1 #[cfg(target_arch = "x86")]
2 use core::arch::x86::*;
3 #[cfg(target_arch = "x86_64")]
4 use core::arch::x86_64::*;
5
6 use crate::guts::{
7 assemble_count, count_high, count_low, final_block, flag_word, input_debug_asserts, Finalize,
8 Job, Stride,
9 };
10 use crate::{Word, BLOCKBYTES, IV, SIGMA};
11 use arrayref::{array_refs, mut_array_refs};
12 use core::cmp;
13 use core::mem;
14
15 pub const DEGREE: usize = 2;
16
17 #[inline(always)]
loadu(src: *const [Word; DEGREE]) -> __m128i18 unsafe fn loadu(src: *const [Word; DEGREE]) -> __m128i {
19 // This is an unaligned load, so the pointer cast is allowed.
20 _mm_loadu_si128(src as *const __m128i)
21 }
22
23 #[inline(always)]
storeu(src: __m128i, dest: *mut [Word; DEGREE])24 unsafe fn storeu(src: __m128i, dest: *mut [Word; DEGREE]) {
25 // This is an unaligned store, so the pointer cast is allowed.
26 _mm_storeu_si128(dest as *mut __m128i, src)
27 }
28
29 #[inline(always)]
add(a: __m128i, b: __m128i) -> __m128i30 unsafe fn add(a: __m128i, b: __m128i) -> __m128i {
31 _mm_add_epi64(a, b)
32 }
33
34 #[inline(always)]
eq(a: __m128i, b: __m128i) -> __m128i35 unsafe fn eq(a: __m128i, b: __m128i) -> __m128i {
36 _mm_cmpeq_epi64(a, b)
37 }
38
39 #[inline(always)]
and(a: __m128i, b: __m128i) -> __m128i40 unsafe fn and(a: __m128i, b: __m128i) -> __m128i {
41 _mm_and_si128(a, b)
42 }
43
44 #[inline(always)]
negate_and(a: __m128i, b: __m128i) -> __m128i45 unsafe fn negate_and(a: __m128i, b: __m128i) -> __m128i {
46 // Note that "and not" implies the reverse of the actual arg order.
47 _mm_andnot_si128(a, b)
48 }
49
50 #[inline(always)]
xor(a: __m128i, b: __m128i) -> __m128i51 unsafe fn xor(a: __m128i, b: __m128i) -> __m128i {
52 _mm_xor_si128(a, b)
53 }
54
55 #[inline(always)]
set1(x: u64) -> __m128i56 unsafe fn set1(x: u64) -> __m128i {
57 _mm_set1_epi64x(x as i64)
58 }
59
60 #[inline(always)]
set2(a: u64, b: u64) -> __m128i61 unsafe fn set2(a: u64, b: u64) -> __m128i {
62 // There's no _mm_setr_epi64x, so note the arg order is backwards.
63 _mm_set_epi64x(b as i64, a as i64)
64 }
65
66 // Adapted from https://github.com/rust-lang-nursery/stdsimd/pull/479.
67 macro_rules! _MM_SHUFFLE {
68 ($z:expr, $y:expr, $x:expr, $w:expr) => {
69 ($z << 6) | ($y << 4) | ($x << 2) | $w
70 };
71 }
72
73 // These rotations are the "simple version". For the "complicated version", see
74 // https://github.com/sneves/blake2-avx2/blob/b3723921f668df09ece52dcd225a36d4a4eea1d9/blake2b-common.h#L43-L46.
75 // For a discussion of the tradeoffs, see
76 // https://github.com/sneves/blake2-avx2/pull/5. In short:
77 // - Due to an LLVM bug (https://bugs.llvm.org/show_bug.cgi?id=44379), this
78 // version performs better on recent x86 chips.
79 // - LLVM is able to optimize this version to AVX-512 rotation instructions
80 // when those are enabled.
