1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "cfghooks.h"
32 #include "output.h"
33
34 static void duplicate_subloops (struct loops *, struct loop *, struct loop *);
35 static void copy_loops_to (struct loops *, struct loop **, int,
36 struct loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static bool loop_delete_branch_edge (edge, int);
39 static void remove_bbs (basic_block *, int);
40 static bool rpe_enum_p (basic_block, void *);
41 static int find_path (edge, basic_block **);
42 static bool alp_enum_p (basic_block, void *);
43 static void add_loop (struct loops *, struct loop *);
44 static void fix_loop_placements (struct loops *, struct loop *);
45 static bool fix_bb_placement (struct loops *, basic_block);
46 static void fix_bb_placements (struct loops *, basic_block);
47 static void place_new_loop (struct loops *, struct loop *);
48 static void scale_loop_frequencies (struct loop *, int, int);
49 static basic_block create_preheader (struct loop *, int);
50 static void fix_irreducible_loops (basic_block);
51 static void unloop (struct loops *, struct loop *);
52
53 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
54
55 /* Splits basic block BB after INSN, returns created edge. Updates loops
56 and dominators. */
57 edge
split_loop_bb(basic_block bb,void * insn)58 split_loop_bb (basic_block bb, void *insn)
59 {
60 edge e;
61
62 /* Split the block. */
63 e = split_block (bb, insn);
64
65 /* Add dest to loop. */
66 add_bb_to_loop (e->dest, e->src->loop_father);
67
68 return e;
69 }
70
71 /* Checks whether basic block BB is dominated by DATA. */
72 static bool
rpe_enum_p(basic_block bb,void * data)73 rpe_enum_p (basic_block bb, void *data)
74 {
75 return dominated_by_p (CDI_DOMINATORS, bb, data);
76 }
77
78 /* Remove basic blocks BBS from loop structure and dominance info,
79 and delete them afterwards. */
80 static void
remove_bbs(basic_block * bbs,int nbbs)81 remove_bbs (basic_block *bbs, int nbbs)
82 {
83 int i;
84
85 for (i = 0; i < nbbs; i++)
86 {
87 remove_bb_from_loops (bbs[i]);
88 delete_basic_block (bbs[i]);
89 }
90 }
91
92 /* Find path -- i.e. the basic blocks dominated by edge E and put them
93 into array BBS, that will be allocated large enough to contain them.
94 E->dest must have exactly one predecessor for this to work (it is
95 easy to achieve and we do not put it here because we do not want to
96 alter anything by this function). The number of basic blocks in the
97 path is returned. */
98 static int
find_path(edge e,basic_block ** bbs)99 find_path (edge e, basic_block **bbs)
100 {
101 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
102
103 /* Find bbs in the path. */
104 *bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
105 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
106 n_basic_blocks, e->dest);
107 }
108
109 /* Fix placement of basic block BB inside loop hierarchy stored in LOOPS --
110 Let L be a loop to that BB belongs. Then every successor of BB must either
111 1) belong to some superloop of loop L, or
112 2) be a header of loop K such that K->outer is superloop of L
113 Returns true if we had to move BB into other loop to enforce this condition,
114 false if the placement of BB was already correct (provided that placements
115 of its successors are correct). */
116 static bool
fix_bb_placement(struct loops * loops,basic_block bb)117 fix_bb_placement (struct loops *loops, basic_block bb)
118 {
119 edge e;
120 edge_iterator ei;
121 struct loop *loop = loops->tree_root, *act;
122
123 FOR_EACH_EDGE (e, ei, bb->succs)
124 {
125 if (e->dest == EXIT_BLOCK_PTR)
126 continue;
127
128 act = e->dest->loop_father;
129 if (act->header == e->dest)
130 act = act->outer;
131
132 if (flow_loop_nested_p (loop, act))
133 loop = act;
134 }
135
136 if (loop == bb->loop_father)
137 return false;
138
139 remove_bb_from_loops (bb);
140 add_bb_to_loop (bb, loop);
141
142 return true;
143 }
144
145 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
146 enforce condition condition stated in description of fix_bb_placement. We
147 start from basic block FROM that had some of its successors removed, so that
148 his placement no longer has to be correct, and iteratively fix placement of
149 its predecessors that may change if placement of FROM changed. Also fix
150 placement of subloops of FROM->loop_father, that might also be altered due
151 to this change; the condition for them is similar, except that instead of
152 successors we consider edges coming out of the loops. */
153 static void
fix_bb_placements(struct loops * loops,basic_block from)154 fix_bb_placements (struct loops *loops, basic_block from)
155 {
156 sbitmap in_queue;
157 basic_block *queue, *qtop, *qbeg, *qend;
158 struct loop *base_loop;
159 edge e;
160
161 /* We pass through blocks back-reachable from FROM, testing whether some
162 of their successors moved to outer loop. It may be necessary to
163 iterate several times, but it is finite, as we stop unless we move
164 the basic block up the loop structure. The whole story is a bit
165 more complicated due to presence of subloops, those are moved using
166 fix_loop_placement. */
167
168 base_loop = from->loop_father;
169 if (base_loop == loops->tree_root)
170 return;
171
172 in_queue = sbitmap_alloc (last_basic_block);
173 sbitmap_zero (in_queue);
174 SET_BIT (in_queue, from->index);
175 /* Prevent us from going out of the base_loop. */
176 SET_BIT (in_queue, base_loop->header->index);
177
178 queue = xmalloc ((base_loop->num_nodes + 1) * sizeof (basic_block));
179 qtop = queue + base_loop->num_nodes + 1;
180 qbeg = queue;
181 qend = queue + 1;
182 *qbeg = from;
183
184 while (qbeg != qend)
185 {
186 edge_iterator ei;
187 from = *qbeg;
188 qbeg++;
189 if (qbeg == qtop)
190 qbeg = queue;
191 RESET_BIT (in_queue, from->index);
192
193 if (from->loop_father->header == from)
194 {
195 /* Subloop header, maybe move the loop upward. */
196 if (!fix_loop_placement (from->loop_father))
197 continue;
198 }
199 else
200 {
201 /* Ordinary basic block. */
202 if (!fix_bb_placement (loops, from))
203 continue;
204 }
205
206 /* Something has changed, insert predecessors into queue. */
207 FOR_EACH_EDGE (e, ei, from->preds)
208 {
209 basic_block pred = e->src;
210 struct loop *nca;
211
212 if (TEST_BIT (in_queue, pred->index))
213 continue;
214
215 /* If it is subloop, then it either was not moved, or
216 the path up the loop tree from base_loop do not contain
217 it. */
218 nca = find_common_loop (pred->loop_father, base_loop);
219 if (pred->loop_father != base_loop
220 && (nca == base_loop
221 || nca != pred->loop_father))
222 pred = pred->loop_father->header;
223 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
224 {
