (New_Subp    : out Entity_Id;
15699         Subp        : Entity_Id;
15700         Actual_Subp : Entity_Id);
15701      --  Derive New_Subp from the ultimate alias of the parent subprogram Subp
15702      --  (which is an interface primitive). If Generic_Actual is present then
15703      --  Actual_Subp is the actual subprogram corresponding with the generic
15704      --  subprogram Subp.
15705
15706      ------------------------
15707      -- Check_Derived_Type --
15708      ------------------------
15709
15710      function Check_Derived_Type return Boolean is
15711         E        : Entity_Id;
15712         Elmt     : Elmt_Id;
15713         List     : Elist_Id;
15714         New_Subp : Entity_Id;
15715         Op_Elmt  : Elmt_Id;
15716         Subp     : Entity_Id;
15717
15718      begin
15719         --  Traverse list of entities in the current scope searching for
15720         --  an incomplete type whose full-view is derived type.
15721
15722         E := First_Entity (Scope (Derived_Type));
15723         while Present (E) and then E /= Derived_Type loop
15724            if Ekind (E) = E_Incomplete_Type
15725              and then Present (Full_View (E))
15726              and then Full_View (E) = Derived_Type
15727            then
15728               --  Disable this test if Derived_Type completes an incomplete
15729               --  type because in such case more primitives can be added
15730               --  later to the list of primitives of Derived_Type by routine
15731               --  Process_Incomplete_Dependents
15732
15733               return True;
15734            end if;
15735
15736            E := Next_Entity (E);
15737         end loop;
15738
15739         List := Collect_Primitive_Operations (Derived_Type);
15740         Elmt := First_Elmt (List);
15741
15742         Op_Elmt := First_Elmt (Op_List);
15743         while Present (Op_Elmt) loop
15744            Subp     := Node (Op_Elmt);
15745            New_Subp := Node (Elmt);
15746
15747            --  At this early stage Derived_Type has no entities with attribute
15748            --  Interface_Alias. In addition, such primitives are always
15749            --  located at the end of the list of primitives of Parent_Type.
15750            --  Therefore, if found we can safely stop processing pending
15751            --  entities.
15752
15753            exit when Present (Interface_Alias (Subp));
15754
15755            --  Handle hidden entities
15756
15757            if not Is_Predefined_Dispatching_Operation (Subp)
15758              and then Is_Hidden (Subp)
15759            then
15760               if Present (New_Subp)
15761                 and then Primitive_Names_Match (Subp, New_Subp)
15762               then
15763                  Next_Elmt (Elmt);
15764               end if;
15765
15766            else
15767               if not Present (New_Subp)
15768                 or else Ekind (Subp) /= Ekind (New_Subp)
15769                 or else not Primitive_Names_Match (Subp, New_Subp)
15770               then
15771                  return False;
15772               end if;
15773
15774               Next_Elmt (Elmt);
15775            end if;
15776
15777            Next_Elmt (Op_Elmt);
15778         end loop;
15779
15780         return True;
15781      end Check_Derived_Type;
15782
15783      ---------------------------------
15784      -- Derive_Interface_Subprogram --
15785      ---------------------------------
15786
15787      procedure Derive_Interface_Subprogram
15788        (New_Subp    : out Entity_Id;
15789         Subp        : Entity_Id;
15790         Actual_Subp : Entity_Id)
15791      is
15792         Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15793         Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15794
15795      begin
15796         pragma Assert (Is_Interface (Iface_Type));
15797
15798         Derive_Subprogram
15799           (New_Subp     => New_Subp,
15800            Parent_Subp  => Iface_Subp,
15801            Derived_Type => Derived_Type,
15802            Parent_Type  => Iface_Type,
15803            Actual_Subp  => Actual_Subp);
15804
15805         --  Given that this new interface entity corresponds with a primitive
15806         --  of the parent that was not overridden we must leave it associated
15807         --  with its parent primitive to ensure that it will share the same
15808         --  dispatch table slot when overridden. We must set the Alias to Subp
15809         --  (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15810         --  (in case we inherited Subp from Iface_Type via a nonabstract
15811         --  generic formal type).
15812
15813         if No (Actual_Subp) then
15814            Set_Alias (New_Subp, Subp);
15815
15816            declare
15817               T : Entity_Id := Find_Dispatching_Type (Subp);
15818            begin
15819               while Etype (T) /= T loop
15820                  if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15821                     Set_Is_Abstract_Subprogram (New_Subp, False);
15822                     exit;
15823                  end if;
15824
15825                  T := Etype (T);
15826               end loop;
15827            end;
15828
15829         --  For instantiations this is not needed since the previous call to
15830         --  Derive_Subprogram leaves the entity well decorated.
15831
15832         else
15833            pragma Assert (Alias (New_Subp) = Actual_Subp);
15834            null;
15835         end if;
15836      end Derive_Interface_Subprogram;
15837
15838      --  Local variables
15839
15840      Alias_Subp   : Entity_Id;
15841      Act_List     : Elist_Id;
15842      Act_Elmt     : Elmt_Id;
15843      Act_Subp     : Entity_Id := Empty;
15844      Elmt         : Elmt_Id;
15845      Need_Search  : Boolean   := False;
15846      New_Subp     : Entity_Id := Empty;
15847      Parent_Base  : Entity_Id;
15848      Subp         : Entity_Id;
15849
15850   --  Start of processing for Derive_Subprograms
15851
15852   begin
15853      if Ekind (Parent_Type) = E_Record_Type_With_Private
15854        and then Has_Discriminants (Parent_Type)
15855        and then Present (Full_View (Parent_Type))
15856      then
15857         Parent_Base := Full_View (Parent_Type);
15858      else
15859         Parent_Base := Parent_Type;
15860      end if;
15861
15862      if Present (Generic_Actual) then
15863         Act_List := Collect_Primitive_Operations (Generic_Actual);
15864         Act_Elmt := First_Elmt (Act_List);
15865      else
15866         Act_List := No_Elist;
15867         Act_Elmt := No_Elmt;
15868      end if;
15869
15870      --  Derive primitives inherited from the parent. Note that if the generic
15871      --  actual is present, this is not really a type derivation, it is a
15872      --  completion within an instance.
15873
15874      --  Case 1: Derived_Type does not implement interfaces
15875
15876      if not Is_Tagged_Type (Derived_Type)
15877        or else (not Has_Interfaces (Derived_Type)
15878                  and then not (Present (Generic_Actual)
15879                                 and then Has_Interfaces (Generic_Actual)))
15880      then
15881         Elmt := First_Elmt (Op_List);
15882         while Present (Elmt) loop
15883            Subp := Node (Elmt);
15884
15885            --  Literals are derived earlier in the process of building the
15886            --  derived type, and are skipped here.
15887
15888            if Ekind (Subp) = E_Enumeration_Literal then
15889               null;
15890
15891            --  The actual is a direct descendant and the common primitive
15892            --  operations appear in the same order.
15893
15894            --  If the generic parent type is present, the derived type is an
15895            --  instance of a formal derived type, and within the instance its
15896            --  operations are those of the actual. We derive from the formal
15897            --  type but make the inherited operations aliases of the
15898            --  corresponding operations of the actual.
15899
15900            else
15901               pragma Assert (No (Node (Act_Elmt))
15902                 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15903                           and then
15904                             Type_Conformant
15905                               (Subp, Node (Act_Elmt),
15906                                Skip_Controlling_Formals => True)));
15907
15908               Derive_Subprogram
15909                 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15910
15911               if Present (Act_Elmt) then
15912                  Next_Elmt (Act_Elmt);
15913               end if;
15914            end if;
15915
15916            Next_Elmt (Elmt);
15917         end loop;
15918
15919      --  Case 2: Derived_Type implements interfaces
15920
15921      else
15922         --  If the parent type has no predefined primitives we remove
15923         --  predefined primitives from the list of primitives of generic
15924         --  actual to simplify the complexity of this algorithm.
15925
15926         if Present (Generic_Actual) then
15927            declare
15928               Has_Predefined_Primitives : Boolean := False;
15929
15930            begin
15931               --  Check if the parent type has predefined primitives
15932
15933               Elmt := First_Elmt (Op_List);
15934               while Present (Elmt) loop
15935                  Subp := Node (Elmt);
15936
15937                  if Is_Predefined_Dispatching_Operation (Subp)
15938                    and then not Comes_From_Source (Ultimate_Alias (Subp))
15939                  then
15940                     Has_Predefined_Primitives := True;
15941                     exit;
15942                  end if;
15943
15944                  Next_Elmt (Elmt);
15945               end loop;
15946
15947               --  Remove predefined primitives of Generic_Actual. We must use
15948               --  an auxiliary list because in case of tagged types the value
15949               --  returned by Collect_Primitive_Operations is the value stored
15950               --  in its Primitive_Operations attribute (and we don't want to
15951               --  modify its current contents).
15952
15953               if not Has_Predefined_Primitives then
15954                  declare
15955                     Aux_List : constant Elist_Id := New_Elmt_List;
15956
15957                  begin
15958                     Elmt := First_Elmt (Act_List);
15959                     while Present (Elmt) loop
15960                        Subp := Node (Elmt);
15961
15962                        if not Is_Predefined_Dispatching_Operation (Subp)
15963                          or else Comes_From_Source (Subp)
15964                        then
15965                           Append_Elmt (Subp, Aux_List);
15966                        end if;
15967
15968                        Next_Elmt (Elmt);
15969                     end loop;
15970
15971                     Act_List := Aux_List;
15972                  end;
15973               end if;
15974
15975               Act_Elmt := First_Elmt (Act_List);
15976               Act_Subp := Node (Act_Elmt);
15977            end;
15978         end if;
15979
15980         --  Stage 1: If the generic actual is not present we derive the
15981         --  primitives inherited from the parent type. If the generic parent
15982         --  type is present, the derived type is an instance of a formal
15983         --  derived type, and within the instance its operations are those of
15984         --  the actual. We derive from the formal type but make the inherited
15985         --  operations aliases of the corresponding operations of the actual.
15986
15987         Elmt := First_Elmt (Op_List);
15988         while Present (Elmt) loop
15989            Subp       := Node (Elmt);
15990            Alias_Subp := Ultimate_Alias (Subp);
15991
15992            --  Do not derive internal entities of the parent that link
15993            --  interface primitives with their covering primitive. These
15994            --  entities will be added to this type when frozen.
15995
15996            if Present (Interface_Alias (Subp)) then
15997               goto Continue;
15998            end if;
15999
16000            --  If the generic actual is present find the corresponding
16001            --  operation in the generic actual. If the parent type is a
16002            --  direct ancestor of the derived type then, even if it is an
16003            --  interface, the operations are inherited from the primary
16004            --  dispatch table and are in the proper order. If we detect here
16005            --  that primitives are not in the same order we traverse the list
16006            --  of primitive operations of the actual to find the one that
16007            --  implements the interface primitive.
16008
16009            if Need_Search
16010              or else
16011                (Present (Generic_Actual)
16012                  and then Present (Act_Subp)
16013                  and then not
16014                    (Primitive_Names_Match (Subp, Act_Subp)
16015                       and then
16016                     Type_Conformant (Subp, Act_Subp,
16017                                      Skip_Controlling_Formals => True)))
16018            then
16019               pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
16020                                               Use_Full_View => True));
16021
16022               --  Remember that we need searching for all pending primitives
16023
16024               Need_Search := True;
16025
16026               --  Handle entities associated with interface primitives
16027
16028               if Present (Alias_Subp)
16029                 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16030                 and then not Is_Predefined_Dispatching_Operation (Subp)
16031               then
16032                  --  Search for the primitive in the homonym chain
16033
16034                  Act_Subp :=
16035                    Find_Primitive_Covering_Interface
16036                      (Tagged_Type => Generic_Actual,
16037                       Iface_Prim  => Alias_Subp);
16038
16039                  --  Previous search may not locate primitives covering
16040                  --  interfaces defined in generics units or instantiations.
16041                  --  (it fails if the covering primitive has formals whose
16042                  --  type is also defined in generics or instantiations).
16043                  --  In such case we search in the list of primitives of the
16044                  --  generic actual for the internal entity that links the
16045                  --  interface primitive and the covering primitive.
16046
16047                  if No (Act_Subp)
16048                    and then Is_Generic_Type (Parent_Type)
16049                  then
16050                     --  This code has been designed to handle only generic
16051                     --  formals that implement interfaces that are defined
16052                     --  in a generic unit or instantiation. If this code is
16053                     --  needed for other cases we must review it because
16054                     --  (given that it relies on Original_Location to locate
16055                     --  the primitive of Generic_Actual that covers the
16056                     --  interface) it could leave linked through attribute
16057                     --  Alias entities of unrelated instantiations).
16058
16059                     pragma Assert
16060                       (Is_Generic_Unit
16061                          (Scope (Find_Dispatching_Type (Alias_Subp)))
16062                         or else
16063                           Instantiation_Depth
16064                             (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
16065
16066                     declare
16067                        Iface_Prim_Loc : constant Source_Ptr :=
16068                                         Original_Location (Sloc (Alias_Subp));
16069
16070                        Elmt : Elmt_Id;
16071                        Prim : Entity_Id;
16072
16073                     begin
16074                        Elmt :=
16075                          First_Elmt (Primitive_Operations (Generic_Actual));
16076
16077                        Search : while Present (Elmt) loop
16078                           Prim := Node (Elmt);
16079
16080                           if Present (Interface_Alias (Prim))
16081                             and then Original_Location
16082                                        (Sloc (Interface_Alias (Prim))) =
16083                                                              Iface_Prim_Loc
16084                           then
16085                              Act_Subp := Alias (Prim);
16086                              exit Search;
16087                           end if;
16088
16089                           Next_Elmt (Elmt);
16090                        end loop Search;
16091                     end;
16092                  end if;
16093
16094                  pragma Assert (Present (Act_Subp)
16095                    or else Is_Abstract_Type (Generic_Actual)
16096                    or else Serious_Errors_Detected > 0);
16097
16098               --  Handle predefined primitives plus the rest of user-defined
16099               --  primitives
16100
16101               else
16102                  Act_Elmt := First_Elmt (Act_List);
16103                  while Present (Act_Elmt) loop
16104                     Act_Subp := Node (Act_Elmt);
16105
16106                     exit when Primitive_Names_Match (Subp, Act_Subp)
16107                       and then Type_Conformant
16108                                  (Subp, Act_Subp,
16109                                   Skip_Controlling_Formals => True)
16110                       and then No (Interface_Alias (Act_Subp));
16111
16112                     Next_Elmt (Act_Elmt);
16113                  end loop;
16114
16115                  if No (Act_Elmt) then
16116                     Act_Subp := Empty;
16117                  end if;
16118               end if;
16119            end if;
16120
16121            --   Case 1: If the parent is a limited interface then it has the
16122            --   predefined primitives of synchronized interfaces. However, the
16123            --   actual type may be a non-limited type and hence it does not
16124            --   have such primitives.
16125
16126            if Present (Generic_Actual)
16127              and then not Present (Act_Subp)
16128              and then Is_Limited_Interface (Parent_Base)
16129              and then Is_Predefined_Interface_Primitive (Subp)
16130            then
16131               null;
16132
16133            --  Case 2: Inherit entities associated with interfaces that were
16134            --  not covered by the parent type. We exclude here null interface
16135            --  primitives because they do not need special management.
16136
16137            --  We also exclude interface operations that are renamings. If the
16138            --  subprogram is an explicit renaming of an interface primitive,
16139            --  it is a regular primitive operation, and the presence of its
16140            --  alias is not relevant: it has to be derived like any other
16141            --  primitive.
16142
16143            elsif Present (Alias (Subp))
16144              and then Nkind (Unit_Declaration_Node (Subp)) /=
16145                                            N_Subprogram_Renaming_Declaration
16146              and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16147              and then not
16148                (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16149                  and then Null_Present (Parent (Alias_Subp)))
16150            then
16151               --  If this is an abstract private type then we transfer the
16152               --  derivation of the interface primitive from the partial view
16153               --  to the full view. This is safe because all the interfaces
16154               --  must be visible in the partial view. Done to avoid adding
16155               --  a new interface derivation to the private part of the
16156               --  enclosing package; otherwise this new derivation would be
16157               --  decorated as hidden when the analysis of the enclosing
16158               --  package completes.
16159
16160               if Is_Abstract_Type (Derived_Type)
16161                 and then In_Private_Part (Current_Scope)
16162                 and then Has_Private_Declaration (Derived_Type)
16163               then
16164                  declare
16165                     Partial_View : Entity_Id;
16166                     Elmt         : Elmt_Id;
16167                     Ent          : Entity_Id;
16168
16169                  begin
16170                     Partial_View := First_Entity (Current_Scope);
16171                     loop
16172                        exit when No (Partial_View)
16173                          or else (Has_Private_Declaration (Partial_View)
16174                                    and then
16175                                      Full_View (Partial_View) = Derived_Type);
16176
16177                        Next_Entity (Partial_View);
16178                     end loop;
16179
16180                     --  If the partial view was not found then the source code
16181                     --  has errors and the derivation is not needed.
16182
16183                     if Present (Partial_View) then
16184                        Elmt :=
16185                          First_Elmt (Primitive_Operations (Partial_View));
16186                        while Present (Elmt) loop
16187                           Ent := Node (Elmt);
16188
16189                           if Present (Alias (Ent))
16190                             and then Ultimate_Alias (Ent) = Alias (Subp)
16191                           then
16192                              Append_Elmt
16193                                (Ent, Primitive_Operations (Derived_Type));
16194                              exit;
16195                           end if;
16196
16197                           Next_Elmt (Elmt);
16198                        end loop;
16199
16200                        --  If the interface primitive was not found in the
16201                        --  partial view then this interface primitive was
16202                        --  overridden. We add a derivation to activate in
16203                        --  Derive_Progenitor_Subprograms the machinery to
16204                        --  search for it.
16205
16206                        if No (Elmt) then
16207                           Derive_Interface_Subprogram
16208                             (New_Subp    => New_Subp,
16209                              Subp        => Subp,
16210                              Actual_Subp => Act_Subp);
16211                        end if;
16212                     end if;
16213                  end;
16214               else
16215                  Derive_Interface_Subprogram
16216                    (New_Subp     => New_Subp,
16217                     Subp         => Subp,
16218                     Actual_Subp  => Act_Subp);
16219               end if;
16220
16221            --  Case 3: Common derivation
16222
16223            else
16224               Derive_Subprogram
16225                 (New_Subp     => New_Subp,
16226                  Parent_Subp  => Subp,
16227                  Derived_Type => Derived_Type,
16228                  Parent_Type  => Parent_Base,
16229                  Actual_Subp  => Act_Subp);
16230            end if;
16231
16232            --  No need to update Act_Elm if we must search for the
16233            --  corresponding operation in the generic actual
16234
16235            if not Need_Search
16236              and then Present (Act_Elmt)
16237            then
16238               Next_Elmt (Act_Elmt);
16239               Act_Subp := Node (Act_Elmt);
16240            end if;
16241
16242            <<Continue>>
16243            Next_Elmt (Elmt);
16244         end loop;
16245
16246         --  Inherit additional operations from progenitors. If the derived
16247         --  type is a generic actual, there are not new primitive operations
16248         --  for the type because it has those of the actual, and therefore
16249         --  nothing needs to be done. The renamings generated above are not
16250         --  primitive operations, and their purpose is simply to make the
16251         --  proper operations visible within an instantiation.
16252
16253         if No (Generic_Actual) then
16254            Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16255         end if;
16256      end if;
16257
16258      --  Final check: Direct descendants must have their primitives in the
16259      --  same order. We exclude from this test untagged types and instances
16260      --  of formal derived types. We skip this test if we have already
16261      --  reported serious errors in the sources.
16262
16263      pragma Assert (not Is_Tagged_Type (Derived_Type)
16264        or else Present (Generic_Actual)
16265        or else Serious_Errors_Detected > 0
16266        or else Check_Derived_Type);
16267   end Derive_Subprograms;
16268
16269   --------------------------------
16270   -- Derived_Standard_Character --
16271   --------------------------------
16272
16273   procedure Derived_Standard_Character
16274     (N            : Node_Id;
16275      Parent_Type  : Entity_Id;
16276      Derived_Type : Entity_Id)
16277   is
16278      Loc           : constant Source_Ptr := Sloc (N);
16279      Def           : constant Node_Id    := Type_Definition (N);
16280      Indic         : constant Node_Id    := Subtype_Indication (Def);
16281      Parent_Base   : constant Entity_Id  := Base_Type (Parent_Type);
16282      Implicit_Base : constant Entity_Id  :=
16283                        Create_Itype
16284                          (E_Enumeration_Type, N, Derived_Type, 'B');
16285
16286      Lo : Node_Id;
16287      Hi : Node_Id;
16288
16289   begin
16290      Discard_Node (Process_Subtype (Indic, N));
16291
16292      Set_Etype     (Implicit_Base, Parent_Base);
16293      Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16294      Set_RM_Size   (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16295
16296      Set_Is_Character_Type  (Implicit_Base, True);
16297      Set_Has_Delayed_Freeze (Implicit_Base);
16298
16299      --  The bounds of the implicit base are the bounds of the parent base.
16300      --  Note that their type is the parent base.
16301
16302      Lo := New_Copy_Tree (Type_Low_Bound  (Parent_Base));
16303      Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16304
16305      Set_Scalar_Range (Implicit_Base,
16306        Make_Range (Loc,
16307          Low_Bound  => Lo,
16308          High_Bound => Hi));
16309
16310      Conditional_Delay (Derived_Type, Parent_Type);
16311
16312      Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16313      Set_Etype (Derived_Type, Implicit_Base);
16314      Set_Size_Info         (Derived_Type, Parent_Type);
16315
16316      if Unknown_RM_Size (Derived_Type) then
16317         Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16318      end if;
16319
16320      Set_Is_Character_Type (Derived_Type, True);
16321
16322      if Nkind (Indic) /= N_Subtype_Indication then
16323
16324         --  If no explicit constraint, the bounds are those
16325         --  of the parent type.
16326
16327         Lo := New_Copy_Tree (Type_Low_Bound  (Parent_Type));
16328         Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16329         Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16330      end if;
16331
16332      Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16333
16334      --  Because the implicit base is used in the conversion of the bounds, we
16335      --  have to freeze it now. This is similar to what is done for numeric
16336      --  types, and it equally suspicious, but otherwise a non-static bound
16337      --  will have a reference to an unfrozen type, which is rejected by Gigi
16338      --  (???). This requires specific care for definition of stream
16339      --  attributes. For details, see comments at the end of
16340      --  Build_Derived_Numeric_Type.
16341
16342      Freeze_Before (N, Implicit_Base);
16343   end Derived_Standard_Character;
16344
16345   ------------------------------
16346   -- Derived_Type_Declaration --
16347   ------------------------------
16348
16349   procedure Derived_Type_Declaration
16350     (T             : Entity_Id;
16351      N             : Node_Id;
16352      Is_Completion : Boolean)
16353   is
16354      Parent_Type  : Entity_Id;
16355
16356      function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16357      --  Check whether the parent type is a generic formal, or derives
16358      --  directly or indirectly from one.
16359
16360      ------------------------
16361      -- Comes_From_Generic --
16362      ------------------------
16363
16364      function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16365      begin
16366         if Is_Generic_Type (Typ) then
16367            return True;
16368
16369         elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16370            return True;
16371
16372         elsif Is_Private_Type (Typ)
16373           and then Present (Full_View (Typ))
16374           and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16375         then
16376            return True;
16377
16378         elsif Is_Generic_Actual_Type (Typ) then
16379            return True;
16380
16381         else
16382            return False;
16383         end if;
16384      end Comes_From_Generic;
16385
16386      --  Local variables
16387
16388      Def          : constant Node_Id := Type_Definition (N);
16389      Iface_Def    : Node_Id;
16390      Indic        : constant Node_Id := Subtype_Indication (Def);
16391      Extension    : constant Node_Id := Record_Extension_Part (Def);
16392      Parent_Node  : Node_Id;
16393      Taggd        : Boolean;
16394
16395   --  Start of processing for Derived_Type_Declaration
16396
16397   begin
16398      Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16399
16400      if SPARK_Mode = On
16401        and then Is_Tagged_Type (Parent_Type)
16402      then
16403         declare
16404            Partial_View : constant Entity_Id :=
16405                             Incomplete_Or_Partial_View (Parent_Type);
16406
16407         begin
16408            --  If the partial view was not found then the parent type is not
16409            --  a private type. Otherwise check if the partial view is a tagged
16410            --  private type.
16411
16412            if Present (Partial_View)
16413              and then Is_Private_Type (Partial_View)
16414              and then not Is_Tagged_Type (Partial_View)
16415            then
16416               Error_Msg_NE
16417                 ("cannot derive from & declared as untagged private "
16418                  & "(SPARK RM 3.4(1))", N, Partial_View);
16419            end if;
16420         end;
16421      end if;
16422
16423      --  Ada 2005 (AI-251): In case of interface derivation check that the
16424      --  parent is also an interface.
16425
16426      if Interface_Present (Def) then
16427         Check_SPARK_05_Restriction ("interface is not allowed", Def);
16428
16429         if not Is_Interface (Parent_Type) then
16430            Diagnose_Interface (Indic, Parent_Type);
16431
16432         else
16433            Parent_Node := Parent (Base_Type (Parent_Type));
16434            Iface_Def   := Type_Definition (Parent_Node);
16435
16436            --  Ada 2005 (AI-251): Limited interfaces can only inherit from
16437            --  other limited interfaces.
16438
16439            if Limited_Present (Def) then
16440               if Limited_Present (Iface_Def) then
16441                  null;
16442
16443               elsif Protected_Present (Iface_Def) then
16444                  Error_Msg_NE
16445                    ("descendant of & must be declared as a protected "
16446                     & "interface", N, Parent_Type);
16447
16448               elsif Synchronized_Present (Iface_Def) then
16449                  Error_Msg_NE
16450                    ("descendant of & must be declared as a synchronized "
16451                     & "interface", N, Parent_Type);
16452
16453               elsif Task_Present (Iface_Def) then
16454                  Error_Msg_NE
16455                    ("descendant of & must be declared as a task interface",
16456                       N, Parent_Type);
16457
16458               else
16459                  Error_Msg_N
16460                    ("(Ada 2005) limited interface cannot inherit from "
16461                     & "non-limited interface", Indic);
16462               end if;
16463
16464            --  Ada 2005 (AI-345): Non-limited interfaces can only inherit
16465            --  from non-limited or limited interfaces.
16466
16467            elsif not Protected_Present (Def)
16468              and then not Synchronized_Present (Def)
16469              and then not Task_Present (Def)
16470            then
16471               if Limited_Present (Iface_Def) then
16472                  null;
16473
16474               elsif Protected_Present (Iface_Def) then
16475                  Error_Msg_NE
16476                    ("descendant of & must be declared as a protected "
16477                     & "interface", N, Parent_Type);
16478
16479               elsif Synchronized_Present (Iface_Def) then
16480                  Error_Msg_NE
16481                    ("descendant of & must be declared as a synchronized "
16482                     & "interface", N, Parent_Type);
16483
16484               elsif Task_Present (Iface_Def) then
16485                  Error_Msg_NE
16486                    ("descendant of & must be declared as a task interface",
16487                       N, Parent_Type);
16488               else
16489                  null;
16490               end if;
16491            end if;
16492         end if;
16493      end if;
16494
16495      if Is_Tagged_Type (Parent_Type)
16496        and then Is_Concurrent_Type (Parent_Type)
16497        and then not Is_Interface (Parent_Type)
16498      then
16499         Error_Msg_N
16500           ("parent type of a record extension cannot be a synchronized "
16501            & "tagged type (RM 3.9.1 (3/1))", N);
16502         Set_Etype (T, Any_Type);
16503         return;
16504      end if;
16505
16506      --  Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16507      --  interfaces
16508
16509      if Is_Tagged_Type (Parent_Type)
16510        and then Is_Non_Empty_List (Interface_List (Def))
16511      then
16512         declare
16513            Intf : Node_Id;
16514            T    : Entity_Id;
16515
16516         begin
16517            Intf := First (Interface_List (Def));
16518            while Present (Intf) loop
16519               T := Find_Type_Of_Subtype_Indic (Intf);
16520
16521               if not Is_Interface (T) then
16522                  Diagnose_Interface (Intf, T);
16523
16524               --  Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16525               --  a limited type from having a nonlimited progenitor.