81
82 #[inline(always)]
rot32(x: __m128i) -> __m128i83 unsafe fn rot32(x: __m128i) -> __m128i {
84 _mm_or_si128(_mm_srli_epi64(x, 32), _mm_slli_epi64(x, 64 - 32))
85 }
86
87 #[inline(always)]
rot24(x: __m128i) -> __m128i88 unsafe fn rot24(x: __m128i) -> __m128i {
89 _mm_or_si128(_mm_srli_epi64(x, 24), _mm_slli_epi64(x, 64 - 24))
90 }
91
92 #[inline(always)]
rot16(x: __m128i) -> __m128i93 unsafe fn rot16(x: __m128i) -> __m128i {
94 _mm_or_si128(_mm_srli_epi64(x, 16), _mm_slli_epi64(x, 64 - 16))
95 }
96
97 #[inline(always)]
rot63(x: __m128i) -> __m128i98 unsafe fn rot63(x: __m128i) -> __m128i {
99 _mm_or_si128(_mm_srli_epi64(x, 63), _mm_slli_epi64(x, 64 - 63))
100 }
101
102 #[inline(always)]
round(v: &mut [__m128i; 16], m: &[__m128i; 16], r: usize)103 unsafe fn round(v: &mut [__m128i; 16], m: &[__m128i; 16], r: usize) {
104 v[0] = add(v[0], m[SIGMA[r][0] as usize]);
105 v[1] = add(v[1], m[SIGMA[r][2] as usize]);
106 v[2] = add(v[2], m[SIGMA[r][4] as usize]);
107 v[3] = add(v[3], m[SIGMA[r][6] as usize]);
108 v[0] = add(v[0], v[4]);
109 v[1] = add(v[1], v[5]);
110 v[2] = add(v[2], v[6]);
111 v[3] = add(v[3], v[7]);
112 v[12] = xor(v[12], v[0]);
113 v[13] = xor(v[13], v[1]);
114 v[14] = xor(v[14], v[2]);
115 v[15] = xor(v[15], v[3]);
116 v[12] = rot32(v[12]);
117 v[13] = rot32(v[13]);
118 v[14] = rot32(v[14]);
119 v[15] = rot32(v[15]);
120 v[8] = add(v[8], v[12]);
121 v[9] = add(v[9], v[13]);
122 v[10] = add(v[10], v[14]);
123 v[11] = add(v[11], v[15]);
124 v[4] = xor(v[4], v[8]);
125 v[5] = xor(v[5], v[9]);
126 v[6] = xor(v[6], v[10]);
127 v[7] = xor(v[7], v[11]);
128 v[4] = rot24(v[4]);
129 v[5] = rot24(v[5]);
130 v[6] = rot24(v[6]);
131 v[7] = rot24(v[7]);
132 v[0] = add(v[0], m[SIGMA[r][1] as usize]);
133 v[1] = add(v[1], m[SIGMA[r][3] as usize]);
134 v[2] = add(v[2], m[SIGMA[r][5] as usize]);
135 v[3] = add(v[3], m[SIGMA[r][7] as usize]);
136 v[0] = add(v[0], v[4]);
137 v[1] = add(v[1], v[5]);
138 v[2] = add(v[2], v[6]);
139 v[3] = add(v[3], v[7]);
140 v[12] = xor(v[12], v[0]);
141 v[13] = xor(v[13], v[1]);
142 v[14] = xor(v[14], v[2]);
143 v[15] = xor(v[15], v[3]);
144 v[12] = rot16(v[12]);
145 v[13] = rot16(v[13]);
146 v[14] = rot16(v[14]);
147 v[15] = rot16(v[15]);
148 v[8] = add(v[8], v[12]);
149 v[9] = add(v[9], v[13]);
