1 /* Dead store elimination
2    Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING.  If not, write to
18 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "timevar.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-pass.h"
34 #include "tree-dump.h"
35 #include "domwalk.h"
36 #include "flags.h"
37 
38 /* This file implements dead store elimination.
39 
40    A dead store is a store into a memory location which will later be
41    overwritten by another store without any intervening loads.  In this
42    case the earlier store can be deleted.
43 
44    In our SSA + virtual operand world we use immediate uses of virtual
45    operands to detect dead stores.  If a store's virtual definition
46    is used precisely once by a later store to the same location which
47    post dominates the first store, then the first store is dead.
48 
49    The single use of the store's virtual definition ensures that
50    there are no intervening aliased loads and the requirement that
51    the second load post dominate the first ensures that if the earlier
52    store executes, then the later stores will execute before the function
53    exits.
54 
55    It may help to think of this as first moving the earlier store to
56    the point immediately before the later store.  Again, the single
57    use of the virtual definition and the post-dominance relationship
58    ensure that such movement would be safe.  Clearly if there are
59    back to back stores, then the second is redundant.
60 
61    Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
62    may also help in understanding this code since it discusses the
63    relationship between dead store and redundant load elimination.  In
64    fact, they are the same transformation applied to different views of
65    the CFG.  */
66 
67 
68 struct dse_global_data
69 {
70   /* This is the global bitmap for store statements.
71 
72      Each statement has a unique ID.  When we encounter a store statement
73      that we want to record, set the bit corresponding to the statement's
74      unique ID in this bitmap.  */
75   bitmap stores;
76 };
77 
78 /* We allocate a bitmap-per-block for stores which are encountered
79    during the scan of that block.  This allows us to restore the
80    global bitmap of stores when we finish processing a block.  */
81 struct dse_block_local_data
82 {
83   bitmap stores;
84 };
85 
86 /* Basic blocks of the potentially dead store and the following
87    store, for memory_address_same.  */
88 struct address_walk_data
89 {
90   basic_block store1_bb, store2_bb;
91 };
92 
93 static bool gate_dse (void);
94 static void tree_ssa_dse (void);
95 static void dse_initialize_block_local_data (struct dom_walk_data *,
96 					     basic_block,
97 					     bool);
98 static void dse_optimize_stmt (struct dom_walk_data *,
99 			       basic_block,
100 			       block_stmt_iterator);
101 static void dse_record_phis (struct dom_walk_data *, basic_block);
102 static void dse_finalize_block (struct dom_walk_data *, basic_block);
103 static void record_voperand_set (bitmap, bitmap *, unsigned int);
104 
105 static unsigned max_stmt_uid;	/* Maximal uid of a statement.  Uids to phi
106 				   nodes are assigned using the versions of
107 				   ssa names they define.  */
108 
109 /* Returns uid of statement STMT.  */
110 
111 static unsigned
get_stmt_uid(tree stmt)112 get_stmt_uid (tree stmt)
113 {
114   if (TREE_CODE (stmt) == PHI_NODE)
115     return SSA_NAME_VERSION (PHI_RESULT (stmt)) + max_stmt_uid;
116 
117   return stmt_ann (stmt)->uid;
118 }
119 
120 /* Set bit UID in bitmaps GLOBAL and *LOCAL, creating *LOCAL as needed.  */
121 
122 static void
