1 /* Loop manipulation code for GNU compiler.
2    Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING.  If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "cfghooks.h"
32 #include "output.h"
33 
34 static void duplicate_subloops (struct loops *, struct loop *, struct loop *);
35 static void copy_loops_to (struct loops *, struct loop **, int,
36 			   struct loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static bool loop_delete_branch_edge (edge, int);
39 static void remove_bbs (basic_block *, int);
40 static bool rpe_enum_p (basic_block, void *);
41 static int find_path (edge, basic_block **);
42 static bool alp_enum_p (basic_block, void *);
43 static void add_loop (struct loops *, struct loop *);
44 static void fix_loop_placements (struct loops *, struct loop *);
45 static bool fix_bb_placement (struct loops *, basic_block);
46 static void fix_bb_placements (struct loops *, basic_block);
47 static void place_new_loop (struct loops *, struct loop *);
48 static void scale_loop_frequencies (struct loop *, int, int);
49 static basic_block create_preheader (struct loop *, int);
50 static void fix_irreducible_loops (basic_block);
51 static void unloop (struct loops *, struct loop *);
52 
53 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
54 
55 /* Splits basic block BB after INSN, returns created edge.  Updates loops
56    and dominators.  */
57 edge
split_loop_bb(basic_block bb,void * insn)58 split_loop_bb (basic_block bb, void *insn)
59 {
60   edge e;
61 
62   /* Split the block.  */
63   e = split_block (bb, insn);
64 
65   /* Add dest to loop.  */
66   add_bb_to_loop (e->dest, e->src->loop_father);
67 
68   return e;
69 }
70 
71 /* Checks whether basic block BB is dominated by DATA.  */
72 static bool
rpe_enum_p(basic_block bb,void * data)73 rpe_enum_p (basic_block bb, void *data)
74 {
75   return dominated_by_p (CDI_DOMINATORS, bb, data);
76 }
77 
78 /* Remove basic blocks BBS from loop structure and dominance info,
79    and delete them afterwards.  */
80 static void
remove_bbs(basic_block * bbs,int nbbs)81 remove_bbs (basic_block *bbs, int nbbs)
82 {
83   int i;
84 
85   for (i = 0; i < nbbs; i++)
86     {
87       remove_bb_from_loops (bbs[i]);
88       delete_basic_block (bbs[i]);
89     }
90 }
91 
92 /* Find path -- i.e. the basic blocks dominated by edge E and put them
93    into array BBS, that will be allocated large enough to contain them.
94    E->dest must have exactly one predecessor for this to work (it is
95    easy to achieve and we do not put it here because we do not want to
96    alter anything by this function).  The number of basic blocks in the
97    path is returned.  */
98 static int
find_path(edge e,basic_block ** bbs)99 find_path (edge e, basic_block **bbs)
100 {
101   gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
102 
103   /* Find bbs in the path.  */
104   *bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
105   return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
106 			     n_basic_blocks, e->dest);
107 }
108 
109 /* Fix placement of basic block BB inside loop hierarchy stored in LOOPS --
110    Let L be a loop to that BB belongs.  Then every successor of BB must either
111      1) belong to some superloop of loop L, or
112      2) be a header of loop K such that K->outer is superloop of L
113    Returns true if we had to move BB into other loop to enforce this condition,
114    false if the placement of BB was already correct (provided that placements
115    of its successors are correct).  */
116 static bool
fix_bb_placement(struct loops * loops,basic_block bb)117 fix_bb_placement (struct loops *loops, basic_block bb)
118 {
119   edge e;
120   edge_iterator ei;
121   struct loop *loop = loops->tree_root, *act;
122 
123   FOR_EACH_EDGE (e, ei, bb->succs)
124     {
125       if (e->dest == EXIT_BLOCK_PTR)
126 	continue;
127 
128       act = e->dest->loop_father;
129       if (act->header == e->dest)
130 	act = act->outer;
131 
132       if (flow_loop_nested_p (loop, act))
133 	loop = act;
134     }
135 
136   if (loop == bb->loop_father)
137     return false;
138 
139   remove_bb_from_loops (bb);
140   add_bb_to_loop (bb, loop);
141 
142   return true;
143 }
144 
145 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
146    enforce condition condition stated in description of fix_bb_placement. We
147    start from basic block FROM that had some of its successors removed, so that
148    his placement no longer has to be correct, and iteratively fix placement of
149    its predecessors that may change if placement of FROM changed.  Also fix
150    placement of subloops of FROM->loop_father, that might also be altered due
151    to this change; the condition for them is similar, except that instead of
152    successors we consider edges coming out of the loops.  */
153 static void
fix_bb_placements(struct loops * loops,basic_block from)154 fix_bb_placements (struct loops *loops, basic_block from)
155 {
156   sbitmap in_queue;
157   basic_block *queue, *qtop, *qbeg, *qend;
158   struct loop *base_loop;
159   edge e;
160 
161   /* We pass through blocks back-reachable from FROM, testing whether some
162      of their successors moved to outer loop.  It may be necessary to
163      iterate several times, but it is finite, as we stop unless we move
164      the basic block up the loop structure.  The whole story is a bit
165      more complicated due to presence of subloops, those are moved using
166      fix_loop_placement.  */
167 
168   base_loop = from->loop_father;
169   if (base_loop == loops->tree_root)
170     return;
171 
172   in_queue = sbitmap_alloc (last_basic_block);
173   sbitmap_zero (in_queue);
174   SET_BIT (in_queue, from->index);
175   /* Prevent us from going out of the base_loop.  */
176   SET_BIT (in_queue, base_loop->header->index);
177 
178   queue = xmalloc ((base_loop->num_nodes + 1) * sizeof (basic_block));
179   qtop = queue + base_loop->num_nodes + 1;
180   qbeg = queue;
181   qend = queue + 1;
182   *qbeg = from;
183 
184   while (qbeg != qend)
185     {
186       edge_iterator ei;
187       from = *qbeg;
188       qbeg++;
189       if (qbeg == qtop)
190 	qbeg = queue;
191       RESET_BIT (in_queue, from->index);
192 
193       if (from->loop_father->header == from)
194 	{
195 	  /* Subloop header, maybe move the loop upward.  */
196 	  if (!fix_loop_placement (from->loop_father))
197 	    continue;
198 	}
199       else
200 	{
201 	  /* Ordinary basic block.  */
202 	  if (!fix_bb_placement (loops, from))
203 	    continue;
204 	}
205 
206       /* Something has changed, insert predecessors into queue.  */
207       FOR_EACH_EDGE (e, ei, from->preds)
208 	{
209 	  basic_block pred = e->src;
210 	  struct loop *nca;
211 
212 	  if (TEST_BIT (in_queue, pred->index))
213 	    continue;
214 
215 	  /* If it is subloop, then it either was not moved, or
216 	     the path up the loop tree from base_loop do not contain
217 	     it.  */
218 	  nca = find_common_loop (pred->loop_father, base_loop);
219 	  if (pred->loop_father != base_loop
220 	      && (nca == base_loop
221 		  || nca != pred->loop_father))
222 	    pred = pred->loop_father->header;
223 	  else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
224 	    {