16526
16527               elsif (Limited_Present (Def)
16528                       or else (not Is_Interface (Parent_Type)
16529                                 and then Is_Limited_Type (Parent_Type)))
16530                 and then not Is_Limited_Interface (T)
16531               then
16532                  Error_Msg_NE
16533                   ("progenitor interface& of limited type must be limited",
16534                     N, T);
16535               end if;
16536
16537               Next (Intf);
16538            end loop;
16539         end;
16540      end if;
16541
16542      if Parent_Type = Any_Type
16543        or else Etype (Parent_Type) = Any_Type
16544        or else (Is_Class_Wide_Type (Parent_Type)
16545                  and then Etype (Parent_Type) = T)
16546      then
16547         --  If Parent_Type is undefined or illegal, make new type into a
16548         --  subtype of Any_Type, and set a few attributes to prevent cascaded
16549         --  errors. If this is a self-definition, emit error now.
16550
16551         if T = Parent_Type or else T = Etype (Parent_Type) then
16552            Error_Msg_N ("type cannot be used in its own definition", Indic);
16553         end if;
16554
16555         Set_Ekind        (T, Ekind (Parent_Type));
16556         Set_Etype        (T, Any_Type);
16557         Set_Scalar_Range (T, Scalar_Range (Any_Type));
16558
16559         if Is_Tagged_Type (T)
16560           and then Is_Record_Type (T)
16561         then
16562            Set_Direct_Primitive_Operations (T, New_Elmt_List);
16563         end if;
16564
16565         return;
16566      end if;
16567
16568      --  Ada 2005 (AI-251): The case in which the parent of the full-view is
16569      --  an interface is special because the list of interfaces in the full
16570      --  view can be given in any order. For example:
16571
16572      --     type A is interface;
16573      --     type B is interface and A;
16574      --     type D is new B with private;
16575      --   private
16576      --     type D is new A and B with null record; -- 1 --
16577
16578      --  In this case we perform the following transformation of -1-:
16579
16580      --     type D is new B and A with null record;
16581
16582      --  If the parent of the full-view covers the parent of the partial-view
16583      --  we have two possible cases:
16584
16585      --     1) They have the same parent
16586      --     2) The parent of the full-view implements some further interfaces
16587
16588      --  In both cases we do not need to perform the transformation. In the
16589      --  first case the source program is correct and the transformation is
16590      --  not needed; in the second case the source program does not fulfill
16591      --  the no-hidden interfaces rule (AI-396) and the error will be reported
16592      --  later.
16593
16594      --  This transformation not only simplifies the rest of the analysis of
16595      --  this type declaration but also simplifies the correct generation of
16596      --  the object layout to the expander.
16597
16598      if In_Private_Part (Current_Scope)
16599        and then Is_Interface (Parent_Type)
16600      then
16601         declare
16602            Iface               : Node_Id;
16603            Partial_View        : Entity_Id;
16604            Partial_View_Parent : Entity_Id;
16605            New_Iface           : Node_Id;
16606
16607         begin
16608            --  Look for the associated private type declaration
16609
16610            Partial_View := Incomplete_Or_Partial_View (T);
16611
16612            --  If the partial view was not found then the source code has
16613            --  errors and the transformation is not needed.
16614
16615            if Present (Partial_View) then
16616               Partial_View_Parent := Etype (Partial_View);
16617
16618               --  If the parent of the full-view covers the parent of the
16619               --  partial-view we have nothing else to do.
16620
16621               if Interface_Present_In_Ancestor
16622                    (Parent_Type, Partial_View_Parent)
16623               then
16624                  null;
16625
16626               --  Traverse the list of interfaces of the full-view to look
16627               --  for the parent of the partial-view and perform the tree
16628               --  transformation.
16629
16630               else
16631                  Iface := First (Interface_List (Def));
16632                  while Present (Iface) loop
16633                     if Etype (Iface) = Etype (Partial_View) then
16634                        Rewrite (Subtype_Indication (Def),
16635                          New_Copy (Subtype_Indication
16636                                     (Parent (Partial_View))));
16637
16638                        New_Iface :=
16639                          Make_Identifier (Sloc (N), Chars (Parent_Type));
16640                        Append (New_Iface, Interface_List (Def));
16641
16642                        --  Analyze the transformed code
16643
16644                        Derived_Type_Declaration (T, N, Is_Completion);
16645                        return;
16646                     end if;
16647
16648                     Next (Iface);
16649                  end loop;
16650               end if;
16651            end if;
16652         end;
16653      end if;
16654
16655      --  Only composite types other than array types are allowed to have
16656      --  discriminants.
16657
16658      if Present (Discriminant_Specifications (N)) then
16659         if (Is_Elementary_Type (Parent_Type)
16660               or else
16661             Is_Array_Type      (Parent_Type))
16662           and then not Error_Posted (N)
16663         then
16664            Error_Msg_N
16665              ("elementary or array type cannot have discriminants",
16666               Defining_Identifier (First (Discriminant_Specifications (N))));
16667            Set_Has_Discriminants (T, False);
16668
16669         --  The type is allowed to have discriminants
16670
16671         else
16672            Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16673         end if;
16674      end if;
16675
16676      --  In Ada 83, a derived type defined in a package specification cannot
16677      --  be used for further derivation until the end of its visible part.
16678      --  Note that derivation in the private part of the package is allowed.
16679
16680      if Ada_Version = Ada_83
16681        and then Is_Derived_Type (Parent_Type)
16682        and then In_Visible_Part (Scope (Parent_Type))
16683      then
16684         if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16685            Error_Msg_N
16686              ("(Ada 83): premature use of type for derivation", Indic);
16687         end if;
16688      end if;
16689
16690      --  Check for early use of incomplete or private type
16691
16692      if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16693         Error_Msg_N ("premature derivation of incomplete type", Indic);
16694         return;
16695
16696      elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16697              and then not Comes_From_Generic (Parent_Type))
16698        or else Has_Private_Component (Parent_Type)
16699      then
16700         --  The ancestor type of a formal type can be incomplete, in which
16701         --  case only the operations of the partial view are available in the
16702         --  generic. Subsequent checks may be required when the full view is
16703         --  analyzed to verify that a derivation from a tagged type has an
16704         --  extension.
16705
16706         if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16707            null;
16708
16709         elsif No (Underlying_Type (Parent_Type))
16710           or else Has_Private_Component (Parent_Type)
16711         then
16712            Error_Msg_N
16713              ("premature derivation of derived or private type", Indic);
16714
16715            --  Flag the type itself as being in error, this prevents some
16716            --  nasty problems with subsequent uses of the malformed type.
16717
16718            Set_Error_Posted (T);
16719
16720         --  Check that within the immediate scope of an untagged partial
16721         --  view it's illegal to derive from the partial view if the
16722         --  full view is tagged. (7.3(7))
16723
16724         --  We verify that the Parent_Type is a partial view by checking
16725         --  that it is not a Full_Type_Declaration (i.e. a private type or
16726         --  private extension declaration), to distinguish a partial view
16727         --  from  a derivation from a private type which also appears as
16728         --  E_Private_Type. If the parent base type is not declared in an
16729         --  enclosing scope there is no need to check.
16730
16731         elsif Present (Full_View (Parent_Type))
16732           and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16733           and then not Is_Tagged_Type (Parent_Type)
16734           and then Is_Tagged_Type (Full_View (Parent_Type))
16735           and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16736         then
16737            Error_Msg_N
16738              ("premature derivation from type with tagged full view",
16739                Indic);
16740         end if;
16741      end if;
16742
16743      --  Check that form of derivation is appropriate
16744
16745      Taggd := Is_Tagged_Type (Parent_Type);
16746
16747      --  Set the parent type to the class-wide type's specific type in this
16748      --  case to prevent cascading errors
16749
16750      if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16751         Error_Msg_N ("parent type must not be a class-wide type", Indic);
16752         Set_Etype (T, Etype (Parent_Type));
16753         return;
16754      end if;
16755
16756      if Present (Extension) and then not Taggd then
16757         Error_Msg_N
16758           ("type derived from untagged type cannot have extension", Indic);
16759
16760      elsif No (Extension) and then Taggd then
16761
16762         --  If this declaration is within a private part (or body) of a
16763         --  generic instantiation then the derivation is allowed (the parent
16764         --  type can only appear tagged in this case if it's a generic actual
16765         --  type, since it would otherwise have been rejected in the analysis
16766         --  of the generic template).
16767
16768         if not Is_Generic_Actual_Type (Parent_Type)
16769           or else In_Visible_Part (Scope (Parent_Type))
16770         then
16771            if Is_Class_Wide_Type (Parent_Type) then
16772               Error_Msg_N
16773                 ("parent type must not be a class-wide type", Indic);
16774
16775               --  Use specific type to prevent cascaded errors.
16776
16777               Parent_Type := Etype (Parent_Type);
16778
16779            else
16780               Error_Msg_N
16781                 ("type derived from tagged type must have extension", Indic);
16782            end if;
16783         end if;
16784      end if;
16785
16786      --  AI-443: Synchronized formal derived types require a private
16787      --  extension. There is no point in checking the ancestor type or
16788      --  the progenitors since the construct is wrong to begin with.
16789
16790      if Ada_Version >= Ada_2005
16791        and then Is_Generic_Type (T)
16792        and then Present (Original_Node (N))
16793      then
16794         declare
16795            Decl : constant Node_Id := Original_Node (N);
16796
16797         begin
16798            if Nkind (Decl) = N_Formal_Type_Declaration
16799              and then Nkind (Formal_Type_Definition (Decl)) =
16800                                          N_Formal_Derived_Type_Definition
16801              and then Synchronized_Present (Formal_Type_Definition (Decl))
16802              and then No (Extension)
16803
16804               --  Avoid emitting a duplicate error message
16805
16806              and then not Error_Posted (Indic)
16807            then
16808               Error_Msg_N
16809                 ("synchronized derived type must have extension", N);
16810            end if;
16811         end;
16812      end if;
16813
16814      if Null_Exclusion_Present (Def)
16815        and then not Is_Access_Type (Parent_Type)
16816      then
16817         Error_Msg_N ("null exclusion can only apply to an access type", N);
16818      end if;
16819
16820      --  Avoid deriving parent primitives of underlying record views
16821
16822      Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16823        Derive_Subps => not Is_Underlying_Record_View (T));
16824
16825      --  AI-419: The parent type of an explicitly limited derived type must
16826      --  be a limited type or a limited interface.
16827
16828      if Limited_Present (Def) then
16829         Set_Is_Limited_Record (T);
16830
16831         if Is_Interface (T) then
16832            Set_Is_Limited_Interface (T);
16833         end if;
16834
16835         if not Is_Limited_Type (Parent_Type)
16836           and then
16837             (not Is_Interface (Parent_Type)
16838               or else not Is_Limited_Interface (Parent_Type))
16839         then
16840            --  AI05-0096: a derivation in the private part of an instance is
16841            --  legal if the generic formal is untagged limited, and the actual
16842            --  is non-limited.
16843
16844            if Is_Generic_Actual_Type (Parent_Type)
16845              and then In_Private_Part (Current_Scope)
16846              and then
16847                not Is_Tagged_Type
16848                      (Generic_Parent_Type (Parent (Parent_Type)))
16849            then
16850               null;
16851
16852            else
16853               Error_Msg_NE
16854                 ("parent type& of limited type must be limited",
16855                  N, Parent_Type);
16856            end if;
16857         end if;
16858      end if;
16859
16860      --  In SPARK, there are no derived type definitions other than type
16861      --  extensions of tagged record types.
16862
16863      if No (Extension) then
16864         Check_SPARK_05_Restriction
16865           ("derived type is not allowed", Original_Node (N));
16866      end if;
16867   end Derived_Type_Declaration;
16868
16869   ------------------------
16870   -- Diagnose_Interface --
16871   ------------------------
16872
16873   procedure Diagnose_Interface (N : Node_Id;  E : Entity_Id) is
16874   begin
16875      if not Is_Interface (E) and then E /= Any_Type then
16876         Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16877      end if;
16878   end Diagnose_Interface;
16879
16880   ----------------------------------
16881   -- Enumeration_Type_Declaration --
16882   ----------------------------------
16883
16884   procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16885      Ev     : Uint;
16886      L      : Node_Id;
16887      R_Node : Node_Id;
16888      B_Node : Node_Id;
16889
16890   begin
16891      --  Create identifier node representing lower bound
16892
16893      B_Node := New_Node (N_Identifier, Sloc (Def));
16894      L := First (Literals (Def));
16895      Set_Chars (B_Node, Chars (L));
16896      Set_Entity (B_Node,  L);
16897      Set_Etype (B_Node, T);
16898      Set_Is_Static_Expression (B_Node, True);
16899
16900      R_Node := New_Node (N_Range, Sloc (Def));
16901      Set_Low_Bound  (R_Node, B_Node);
16902
16903      Set_Ekind (T, E_Enumeration_Type);
16904      Set_First_Literal (T, L);
16905      Set_Etype (T, T);
16906      Set_Is_Constrained (T);
16907
16908      Ev := Uint_0;
16909
16910      --  Loop through literals of enumeration type setting pos and rep values
16911      --  except that if the Ekind is already set, then it means the literal
16912      --  was already constructed (case of a derived type declaration and we
16913      --  should not disturb the Pos and Rep values.
16914
16915      while Present (L) loop
16916         if Ekind (L) /= E_Enumeration_Literal then
16917            Set_Ekind (L, E_Enumeration_Literal);
16918            Set_Enumeration_Pos (L, Ev);
16919            Set_Enumeration_Rep (L, Ev);
16920            Set_Is_Known_Valid  (L, True);
16921         end if;
16922
16923         Set_Etype (L, T);
16924         New_Overloaded_Entity (L);
16925         Generate_Definition (L);
16926         Set_Convention (L, Convention_Intrinsic);
16927
16928         --  Case of character literal
16929
16930         if Nkind (L) = N_Defining_Character_Literal then
16931            Set_Is_Character_Type (T, True);
16932
16933            --  Check violation of No_Wide_Characters
16934
16935            if Restriction_Check_Required (No_Wide_Characters) then
16936               Get_Name_String (Chars (L));
16937
16938               if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16939                  Check_Restriction (No_Wide_Characters, L);
16940               end if;
16941            end if;
16942         end if;
16943
16944         Ev := Ev + 1;
16945         Next (L);
16946      end loop;
16947
16948      --  Now create a node representing upper bound
16949
16950      B_Node := New_Node (N_Identifier, Sloc (Def));
16951      Set_Chars (B_Node, Chars (Last (Literals (Def))));
16952      Set_Entity (B_Node,  Last (Literals (Def)));
16953      Set_Etype (B_Node, T);
16954      Set_Is_Static_Expression (B_Node, True);
16955
16956      Set_High_Bound (R_Node, B_Node);
16957
16958      --  Initialize various fields of the type. Some of this information
16959      --  may be overwritten later through rep.clauses.
16960
16961      Set_Scalar_Range    (T, R_Node);
16962      Set_RM_Size         (T, UI_From_Int (Minimum_Size (T)));
16963      Set_Enum_Esize      (T);
16964      Set_Enum_Pos_To_Rep (T, Empty);
16965
16966      --  Set Discard_Names if configuration pragma set, or if there is
16967      --  a parameterless pragma in the current declarative region
16968
16969      if Global_Discard_Names or else Discard_Names (Scope (T)) then
16970         Set_Discard_Names (T);
16971      end if;
16972
16973      --  Process end label if there is one
16974
16975      if Present (Def) then
16976         Process_End_Label (Def, 'e', T);
16977      end if;
16978   end Enumeration_Type_Declaration;
16979
16980   ---------------------------------
16981   -- Expand_To_Stored_Constraint --
16982   ---------------------------------
16983
16984   function Expand_To_Stored_Constraint
16985     (Typ        : Entity_Id;
16986      Constraint : Elist_Id) return Elist_Id
16987   is
16988      Explicitly_Discriminated_Type : Entity_Id;
16989      Expansion    : Elist_Id;
16990      Discriminant : Entity_Id;
16991
16992      function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16993      --  Find the nearest type that actually specifies discriminants
16994
16995      ---------------------------------
16996      -- Type_With_Explicit_Discrims --
16997      ---------------------------------
16998
16999      function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
17000         Typ : constant E := Base_Type (Id);
17001
17002      begin
17003         if Ekind (Typ) in Incomplete_Or_Private_Kind then
17004            if Present (Full_View (Typ)) then
17005               return Type_With_Explicit_Discrims (Full_View (Typ));
17006            end if;
17007
17008         else
17009            if Has_Discriminants (Typ) then
17010               return Typ;
17011            end if;
17012         end if;
17013
17014         if Etype (Typ) = Typ then
17015            return Empty;
17016         elsif Has_Discriminants (Typ) then
17017            return Typ;
17018         else
17019            return Type_With_Explicit_Discrims (Etype (Typ));
17020         end if;
17021
17022      end Type_With_Explicit_Discrims;
17023
17024   --  Start of processing for Expand_To_Stored_Constraint
17025
17026   begin
17027      if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
17028         return No_Elist;
17029      end if;
17030
17031      Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
17032
17033      if No (Explicitly_Discriminated_Type) then
17034         return No_Elist;
17035      end if;
17036
17037      Expansion := New_Elmt_List;
17038
17039      Discriminant :=
17040         First_Stored_Discriminant (Explicitly_Discriminated_Type);
17041      while Present (Discriminant) loop
17042         Append_Elmt
17043           (Get_Discriminant_Value
17044              (Discriminant, Explicitly_Discriminated_Type, Constraint),
17045            To => Expansion);
17046         Next_Stored_Discriminant (Discriminant);
17047      end loop;
17048
17049      return Expansion;
17050   end Expand_To_Stored_Constraint;
17051
17052   ---------------------------
17053   -- Find_Hidden_Interface --
17054   ---------------------------
17055
17056   function Find_Hidden_Interface
17057     (Src  : Elist_Id;
17058      Dest : Elist_Id) return Entity_Id
17059   is
17060      Iface      : Entity_Id;
17061      Iface_Elmt : Elmt_Id;
17062
17063   begin
17064      if Present (Src) and then Present (Dest) then
17065         Iface_Elmt := First_Elmt (Src);
17066         while Present (Iface_Elmt) loop
17067            Iface := Node (Iface_Elmt);
17068
17069            if Is_Interface (Iface)
17070              and then not Contain_Interface (Iface, Dest)
17071            then
17072               return Iface;
17073            end if;
17074
17075            Next_Elmt (Iface_Elmt);
17076         end loop;
17077      end if;
17078
17079      return Empty;
17080   end Find_Hidden_Interface;
17081
17082   --------------------
17083   -- Find_Type_Name --
17084   --------------------
17085
17086   function Find_Type_Name (N : Node_Id) return Entity_Id is
17087      Id       : constant Entity_Id := Defining_Identifier (N);
17088      New_Id   : Entity_Id;
17089      Prev     : Entity_Id;
17090      Prev_Par : Node_Id;
17091
17092      procedure Check_Duplicate_Aspects;
17093      --  Check that aspects specified in a completion have not been specified
17094      --  already in the partial view.
17095
17096      procedure Tag_Mismatch;
17097      --  Diagnose a tagged partial view whose full view is untagged. We post
17098      --  the message on the full view, with a reference to the previous
17099      --  partial view. The partial view can be private or incomplete, and
17100      --  these are handled in a different manner, so we determine the position
17101      --  of the error message from the respective slocs of both.
17102
17103      -----------------------------
17104      -- Check_Duplicate_Aspects --
17105      -----------------------------
17106
17107      procedure Check_Duplicate_Aspects is
17108         function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
17109         --  Return the corresponding aspect of the partial view which matches
17110         --  the aspect id of Asp. Return Empty is no such aspect exists.
17111
17112         -----------------------------
17113         -- Get_Partial_View_Aspect --
17114         -----------------------------
17115
17116         function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17117            Asp_Id    : constant Aspect_Id := Get_Aspect_Id (Asp);
17118            Prev_Asps : constant List_Id   := Aspect_Specifications (Prev_Par);
17119            Prev_Asp  : Node_Id;
17120
17121         begin
17122            if Present (Prev_Asps) then
17123               Prev_Asp := First (Prev_Asps);
17124               while Present (Prev_Asp) loop
17125                  if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17126                     return Prev_Asp;
17127                  end if;
17128
17129                  Next (Prev_Asp);
17130               end loop;
17131            end if;
17132
17133            return Empty;
17134         end Get_Partial_View_Aspect;
17135
17136         --  Local variables
17137
17138         Full_Asps : constant List_Id := Aspect_Specifications (N);
17139         Full_Asp  : Node_Id;
17140         Part_Asp  : Node_Id;
17141
17142      --  Start of processing for Check_Duplicate_Aspects
17143
17144      begin
17145         if Present (Full_Asps) then
17146            Full_Asp := First (Full_Asps);
17147            while Present (Full_Asp) loop
17148               Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17149
17150               --  An aspect and its class-wide counterpart are two distinct
17151               --  aspects and may apply to both views of an entity.
17152
17153               if Present (Part_Asp)
17154                 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17155               then
17156                  Error_Msg_N
17157                    ("aspect already specified in private declaration",
17158                     Full_Asp);
17159
17160                  Remove (Full_Asp);
17161                  return;
17162               end if;
17163
17164               if Has_Discriminants (Prev)
17165                 and then not Has_Unknown_Discriminants (Prev)
17166                 and then Get_Aspect_Id (Full_Asp) =
17167                            Aspect_Implicit_Dereference
17168               then
17169                  Error_Msg_N
17170                    ("cannot specify aspect if partial view has known "
17171                     & "discriminants", Full_Asp);
17172               end if;
17173
17174               Next (Full_Asp);
17175            end loop;
17176         end if;
17177      end Check_Duplicate_Aspects;
17178
17179      ------------------
17180      -- Tag_Mismatch --
17181      ------------------
17182
17183      procedure Tag_Mismatch is
17184      begin
17185         if Sloc (Prev) < Sloc (Id) then
17186            if Ada_Version >= Ada_2012
17187              and then Nkind (N) = N_Private_Type_Declaration
17188            then
17189               Error_Msg_NE
17190                 ("declaration of private } must be a tagged type ", Id, Prev);
17191            else
17192               Error_Msg_NE
17193                 ("full declaration of } must be a tagged type ", Id, Prev);
17194            end if;
17195
17196         else
17197            if Ada_Version >= Ada_2012
17198              and then Nkind (N) = N_Private_Type_Declaration
17199            then
17200               Error_Msg_NE
17201                 ("declaration of private } must be a tagged type ", Prev, Id);
17202            else
17203               Error_Msg_NE
17204                 ("full declaration of } must be a tagged type ", Prev, Id);
17205            end if;
17206         end if;
17207      end Tag_Mismatch;
17208
17209   --  Start of processing for Find_Type_Name
17210
17211   begin
17212      --  Find incomplete declaration, if one was given
17213
17214      Prev := Current_Entity_In_Scope (Id);
17215
17216      --  New type declaration
17217
17218      if No (Prev) then
17219         Enter_Name (Id);
17220         return Id;
17221
17222      --  Previous declaration exists
17223
17224      else
17225         Prev_Par := Parent (Prev);
17226
17227         --  Error if not incomplete/private case except if previous
17228         --  declaration is implicit, etc. Enter_Name will emit error if
17229         --  appropriate.
17230
17231         if not Is_Incomplete_Or_Private_Type (Prev) then
17232            Enter_Name (Id);
17233            New_Id := Id;
17234
17235         --  Check invalid completion of private or incomplete type
17236
17237         elsif not Nkind_In (N, N_Full_Type_Declaration,
17238                                N_Task_Type_Declaration,
17239                                N_Protected_Type_Declaration)
17240           and then
17241             (Ada_Version < Ada_2012
17242               or else not Is_Incomplete_Type (Prev)
17243               or else not Nkind_In (N, N_Private_Type_Declaration,
17244                                        N_Private_Extension_Declaration))
17245         then
17246            --  Completion must be a full type declarations (RM 7.3(4))
17247
17248            Error_Msg_Sloc := Sloc (Prev);
17249            Error_Msg_NE ("invalid completion of }", Id, Prev);
17250
17251            --  Set scope of Id to avoid cascaded errors. Entity is never
17252            --  examined again, except when saving globals in generics.
17253
17254            Set_Scope (Id, Current_Scope);
17255            New_Id := Id;
17256
17257            --  If this is a repeated incomplete declaration, no further
17258            --  checks are possible.
17259
17260            if Nkind (N) = N_Incomplete_Type_Declaration then
17261               return Prev;
17262            end if;
17263
17264         --  Case of full declaration of incomplete type
17265
17266         elsif Ekind (Prev) = E_Incomplete_Type
17267           and then (Ada_Version < Ada_2012
17268                      or else No (Full_View (Prev))
17269                      or else not Is_Private_Type (Full_View (Prev)))
17270         then
17271            --  Indicate that the incomplete declaration has a matching full
17272            --  declaration. The defining occurrence of the incomplete
17273            --  declaration remains the visible one, and the procedure
17274            --  Get_Full_View dereferences it whenever the type is used.
17275
17276            if Present (Full_View (Prev)) then
17277               Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17278            end if;
17279
17280            Set_Full_View (Prev, Id);
17281            Append_Entity (Id, Current_Scope);
17282            Set_Is_Public (Id, Is_Public (Prev));
17283            Set_Is_Internal (Id);
17284            New_Id := Prev;
17285
17286            --  If the incomplete view is tagged, a class_wide type has been
17287            --  created already. Use it for the private type as well, in order
17288            --  to prevent multiple incompatible class-wide types that may be
17289            --  created for self-referential anonymous access components.
17290
17291            if Is_Tagged_Type (Prev)
17292              and then Present (Class_Wide_Type (Prev))
17293            then
17294               Set_Ekind (Id, Ekind (Prev));         --  will be reset later
17295               Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17296
17297               --  Type of the class-wide type is the current Id. Previously
17298               --  this was not done for private declarations because of order-
17299               --  of-elaboration issues in the back end, but gigi now handles
17300               --  this properly.
17301
17302               Set_Etype (Class_Wide_Type (Id), Id);
17303            end if;
17304
17305         --  Case of full declaration of private type
17306
17307         else
17308            --  If the private type was a completion of an incomplete type then
17309            --  update Prev to reference the private type
17310
17311            if Ada_Version >= Ada_2012
17312              and then Ekind (Prev) = E_Incomplete_Type
17313              and then Present (Full_View (Prev))
17314              and then Is_Private_Type (Full_View (Prev))
17315            then
17316               Prev := Full_View (Prev);
17317               Prev_Par := Parent (Prev);
17318            end if;
17319
17320            if Nkind (N) = N_Full_Type_Declaration
17321              and then Nkind_In
17322                         (Type_Definition (N), N_Record_Definition,
17323                                               N_Derived_Type_Definition)
17324              and then Interface_Present (Type_Definition (N))
17325            then
17326               Error_Msg_N
17327                 ("completion of private type cannot be an interface", N);
17328            end if;
17329
17330            if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17331               if Etype (Prev) /= Prev then
17332
17333                  --  Prev is a private subtype or a derived type, and needs
17334                  --  no completion.
17335
17336                  Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17337                  New_Id := Id;
17338
17339               elsif Ekind (Prev) = E_Private_Type
17340                 and then Nkind_In (N, N_Task_Type_Declaration,
17341                                       N_Protected_Type_Declaration)
17342               then
17343                  Error_Msg_N
17344                   ("completion of nonlimited type cannot be limited", N);
17345
17346               elsif Ekind (Prev) = E_Record_Type_With_Private
17347                 and then Nkind_In (N, N_Task_Type_Declaration,
17348                                       N_Protected_Type_Declaration)
17349               then
17350                  if not Is_Limited_Record (Prev) then
17351                     Error_Msg_N
17352                        ("completion of nonlimited type cannot be limited", N);
17353
17354                  elsif No (Interface_List (N)) then
17355                     Error_Msg_N
17356                        ("completion of tagged private type must be tagged",
17357                         N);
17358                  end if;
17359               end if;
17360
17361            --  Ada 2005 (AI-251): Private extension declaration of a task
17362            --  type or a protected type. This case arises when covering
17363            --  interface types.