record_voperand_set(bitmap global,bitmap * local,unsigned int uid)123 record_voperand_set (bitmap global, bitmap *local, unsigned int uid)
124 {
125   /* Lazily allocate the bitmap.  Note that we do not get a notification
126      when the block local data structures die, so we allocate the local
127      bitmap backed by the GC system.  */
128   if (*local == NULL)
129     *local = BITMAP_GGC_ALLOC ();
130 
131   /* Set the bit in the local and global bitmaps.  */
132   bitmap_set_bit (*local, uid);
133   bitmap_set_bit (global, uid);
134 }
135 
136 /* Initialize block local data structures.  */
137 
138 static void
dse_initialize_block_local_data(struct dom_walk_data * walk_data,basic_block bb ATTRIBUTE_UNUSED,bool recycled)139 dse_initialize_block_local_data (struct dom_walk_data *walk_data,
140 				 basic_block bb ATTRIBUTE_UNUSED,
141 				 bool recycled)
142 {
143   struct dse_block_local_data *bd
144     = VEC_last (void_p, walk_data->block_data_stack);
145 
146   /* If we are given a recycled block local data structure, ensure any
147      bitmap associated with the block is cleared.  */
148   if (recycled)
149     {
150       if (bd->stores)
151 	bitmap_clear (bd->stores);
152     }
153 }
154 
155 /* Helper function for memory_address_same via walk_tree.  Returns
156    non-NULL if it finds an SSA_NAME which is part of the address,
157    such that the definition of the SSA_NAME post-dominates the store
158    we want to delete but not the store that we believe makes it
159    redundant.  This indicates that the address may change between
160    the two stores.  */
161 
162 static tree
memory_ssa_name_same(tree * expr_p,int * walk_subtrees ATTRIBUTE_UNUSED,void * data)163 memory_ssa_name_same (tree *expr_p, int *walk_subtrees ATTRIBUTE_UNUSED,
164 		      void *data)
165 {
166   struct address_walk_data *walk_data = data;
167   tree expr = *expr_p;
168   tree def_stmt;
169   basic_block def_bb;
170 
171   if (TREE_CODE (expr) != SSA_NAME)
172     return NULL_TREE;
173 
174   /* If we've found a default definition, then there's no problem.  Both
175      stores will post-dominate it.  And def_bb will be NULL.  */
176   if (expr == default_def (SSA_NAME_VAR (expr)))
177     return NULL_TREE;
178 
179   def_stmt = SSA_NAME_DEF_STMT (expr);
180   def_bb = bb_for_stmt (def_stmt);
181 
182   /* DEF_STMT must dominate both stores.  So if it is in the same
183      basic block as one, it does not post-dominate that store.  */
184   if (walk_data->store1_bb != def_bb
185       && dominated_by_p (CDI_POST_DOMINATORS, walk_data->store1_bb, def_bb))
186     {
187       if (walk_data->store2_bb == def_bb
188 	  || !dominated_by_p (CDI_POST_DOMINATORS, walk_data->store2_bb,
189 			      def_bb))
190 	/* Return non-NULL to stop the walk.  */
191 	return def_stmt;
192     }
193 
194   return NULL_TREE;
195 }
196 
197 /* Return TRUE if the destination memory address in STORE1 and STORE2
198    might be modified after STORE1, before control reaches STORE2.  */
199 
200 static bool
memory_address_same(tree store1,tree store2)201 memory_address_same (tree store1, tree store2)
202 {
203   struct address_walk_data walk_data;
204 
205   walk_data.store1_bb = bb_for_stmt (store1);
206   walk_data.store2_bb = bb_for_stmt (store2);
207 
208   return (walk_tree (&TREE_OPERAND (store1, 0), memory_ssa_name_same,
209 		     &walk_data, NULL)
210 	  == NULL);
211 }
212 
213 /* Attempt to eliminate dead stores in the statement referenced by BSI.
214 
215    A dead store is a store into a memory location which will later be
216    overwritten by another store without any intervening loads.  In this
217    case the earlier store can be deleted.