150 v[10] = add(v[10], v[14]);
151 v[11] = add(v[11], v[15]);
152 v[4] = xor(v[4], v[8]);
153 v[5] = xor(v[5], v[9]);
154 v[6] = xor(v[6], v[10]);
155 v[7] = xor(v[7], v[11]);
156 v[4] = rot63(v[4]);
157 v[5] = rot63(v[5]);
158 v[6] = rot63(v[6]);
159 v[7] = rot63(v[7]);
160
161 v[0] = add(v[0], m[SIGMA[r][8] as usize]);
162 v[1] = add(v[1], m[SIGMA[r][10] as usize]);
163 v[2] = add(v[2], m[SIGMA[r][12] as usize]);
164 v[3] = add(v[3], m[SIGMA[r][14] as usize]);
165 v[0] = add(v[0], v[5]);
166 v[1] = add(v[1], v[6]);
167 v[2] = add(v[2], v[7]);
168 v[3] = add(v[3], v[4]);
169 v[15] = xor(v[15], v[0]);
170 v[12] = xor(v[12], v[1]);
171 v[13] = xor(v[13], v[2]);
172 v[14] = xor(v[14], v[3]);
173 v[15] = rot32(v[15]);
174 v[12] = rot32(v[12]);
175 v[13] = rot32(v[13]);
176 v[14] = rot32(v[14]);
177 v[10] = add(v[10], v[15]);
178 v[11] = add(v[11], v[12]);
179 v[8] = add(v[8], v[13]);
180 v[9] = add(v[9], v[14]);
181 v[5] = xor(v[5], v[10]);
182 v[6] = xor(v[6], v[11]);
183 v[7] = xor(v[7], v[8]);
184 v[4] = xor(v[4], v[9]);
185 v[5] = rot24(v[5]);
186 v[6] = rot24(v[6]);
187 v[7] = rot24(v[7]);
188 v[4] = rot24(v[4]);
189 v[0] = add(v[0], m[SIGMA[r][9] as usize]);
190 v[1] = add(v[1], m[SIGMA[r][11] as usize]);
191 v[2] = add(v[2], m[SIGMA[r][13] as usize]);
192 v[3] = add(v[3], m[SIGMA[r][15] as usize]);
193 v[0] = add(v[0], v[5]);
194 v[1] = add(v[1], v[6]);
195 v[2] = add(v[2], v[7]);
196 v[3] = add(v[3], v[4]);
197 v[15] = xor(v[15], v[0]);
198 v[12] = xor(v[12], v[1]);
199 v[13] = xor(v[13], v[2]);
200 v[14] = xor(v[14], v[3]);
201 v[15] = rot16(v[15]);
202 v[12] = rot16(v[12]);
203 v[13] = rot16(v[13]);
204 v[14] = rot16(v[14]);
205 v[10] = add(v[10], v[15]);
206 v[11] = add(v[11], v[12]);
207 v[8] = add(v[8], v[13]);
208 v[9] = add(v[9], v[14]);
209 v[5] = xor(v[5], v[10]);
210 v[6] = xor(v[6], v[11]);
211 v[7] = xor(v[7], v[8]);
212 v[4] = xor(v[4], v[9]);
213 v[5] = rot63(v[5]);
214 v[6] = rot63(v[6]);
215 v[7] = rot63(v[7]);
216 v[4] = rot63(v[4]);
217 }
218
219 // We'd rather make this a regular function with #[inline(always)], but for
220 // some reason that blows up compile times by about 10 seconds, at least in
221 // some cases (BLAKE2b avx2.rs). This macro seems to get the same performance
222 // result, without the compile time issue.