17364
17365            elsif Nkind_In (N, N_Task_Type_Declaration,
17366                               N_Protected_Type_Declaration)
17367            then
17368               null;
17369
17370            elsif Nkind (N) /= N_Full_Type_Declaration
17371              or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17372            then
17373               Error_Msg_N
17374                 ("full view of private extension must be an extension", N);
17375
17376            elsif not (Abstract_Present (Parent (Prev)))
17377              and then Abstract_Present (Type_Definition (N))
17378            then
17379               Error_Msg_N
17380                 ("full view of non-abstract extension cannot be abstract", N);
17381            end if;
17382
17383            if not In_Private_Part (Current_Scope) then
17384               Error_Msg_N
17385                 ("declaration of full view must appear in private part", N);
17386            end if;
17387
17388            if Ada_Version >= Ada_2012 then
17389               Check_Duplicate_Aspects;
17390            end if;
17391
17392            Copy_And_Swap (Prev, Id);
17393            Set_Has_Private_Declaration (Prev);
17394            Set_Has_Private_Declaration (Id);
17395
17396            --  AI12-0133: Indicate whether we have a partial view with
17397            --  unknown discriminants, in which case initialization of objects
17398            --  of the type do not receive an invariant check.
17399
17400            Set_Partial_View_Has_Unknown_Discr
17401              (Prev, Has_Unknown_Discriminants (Id));
17402
17403            --  Preserve aspect and iterator flags that may have been set on
17404            --  the partial view.
17405
17406            Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17407            Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17408
17409            --  If no error, propagate freeze_node from private to full view.
17410            --  It may have been generated for an early operational item.
17411
17412            if Present (Freeze_Node (Id))
17413              and then Serious_Errors_Detected = 0
17414              and then No (Full_View (Id))
17415            then
17416               Set_Freeze_Node (Prev, Freeze_Node (Id));
17417               Set_Freeze_Node (Id, Empty);
17418               Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17419            end if;
17420
17421            Set_Full_View (Id, Prev);
17422            New_Id := Prev;
17423         end if;
17424
17425         --  Verify that full declaration conforms to partial one
17426
17427         if Is_Incomplete_Or_Private_Type (Prev)
17428           and then Present (Discriminant_Specifications (Prev_Par))
17429         then
17430            if Present (Discriminant_Specifications (N)) then
17431               if Ekind (Prev) = E_Incomplete_Type then
17432                  Check_Discriminant_Conformance (N, Prev, Prev);
17433               else
17434                  Check_Discriminant_Conformance (N, Prev, Id);
17435               end if;
17436
17437            else
17438               Error_Msg_N
17439                 ("missing discriminants in full type declaration", N);
17440
17441               --  To avoid cascaded errors on subsequent use, share the
17442               --  discriminants of the partial view.
17443
17444               Set_Discriminant_Specifications (N,
17445                 Discriminant_Specifications (Prev_Par));
17446            end if;
17447         end if;
17448
17449         --  A prior untagged partial view can have an associated class-wide
17450         --  type due to use of the class attribute, and in this case the full
17451         --  type must also be tagged. This Ada 95 usage is deprecated in favor
17452         --  of incomplete tagged declarations, but we check for it.
17453
17454         if Is_Type (Prev)
17455           and then (Is_Tagged_Type (Prev)
17456                      or else Present (Class_Wide_Type (Prev)))
17457         then
17458            --  Ada 2012 (AI05-0162): A private type may be the completion of
17459            --  an incomplete type.
17460
17461            if Ada_Version >= Ada_2012
17462              and then Is_Incomplete_Type (Prev)
17463              and then Nkind_In (N, N_Private_Type_Declaration,
17464                                    N_Private_Extension_Declaration)
17465            then
17466               --  No need to check private extensions since they are tagged
17467
17468               if Nkind (N) = N_Private_Type_Declaration
17469                 and then not Tagged_Present (N)
17470               then
17471                  Tag_Mismatch;
17472               end if;
17473
17474            --  The full declaration is either a tagged type (including
17475            --  a synchronized type that implements interfaces) or a
17476            --  type extension, otherwise this is an error.
17477
17478            elsif Nkind_In (N, N_Task_Type_Declaration,
17479                               N_Protected_Type_Declaration)
17480            then
17481               if No (Interface_List (N)) and then not Error_Posted (N) then
17482                  Tag_Mismatch;
17483               end if;
17484
17485            elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17486
17487               --  Indicate that the previous declaration (tagged incomplete
17488               --  or private declaration) requires the same on the full one.
17489
17490               if not Tagged_Present (Type_Definition (N)) then
17491                  Tag_Mismatch;
17492                  Set_Is_Tagged_Type (Id);
17493               end if;
17494
17495            elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17496               if No (Record_Extension_Part (Type_Definition (N))) then
17497                  Error_Msg_NE
17498                    ("full declaration of } must be a record extension",
17499                     Prev, Id);
17500
17501                  --  Set some attributes to produce a usable full view
17502
17503                  Set_Is_Tagged_Type (Id);
17504               end if;
17505
17506            else
17507               Tag_Mismatch;
17508            end if;
17509         end if;
17510
17511         if Present (Prev)
17512           and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17513           and then Present (Premature_Use (Parent (Prev)))
17514         then
17515            Error_Msg_Sloc := Sloc (N);
17516            Error_Msg_N
17517              ("\full declaration #", Premature_Use (Parent (Prev)));
17518         end if;
17519
17520         return New_Id;
17521      end if;
17522   end Find_Type_Name;
17523
17524   -------------------------
17525   -- Find_Type_Of_Object --
17526   -------------------------
17527
17528   function Find_Type_Of_Object
17529     (Obj_Def     : Node_Id;
17530      Related_Nod : Node_Id) return Entity_Id
17531   is
17532      Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17533      P        : Node_Id := Parent (Obj_Def);
17534      T        : Entity_Id;
17535      Nam      : Name_Id;
17536
17537   begin
17538      --  If the parent is a component_definition node we climb to the
17539      --  component_declaration node
17540
17541      if Nkind (P) = N_Component_Definition then
17542         P := Parent (P);
17543      end if;
17544
17545      --  Case of an anonymous array subtype
17546
17547      if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17548                             N_Unconstrained_Array_Definition)
17549      then
17550         T := Empty;
17551         Array_Type_Declaration (T, Obj_Def);
17552
17553      --  Create an explicit subtype whenever possible
17554
17555      elsif Nkind (P) /= N_Component_Declaration
17556        and then Def_Kind = N_Subtype_Indication
17557      then
17558         --  Base name of subtype on object name, which will be unique in
17559         --  the current scope.
17560
17561         --  If this is a duplicate declaration, return base type, to avoid
17562         --  generating duplicate anonymous types.
17563
17564         if Error_Posted (P) then
17565            Analyze (Subtype_Mark (Obj_Def));
17566            return Entity (Subtype_Mark (Obj_Def));
17567         end if;
17568
17569         Nam :=
17570            New_External_Name
17571             (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17572
17573         T := Make_Defining_Identifier (Sloc (P), Nam);
17574
17575         Insert_Action (Obj_Def,
17576           Make_Subtype_Declaration (Sloc (P),
17577             Defining_Identifier => T,
17578             Subtype_Indication  => Relocate_Node (Obj_Def)));
17579
17580         --  This subtype may need freezing, and this will not be done
17581         --  automatically if the object declaration is not in declarative
17582         --  part. Since this is an object declaration, the type cannot always
17583         --  be frozen here. Deferred constants do not freeze their type
17584         --  (which often enough will be private).
17585
17586         if Nkind (P) = N_Object_Declaration
17587           and then Constant_Present (P)
17588           and then No (Expression (P))
17589         then
17590            null;
17591
17592         --  Here we freeze the base type of object type to catch premature use
17593         --  of discriminated private type without a full view.
17594
17595         else
17596            Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17597         end if;
17598
17599      --  Ada 2005 AI-406: the object definition in an object declaration
17600      --  can be an access definition.
17601
17602      elsif Def_Kind = N_Access_Definition then
17603         T := Access_Definition (Related_Nod, Obj_Def);
17604
17605         Set_Is_Local_Anonymous_Access
17606           (T,
17607            V => (Ada_Version < Ada_2012)
17608                   or else (Nkind (P) /= N_Object_Declaration)
17609                   or else Is_Library_Level_Entity (Defining_Identifier (P)));
17610
17611      --  Otherwise, the object definition is just a subtype_mark
17612
17613      else
17614         T := Process_Subtype (Obj_Def, Related_Nod);
17615
17616         --  If expansion is disabled an object definition that is an aggregate
17617         --  will not get expanded and may lead to scoping problems in the back
17618         --  end, if the object is referenced in an inner scope. In that case
17619         --  create an itype reference for the object definition now. This
17620         --  may be redundant in some cases, but harmless.
17621
17622         if Is_Itype (T)
17623           and then Nkind (Related_Nod) = N_Object_Declaration
17624           and then ASIS_Mode
17625         then
17626            Build_Itype_Reference (T, Related_Nod);
17627         end if;
17628      end if;
17629
17630      return T;
17631   end Find_Type_Of_Object;
17632
17633   --------------------------------
17634   -- Find_Type_Of_Subtype_Indic --
17635   --------------------------------
17636
17637   function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17638      Typ : Entity_Id;
17639
17640   begin
17641      --  Case of subtype mark with a constraint
17642
17643      if Nkind (S) = N_Subtype_Indication then
17644         Find_Type (Subtype_Mark (S));
17645         Typ := Entity (Subtype_Mark (S));
17646
17647         if not
17648           Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17649         then
17650            Error_Msg_N
17651              ("incorrect constraint for this kind of type", Constraint (S));
17652            Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17653         end if;
17654
17655      --  Otherwise we have a subtype mark without a constraint
17656
17657      elsif Error_Posted (S) then
17658         Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17659         return Any_Type;
17660
17661      else
17662         Find_Type (S);
17663         Typ := Entity (S);
17664      end if;
17665
17666      --  Check No_Wide_Characters restriction
17667
17668      Check_Wide_Character_Restriction (Typ, S);
17669
17670      return Typ;
17671   end Find_Type_Of_Subtype_Indic;
17672
17673   -------------------------------------
17674   -- Floating_Point_Type_Declaration --
17675   -------------------------------------
17676
17677   procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17678      Digs          : constant Node_Id := Digits_Expression (Def);
17679      Max_Digs_Val  : constant Uint := Digits_Value (Standard_Long_Long_Float);
17680      Digs_Val      : Uint;
17681      Base_Typ      : Entity_Id;
17682      Implicit_Base : Entity_Id;
17683      Bound         : Node_Id;
17684
17685      function Can_Derive_From (E : Entity_Id) return Boolean;
17686      --  Find if given digits value, and possibly a specified range, allows
17687      --  derivation from specified type
17688
17689      function Find_Base_Type return Entity_Id;
17690      --  Find a predefined base type that Def can derive from, or generate
17691      --  an error and substitute Long_Long_Float if none exists.
17692
17693      ---------------------
17694      -- Can_Derive_From --
17695      ---------------------
17696
17697      function Can_Derive_From (E : Entity_Id) return Boolean is
17698         Spec : constant Entity_Id := Real_Range_Specification (Def);
17699
17700      begin
17701         --  Check specified "digits" constraint
17702
17703         if Digs_Val > Digits_Value (E) then
17704            return False;
17705         end if;
17706
17707         --  Check for matching range, if specified
17708
17709         if Present (Spec) then
17710            if Expr_Value_R (Type_Low_Bound (E)) >
17711               Expr_Value_R (Low_Bound (Spec))
17712            then
17713               return False;
17714            end if;
17715
17716            if Expr_Value_R (Type_High_Bound (E)) <
17717               Expr_Value_R (High_Bound (Spec))
17718            then
17719               return False;
17720            end if;
17721         end if;
17722
17723         return True;
17724      end Can_Derive_From;
17725
17726      --------------------
17727      -- Find_Base_Type --
17728      --------------------
17729
17730      function Find_Base_Type return Entity_Id is
17731         Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17732
17733      begin
17734         --  Iterate over the predefined types in order, returning the first
17735         --  one that Def can derive from.
17736
17737         while Present (Choice) loop
17738            if Can_Derive_From (Node (Choice)) then
17739               return Node (Choice);
17740            end if;
17741
17742            Next_Elmt (Choice);
17743         end loop;
17744
17745         --  If we can't derive from any existing type, use Long_Long_Float
17746         --  and give appropriate message explaining the problem.
17747
17748         if Digs_Val > Max_Digs_Val then
17749            --  It might be the case that there is a type with the requested
17750            --  range, just not the combination of digits and range.
17751
17752            Error_Msg_N
17753              ("no predefined type has requested range and precision",
17754               Real_Range_Specification (Def));
17755
17756         else
17757            Error_Msg_N
17758              ("range too large for any predefined type",
17759               Real_Range_Specification (Def));
17760         end if;
17761
17762         return Standard_Long_Long_Float;
17763      end Find_Base_Type;
17764
17765   --  Start of processing for Floating_Point_Type_Declaration
17766
17767   begin
17768      Check_Restriction (No_Floating_Point, Def);
17769
17770      --  Create an implicit base type
17771
17772      Implicit_Base :=
17773        Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17774
17775      --  Analyze and verify digits value
17776
17777      Analyze_And_Resolve (Digs, Any_Integer);
17778      Check_Digits_Expression (Digs);
17779      Digs_Val := Expr_Value (Digs);
17780
17781      --  Process possible range spec and find correct type to derive from
17782
17783      Process_Real_Range_Specification (Def);
17784
17785      --  Check that requested number of digits is not too high.
17786
17787      if Digs_Val > Max_Digs_Val then
17788
17789         --  The check for Max_Base_Digits may be somewhat expensive, as it
17790         --  requires reading System, so only do it when necessary.
17791
17792         declare
17793            Max_Base_Digits : constant Uint :=
17794                                Expr_Value
17795                                  (Expression
17796                                     (Parent (RTE (RE_Max_Base_Digits))));
17797
17798         begin
17799            if Digs_Val > Max_Base_Digits then
17800               Error_Msg_Uint_1 := Max_Base_Digits;
17801               Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17802
17803            elsif No (Real_Range_Specification (Def)) then
17804               Error_Msg_Uint_1 := Max_Digs_Val;
17805               Error_Msg_N ("types with more than ^ digits need range spec "
17806                 & "(RM 3.5.7(6))", Digs);
17807            end if;
17808         end;
17809      end if;
17810
17811      --  Find a suitable type to derive from or complain and use a substitute
17812
17813      Base_Typ := Find_Base_Type;
17814
17815      --  If there are bounds given in the declaration use them as the bounds
17816      --  of the type, otherwise use the bounds of the predefined base type
17817      --  that was chosen based on the Digits value.
17818
17819      if Present (Real_Range_Specification (Def)) then
17820         Set_Scalar_Range (T, Real_Range_Specification (Def));
17821         Set_Is_Constrained (T);
17822
17823         --  The bounds of this range must be converted to machine numbers
17824         --  in accordance with RM 4.9(38).
17825
17826         Bound := Type_Low_Bound (T);
17827
17828         if Nkind (Bound) = N_Real_Literal then
17829            Set_Realval
17830              (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17831            Set_Is_Machine_Number (Bound);
17832         end if;
17833
17834         Bound := Type_High_Bound (T);
17835
17836         if Nkind (Bound) = N_Real_Literal then
17837            Set_Realval
17838              (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17839            Set_Is_Machine_Number (Bound);
17840         end if;
17841
17842      else
17843         Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17844      end if;
17845
17846      --  Complete definition of implicit base and declared first subtype. The
17847      --  inheritance of the rep item chain ensures that SPARK-related pragmas
17848      --  are not clobbered when the floating point type acts as a full view of
17849      --  a private type.
17850
17851      Set_Etype              (Implicit_Base,                 Base_Typ);
17852      Set_Scalar_Range       (Implicit_Base, Scalar_Range   (Base_Typ));
17853      Set_Size_Info          (Implicit_Base,                 Base_Typ);
17854      Set_RM_Size            (Implicit_Base, RM_Size        (Base_Typ));
17855      Set_First_Rep_Item     (Implicit_Base, First_Rep_Item (Base_Typ));
17856      Set_Digits_Value       (Implicit_Base, Digits_Value   (Base_Typ));
17857      Set_Float_Rep          (Implicit_Base, Float_Rep      (Base_Typ));
17858
17859      Set_Ekind              (T, E_Floating_Point_Subtype);
17860      Set_Etype              (T,          Implicit_Base);
17861      Set_Size_Info          (T,          Implicit_Base);
17862      Set_RM_Size            (T, RM_Size (Implicit_Base));
17863      Inherit_Rep_Item_Chain (T,          Implicit_Base);
17864      Set_Digits_Value       (T, Digs_Val);
17865   end Floating_Point_Type_Declaration;
17866
17867   ----------------------------
17868   -- Get_Discriminant_Value --
17869   ----------------------------
17870
17871   --  This is the situation:
17872
17873   --  There is a non-derived type
17874
17875   --       type T0 (Dx, Dy, Dz...)
17876
17877   --  There are zero or more levels of derivation, with each derivation
17878   --  either purely inheriting the discriminants, or defining its own.
17879
17880   --       type Ti      is new Ti-1
17881   --  or
17882   --       type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17883   --  or
17884   --       subtype Ti is ...
17885
17886   --  The subtype issue is avoided by the use of Original_Record_Component,
17887   --  and the fact that derived subtypes also derive the constraints.
17888
17889   --  This chain leads back from
17890
17891   --       Typ_For_Constraint
17892
17893   --  Typ_For_Constraint has discriminants, and the value for each
17894   --  discriminant is given by its corresponding Elmt of Constraints.
17895
17896   --  Discriminant is some discriminant in this hierarchy
17897
17898   --  We need to return its value
17899
17900   --  We do this by recursively searching each level, and looking for
17901   --  Discriminant. Once we get to the bottom, we start backing up
17902   --  returning the value for it which may in turn be a discriminant
17903   --  further up, so on the backup we continue the substitution.
17904
17905   function Get_Discriminant_Value
17906     (Discriminant       : Entity_Id;
17907      Typ_For_Constraint : Entity_Id;
17908      Constraint         : Elist_Id) return Node_Id
17909   is
17910      function Root_Corresponding_Discriminant
17911        (Discr : Entity_Id) return Entity_Id;
17912      --  Given a discriminant, traverse the chain of inherited discriminants
17913      --  and return the topmost discriminant.
17914
17915      function Search_Derivation_Levels
17916        (Ti                    : Entity_Id;
17917         Discrim_Values        : Elist_Id;
17918         Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17919      --  This is the routine that performs the recursive search of levels
17920      --  as described above.
17921
17922      -------------------------------------
17923      -- Root_Corresponding_Discriminant --
17924      -------------------------------------
17925
17926      function Root_Corresponding_Discriminant
17927        (Discr : Entity_Id) return Entity_Id
17928      is
17929         D : Entity_Id;
17930
17931      begin
17932         D := Discr;
17933         while Present (Corresponding_Discriminant (D)) loop
17934            D := Corresponding_Discriminant (D);
17935         end loop;
17936
17937         return D;
17938      end Root_Corresponding_Discriminant;
17939
17940      ------------------------------
17941      -- Search_Derivation_Levels --
17942      ------------------------------
17943
17944      function Search_Derivation_Levels
17945        (Ti                    : Entity_Id;
17946         Discrim_Values        : Elist_Id;
17947         Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17948      is
17949         Assoc          : Elmt_Id;
17950         Disc           : Entity_Id;
17951         Result         : Node_Or_Entity_Id;
17952         Result_Entity  : Node_Id;
17953
17954      begin
17955         --  If inappropriate type, return Error, this happens only in
17956         --  cascaded error situations, and we want to avoid a blow up.
17957
17958         if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17959            return Error;
17960         end if;
17961
17962         --  Look deeper if possible. Use Stored_Constraints only for
17963         --  untagged types. For tagged types use the given constraint.
17964         --  This asymmetry needs explanation???
17965
17966         if not Stored_Discrim_Values
17967           and then Present (Stored_Constraint (Ti))
17968           and then not Is_Tagged_Type (Ti)
17969         then
17970            Result :=
17971              Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17972         else
17973            declare
17974               Td : constant Entity_Id := Etype (Ti);
17975
17976            begin
17977               if Td = Ti then
17978                  Result := Discriminant;
17979
17980               else
17981                  if Present (Stored_Constraint (Ti)) then
17982                     Result :=
17983                        Search_Derivation_Levels
17984                          (Td, Stored_Constraint (Ti), True);
17985                  else
17986                     Result :=
17987                        Search_Derivation_Levels
17988                          (Td, Discrim_Values, Stored_Discrim_Values);
17989                  end if;
17990               end if;
17991            end;
17992         end if;
17993
17994         --  Extra underlying places to search, if not found above. For
17995         --  concurrent types, the relevant discriminant appears in the
17996         --  corresponding record. For a type derived from a private type
17997         --  without discriminant, the full view inherits the discriminants
17998         --  of the full view of the parent.
17999
18000         if Result = Discriminant then
18001            if Is_Concurrent_Type (Ti)
18002              and then Present (Corresponding_Record_Type (Ti))
18003            then
18004               Result :=
18005                 Search_Derivation_Levels (
18006                   Corresponding_Record_Type (Ti),
18007                   Discrim_Values,
18008                   Stored_Discrim_Values);
18009
18010            elsif Is_Private_Type (Ti)
18011              and then not Has_Discriminants (Ti)
18012              and then Present (Full_View (Ti))
18013              and then Etype (Full_View (Ti)) /= Ti
18014            then
18015               Result :=
18016                 Search_Derivation_Levels (
18017                   Full_View (Ti),
18018                   Discrim_Values,
18019                   Stored_Discrim_Values);
18020            end if;
18021         end if;
18022
18023         --  If Result is not a (reference to a) discriminant, return it,
18024         --  otherwise set Result_Entity to the discriminant.
18025
18026         if Nkind (Result) = N_Defining_Identifier then
18027            pragma Assert (Result = Discriminant);
18028            Result_Entity := Result;
18029
18030         else
18031            if not Denotes_Discriminant (Result) then
18032               return Result;
18033            end if;
18034
18035            Result_Entity := Entity (Result);
18036         end if;
18037
18038         --  See if this level of derivation actually has discriminants because
18039         --  tagged derivations can add them, hence the lower levels need not
18040         --  have any.
18041
18042         if not Has_Discriminants (Ti) then
18043            return Result;
18044         end if;
18045
18046         --  Scan Ti's discriminants for Result_Entity, and return its
18047         --  corresponding value, if any.
18048
18049         Result_Entity := Original_Record_Component (Result_Entity);
18050
18051         Assoc := First_Elmt (Discrim_Values);
18052
18053         if Stored_Discrim_Values then
18054            Disc := First_Stored_Discriminant (Ti);
18055         else
18056            Disc := First_Discriminant (Ti);
18057         end if;
18058
18059         while Present (Disc) loop
18060
18061            --  If no further associations return the discriminant, value will
18062            --  be found on the second pass.
18063
18064            if No (Assoc) then
18065               return Result;
18066            end if;
18067
18068            if Original_Record_Component (Disc) = Result_Entity then
18069               return Node (Assoc);
18070            end if;
18071
18072            Next_Elmt (Assoc);
18073
18074            if Stored_Discrim_Values then
18075               Next_Stored_Discriminant (Disc);
18076            else
18077               Next_Discriminant (Disc);
18078            end if;
18079         end loop;
18080
18081         --  Could not find it
18082
18083         return Result;
18084      end Search_Derivation_Levels;
18085
18086      --  Local Variables
18087
18088      Result : Node_Or_Entity_Id;
18089
18090   --  Start of processing for Get_Discriminant_Value
18091
18092   begin
18093      --  ??? This routine is a gigantic mess and will be deleted. For the
18094      --  time being just test for the trivial case before calling recurse.
18095
18096      --  We are now celebrating the 20th anniversary of this comment!
18097
18098      if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
18099         declare
18100            D : Entity_Id;
18101            E : Elmt_Id;
18102
18103         begin
18104            D := First_Discriminant (Typ_For_Constraint);
18105            E := First_Elmt (Constraint);
18106            while Present (D) loop
18107               if Chars (D) = Chars (Discriminant) then
18108                  return Node (E);
18109               end if;
18110
18111               Next_Discriminant (D);
18112               Next_Elmt (E);
18113            end loop;
18114         end;
18115      end if;
18116
18117      Result := Search_Derivation_Levels
18118        (Typ_For_Constraint, Constraint, False);
18119
18120      --  ??? hack to disappear when this routine is gone
18121
18122      if Nkind (Result) = N_Defining_Identifier then
18123         declare
18124            D : Entity_Id;
18125            E : Elmt_Id;
18126
18127         begin
18128            D := First_Discriminant (Typ_For_Constraint);
18129            E := First_Elmt (Constraint);
18130            while Present (D) loop
18131               if Root_Corresponding_Discriminant (D) = Discriminant then
18132                  return Node (E);
18133               end if;
18134
18135               Next_Discriminant (D);
18136               Next_Elmt (E);
18137            end loop;
18138         end;
18139      end if;
18140
18141      pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18142      return Result;
18143   end Get_Discriminant_Value;
18144
18145   --------------------------
18146   -- Has_Range_Constraint --
18147   --------------------------
18148
18149   function Has_Range_Constraint (N : Node_Id) return Boolean is
18150      C : constant Node_Id := Constraint (N);
18151
18152   begin
18153      if Nkind (C) = N_Range_Constraint then
18154         return True;
18155
18156      elsif Nkind (C) = N_Digits_Constraint then
18157         return
18158            Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18159              or else Present (Range_Constraint (C));
18160
18161      elsif Nkind (C) = N_Delta_Constraint then
18162         return Present (Range_Constraint (C));
18163
18164      else
18165         return False;
18166      end if;
18167   end Has_Range_Constraint;
18168
18169   ------------------------
18170   -- Inherit_Components --
18171   ------------------------
18172
18173   function Inherit_Components
18174     (N             : Node_Id;
18175      Parent_Base   : Entity_Id;
18176      Derived_Base  : Entity_Id;
18177      Is_Tagged     : Boolean;
18178      Inherit_Discr : Boolean;
18179      Discs         : Elist_Id) return Elist_Id
18180   is
18181      Assoc_List : constant Elist_Id := New_Elmt_List;
18182
18183      procedure Inherit_Component
18184        (Old_C          : Entity_Id;
18185         Plain_Discrim  : Boolean := False;
18186         Stored_Discrim : Boolean := False);
18187      --  Inherits component Old_C from Parent_Base to the Derived_Base. If
18188      --  Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18189      --  True, Old_C is a stored discriminant. If they are both false then
18190      --  Old_C is a regular component.
18191
18192      -----------------------
18193      -- Inherit_Component --
18194      -----------------------
18195
18196      procedure Inherit_Component
18197        (Old_C          : Entity_Id;
18198         Plain_Discrim  : Boolean := False;
18199         Stored_Discrim : Boolean := False)
18200      is
18201         procedure Set_Anonymous_Type (Id : Entity_Id);
18202         --  Id denotes the entity of an access discriminant or anonymous
18203         --  access component. Set the type of Id to either the same type of
18204         --  Old_C or create a new one depending on whether the parent and
18205         --  the child types are in the same scope.
18206
18207         ------------------------
18208         -- Set_Anonymous_Type --
18209         ------------------------
18210
18211         procedure Set_Anonymous_Type (Id : Entity_Id) is
18212            Old_Typ : constant Entity_Id := Etype (Old_C);
18213
18214         begin
18215            if Scope (Parent_Base) = Scope (Derived_Base) then
18216               Set_Etype (Id, Old_Typ);
18217
18218            --  The parent and the derived type are in two different scopes.
18219            --  Reuse the type of the original discriminant / component by
18220            --  copying it in order to preserve all attributes.