225 	      /* No point in processing it.  */
226 	      continue;
227 	    }
228 
229 	  if (TEST_BIT (in_queue, pred->index))
230 	    continue;
231 
232 	  /* Schedule the basic block.  */
233 	  *qend = pred;
234 	  qend++;
235 	  if (qend == qtop)
236 	    qend = queue;
237 	  SET_BIT (in_queue, pred->index);
238 	}
239     }
240   free (in_queue);
241   free (queue);
242 }
243 
244 /* Basic block from has lost one or more of its predecessors, so it might
245    mo longer be part irreducible loop.  Fix it and proceed recursively
246    for its successors if needed.  */
247 static void
fix_irreducible_loops(basic_block from)248 fix_irreducible_loops (basic_block from)
249 {
250   basic_block bb;
251   basic_block *stack;
252   int stack_top;
253   sbitmap on_stack;
254   edge *edges, e;
255   unsigned num_edges, i;
256 
257   if (!(from->flags & BB_IRREDUCIBLE_LOOP))
258     return;
259 
260   on_stack = sbitmap_alloc (last_basic_block);
261   sbitmap_zero (on_stack);
262   SET_BIT (on_stack, from->index);
263   stack = xmalloc (from->loop_father->num_nodes * sizeof (basic_block));
264   stack[0] = from;
265   stack_top = 1;
266 
267   while (stack_top)
268     {
269       edge_iterator ei;
270       bb = stack[--stack_top];
271       RESET_BIT (on_stack, bb->index);
272 
273       FOR_EACH_EDGE (e, ei, bb->preds)
274 	if (e->flags & EDGE_IRREDUCIBLE_LOOP)
275 	  break;
276       if (e)
277 	continue;
278 
279       bb->flags &= ~BB_IRREDUCIBLE_LOOP;
280       if (bb->loop_father->header == bb)
281 	edges = get_loop_exit_edges (bb->loop_father, &num_edges);
282       else
283 	{
284 	  num_edges = EDGE_COUNT (bb->succs);
285 	  edges = xmalloc (num_edges * sizeof (edge));
286 	  FOR_EACH_EDGE (e, ei, bb->succs)
287 	    edges[ei.index] = e;
288 	}
289 
290       for (i = 0; i < num_edges; i++)
291 	{
292 	  e = edges[i];
293 
294 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
295 	    {
296 	      if (!flow_bb_inside_loop_p (from->loop_father, e->dest))
297 		continue;
298 
299 	      e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
300 	      if (TEST_BIT (on_stack, e->dest->index))
301 		continue;
302 
303 	      SET_BIT (on_stack, e->dest->index);
304 	      stack[stack_top++] = e->dest;
305 	    }
306 	}
307       free (edges);
308     }
309 
310   free (on_stack);
311   free (stack);
312 }
313 
314 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
315    and update loop structure stored in LOOPS and dominators.  Return true if
316    we were able to remove the path, false otherwise (and nothing is affected
317    then).  */
318 bool
remove_path(struct loops * loops,edge e)319 remove_path (struct loops *loops, edge e)
320 {
321   edge ae;
322   basic_block *rem_bbs, *bord_bbs, *dom_bbs, from, bb;
323   int i, nrem, n_bord_bbs, n_dom_bbs;
324   sbitmap seen;
325   bool deleted;
326 
327   if (!loop_delete_branch_edge (e, 0))
328     return false;
329 
330   /* We need to check whether basic blocks are dominated by the edge
331      e, but we only have basic block dominators.  This is easy to
332      fix -- when e->dest has exactly one predecessor, this corresponds
333      to blocks dominated by e->dest, if not, split the edge.  */
334   if (!single_pred_p (e->dest))
335     e = single_pred_edge (loop_split_edge_with (e, NULL_RTX));
336 
337   /* It may happen that by removing path we remove one or more loops
338      we belong to.  In this case first unloop the loops, then proceed
339      normally.   We may assume that e->dest is not a header of any loop,
340      as it now has exactly one predecessor.  */
341   while (e->src->loop_father->outer
342 	 && dominated_by_p (CDI_DOMINATORS,
343 			    e->src->loop_father->latch, e->dest))
344     unloop (loops, e->src->loop_father);
345 
346   /* Identify the path.  */
347   nrem = find_path (e, &rem_bbs);
348 
349   n_bord_bbs = 0;
350   bord_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
351   seen = sbitmap_alloc (last_basic_block);
352   sbitmap_zero (seen);
353 
354   /* Find "border" hexes -- i.e. those with predecessor in removed path.  */
355   for (i = 0; i < nrem; i++)
356     SET_BIT (seen, rem_bbs[i]->index);
357   for (i = 0; i < nrem; i++)
358     {
359       edge_iterator ei;
360       bb = rem_bbs[i];
361       FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
362 	if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
363 	  {
364 	    SET_BIT (seen, ae->dest->index);
365 	    bord_bbs[n_bord_bbs++] = ae->dest;
366 	  }
367     }
368 
369   /* Remove the path.  */
370   from = e->src;
371   deleted = loop_delete_branch_edge (e, 1);
372   gcc_assert (deleted);
373   dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
374 
375   /* Cancel loops contained in the path.  */
376   for (i = 0; i < nrem; i++)
377     if (rem_bbs[i]->loop_father->header == rem_bbs[i])
378       cancel_loop_tree (loops, rem_bbs[i]->loop_father);
379 
380   remove_bbs (rem_bbs, nrem);
381   free (rem_bbs);
382 
383   /* Find blocks whose dominators may be affected.  */
384   n_dom_bbs = 0;
385   sbitmap_zero (seen);
386   for (i = 0; i < n_bord_bbs; i++)
387     {
388       basic_block ldom;
389 
390       bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
391       if (TEST_BIT (seen, bb->index))
392 	continue;
393       SET_BIT (seen, bb->index);
394 
395       for (ldom = first_dom_son (CDI_DOMINATORS, bb);
396 	   ldom;
397 	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
398 	if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
399 	  dom_bbs[n_dom_bbs++] = ldom;
400     }
401 
402   free (seen);
403 
404   /* Recount dominators.  */
405   iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
406   free (dom_bbs);
407 
408   /* These blocks have lost some predecessor(s), thus their irreducible
409      status could be changed.  */
410   for (i = 0; i < n_bord_bbs; i++)
411     fix_irreducible_loops (bord_bbs[i]);
412   free (bord_bbs);
413 
414   /* Fix placements of basic blocks inside loops and the placement of
415      loops in the loop tree.  */
416   fix_bb_placements (loops, from);
417   fix_loop_placements (loops, from->loop_father);
418 
419   return true;
420 }
421 
422 /* Predicate for enumeration in add_loop.  */
423 static bool
alp_enum_p(basic_block bb,void * alp_header)424 alp_enum_p (basic_block bb, void *alp_header)
425 {
426   return bb != (basic_block) alp_header;
427 }
428 
429 /* Given LOOP structure with filled header and latch, find the body of the
430    corresponding loop and add it to LOOPS tree.  */
431 static void
add_loop(struct loops * loops,struct loop * loop)432 add_loop (struct loops *loops, struct loop *loop)
433 {
434   basic_block *bbs;
435   int i, n;
436 
437   /* Add it to loop structure.  */
438   place_new_loop (loops, loop);
439   loop->level = 1;
440 
441   /* Find its nodes.  */
442   bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
443   n = dfs_enumerate_from (loop->latch, 1, alp_enum_p,
444 			  bbs, n_basic_blocks, loop->header);
445 
446   for (i = 0; i < n; i++)
447     add_bb_to_loop (bbs[i], loop);
448   add_bb_to_loop (loop->header, loop);
449 
450   free (bbs);
451 }
452 
453 /* Multiply all frequencies in LOOP by NUM/DEN.  */
454 static void