225 /* No point in processing it. */
226 continue;
227 }
228
229 if (TEST_BIT (in_queue, pred->index))
230 continue;
231
232 /* Schedule the basic block. */
233 *qend = pred;
234 qend++;
235 if (qend == qtop)
236 qend = queue;
237 SET_BIT (in_queue, pred->index);
238 }
239 }
240 free (in_queue);
241 free (queue);
242 }
243
244 /* Basic block from has lost one or more of its predecessors, so it might
245 mo longer be part irreducible loop. Fix it and proceed recursively
246 for its successors if needed. */
247 static void
fix_irreducible_loops(basic_block from)248 fix_irreducible_loops (basic_block from)
249 {
250 basic_block bb;
251 basic_block *stack;
252 int stack_top;
253 sbitmap on_stack;
254 edge *edges, e;
255 unsigned num_edges, i;
256
257 if (!(from->flags & BB_IRREDUCIBLE_LOOP))
258 return;
259
260 on_stack = sbitmap_alloc (last_basic_block);
261 sbitmap_zero (on_stack);
262 SET_BIT (on_stack, from->index);
263 stack = xmalloc (from->loop_father->num_nodes * sizeof (basic_block));
264 stack[0] = from;
265 stack_top = 1;
266
267 while (stack_top)
268 {
269 edge_iterator ei;
270 bb = stack[--stack_top];
271 RESET_BIT (on_stack, bb->index);
272
273 FOR_EACH_EDGE (e, ei, bb->preds)
274 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
275 break;
276 if (e)
277 continue;
278
279 bb->flags &= ~BB_IRREDUCIBLE_LOOP;
280 if (bb->loop_father->header == bb)
281 edges = get_loop_exit_edges (bb->loop_father, &num_edges);
282 else
283 {
284 num_edges = EDGE_COUNT (bb->succs);
285 edges = xmalloc (num_edges * sizeof (edge));
286 FOR_EACH_EDGE (e, ei, bb->succs)
287 edges[ei.index] = e;
288 }
289
290 for (i = 0; i < num_edges; i++)
291 {
292 e = edges[i];
293
294 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
295 {
296 if (!flow_bb_inside_loop_p (from->loop_father, e->dest))
297 continue;
298
299 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
300 if (TEST_BIT (on_stack, e->dest->index))
301 continue;
302
303 SET_BIT (on_stack, e->dest->index);
304 stack[stack_top++] = e->dest;
305 }
306 }
307 free (edges);
308 }
309
310 free (on_stack);
311 free (stack);
312 }
313
314 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
315 and update loop structure stored in LOOPS and dominators. Return true if
316 we were able to remove the path, false otherwise (and nothing is affected
317 then). */
318 bool
remove_path(struct loops * loops,edge e)319 remove_path (struct loops *loops, edge e)
320 {
321 edge ae;
322 basic_block *rem_bbs, *bord_bbs, *dom_bbs, from, bb;
323 int i, nrem, n_bord_bbs, n_dom_bbs;
324 sbitmap seen;
325 bool deleted;
326
327 if (!loop_delete_branch_edge (e, 0))
328 return false;
329
330 /* We need to check whether basic blocks are dominated by the edge
331 e, but we only have basic block dominators. This is easy to
332 fix -- when e->dest has exactly one predecessor, this corresponds
333 to blocks dominated by e->dest, if not, split the edge. */
334 if (!single_pred_p (e->dest))
335 e = single_pred_edge (loop_split_edge_with (e, NULL_RTX));
336
337 /* It may happen that by removing path we remove one or more loops
338 we belong to. In this case first unloop the loops, then proceed
339 normally. We may assume that e->dest is not a header of any loop,
340 as it now has exactly one predecessor. */
341 while (e->src->loop_father->outer
342 && dominated_by_p (CDI_DOMINATORS,
343 e->src->loop_father->latch, e->dest))
344 unloop (loops, e->src->loop_father);
345
346 /* Identify the path. */
347 nrem = find_path (e, &rem_bbs);
348
349 n_bord_bbs = 0;
350 bord_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
351 seen = sbitmap_alloc (last_basic_block);
352 sbitmap_zero (seen);
353
354 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
355 for (i = 0; i < nrem; i++)
356 SET_BIT (seen, rem_bbs[i]->index);
357 for (i = 0; i < nrem; i++)
358 {
359 edge_iterator ei;
360 bb = rem_bbs[i];
361 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
362 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
363 {
364 SET_BIT (seen, ae->dest->index);
365 bord_bbs[n_bord_bbs++] = ae->dest;
366 }
367 }
368
369 /* Remove the path. */
370 from = e->src;
371 deleted = loop_delete_branch_edge (e, 1);
372 gcc_assert (deleted);
373 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
374
375 /* Cancel loops contained in the path. */
376 for (i = 0; i < nrem; i++)
377 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
378 cancel_loop_tree (loops, rem_bbs[i]->loop_father);
379
380 remove_bbs (rem_bbs, nrem);
381 free (rem_bbs);
382
383 /* Find blocks whose dominators may be affected. */
384 n_dom_bbs = 0;
385 sbitmap_zero (seen);
386 for (i = 0; i < n_bord_bbs; i++)
387 {
388 basic_block ldom;
389
390 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
391 if (TEST_BIT (seen, bb->index))
392 continue;
393 SET_BIT (seen, bb->index);
394
395 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
396 ldom;
397 ldom = next_dom_son (CDI_DOMINATORS, ldom))
398 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
399 dom_bbs[n_dom_bbs++] = ldom;
400 }
401
402 free (seen);
403
404 /* Recount dominators. */
405 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
406 free (dom_bbs);
407
408 /* These blocks have lost some predecessor(s), thus their irreducible
409 status could be changed. */
410 for (i = 0; i < n_bord_bbs; i++)
411 fix_irreducible_loops (bord_bbs[i]);
412 free (bord_bbs);
413
414 /* Fix placements of basic blocks inside loops and the placement of
415 loops in the loop tree. */
416 fix_bb_placements (loops, from);
417 fix_loop_placements (loops, from->loop_father);
418
419 return true;
420 }
421
422 /* Predicate for enumeration in add_loop. */
423 static bool
alp_enum_p(basic_block bb,void * alp_header)424 alp_enum_p (basic_block bb, void *alp_header)
425 {
426 return bb != (basic_block) alp_header;
427 }
428
429 /* Given LOOP structure with filled header and latch, find the body of the
430 corresponding loop and add it to LOOPS tree. */
431 static void
add_loop(struct loops * loops,struct loop * loop)432 add_loop (struct loops *loops, struct loop *loop)
433 {
434 basic_block *bbs;
435 int i, n;
436
437 /* Add it to loop structure. */
438 place_new_loop (loops, loop);
439 loop->level = 1;
440
441 /* Find its nodes. */
442 bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
443 n = dfs_enumerate_from (loop->latch, 1, alp_enum_p,
444 bbs, n_basic_blocks, loop->header);
445
446 for (i = 0; i < n; i++)
447 add_bb_to_loop (bbs[i], loop);
448 add_bb_to_loop (loop->header, loop);
449
450 free (bbs);
451 }
452
453 /* Multiply all frequencies in LOOP by NUM/DEN. */
454 static void
scale_loop_frequencies(struct loop * loop,int num,int den)455 scale_loop_frequencies (struct loop *loop, int num, int den)