18221
18222            else
18223               declare
18224                  Typ : constant Entity_Id := New_Copy (Old_Typ);
18225
18226               begin
18227                  Set_Etype (Id, Typ);
18228
18229                  --  Since we do not generate component declarations for
18230                  --  inherited components, associate the itype with the
18231                  --  derived type.
18232
18233                  Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18234                  Set_Scope                     (Typ, Derived_Base);
18235               end;
18236            end if;
18237         end Set_Anonymous_Type;
18238
18239         --  Local variables and constants
18240
18241         New_C : constant Entity_Id := New_Copy (Old_C);
18242
18243         Corr_Discrim : Entity_Id;
18244         Discrim      : Entity_Id;
18245
18246      --  Start of processing for Inherit_Component
18247
18248      begin
18249         pragma Assert (not Is_Tagged or not Stored_Discrim);
18250
18251         Set_Parent (New_C, Parent (Old_C));
18252
18253         --  Regular discriminants and components must be inserted in the scope
18254         --  of the Derived_Base. Do it here.
18255
18256         if not Stored_Discrim then
18257            Enter_Name (New_C);
18258         end if;
18259
18260         --  For tagged types the Original_Record_Component must point to
18261         --  whatever this field was pointing to in the parent type. This has
18262         --  already been achieved by the call to New_Copy above.
18263
18264         if not Is_Tagged then
18265            Set_Original_Record_Component (New_C, New_C);
18266            Set_Corresponding_Record_Component (New_C, Old_C);
18267         end if;
18268
18269         --  Set the proper type of an access discriminant
18270
18271         if Ekind (New_C) = E_Discriminant
18272           and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18273         then
18274            Set_Anonymous_Type (New_C);
18275         end if;
18276
18277         --  If we have inherited a component then see if its Etype contains
18278         --  references to Parent_Base discriminants. In this case, replace
18279         --  these references with the constraints given in Discs. We do not
18280         --  do this for the partial view of private types because this is
18281         --  not needed (only the components of the full view will be used
18282         --  for code generation) and cause problem. We also avoid this
18283         --  transformation in some error situations.
18284
18285         if Ekind (New_C) = E_Component then
18286
18287            --  Set the proper type of an anonymous access component
18288
18289            if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18290               Set_Anonymous_Type (New_C);
18291
18292            elsif (Is_Private_Type (Derived_Base)
18293                    and then not Is_Generic_Type (Derived_Base))
18294              or else (Is_Empty_Elmt_List (Discs)
18295                        and then not Expander_Active)
18296            then
18297               Set_Etype (New_C, Etype (Old_C));
18298
18299            else
18300               --  The current component introduces a circularity of the
18301               --  following kind:
18302
18303               --     limited with Pack_2;
18304               --     package Pack_1 is
18305               --        type T_1 is tagged record
18306               --           Comp : access Pack_2.T_2;
18307               --           ...
18308               --        end record;
18309               --     end Pack_1;
18310
18311               --     with Pack_1;
18312               --     package Pack_2 is
18313               --        type T_2 is new Pack_1.T_1 with ...;
18314               --     end Pack_2;
18315
18316               Set_Etype
18317                 (New_C,
18318                  Constrain_Component_Type
18319                    (Old_C, Derived_Base, N, Parent_Base, Discs));
18320            end if;
18321         end if;
18322
18323         --  In derived tagged types it is illegal to reference a non
18324         --  discriminant component in the parent type. To catch this, mark
18325         --  these components with an Ekind of E_Void. This will be reset in
18326         --  Record_Type_Definition after processing the record extension of
18327         --  the derived type.
18328
18329         --  If the declaration is a private extension, there is no further
18330         --  record extension to process, and the components retain their
18331         --  current kind, because they are visible at this point.
18332
18333         if Is_Tagged and then Ekind (New_C) = E_Component
18334           and then Nkind (N) /= N_Private_Extension_Declaration
18335         then
18336            Set_Ekind (New_C, E_Void);
18337         end if;
18338
18339         if Plain_Discrim then
18340            Set_Corresponding_Discriminant (New_C, Old_C);
18341            Build_Discriminal (New_C);
18342
18343         --  If we are explicitly inheriting a stored discriminant it will be
18344         --  completely hidden.
18345
18346         elsif Stored_Discrim then
18347            Set_Corresponding_Discriminant (New_C, Empty);
18348            Set_Discriminal (New_C, Empty);
18349            Set_Is_Completely_Hidden (New_C);
18350
18351            --  Set the Original_Record_Component of each discriminant in the
18352            --  derived base to point to the corresponding stored that we just
18353            --  created.
18354
18355            Discrim := First_Discriminant (Derived_Base);
18356            while Present (Discrim) loop
18357               Corr_Discrim := Corresponding_Discriminant (Discrim);
18358
18359               --  Corr_Discrim could be missing in an error situation
18360
18361               if Present (Corr_Discrim)
18362                 and then Original_Record_Component (Corr_Discrim) = Old_C
18363               then
18364                  Set_Original_Record_Component (Discrim, New_C);
18365                  Set_Corresponding_Record_Component (Discrim, Empty);
18366               end if;
18367
18368               Next_Discriminant (Discrim);
18369            end loop;
18370
18371            Append_Entity (New_C, Derived_Base);
18372         end if;
18373
18374         if not Is_Tagged then
18375            Append_Elmt (Old_C, Assoc_List);
18376            Append_Elmt (New_C, Assoc_List);
18377         end if;
18378      end Inherit_Component;
18379
18380      --  Variables local to Inherit_Component
18381
18382      Loc : constant Source_Ptr := Sloc (N);
18383
18384      Parent_Discrim : Entity_Id;
18385      Stored_Discrim : Entity_Id;
18386      D              : Entity_Id;
18387      Component      : Entity_Id;
18388
18389   --  Start of processing for Inherit_Components
18390
18391   begin
18392      if not Is_Tagged then
18393         Append_Elmt (Parent_Base,  Assoc_List);
18394         Append_Elmt (Derived_Base, Assoc_List);
18395      end if;
18396
18397      --  Inherit parent discriminants if needed
18398
18399      if Inherit_Discr then
18400         Parent_Discrim := First_Discriminant (Parent_Base);
18401         while Present (Parent_Discrim) loop
18402            Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18403            Next_Discriminant (Parent_Discrim);
18404         end loop;
18405      end if;
18406
18407      --  Create explicit stored discrims for untagged types when necessary
18408
18409      if not Has_Unknown_Discriminants (Derived_Base)
18410        and then Has_Discriminants (Parent_Base)
18411        and then not Is_Tagged
18412        and then
18413          (not Inherit_Discr
18414            or else First_Discriminant (Parent_Base) /=
18415                    First_Stored_Discriminant (Parent_Base))
18416      then
18417         Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18418         while Present (Stored_Discrim) loop
18419            Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18420            Next_Stored_Discriminant (Stored_Discrim);
18421         end loop;
18422      end if;
18423
18424      --  See if we can apply the second transformation for derived types, as
18425      --  explained in point 6. in the comments above Build_Derived_Record_Type
18426      --  This is achieved by appending Derived_Base discriminants into Discs,
18427      --  which has the side effect of returning a non empty Discs list to the
18428      --  caller of Inherit_Components, which is what we want. This must be
18429      --  done for private derived types if there are explicit stored
18430      --  discriminants, to ensure that we can retrieve the values of the
18431      --  constraints provided in the ancestors.
18432
18433      if Inherit_Discr
18434        and then Is_Empty_Elmt_List (Discs)
18435        and then Present (First_Discriminant (Derived_Base))
18436        and then
18437          (not Is_Private_Type (Derived_Base)
18438            or else Is_Completely_Hidden
18439                      (First_Stored_Discriminant (Derived_Base))
18440            or else Is_Generic_Type (Derived_Base))
18441      then
18442         D := First_Discriminant (Derived_Base);
18443         while Present (D) loop
18444            Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18445            Next_Discriminant (D);
18446         end loop;
18447      end if;
18448
18449      --  Finally, inherit non-discriminant components unless they are not
18450      --  visible because defined or inherited from the full view of the
18451      --  parent. Don't inherit the _parent field of the parent type.
18452
18453      Component := First_Entity (Parent_Base);
18454      while Present (Component) loop
18455
18456         --  Ada 2005 (AI-251): Do not inherit components associated with
18457         --  secondary tags of the parent.
18458
18459         if Ekind (Component) = E_Component
18460           and then Present (Related_Type (Component))
18461         then
18462            null;
18463
18464         elsif Ekind (Component) /= E_Component
18465           or else Chars (Component) = Name_uParent
18466         then
18467            null;
18468
18469         --  If the derived type is within the parent type's declarative
18470         --  region, then the components can still be inherited even though
18471         --  they aren't visible at this point. This can occur for cases
18472         --  such as within public child units where the components must
18473         --  become visible upon entering the child unit's private part.
18474
18475         elsif not Is_Visible_Component (Component)
18476           and then not In_Open_Scopes (Scope (Parent_Base))
18477         then
18478            null;
18479
18480         elsif Ekind_In (Derived_Base, E_Private_Type,
18481                                       E_Limited_Private_Type)
18482         then
18483            null;
18484
18485         else
18486            Inherit_Component (Component);
18487         end if;
18488
18489         Next_Entity (Component);
18490      end loop;
18491
18492      --  For tagged derived types, inherited discriminants cannot be used in
18493      --  component declarations of the record extension part. To achieve this
18494      --  we mark the inherited discriminants as not visible.
18495
18496      if Is_Tagged and then Inherit_Discr then
18497         D := First_Discriminant (Derived_Base);
18498         while Present (D) loop
18499            Set_Is_Immediately_Visible (D, False);
18500            Next_Discriminant (D);
18501         end loop;
18502      end if;
18503
18504      return Assoc_List;
18505   end Inherit_Components;
18506
18507   -----------------------------
18508   -- Inherit_Predicate_Flags --
18509   -----------------------------
18510
18511   procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18512   begin
18513      Set_Has_Predicates (Subt, Has_Predicates (Par));
18514      Set_Has_Static_Predicate_Aspect
18515        (Subt, Has_Static_Predicate_Aspect (Par));
18516      Set_Has_Dynamic_Predicate_Aspect
18517        (Subt, Has_Dynamic_Predicate_Aspect (Par));
18518
18519      --  A named subtype does not inherit the predicate function of its
18520      --  parent but an itype declared for a loop index needs the discrete
18521      --  predicate information of its parent to execute the loop properly.
18522
18523      if Is_Itype (Subt) and then Present (Predicate_Function (Par)) then
18524         Set_Subprograms_For_Type (Subt, Subprograms_For_Type (Par));
18525
18526         if Has_Static_Predicate (Par) then
18527            Set_Static_Discrete_Predicate
18528              (Subt, Static_Discrete_Predicate (Par));
18529         end if;
18530      end if;
18531   end Inherit_Predicate_Flags;
18532
18533   ----------------------
18534   -- Is_EVF_Procedure --
18535   ----------------------
18536
18537   function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18538      Formal : Entity_Id;
18539
18540   begin
18541      --  Examine the formals of an Extensions_Visible False procedure looking
18542      --  for a controlling OUT parameter.
18543
18544      if Ekind (Subp) = E_Procedure
18545        and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18546      then
18547         Formal := First_Formal (Subp);
18548         while Present (Formal) loop
18549            if Ekind (Formal) = E_Out_Parameter
18550              and then Is_Controlling_Formal (Formal)
18551            then
18552               return True;
18553            end if;
18554
18555            Next_Formal (Formal);
18556         end loop;
18557      end if;
18558
18559      return False;
18560   end Is_EVF_Procedure;
18561
18562   -----------------------
18563   -- Is_Null_Extension --
18564   -----------------------
18565
18566   function Is_Null_Extension (T : Entity_Id) return Boolean is
18567      Type_Decl : constant Node_Id := Parent (Base_Type (T));
18568      Comp_List : Node_Id;
18569      Comp      : Node_Id;
18570
18571   begin
18572      if Nkind (Type_Decl) /= N_Full_Type_Declaration
18573        or else not Is_Tagged_Type (T)
18574        or else Nkind (Type_Definition (Type_Decl)) /=
18575                                              N_Derived_Type_Definition
18576        or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18577      then
18578         return False;
18579      end if;
18580
18581      Comp_List :=
18582        Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18583
18584      if Present (Discriminant_Specifications (Type_Decl)) then
18585         return False;
18586
18587      elsif Present (Comp_List)
18588        and then Is_Non_Empty_List (Component_Items (Comp_List))
18589      then
18590         Comp := First (Component_Items (Comp_List));
18591
18592         --  Only user-defined components are relevant. The component list
18593         --  may also contain a parent component and internal components
18594         --  corresponding to secondary tags, but these do not determine
18595         --  whether this is a null extension.
18596
18597         while Present (Comp) loop
18598            if Comes_From_Source (Comp) then
18599               return False;
18600            end if;
18601
18602            Next (Comp);
18603         end loop;
18604
18605         return True;
18606
18607      else
18608         return True;
18609      end if;
18610   end Is_Null_Extension;
18611
18612   ------------------------------
18613   -- Is_Valid_Constraint_Kind --
18614   ------------------------------
18615
18616   function Is_Valid_Constraint_Kind
18617     (T_Kind          : Type_Kind;
18618      Constraint_Kind : Node_Kind) return Boolean
18619   is
18620   begin
18621      case T_Kind is
18622         when Enumeration_Kind
18623            | Integer_Kind
18624         =>
18625            return Constraint_Kind = N_Range_Constraint;
18626
18627         when Decimal_Fixed_Point_Kind =>
18628            return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18629                                              N_Range_Constraint);
18630
18631         when Ordinary_Fixed_Point_Kind =>
18632            return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18633                                              N_Range_Constraint);
18634
18635         when Float_Kind =>
18636            return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18637                                              N_Range_Constraint);
18638
18639         when Access_Kind
18640            | Array_Kind
18641            | Class_Wide_Kind
18642            | Concurrent_Kind
18643            | Private_Kind
18644            | E_Incomplete_Type
18645            | E_Record_Subtype
18646            | E_Record_Type
18647         =>
18648            return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18649
18650         when others =>
18651            return True; -- Error will be detected later
18652      end case;
18653   end Is_Valid_Constraint_Kind;
18654
18655   --------------------------
18656   -- Is_Visible_Component --
18657   --------------------------
18658
18659   function Is_Visible_Component
18660     (C : Entity_Id;
18661      N : Node_Id := Empty) return Boolean
18662   is
18663      Original_Comp : Entity_Id := Empty;
18664      Original_Type : Entity_Id;
18665      Type_Scope    : Entity_Id;
18666
18667      function Is_Local_Type (Typ : Entity_Id) return Boolean;
18668      --  Check whether parent type of inherited component is declared locally,
18669      --  possibly within a nested package or instance. The current scope is
18670      --  the derived record itself.
18671
18672      -------------------
18673      -- Is_Local_Type --
18674      -------------------
18675
18676      function Is_Local_Type (Typ : Entity_Id) return Boolean is
18677         Scop : Entity_Id;
18678
18679      begin
18680         Scop := Scope (Typ);
18681         while Present (Scop)
18682           and then Scop /= Standard_Standard
18683         loop
18684            if Scop = Scope (Current_Scope) then
18685               return True;
18686            end if;
18687
18688            Scop := Scope (Scop);
18689         end loop;
18690
18691         return False;
18692      end Is_Local_Type;
18693
18694   --  Start of processing for Is_Visible_Component
18695
18696   begin
18697      if Ekind_In (C, E_Component, E_Discriminant) then
18698         Original_Comp := Original_Record_Component (C);
18699      end if;
18700
18701      if No (Original_Comp) then
18702
18703         --  Premature usage, or previous error
18704
18705         return False;
18706
18707      else
18708         Original_Type := Scope (Original_Comp);
18709         Type_Scope    := Scope (Base_Type (Scope (C)));
18710      end if;
18711
18712      --  This test only concerns tagged types
18713
18714      if not Is_Tagged_Type (Original_Type) then
18715         return True;
18716
18717      --  If it is _Parent or _Tag, there is no visibility issue
18718
18719      elsif not Comes_From_Source (Original_Comp) then
18720         return True;
18721
18722      --  Discriminants are visible unless the (private) type has unknown
18723      --  discriminants. If the discriminant reference is inserted for a
18724      --  discriminant check on a full view it is also visible.
18725
18726      elsif Ekind (Original_Comp) = E_Discriminant
18727        and then
18728          (not Has_Unknown_Discriminants (Original_Type)
18729            or else (Present (N)
18730                      and then Nkind (N) = N_Selected_Component
18731                      and then Nkind (Prefix (N)) = N_Type_Conversion
18732                      and then not Comes_From_Source (Prefix (N))))
18733      then
18734         return True;
18735
18736      --  In the body of an instantiation, check the visibility of a component
18737      --  in case it has a homograph that is a primitive operation of a private
18738      --  type which was not visible in the generic unit.
18739
18740      --  Should Is_Prefixed_Call be propagated from template to instance???
18741
18742      elsif In_Instance_Body then
18743         if not Is_Tagged_Type (Original_Type)
18744           or else not Is_Private_Type (Original_Type)
18745         then
18746            return True;
18747
18748         else
18749            declare
18750               Subp_Elmt : Elmt_Id;
18751
18752            begin
18753               Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18754               while Present (Subp_Elmt) loop
18755
18756                  --  The component is hidden by a primitive operation
18757
18758                  if Chars (Node (Subp_Elmt)) = Chars (C) then
18759                     return False;
18760                  end if;
18761
18762                  Next_Elmt (Subp_Elmt);
18763               end loop;
18764
18765               return True;
18766            end;
18767         end if;
18768
18769      --  If the component has been declared in an ancestor which is currently
18770      --  a private type, then it is not visible. The same applies if the
18771      --  component's containing type is not in an open scope and the original
18772      --  component's enclosing type is a visible full view of a private type
18773      --  (which can occur in cases where an attempt is being made to reference
18774      --  a component in a sibling package that is inherited from a visible
18775      --  component of a type in an ancestor package; the component in the
18776      --  sibling package should not be visible even though the component it
18777      --  inherited from is visible). This does not apply however in the case
18778      --  where the scope of the type is a private child unit, or when the
18779      --  parent comes from a local package in which the ancestor is currently
18780      --  visible. The latter suppression of visibility is needed for cases
18781      --  that are tested in B730006.
18782
18783      elsif Is_Private_Type (Original_Type)
18784        or else
18785          (not Is_Private_Descendant (Type_Scope)
18786            and then not In_Open_Scopes (Type_Scope)
18787            and then Has_Private_Declaration (Original_Type))
18788      then
18789         --  If the type derives from an entity in a formal package, there
18790         --  are no additional visible components.
18791
18792         if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18793            N_Formal_Package_Declaration
18794         then
18795            return False;
18796
18797         --  if we are not in the private part of the current package, there
18798         --  are no additional visible components.
18799
18800         elsif Ekind (Scope (Current_Scope)) = E_Package
18801           and then not In_Private_Part (Scope (Current_Scope))
18802         then
18803            return False;
18804         else
18805            return
18806              Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18807                and then In_Open_Scopes (Scope (Original_Type))
18808                and then Is_Local_Type (Type_Scope);
18809         end if;
18810
18811      --  There is another weird way in which a component may be invisible when
18812      --  the private and the full view are not derived from the same ancestor.
18813      --  Here is an example :
18814
18815      --       type A1 is tagged      record F1 : integer; end record;
18816      --       type A2 is new A1 with record F2 : integer; end record;
18817      --       type T is new A1 with private;
18818      --     private
18819      --       type T is new A2 with null record;
18820
18821      --  In this case, the full view of T inherits F1 and F2 but the private
18822      --  view inherits only F1
18823
18824      else
18825         declare
18826            Ancestor : Entity_Id := Scope (C);
18827
18828         begin
18829            loop
18830               if Ancestor = Original_Type then
18831                  return True;
18832
18833               --  The ancestor may have a partial view of the original type,
18834               --  but if the full view is in scope, as in a child body, the
18835               --  component is visible.
18836
18837               elsif In_Private_Part (Scope (Original_Type))
18838                 and then Full_View (Ancestor) = Original_Type
18839               then
18840                  return True;
18841
18842               elsif Ancestor = Etype (Ancestor) then
18843
18844                  --  No further ancestors to examine
18845
18846                  return False;
18847               end if;
18848
18849               Ancestor := Etype (Ancestor);
18850            end loop;
18851         end;
18852      end if;
18853   end Is_Visible_Component;
18854
18855   --------------------------
18856   -- Make_Class_Wide_Type --
18857   --------------------------
18858
18859   procedure Make_Class_Wide_Type (T : Entity_Id) is
18860      CW_Type : Entity_Id;
18861      CW_Name : Name_Id;
18862      Next_E  : Entity_Id;
18863
18864   begin
18865      if Present (Class_Wide_Type (T)) then
18866
18867         --  The class-wide type is a partially decorated entity created for a
18868         --  unanalyzed tagged type referenced through a limited with clause.
18869         --  When the tagged type is analyzed, its class-wide type needs to be
18870         --  redecorated. Note that we reuse the entity created by Decorate_
18871         --  Tagged_Type in order to preserve all links.
18872
18873         if Materialize_Entity (Class_Wide_Type (T)) then
18874            CW_Type := Class_Wide_Type (T);
18875            Set_Materialize_Entity (CW_Type, False);
18876
18877         --  The class wide type can have been defined by the partial view, in
18878         --  which case everything is already done.
18879
18880         else
18881            return;
18882         end if;
18883
18884      --  Default case, we need to create a new class-wide type
18885
18886      else
18887         CW_Type :=
18888           New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18889      end if;
18890
18891      --  Inherit root type characteristics
18892
18893      CW_Name := Chars (CW_Type);
18894      Next_E  := Next_Entity (CW_Type);
18895      Copy_Node (T, CW_Type);
18896      Set_Comes_From_Source (CW_Type, False);
18897      Set_Chars (CW_Type, CW_Name);
18898      Set_Parent (CW_Type, Parent (T));
18899      Set_Next_Entity (CW_Type, Next_E);
18900
18901      --  Ensure we have a new freeze node for the class-wide type. The partial
18902      --  view may have freeze action of its own, requiring a proper freeze
18903      --  node, and the same freeze node cannot be shared between the two
18904      --  types.
18905
18906      Set_Has_Delayed_Freeze (CW_Type);
18907      Set_Freeze_Node (CW_Type, Empty);
18908
18909      --  Customize the class-wide type: It has no prim. op., it cannot be
18910      --  abstract, its Etype points back to the specific root type, and it
18911      --  cannot have any invariants.
18912
18913      Set_Ekind                       (CW_Type, E_Class_Wide_Type);
18914      Set_Is_Tagged_Type              (CW_Type, True);
18915      Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18916      Set_Is_Abstract_Type            (CW_Type, False);
18917      Set_Is_Constrained              (CW_Type, False);
18918      Set_Is_First_Subtype            (CW_Type, Is_First_Subtype (T));
18919      Set_Default_SSO                 (CW_Type);
18920      Set_Has_Inheritable_Invariants  (CW_Type, False);
18921      Set_Has_Inherited_Invariants    (CW_Type, False);
18922      Set_Has_Own_Invariants          (CW_Type, False);
18923
18924      if Ekind (T) = E_Class_Wide_Subtype then
18925         Set_Etype (CW_Type, Etype (Base_Type (T)));
18926      else
18927         Set_Etype (CW_Type, T);
18928      end if;
18929
18930      Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
18931
18932      --  If this is the class_wide type of a constrained subtype, it does
18933      --  not have discriminants.
18934
18935      Set_Has_Discriminants (CW_Type,
18936        Has_Discriminants (T) and then not Is_Constrained (T));
18937
18938      Set_Has_Unknown_Discriminants (CW_Type, True);
18939      Set_Class_Wide_Type (T, CW_Type);
18940      Set_Equivalent_Type (CW_Type, Empty);
18941
18942      --  The class-wide type of a class-wide type is itself (RM 3.9(14))
18943
18944      Set_Class_Wide_Type (CW_Type, CW_Type);
18945   end Make_Class_Wide_Type;
18946
18947   ----------------
18948   -- Make_Index --
18949   ----------------
18950
18951   procedure Make_Index
18952     (N            : Node_Id;
18953      Related_Nod  : Node_Id;
18954      Related_Id   : Entity_Id := Empty;
18955      Suffix_Index : Nat       := 1;
18956      In_Iter_Schm : Boolean   := False)
18957   is
18958      R      : Node_Id;
18959      T      : Entity_Id;
18960      Def_Id : Entity_Id := Empty;
18961      Found  : Boolean := False;
18962
18963   begin
18964      --  For a discrete range used in a constrained array definition and
18965      --  defined by a range, an implicit conversion to the predefined type
18966      --  INTEGER is assumed if each bound is either a numeric literal, a named
18967      --  number, or an attribute, and the type of both bounds (prior to the
18968      --  implicit conversion) is the type universal_integer. Otherwise, both
18969      --  bounds must be of the same discrete type, other than universal
18970      --  integer; this type must be determinable independently of the
18971      --  context, but using the fact that the type must be discrete and that
18972      --  both bounds must have the same type.
18973
18974      --  Character literals also have a universal type in the absence of
18975      --  of additional context,  and are resolved to Standard_Character.
18976
18977      if Nkind (N) = N_Range then
18978
18979         --  The index is given by a range constraint. The bounds are known
18980         --  to be of a consistent type.
18981
18982         if not Is_Overloaded (N) then
18983            T := Etype (N);
18984
18985            --  For universal bounds, choose the specific predefined type
18986
18987            if T = Universal_Integer then
18988               T := Standard_Integer;
18989
18990            elsif T = Any_Character then
18991               Ambiguous_Character (Low_Bound (N));
18992
18993               T := Standard_Character;
18994            end if;
18995
18996         --  The node may be overloaded because some user-defined operators
18997         --  are available, but if a universal interpretation exists it is
18998         --  also the selected one.
18999
19000         elsif Universal_Interpretation (N) = Universal_Integer then
19001            T := Standard_Integer;
19002
19003         else
19004            T := Any_Type;
19005
19006            declare
19007               Ind : Interp_Index;
19008               It  : Interp;
19009
19010            begin
19011               Get_First_Interp (N, Ind, It);
19012               while Present (It.Typ) loop
19013                  if Is_Discrete_Type (It.Typ) then
19014
19015                     if Found
19016                       and then not Covers (It.Typ, T)
19017                       and then not Covers (T, It.Typ)
19018                     then
19019                        Error_Msg_N ("ambiguous bounds in discrete range", N);
19020                        exit;
19021                     else
19022                        T := It.Typ;
19023                        Found := True;
19024                     end if;
19025                  end if;
19026
19027                  Get_Next_Interp (Ind, It);
19028               end loop;
19029
19030               if T = Any_Type then
19031                  Error_Msg_N ("discrete type required for range", N);
19032                  Set_Etype (N, Any_Type);
19033                  return;
19034
19035               elsif T = Universal_Integer then
19036                  T := Standard_Integer;
19037               end if;
19038            end;
19039         end if;
19040
19041         if not Is_Discrete_Type (T) then
19042            Error_Msg_N ("discrete type required for range", N);
19043            Set_Etype (N, Any_Type);
19044            return;
19045         end if;
19046
19047         if Nkind (Low_Bound (N)) = N_Attribute_Reference
19048           and then Attribute_Name (Low_Bound (N)) = Name_First
19049           and then Is_Entity_Name (Prefix (Low_Bound (N)))
19050           and then Is_Type (Entity (Prefix (Low_Bound (N))))
19051           and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
19052         then
19053            --  The type of the index will be the type of the prefix, as long
19054            --  as the upper bound is 'Last of the same type.