scale_loop_frequencies(struct loop * loop,int num,int den)455 scale_loop_frequencies (struct loop *loop, int num, int den)
456 {
457   basic_block *bbs;
458 
459   bbs = get_loop_body (loop);
460   scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
461   free (bbs);
462 }
463 
464 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
465    latch to header and update loop tree stored in LOOPS and dominators
466    accordingly. Everything between them plus LATCH_EDGE destination must
467    be dominated by HEADER_EDGE destination, and back-reachable from
468    LATCH_EDGE source.  HEADER_EDGE is redirected to basic block SWITCH_BB,
469    FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
470    TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
471    Returns newly created loop.  */
472 
473 struct loop *
loopify(struct loops * loops,edge latch_edge,edge header_edge,basic_block switch_bb,edge true_edge,edge false_edge,bool redirect_all_edges)474 loopify (struct loops *loops, edge latch_edge, edge header_edge,
475 	 basic_block switch_bb, edge true_edge, edge false_edge,
476 	 bool redirect_all_edges)
477 {
478   basic_block succ_bb = latch_edge->dest;
479   basic_block pred_bb = header_edge->src;
480   basic_block *dom_bbs, *body;
481   unsigned n_dom_bbs, i;
482   sbitmap seen;
483   struct loop *loop = xcalloc (1, sizeof (struct loop));
484   struct loop *outer = succ_bb->loop_father->outer;
485   int freq, prob, tot_prob;
486   gcov_type cnt;
487   edge e;
488   edge_iterator ei;
489 
490   loop->header = header_edge->dest;
491   loop->latch = latch_edge->src;
492 
493   freq = EDGE_FREQUENCY (header_edge);
494   cnt = header_edge->count;
495   prob = EDGE_SUCC (switch_bb, 0)->probability;
496   tot_prob = prob + EDGE_SUCC (switch_bb, 1)->probability;
497   if (tot_prob == 0)
498     tot_prob = 1;
499 
500   /* Redirect edges.  */
501   loop_redirect_edge (latch_edge, loop->header);
502   loop_redirect_edge (true_edge, succ_bb);
503 
504   /* During loop versioning, one of the switch_bb edge is already properly
505      set. Do not redirect it again unless redirect_all_edges is true.  */
506   if (redirect_all_edges)
507     {
508       loop_redirect_edge (header_edge, switch_bb);
509       loop_redirect_edge (false_edge, loop->header);
510 
511       /* Update dominators.  */
512       set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
513       set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
514     }
515 
516   set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
517 
518   /* Compute new loop.  */
519   add_loop (loops, loop);
520   flow_loop_tree_node_add (outer, loop);
521 
522   /* Add switch_bb to appropriate loop.  */
523   add_bb_to_loop (switch_bb, outer);
524 
525   /* Fix frequencies.  */
526   switch_bb->frequency = freq;
527   switch_bb->count = cnt;
528   FOR_EACH_EDGE (e, ei, switch_bb->succs)
529     e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
530   scale_loop_frequencies (loop, prob, tot_prob);
531   scale_loop_frequencies (succ_bb->loop_father, tot_prob - prob, tot_prob);
532 
533   /* Update dominators of blocks outside of LOOP.  */
534   dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
535   n_dom_bbs = 0;
536   seen = sbitmap_alloc (last_basic_block);
537   sbitmap_zero (seen);
538   body = get_loop_body (loop);
539 
540   for (i = 0; i < loop->num_nodes; i++)
541     SET_BIT (seen, body[i]->index);
542 
543   for (i = 0; i < loop->num_nodes; i++)
544     {
545       basic_block ldom;
546 
547       for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
548 	   ldom;
549 	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
550 	if (!TEST_BIT (seen, ldom->index))
551 	  {
552 	    SET_BIT (seen, ldom->index);
553 	    dom_bbs[n_dom_bbs++] = ldom;
554 	  }
555     }
556 
557   iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
558 
559   free (body);
560   free (seen);
561   free (dom_bbs);
562 
563   return loop;
564 }
565 
566 /* Remove the latch edge of a LOOP and update LOOPS tree to indicate that
567    the LOOP was removed.  After this function, original loop latch will
568    have no successor, which caller is expected to fix somehow.  */
569 static void
unloop(struct loops * loops,struct loop * loop)570 unloop (struct loops *loops, struct loop *loop)
571 {
572   basic_block *body;
573   struct loop *ploop;
574   unsigned i, n;
575   basic_block latch = loop->latch;
576   edge *edges;
577   unsigned num_edges;
578 
579   /* This is relatively straightforward.  The dominators are unchanged, as
580      loop header dominates loop latch, so the only thing we have to care of
581      is the placement of loops and basic blocks inside the loop tree.  We
582      move them all to the loop->outer, and then let fix_bb_placements do
583      its work.  */
584 
585   body = get_loop_body (loop);
586   edges = get_loop_exit_edges (loop, &num_edges);
587   n = loop->num_nodes;
588   for (i = 0; i < n; i++)
589     if (body[i]->loop_father == loop)
590       {
591 	remove_bb_from_loops (body[i]);
592 	add_bb_to_loop (body[i], loop->outer);
593       }
594   free(body);
595 
596   while (loop->inner)
597     {
598       ploop = loop->inner;
599       flow_loop_tree_node_remove (ploop);
600       flow_loop_tree_node_add (loop->outer, ploop);
601     }
602 
603   /* Remove the loop and free its data.  */
604   flow_loop_tree_node_remove (loop);
605   loops->parray[loop->num] = NULL;
606   flow_loop_free (loop);
607 
608   remove_edge (single_succ_edge (latch));
609   fix_bb_placements (loops, latch);
610 
611   /* If the loop was inside an irreducible region, we would have to somehow
612      update the irreducible marks inside its body.  While it is certainly
613      possible to do, it is a bit complicated and this situation should be
614      very rare, so we just remark all loops in this case.  */
615   for (i = 0; i < num_edges; i++)
616     if (edges[i]->flags & EDGE_IRREDUCIBLE_LOOP)
617       break;
618   if (i != num_edges)
619     mark_irreducible_loops (loops);
620   free (edges);
621 }
622 
623 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
624    FATHER of LOOP such that all of the edges coming out of LOOP belong to
625    FATHER, and set it as outer loop of LOOP.  Return 1 if placement of
626    LOOP changed.  */
627 int
fix_loop_placement(struct loop * loop)628 fix_loop_placement (struct loop *loop)
629 {
630   basic_block *body;
631   unsigned i;
632   edge e;
633   edge_iterator ei;
634   struct loop *father = loop->pred[0], *act;
635 
636   body = get_loop_body (loop);
637   for (i = 0; i < loop->num_nodes; i++)
638     FOR_EACH_EDGE (e, ei, body[i]->succs)
639       if (!flow_bb_inside_loop_p (loop, e->dest))
640 	{
641 	  act = find_common_loop (loop, e->dest->loop_father);
642 	  if (flow_loop_nested_p (father, act))
643 	    father = act;
644 	}
645   free (body);
646 
647   if (father != loop->outer)
648     {
649       for (act = loop->outer; act != father; act = act->outer)
650 	act->num_nodes -= loop->num_nodes;
651       flow_loop_tree_node_remove (loop);
652       flow_loop_tree_node_add (father, loop);
653       return 1;
654     }
655   return 0;
656 }
657 
658 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
659    condition stated in description of fix_loop_placement holds for them.