223 macro_rules! compress2_transposed {
224 (
225 $h_vecs:expr,
226 $msg_vecs:expr,
227 $count_low:expr,
228 $count_high:expr,
229 $lastblock:expr,
230 $lastnode:expr,
231 ) => {
232 let h_vecs: &mut [__m128i; 8] = $h_vecs;
233 let msg_vecs: &[__m128i; 16] = $msg_vecs;
234 let count_low: __m128i = $count_low;
235 let count_high: __m128i = $count_high;
236 let lastblock: __m128i = $lastblock;
237 let lastnode: __m128i = $lastnode;
238 let mut v = [
239 h_vecs[0],
240 h_vecs[1],
241 h_vecs[2],
242 h_vecs[3],
243 h_vecs[4],
244 h_vecs[5],
245 h_vecs[6],
246 h_vecs[7],
247 set1(IV[0]),
248 set1(IV[1]),
249 set1(IV[2]),
250 set1(IV[3]),
251 xor(set1(IV[4]), count_low),
252 xor(set1(IV[5]), count_high),
253 xor(set1(IV[6]), lastblock),
254 xor(set1(IV[7]), lastnode),
255 ];
256
257 round(&mut v, &msg_vecs, 0);
258 round(&mut v, &msg_vecs, 1);
259 round(&mut v, &msg_vecs, 2);
260 round(&mut v, &msg_vecs, 3);
261 round(&mut v, &msg_vecs, 4);
262 round(&mut v, &msg_vecs, 5);
263 round(&mut v, &msg_vecs, 6);
264 round(&mut v, &msg_vecs, 7);
265 round(&mut v, &msg_vecs, 8);
266 round(&mut v, &msg_vecs, 9);
267 round(&mut v, &msg_vecs, 10);
268 round(&mut v, &msg_vecs, 11);
269
270 h_vecs[0] = xor(xor(h_vecs[0], v[0]), v[8]);
271 h_vecs[1] = xor(xor(h_vecs[1], v[1]), v[9]);
272 h_vecs[2] = xor(xor(h_vecs[2], v[2]), v[10]);
273 h_vecs[3] = xor(xor(h_vecs[3], v[3]), v[11]);
274 h_vecs[4] = xor(xor(h_vecs[4], v[4]), v[12]);
275 h_vecs[5] = xor(xor(h_vecs[5], v[5]), v[13]);
276 h_vecs[6] = xor(xor(h_vecs[6], v[6]), v[14]);
277 h_vecs[7] = xor(xor(h_vecs[7], v[7]), v[15]);
278 };
279 }
280
281 #[inline(always)]
transpose_vecs(a: __m128i, b: __m128i) -> [__m128i; DEGREE]282 unsafe fn transpose_vecs(a: __m128i, b: __m128i) -> [__m128i; DEGREE] {
283 let a_words: [Word; DEGREE] = mem::transmute(a);
284 let b_words: [Word; DEGREE] = mem::transmute(b);
285 [set2(a_words[0], b_words[0]), set2(a_words[1], b_words[1])]
286 }
287
288 #[inline(always)]
transpose_state_vecs(jobs: &[Job; DEGREE]) -> [__m128i; 8]289 unsafe fn transpose_state_vecs(jobs: &[Job; DEGREE]) -> [__m128i; 8] {
290 // Load all the state words into transposed vectors, where the first vector
291 // has the first word of each state, etc. Transposing once at the beginning
292 // and once at the end is more efficient that repeating it for each block.
293 let words0 = array_refs!(&jobs[0].words, DEGREE, DEGREE, DEGREE, DEGREE);
294 let words1 = array_refs!(&jobs[1].words, DEGREE, DEGREE, DEGREE, DEGREE);
295 let [h0, h1] = transpose_vecs(loadu(words0.0), loadu(words1.0));
296 let [h2, h3] = transpose_vecs(loadu(words0.1), loadu(words1.1));
297 let [h4, h5] = transpose_vecs(loadu(words0.2), loadu(words1.2));
298 let [h6, h7] = transpose_vecs(loadu(words0.3), loadu(words1.3));
299 [h0, h1, h2, h3, h4, h5, h6, h7]
300 }
301
302 #[inline(always)]
untranspose_state_vecs(h_vecs: &[__m128i; 8], jobs: &mut [Job; DEGREE])303 unsafe fn untranspose_state_vecs(h_vecs: &[__m128i; 8], jobs: &mut [Job; DEGREE]) {
304 // Un-transpose the updated state vectors back into the caller's arrays.