19055
19056            Def_Id := Entity (Prefix (Low_Bound (N)));
19057
19058            if Nkind (High_Bound (N)) /= N_Attribute_Reference
19059              or else Attribute_Name (High_Bound (N)) /= Name_Last
19060              or else not Is_Entity_Name (Prefix (High_Bound (N)))
19061              or else Entity (Prefix (High_Bound (N))) /= Def_Id
19062            then
19063               Def_Id := Empty;
19064            end if;
19065         end if;
19066
19067         R := N;
19068         Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
19069
19070      elsif Nkind (N) = N_Subtype_Indication then
19071
19072         --  The index is given by a subtype with a range constraint
19073
19074         T := Base_Type (Entity (Subtype_Mark (N)));
19075
19076         if not Is_Discrete_Type (T) then
19077            Error_Msg_N ("discrete type required for range", N);
19078            Set_Etype (N, Any_Type);
19079            return;
19080         end if;
19081
19082         R := Range_Expression (Constraint (N));
19083
19084         Resolve (R, T);
19085         Process_Range_Expr_In_Decl
19086           (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
19087
19088      elsif Nkind (N) = N_Attribute_Reference then
19089
19090         --  Catch beginner's error (use of attribute other than 'Range)
19091
19092         if Attribute_Name (N) /= Name_Range then
19093            Error_Msg_N ("expect attribute ''Range", N);
19094            Set_Etype (N, Any_Type);
19095            return;
19096         end if;
19097
19098         --  If the node denotes the range of a type mark, that is also the
19099         --  resulting type, and we do not need to create an Itype for it.
19100
19101         if Is_Entity_Name (Prefix (N))
19102           and then Comes_From_Source (N)
19103           and then Is_Type (Entity (Prefix (N)))
19104           and then Is_Discrete_Type (Entity (Prefix (N)))
19105         then
19106            Def_Id := Entity (Prefix (N));
19107         end if;
19108
19109         Analyze_And_Resolve (N);
19110         T := Etype (N);
19111         R := N;
19112
19113      --  If none of the above, must be a subtype. We convert this to a
19114      --  range attribute reference because in the case of declared first
19115      --  named subtypes, the types in the range reference can be different
19116      --  from the type of the entity. A range attribute normalizes the
19117      --  reference and obtains the correct types for the bounds.
19118
19119      --  This transformation is in the nature of an expansion, is only
19120      --  done if expansion is active. In particular, it is not done on
19121      --  formal generic types,  because we need to retain the name of the
19122      --  original index for instantiation purposes.
19123
19124      else
19125         if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
19126            Error_Msg_N ("invalid subtype mark in discrete range ", N);
19127            Set_Etype (N, Any_Integer);
19128            return;
19129
19130         else
19131            --  The type mark may be that of an incomplete type. It is only
19132            --  now that we can get the full view, previous analysis does
19133            --  not look specifically for a type mark.
19134
19135            Set_Entity (N, Get_Full_View (Entity (N)));
19136            Set_Etype  (N, Entity (N));
19137            Def_Id := Entity (N);
19138
19139            if not Is_Discrete_Type (Def_Id) then
19140               Error_Msg_N ("discrete type required for index", N);
19141               Set_Etype (N, Any_Type);
19142               return;
19143            end if;
19144         end if;
19145
19146         if Expander_Active then
19147            Rewrite (N,
19148              Make_Attribute_Reference (Sloc (N),
19149                Attribute_Name => Name_Range,
19150                Prefix         => Relocate_Node (N)));
19151
19152            --  The original was a subtype mark that does not freeze. This
19153            --  means that the rewritten version must not freeze either.
19154
19155            Set_Must_Not_Freeze (N);
19156            Set_Must_Not_Freeze (Prefix (N));
19157            Analyze_And_Resolve (N);
19158            T := Etype (N);
19159            R := N;
19160
19161         --  If expander is inactive, type is legal, nothing else to construct
19162
19163         else
19164            return;
19165         end if;
19166      end if;
19167
19168      if not Is_Discrete_Type (T) then
19169         Error_Msg_N ("discrete type required for range", N);
19170         Set_Etype (N, Any_Type);
19171         return;
19172
19173      elsif T = Any_Type then
19174         Set_Etype (N, Any_Type);
19175         return;
19176      end if;
19177
19178      --  We will now create the appropriate Itype to describe the range, but
19179      --  first a check. If we originally had a subtype, then we just label
19180      --  the range with this subtype. Not only is there no need to construct
19181      --  a new subtype, but it is wrong to do so for two reasons:
19182
19183      --    1. A legality concern, if we have a subtype, it must not freeze,
19184      --       and the Itype would cause freezing incorrectly
19185
19186      --    2. An efficiency concern, if we created an Itype, it would not be
19187      --       recognized as the same type for the purposes of eliminating
19188      --       checks in some circumstances.
19189
19190      --  We signal this case by setting the subtype entity in Def_Id
19191
19192      if No (Def_Id) then
19193         Def_Id :=
19194           Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19195         Set_Etype (Def_Id, Base_Type (T));
19196
19197         if Is_Signed_Integer_Type (T) then
19198            Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19199
19200         elsif Is_Modular_Integer_Type (T) then
19201            Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19202
19203         else
19204            Set_Ekind             (Def_Id, E_Enumeration_Subtype);
19205            Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19206            Set_First_Literal     (Def_Id, First_Literal (T));
19207         end if;
19208
19209         Set_Size_Info      (Def_Id,                  (T));
19210         Set_RM_Size        (Def_Id, RM_Size          (T));
19211         Set_First_Rep_Item (Def_Id, First_Rep_Item   (T));
19212
19213         Set_Scalar_Range   (Def_Id, R);
19214         Conditional_Delay  (Def_Id, T);
19215
19216         if Nkind (N) = N_Subtype_Indication then
19217            Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19218         end if;
19219
19220         --  In the subtype indication case, if the immediate parent of the
19221         --  new subtype is non-static, then the subtype we create is non-
19222         --  static, even if its bounds are static.
19223
19224         if Nkind (N) = N_Subtype_Indication
19225           and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19226         then
19227            Set_Is_Non_Static_Subtype (Def_Id);
19228         end if;
19229      end if;
19230
19231      --  Final step is to label the index with this constructed type
19232
19233      Set_Etype (N, Def_Id);
19234   end Make_Index;
19235
19236   ------------------------------
19237   -- Modular_Type_Declaration --
19238   ------------------------------
19239
19240   procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19241      Mod_Expr : constant Node_Id := Expression (Def);
19242      M_Val    : Uint;
19243
19244      procedure Set_Modular_Size (Bits : Int);
19245      --  Sets RM_Size to Bits, and Esize to normal word size above this
19246
19247      ----------------------
19248      -- Set_Modular_Size --
19249      ----------------------
19250
19251      procedure Set_Modular_Size (Bits : Int) is
19252      begin
19253         Set_RM_Size (T, UI_From_Int (Bits));
19254
19255         if Bits <= 8 then
19256            Init_Esize (T, 8);
19257
19258         elsif Bits <= 16 then
19259            Init_Esize (T, 16);
19260
19261         elsif Bits <= 32 then
19262            Init_Esize (T, 32);
19263
19264         else
19265            Init_Esize (T, System_Max_Binary_Modulus_Power);
19266         end if;
19267
19268         if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19269            Set_Is_Known_Valid (T);
19270         end if;
19271      end Set_Modular_Size;
19272
19273   --  Start of processing for Modular_Type_Declaration
19274
19275   begin
19276      --  If the mod expression is (exactly) 2 * literal, where literal is
19277      --  64 or less,then almost certainly the * was meant to be **. Warn.
19278
19279      if Warn_On_Suspicious_Modulus_Value
19280        and then Nkind (Mod_Expr) = N_Op_Multiply
19281        and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19282        and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19283        and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19284        and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19285      then
19286         Error_Msg_N
19287           ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19288      end if;
19289
19290      --  Proceed with analysis of mod expression
19291
19292      Analyze_And_Resolve (Mod_Expr, Any_Integer);
19293      Set_Etype (T, T);
19294      Set_Ekind (T, E_Modular_Integer_Type);
19295      Init_Alignment (T);
19296      Set_Is_Constrained (T);
19297
19298      if not Is_OK_Static_Expression (Mod_Expr) then
19299         Flag_Non_Static_Expr
19300           ("non-static expression used for modular type bound!", Mod_Expr);
19301         M_Val := 2 ** System_Max_Binary_Modulus_Power;
19302      else
19303         M_Val := Expr_Value (Mod_Expr);
19304      end if;
19305
19306      if M_Val < 1 then
19307         Error_Msg_N ("modulus value must be positive", Mod_Expr);
19308         M_Val := 2 ** System_Max_Binary_Modulus_Power;
19309      end if;
19310
19311      if M_Val > 2 ** Standard_Long_Integer_Size then
19312         Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19313      end if;
19314
19315      Set_Modulus (T, M_Val);
19316
19317      --   Create bounds for the modular type based on the modulus given in
19318      --   the type declaration and then analyze and resolve those bounds.
19319
19320      Set_Scalar_Range (T,
19321        Make_Range (Sloc (Mod_Expr),
19322          Low_Bound  => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19323          High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19324
19325      --  Properly analyze the literals for the range. We do this manually
19326      --  because we can't go calling Resolve, since we are resolving these
19327      --  bounds with the type, and this type is certainly not complete yet.
19328
19329      Set_Etype (Low_Bound  (Scalar_Range (T)), T);
19330      Set_Etype (High_Bound (Scalar_Range (T)), T);
19331      Set_Is_Static_Expression (Low_Bound  (Scalar_Range (T)));
19332      Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19333
19334      --  Loop through powers of two to find number of bits required
19335
19336      for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19337
19338         --  Binary case
19339
19340         if M_Val = 2 ** Bits then
19341            Set_Modular_Size (Bits);
19342            return;
19343
19344         --  Nonbinary case
19345
19346         elsif M_Val < 2 ** Bits then
19347            Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19348            Set_Non_Binary_Modulus (T);
19349
19350            if Bits > System_Max_Nonbinary_Modulus_Power then
19351               Error_Msg_Uint_1 :=
19352                 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19353               Error_Msg_F
19354                 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19355               Set_Modular_Size (System_Max_Binary_Modulus_Power);
19356               return;
19357
19358            else
19359               --  In the nonbinary case, set size as per RM 13.3(55)
19360
19361               Set_Modular_Size (Bits);
19362               return;
19363            end if;
19364         end if;
19365
19366      end loop;
19367
19368      --  If we fall through, then the size exceed System.Max_Binary_Modulus
19369      --  so we just signal an error and set the maximum size.
19370
19371      Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19372      Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19373
19374      Set_Modular_Size (System_Max_Binary_Modulus_Power);
19375      Init_Alignment (T);
19376
19377   end Modular_Type_Declaration;
19378
19379   --------------------------
19380   -- New_Concatenation_Op --
19381   --------------------------
19382
19383   procedure New_Concatenation_Op (Typ : Entity_Id) is
19384      Loc : constant Source_Ptr := Sloc (Typ);
19385      Op  : Entity_Id;
19386
19387      function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19388      --  Create abbreviated declaration for the formal of a predefined
19389      --  Operator 'Op' of type 'Typ'
19390
19391      --------------------
19392      -- Make_Op_Formal --
19393      --------------------
19394
19395      function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19396         Formal : Entity_Id;
19397      begin
19398         Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19399         Set_Etype (Formal, Typ);
19400         Set_Mechanism (Formal, Default_Mechanism);
19401         return Formal;
19402      end Make_Op_Formal;
19403
19404   --  Start of processing for New_Concatenation_Op
19405
19406   begin
19407      Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19408
19409      Set_Ekind                   (Op, E_Operator);
19410      Set_Scope                   (Op, Current_Scope);
19411      Set_Etype                   (Op, Typ);
19412      Set_Homonym                 (Op, Get_Name_Entity_Id (Name_Op_Concat));
19413      Set_Is_Immediately_Visible  (Op);
19414      Set_Is_Intrinsic_Subprogram (Op);
19415      Set_Has_Completion          (Op);
19416      Append_Entity               (Op, Current_Scope);
19417
19418      Set_Name_Entity_Id (Name_Op_Concat, Op);
19419
19420      Append_Entity (Make_Op_Formal (Typ, Op), Op);
19421      Append_Entity (Make_Op_Formal (Typ, Op), Op);
19422   end New_Concatenation_Op;
19423
19424   -------------------------
19425   -- OK_For_Limited_Init --
19426   -------------------------
19427
19428   --  ???Check all calls of this, and compare the conditions under which it's
19429   --  called.
19430
19431   function OK_For_Limited_Init
19432     (Typ : Entity_Id;
19433      Exp : Node_Id) return Boolean
19434   is
19435   begin
19436      return Is_CPP_Constructor_Call (Exp)
19437        or else (Ada_Version >= Ada_2005
19438                  and then not Debug_Flag_Dot_L
19439                  and then OK_For_Limited_Init_In_05 (Typ, Exp));
19440   end OK_For_Limited_Init;
19441
19442   -------------------------------
19443   -- OK_For_Limited_Init_In_05 --
19444   -------------------------------
19445
19446   function OK_For_Limited_Init_In_05
19447     (Typ : Entity_Id;
19448      Exp : Node_Id) return Boolean
19449   is
19450   begin
19451      --  An object of a limited interface type can be initialized with any
19452      --  expression of a nonlimited descendant type. However this does not
19453      --  apply if this is a view conversion of some other expression. This
19454      --  is checked below.
19455
19456      if Is_Class_Wide_Type (Typ)
19457        and then Is_Limited_Interface (Typ)
19458        and then not Is_Limited_Type (Etype (Exp))
19459        and then Nkind (Exp) /= N_Type_Conversion
19460      then
19461         return True;
19462      end if;
19463
19464      --  Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19465      --  case of limited aggregates (including extension aggregates), and
19466      --  function calls. The function call may have been given in prefixed
19467      --  notation, in which case the original node is an indexed component.
19468      --  If the function is parameterless, the original node was an explicit
19469      --  dereference. The function may also be parameterless, in which case
19470      --  the source node is just an identifier.
19471
19472      --  A branch of a conditional expression may have been removed if the
19473      --  condition is statically known. This happens during expansion, and
19474      --  thus will not happen if previous errors were encountered. The check
19475      --  will have been performed on the chosen branch, which replaces the
19476      --  original conditional expression.
19477
19478      if No (Exp) then
19479         return True;
19480      end if;
19481
19482      case Nkind (Original_Node (Exp)) is
19483         when N_Aggregate
19484            | N_Extension_Aggregate
19485            | N_Function_Call
19486            | N_Op
19487         =>
19488            return True;
19489
19490         when N_Identifier =>
19491            return Present (Entity (Original_Node (Exp)))
19492              and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19493
19494         when N_Qualified_Expression =>
19495            return
19496              OK_For_Limited_Init_In_05
19497                (Typ, Expression (Original_Node (Exp)));
19498
19499         --  Ada 2005 (AI-251): If a class-wide interface object is initialized
19500         --  with a function call, the expander has rewritten the call into an
19501         --  N_Type_Conversion node to force displacement of the pointer to
19502         --  reference the component containing the secondary dispatch table.
19503         --  Otherwise a type conversion is not a legal context.
19504         --  A return statement for a build-in-place function returning a
19505         --  synchronized type also introduces an unchecked conversion.
19506
19507         when N_Type_Conversion
19508            | N_Unchecked_Type_Conversion
19509         =>
19510            return not Comes_From_Source (Exp)
19511              and then
19512                OK_For_Limited_Init_In_05
19513                  (Typ, Expression (Original_Node (Exp)));
19514
19515         when N_Explicit_Dereference
19516            | N_Indexed_Component
19517            | N_Selected_Component
19518         =>
19519            return Nkind (Exp) = N_Function_Call;
19520
19521         --  A use of 'Input is a function call, hence allowed. Normally the
19522         --  attribute will be changed to a call, but the attribute by itself
19523         --  can occur with -gnatc.
19524
19525         when N_Attribute_Reference =>
19526            return Attribute_Name (Original_Node (Exp)) = Name_Input;
19527
19528         --  "return raise ..." is OK
19529
19530         when N_Raise_Expression =>
19531            return True;
19532
19533         --  For a case expression, all dependent expressions must be legal
19534
19535         when N_Case_Expression =>
19536            declare
19537               Alt : Node_Id;
19538
19539            begin
19540               Alt := First (Alternatives (Original_Node (Exp)));
19541               while Present (Alt) loop
19542                  if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19543                     return False;
19544                  end if;
19545
19546                  Next (Alt);
19547               end loop;
19548
19549               return True;
19550            end;
19551
19552         --  For an if expression, all dependent expressions must be legal
19553
19554         when N_If_Expression =>
19555            declare
19556               Then_Expr : constant Node_Id :=
19557                             Next (First (Expressions (Original_Node (Exp))));
19558               Else_Expr : constant Node_Id := Next (Then_Expr);
19559            begin
19560               return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19561                        and then
19562                      OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19563            end;
19564
19565         when others =>
19566            return False;
19567      end case;
19568   end OK_For_Limited_Init_In_05;
19569
19570   -------------------------------------------
19571   -- Ordinary_Fixed_Point_Type_Declaration --
19572   -------------------------------------------
19573
19574   procedure Ordinary_Fixed_Point_Type_Declaration
19575     (T   : Entity_Id;
19576      Def : Node_Id)
19577   is
19578      Loc           : constant Source_Ptr := Sloc (Def);
19579      Delta_Expr    : constant Node_Id    := Delta_Expression (Def);
19580      RRS           : constant Node_Id    := Real_Range_Specification (Def);
19581      Implicit_Base : Entity_Id;
19582      Delta_Val     : Ureal;
19583      Small_Val     : Ureal;
19584      Low_Val       : Ureal;
19585      High_Val      : Ureal;
19586
19587   begin
19588      Check_Restriction (No_Fixed_Point, Def);
19589
19590      --  Create implicit base type
19591
19592      Implicit_Base :=
19593        Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19594      Set_Etype (Implicit_Base, Implicit_Base);
19595
19596      --  Analyze and process delta expression
19597
19598      Analyze_And_Resolve (Delta_Expr, Any_Real);
19599
19600      Check_Delta_Expression (Delta_Expr);
19601      Delta_Val := Expr_Value_R (Delta_Expr);
19602
19603      Set_Delta_Value (Implicit_Base, Delta_Val);
19604
19605      --  Compute default small from given delta, which is the largest power
19606      --  of two that does not exceed the given delta value.
19607
19608      declare
19609         Tmp   : Ureal;
19610         Scale : Int;
19611
19612      begin
19613         Tmp := Ureal_1;
19614         Scale := 0;
19615
19616         if Delta_Val < Ureal_1 then
19617            while Delta_Val < Tmp loop
19618               Tmp := Tmp / Ureal_2;
19619               Scale := Scale + 1;
19620            end loop;
19621
19622         else
19623            loop
19624               Tmp := Tmp * Ureal_2;
19625               exit when Tmp > Delta_Val;
19626               Scale := Scale - 1;
19627            end loop;
19628         end if;
19629
19630         Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19631      end;
19632
19633      Set_Small_Value (Implicit_Base, Small_Val);
19634
19635      --  If no range was given, set a dummy range
19636
19637      if RRS <= Empty_Or_Error then
19638         Low_Val  := -Small_Val;
19639         High_Val := Small_Val;
19640
19641      --  Otherwise analyze and process given range
19642
19643      else
19644         declare
19645            Low  : constant Node_Id := Low_Bound  (RRS);
19646            High : constant Node_Id := High_Bound (RRS);
19647
19648         begin
19649            Analyze_And_Resolve (Low, Any_Real);
19650            Analyze_And_Resolve (High, Any_Real);
19651            Check_Real_Bound (Low);
19652            Check_Real_Bound (High);
19653
19654            --  Obtain and set the range
19655
19656            Low_Val  := Expr_Value_R (Low);
19657            High_Val := Expr_Value_R (High);
19658
19659            if Low_Val > High_Val then
19660               Error_Msg_NE ("??fixed point type& has null range", Def, T);
19661            end if;
19662         end;
19663      end if;
19664
19665      --  The range for both the implicit base and the declared first subtype
19666      --  cannot be set yet, so we use the special routine Set_Fixed_Range to
19667      --  set a temporary range in place. Note that the bounds of the base
19668      --  type will be widened to be symmetrical and to fill the available
19669      --  bits when the type is frozen.
19670
19671      --  We could do this with all discrete types, and probably should, but
19672      --  we absolutely have to do it for fixed-point, since the end-points
19673      --  of the range and the size are determined by the small value, which
19674      --  could be reset before the freeze point.
19675
19676      Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19677      Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19678
19679      --  Complete definition of first subtype. The inheritance of the rep item
19680      --  chain ensures that SPARK-related pragmas are not clobbered when the
19681      --  ordinary fixed point type acts as a full view of a private type.
19682
19683      Set_Ekind              (T, E_Ordinary_Fixed_Point_Subtype);
19684      Set_Etype              (T, Implicit_Base);
19685      Init_Size_Align        (T);
19686      Inherit_Rep_Item_Chain (T, Implicit_Base);
19687      Set_Small_Value        (T, Small_Val);
19688      Set_Delta_Value        (T, Delta_Val);
19689      Set_Is_Constrained     (T);
19690   end Ordinary_Fixed_Point_Type_Declaration;
19691
19692   ----------------------------------
19693   -- Preanalyze_Assert_Expression --
19694   ----------------------------------
19695
19696   procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19697   begin
19698      In_Assertion_Expr := In_Assertion_Expr + 1;
19699      Preanalyze_Spec_Expression (N, T);
19700      In_Assertion_Expr := In_Assertion_Expr - 1;
19701   end Preanalyze_Assert_Expression;
19702
19703   -----------------------------------
19704   -- Preanalyze_Default_Expression --
19705   -----------------------------------
19706
19707   procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19708      Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19709   begin
19710      In_Default_Expr := True;
19711      Preanalyze_Spec_Expression (N, T);
19712      In_Default_Expr := Save_In_Default_Expr;
19713   end Preanalyze_Default_Expression;
19714
19715   --------------------------------
19716   -- Preanalyze_Spec_Expression --
19717   --------------------------------
19718
19719   procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19720      Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19721   begin
19722      In_Spec_Expression := True;
19723      Preanalyze_And_Resolve (N, T);
19724      In_Spec_Expression := Save_In_Spec_Expression;
19725   end Preanalyze_Spec_Expression;
19726
19727   ----------------------------------------
19728   -- Prepare_Private_Subtype_Completion --
19729   ----------------------------------------
19730
19731   procedure Prepare_Private_Subtype_Completion
19732     (Id          : Entity_Id;
19733      Related_Nod : Node_Id)
19734   is
19735      Id_B   : constant Entity_Id := Base_Type (Id);
19736      Full_B : Entity_Id := Full_View (Id_B);
19737      Full   : Entity_Id;
19738
19739   begin
19740      if Present (Full_B) then
19741
19742         --  Get to the underlying full view if necessary
19743
19744         if Is_Private_Type (Full_B)
19745           and then Present (Underlying_Full_View (Full_B))
19746         then
19747            Full_B := Underlying_Full_View (Full_B);
19748         end if;
19749
19750         --  The Base_Type is already completed, we can complete the subtype
19751         --  now. We have to create a new entity with the same name, Thus we
19752         --  can't use Create_Itype.
19753
19754         Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19755         Set_Is_Itype (Full);
19756         Set_Associated_Node_For_Itype (Full, Related_Nod);
19757         Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19758      end if;
19759
19760      --  The parent subtype may be private, but the base might not, in some
19761      --  nested instances. In that case, the subtype does not need to be
19762      --  exchanged. It would still be nice to make private subtypes and their
19763      --  bases consistent at all times ???
19764
19765      if Is_Private_Type (Id_B) then
19766         Append_Elmt (Id, Private_Dependents (Id_B));
19767      end if;
19768   end Prepare_Private_Subtype_Completion;
19769
19770   ---------------------------
19771   -- Process_Discriminants --
19772   ---------------------------
19773
19774   procedure Process_Discriminants
19775     (N    : Node_Id;
19776      Prev : Entity_Id := Empty)
19777   is
19778      Elist               : constant Elist_Id := New_Elmt_List;
19779      Id                  : Node_Id;
19780      Discr               : Node_Id;
19781      Discr_Number        : Uint;
19782      Discr_Type          : Entity_Id;
19783      Default_Present     : Boolean := False;
19784      Default_Not_Present : Boolean := False;
19785
19786   begin
19787      --  A composite type other than an array type can have discriminants.
19788      --  On entry, the current scope is the composite type.
19789
19790      --  The discriminants are initially entered into the scope of the type
19791      --  via Enter_Name with the default Ekind of E_Void to prevent premature
19792      --  use, as explained at the end of this procedure.
19793
19794      Discr := First (Discriminant_Specifications (N));
19795      while Present (Discr) loop
19796         Enter_Name (Defining_Identifier (Discr));
19797
19798         --  For navigation purposes we add a reference to the discriminant
19799         --  in the entity for the type. If the current declaration is a
19800         --  completion, place references on the partial view. Otherwise the
19801         --  type is the current scope.
19802
19803         if Present (Prev) then
19804
19805            --  The references go on the partial view, if present. If the
19806            --  partial view has discriminants, the references have been
19807            --  generated already.
19808
19809            if not Has_Discriminants (Prev) then
19810               Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19811            end if;
19812         else
19813            Generate_Reference
19814              (Current_Scope, Defining_Identifier (Discr), 'd');
19815         end if;
19816
19817         if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19818            Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19819
19820            --  Ada 2005 (AI-254)
19821
19822            if Present (Access_To_Subprogram_Definition
19823                         (Discriminant_Type (Discr)))
19824              and then Protected_Present (Access_To_Subprogram_Definition
19825                                           (Discriminant_Type (Discr)))
19826            then
19827               Discr_Type :=
19828                 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19829            end if;
19830
19831         else
19832            Find_Type (Discriminant_Type (Discr));
19833            Discr_Type := Etype (Discriminant_Type (Discr));
19834
19835            if Error_Posted (Discriminant_Type (Discr)) then
19836               Discr_Type := Any_Type;
19837            end if;
19838         end if;
19839
19840         --  Handling of discriminants that are access types
19841
19842         if Is_Access_Type (Discr_Type) then
19843
19844            --  Ada 2005 (AI-230): Access discriminant allowed in non-
19845            --  limited record types
19846
19847            if Ada_Version < Ada_2005 then
19848               Check_Access_Discriminant_Requires_Limited
19849                 (Discr, Discriminant_Type (Discr));
19850            end if;
19851
19852            if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19853               Error_Msg_N
19854                 ("(Ada 83) access discriminant not allowed", Discr);
19855            end if;
19856
19857         --  If not access type, must be a discrete type
19858
19859         elsif not Is_Discrete_Type (Discr_Type) then
19860            Error_Msg_N
19861              ("discriminants must have a discrete or access type",
19862               Discriminant_Type (Discr));
19863         end if;
19864
19865         Set_Etype (Defining_Identifier (Discr), Discr_Type);
19866
19867         --  If a discriminant specification includes the assignment compound
19868         --  delimiter followed by an expression, the expression is the default
19869         --  expression of the discriminant; the default expression must be of
19870         --  the type of the discriminant. (RM 3.7.1) Since this expression is
19871         --  a default expression, we do the special preanalysis, since this
19872         --  expression does not freeze (see section "Handling of Default and
19873         --  Per-Object Expressions" in spec of package Sem).
19874
19875         if Present (Expression (Discr)) then
19876            Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19877
19878            --  Legaity checks
19879
19880            if Nkind (N) = N_Formal_Type_Declaration then
19881               Error_Msg_N
19882                 ("discriminant defaults not allowed for formal type",
19883                  Expression (Discr));
19884
19885            --  Flag an error for a tagged type with defaulted discriminants,
19886            --  excluding limited tagged types when compiling for Ada 2012
19887            --  (see AI05-0214).
19888
19889            elsif Is_Tagged_Type (Current_Scope)
19890              and then (not Is_Limited_Type (Current_Scope)
19891                         or else Ada_Version < Ada_2012)
19892              and then Comes_From_Source (N)
19893            then
19894               --  Note: see similar test in Check_Or_Process_Discriminants, to
19895               --  handle the (illegal) case of the completion of an untagged
19896               --  view with discriminants with defaults by a tagged full view.
19897               --  We skip the check if Discr does not come from source, to
19898               --  account for the case of an untagged derived type providing
19899               --  defaults for a renamed discriminant from a private untagged
19900               --  ancestor with a tagged full view (ACATS B460006).