660    It is used in case when we removed some edges coming out of LOOP, which
661    may cause the right placement of LOOP inside loop tree to change.  */
662 static void
fix_loop_placements(struct loops * loops,struct loop * loop)663 fix_loop_placements (struct loops *loops, struct loop *loop)
664 {
665   struct loop *outer;
666 
667   while (loop->outer)
668     {
669       outer = loop->outer;
670       if (!fix_loop_placement (loop))
671         break;
672 
673       /* Changing the placement of a loop in the loop tree may alter the
674 	 validity of condition 2) of the description of fix_bb_placement
675 	 for its preheader, because the successor is the header and belongs
676 	 to the loop.  So call fix_bb_placements to fix up the placement
677 	 of the preheader and (possibly) of its predecessors.  */
678       fix_bb_placements (loops, loop_preheader_edge (loop)->src);
679       loop = outer;
680     }
681 }
682 
683 /* Creates place for a new LOOP in LOOPS structure.  */
684 static void
place_new_loop(struct loops * loops,struct loop * loop)685 place_new_loop (struct loops *loops, struct loop *loop)
686 {
687   loops->parray =
688     xrealloc (loops->parray, (loops->num + 1) * sizeof (struct loop *));
689   loops->parray[loops->num] = loop;
690 
691   loop->num = loops->num++;
692 }
693 
694 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
695    created loop into LOOPS structure.  */
696 struct loop *
duplicate_loop(struct loops * loops,struct loop * loop,struct loop * target)697 duplicate_loop (struct loops *loops, struct loop *loop, struct loop *target)
698 {
699   struct loop *cloop;
700   cloop = xcalloc (1, sizeof (struct loop));
701   place_new_loop (loops, cloop);
702 
703   /* Initialize copied loop.  */
704   cloop->level = loop->level;
705 
706   /* Set it as copy of loop.  */
707   loop->copy = cloop;
708 
709   /* Add it to target.  */
710   flow_loop_tree_node_add (target, cloop);
711 
712   return cloop;
713 }
714 
715 /* Copies structure of subloops of LOOP into TARGET loop, placing
716    newly created loops into loop tree stored in LOOPS.  */
717 static void
duplicate_subloops(struct loops * loops,struct loop * loop,struct loop * target)718 duplicate_subloops (struct loops *loops, struct loop *loop, struct loop *target)
719 {
720   struct loop *aloop, *cloop;
721 
722   for (aloop = loop->inner; aloop; aloop = aloop->next)
723     {
724       cloop = duplicate_loop (loops, aloop, target);
725       duplicate_subloops (loops, aloop, cloop);
726     }
727 }
728 
729 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
730    into TARGET loop, placing newly created loops into loop tree LOOPS.  */
731 static void
copy_loops_to(struct loops * loops,struct loop ** copied_loops,int n,struct loop * target)732 copy_loops_to (struct loops *loops, struct loop **copied_loops, int n, struct loop *target)
733 {
734   struct loop *aloop;
735   int i;
736 
737   for (i = 0; i < n; i++)
738     {
739       aloop = duplicate_loop (loops, copied_loops[i], target);
740       duplicate_subloops (loops, copied_loops[i], aloop);
741     }
742 }
743 
744 /* Redirects edge E to basic block DEST.  */
745 static void
loop_redirect_edge(edge e,basic_block dest)746 loop_redirect_edge (edge e, basic_block dest)
747 {
748   if (e->dest == dest)
749     return;
750 
751   redirect_edge_and_branch_force (e, dest);
752 }
753 
754 /* Deletes edge E from a branch if possible.  Unless REALLY_DELETE is set,
755    just test whether it is possible to remove the edge.  */
756 static bool
loop_delete_branch_edge(edge e,int really_delete)757 loop_delete_branch_edge (edge e, int really_delete)
758 {
759   basic_block src = e->src;
760   basic_block newdest;
761   int irr;
762   edge snd;
763 
764   gcc_assert (EDGE_COUNT (src->succs) > 1);
765 
766   /* Cannot handle more than two exit edges.  */
767   if (EDGE_COUNT (src->succs) > 2)
768     return false;
769   /* And it must be just a simple branch.  */
770   if (!any_condjump_p (BB_END (src)))
771     return false;
772 
773   snd = e == EDGE_SUCC (src, 0) ? EDGE_SUCC (src, 1) : EDGE_SUCC (src, 0);
774   newdest = snd->dest;
775   if (newdest == EXIT_BLOCK_PTR)
776     return false;
777 
778   /* Hopefully the above conditions should suffice.  */
779   if (!really_delete)
780     return true;
781 
782   /* Redirecting behaves wrongly wrto this flag.  */
783   irr = snd->flags & EDGE_IRREDUCIBLE_LOOP;
784 
785   if (!redirect_edge_and_branch (e, newdest))
786     return false;
787   single_succ_edge (src)->flags &= ~EDGE_IRREDUCIBLE_LOOP;
788   single_succ_edge (src)->flags |= irr;
789 
790   return true;
791 }
792 
793 /* Check whether LOOP's body can be duplicated.  */
794 bool
can_duplicate_loop_p(struct loop * loop)795 can_duplicate_loop_p (struct loop *loop)
796 {
797   int ret;
798   basic_block *bbs = get_loop_body (loop);
799 
800   ret = can_copy_bbs_p (bbs, loop->num_nodes);
801   free (bbs);
802 
803   return ret;
804 }
805 
806 /* The NBBS blocks in BBS will get duplicated and the copies will be placed
807    to LOOP.  Update the single_exit information in superloops of LOOP.  */
808 
809 static void
update_single_exits_after_duplication(basic_block * bbs,unsigned nbbs,struct loop * loop)810 update_single_exits_after_duplication (basic_block *bbs, unsigned nbbs,
811 				       struct loop *loop)
812 {
813   unsigned i;
814 
815   for (i = 0; i < nbbs; i++)
816     bbs[i]->flags |= BB_DUPLICATED;
817 
818   for (; loop->outer; loop = loop->outer)
819     {
820       if (!loop->single_exit)
821 	continue;
822 
823       if (loop->single_exit->src->flags & BB_DUPLICATED)
824 	loop->single_exit = NULL;
825     }
826 
827   for (i = 0; i < nbbs; i++)
828     bbs[i]->flags &= ~BB_DUPLICATED;
829 }
830 
831 /* Duplicates body of LOOP to given edge E NDUPL times.  Takes care of updating
832    LOOPS structure and dominators.  E's destination must be LOOP header for
833    this to work, i.e. it must be entry or latch edge of this loop; these are
834    unique, as the loops must have preheaders for this function to work
835    correctly (in case E is latch, the function unrolls the loop, if E is entry
836    edge, it peels the loop).  Store edges created by copying ORIG edge from
837    copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
838    original LOOP body, the other copies are numbered in order given by control
839    flow through them) into TO_REMOVE array.  Returns false if duplication is
840    impossible.  */