456 {
457 basic_block *bbs;
458
459 bbs = get_loop_body (loop);
460 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
461 free (bbs);
462 }
463
464 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
465 latch to header and update loop tree stored in LOOPS and dominators
466 accordingly. Everything between them plus LATCH_EDGE destination must
467 be dominated by HEADER_EDGE destination, and back-reachable from
468 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
469 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
470 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
471 Returns newly created loop. */
472
473 struct loop *
loopify(struct loops * loops,edge latch_edge,edge header_edge,basic_block switch_bb,edge true_edge,edge false_edge,bool redirect_all_edges)474 loopify (struct loops *loops, edge latch_edge, edge header_edge,
475 basic_block switch_bb, edge true_edge, edge false_edge,
476 bool redirect_all_edges)
477 {
478 basic_block succ_bb = latch_edge->dest;
479 basic_block pred_bb = header_edge->src;
480 basic_block *dom_bbs, *body;
481 unsigned n_dom_bbs, i;
482 sbitmap seen;
483 struct loop *loop = xcalloc (1, sizeof (struct loop));
484 struct loop *outer = succ_bb->loop_father->outer;
485 int freq, prob, tot_prob;
486 gcov_type cnt;
487 edge e;
488 edge_iterator ei;
489
490 loop->header = header_edge->dest;
491 loop->latch = latch_edge->src;
492
493 freq = EDGE_FREQUENCY (header_edge);
494 cnt = header_edge->count;
495 prob = EDGE_SUCC (switch_bb, 0)->probability;
496 tot_prob = prob + EDGE_SUCC (switch_bb, 1)->probability;
497 if (tot_prob == 0)
498 tot_prob = 1;
499
500 /* Redirect edges. */
501 loop_redirect_edge (latch_edge, loop->header);
502 loop_redirect_edge (true_edge, succ_bb);
503
504 /* During loop versioning, one of the switch_bb edge is already properly
505 set. Do not redirect it again unless redirect_all_edges is true. */
506 if (redirect_all_edges)
507 {
508 loop_redirect_edge (header_edge, switch_bb);
509 loop_redirect_edge (false_edge, loop->header);
510
511 /* Update dominators. */
512 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
513 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
514 }
515
516 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
517
518 /* Compute new loop. */
519 add_loop (loops, loop);
520 flow_loop_tree_node_add (outer, loop);
521
522 /* Add switch_bb to appropriate loop. */
523 add_bb_to_loop (switch_bb, outer);
524
525 /* Fix frequencies. */
526 switch_bb->frequency = freq;
527 switch_bb->count = cnt;
528 FOR_EACH_EDGE (e, ei, switch_bb->succs)
529 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
530 scale_loop_frequencies (loop, prob, tot_prob);
531 scale_loop_frequencies (succ_bb->loop_father, tot_prob - prob, tot_prob);
532
533 /* Update dominators of blocks outside of LOOP. */
534 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
535 n_dom_bbs = 0;
536 seen = sbitmap_alloc (last_basic_block);
537 sbitmap_zero (seen);
538 body = get_loop_body (loop);
539
540 for (i = 0; i < loop->num_nodes; i++)
541 SET_BIT (seen, body[i]->index);
542
543 for (i = 0; i < loop->num_nodes; i++)
544 {
545 basic_block ldom;
546
547 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
548 ldom;
549 ldom = next_dom_son (CDI_DOMINATORS, ldom))
550 if (!TEST_BIT (seen, ldom->index))
551 {
552 SET_BIT (seen, ldom->index);
553 dom_bbs[n_dom_bbs++] = ldom;
554 }
555 }
556
557 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
558
559 free (body);
560 free (seen);
561 free (dom_bbs);
562
563 return loop;
564 }
565
566 /* Remove the latch edge of a LOOP and update LOOPS tree to indicate that
567 the LOOP was removed. After this function, original loop latch will
568 have no successor, which caller is expected to fix somehow. */
569 static void
unloop(struct loops * loops,struct loop * loop)570 unloop (struct loops *loops, struct loop *loop)
571 {
572 basic_block *body;
573 struct loop *ploop;
574 unsigned i, n;
575 basic_block latch = loop->latch;
576 edge *edges;
577 unsigned num_edges;
578
579 /* This is relatively straightforward. The dominators are unchanged, as
580 loop header dominates loop latch, so the only thing we have to care of
581 is the placement of loops and basic blocks inside the loop tree. We
582 move them all to the loop->outer, and then let fix_bb_placements do
583 its work. */
584
585 body = get_loop_body (loop);
586 edges = get_loop_exit_edges (loop, &num_edges);
587 n = loop->num_nodes;
588 for (i = 0; i < n; i++)
589 if (body[i]->loop_father == loop)
590 {
591 remove_bb_from_loops (body[i]);
592 add_bb_to_loop (body[i], loop->outer);
593 }
594 free(body);
595
596 while (loop->inner)
597 {
598 ploop = loop->inner;
599 flow_loop_tree_node_remove (ploop);
600 flow_loop_tree_node_add (loop->outer, ploop);
601 }
602
603 /* Remove the loop and free its data. */
604 flow_loop_tree_node_remove (loop);
605 loops->parray[loop->num] = NULL;
606 flow_loop_free (loop);
607
608 remove_edge (single_succ_edge (latch));
609 fix_bb_placements (loops, latch);
610
611 /* If the loop was inside an irreducible region, we would have to somehow
612 update the irreducible marks inside its body. While it is certainly
613 possible to do, it is a bit complicated and this situation should be
614 very rare, so we just remark all loops in this case. */
615 for (i = 0; i < num_edges; i++)
616 if (edges[i]->flags & EDGE_IRREDUCIBLE_LOOP)
617 break;
618 if (i != num_edges)
619 mark_irreducible_loops (loops);
620 free (edges);
621 }
622
623 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
624 FATHER of LOOP such that all of the edges coming out of LOOP belong to
625 FATHER, and set it as outer loop of LOOP. Return 1 if placement of
626 LOOP changed. */
627 int
fix_loop_placement(struct loop * loop)628 fix_loop_placement (struct loop *loop)
629 {
630 basic_block *body;
631 unsigned i;
632 edge e;
633 edge_iterator ei;
634 struct loop *father = loop->pred[0], *act;
635
636 body = get_loop_body (loop);
637 for (i = 0; i < loop->num_nodes; i++)
638 FOR_EACH_EDGE (e, ei, body[i]->succs)
639 if (!flow_bb_inside_loop_p (loop, e->dest))
640 {
641 act = find_common_loop (loop, e->dest->loop_father);
642 if (flow_loop_nested_p (father, act))
643 father = act;
644 }
645 free (body);
646
647 if (father != loop->outer)
648 {
649 for (act = loop->outer; act != father; act = act->outer)
650 act->num_nodes -= loop->num_nodes;
651 flow_loop_tree_node_remove (loop);
652 flow_loop_tree_node_add (father, loop);
653 return 1;
654 }
655 return 0;
656 }
657
658 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
659 condition stated in description of fix_loop_placement holds for them.