305 let [job0, job1] = jobs;
306 let words0 = mut_array_refs!(&mut job0.words, DEGREE, DEGREE, DEGREE, DEGREE);
307 let words1 = mut_array_refs!(&mut job1.words, DEGREE, DEGREE, DEGREE, DEGREE);
308
309 let out = transpose_vecs(h_vecs[0], h_vecs[1]);
310 storeu(out[0], words0.0);
311 storeu(out[1], words1.0);
312 let out = transpose_vecs(h_vecs[2], h_vecs[3]);
313 storeu(out[0], words0.1);
314 storeu(out[1], words1.1);
315 let out = transpose_vecs(h_vecs[4], h_vecs[5]);
316 storeu(out[0], words0.2);
317 storeu(out[1], words1.2);
318 let out = transpose_vecs(h_vecs[6], h_vecs[7]);
319 storeu(out[0], words0.3);
320 storeu(out[1], words1.3);
321 }
322
323 #[inline(always)]
transpose_msg_vecs(blocks: [*const [u8; BLOCKBYTES]; DEGREE]) -> [__m128i; 16]324 unsafe fn transpose_msg_vecs(blocks: [*const [u8; BLOCKBYTES]; DEGREE]) -> [__m128i; 16] {
325 // These input arrays have no particular alignment, so we use unaligned
326 // loads to read from them.
327 let block0 = blocks[0] as *const [Word; DEGREE];
328 let block1 = blocks[1] as *const [Word; DEGREE];
329 let [m0, m1] = transpose_vecs(loadu(block0.add(0)), loadu(block1.add(0)));
330 let [m2, m3] = transpose_vecs(loadu(block0.add(1)), loadu(block1.add(1)));
331 let [m4, m5] = transpose_vecs(loadu(block0.add(2)), loadu(block1.add(2)));
332 let [m6, m7] = transpose_vecs(loadu(block0.add(3)), loadu(block1.add(3)));
333 let [m8, m9] = transpose_vecs(loadu(block0.add(4)), loadu(block1.add(4)));
334 let [m10, m11] = transpose_vecs(loadu(block0.add(5)), loadu(block1.add(5)));
335 let [m12, m13] = transpose_vecs(loadu(block0.add(6)), loadu(block1.add(6)));
336 let [m14, m15] = transpose_vecs(loadu(block0.add(7)), loadu(block1.add(7)));
337 [
338 m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14, m15,
339 ]
340 }
341
342 #[inline(always)]
load_counts(jobs: &[Job; DEGREE]) -> (__m128i, __m128i)343 unsafe fn load_counts(jobs: &[Job; DEGREE]) -> (__m128i, __m128i) {
344 (
345 set2(count_low(jobs[0].count), count_low(jobs[1].count)),
346 set2(count_high(jobs[0].count), count_high(jobs[1].count)),
347 )
348 }
349
350 #[inline(always)]
store_counts(jobs: &mut [Job; DEGREE], low: __m128i, high: __m128i)351 unsafe fn store_counts(jobs: &mut [Job; DEGREE], low: __m128i, high: __m128i) {
352 let low_ints: [Word; DEGREE] = mem::transmute(low);
353 let high_ints: [Word; DEGREE] = mem::transmute(high);
354 for i in 0..DEGREE {
355 jobs[i].count = assemble_count(low_ints[i], high_ints[i]);
356 }
357 }
358
359 #[inline(always)]
add_to_counts(lo: &mut __m128i, hi: &mut __m128i, delta: __m128i)360 unsafe fn add_to_counts(lo: &mut __m128i, hi: &mut __m128i, delta: __m128i) {
361 // If the low counts reach zero, that means they wrapped, unless the delta
362 // was also zero.