841 bool
duplicate_loop_to_header_edge(struct loop * loop,edge e,struct loops * loops,unsigned int ndupl,sbitmap wont_exit,edge orig,edge * to_remove,unsigned int * n_to_remove,int flags)842 duplicate_loop_to_header_edge (struct loop *loop, edge e, struct loops *loops,
843 			       unsigned int ndupl, sbitmap wont_exit,
844 			       edge orig, edge *to_remove,
845 			       unsigned int *n_to_remove, int flags)
846 {
847   struct loop *target, *aloop;
848   struct loop **orig_loops;
849   unsigned n_orig_loops;
850   basic_block header = loop->header, latch = loop->latch;
851   basic_block *new_bbs, *bbs, *first_active;
852   basic_block new_bb, bb, first_active_latch = NULL;
853   edge ae, latch_edge;
854   edge spec_edges[2], new_spec_edges[2];
855 #define SE_LATCH 0
856 #define SE_ORIG 1
857   unsigned i, j, n;
858   int is_latch = (latch == e->src);
859   int scale_act = 0, *scale_step = NULL, scale_main = 0;
860   int p, freq_in, freq_le, freq_out_orig;
861   int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
862   int add_irreducible_flag;
863   basic_block place_after;
864 
865   gcc_assert (e->dest == loop->header);
866   gcc_assert (ndupl > 0);
867 
868   if (orig)
869     {
870       /* Orig must be edge out of the loop.  */
871       gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
872       gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
873     }
874 
875   n = loop->num_nodes;
876   bbs = get_loop_body_in_dom_order (loop);
877   gcc_assert (bbs[0] == loop->header);
878   gcc_assert (bbs[n  - 1] == loop->latch);
879 
880   /* Check whether duplication is possible.  */
881   if (!can_copy_bbs_p (bbs, loop->num_nodes))
882     {
883       free (bbs);
884       return false;
885     }
886   new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);
887 
888   /* In case we are doing loop peeling and the loop is in the middle of
889      irreducible region, the peeled copies will be inside it too.  */
890   add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
891   gcc_assert (!is_latch || !add_irreducible_flag);
892 
893   /* Find edge from latch.  */
894   latch_edge = loop_latch_edge (loop);
895 
896   if (flags & DLTHE_FLAG_UPDATE_FREQ)
897     {
898       /* Calculate coefficients by that we have to scale frequencies
899 	 of duplicated loop bodies.  */
900       freq_in = header->frequency;
901       freq_le = EDGE_FREQUENCY (latch_edge);
902       if (freq_in == 0)
903 	freq_in = 1;
904       if (freq_in < freq_le)
905 	freq_in = freq_le;
906       freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
907       if (freq_out_orig > freq_in - freq_le)
908 	freq_out_orig = freq_in - freq_le;
909       prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
910       prob_pass_wont_exit =
911 	      RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
912 
913       scale_step = xmalloc (ndupl * sizeof (int));
914 
915 	for (i = 1; i <= ndupl; i++)
916 	  scale_step[i - 1] = TEST_BIT (wont_exit, i)
917 				? prob_pass_wont_exit
918 				: prob_pass_thru;
919 
920       /* Complete peeling is special as the probability of exit in last
921          copy becomes 1.  */
922       if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
923 	{
924 	  int wanted_freq = EDGE_FREQUENCY (e);
925 
926 	  if (wanted_freq > freq_in)
927 	    wanted_freq = freq_in;
928 
929 	  gcc_assert (!is_latch);
930 	  /* First copy has frequency of incoming edge.  Each subsequent
931 	     frequency should be reduced by prob_pass_wont_exit.  Caller
932 	     should've managed the flags so all except for original loop
933 	     has won't exist set.  */
934 	  scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
935 	  /* Now simulate the duplication adjustments and compute header
936 	     frequency of the last copy.  */
937 	  for (i = 0; i < ndupl; i++)
938             wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE);
939 	  scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
940 	}
941       else if (is_latch)
942 	{
943 	  prob_pass_main = TEST_BIT (wont_exit, 0)
944 				? prob_pass_wont_exit
945 				: prob_pass_thru;
946 	  p = prob_pass_main;
947 	  scale_main = REG_BR_PROB_BASE;
948 	  for (i = 0; i < ndupl; i++)
949 	    {
950 	      scale_main += p;
951 	      p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
952 	    }
953 	  scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
954 	  scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
955 	}
956       else
957 	{
958 	  scale_main = REG_BR_PROB_BASE;
959 	  for (i = 0; i < ndupl; i++)
960 	    scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
961 	  scale_act = REG_BR_PROB_BASE - prob_pass_thru;
962 	}
963       for (i = 0; i < ndupl; i++)
964 	gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
965       gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
966 		  && scale_act >= 0  && scale_act <= REG_BR_PROB_BASE);
967     }
968 
969   /* Loop the new bbs will belong to.  */
970   target = e->src->loop_father;
971 
972   /* Original loops.  */
973   n_orig_loops = 0;
974   for (aloop = loop->inner; aloop; aloop = aloop->next)
975     n_orig_loops++;
976   orig_loops = xcalloc (n_orig_loops, sizeof (struct loop *));
977   for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
978     orig_loops[i] = aloop;
979 
980   loop->copy = target;
981 
982   first_active = xmalloc (n * sizeof (basic_block));
983   if (is_latch)
984     {
985       memcpy (first_active, bbs, n * sizeof (basic_block));
986       first_active_latch = latch;
987     }
988 
989   /* Update the information about single exits.  */
990   if (loops->state & LOOPS_HAVE_MARKED_SINGLE_EXITS)
991     update_single_exits_after_duplication (bbs, n, target);
992 
993   /* Record exit edge in original loop body.  */
994   if (orig && TEST_BIT (wont_exit, 0))
995     to_remove[(*n_to_remove)++] = orig;
996 
997   spec_edges[SE_ORIG] = orig;
998   spec_edges[SE_LATCH] = latch_edge;
999 
1000   place_after = e->src;
1001   for (j = 0; j < ndupl; j++)
1002     {
1003       /* Copy loops.  */
1004       copy_loops_to (loops, orig_loops, n_orig_loops, target);
1005 
1006       /* Copy bbs.  */
1007       copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1008 		place_after);
1009       place_after = new_spec_edges[SE_LATCH]->src;
1010 
1011       if (flags & DLTHE_RECORD_COPY_NUMBER)
1012 	for (i = 0; i < n; i++)
1013 	  {
1014 	    gcc_assert (!new_bbs[i]->aux);