660 It is used in case when we removed some edges coming out of LOOP, which
661 may cause the right placement of LOOP inside loop tree to change. */
662 static void
fix_loop_placements(struct loops * loops,struct loop * loop)663 fix_loop_placements (struct loops *loops, struct loop *loop)
664 {
665 struct loop *outer;
666
667 while (loop->outer)
668 {
669 outer = loop->outer;
670 if (!fix_loop_placement (loop))
671 break;
672
673 /* Changing the placement of a loop in the loop tree may alter the
674 validity of condition 2) of the description of fix_bb_placement
675 for its preheader, because the successor is the header and belongs
676 to the loop. So call fix_bb_placements to fix up the placement
677 of the preheader and (possibly) of its predecessors. */
678 fix_bb_placements (loops, loop_preheader_edge (loop)->src);
679 loop = outer;
680 }
681 }
682
683 /* Creates place for a new LOOP in LOOPS structure. */
684 static void
place_new_loop(struct loops * loops,struct loop * loop)685 place_new_loop (struct loops *loops, struct loop *loop)
686 {
687 loops->parray =
688 xrealloc (loops->parray, (loops->num + 1) * sizeof (struct loop *));
689 loops->parray[loops->num] = loop;
690
691 loop->num = loops->num++;
692 }
693
694 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
695 created loop into LOOPS structure. */
696 struct loop *
duplicate_loop(struct loops * loops,struct loop * loop,struct loop * target)697 duplicate_loop (struct loops *loops, struct loop *loop, struct loop *target)
698 {
699 struct loop *cloop;
700 cloop = xcalloc (1, sizeof (struct loop));
701 place_new_loop (loops, cloop);
702
703 /* Initialize copied loop. */
704 cloop->level = loop->level;
705
706 /* Set it as copy of loop. */
707 loop->copy = cloop;
708
709 /* Add it to target. */
710 flow_loop_tree_node_add (target, cloop);
711
712 return cloop;
713 }
714
715 /* Copies structure of subloops of LOOP into TARGET loop, placing
716 newly created loops into loop tree stored in LOOPS. */
717 static void
duplicate_subloops(struct loops * loops,struct loop * loop,struct loop * target)718 duplicate_subloops (struct loops *loops, struct loop *loop, struct loop *target)
719 {
720 struct loop *aloop, *cloop;
721
722 for (aloop = loop->inner; aloop; aloop = aloop->next)
723 {
724 cloop = duplicate_loop (loops, aloop, target);
725 duplicate_subloops (loops, aloop, cloop);
726 }
727 }
728
729 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
730 into TARGET loop, placing newly created loops into loop tree LOOPS. */
731 static void
copy_loops_to(struct loops * loops,struct loop ** copied_loops,int n,struct loop * target)732 copy_loops_to (struct loops *loops, struct loop **copied_loops, int n, struct loop *target)
733 {
734 struct loop *aloop;
735 int i;
736
737 for (i = 0; i < n; i++)
738 {
739 aloop = duplicate_loop (loops, copied_loops[i], target);
740 duplicate_subloops (loops, copied_loops[i], aloop);
741 }
742 }
743
744 /* Redirects edge E to basic block DEST. */
745 static void
loop_redirect_edge(edge e,basic_block dest)746 loop_redirect_edge (edge e, basic_block dest)
747 {
748 if (e->dest == dest)
749 return;
750
751 redirect_edge_and_branch_force (e, dest);
752 }
753
754 /* Deletes edge E from a branch if possible. Unless REALLY_DELETE is set,
755 just test whether it is possible to remove the edge. */
756 static bool
loop_delete_branch_edge(edge e,int really_delete)757 loop_delete_branch_edge (edge e, int really_delete)
758 {
759 basic_block src = e->src;
760 basic_block newdest;
761 int irr;
762 edge snd;
763
764 gcc_assert (EDGE_COUNT (src->succs) > 1);
765
766 /* Cannot handle more than two exit edges. */
767 if (EDGE_COUNT (src->succs) > 2)
768 return false;
769 /* And it must be just a simple branch. */
770 if (!any_condjump_p (BB_END (src)))
771 return false;
772
773 snd = e == EDGE_SUCC (src, 0) ? EDGE_SUCC (src, 1) : EDGE_SUCC (src, 0);
774 newdest = snd->dest;
775 if (newdest == EXIT_BLOCK_PTR)
776 return false;
777
778 /* Hopefully the above conditions should suffice. */
779 if (!really_delete)
780 return true;
781
782 /* Redirecting behaves wrongly wrto this flag. */
783 irr = snd->flags & EDGE_IRREDUCIBLE_LOOP;
784
785 if (!redirect_edge_and_branch (e, newdest))
786 return false;
787 single_succ_edge (src)->flags &= ~EDGE_IRREDUCIBLE_LOOP;
788 single_succ_edge (src)->flags |= irr;
789
790 return true;
791 }
792
793 /* Check whether LOOP's body can be duplicated. */
794 bool
can_duplicate_loop_p(struct loop * loop)795 can_duplicate_loop_p (struct loop *loop)
796 {
797 int ret;
798 basic_block *bbs = get_loop_body (loop);
799
800 ret = can_copy_bbs_p (bbs, loop->num_nodes);
801 free (bbs);
802
803 return ret;
804 }
805
806 /* The NBBS blocks in BBS will get duplicated and the copies will be placed
807 to LOOP. Update the single_exit information in superloops of LOOP. */
808
809 static void
update_single_exits_after_duplication(basic_block * bbs,unsigned nbbs,struct loop * loop)810 update_single_exits_after_duplication (basic_block *bbs, unsigned nbbs,
811 struct loop *loop)
812 {
813 unsigned i;
814
815 for (i = 0; i < nbbs; i++)
816 bbs[i]->flags |= BB_DUPLICATED;
817
818 for (; loop->outer; loop = loop->outer)
819 {
820 if (!loop->single_exit)
821 continue;
822
823 if (loop->single_exit->src->flags & BB_DUPLICATED)
824 loop->single_exit = NULL;
825 }
826
827 for (i = 0; i < nbbs; i++)
828 bbs[i]->flags &= ~BB_DUPLICATED;
829 }
830
831 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
832 LOOPS structure and dominators. E's destination must be LOOP header for
833 this to work, i.e. it must be entry or latch edge of this loop; these are
834 unique, as the loops must have preheaders for this function to work
835 correctly (in case E is latch, the function unrolls the loop, if E is entry
836 edge, it peels the loop). Store edges created by copying ORIG edge from
837 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
838 original LOOP body, the other copies are numbered in order given by control