218 
219    In our SSA + virtual operand world we use immediate uses of virtual
220    operands to detect dead stores.  If a store's virtual definition
221    is used precisely once by a later store to the same location which
222    post dominates the first store, then the first store is dead.  */
223 
224 static void
dse_optimize_stmt(struct dom_walk_data * walk_data,basic_block bb ATTRIBUTE_UNUSED,block_stmt_iterator bsi)225 dse_optimize_stmt (struct dom_walk_data *walk_data,
226 		   basic_block bb ATTRIBUTE_UNUSED,
227 		   block_stmt_iterator bsi)
228 {
229   struct dse_block_local_data *bd
230     = VEC_last (void_p, walk_data->block_data_stack);
231   struct dse_global_data *dse_gd = walk_data->global_data;
232   tree stmt = bsi_stmt (bsi);
233   stmt_ann_t ann = stmt_ann (stmt);
234 
235   /* If this statement has no virtual defs, then there is nothing
236      to do.  */
237   if (ZERO_SSA_OPERANDS (stmt, (SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF)))
238     return;
239 
240   /* We know we have virtual definitions.  If this is a MODIFY_EXPR that's
241      not also a function call, then record it into our table.  */
242   if (get_call_expr_in (stmt))
243     return;
244 
245   if (ann->has_volatile_ops)
246     return;
247 
248   if (TREE_CODE (stmt) == MODIFY_EXPR)
249     {
250       use_operand_p first_use_p = NULL_USE_OPERAND_P;
251       use_operand_p use_p = NULL;
252       tree use, use_stmt, temp;
253       tree defvar = NULL_TREE, usevar = NULL_TREE;
254       bool fail = false;
255       use_operand_p var2;
256       def_operand_p var1;
257       ssa_op_iter op_iter;
258 
259       /* We want to verify that each virtual definition in STMT has
260 	 precisely one use and that all the virtual definitions are
261 	 used by the same single statement.  When complete, we
262 	 want USE_STMT to refer to the one statement which uses
263 	 all of the virtual definitions from STMT.  */
264       use_stmt = NULL;
265       FOR_EACH_SSA_MUST_AND_MAY_DEF_OPERAND (var1, var2, stmt, op_iter)
266 	{
267 	  defvar = DEF_FROM_PTR (var1);
268 	  usevar = USE_FROM_PTR (var2);
269 
270 	  /* If this virtual def does not have precisely one use, then
271 	     we will not be able to eliminate STMT.  */
272 	  if (! has_single_use (defvar))
273 	    {
274 	      fail = true;
275 	      break;
276 	    }
277 
278 	  /* Get the one and only immediate use of DEFVAR.  */
279 	  single_imm_use (defvar, &use_p, &temp);
280 	  gcc_assert (use_p != NULL_USE_OPERAND_P);
281 	  first_use_p = use_p;
282 	  use = USE_FROM_PTR (use_p);
283 
284 	  /* If the immediate use of DEF_VAR is not the same as the
285 	     previously find immediate uses, then we will not be able
286 	     to eliminate STMT.  */
287 	  if (use_stmt == NULL)
288 	    use_stmt = temp;
289 	  else if (temp != use_stmt)
290 	    {
291 	      fail = true;
292 	      break;
293 	    }
294 	}
295 
296       if (fail)
297 	{
298 	  record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
299 	  return;
300 	}
301 
302       /* Skip through any PHI nodes we have already seen if the PHI
303 	 represents the only use of this store.
304 
305 	 Note this does not handle the case where the store has
306 	 multiple V_{MAY,MUST}_DEFs which all reach a set of PHI nodes in the
307 	 same block.  */
308       while (use_p != NULL_USE_OPERAND_P
309 	     && TREE_CODE (use_stmt) == PHI_NODE
310 	     && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt)))
311 	{
312 	  /* A PHI node can both define and use the same SSA_NAME if
313 	     the PHI is at the top of a loop and the PHI_RESULT is
314 	     a loop invariant and copies have not been fully propagated.