1015 	    new_bbs[i]->aux = (void *)(size_t)(j + 1);
1016 	  }
1017 
1018       /* Note whether the blocks and edges belong to an irreducible loop.  */
1019       if (add_irreducible_flag)
1020 	{
1021 	  for (i = 0; i < n; i++)
1022 	    new_bbs[i]->flags |= BB_DUPLICATED;
1023 	  for (i = 0; i < n; i++)
1024 	    {
1025 	      edge_iterator ei;
1026 	      new_bb = new_bbs[i];
1027 	      if (new_bb->loop_father == target)
1028 		new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1029 
1030 	      FOR_EACH_EDGE (ae, ei, new_bb->succs)
1031 		if ((ae->dest->flags & BB_DUPLICATED)
1032 		    && (ae->src->loop_father == target
1033 			|| ae->dest->loop_father == target))
1034 		  ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1035 	    }
1036 	  for (i = 0; i < n; i++)
1037 	    new_bbs[i]->flags &= ~BB_DUPLICATED;
1038 	}
1039 
1040       /* Redirect the special edges.  */
1041       if (is_latch)
1042 	{
1043 	  redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1044 	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1045 					  loop->header);
1046 	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1047 	  latch = loop->latch = new_bbs[n - 1];
1048 	  e = latch_edge = new_spec_edges[SE_LATCH];
1049 	}
1050       else
1051 	{
1052 	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1053 					  loop->header);
1054 	  redirect_edge_and_branch_force (e, new_bbs[0]);
1055 	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1056 	  e = new_spec_edges[SE_LATCH];
1057 	}
1058 
1059       /* Record exit edge in this copy.  */
1060       if (orig && TEST_BIT (wont_exit, j + 1))
1061 	to_remove[(*n_to_remove)++] = new_spec_edges[SE_ORIG];
1062 
1063       /* Record the first copy in the control flow order if it is not
1064 	 the original loop (i.e. in case of peeling).  */
1065       if (!first_active_latch)
1066 	{
1067 	  memcpy (first_active, new_bbs, n * sizeof (basic_block));
1068 	  first_active_latch = new_bbs[n - 1];
1069 	}
1070 
1071       /* Set counts and frequencies.  */
1072       if (flags & DLTHE_FLAG_UPDATE_FREQ)
1073 	{
1074 	  scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1075 	  scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1076 	}
1077     }
1078   free (new_bbs);
1079   free (orig_loops);
1080 
1081   /* Update the original loop.  */
1082   if (!is_latch)
1083     set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1084   if (flags & DLTHE_FLAG_UPDATE_FREQ)
1085     {
1086       scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1087       free (scale_step);
1088     }
1089 
1090   /* Update dominators of outer blocks if affected.  */
1091   for (i = 0; i < n; i++)
1092     {
1093       basic_block dominated, dom_bb, *dom_bbs;
1094       int n_dom_bbs,j;
1095 
1096       bb = bbs[i];
1097       bb->aux = 0;
1098 
1099       n_dom_bbs = get_dominated_by (CDI_DOMINATORS, bb, &dom_bbs);
1100       for (j = 0; j < n_dom_bbs; j++)
1101 	{
1102 	  dominated = dom_bbs[j];
1103 	  if (flow_bb_inside_loop_p (loop, dominated))
1104 	    continue;
1105 	  dom_bb = nearest_common_dominator (
1106 			CDI_DOMINATORS, first_active[i], first_active_latch);
1107           set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1108 	}
1109       free (dom_bbs);
1110     }
1111   free (first_active);
1112 
1113   free (bbs);
1114 
1115   return true;
1116 }
1117 
1118 /* A callback for make_forwarder block, to redirect all edges except for
1119    MFB_KJ_EDGE to the entry part.  E is the edge for that we should decide
1120    whether to redirect it.  */
1121 
1122 static edge mfb_kj_edge;
1123 static bool
mfb_keep_just(edge e)1124 mfb_keep_just (edge e)
1125 {
1126   return e != mfb_kj_edge;
1127 }
1128 
1129 /* A callback for make_forwarder block, to update data structures for a basic
1130    block JUMP created by redirecting an edge (only the latch edge is being
1131    redirected).  */
1132 
1133 static void
mfb_update_loops(basic_block jump)1134 mfb_update_loops (basic_block jump)
1135 {
1136   struct loop *loop = single_succ (jump)->loop_father;
1137 
1138   if (dom_computed[CDI_DOMINATORS])
1139     set_immediate_dominator (CDI_DOMINATORS, jump, single_pred (jump));
1140   add_bb_to_loop (jump, loop);
1141   loop->latch = jump;
1142 }
1143 
1144 /* Creates a pre-header for a LOOP.  Returns newly created block.  Unless
1145    CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1146    entry; otherwise we also force preheader block to have only one successor.
1147    The function also updates dominators.  */
1148 
1149 static basic_block
create_preheader(struct loop * loop,int flags)1150 create_preheader (struct loop *loop, int flags)
1151 {
1152   edge e, fallthru;
1153   basic_block dummy;
1154   struct loop *cloop, *ploop;
1155   int nentry = 0;
1156   bool irred = false;
1157   bool latch_edge_was_fallthru;
1158   edge one_succ_pred = 0;
1159   edge_iterator ei;
1160 
1161   cloop = loop->outer;
1162 
1163   FOR_EACH_EDGE (e, ei, loop->header->preds)
1164     {
1165       if (e->src == loop->latch)
1166 	continue;
1167       irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1168       nentry++;
1169       if (single_succ_p (e->src))
1170 	one_succ_pred = e;
1171     }
1172   gcc_assert (nentry);
1173   if (nentry == 1)
1174     {
1175       /* Get an edge that is different from the one from loop->latch
1176 	 to loop->header.  */
1177       e = EDGE_PRED (loop->header,
1178 		     EDGE_PRED (loop->header, 0)->src == loop->latch);
1179 
1180       if (!(flags & CP_SIMPLE_PREHEADERS) || single_succ_p (e->src))
1181 	return NULL;
1182     }
1183 
1184   mfb_kj_edge = loop_latch_edge (loop);
1185   latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1186   fallthru = make_forwarder_block (loop->header, mfb_keep_just,
1187 				   mfb_update_loops);
1188   dummy = fallthru->src;
1189   loop->header = fallthru->dest;
1190 
1191   /* The header could be a latch of some superloop(s); due to design of
1192      split_block, it would now move to fallthru->dest.  */
1193   for (ploop = loop; ploop; ploop = ploop->outer)
1194     if (ploop->latch == dummy)
1195       ploop->latch = fallthru->dest;
1196 
1197   /* Try to be clever in placing the newly created preheader.  The idea is to
1198      avoid breaking any "fallthruness" relationship between blocks.
1199 
1200      The preheader was created just before the header and all incoming edges
1201      to the header were redirected to the preheader, except the latch edge.