839 flow through them) into TO_REMOVE array. Returns false if duplication is
840 impossible. */
841 bool
duplicate_loop_to_header_edge(struct loop * loop,edge e,struct loops * loops,unsigned int ndupl,sbitmap wont_exit,edge orig,edge * to_remove,unsigned int * n_to_remove,int flags)842 duplicate_loop_to_header_edge (struct loop *loop, edge e, struct loops *loops,
843 unsigned int ndupl, sbitmap wont_exit,
844 edge orig, edge *to_remove,
845 unsigned int *n_to_remove, int flags)
846 {
847 struct loop *target, *aloop;
848 struct loop **orig_loops;
849 unsigned n_orig_loops;
850 basic_block header = loop->header, latch = loop->latch;
851 basic_block *new_bbs, *bbs, *first_active;
852 basic_block new_bb, bb, first_active_latch = NULL;
853 edge ae, latch_edge;
854 edge spec_edges[2], new_spec_edges[2];
855 #define SE_LATCH 0
856 #define SE_ORIG 1
857 unsigned i, j, n;
858 int is_latch = (latch == e->src);
859 int scale_act = 0, *scale_step = NULL, scale_main = 0;
860 int p, freq_in, freq_le, freq_out_orig;
861 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
862 int add_irreducible_flag;
863 basic_block place_after;
864
865 gcc_assert (e->dest == loop->header);
866 gcc_assert (ndupl > 0);
867
868 if (orig)
869 {
870 /* Orig must be edge out of the loop. */
871 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
872 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
873 }
874
875 n = loop->num_nodes;
876 bbs = get_loop_body_in_dom_order (loop);
877 gcc_assert (bbs[0] == loop->header);
878 gcc_assert (bbs[n - 1] == loop->latch);
879
880 /* Check whether duplication is possible. */
881 if (!can_copy_bbs_p (bbs, loop->num_nodes))
882 {
883 free (bbs);
884 return false;
885 }
886 new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);
887
888 /* In case we are doing loop peeling and the loop is in the middle of
889 irreducible region, the peeled copies will be inside it too. */
890 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
891 gcc_assert (!is_latch || !add_irreducible_flag);
892
893 /* Find edge from latch. */
894 latch_edge = loop_latch_edge (loop);
895
896 if (flags & DLTHE_FLAG_UPDATE_FREQ)
897 {
898 /* Calculate coefficients by that we have to scale frequencies
899 of duplicated loop bodies. */
900 freq_in = header->frequency;
901 freq_le = EDGE_FREQUENCY (latch_edge);
902 if (freq_in == 0)
903 freq_in = 1;
904 if (freq_in < freq_le)
905 freq_in = freq_le;
906 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
907 if (freq_out_orig > freq_in - freq_le)
908 freq_out_orig = freq_in - freq_le;
909 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
910 prob_pass_wont_exit =
911 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
912
913 scale_step = xmalloc (ndupl * sizeof (int));
914
915 for (i = 1; i <= ndupl; i++)
916 scale_step[i - 1] = TEST_BIT (wont_exit, i)
917 ? prob_pass_wont_exit
918 : prob_pass_thru;
919
920 /* Complete peeling is special as the probability of exit in last
921 copy becomes 1. */
922 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
923 {
924 int wanted_freq = EDGE_FREQUENCY (e);
925
926 if (wanted_freq > freq_in)
927 wanted_freq = freq_in;
928
929 gcc_assert (!is_latch);
930 /* First copy has frequency of incoming edge. Each subsequent
931 frequency should be reduced by prob_pass_wont_exit. Caller
932 should've managed the flags so all except for original loop
933 has won't exist set. */
934 scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
935 /* Now simulate the duplication adjustments and compute header
936 frequency of the last copy. */
937 for (i = 0; i < ndupl; i++)
938 wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE);
939 scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
940 }
941 else if (is_latch)
942 {
943 prob_pass_main = TEST_BIT (wont_exit, 0)
944 ? prob_pass_wont_exit
945 : prob_pass_thru;
946 p = prob_pass_main;
947 scale_main = REG_BR_PROB_BASE;
948 for (i = 0; i < ndupl; i++)
949 {
950 scale_main += p;
951 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
952 }
953 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
954 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
955 }
956 else
957 {
958 scale_main = REG_BR_PROB_BASE;
959 for (i = 0; i < ndupl; i++)
960 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
961 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
962 }
963 for (i = 0; i < ndupl; i++)
964 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
965 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
966 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
967 }
968
969 /* Loop the new bbs will belong to. */
970 target = e->src->loop_father;
971
972 /* Original loops. */
973 n_orig_loops = 0;
974 for (aloop = loop->inner; aloop; aloop = aloop->next)
975 n_orig_loops++;
976 orig_loops = xcalloc (n_orig_loops, sizeof (struct loop *));
977 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
978 orig_loops[i] = aloop;
979
980 loop->copy = target;
981
982 first_active = xmalloc (n * sizeof (basic_block));
983 if (is_latch)
984 {
985 memcpy (first_active, bbs, n * sizeof (basic_block));
986 first_active_latch = latch;
987 }
988
989 /* Update the information about single exits. */
990 if (loops->state & LOOPS_HAVE_MARKED_SINGLE_EXITS)
991 update_single_exits_after_duplication (bbs, n, target);
992
993 /* Record exit edge in original loop body. */
994 if (orig && TEST_BIT (wont_exit, 0))
995 to_remove[(*n_to_remove)++] = orig;
996
997 spec_edges[SE_ORIG] = orig;
998 spec_edges[SE_LATCH] = latch_edge;
999
1000 place_after = e->src;
1001 for (j = 0; j < ndupl; j++)
1002 {
1003 /* Copy loops. */
1004 copy_loops_to (loops, orig_loops, n_orig_loops, target);
1005
1006 /* Copy bbs. */
1007 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1008 place_after);
1009 place_after = new_spec_edges[SE_LATCH]->src;
1010
1011 if (flags & DLTHE_RECORD_COPY_NUMBER)
1012 for (i = 0; i < n; i++)
1013 {