19901
19902               if Ada_Version >= Ada_2012 then
19903                  Error_Msg_N
19904                    ("discriminants of nonlimited tagged type cannot have"
19905                       & " defaults",
19906                     Expression (Discr));
19907               else
19908                  Error_Msg_N
19909                    ("discriminants of tagged type cannot have defaults",
19910                     Expression (Discr));
19911               end if;
19912
19913            else
19914               Default_Present := True;
19915               Append_Elmt (Expression (Discr), Elist);
19916
19917               --  Tag the defining identifiers for the discriminants with
19918               --  their corresponding default expressions from the tree.
19919
19920               Set_Discriminant_Default_Value
19921                 (Defining_Identifier (Discr), Expression (Discr));
19922            end if;
19923
19924            --  In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19925            --  gets set unless we can be sure that no range check is required.
19926
19927            if (GNATprove_Mode or not Expander_Active)
19928              and then not
19929                Is_In_Range
19930                  (Expression (Discr), Discr_Type, Assume_Valid => True)
19931            then
19932               Set_Do_Range_Check (Expression (Discr));
19933            end if;
19934
19935         --  No default discriminant value given
19936
19937         else
19938            Default_Not_Present := True;
19939         end if;
19940
19941         --  Ada 2005 (AI-231): Create an Itype that is a duplicate of
19942         --  Discr_Type but with the null-exclusion attribute
19943
19944         if Ada_Version >= Ada_2005 then
19945
19946            --  Ada 2005 (AI-231): Static checks
19947
19948            if Can_Never_Be_Null (Discr_Type) then
19949               Null_Exclusion_Static_Checks (Discr);
19950
19951            elsif Is_Access_Type (Discr_Type)
19952              and then Null_Exclusion_Present (Discr)
19953
19954               --  No need to check itypes because in their case this check
19955               --  was done at their point of creation
19956
19957              and then not Is_Itype (Discr_Type)
19958            then
19959               if Can_Never_Be_Null (Discr_Type) then
19960                  Error_Msg_NE
19961                    ("`NOT NULL` not allowed (& already excludes null)",
19962                     Discr,
19963                     Discr_Type);
19964               end if;
19965
19966               Set_Etype (Defining_Identifier (Discr),
19967                 Create_Null_Excluding_Itype
19968                   (T           => Discr_Type,
19969                    Related_Nod => Discr));
19970
19971            --  Check for improper null exclusion if the type is otherwise
19972            --  legal for a discriminant.
19973
19974            elsif Null_Exclusion_Present (Discr)
19975              and then Is_Discrete_Type (Discr_Type)
19976            then
19977               Error_Msg_N
19978                 ("null exclusion can only apply to an access type", Discr);
19979            end if;
19980
19981            --  Ada 2005 (AI-402): access discriminants of nonlimited types
19982            --  can't have defaults. Synchronized types, or types that are
19983            --  explicitly limited are fine, but special tests apply to derived
19984            --  types in generics: in a generic body we have to assume the
19985            --  worst, and therefore defaults are not allowed if the parent is
19986            --  a generic formal private type (see ACATS B370001).
19987
19988            if Is_Access_Type (Discr_Type) and then Default_Present then
19989               if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19990                 or else Is_Limited_Record (Current_Scope)
19991                 or else Is_Concurrent_Type (Current_Scope)
19992                 or else Is_Concurrent_Record_Type (Current_Scope)
19993                 or else Ekind (Current_Scope) = E_Limited_Private_Type
19994               then
19995                  if not Is_Derived_Type (Current_Scope)
19996                    or else not Is_Generic_Type (Etype (Current_Scope))
19997                    or else not In_Package_Body (Scope (Etype (Current_Scope)))
19998                    or else Limited_Present
19999                              (Type_Definition (Parent (Current_Scope)))
20000                  then
20001                     null;
20002
20003                  else
20004                     Error_Msg_N
20005                       ("access discriminants of nonlimited types cannot "
20006                        & "have defaults", Expression (Discr));
20007                  end if;
20008
20009               elsif Present (Expression (Discr)) then
20010                  Error_Msg_N
20011                    ("(Ada 2005) access discriminants of nonlimited types "
20012                     & "cannot have defaults", Expression (Discr));
20013               end if;
20014            end if;
20015         end if;
20016
20017         --  A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
20018         --  This check is relevant only when SPARK_Mode is on as it is not a
20019         --  standard Ada legality rule.
20020
20021         if SPARK_Mode = On
20022           and then Is_Effectively_Volatile (Defining_Identifier (Discr))
20023         then
20024            Error_Msg_N ("discriminant cannot be volatile", Discr);
20025         end if;
20026
20027         Next (Discr);
20028      end loop;
20029
20030      --  An element list consisting of the default expressions of the
20031      --  discriminants is constructed in the above loop and used to set
20032      --  the Discriminant_Constraint attribute for the type. If an object
20033      --  is declared of this (record or task) type without any explicit
20034      --  discriminant constraint given, this element list will form the
20035      --  actual parameters for the corresponding initialization procedure
20036      --  for the type.
20037
20038      Set_Discriminant_Constraint (Current_Scope, Elist);
20039      Set_Stored_Constraint (Current_Scope, No_Elist);
20040
20041      --  Default expressions must be provided either for all or for none
20042      --  of the discriminants of a discriminant part. (RM 3.7.1)
20043
20044      if Default_Present and then Default_Not_Present then
20045         Error_Msg_N
20046           ("incomplete specification of defaults for discriminants", N);
20047      end if;
20048
20049      --  The use of the name of a discriminant is not allowed in default
20050      --  expressions of a discriminant part if the specification of the
20051      --  discriminant is itself given in the discriminant part. (RM 3.7.1)
20052
20053      --  To detect this, the discriminant names are entered initially with an
20054      --  Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
20055      --  attempt to use a void entity (for example in an expression that is
20056      --  type-checked) produces the error message: premature usage. Now after
20057      --  completing the semantic analysis of the discriminant part, we can set
20058      --  the Ekind of all the discriminants appropriately.
20059
20060      Discr := First (Discriminant_Specifications (N));
20061      Discr_Number := Uint_1;
20062      while Present (Discr) loop
20063         Id := Defining_Identifier (Discr);
20064         Set_Ekind (Id, E_Discriminant);
20065         Init_Component_Location (Id);
20066         Init_Esize (Id);
20067         Set_Discriminant_Number (Id, Discr_Number);
20068
20069         --  Make sure this is always set, even in illegal programs
20070
20071         Set_Corresponding_Discriminant (Id, Empty);
20072
20073         --  Initialize the Original_Record_Component to the entity itself.
20074         --  Inherit_Components will propagate the right value to
20075         --  discriminants in derived record types.
20076
20077         Set_Original_Record_Component (Id, Id);
20078
20079         --  Create the discriminal for the discriminant
20080
20081         Build_Discriminal (Id);
20082
20083         Next (Discr);
20084         Discr_Number := Discr_Number + 1;
20085      end loop;
20086
20087      Set_Has_Discriminants (Current_Scope);
20088   end Process_Discriminants;
20089
20090   -----------------------
20091   -- Process_Full_View --
20092   -----------------------
20093
20094   --  WARNING: This routine manages Ghost regions. Return statements must be
20095   --  replaced by gotos which jump to the end of the routine and restore the
20096   --  Ghost mode.
20097
20098   procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
20099      procedure Collect_Implemented_Interfaces
20100        (Typ    : Entity_Id;
20101         Ifaces : Elist_Id);
20102      --  Ada 2005: Gather all the interfaces that Typ directly or
20103      --  inherently implements. Duplicate entries are not added to
20104      --  the list Ifaces.
20105
20106      ------------------------------------
20107      -- Collect_Implemented_Interfaces --
20108      ------------------------------------
20109
20110      procedure Collect_Implemented_Interfaces
20111        (Typ    : Entity_Id;
20112         Ifaces : Elist_Id)
20113      is
20114         Iface      : Entity_Id;
20115         Iface_Elmt : Elmt_Id;
20116
20117      begin
20118         --  Abstract interfaces are only associated with tagged record types
20119
20120         if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
20121            return;
20122         end if;
20123
20124         --  Recursively climb to the ancestors
20125
20126         if Etype (Typ) /= Typ
20127
20128            --  Protect the frontend against wrong cyclic declarations like:
20129
20130            --     type B is new A with private;
20131            --     type C is new A with private;
20132            --  private
20133            --     type B is new C with null record;
20134            --     type C is new B with null record;
20135
20136           and then Etype (Typ) /= Priv_T
20137           and then Etype (Typ) /= Full_T
20138         then
20139            --  Keep separate the management of private type declarations
20140
20141            if Ekind (Typ) = E_Record_Type_With_Private then
20142
20143               --  Handle the following illegal usage:
20144               --      type Private_Type is tagged private;
20145               --   private
20146               --      type Private_Type is new Type_Implementing_Iface;
20147
20148               if Present (Full_View (Typ))
20149                 and then Etype (Typ) /= Full_View (Typ)
20150               then
20151                  if Is_Interface (Etype (Typ)) then
20152                     Append_Unique_Elmt (Etype (Typ), Ifaces);
20153                  end if;
20154
20155                  Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20156               end if;
20157
20158            --  Non-private types
20159
20160            else
20161               if Is_Interface (Etype (Typ)) then
20162                  Append_Unique_Elmt (Etype (Typ), Ifaces);
20163               end if;
20164
20165               Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20166            end if;
20167         end if;
20168
20169         --  Handle entities in the list of abstract interfaces
20170
20171         if Present (Interfaces (Typ)) then
20172            Iface_Elmt := First_Elmt (Interfaces (Typ));
20173            while Present (Iface_Elmt) loop
20174               Iface := Node (Iface_Elmt);
20175
20176               pragma Assert (Is_Interface (Iface));
20177
20178               if not Contain_Interface (Iface, Ifaces) then
20179                  Append_Elmt (Iface, Ifaces);
20180                  Collect_Implemented_Interfaces (Iface, Ifaces);
20181               end if;
20182
20183               Next_Elmt (Iface_Elmt);
20184            end loop;
20185         end if;
20186      end Collect_Implemented_Interfaces;
20187
20188      --  Local variables
20189
20190      Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20191
20192      Full_Indic  : Node_Id;
20193      Full_Parent : Entity_Id;
20194      Priv_Parent : Entity_Id;
20195
20196   --  Start of processing for Process_Full_View
20197
20198   begin
20199      Mark_And_Set_Ghost_Completion (N, Priv_T);
20200
20201      --  First some sanity checks that must be done after semantic
20202      --  decoration of the full view and thus cannot be placed with other
20203      --  similar checks in Find_Type_Name
20204
20205      if not Is_Limited_Type (Priv_T)
20206        and then (Is_Limited_Type (Full_T)
20207                   or else Is_Limited_Composite (Full_T))
20208      then
20209         if In_Instance then
20210            null;
20211         else
20212            Error_Msg_N
20213              ("completion of nonlimited type cannot be limited", Full_T);
20214            Explain_Limited_Type (Full_T, Full_T);
20215         end if;
20216
20217      elsif Is_Abstract_Type (Full_T)
20218        and then not Is_Abstract_Type (Priv_T)
20219      then
20220         Error_Msg_N
20221           ("completion of nonabstract type cannot be abstract", Full_T);
20222
20223      elsif Is_Tagged_Type (Priv_T)
20224        and then Is_Limited_Type (Priv_T)
20225        and then not Is_Limited_Type (Full_T)
20226      then
20227         --  If pragma CPP_Class was applied to the private declaration
20228         --  propagate the limitedness to the full-view
20229
20230         if Is_CPP_Class (Priv_T) then
20231            Set_Is_Limited_Record (Full_T);
20232
20233         --  GNAT allow its own definition of Limited_Controlled to disobey
20234         --  this rule in order in ease the implementation. This test is safe
20235         --  because Root_Controlled is defined in a child of System that
20236         --  normal programs are not supposed to use.
20237
20238         elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20239            Set_Is_Limited_Composite (Full_T);
20240         else
20241            Error_Msg_N
20242              ("completion of limited tagged type must be limited", Full_T);
20243         end if;
20244
20245      elsif Is_Generic_Type (Priv_T) then
20246         Error_Msg_N ("generic type cannot have a completion", Full_T);
20247      end if;
20248
20249      --  Check that ancestor interfaces of private and full views are
20250      --  consistent. We omit this check for synchronized types because
20251      --  they are performed on the corresponding record type when frozen.
20252
20253      if Ada_Version >= Ada_2005
20254        and then Is_Tagged_Type (Priv_T)
20255        and then Is_Tagged_Type (Full_T)
20256        and then not Is_Concurrent_Type (Full_T)
20257      then
20258         declare
20259            Iface         : Entity_Id;
20260            Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20261            Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20262
20263         begin
20264            Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20265            Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20266
20267            --  Ada 2005 (AI-251): The partial view shall be a descendant of
20268            --  an interface type if and only if the full type is descendant
20269            --  of the interface type (AARM 7.3 (7.3/2)).
20270
20271            Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20272
20273            if Present (Iface) then
20274               Error_Msg_NE
20275                 ("interface in partial view& not implemented by full type "
20276                  & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20277            end if;
20278
20279            Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20280
20281            if Present (Iface) then
20282               Error_Msg_NE
20283                 ("interface & not implemented by partial view "
20284                  & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20285            end if;
20286         end;
20287      end if;
20288
20289      if Is_Tagged_Type (Priv_T)
20290        and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20291        and then Is_Derived_Type (Full_T)
20292      then
20293         Priv_Parent := Etype (Priv_T);
20294
20295         --  The full view of a private extension may have been transformed
20296         --  into an unconstrained derived type declaration and a subtype
20297         --  declaration (see build_derived_record_type for details).
20298
20299         if Nkind (N) = N_Subtype_Declaration then
20300            Full_Indic  := Subtype_Indication (N);
20301            Full_Parent := Etype (Base_Type (Full_T));
20302         else
20303            Full_Indic  := Subtype_Indication (Type_Definition (N));
20304            Full_Parent := Etype (Full_T);
20305         end if;
20306
20307         --  Check that the parent type of the full type is a descendant of
20308         --  the ancestor subtype given in the private extension. If either
20309         --  entity has an Etype equal to Any_Type then we had some previous
20310         --  error situation [7.3(8)].
20311
20312         if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20313            goto Leave;
20314
20315         --  Ada 2005 (AI-251): Interfaces in the full type can be given in
20316         --  any order. Therefore we don't have to check that its parent must
20317         --  be a descendant of the parent of the private type declaration.
20318
20319         elsif Is_Interface (Priv_Parent)
20320           and then Is_Interface (Full_Parent)
20321         then
20322            null;
20323
20324         --  Ada 2005 (AI-251): If the parent of the private type declaration
20325         --  is an interface there is no need to check that it is an ancestor
20326         --  of the associated full type declaration. The required tests for
20327         --  this case are performed by Build_Derived_Record_Type.
20328
20329         elsif not Is_Interface (Base_Type (Priv_Parent))
20330           and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20331         then
20332            Error_Msg_N
20333              ("parent of full type must descend from parent of private "
20334               & "extension", Full_Indic);
20335
20336         --  First check a formal restriction, and then proceed with checking
20337         --  Ada rules. Since the formal restriction is not a serious error, we
20338         --  don't prevent further error detection for this check, hence the
20339         --  ELSE.
20340
20341         else
20342            --  In formal mode, when completing a private extension the type
20343            --  named in the private part must be exactly the same as that
20344            --  named in the visible part.
20345
20346            if Priv_Parent /= Full_Parent then
20347               Error_Msg_Name_1 := Chars (Priv_Parent);
20348               Check_SPARK_05_Restriction ("% expected", Full_Indic);
20349            end if;
20350
20351            --  Check the rules of 7.3(10): if the private extension inherits
20352            --  known discriminants, then the full type must also inherit those
20353            --  discriminants from the same (ancestor) type, and the parent
20354            --  subtype of the full type must be constrained if and only if
20355            --  the ancestor subtype of the private extension is constrained.
20356
20357            if No (Discriminant_Specifications (Parent (Priv_T)))
20358              and then not Has_Unknown_Discriminants (Priv_T)
20359              and then Has_Discriminants (Base_Type (Priv_Parent))
20360            then
20361               declare
20362                  Priv_Indic  : constant Node_Id :=
20363                                  Subtype_Indication (Parent (Priv_T));
20364
20365                  Priv_Constr : constant Boolean :=
20366                                  Is_Constrained (Priv_Parent)
20367                                    or else
20368                                      Nkind (Priv_Indic) = N_Subtype_Indication
20369                                    or else
20370                                      Is_Constrained (Entity (Priv_Indic));
20371
20372                  Full_Constr : constant Boolean :=
20373                                  Is_Constrained (Full_Parent)
20374                                    or else
20375                                      Nkind (Full_Indic) = N_Subtype_Indication
20376                                    or else
20377                                      Is_Constrained (Entity (Full_Indic));
20378
20379                  Priv_Discr : Entity_Id;
20380                  Full_Discr : Entity_Id;
20381
20382               begin
20383                  Priv_Discr := First_Discriminant (Priv_Parent);
20384                  Full_Discr := First_Discriminant (Full_Parent);
20385                  while Present (Priv_Discr) and then Present (Full_Discr) loop
20386                     if Original_Record_Component (Priv_Discr) =
20387                        Original_Record_Component (Full_Discr)
20388                          or else
20389                        Corresponding_Discriminant (Priv_Discr) =
20390                        Corresponding_Discriminant (Full_Discr)
20391                     then
20392                        null;
20393                     else
20394                        exit;
20395                     end if;
20396
20397                     Next_Discriminant (Priv_Discr);
20398                     Next_Discriminant (Full_Discr);
20399                  end loop;
20400
20401                  if Present (Priv_Discr) or else Present (Full_Discr) then
20402                     Error_Msg_N
20403                       ("full view must inherit discriminants of the parent "
20404                        & "type used in the private extension", Full_Indic);
20405
20406                  elsif Priv_Constr and then not Full_Constr then
20407                     Error_Msg_N
20408                       ("parent subtype of full type must be constrained",
20409                        Full_Indic);
20410
20411                  elsif Full_Constr and then not Priv_Constr then
20412                     Error_Msg_N
20413                       ("parent subtype of full type must be unconstrained",
20414                        Full_Indic);
20415                  end if;
20416               end;
20417
20418               --  Check the rules of 7.3(12): if a partial view has neither
20419               --  known or unknown discriminants, then the full type
20420               --  declaration shall define a definite subtype.
20421
20422            elsif not Has_Unknown_Discriminants (Priv_T)
20423              and then not Has_Discriminants (Priv_T)
20424              and then not Is_Constrained (Full_T)
20425            then
20426               Error_Msg_N
20427                 ("full view must define a constrained type if partial view "
20428                  & "has no discriminants", Full_T);
20429            end if;
20430
20431            --  ??????? Do we implement the following properly ?????
20432            --  If the ancestor subtype of a private extension has constrained
20433            --  discriminants, then the parent subtype of the full view shall
20434            --  impose a statically matching constraint on those discriminants
20435            --  [7.3(13)].
20436         end if;
20437
20438      else
20439         --  For untagged types, verify that a type without discriminants is
20440         --  not completed with an unconstrained type. A separate error message
20441         --  is produced if the full type has defaulted discriminants.
20442
20443         if Is_Definite_Subtype (Priv_T)
20444           and then not Is_Definite_Subtype (Full_T)
20445         then
20446            Error_Msg_Sloc := Sloc (Parent (Priv_T));
20447            Error_Msg_NE
20448              ("full view of& not compatible with declaration#",
20449               Full_T, Priv_T);
20450
20451            if not Is_Tagged_Type (Full_T) then
20452               Error_Msg_N
20453                 ("\one is constrained, the other unconstrained", Full_T);
20454            end if;
20455         end if;
20456      end if;
20457
20458      --  AI-419: verify that the use of "limited" is consistent
20459
20460      declare
20461         Orig_Decl : constant Node_Id := Original_Node (N);
20462
20463      begin
20464         if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20465           and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20466           and then Nkind
20467             (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20468         then
20469            if not Limited_Present (Parent (Priv_T))
20470              and then not Synchronized_Present (Parent (Priv_T))
20471              and then Limited_Present (Type_Definition (Orig_Decl))
20472            then
20473               Error_Msg_N
20474                 ("full view of non-limited extension cannot be limited", N);
20475
20476            --  Conversely, if the partial view carries the limited keyword,
20477            --  the full view must as well, even if it may be redundant.
20478
20479            elsif Limited_Present (Parent (Priv_T))
20480              and then not Limited_Present (Type_Definition (Orig_Decl))
20481            then
20482               Error_Msg_N
20483                 ("full view of limited extension must be explicitly limited",
20484                  N);
20485            end if;
20486         end if;
20487      end;
20488
20489      --  Ada 2005 (AI-443): A synchronized private extension must be
20490      --  completed by a task or protected type.
20491
20492      if Ada_Version >= Ada_2005
20493        and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20494        and then Synchronized_Present (Parent (Priv_T))
20495        and then not Is_Concurrent_Type (Full_T)
20496      then
20497         Error_Msg_N ("full view of synchronized extension must " &
20498                      "be synchronized type", N);
20499      end if;
20500
20501      --  Ada 2005 AI-363: if the full view has discriminants with
20502      --  defaults, it is illegal to declare constrained access subtypes
20503      --  whose designated type is the current type. This allows objects
20504      --  of the type that are declared in the heap to be unconstrained.
20505
20506      if not Has_Unknown_Discriminants (Priv_T)
20507        and then not Has_Discriminants (Priv_T)
20508        and then Has_Discriminants (Full_T)
20509        and then
20510          Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20511      then
20512         Set_Has_Constrained_Partial_View (Full_T);
20513         Set_Has_Constrained_Partial_View (Priv_T);
20514      end if;
20515
20516      --  Create a full declaration for all its subtypes recorded in
20517      --  Private_Dependents and swap them similarly to the base type. These
20518      --  are subtypes that have been define before the full declaration of
20519      --  the private type. We also swap the entry in Private_Dependents list
20520      --  so we can properly restore the private view on exit from the scope.
20521
20522      declare
20523         Priv_Elmt : Elmt_Id;
20524         Priv_Scop : Entity_Id;
20525         Priv      : Entity_Id;
20526         Full      : Entity_Id;
20527
20528      begin
20529         Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20530         while Present (Priv_Elmt) loop
20531            Priv := Node (Priv_Elmt);
20532            Priv_Scop := Scope (Priv);
20533
20534            if Ekind_In (Priv, E_Private_Subtype,
20535                               E_Limited_Private_Subtype,
20536                               E_Record_Subtype_With_Private)
20537            then
20538               Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20539               Set_Is_Itype (Full);
20540               Set_Parent (Full, Parent (Priv));
20541               Set_Associated_Node_For_Itype (Full, N);
20542
20543               --  Now we need to complete the private subtype, but since the
20544               --  base type has already been swapped, we must also swap the
20545               --  subtypes (and thus, reverse the arguments in the call to
20546               --  Complete_Private_Subtype). Also note that we may need to
20547               --  re-establish the scope of the private subtype.
20548
20549               Copy_And_Swap (Priv, Full);
20550
20551               if not In_Open_Scopes (Priv_Scop) then
20552                  Push_Scope (Priv_Scop);
20553
20554               else
20555                  --  Reset Priv_Scop to Empty to indicate no scope was pushed
20556
20557                  Priv_Scop := Empty;
20558               end if;
20559
20560               Complete_Private_Subtype (Full, Priv, Full_T, N);
20561
20562               if Present (Priv_Scop) then
20563                  Pop_Scope;
20564               end if;
20565
20566               Replace_Elmt (Priv_Elmt, Full);
20567            end if;
20568
20569            Next_Elmt (Priv_Elmt);
20570         end loop;
20571      end;
20572
20573      --  If the private view was tagged, copy the new primitive operations
20574      --  from the private view to the full view.
20575
20576      if Is_Tagged_Type (Full_T) then
20577         declare
20578            Disp_Typ  : Entity_Id;
20579            Full_List : Elist_Id;
20580            Prim      : Entity_Id;
20581            Prim_Elmt : Elmt_Id;
20582            Priv_List : Elist_Id;
20583
20584            function Contains
20585              (E : Entity_Id;
20586               L : Elist_Id) return Boolean;
20587            --  Determine whether list L contains element E
20588
20589            --------------
20590            -- Contains --
20591            --------------
20592
20593            function Contains
20594              (E : Entity_Id;
20595               L : Elist_Id) return Boolean
20596            is
20597               List_Elmt : Elmt_Id;
20598
20599            begin
20600               List_Elmt := First_Elmt (L);
20601               while Present (List_Elmt) loop
20602                  if Node (List_Elmt) = E then
20603                     return True;
20604                  end if;
20605
20606                  Next_Elmt (List_Elmt);
20607               end loop;
20608
20609               return False;
20610            end Contains;
20611
20612         --  Start of processing
20613
20614         begin
20615            if Is_Tagged_Type (Priv_T) then
20616               Priv_List := Primitive_Operations (Priv_T);
20617               Prim_Elmt := First_Elmt (Priv_List);
20618
20619               --  In the case of a concurrent type completing a private tagged
20620               --  type, primitives may have been declared in between the two
20621               --  views. These subprograms need to be wrapped the same way
20622               --  entries and protected procedures are handled because they
20623               --  cannot be directly shared by the two views.
20624
20625               if Is_Concurrent_Type (Full_T) then
20626                  declare
20627                     Conc_Typ  : constant Entity_Id :=
20628                                   Corresponding_Record_Type (Full_T);
20629                     Curr_Nod  : Node_Id := Parent (Conc_Typ);
20630                     Wrap_Spec : Node_Id;
20631
20632                  begin
20633                     while Present (Prim_Elmt) loop
20634                        Prim := Node (Prim_Elmt);
20635
20636                        if Comes_From_Source (Prim)
20637                          and then not Is_Abstract_Subprogram (Prim)
20638                        then
20639                           Wrap_Spec :=
20640                             Make_Subprogram_Declaration (Sloc (Prim),
20641                               Specification =>
20642                                 Build_Wrapper_Spec
20643                                   (Subp_Id => Prim,
20644                                    Obj_Typ => Conc_Typ,
20645                                    Formals =>
20646                                      Parameter_Specifications
20647                                        (Parent (Prim))));
20648
20649                           Insert_After (Curr_Nod, Wrap_Spec);
20650                           Curr_Nod := Wrap_Spec;
20651
20652                           Analyze (Wrap_Spec);
20653
20654                           --  Remove the wrapper from visibility to avoid
20655                           --  spurious conflict with the wrapped entity.
20656
20657                           Set_Is_Immediately_Visible
20658                             (Defining_Entity (Specification (Wrap_Spec)),
20659                              False);
20660                        end if;
20661
20662                        Next_Elmt (Prim_Elmt);
20663                     end loop;
20664
20665                     goto Leave;
20666                  end;
20667
20668               --  For non-concurrent types, transfer explicit primitives, but
20669               --  omit those inherited from the parent of the private view
20670               --  since they will be re-inherited later on.
20671
20672               else
20673                  Full_List := Primitive_Operations (Full_T);
20674
20675                  while Present (Prim_Elmt) loop
20676                     Prim := Node (Prim_Elmt);
20677
20678                     if Comes_From_Source (Prim)
20679                       and then not Contains (Prim, Full_List)
20680                     then
20681                        Append_Elmt (Prim, Full_List);
20682                     end if;
20683
20684                     Next_Elmt (Prim_Elmt);
20685                  end loop;
20686               end if;
20687
20688            --  Untagged private view
20689
20690            else
20691               Full_List := Primitive_Operations (Full_T);
20692
20693               --  In this case the partial view is untagged, so here we locate
20694               --  all of the earlier primitives that need to be treated as
20695               --  dispatching (those that appear between the two views). Note
20696               --  that these additional operations must all be new operations
20697               --  (any earlier operations that override inherited operations
20698               --  of the full view will already have been inserted in the
20699               --  primitives list, marked by Check_Operation_From_Private_View
20700               --  as dispatching. Note that implicit "/=" operators are
20701               --  excluded from being added to the primitives list since they
20702               --  shouldn't be treated as dispatching (tagged "/=" is handled
20703               --  specially).