363 *lo = add(*lo, delta);
364 let lo_reached_zero = eq(*lo, set1(0));
365 let delta_was_zero = eq(delta, set1(0));
366 let hi_inc = and(set1(1), negate_and(delta_was_zero, lo_reached_zero));
367 *hi = add(*hi, hi_inc);
368 }
369
370 #[inline(always)]
flags_vec(flags: [bool; DEGREE]) -> __m128i371 unsafe fn flags_vec(flags: [bool; DEGREE]) -> __m128i {
372 set2(flag_word(flags[0]), flag_word(flags[1]))
373 }
374
375 #[target_feature(enable = "sse4.1")]
compress2_loop(jobs: &mut [Job; DEGREE], finalize: Finalize, stride: Stride)376 pub unsafe fn compress2_loop(jobs: &mut [Job; DEGREE], finalize: Finalize, stride: Stride) {
377 // If we're not finalizing, there can't be a partial block at the end.
378 for job in jobs.iter() {
379 input_debug_asserts(job.input, finalize);
380 }
381
382 let msg_ptrs = [jobs[0].input.as_ptr(), jobs[1].input.as_ptr()];
383 let mut h_vecs = transpose_state_vecs(&jobs);
384 let (mut counts_lo, mut counts_hi) = load_counts(&jobs);
385
386 // Prepare the final blocks (note, which could be empty if the input is
387 // empty). Do all this before entering the main loop.
388 let min_len = jobs.iter().map(|job| job.input.len()).min().unwrap();
389 let mut fin_offset = min_len.saturating_sub(1);
390 fin_offset -= fin_offset % stride.padded_blockbytes();
391 // Performance note, making these buffers mem::uninitialized() seems to
392 // cause problems in the optimizer.
393 let mut buf0: [u8; BLOCKBYTES] = [0; BLOCKBYTES];
394 let mut buf1: [u8; BLOCKBYTES] = [0; BLOCKBYTES];
395 let (block0, len0, finalize0) = final_block(jobs[0].input, fin_offset, &mut buf0, stride);
396 let (block1, len1, finalize1) = final_block(jobs[1].input, fin_offset, &mut buf1, stride);
397 let fin_blocks: [*const [u8; BLOCKBYTES]; DEGREE] = [block0, block1];
398 let fin_counts_delta = set2(len0 as Word, len1 as Word);
399 let fin_last_block;
400 let fin_last_node;
401 if finalize.yes() {
402 fin_last_block = flags_vec([finalize0, finalize1]);
403 fin_last_node = flags_vec([
404 finalize0 && jobs[0].last_node.yes(),
405 finalize1 && jobs[1].last_node.yes(),
406 ]);
407 } else {
408 fin_last_block = set1(0);
409 fin_last_node = set1(0);
410 }
411
412 // The main loop.
413 let mut offset = 0;
414 loop {
415 let blocks;
416 let counts_delta;
417 let last_block;
418 let last_node;
419 if offset == fin_offset {
420 blocks = fin_blocks;
421 counts_delta = fin_counts_delta;
422 last_block = fin_last_block;
423 last_node = fin_last_node;
424 } else {
425 blocks = [
426 msg_ptrs[0].add(offset) as *const [u8; BLOCKBYTES],
427 msg_ptrs[1].add(offset) as *const [u8; BLOCKBYTES],
428 ];
429 counts_delta = set1(BLOCKBYTES as Word);
430 last_block = set1(0);
431 last_node = set1(0);
432 };
433
434 let m_vecs = transpose_msg_vecs(blocks);
435 add_to_counts(&mut counts_lo, &mut counts_hi, counts_delta);
436 compress2_transposed!(
437 &mut h_vecs,
438 &m_vecs,
439 counts_lo,
440 counts_hi,
441 last_block,
442 last_node,
443 );
444
445 // Check for termination before bumping the offset, to avoid overflow.
446 if offset == fin_offset {
447 break;
448 }
449
450 offset += stride.padded_blockbytes();
451 }
452
453 // Write out the results.
454 untranspose_state_vecs(&h_vecs, &mut *jobs);
455 store_counts(&mut *jobs, counts_lo, counts_hi);
456 let max_consumed = offset.saturating_add(stride.padded_blockbytes());
457 for job in jobs.iter_mut() {
458 let consumed = cmp::min(max_consumed, job.input.len());
459 job.input = &job.input[consumed..];
460 }
461 }
462