1014 gcc_assert (!new_bbs[i]->aux);
1015 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1016 }
1017
1018 /* Note whether the blocks and edges belong to an irreducible loop. */
1019 if (add_irreducible_flag)
1020 {
1021 for (i = 0; i < n; i++)
1022 new_bbs[i]->flags |= BB_DUPLICATED;
1023 for (i = 0; i < n; i++)
1024 {
1025 edge_iterator ei;
1026 new_bb = new_bbs[i];
1027 if (new_bb->loop_father == target)
1028 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1029
1030 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1031 if ((ae->dest->flags & BB_DUPLICATED)
1032 && (ae->src->loop_father == target
1033 || ae->dest->loop_father == target))
1034 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1035 }
1036 for (i = 0; i < n; i++)
1037 new_bbs[i]->flags &= ~BB_DUPLICATED;
1038 }
1039
1040 /* Redirect the special edges. */
1041 if (is_latch)
1042 {
1043 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1044 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1045 loop->header);
1046 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1047 latch = loop->latch = new_bbs[n - 1];
1048 e = latch_edge = new_spec_edges[SE_LATCH];
1049 }
1050 else
1051 {
1052 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1053 loop->header);
1054 redirect_edge_and_branch_force (e, new_bbs[0]);
1055 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1056 e = new_spec_edges[SE_LATCH];
1057 }
1058
1059 /* Record exit edge in this copy. */
1060 if (orig && TEST_BIT (wont_exit, j + 1))
1061 to_remove[(*n_to_remove)++] = new_spec_edges[SE_ORIG];
1062
1063 /* Record the first copy in the control flow order if it is not
1064 the original loop (i.e. in case of peeling). */
1065 if (!first_active_latch)
1066 {
1067 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1068 first_active_latch = new_bbs[n - 1];
1069 }
1070
1071 /* Set counts and frequencies. */
1072 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1073 {
1074 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1075 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1076 }
1077 }
1078 free (new_bbs);
1079 free (orig_loops);
1080
1081 /* Update the original loop. */
1082 if (!is_latch)
1083 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1084 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1085 {
1086 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1087 free (scale_step);
1088 }
1089
1090 /* Update dominators of outer blocks if affected. */
1091 for (i = 0; i < n; i++)
1092 {
1093 basic_block dominated, dom_bb, *dom_bbs;
1094 int n_dom_bbs,j;
1095
1096 bb = bbs[i];
1097 bb->aux = 0;
1098
1099 n_dom_bbs = get_dominated_by (CDI_DOMINATORS, bb, &dom_bbs);
1100 for (j = 0; j < n_dom_bbs; j++)
1101 {
1102 dominated = dom_bbs[j];
1103 if (flow_bb_inside_loop_p (loop, dominated))
1104 continue;
1105 dom_bb = nearest_common_dominator (
1106 CDI_DOMINATORS, first_active[i], first_active_latch);
1107 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1108 }
1109 free (dom_bbs);
1110 }
1111 free (first_active);
1112
1113 free (bbs);
1114
1115 return true;
1116 }
1117
1118 /* A callback for make_forwarder block, to redirect all edges except for
1119 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1120 whether to redirect it. */
1121
1122 static edge mfb_kj_edge;
1123 static bool
mfb_keep_just(edge e)1124 mfb_keep_just (edge e)
1125 {
1126 return e != mfb_kj_edge;
1127 }
1128
1129 /* A callback for make_forwarder block, to update data structures for a basic
1130 block JUMP created by redirecting an edge (only the latch edge is being
1131 redirected). */
1132
1133 static void
mfb_update_loops(basic_block jump)1134 mfb_update_loops (basic_block jump)
1135 {
1136 struct loop *loop = single_succ (jump)->loop_father;
1137
1138 if (dom_computed[CDI_DOMINATORS])
1139 set_immediate_dominator (CDI_DOMINATORS, jump, single_pred (jump));
1140 add_bb_to_loop (jump, loop);
1141 loop->latch = jump;
1142 }
1143
1144 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1145 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1146 entry; otherwise we also force preheader block to have only one successor.
1147 The function also updates dominators. */
1148
1149 static basic_block
create_preheader(struct loop * loop,int flags)1150 create_preheader (struct loop *loop, int flags)
1151 {
1152 edge e, fallthru;
1153 basic_block dummy;
1154 struct loop *cloop, *ploop;
1155 int nentry = 0;
1156 bool irred = false;
1157 bool latch_edge_was_fallthru;
1158 edge one_succ_pred = 0;
1159 edge_iterator ei;
1160
1161 cloop = loop->outer;
1162
1163 FOR_EACH_EDGE (e, ei, loop->header->preds)
1164 {
1165 if (e->src == loop->latch)
1166 continue;
1167 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1168 nentry++;
1169 if (single_succ_p (e->src))
1170 one_succ_pred = e;
1171 }
1172 gcc_assert (nentry);
1173 if (nentry == 1)
1174 {
1175 /* Get an edge that is different from the one from loop->latch
1176 to loop->header. */
1177 e = EDGE_PRED (loop->header,
1178 EDGE_PRED (loop->header, 0)->src == loop->latch);
1179
1180 if (!(flags & CP_SIMPLE_PREHEADERS) || single_succ_p (e->src))
1181 return NULL;
1182 }
1183
1184 mfb_kj_edge = loop_latch_edge (loop);
1185 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1186 fallthru = make_forwarder_block (loop->header, mfb_keep_just,
1187 mfb_update_loops);
1188 dummy = fallthru->src;
1189 loop->header = fallthru->dest;
1190
1191 /* The header could be a latch of some superloop(s); due to design of
1192 split_block, it would now move to fallthru->dest. */
1193 for (ploop = loop; ploop; ploop = ploop->outer)
1194 if (ploop->latch == dummy)
1195 ploop->latch = fallthru->dest;
1196
1197 /* Try to be clever in placing the newly created preheader. The idea is to
1198 avoid breaking any "fallthruness" relationship between blocks.
1199
1200 The preheader was created just before the header and all incoming edges
1201 to the header were redirected to the preheader, except the latch edge.