20704
20705               Prim := Next_Entity (Full_T);
20706               while Present (Prim) and then Prim /= Priv_T loop
20707                  if Ekind_In (Prim, E_Procedure, E_Function) then
20708                     Disp_Typ := Find_Dispatching_Type (Prim);
20709
20710                     if Disp_Typ = Full_T
20711                       and then (Chars (Prim) /= Name_Op_Ne
20712                                  or else Comes_From_Source (Prim))
20713                     then
20714                        Check_Controlling_Formals (Full_T, Prim);
20715
20716                        if not Is_Dispatching_Operation (Prim) then
20717                           Append_Elmt (Prim, Full_List);
20718                           Set_Is_Dispatching_Operation (Prim, True);
20719                           Set_DT_Position_Value (Prim, No_Uint);
20720                        end if;
20721
20722                     elsif Is_Dispatching_Operation (Prim)
20723                       and then Disp_Typ /= Full_T
20724                     then
20725
20726                        --  Verify that it is not otherwise controlled by a
20727                        --  formal or a return value of type T.
20728
20729                        Check_Controlling_Formals (Disp_Typ, Prim);
20730                     end if;
20731                  end if;
20732
20733                  Next_Entity (Prim);
20734               end loop;
20735            end if;
20736
20737            --  For the tagged case, the two views can share the same primitive
20738            --  operations list and the same class-wide type. Update attributes
20739            --  of the class-wide type which depend on the full declaration.
20740
20741            if Is_Tagged_Type (Priv_T) then
20742               Set_Direct_Primitive_Operations (Priv_T, Full_List);
20743               Set_Class_Wide_Type
20744                 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20745
20746               Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20747            end if;
20748         end;
20749      end if;
20750
20751      --  Ada 2005 AI 161: Check preelaborable initialization consistency
20752
20753      if Known_To_Have_Preelab_Init (Priv_T) then
20754
20755         --  Case where there is a pragma Preelaborable_Initialization. We
20756         --  always allow this in predefined units, which is cheating a bit,
20757         --  but it means we don't have to struggle to meet the requirements in
20758         --  the RM for having Preelaborable Initialization. Otherwise we
20759         --  require that the type meets the RM rules. But we can't check that
20760         --  yet, because of the rule about overriding Initialize, so we simply
20761         --  set a flag that will be checked at freeze time.
20762
20763         if not In_Predefined_Unit (Full_T) then
20764            Set_Must_Have_Preelab_Init (Full_T);
20765         end if;
20766      end if;
20767
20768      --  If pragma CPP_Class was applied to the private type declaration,
20769      --  propagate it now to the full type declaration.
20770
20771      if Is_CPP_Class (Priv_T) then
20772         Set_Is_CPP_Class (Full_T);
20773         Set_Convention   (Full_T, Convention_CPP);
20774
20775         --  Check that components of imported CPP types do not have default
20776         --  expressions.
20777
20778         Check_CPP_Type_Has_No_Defaults (Full_T);
20779      end if;
20780
20781      --  If the private view has user specified stream attributes, then so has
20782      --  the full view.
20783
20784      --  Why the test, how could these flags be already set in Full_T ???
20785
20786      if Has_Specified_Stream_Read (Priv_T) then
20787         Set_Has_Specified_Stream_Read (Full_T);
20788      end if;
20789
20790      if Has_Specified_Stream_Write (Priv_T) then
20791         Set_Has_Specified_Stream_Write (Full_T);
20792      end if;
20793
20794      if Has_Specified_Stream_Input (Priv_T) then
20795         Set_Has_Specified_Stream_Input (Full_T);
20796      end if;
20797
20798      if Has_Specified_Stream_Output (Priv_T) then
20799         Set_Has_Specified_Stream_Output (Full_T);
20800      end if;
20801
20802      --  Propagate Default_Initial_Condition-related attributes from the
20803      --  partial view to the full view and its base type.
20804
20805      Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20806      Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20807
20808      --  Propagate invariant-related attributes from the partial view to the
20809      --  full view and its base type.
20810
20811      Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20812      Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20813
20814      --  AI12-0041: Detect an attempt to inherit a class-wide type invariant
20815      --  in the full view without advertising the inheritance in the partial
20816      --  view. This can only occur when the partial view has no parent type
20817      --  and the full view has an interface as a parent. Any other scenarios
20818      --  are illegal because implemented interfaces must match between the
20819      --  two views.
20820
20821      if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20822         declare
20823            Full_Par : constant Entity_Id := Etype (Full_T);
20824            Priv_Par : constant Entity_Id := Etype (Priv_T);
20825
20826         begin
20827            if not Is_Interface (Priv_Par)
20828              and then Is_Interface (Full_Par)
20829              and then Has_Inheritable_Invariants (Full_Par)
20830            then
20831               Error_Msg_N
20832                 ("hidden inheritance of class-wide type invariants not "
20833                  & "allowed", N);
20834            end if;
20835         end;
20836      end if;
20837
20838      --  Propagate predicates to full type, and predicate function if already
20839      --  defined. It is not clear that this can actually happen? the partial
20840      --  view cannot be frozen yet, and the predicate function has not been
20841      --  built. Still it is a cheap check and seems safer to make it.
20842
20843      if Has_Predicates (Priv_T) then
20844         Set_Has_Predicates (Full_T);
20845
20846         if Present (Predicate_Function (Priv_T)) then
20847            Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20848         end if;
20849      end if;
20850
20851   <<Leave>>
20852      Restore_Ghost_Mode (Saved_GM);
20853   end Process_Full_View;
20854
20855   -----------------------------------
20856   -- Process_Incomplete_Dependents --
20857   -----------------------------------
20858
20859   procedure Process_Incomplete_Dependents
20860     (N      : Node_Id;
20861      Full_T : Entity_Id;
20862      Inc_T  : Entity_Id)
20863   is
20864      Inc_Elmt : Elmt_Id;
20865      Priv_Dep : Entity_Id;
20866      New_Subt : Entity_Id;
20867
20868      Disc_Constraint : Elist_Id;
20869
20870   begin
20871      if No (Private_Dependents (Inc_T)) then
20872         return;
20873      end if;
20874
20875      --  Itypes that may be generated by the completion of an incomplete
20876      --  subtype are not used by the back-end and not attached to the tree.
20877      --  They are created only for constraint-checking purposes.
20878
20879      Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20880      while Present (Inc_Elmt) loop
20881         Priv_Dep := Node (Inc_Elmt);
20882
20883         if Ekind (Priv_Dep) = E_Subprogram_Type then
20884
20885            --  An Access_To_Subprogram type may have a return type or a
20886            --  parameter type that is incomplete. Replace with the full view.
20887
20888            if Etype (Priv_Dep) = Inc_T then
20889               Set_Etype (Priv_Dep, Full_T);
20890            end if;
20891
20892            declare
20893               Formal : Entity_Id;
20894
20895            begin
20896               Formal := First_Formal (Priv_Dep);
20897               while Present (Formal) loop
20898                  if Etype (Formal) = Inc_T then
20899                     Set_Etype (Formal, Full_T);
20900                  end if;
20901
20902                  Next_Formal (Formal);
20903               end loop;
20904            end;
20905
20906         elsif Is_Overloadable (Priv_Dep) then
20907
20908            --  If a subprogram in the incomplete dependents list is primitive
20909            --  for a tagged full type then mark it as a dispatching operation,
20910            --  check whether it overrides an inherited subprogram, and check
20911            --  restrictions on its controlling formals. Note that a protected
20912            --  operation is never dispatching: only its wrapper operation
20913            --  (which has convention Ada) is.
20914
20915            if Is_Tagged_Type (Full_T)
20916              and then Is_Primitive (Priv_Dep)
20917              and then Convention (Priv_Dep) /= Convention_Protected
20918            then
20919               Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20920               Set_Is_Dispatching_Operation (Priv_Dep);
20921               Check_Controlling_Formals (Full_T, Priv_Dep);
20922            end if;
20923
20924         elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20925
20926            --  Can happen during processing of a body before the completion
20927            --  of a TA type. Ignore, because spec is also on dependent list.
20928
20929            return;
20930
20931         --  Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20932         --  corresponding subtype of the full view.
20933
20934         elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
20935           and then Comes_From_Source (Priv_Dep)
20936         then
20937            Set_Subtype_Indication
20938              (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20939            Set_Etype (Priv_Dep, Full_T);
20940            Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20941            Set_Analyzed (Parent (Priv_Dep), False);
20942
20943            --  Reanalyze the declaration, suppressing the call to Enter_Name
20944            --  to avoid duplicate names.
20945
20946            Analyze_Subtype_Declaration
20947              (N    => Parent (Priv_Dep),
20948               Skip => True);
20949
20950         --  Dependent is a subtype
20951
20952         else
20953            --  We build a new subtype indication using the full view of the
20954            --  incomplete parent. The discriminant constraints have been
20955            --  elaborated already at the point of the subtype declaration.
20956
20957            New_Subt := Create_Itype (E_Void, N);
20958
20959            if Has_Discriminants (Full_T) then
20960               Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20961            else
20962               Disc_Constraint := No_Elist;
20963            end if;
20964
20965            Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20966            Set_Full_View (Priv_Dep, New_Subt);
20967         end if;
20968
20969         Next_Elmt (Inc_Elmt);
20970      end loop;
20971   end Process_Incomplete_Dependents;
20972
20973   --------------------------------
20974   -- Process_Range_Expr_In_Decl --
20975   --------------------------------
20976
20977   procedure Process_Range_Expr_In_Decl
20978     (R            : Node_Id;
20979      T            : Entity_Id;
20980      Subtyp       : Entity_Id := Empty;
20981      Check_List   : List_Id   := Empty_List;
20982      R_Check_Off  : Boolean   := False;
20983      In_Iter_Schm : Boolean   := False)
20984   is
20985      Lo, Hi      : Node_Id;
20986      R_Checks    : Check_Result;
20987      Insert_Node : Node_Id;
20988      Def_Id      : Entity_Id;
20989
20990   begin
20991      Analyze_And_Resolve (R, Base_Type (T));
20992
20993      if Nkind (R) = N_Range then
20994
20995         --  In SPARK, all ranges should be static, with the exception of the
20996         --  discrete type definition of a loop parameter specification.
20997
20998         if not In_Iter_Schm
20999           and then not Is_OK_Static_Range (R)
21000         then
21001            Check_SPARK_05_Restriction ("range should be static", R);
21002         end if;
21003
21004         Lo := Low_Bound (R);
21005         Hi := High_Bound (R);
21006
21007         --  Validity checks on the range of a quantified expression are
21008         --  delayed until the construct is transformed into a loop.
21009
21010         if Nkind (Parent (R)) = N_Loop_Parameter_Specification
21011           and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
21012         then
21013            null;
21014
21015         --  We need to ensure validity of the bounds here, because if we
21016         --  go ahead and do the expansion, then the expanded code will get
21017         --  analyzed with range checks suppressed and we miss the check.
21018
21019         --  WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
21020         --  the temporaries generated by routine Remove_Side_Effects by means
21021         --  of validity checks must use the same names. When a range appears
21022         --  in the parent of a generic, the range is processed with checks
21023         --  disabled as part of the generic context and with checks enabled
21024         --  for code generation purposes. This leads to link issues as the
21025         --  generic contains references to xxx_FIRST/_LAST, but the inlined
21026         --  template sees the temporaries generated by Remove_Side_Effects.
21027
21028         else
21029            Validity_Check_Range (R, Subtyp);
21030         end if;
21031
21032         --  If there were errors in the declaration, try and patch up some
21033         --  common mistakes in the bounds. The cases handled are literals
21034         --  which are Integer where the expected type is Real and vice versa.
21035         --  These corrections allow the compilation process to proceed further
21036         --  along since some basic assumptions of the format of the bounds
21037         --  are guaranteed.
21038
21039         if Etype (R) = Any_Type then
21040            if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
21041               Rewrite (Lo,
21042                 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
21043
21044            elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
21045               Rewrite (Hi,
21046                 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
21047
21048            elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
21049               Rewrite (Lo,
21050                 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
21051
21052            elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
21053               Rewrite (Hi,
21054                 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
21055            end if;
21056
21057            Set_Etype (Lo, T);
21058            Set_Etype (Hi, T);
21059         end if;
21060
21061         --  If the bounds of the range have been mistakenly given as string
21062         --  literals (perhaps in place of character literals), then an error
21063         --  has already been reported, but we rewrite the string literal as a
21064         --  bound of the range's type to avoid blowups in later processing
21065         --  that looks at static values.
21066
21067         if Nkind (Lo) = N_String_Literal then
21068            Rewrite (Lo,
21069              Make_Attribute_Reference (Sloc (Lo),
21070                Prefix         => New_Occurrence_Of (T, Sloc (Lo)),
21071                Attribute_Name => Name_First));
21072            Analyze_And_Resolve (Lo);
21073         end if;
21074
21075         if Nkind (Hi) = N_String_Literal then
21076            Rewrite (Hi,
21077              Make_Attribute_Reference (Sloc (Hi),
21078                Prefix         => New_Occurrence_Of (T, Sloc (Hi)),
21079                Attribute_Name => Name_First));
21080            Analyze_And_Resolve (Hi);
21081         end if;
21082
21083         --  If bounds aren't scalar at this point then exit, avoiding
21084         --  problems with further processing of the range in this procedure.
21085
21086         if not Is_Scalar_Type (Etype (Lo)) then
21087            return;
21088         end if;
21089
21090         --  Resolve (actually Sem_Eval) has checked that the bounds are in
21091         --  then range of the base type. Here we check whether the bounds
21092         --  are in the range of the subtype itself. Note that if the bounds
21093         --  represent the null range the Constraint_Error exception should
21094         --  not be raised.
21095
21096         --  ??? The following code should be cleaned up as follows
21097
21098         --  1. The Is_Null_Range (Lo, Hi) test should disappear since it
21099         --     is done in the call to Range_Check (R, T); below
21100
21101         --  2. The use of R_Check_Off should be investigated and possibly
21102         --     removed, this would clean up things a bit.
21103
21104         if Is_Null_Range (Lo, Hi) then
21105            null;
21106
21107         else
21108            --  Capture values of bounds and generate temporaries for them
21109            --  if needed, before applying checks, since checks may cause
21110            --  duplication of the expression without forcing evaluation.
21111
21112            --  The forced evaluation removes side effects from expressions,
21113            --  which should occur also in GNATprove mode. Otherwise, we end up
21114            --  with unexpected insertions of actions at places where this is
21115            --  not supposed to occur, e.g. on default parameters of a call.
21116
21117            if Expander_Active or GNATprove_Mode then
21118
21119               --  Call Force_Evaluation to create declarations as needed to
21120               --  deal with side effects, and also create typ_FIRST/LAST
21121               --  entities for bounds if we have a subtype name.
21122
21123               --  Note: we do this transformation even if expansion is not
21124               --  active if we are in GNATprove_Mode since the transformation
21125               --  is in general required to ensure that the resulting tree has
21126               --  proper Ada semantics.
21127
21128               Force_Evaluation
21129                 (Lo, Related_Id => Subtyp, Is_Low_Bound  => True);
21130               Force_Evaluation
21131                 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21132            end if;
21133
21134            --  We use a flag here instead of suppressing checks on the type
21135            --  because the type we check against isn't necessarily the place
21136            --  where we put the check.
21137
21138            if not R_Check_Off then
21139               R_Checks := Get_Range_Checks (R, T);
21140
21141               --  Look up tree to find an appropriate insertion point. We
21142               --  can't just use insert_actions because later processing
21143               --  depends on the insertion node. Prior to Ada 2012 the
21144               --  insertion point could only be a declaration or a loop, but
21145               --  quantified expressions can appear within any context in an
21146               --  expression, and the insertion point can be any statement,
21147               --  pragma, or declaration.
21148
21149               Insert_Node := Parent (R);
21150               while Present (Insert_Node) loop
21151                  exit when
21152                    Nkind (Insert_Node) in N_Declaration
21153                    and then
21154                      not Nkind_In
21155                        (Insert_Node, N_Component_Declaration,
21156                                      N_Loop_Parameter_Specification,
21157                                      N_Function_Specification,
21158                                      N_Procedure_Specification);
21159
21160                  exit when Nkind (Insert_Node) in N_Later_Decl_Item
21161                    or else Nkind (Insert_Node) in
21162                              N_Statement_Other_Than_Procedure_Call
21163                    or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21164                                                   N_Pragma);
21165
21166                  Insert_Node := Parent (Insert_Node);
21167               end loop;
21168
21169               --  Why would Type_Decl not be present???  Without this test,
21170               --  short regression tests fail.
21171
21172               if Present (Insert_Node) then
21173
21174                  --  Case of loop statement. Verify that the range is part
21175                  --  of the subtype indication of the iteration scheme.
21176
21177                  if Nkind (Insert_Node) = N_Loop_Statement then
21178                     declare
21179                        Indic : Node_Id;
21180
21181                     begin
21182                        Indic := Parent (R);
21183                        while Present (Indic)
21184                          and then Nkind (Indic) /= N_Subtype_Indication
21185                        loop
21186                           Indic := Parent (Indic);
21187                        end loop;
21188
21189                        if Present (Indic) then
21190                           Def_Id := Etype (Subtype_Mark (Indic));
21191
21192                           Insert_Range_Checks
21193                             (R_Checks,
21194                              Insert_Node,
21195                              Def_Id,
21196                              Sloc (Insert_Node),
21197                              R,
21198                              Do_Before => True);
21199                        end if;
21200                     end;
21201
21202                  --  Insertion before a declaration. If the declaration
21203                  --  includes discriminants, the list of applicable checks
21204                  --  is given by the caller.
21205
21206                  elsif Nkind (Insert_Node) in N_Declaration then
21207                     Def_Id := Defining_Identifier (Insert_Node);
21208
21209                     if (Ekind (Def_Id) = E_Record_Type
21210                          and then Depends_On_Discriminant (R))
21211                       or else
21212                        (Ekind (Def_Id) = E_Protected_Type
21213                          and then Has_Discriminants (Def_Id))
21214                     then
21215                        Append_Range_Checks
21216                          (R_Checks,
21217                            Check_List, Def_Id, Sloc (Insert_Node), R);
21218
21219                     else
21220                        Insert_Range_Checks
21221                          (R_Checks,
21222                            Insert_Node, Def_Id, Sloc (Insert_Node), R);
21223
21224                     end if;
21225
21226                  --  Insertion before a statement. Range appears in the
21227                  --  context of a quantified expression. Insertion will
21228                  --  take place when expression is expanded.
21229
21230                  else
21231                     null;
21232                  end if;
21233               end if;
21234            end if;
21235         end if;
21236
21237      --  Case of other than an explicit N_Range node
21238
21239      --  The forced evaluation removes side effects from expressions, which
21240      --  should occur also in GNATprove mode. Otherwise, we end up with
21241      --  unexpected insertions of actions at places where this is not
21242      --  supposed to occur, e.g. on default parameters of a call.
21243
21244      elsif Expander_Active or GNATprove_Mode then
21245         Get_Index_Bounds (R, Lo, Hi);
21246         Force_Evaluation (Lo);
21247         Force_Evaluation (Hi);
21248      end if;
21249   end Process_Range_Expr_In_Decl;
21250
21251   --------------------------------------
21252   -- Process_Real_Range_Specification --
21253   --------------------------------------
21254
21255   procedure Process_Real_Range_Specification (Def : Node_Id) is
21256      Spec : constant Node_Id := Real_Range_Specification (Def);
21257      Lo   : Node_Id;
21258      Hi   : Node_Id;
21259      Err  : Boolean := False;
21260
21261      procedure Analyze_Bound (N : Node_Id);
21262      --  Analyze and check one bound
21263
21264      -------------------
21265      -- Analyze_Bound --
21266      -------------------
21267
21268      procedure Analyze_Bound (N : Node_Id) is
21269      begin
21270         Analyze_And_Resolve (N, Any_Real);
21271
21272         if not Is_OK_Static_Expression (N) then
21273            Flag_Non_Static_Expr
21274              ("bound in real type definition is not static!", N);
21275            Err := True;
21276         end if;
21277      end Analyze_Bound;
21278
21279   --  Start of processing for Process_Real_Range_Specification
21280
21281   begin
21282      if Present (Spec) then
21283         Lo := Low_Bound (Spec);
21284         Hi := High_Bound (Spec);
21285         Analyze_Bound (Lo);
21286         Analyze_Bound (Hi);
21287
21288         --  If error, clear away junk range specification
21289
21290         if Err then
21291            Set_Real_Range_Specification (Def, Empty);
21292         end if;
21293      end if;
21294   end Process_Real_Range_Specification;
21295
21296   ---------------------
21297   -- Process_Subtype --
21298   ---------------------
21299
21300   function Process_Subtype
21301     (S           : Node_Id;
21302      Related_Nod : Node_Id;
21303      Related_Id  : Entity_Id := Empty;
21304      Suffix      : Character := ' ') return Entity_Id
21305   is
21306      P               : Node_Id;
21307      Def_Id          : Entity_Id;
21308      Error_Node      : Node_Id;
21309      Full_View_Id    : Entity_Id;
21310      Subtype_Mark_Id : Entity_Id;
21311
21312      May_Have_Null_Exclusion : Boolean;
21313
21314      procedure Check_Incomplete (T : Node_Id);
21315      --  Called to verify that an incomplete type is not used prematurely
21316
21317      ----------------------
21318      -- Check_Incomplete --
21319      ----------------------
21320
21321      procedure Check_Incomplete (T : Node_Id) is
21322      begin
21323         --  Ada 2005 (AI-412): Incomplete subtypes are legal
21324
21325         if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21326           and then
21327             not (Ada_Version >= Ada_2005
21328                   and then
21329                     (Nkind (Parent (T)) = N_Subtype_Declaration
21330                       or else (Nkind (Parent (T)) = N_Subtype_Indication
21331                                 and then Nkind (Parent (Parent (T))) =
21332                                                   N_Subtype_Declaration)))
21333         then
21334            Error_Msg_N ("invalid use of type before its full declaration", T);
21335         end if;
21336      end Check_Incomplete;
21337
21338   --  Start of processing for Process_Subtype
21339
21340   begin
21341      --  Case of no constraints present
21342
21343      if Nkind (S) /= N_Subtype_Indication then
21344         Find_Type (S);
21345
21346         --  No way to proceed if the subtype indication is malformed. This
21347         --  will happen for example when the subtype indication in an object
21348         --  declaration is missing altogether and the expression is analyzed
21349         --  as if it were that indication.
21350
21351         if not Is_Entity_Name (S) then
21352            return Any_Type;
21353         end if;
21354
21355         Check_Incomplete (S);
21356         P := Parent (S);
21357
21358         --  Ada 2005 (AI-231): Static check
21359
21360         if Ada_Version >= Ada_2005
21361           and then Present (P)
21362           and then Null_Exclusion_Present (P)
21363           and then Nkind (P) /= N_Access_To_Object_Definition
21364           and then not Is_Access_Type (Entity (S))
21365         then
21366            Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21367         end if;
21368
21369         --  The following is ugly, can't we have a range or even a flag???
21370
21371         May_Have_Null_Exclusion :=
21372           Nkind_In (P, N_Access_Definition,
21373                        N_Access_Function_Definition,
21374                        N_Access_Procedure_Definition,
21375                        N_Access_To_Object_Definition,
21376                        N_Allocator,
21377                        N_Component_Definition)
21378             or else
21379           Nkind_In (P, N_Derived_Type_Definition,
21380                        N_Discriminant_Specification,
21381                        N_Formal_Object_Declaration,
21382                        N_Object_Declaration,
21383                        N_Object_Renaming_Declaration,
21384                        N_Parameter_Specification,
21385                        N_Subtype_Declaration);
21386
21387         --  Create an Itype that is a duplicate of Entity (S) but with the
21388         --  null-exclusion attribute.
21389
21390         if May_Have_Null_Exclusion
21391           and then Is_Access_Type (Entity (S))
21392           and then Null_Exclusion_Present (P)
21393
21394            --  No need to check the case of an access to object definition.
21395            --  It is correct to define double not-null pointers.
21396
21397            --  Example:
21398            --     type Not_Null_Int_Ptr is not null access Integer;
21399            --     type Acc is not null access Not_Null_Int_Ptr;
21400
21401           and then Nkind (P) /= N_Access_To_Object_Definition
21402         then
21403            if Can_Never_Be_Null (Entity (S)) then
21404               case Nkind (Related_Nod) is
21405                  when N_Full_Type_Declaration =>
21406                     if Nkind (Type_Definition (Related_Nod))
21407                       in N_Array_Type_Definition
21408                     then
21409                        Error_Node :=
21410                          Subtype_Indication
21411                            (Component_Definition
21412                             (Type_Definition (Related_Nod)));
21413                     else
21414                        Error_Node :=
21415                          Subtype_Indication (Type_Definition (Related_Nod));
21416                     end if;
21417
21418                  when N_Subtype_Declaration =>
21419                     Error_Node := Subtype_Indication (Related_Nod);
21420
21421                  when N_Object_Declaration =>
21422                     Error_Node := Object_Definition (Related_Nod);
21423
21424                  when N_Component_Declaration =>
21425                     Error_Node :=
21426                       Subtype_Indication (Component_Definition (Related_Nod));
21427
21428                  when N_Allocator =>
21429                     Error_Node := Expression (Related_Nod);
21430
21431                  when others =>
21432                     pragma Assert (False);
21433                     Error_Node := Related_Nod;
21434               end case;
21435
21436               Error_Msg_NE
21437                 ("`NOT NULL` not allowed (& already excludes null)",
21438                  Error_Node,
21439                  Entity (S));
21440            end if;
21441
21442            Set_Etype  (S,
21443              Create_Null_Excluding_Itype
21444                (T           => Entity (S),
21445                 Related_Nod => P));
21446            Set_Entity (S, Etype (S));
21447         end if;
21448
21449         return Entity (S);
21450
21451      --  Case of constraint present, so that we have an N_Subtype_Indication
21452      --  node (this node is created only if constraints are present).
21453
21454      else
21455         Find_Type (Subtype_Mark (S));
21456
21457         if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21458           and then not
21459            (Nkind (Parent (S)) = N_Subtype_Declaration
21460              and then Is_Itype (Defining_Identifier (Parent (S))))
21461         then
21462            Check_Incomplete (Subtype_Mark (S));
21463         end if;
21464
21465         P := Parent (S);
21466         Subtype_Mark_Id := Entity (Subtype_Mark (S));
21467
21468         --  Explicit subtype declaration case
21469
21470         if Nkind (P) = N_Subtype_Declaration then
21471            Def_Id := Defining_Identifier (P);
21472
21473         --  Explicit derived type definition case
21474
21475         elsif Nkind (P) = N_Derived_Type_Definition then
21476            Def_Id := Defining_Identifier (Parent (P));
21477
21478         --  Implicit case, the Def_Id must be created as an implicit type.
21479         --  The one exception arises in the case of concurrent types, array
21480         --  and access types, where other subsidiary implicit types may be
21481         --  created and must appear before the main implicit type. In these
21482         --  cases we leave Def_Id set to Empty as a signal that Create_Itype
21483         --  has not yet been called to create Def_Id.
21484
21485         else
21486            if Is_Array_Type (Subtype_Mark_Id)
21487              or else Is_Concurrent_Type (Subtype_Mark_Id)
21488              or else Is_Access_Type (Subtype_Mark_Id)
21489            then
21490               Def_Id := Empty;
21491
21492            --  For the other cases, we create a new unattached Itype,
21493            --  and set the indication to ensure it gets attached later.
21494
21495            else
21496               Def_Id :=
21497                 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21498            end if;
21499         end if;
21500
21501         --  If the kind of constraint is invalid for this kind of type,
21502         --  then give an error, and then pretend no constraint was given.