1202      So the only problematic case is when this latch edge was a fallthru
1203      edge: it is not anymore after the preheader creation so we have broken
1204      the fallthruness.  We're therefore going to look for a better place.  */
1205   if (latch_edge_was_fallthru)
1206     {
1207       if (one_succ_pred)
1208 	e = one_succ_pred;
1209       else
1210 	e = EDGE_PRED (dummy, 0);
1211 
1212       move_block_after (dummy, e->src);
1213     }
1214 
1215   loop->header->loop_father = loop;
1216   add_bb_to_loop (dummy, cloop);
1217 
1218   if (irred)
1219     {
1220       dummy->flags |= BB_IRREDUCIBLE_LOOP;
1221       single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1222     }
1223 
1224   if (dump_file)
1225     fprintf (dump_file, "Created preheader block for loop %i\n",
1226 	     loop->num);
1227 
1228   return dummy;
1229 }
1230 
1231 /* Create preheaders for each loop from loop tree stored in LOOPS; for meaning
1232    of FLAGS see create_preheader.  */
1233 void
create_preheaders(struct loops * loops,int flags)1234 create_preheaders (struct loops *loops, int flags)
1235 {
1236   unsigned i;
1237   for (i = 1; i < loops->num; i++)
1238     create_preheader (loops->parray[i], flags);
1239   loops->state |= LOOPS_HAVE_PREHEADERS;
1240 }
1241 
1242 /* Forces all loop latches of loops from loop tree LOOPS to have only single
1243    successor.  */
1244 void
force_single_succ_latches(struct loops * loops)1245 force_single_succ_latches (struct loops *loops)
1246 {
1247   unsigned i;
1248   struct loop *loop;
1249   edge e;
1250 
1251   for (i = 1; i < loops->num; i++)
1252     {
1253       loop = loops->parray[i];
1254       if (loop->latch != loop->header && single_succ_p (loop->latch))
1255 	continue;
1256 
1257       e = find_edge (loop->latch, loop->header);
1258 
1259       loop_split_edge_with (e, NULL_RTX);
1260     }
1261   loops->state |= LOOPS_HAVE_SIMPLE_LATCHES;
1262 }
1263 
1264 /* A quite stupid function to put INSNS on edge E. They are supposed to form
1265    just one basic block.  Jumps in INSNS are not handled, so cfg do not have to
1266    be ok after this function.  The created block is placed on correct place
1267    in LOOPS structure and its dominator is set.  */
1268 basic_block
loop_split_edge_with(edge e,rtx insns)1269 loop_split_edge_with (edge e, rtx insns)
1270 {
1271   basic_block src, dest, new_bb;
1272   struct loop *loop_c;
1273 
1274   src = e->src;
1275   dest = e->dest;
1276 
1277   loop_c = find_common_loop (src->loop_father, dest->loop_father);
1278 
1279   /* Create basic block for it.  */
1280 
1281   new_bb = split_edge (e);
1282   add_bb_to_loop (new_bb, loop_c);
1283   new_bb->flags |= (insns ? BB_SUPERBLOCK : 0);
1284 
1285   if (insns)
1286     emit_insn_after (insns, BB_END (new_bb));
1287 
1288   if (dest->loop_father->latch == src)
1289     dest->loop_father->latch = new_bb;
1290 
1291   return new_bb;
1292 }
1293 
1294 /* Uses the natural loop discovery to recreate loop notes.  */
1295 void
create_loop_notes(void)1296 create_loop_notes (void)
1297 {
1298   rtx insn, head, end;
1299   struct loops loops;
1300   struct loop *loop;
1301   basic_block *first, *last, bb, pbb;
1302   struct loop **stack, **top;
1303 
1304 #ifdef ENABLE_CHECKING
1305   /* Verify that there really are no loop notes.  */
1306   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1307     gcc_assert (!NOTE_P (insn) ||
1308 		NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
1309 #endif
1310 
1311   flow_loops_find (&loops);
1312   free_dominance_info (CDI_DOMINATORS);
1313   if (loops.num > 1)
1314     {
1315       last = xcalloc (loops.num, sizeof (basic_block));
1316 
1317       FOR_EACH_BB (bb)
1318 	{
1319 	  for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1320 	    last[loop->num] = bb;
1321 	}
1322 
1323       first = xcalloc (loops.num, sizeof (basic_block));
1324       stack = xcalloc (loops.num, sizeof (struct loop *));
1325       top = stack;
1326 
1327       FOR_EACH_BB (bb)
1328 	{
1329 	  for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1330 	    {
1331 	      if (!first[loop->num])
1332 		{
1333 		  *top++ = loop;
1334 		  first[loop->num] = bb;
1335 		}
1336 
1337 	      if (bb == last[loop->num])
1338 		{
1339 		  /* Prevent loops from overlapping.  */
1340 		  while (*--top != loop)
1341 		    last[(*top)->num] = EXIT_BLOCK_PTR;
1342 
1343 		  /* If loop starts with jump into it, place the note in
1344 		     front of the jump.  */
1345 		  insn = PREV_INSN (BB_HEAD (first[loop->num]));
1346 		  if (insn
1347 		      && BARRIER_P (insn))
1348 		    insn = PREV_INSN (insn);
1349 
1350 		  if (insn
1351 		      && JUMP_P (insn)
1352 		      && any_uncondjump_p (insn)
1353 		      && onlyjump_p (insn))
1354 		    {
1355 		      pbb = BLOCK_FOR_INSN (insn);
1356 		      gcc_assert (pbb && single_succ_p (pbb));
1357 
1358 		      if (!flow_bb_inside_loop_p (loop, single_succ (pbb)))
1359 			insn = BB_HEAD (first[loop->num]);
1360 		    }
1361 		  else
1362 		    insn = BB_HEAD (first[loop->num]);
1363 
1364 		  head = BB_HEAD (first[loop->num]);
1365 		  emit_note_before (NOTE_INSN_LOOP_BEG, insn);
1366 		  BB_HEAD (first[loop->num]) = head;
1367 
1368 		  /* Position the note correctly wrto barrier.  */
1369 		  insn = BB_END (last[loop->num]);
1370 		  if (NEXT_INSN (insn)
1371 		      && BARRIER_P (NEXT_INSN (insn)))
1372 		    insn = NEXT_INSN (insn);
1373 
1374 		  end = BB_END (last[loop->num]);
1375 		  emit_note_after (NOTE_INSN_LOOP_END, insn);
1376 		  BB_END (last[loop->num]) = end;
1377 		}
1378 	    }
1379 	}
1380 
1381       free (first);
1382       free (last);
1383       free (stack);
1384     }
1385   flow_loops_free (&loops);
1386 }
1387 
1388 /* This function is called from loop_version.  It splits the entry edge
1389    of the loop we want to version, adds the versioning condition, and
1390    adjust the edges to the two versions of the loop appropriately.
1391    e is an incoming edge. Returns the basic block containing the
1392    condition.
1393 
1394    --- edge e ---- > [second_head]
1395 
1396    Split it and insert new conditional expression and adjust edges.
1397 
1398     --- edge e ---> [cond expr] ---> [first_head]
1399                         |
1400                         +---------> [second_head]
1401 */
1402 
1403 static basic_block
lv_adjust_loop_entry_edge(basic_block first_head,basic_block second_head,edge e,tree cond_expr)1404 lv_adjust_loop_entry_edge (basic_block first_head,
1405 			   basic_block second_head,
1406 			   edge e,
1407 			   tree cond_expr)
1408 {
1409   basic_block new_head = NULL;
1410   edge e1;
1411 
1412   gcc_assert (e->dest == second_head);
1413 
1414   /* Split edge 'e'. This will create a new basic block, where we can
1415      insert conditional expr.  */
1416   new_head = split_edge (e);
1417 
1418 
1419   lv_add_condition_to_bb (first_head, second_head, new_head,
1420 			  cond_expr);
1421 
1422   /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there.  */
1423   e1 = make_edge (new_head, first_head, ir_type () ? EDGE_TRUE_VALUE : 0);
1424   set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1425   set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1426 
1427   /* Adjust loop header phi nodes.  */
1428   lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1429 
1430   return new_head;
1431 }
1432 
1433 /* Main entry point for Loop Versioning transformation.