1202 So the only problematic case is when this latch edge was a fallthru
1203 edge: it is not anymore after the preheader creation so we have broken
1204 the fallthruness. We're therefore going to look for a better place. */
1205 if (latch_edge_was_fallthru)
1206 {
1207 if (one_succ_pred)
1208 e = one_succ_pred;
1209 else
1210 e = EDGE_PRED (dummy, 0);
1211
1212 move_block_after (dummy, e->src);
1213 }
1214
1215 loop->header->loop_father = loop;
1216 add_bb_to_loop (dummy, cloop);
1217
1218 if (irred)
1219 {
1220 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1221 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1222 }
1223
1224 if (dump_file)
1225 fprintf (dump_file, "Created preheader block for loop %i\n",
1226 loop->num);
1227
1228 return dummy;
1229 }
1230
1231 /* Create preheaders for each loop from loop tree stored in LOOPS; for meaning
1232 of FLAGS see create_preheader. */
1233 void
create_preheaders(struct loops * loops,int flags)1234 create_preheaders (struct loops *loops, int flags)
1235 {
1236 unsigned i;
1237 for (i = 1; i < loops->num; i++)
1238 create_preheader (loops->parray[i], flags);
1239 loops->state |= LOOPS_HAVE_PREHEADERS;
1240 }
1241
1242 /* Forces all loop latches of loops from loop tree LOOPS to have only single
1243 successor. */
1244 void
force_single_succ_latches(struct loops * loops)1245 force_single_succ_latches (struct loops *loops)
1246 {
1247 unsigned i;
1248 struct loop *loop;
1249 edge e;
1250
1251 for (i = 1; i < loops->num; i++)
1252 {
1253 loop = loops->parray[i];
1254 if (loop->latch != loop->header && single_succ_p (loop->latch))
1255 continue;
1256
1257 e = find_edge (loop->latch, loop->header);
1258
1259 loop_split_edge_with (e, NULL_RTX);
1260 }
1261 loops->state |= LOOPS_HAVE_SIMPLE_LATCHES;
1262 }
1263
1264 /* A quite stupid function to put INSNS on edge E. They are supposed to form
1265 just one basic block. Jumps in INSNS are not handled, so cfg do not have to
1266 be ok after this function. The created block is placed on correct place
1267 in LOOPS structure and its dominator is set. */
1268 basic_block
loop_split_edge_with(edge e,rtx insns)1269 loop_split_edge_with (edge e, rtx insns)
1270 {
1271 basic_block src, dest, new_bb;
1272 struct loop *loop_c;
1273
1274 src = e->src;
1275 dest = e->dest;
1276
1277 loop_c = find_common_loop (src->loop_father, dest->loop_father);
1278
1279 /* Create basic block for it. */
1280
1281 new_bb = split_edge (e);
1282 add_bb_to_loop (new_bb, loop_c);
1283 new_bb->flags |= (insns ? BB_SUPERBLOCK : 0);
1284
1285 if (insns)
1286 emit_insn_after (insns, BB_END (new_bb));
1287
1288 if (dest->loop_father->latch == src)
1289 dest->loop_father->latch = new_bb;
1290
1291 return new_bb;
1292 }
1293
1294 /* Uses the natural loop discovery to recreate loop notes. */
1295 void
create_loop_notes(void)1296 create_loop_notes (void)
1297 {
1298 rtx insn, head, end;
1299 struct loops loops;
1300 struct loop *loop;
1301 basic_block *first, *last, bb, pbb;
1302 struct loop **stack, **top;
1303
1304 #ifdef ENABLE_CHECKING
1305 /* Verify that there really are no loop notes. */
1306 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1307 gcc_assert (!NOTE_P (insn) ||
1308 NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
1309 #endif
1310
1311 flow_loops_find (&loops);
1312 free_dominance_info (CDI_DOMINATORS);
1313 if (loops.num > 1)
1314 {
1315 last = xcalloc (loops.num, sizeof (basic_block));
1316
1317 FOR_EACH_BB (bb)
1318 {
1319 for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1320 last[loop->num] = bb;
1321 }
1322
1323 first = xcalloc (loops.num, sizeof (basic_block));
1324 stack = xcalloc (loops.num, sizeof (struct loop *));
1325 top = stack;
1326
1327 FOR_EACH_BB (bb)
1328 {
1329 for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1330 {
1331 if (!first[loop->num])
1332 {
1333 *top++ = loop;
1334 first[loop->num] = bb;
1335 }
1336
1337 if (bb == last[loop->num])
1338 {
1339 /* Prevent loops from overlapping. */
1340 while (*--top != loop)
1341 last[(*top)->num] = EXIT_BLOCK_PTR;
1342
1343 /* If loop starts with jump into it, place the note in
1344 front of the jump. */
1345 insn = PREV_INSN (BB_HEAD (first[loop->num]));
1346 if (insn
1347 && BARRIER_P (insn))
1348 insn = PREV_INSN (insn);
1349
1350 if (insn
1351 && JUMP_P (insn)
1352 && any_uncondjump_p (insn)
1353 && onlyjump_p (insn))
1354 {
1355 pbb = BLOCK_FOR_INSN (insn);
1356 gcc_assert (pbb && single_succ_p (pbb));
1357
1358 if (!flow_bb_inside_loop_p (loop, single_succ (pbb)))
1359 insn = BB_HEAD (first[loop->num]);
1360 }
1361 else
1362 insn = BB_HEAD (first[loop->num]);
1363
1364 head = BB_HEAD (first[loop->num]);
1365 emit_note_before (NOTE_INSN_LOOP_BEG, insn);
1366 BB_HEAD (first[loop->num]) = head;
1367
1368 /* Position the note correctly wrto barrier. */
1369 insn = BB_END (last[loop->num]);
1370 if (NEXT_INSN (insn)
1371 && BARRIER_P (NEXT_INSN (insn)))
1372 insn = NEXT_INSN (insn);
1373
1374 end = BB_END (last[loop->num]);
1375 emit_note_after (NOTE_INSN_LOOP_END, insn);
1376 BB_END (last[loop->num]) = end;
1377 }
1378 }
1379 }
1380
1381 free (first);
1382 free (last);
1383 free (stack);
1384 }
1385 flow_loops_free (&loops);
1386 }
1387
1388 /* This function is called from loop_version. It splits the entry edge
1389 of the loop we want to version, adds the versioning condition, and
1390 adjust the edges to the two versions of the loop appropriately.
1391 e is an incoming edge. Returns the basic block containing the
1392 condition.
1393
1394 --- edge e ---- > [second_head]
1395
1396 Split it and insert new conditional expression and adjust edges.
1397
1398 --- edge e ---> [cond expr] ---> [first_head]
1399 |
1400 +---------> [second_head]
1401 */
1402
1403 static basic_block
lv_adjust_loop_entry_edge(basic_block first_head,basic_block second_head,edge e,tree cond_expr)1404 lv_adjust_loop_entry_edge (basic_block first_head,
1405 basic_block second_head,
1406 edge e,
1407 tree cond_expr)
1408 {
1409 basic_block new_head = NULL;
1410 edge e1;
1411
1412 gcc_assert (e->dest == second_head);
1413
1414 /* Split edge 'e'. This will create a new basic block, where we can
1415 insert conditional expr. */
1416 new_head = split_edge (e);
1417
1418
1419 lv_add_condition_to_bb (first_head, second_head, new_head,
1420 cond_expr);
1421
1422 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1423 e1 = make_edge (new_head, first_head, ir_type () ? EDGE_TRUE_VALUE : 0);
1424 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1425 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1426
1427 /* Adjust loop header phi nodes. */
1428 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1429
1430 return new_head;
1431 }
1432
1433 /* Main entry point for Loop Versioning transformation.