21503
21504         if not Is_Valid_Constraint_Kind
21505                   (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21506         then
21507            Error_Msg_N
21508              ("incorrect constraint for this kind of type", Constraint (S));
21509
21510            Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21511
21512            --  Set Ekind of orphan itype, to prevent cascaded errors
21513
21514            if Present (Def_Id) then
21515               Set_Ekind (Def_Id, Ekind (Any_Type));
21516            end if;
21517
21518            --  Make recursive call, having got rid of the bogus constraint
21519
21520            return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21521         end if;
21522
21523         --  Remaining processing depends on type. Select on Base_Type kind to
21524         --  ensure getting to the concrete type kind in the case of a private
21525         --  subtype (needed when only doing semantic analysis).
21526
21527         case Ekind (Base_Type (Subtype_Mark_Id)) is
21528            when Access_Kind =>
21529
21530               --  If this is a constraint on a class-wide type, discard it.
21531               --  There is currently no way to express a partial discriminant
21532               --  constraint on a type with unknown discriminants. This is
21533               --  a pathology that the ACATS wisely decides not to test.
21534
21535               if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21536                  if Comes_From_Source (S) then
21537                     Error_Msg_N
21538                       ("constraint on class-wide type ignored??",
21539                        Constraint (S));
21540                  end if;
21541
21542                  if Nkind (P) = N_Subtype_Declaration then
21543                     Set_Subtype_Indication (P,
21544                        New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21545                  end if;
21546
21547                  return Subtype_Mark_Id;
21548               end if;
21549
21550               Constrain_Access (Def_Id, S, Related_Nod);
21551
21552               if Expander_Active
21553                 and then Is_Itype (Designated_Type (Def_Id))
21554                 and then Nkind (Related_Nod) = N_Subtype_Declaration
21555                 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21556               then
21557                  Build_Itype_Reference
21558                    (Designated_Type (Def_Id), Related_Nod);
21559               end if;
21560
21561            when Array_Kind =>
21562               Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21563
21564            when Decimal_Fixed_Point_Kind =>
21565               Constrain_Decimal (Def_Id, S);
21566
21567            when Enumeration_Kind =>
21568               Constrain_Enumeration (Def_Id, S);
21569               Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21570
21571            when Ordinary_Fixed_Point_Kind =>
21572               Constrain_Ordinary_Fixed (Def_Id, S);
21573
21574            when Float_Kind =>
21575               Constrain_Float (Def_Id, S);
21576
21577            when Integer_Kind =>
21578               Constrain_Integer (Def_Id, S);
21579               Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21580
21581            when Class_Wide_Kind
21582               | E_Incomplete_Type
21583               | E_Record_Subtype
21584               | E_Record_Type
21585            =>
21586               Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21587
21588               if Ekind (Def_Id) = E_Incomplete_Type then
21589                  Set_Private_Dependents (Def_Id, New_Elmt_List);
21590               end if;
21591
21592            when Private_Kind =>
21593               Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21594
21595               --  The base type may be private but Def_Id may be a full view
21596               --  in an instance.
21597
21598               if Is_Private_Type (Def_Id) then
21599                  Set_Private_Dependents (Def_Id, New_Elmt_List);
21600               end if;
21601
21602               --  In case of an invalid constraint prevent further processing
21603               --  since the type constructed is missing expected fields.
21604
21605               if Etype (Def_Id) = Any_Type then
21606                  return Def_Id;
21607               end if;
21608
21609               --  If the full view is that of a task with discriminants,
21610               --  we must constrain both the concurrent type and its
21611               --  corresponding record type. Otherwise we will just propagate
21612               --  the constraint to the full view, if available.
21613
21614               if Present (Full_View (Subtype_Mark_Id))
21615                 and then Has_Discriminants (Subtype_Mark_Id)
21616                 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21617               then
21618                  Full_View_Id :=
21619                    Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21620
21621                  Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21622                  Constrain_Concurrent (Full_View_Id, S,
21623                    Related_Nod, Related_Id, Suffix);
21624                  Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21625                  Set_Full_View (Def_Id, Full_View_Id);
21626
21627                  --  Introduce an explicit reference to the private subtype,
21628                  --  to prevent scope anomalies in gigi if first use appears
21629                  --  in a nested context, e.g. a later function body.
21630                  --  Should this be generated in other contexts than a full
21631                  --  type declaration?
21632
21633                  if Is_Itype (Def_Id)
21634                    and then
21635                      Nkind (Parent (P)) = N_Full_Type_Declaration
21636                  then
21637                     Build_Itype_Reference (Def_Id, Parent (P));
21638                  end if;
21639
21640               else
21641                  Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21642               end if;
21643
21644            when Concurrent_Kind  =>
21645               Constrain_Concurrent (Def_Id, S,
21646                 Related_Nod, Related_Id, Suffix);
21647
21648            when others =>
21649               Error_Msg_N ("invalid subtype mark in subtype indication", S);
21650         end case;
21651
21652         --  Size, Alignment, Representation aspects and Convention are always
21653         --  inherited from the base type.
21654
21655         Set_Size_Info  (Def_Id,            (Subtype_Mark_Id));
21656         Set_Rep_Info   (Def_Id,            (Subtype_Mark_Id));
21657         Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21658
21659         return Def_Id;
21660      end if;
21661   end Process_Subtype;
21662
21663   -----------------------------
21664   -- Record_Type_Declaration --
21665   -----------------------------
21666
21667   procedure Record_Type_Declaration
21668     (T    : Entity_Id;
21669      N    : Node_Id;
21670      Prev : Entity_Id)
21671   is
21672      Def       : constant Node_Id := Type_Definition (N);
21673      Is_Tagged : Boolean;
21674      Tag_Comp  : Entity_Id;
21675
21676   begin
21677      --  These flags must be initialized before calling Process_Discriminants
21678      --  because this routine makes use of them.
21679
21680      Set_Ekind             (T, E_Record_Type);
21681      Set_Etype             (T, T);
21682      Init_Size_Align       (T);
21683      Set_Interfaces        (T, No_Elist);
21684      Set_Stored_Constraint (T, No_Elist);
21685      Set_Default_SSO       (T);
21686      Set_No_Reordering     (T, No_Component_Reordering);
21687
21688      --  Normal case
21689
21690      if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21691         if Limited_Present (Def) then
21692            Check_SPARK_05_Restriction ("limited is not allowed", N);
21693         end if;
21694
21695         if Abstract_Present (Def) then
21696            Check_SPARK_05_Restriction ("abstract is not allowed", N);
21697         end if;
21698
21699         --  The flag Is_Tagged_Type might have already been set by
21700         --  Find_Type_Name if it detected an error for declaration T. This
21701         --  arises in the case of private tagged types where the full view
21702         --  omits the word tagged.
21703
21704         Is_Tagged :=
21705           Tagged_Present (Def)
21706             or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21707
21708         Set_Is_Limited_Record (T, Limited_Present (Def));
21709
21710         if Is_Tagged then
21711            Set_Is_Tagged_Type (T, True);
21712            Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21713         end if;
21714
21715         --  Type is abstract if full declaration carries keyword, or if
21716         --  previous partial view did.
21717
21718         Set_Is_Abstract_Type    (T, Is_Abstract_Type (T)
21719                                      or else Abstract_Present (Def));
21720
21721      else
21722         Check_SPARK_05_Restriction ("interface is not allowed", N);
21723
21724         Is_Tagged := True;
21725         Analyze_Interface_Declaration (T, Def);
21726
21727         if Present (Discriminant_Specifications (N)) then
21728            Error_Msg_N
21729              ("interface types cannot have discriminants",
21730                Defining_Identifier
21731                  (First (Discriminant_Specifications (N))));
21732         end if;
21733      end if;
21734
21735      --  First pass: if there are self-referential access components,
21736      --  create the required anonymous access type declarations, and if
21737      --  need be an incomplete type declaration for T itself.
21738
21739      Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21740
21741      if Ada_Version >= Ada_2005
21742        and then Present (Interface_List (Def))
21743      then
21744         Check_Interfaces (N, Def);
21745
21746         declare
21747            Ifaces_List : Elist_Id;
21748
21749         begin
21750            --  Ada 2005 (AI-251): Collect the list of progenitors that are not
21751            --  already in the parents.
21752
21753            Collect_Interfaces
21754              (T               => T,
21755               Ifaces_List     => Ifaces_List,
21756               Exclude_Parents => True);
21757
21758            Set_Interfaces (T, Ifaces_List);
21759         end;
21760      end if;
21761
21762      --  Records constitute a scope for the component declarations within.
21763      --  The scope is created prior to the processing of these declarations.
21764      --  Discriminants are processed first, so that they are visible when
21765      --  processing the other components. The Ekind of the record type itself
21766      --  is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21767
21768      --  Enter record scope
21769
21770      Push_Scope (T);
21771
21772      --  If an incomplete or private type declaration was already given for
21773      --  the type, then this scope already exists, and the discriminants have
21774      --  been declared within. We must verify that the full declaration
21775      --  matches the incomplete one.
21776
21777      Check_Or_Process_Discriminants (N, T, Prev);
21778
21779      Set_Is_Constrained     (T, not Has_Discriminants (T));
21780      Set_Has_Delayed_Freeze (T, True);
21781
21782      --  For tagged types add a manually analyzed component corresponding
21783      --  to the component _tag, the corresponding piece of tree will be
21784      --  expanded as part of the freezing actions if it is not a CPP_Class.
21785
21786      if Is_Tagged then
21787
21788         --  Do not add the tag unless we are in expansion mode
21789
21790         if Expander_Active then
21791            Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21792            Enter_Name (Tag_Comp);
21793
21794            Set_Ekind                     (Tag_Comp, E_Component);
21795            Set_Is_Tag                    (Tag_Comp);
21796            Set_Is_Aliased                (Tag_Comp);
21797            Set_Etype                     (Tag_Comp, RTE (RE_Tag));
21798            Set_DT_Entry_Count            (Tag_Comp, No_Uint);
21799            Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21800            Init_Component_Location       (Tag_Comp);
21801
21802            --  Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21803            --  implemented interfaces.
21804
21805            if Has_Interfaces (T) then
21806               Add_Interface_Tag_Components (N, T);
21807            end if;
21808         end if;
21809
21810         Make_Class_Wide_Type (T);
21811         Set_Direct_Primitive_Operations (T, New_Elmt_List);
21812      end if;
21813
21814      --  We must suppress range checks when processing record components in
21815      --  the presence of discriminants, since we don't want spurious checks to
21816      --  be generated during their analysis, but Suppress_Range_Checks flags
21817      --  must be reset the after processing the record definition.
21818
21819      --  Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21820      --  couldn't we just use the normal range check suppression method here.
21821      --  That would seem cleaner ???
21822
21823      if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21824         Set_Kill_Range_Checks (T, True);
21825         Record_Type_Definition (Def, Prev);
21826         Set_Kill_Range_Checks (T, False);
21827      else
21828         Record_Type_Definition (Def, Prev);
21829      end if;
21830
21831      --  Exit from record scope
21832
21833      End_Scope;
21834
21835      --  Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21836      --  the implemented interfaces and associate them an aliased entity.
21837
21838      if Is_Tagged
21839        and then not Is_Empty_List (Interface_List (Def))
21840      then
21841         Derive_Progenitor_Subprograms (T, T);
21842      end if;
21843
21844      Check_Function_Writable_Actuals (N);
21845   end Record_Type_Declaration;
21846
21847   ----------------------------
21848   -- Record_Type_Definition --
21849   ----------------------------
21850
21851   procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21852      Component          : Entity_Id;
21853      Ctrl_Components    : Boolean := False;
21854      Final_Storage_Only : Boolean;
21855      T                  : Entity_Id;
21856
21857   begin
21858      if Ekind (Prev_T) = E_Incomplete_Type then
21859         T := Full_View (Prev_T);
21860      else
21861         T := Prev_T;
21862      end if;
21863
21864      --  In SPARK, tagged types and type extensions may only be declared in
21865      --  the specification of library unit packages.
21866
21867      if Present (Def) and then Is_Tagged_Type (T) then
21868         declare
21869            Typ  : Node_Id;
21870            Ctxt : Node_Id;
21871
21872         begin
21873            if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21874               Typ := Parent (Def);
21875            else
21876               pragma Assert
21877                 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21878               Typ := Parent (Parent (Def));
21879            end if;
21880
21881            Ctxt := Parent (Typ);
21882
21883            if Nkind (Ctxt) = N_Package_Body
21884              and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21885            then
21886               Check_SPARK_05_Restriction
21887                 ("type should be defined in package specification", Typ);
21888
21889            elsif Nkind (Ctxt) /= N_Package_Specification
21890              or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21891            then
21892               Check_SPARK_05_Restriction
21893                 ("type should be defined in library unit package", Typ);
21894            end if;
21895         end;
21896      end if;
21897
21898      Final_Storage_Only := not Is_Controlled (T);
21899
21900      --  Ada 2005: Check whether an explicit Limited is present in a derived
21901      --  type declaration.
21902
21903      if Nkind (Parent (Def)) = N_Derived_Type_Definition
21904        and then Limited_Present (Parent (Def))
21905      then
21906         Set_Is_Limited_Record (T);
21907      end if;
21908
21909      --  If the component list of a record type is defined by the reserved
21910      --  word null and there is no discriminant part, then the record type has
21911      --  no components and all records of the type are null records (RM 3.7)
21912      --  This procedure is also called to process the extension part of a
21913      --  record extension, in which case the current scope may have inherited
21914      --  components.
21915
21916      if No (Def)
21917        or else No (Component_List (Def))
21918        or else Null_Present (Component_List (Def))
21919      then
21920         if not Is_Tagged_Type (T) then
21921            Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21922         end if;
21923
21924      else
21925         Analyze_Declarations (Component_Items (Component_List (Def)));
21926
21927         if Present (Variant_Part (Component_List (Def))) then
21928            Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21929            Analyze (Variant_Part (Component_List (Def)));
21930         end if;
21931      end if;
21932
21933      --  After completing the semantic analysis of the record definition,
21934      --  record components, both new and inherited, are accessible. Set their
21935      --  kind accordingly. Exclude malformed itypes from illegal declarations,
21936      --  whose Ekind may be void.
21937
21938      Component := First_Entity (Current_Scope);
21939      while Present (Component) loop
21940         if Ekind (Component) = E_Void
21941           and then not Is_Itype (Component)
21942         then
21943            Set_Ekind (Component, E_Component);
21944            Init_Component_Location (Component);
21945         end if;
21946
21947         Propagate_Concurrent_Flags (T, Etype (Component));
21948
21949         if Ekind (Component) /= E_Component then
21950            null;
21951
21952         --  Do not set Has_Controlled_Component on a class-wide equivalent
21953         --  type. See Make_CW_Equivalent_Type.
21954
21955         elsif not Is_Class_Wide_Equivalent_Type (T)
21956           and then (Has_Controlled_Component (Etype (Component))
21957                      or else (Chars (Component) /= Name_uParent
21958                                and then Is_Controlled (Etype (Component))))
21959         then
21960            Set_Has_Controlled_Component (T, True);
21961            Final_Storage_Only :=
21962              Final_Storage_Only
21963                and then Finalize_Storage_Only (Etype (Component));
21964            Ctrl_Components := True;
21965         end if;
21966
21967         Next_Entity (Component);
21968      end loop;
21969
21970      --  A Type is Finalize_Storage_Only only if all its controlled components
21971      --  are also.
21972
21973      if Ctrl_Components then
21974         Set_Finalize_Storage_Only (T, Final_Storage_Only);
21975      end if;
21976
21977      --  Place reference to end record on the proper entity, which may
21978      --  be a partial view.
21979
21980      if Present (Def) then
21981         Process_End_Label (Def, 'e', Prev_T);
21982      end if;
21983   end Record_Type_Definition;
21984
21985   ------------------------
21986   -- Replace_Components --
21987   ------------------------
21988
21989   procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21990      function Process (N : Node_Id) return Traverse_Result;
21991
21992      -------------
21993      -- Process --
21994      -------------
21995
21996      function Process (N : Node_Id) return Traverse_Result is
21997         Comp : Entity_Id;
21998
21999      begin
22000         if Nkind (N) = N_Discriminant_Specification then
22001            Comp := First_Discriminant (Typ);
22002            while Present (Comp) loop
22003               if Chars (Comp) = Chars (Defining_Identifier (N)) then
22004                  Set_Defining_Identifier (N, Comp);
22005                  exit;
22006               end if;
22007
22008               Next_Discriminant (Comp);
22009            end loop;
22010
22011         elsif Nkind (N) = N_Variant_Part then
22012            Comp := First_Discriminant (Typ);
22013            while Present (Comp) loop
22014               if Chars (Comp) = Chars (Name (N)) then
22015                  Set_Entity (Name (N), Comp);
22016                  exit;
22017               end if;
22018
22019               Next_Discriminant (Comp);
22020            end loop;
22021
22022         elsif Nkind (N) = N_Component_Declaration then
22023            Comp := First_Component (Typ);
22024            while Present (Comp) loop
22025               if Chars (Comp) = Chars (Defining_Identifier (N)) then
22026                  Set_Defining_Identifier (N, Comp);
22027                  exit;
22028               end if;
22029
22030               Next_Component (Comp);
22031            end loop;
22032         end if;
22033
22034         return OK;
22035      end Process;
22036
22037      procedure Replace is new Traverse_Proc (Process);
22038
22039   --  Start of processing for Replace_Components
22040
22041   begin
22042      Replace (Decl);
22043   end Replace_Components;
22044
22045   -------------------------------
22046   -- Set_Completion_Referenced --
22047   -------------------------------
22048
22049   procedure Set_Completion_Referenced (E : Entity_Id) is
22050   begin
22051      --  If in main unit, mark entity that is a completion as referenced,
22052      --  warnings go on the partial view when needed.
22053
22054      if In_Extended_Main_Source_Unit (E) then
22055         Set_Referenced (E);
22056      end if;
22057   end Set_Completion_Referenced;
22058
22059   ---------------------
22060   -- Set_Default_SSO --
22061   ---------------------
22062
22063   procedure Set_Default_SSO (T : Entity_Id) is
22064   begin
22065      case Opt.Default_SSO is
22066         when ' ' =>
22067            null;
22068         when 'L' =>
22069            Set_SSO_Set_Low_By_Default (T, True);
22070         when 'H' =>
22071            Set_SSO_Set_High_By_Default (T, True);
22072         when others =>
22073            raise Program_Error;
22074      end case;
22075   end Set_Default_SSO;
22076
22077   ---------------------
22078   -- Set_Fixed_Range --
22079   ---------------------
22080
22081   --  The range for fixed-point types is complicated by the fact that we
22082   --  do not know the exact end points at the time of the declaration. This
22083   --  is true for three reasons:
22084
22085   --     A size clause may affect the fudging of the end-points.
22086   --     A small clause may affect the values of the end-points.
22087   --     We try to include the end-points if it does not affect the size.
22088
22089   --  This means that the actual end-points must be established at the
22090   --  point when the type is frozen. Meanwhile, we first narrow the range
22091   --  as permitted (so that it will fit if necessary in a small specified
22092   --  size), and then build a range subtree with these narrowed bounds.
22093   --  Set_Fixed_Range constructs the range from real literal values, and
22094   --  sets the range as the Scalar_Range of the given fixed-point type entity.
22095
22096   --  The parent of this range is set to point to the entity so that it is
22097   --  properly hooked into the tree (unlike normal Scalar_Range entries for
22098   --  other scalar types, which are just pointers to the range in the
22099   --  original tree, this would otherwise be an orphan).
22100
22101   --  The tree is left unanalyzed. When the type is frozen, the processing
22102   --  in Freeze.Freeze_Fixed_Point_Type notices that the range is not
22103   --  analyzed, and uses this as an indication that it should complete
22104   --  work on the range (it will know the final small and size values).
22105
22106   procedure Set_Fixed_Range
22107     (E   : Entity_Id;
22108      Loc : Source_Ptr;
22109      Lo  : Ureal;
22110      Hi  : Ureal)
22111   is
22112      S : constant Node_Id :=
22113            Make_Range (Loc,
22114              Low_Bound  => Make_Real_Literal (Loc, Lo),
22115              High_Bound => Make_Real_Literal (Loc, Hi));
22116   begin
22117      Set_Scalar_Range (E, S);
22118      Set_Parent (S, E);
22119
22120      --  Before the freeze point, the bounds of a fixed point are universal
22121      --  and carry the corresponding type.
22122
22123      Set_Etype (Low_Bound (S),  Universal_Real);
22124      Set_Etype (High_Bound (S), Universal_Real);
22125   end Set_Fixed_Range;
22126
22127   ----------------------------------
22128   -- Set_Scalar_Range_For_Subtype --
22129   ----------------------------------
22130
22131   procedure Set_Scalar_Range_For_Subtype
22132     (Def_Id : Entity_Id;
22133      R      : Node_Id;
22134      Subt   : Entity_Id)
22135   is
22136      Kind : constant Entity_Kind := Ekind (Def_Id);
22137
22138   begin
22139      --  Defend against previous error
22140
22141      if Nkind (R) = N_Error then
22142         return;
22143      end if;
22144
22145      Set_Scalar_Range (Def_Id, R);
22146
22147      --  We need to link the range into the tree before resolving it so
22148      --  that types that are referenced, including importantly the subtype
22149      --  itself, are properly frozen (Freeze_Expression requires that the
22150      --  expression be properly linked into the tree). Of course if it is
22151      --  already linked in, then we do not disturb the current link.
22152
22153      if No (Parent (R)) then
22154         Set_Parent (R, Def_Id);
22155      end if;
22156
22157      --  Reset the kind of the subtype during analysis of the range, to
22158      --  catch possible premature use in the bounds themselves.
22159
22160      Set_Ekind (Def_Id, E_Void);
22161      Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22162      Set_Ekind (Def_Id, Kind);
22163   end Set_Scalar_Range_For_Subtype;
22164
22165   --------------------------------------------------------
22166   -- Set_Stored_Constraint_From_Discriminant_Constraint --
22167   --------------------------------------------------------
22168
22169   procedure Set_Stored_Constraint_From_Discriminant_Constraint
22170     (E : Entity_Id)
22171   is
22172   begin
22173      --  Make sure set if encountered during Expand_To_Stored_Constraint
22174
22175      Set_Stored_Constraint (E, No_Elist);
22176
22177      --  Give it the right value
22178
22179      if Is_Constrained (E) and then Has_Discriminants (E) then
22180         Set_Stored_Constraint (E,
22181           Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22182      end if;
22183   end Set_Stored_Constraint_From_Discriminant_Constraint;
22184
22185   -------------------------------------
22186   -- Signed_Integer_Type_Declaration --
22187   -------------------------------------
22188
22189   procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22190      Implicit_Base : Entity_Id;
22191      Base_Typ      : Entity_Id;
22192      Lo_Val        : Uint;
22193      Hi_Val        : Uint;
22194      Errs          : Boolean := False;
22195      Lo            : Node_Id;
22196      Hi            : Node_Id;
22197
22198      function Can_Derive_From (E : Entity_Id) return Boolean;
22199      --  Determine whether given bounds allow derivation from specified type
22200
22201      procedure Check_Bound (Expr : Node_Id);
22202      --  Check bound to make sure it is integral and static. If not, post
22203      --  appropriate error message and set Errs flag
22204
22205      ---------------------
22206      -- Can_Derive_From --
22207      ---------------------
22208
22209      --  Note we check both bounds against both end values, to deal with
22210      --  strange types like ones with a range of 0 .. -12341234.
22211
22212      function Can_Derive_From (E : Entity_Id) return Boolean is
22213         Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22214         Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22215      begin
22216         return Lo <= Lo_Val and then Lo_Val <= Hi
22217                  and then
22218                Lo <= Hi_Val and then Hi_Val <= Hi;
22219      end Can_Derive_From;
22220
22221      -----------------
22222      -- Check_Bound --
22223      -----------------
22224
22225      procedure Check_Bound (Expr : Node_Id) is
22226      begin
22227         --  If a range constraint is used as an integer type definition, each
22228         --  bound of the range must be defined by a static expression of some
22229         --  integer type, but the two bounds need not have the same integer
22230         --  type (Negative bounds are allowed.) (RM 3.5.4)
22231
22232         if not Is_Integer_Type (Etype (Expr)) then
22233            Error_Msg_N
22234              ("integer type definition bounds must be of integer type", Expr);
22235            Errs := True;
22236
22237         elsif not Is_OK_Static_Expression (Expr) then
22238            Flag_Non_Static_Expr
22239              ("non-static expression used for integer type bound!", Expr);
22240            Errs := True;
22241
22242         --  The bounds are folded into literals, and we set their type to be
22243         --  universal, to avoid typing difficulties: we cannot set the type
22244         --  of the literal to the new type, because this would be a forward
22245         --  reference for the back end,  and if the original type is user-
22246         --  defined this can lead to spurious semantic errors (e.g. 2928-003).
22247
22248         else
22249            if Is_Entity_Name (Expr) then
22250               Fold_Uint (Expr, Expr_Value (Expr), True);
22251            end if;
22252
22253            Set_Etype (Expr, Universal_Integer);
22254         end if;
22255      end Check_Bound;
22256
22257   --  Start of processing for Signed_Integer_Type_Declaration
22258
22259   begin
22260      --  Create an anonymous base type
22261
22262      Implicit_Base :=
22263        Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22264
22265      --  Analyze and check the bounds, they can be of any integer type
22266
22267      Lo := Low_Bound (Def);
22268      Hi := High_Bound (Def);
22269
22270      --  Arbitrarily use Integer as the type if either bound had an error
22271
22272      if Hi = Error or else Lo = Error then
22273         Base_Typ := Any_Integer;
22274         Set_Error_Posted (T, True);
22275
22276      --  Here both bounds are OK expressions
22277
22278      else
22279         Analyze_And_Resolve (Lo, Any_Integer);
22280         Analyze_And_Resolve (Hi, Any_Integer);
22281
22282         Check_Bound (Lo);
22283         Check_Bound (Hi);
22284
22285         if Errs then
22286            Hi := Type_High_Bound (Standard_Long_Long_Integer);
22287            Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22288         end if;
22289
22290         --  Find type to derive from
22291
22292         Lo_Val := Expr_Value (Lo);
22293         Hi_Val := Expr_Value (Hi);
22294
22295         if Can_Derive_From (Standard_Short_Short_Integer) then
22296            Base_Typ := Base_Type (Standard_Short_Short_Integer);
22297
22298         elsif Can_Derive_From (Standard_Short_Integer) then
22299            Base_Typ := Base_Type (Standard_Short_Integer);
22300
22301         elsif Can_Derive_From (Standard_Integer) then
22302            Base_Typ := Base_Type (Standard_Integer);
22303
22304         elsif Can_Derive_From (Standard_Long_Integer) then
22305            Base_Typ := Base_Type (Standard_Long_Integer);
22306
22307         elsif Can_Derive_From (Standard_Long_Long_Integer) then
22308            Check_Restriction (No_Long_Long_Integers, Def);
22309            Base_Typ := Base_Type (Standard_Long_Long_Integer);
22310
22311         else
22312            Base_Typ := Base_Type (Standard_Long_Long_Integer);
22313            Error_Msg_N ("integer type definition bounds out of range", Def);
22314            Hi := Type_High_Bound (Standard_Long_Long_Integer);
22315            Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22316         end if;
22317      end if;
22318
22319      --  Complete both implicit base and declared first subtype entities. The
22320      --  inheritance of the rep item chain ensures that SPARK-related pragmas
22321      --  are not clobbered when the signed integer type acts as a full view of
22322      --  a private type.
22323
22324      Set_Etype          (Implicit_Base,                 Base_Typ);
22325      Set_Size_Info      (Implicit_Base,                 Base_Typ);
22326      Set_RM_Size        (Implicit_Base, RM_Size        (Base_Typ));
22327      Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22328      Set_Scalar_Range   (Implicit_Base, Scalar_Range   (Base_Typ));
22329
22330      Set_Ekind              (T, E_Signed_Integer_Subtype);
22331      Set_Etype              (T, Implicit_Base);
22332      Set_Size_Info          (T, Implicit_Base);
22333      Inherit_Rep_Item_Chain (T, Implicit_Base);
22334      Set_Scalar_Range       (T, Def);
22335      Set_RM_Size            (T, UI_From_Int (Minimum_Size (T)));
22336      Set_Is_Constrained     (T);
22337   end Signed_Integer_Type_Declaration;
22338
22339end Sem_Ch3;
22340