1434 
1435    This transformation given a condition and a loop, creates
1436    -if (condition) { loop_copy1 } else { loop_copy2 },
1437    where loop_copy1 is the loop transformed in one way, and loop_copy2
1438    is the loop transformed in another way (or unchanged). 'condition'
1439    may be a run time test for things that were not resolved by static
1440    analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1441 
1442    If PLACE_AFTER is true, we place the new loop after LOOP in the
1443    instruction stream, otherwise it is placed before LOOP.  */
1444 
1445 struct loop *
loop_version(struct loops * loops,struct loop * loop,void * cond_expr,basic_block * condition_bb,bool place_after)1446 loop_version (struct loops *loops, struct loop * loop,
1447 	      void *cond_expr, basic_block *condition_bb,
1448 	      bool place_after)
1449 {
1450   basic_block first_head, second_head;
1451   edge entry, latch_edge, exit, true_edge, false_edge;
1452   int irred_flag;
1453   struct loop *nloop;
1454   basic_block cond_bb;
1455 
1456   /* CHECKME: Loop versioning does not handle nested loop at this point.  */
1457   if (loop->inner)
1458     return NULL;
1459 
1460   /* Record entry and latch edges for the loop */
1461   entry = loop_preheader_edge (loop);
1462   irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1463   entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1464 
1465   /* Note down head of loop as first_head.  */
1466   first_head = entry->dest;
1467 
1468   /* Duplicate loop.  */
1469   if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, loops, 1,
1470   					       NULL, NULL, NULL, NULL, 0))
1471     return NULL;
1472 
1473   /* After duplication entry edge now points to new loop head block.
1474      Note down new head as second_head.  */
1475   second_head = entry->dest;
1476 
1477   /* Split loop entry edge and insert new block with cond expr.  */
1478   cond_bb =  lv_adjust_loop_entry_edge (first_head, second_head,
1479 					entry, cond_expr);
1480   if (condition_bb)
1481     *condition_bb = cond_bb;
1482 
1483   if (!cond_bb)
1484     {
1485       entry->flags |= irred_flag;
1486       return NULL;
1487     }
1488 
1489   latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1490 
1491   extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1492   nloop = loopify (loops,
1493 		   latch_edge,
1494 		   single_pred_edge (get_bb_copy (loop->header)),
1495 		   cond_bb, true_edge, false_edge,
1496 		   false /* Do not redirect all edges.  */);
1497 
1498   exit = loop->single_exit;
1499   if (exit)
1500     nloop->single_exit = find_edge (get_bb_copy (exit->src), exit->dest);
1501 
1502   /* loopify redirected latch_edge. Update its PENDING_STMTS.  */
1503   lv_flush_pending_stmts (latch_edge);
1504 
1505   /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS.  */
1506   extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1507   lv_flush_pending_stmts (false_edge);
1508   /* Adjust irreducible flag.  */
1509   if (irred_flag)
1510     {
1511       cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1512       loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1513       loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1514       single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1515     }
1516 
1517   if (place_after)
1518     {
1519       basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1520       unsigned i;
1521 
1522       after = loop->latch;
1523 
1524       for (i = 0; i < nloop->num_nodes; i++)
1525 	{
1526 	  move_block_after (bbs[i], after);
1527 	  after = bbs[i];
1528 	}
1529       free (bbs);
1530     }
1531 
1532   /* At this point condition_bb is loop predheader with two successors,
1533      first_head and second_head.   Make sure that loop predheader has only
1534      one successor.  */
1535   loop_split_edge_with (loop_preheader_edge (loop), NULL);
1536   loop_split_edge_with (loop_preheader_edge (nloop), NULL);
1537 
1538   return nloop;
1539 }
1540 
1541 /* The structure of LOOPS might have changed.  Some loops might get removed
1542    (and their headers and latches were set to NULL), loop exists might get
1543    removed (thus the loop nesting may be wrong), and some blocks and edges
1544    were changed (so the information about bb --> loop mapping does not have
1545    to be correct).  But still for the remaining loops the header dominates
1546    the latch, and loops did not get new subloobs (new loops might possibly
1547    get created, but we are not interested in them).  Fix up the mess.
1548 
1549    If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
1550    marked in it.  */
1551 
1552 void
fix_loop_structure(struct loops * loops,bitmap changed_bbs)1553 fix_loop_structure (struct loops *loops, bitmap changed_bbs)
1554 {
1555   basic_block bb;
1556   struct loop *loop, *ploop;
1557   unsigned i;
1558 
1559   /* Remove the old bb -> loop mapping.  */
1560   FOR_EACH_BB (bb)
1561     {
1562       bb->aux = (void *) (size_t) bb->loop_father->depth;
1563       bb->loop_father = loops->tree_root;
1564     }
1565 
1566   /* Remove the dead loops from structures.  */
1567   loops->tree_root->num_nodes = n_basic_blocks + 2;
1568   for (i = 1; i < loops->num; i++)
1569     {
1570       loop = loops->parray[i];
1571       if (!loop)
1572 	continue;
1573 
1574       loop->num_nodes = 0;
1575       if (loop->header)
1576 	continue;
1577 
1578       while (loop->inner)
1579 	{
1580 	  ploop = loop->inner;
1581 	  flow_loop_tree_node_remove (ploop);
1582 	  flow_loop_tree_node_add (loop->outer, ploop);
1583 	}
1584 
1585       /* Remove the loop and free its data.  */
1586       flow_loop_tree_node_remove (loop);
1587       loops->parray[loop->num] = NULL;
1588       flow_loop_free (loop);
1589     }
1590 
1591   /* Rescan the bodies of loops, starting from the outermost.  */
1592   loop = loops->tree_root;
1593   while (1)
1594     {
1595       if (loop->inner)
1596 	loop = loop->inner;
1597       else
1598 	{
1599 	  while (!loop->next
1600 		 && loop != loops->tree_root)
1601 	    loop = loop->outer;
1602 	  if (loop == loops->tree_root)
1603 	    break;
1604 
1605 	  loop = loop->next;
1606 	}
1607 
1608       loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
1609     }
1610 
1611   /* Now fix the loop nesting.  */
1612   for (i = 1; i < loops->num; i++)
1613     {
1614       loop = loops->parray[i];
1615       if (!loop)
1616 	continue;
1617 
1618       bb = loop_preheader_edge (loop)->src;
1619       if (bb->loop_father != loop->outer)
1620 	{
1621 	  flow_loop_tree_node_remove (loop);
1622 	  flow_loop_tree_node_add (bb->loop_father, loop);
1623 	}
1624     }
1625 
1626   /* Mark the blocks whose loop has changed.  */
1627   FOR_EACH_BB (bb)
1628     {
1629       if (changed_bbs
1630 	  && (void *) (size_t) bb->loop_father->depth != bb->aux)
1631 	bitmap_set_bit (changed_bbs, bb->index);
1632 
1633       bb->aux = NULL;
1634     }
1635 
1636   mark_single_exit_loops (loops);
1637   mark_irreducible_loops (loops);
1638 }
1639