1434
1435 This transformation given a condition and a loop, creates
1436 -if (condition) { loop_copy1 } else { loop_copy2 },
1437 where loop_copy1 is the loop transformed in one way, and loop_copy2
1438 is the loop transformed in another way (or unchanged). 'condition'
1439 may be a run time test for things that were not resolved by static
1440 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1441
1442 If PLACE_AFTER is true, we place the new loop after LOOP in the
1443 instruction stream, otherwise it is placed before LOOP. */
1444
1445 struct loop *
loop_version(struct loops * loops,struct loop * loop,void * cond_expr,basic_block * condition_bb,bool place_after)1446 loop_version (struct loops *loops, struct loop * loop,
1447 void *cond_expr, basic_block *condition_bb,
1448 bool place_after)
1449 {
1450 basic_block first_head, second_head;
1451 edge entry, latch_edge, exit, true_edge, false_edge;
1452 int irred_flag;
1453 struct loop *nloop;
1454 basic_block cond_bb;
1455
1456 /* CHECKME: Loop versioning does not handle nested loop at this point. */
1457 if (loop->inner)
1458 return NULL;
1459
1460 /* Record entry and latch edges for the loop */
1461 entry = loop_preheader_edge (loop);
1462 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1463 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1464
1465 /* Note down head of loop as first_head. */
1466 first_head = entry->dest;
1467
1468 /* Duplicate loop. */
1469 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, loops, 1,
1470 NULL, NULL, NULL, NULL, 0))
1471 return NULL;
1472
1473 /* After duplication entry edge now points to new loop head block.
1474 Note down new head as second_head. */
1475 second_head = entry->dest;
1476
1477 /* Split loop entry edge and insert new block with cond expr. */
1478 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1479 entry, cond_expr);
1480 if (condition_bb)
1481 *condition_bb = cond_bb;
1482
1483 if (!cond_bb)
1484 {
1485 entry->flags |= irred_flag;
1486 return NULL;
1487 }
1488
1489 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1490
1491 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1492 nloop = loopify (loops,
1493 latch_edge,
1494 single_pred_edge (get_bb_copy (loop->header)),
1495 cond_bb, true_edge, false_edge,
1496 false /* Do not redirect all edges. */);
1497
1498 exit = loop->single_exit;
1499 if (exit)
1500 nloop->single_exit = find_edge (get_bb_copy (exit->src), exit->dest);
1501
1502 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1503 lv_flush_pending_stmts (latch_edge);
1504
1505 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1506 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1507 lv_flush_pending_stmts (false_edge);
1508 /* Adjust irreducible flag. */
1509 if (irred_flag)
1510 {
1511 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1512 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1513 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1514 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1515 }
1516
1517 if (place_after)
1518 {
1519 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1520 unsigned i;
1521
1522 after = loop->latch;
1523
1524 for (i = 0; i < nloop->num_nodes; i++)
1525 {
1526 move_block_after (bbs[i], after);
1527 after = bbs[i];
1528 }
1529 free (bbs);
1530 }
1531
1532 /* At this point condition_bb is loop predheader with two successors,
1533 first_head and second_head. Make sure that loop predheader has only
1534 one successor. */
1535 loop_split_edge_with (loop_preheader_edge (loop), NULL);
1536 loop_split_edge_with (loop_preheader_edge (nloop), NULL);
1537
1538 return nloop;
1539 }
1540
1541 /* The structure of LOOPS might have changed. Some loops might get removed
1542 (and their headers and latches were set to NULL), loop exists might get
1543 removed (thus the loop nesting may be wrong), and some blocks and edges
1544 were changed (so the information about bb --> loop mapping does not have
1545 to be correct). But still for the remaining loops the header dominates
1546 the latch, and loops did not get new subloobs (new loops might possibly
1547 get created, but we are not interested in them). Fix up the mess.
1548
1549 If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
1550 marked in it. */
1551
1552 void
fix_loop_structure(struct loops * loops,bitmap changed_bbs)1553 fix_loop_structure (struct loops *loops, bitmap changed_bbs)
1554 {
1555 basic_block bb;
1556 struct loop *loop, *ploop;
1557 unsigned i;
1558
1559 /* Remove the old bb -> loop mapping. */
1560 FOR_EACH_BB (bb)
1561 {
1562 bb->aux = (void *) (size_t) bb->loop_father->depth;
1563 bb->loop_father = loops->tree_root;
1564 }
1565
1566 /* Remove the dead loops from structures. */
1567 loops->tree_root->num_nodes = n_basic_blocks + 2;
1568 for (i = 1; i < loops->num; i++)
1569 {
1570 loop = loops->parray[i];
1571 if (!loop)
1572 continue;
1573
1574 loop->num_nodes = 0;
1575 if (loop->header)
1576 continue;
1577
1578 while (loop->inner)
1579 {
1580 ploop = loop->inner;
1581 flow_loop_tree_node_remove (ploop);
1582 flow_loop_tree_node_add (loop->outer, ploop);
1583 }
1584
1585 /* Remove the loop and free its data. */
1586 flow_loop_tree_node_remove (loop);
1587 loops->parray[loop->num] = NULL;
1588 flow_loop_free (loop);
1589 }
1590
1591 /* Rescan the bodies of loops, starting from the outermost. */
1592 loop = loops->tree_root;
1593 while (1)
1594 {
1595 if (loop->inner)
1596 loop = loop->inner;
1597 else
1598 {
1599 while (!loop->next
1600 && loop != loops->tree_root)
1601 loop = loop->outer;
1602 if (loop == loops->tree_root)
1603 break;
1604
1605 loop = loop->next;
1606 }
1607
1608 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
1609 }
1610
1611 /* Now fix the loop nesting. */
1612 for (i = 1; i < loops->num; i++)
1613 {
1614 loop = loops->parray[i];
1615 if (!loop)
1616 continue;
1617
1618 bb = loop_preheader_edge (loop)->src;
1619 if (bb->loop_father != loop->outer)
1620 {
1621 flow_loop_tree_node_remove (loop);
1622 flow_loop_tree_node_add (bb->loop_father, loop);
1623 }
1624 }
1625
1626 /* Mark the blocks whose loop has changed. */
1627 FOR_EACH_BB (bb)
1628 {
1629 if (changed_bbs
1630 && (void *) (size_t) bb->loop_father->depth != bb->aux)
1631 bitmap_set_bit (changed_bbs, bb->index);
1632
1633 bb->aux = NULL;
1634 }
1635
1636 mark_single_exit_loops (loops);
1637 mark_irreducible_loops (loops);
1638 }
1639