315 
316 	     The safe thing to do is exit assuming no optimization is
317 	     possible.  */
318 	  if (SSA_NAME_DEF_STMT (PHI_RESULT (use_stmt)) == use_stmt)
319 	    return;
320 
321 	  /* Skip past this PHI and loop again in case we had a PHI
322 	     chain.  */
323 	  if (single_imm_use (PHI_RESULT (use_stmt), &use_p, &use_stmt))
324 	    use = USE_FROM_PTR (use_p);
325 	}
326 
327       /* If we have precisely one immediate use at this point, then we may
328 	 have found redundant store.  Make sure that the stores are to
329 	 the same memory location.  This includes checking that any
330 	 SSA-form variables in the address will have the same values.  */
331       if (use_p != NULL_USE_OPERAND_P
332 	  && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt))
333 	  && operand_equal_p (TREE_OPERAND (stmt, 0),
334 			      TREE_OPERAND (use_stmt, 0), 0)
335 	  && memory_address_same (stmt, use_stmt))
336 	{
337 	  /* Make sure we propagate the ABNORMAL bit setting.  */
338 	  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (first_use_p)))
339 	    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (usevar) = 1;
340 
341 	  if (dump_file && (dump_flags & TDF_DETAILS))
342             {
343               fprintf (dump_file, "  Deleted dead store '");
344               print_generic_expr (dump_file, bsi_stmt (bsi), dump_flags);
345               fprintf (dump_file, "'\n");
346             }
347 	  /* Then we need to fix the operand of the consuming stmt.  */
348 	  FOR_EACH_SSA_MUST_AND_MAY_DEF_OPERAND (var1, var2, stmt, op_iter)
349 	    {
350 	      single_imm_use (DEF_FROM_PTR (var1), &use_p, &temp);
351 	      SET_USE (use_p, USE_FROM_PTR (var2));
352 	    }
353 	  /* Remove the dead store.  */
354 	  bsi_remove (&bsi);
355 
356 	  /* And release any SSA_NAMEs set in this statement back to the
357 	     SSA_NAME manager.  */
358 	  release_defs (stmt);
359 	}
360 
361       record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
362     }
363 }
364 
365 /* Record that we have seen the PHIs at the start of BB which correspond
366    to virtual operands.  */
367 static void
dse_record_phis(struct dom_walk_data * walk_data,basic_block bb)368 dse_record_phis (struct dom_walk_data *walk_data, basic_block bb)
369 {
370   struct dse_block_local_data *bd
371     = VEC_last (void_p, walk_data->block_data_stack);
372   struct dse_global_data *dse_gd = walk_data->global_data;
373   tree phi;
374 
375   for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
376     if (!is_gimple_reg (PHI_RESULT (phi)))
377       record_voperand_set (dse_gd->stores,
378 			   &bd->stores,
379 			   get_stmt_uid (phi));
380 }
381 
382 static void
dse_finalize_block(struct dom_walk_data * walk_data,basic_block bb ATTRIBUTE_UNUSED)383 dse_finalize_block (struct dom_walk_data *walk_data,
384 		    basic_block bb ATTRIBUTE_UNUSED)
385 {
386   struct dse_block_local_data *bd
387     = VEC_last (void_p, walk_data->block_data_stack);
388   struct dse_global_data *dse_gd = walk_data->global_data;
389   bitmap stores = dse_gd->stores;
390   unsigned int i;
391   bitmap_iterator bi;
392 
393   /* Unwind the stores noted in this basic block.  */
394   if (bd->stores)
395     EXECUTE_IF_SET_IN_BITMAP (bd->stores, 0, i, bi)
396       {
397 	bitmap_clear_bit (stores, i);
398       }
399 }
400 
401 static void
tree_ssa_dse(void)402 tree_ssa_dse (void)
403 {
404   struct dom_walk_data walk_data;
405   struct dse_global_data dse_gd;
406   basic_block bb;
407 
408   /* Create a UID for each statement in the function.  Ordering of the
409      UIDs is not important for this pass.  */
410   max_stmt_uid = 0;
411   FOR_EACH_BB (bb)
412     {
413       block_stmt_iterator bsi;
414 
415       for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
416 	stmt_ann (bsi_stmt (bsi))->uid = max_stmt_uid++;
417     }
418 
419   /* We might consider making this a property of each pass so that it
420      can be [re]computed on an as-needed basis.  Particularly since
421      this pass could be seen as an extension of DCE which needs post
422      dominators.  */
423   calculate_dominance_info (CDI_POST_DOMINATORS);
424 
425   /* Dead store elimination is fundamentally a walk of the post-dominator
426      tree and a backwards walk of statements within each block.  */
427   walk_data.walk_stmts_backward = true;
428   walk_data.dom_direction = CDI_POST_DOMINATORS;
429   walk_data.initialize_block_local_data = dse_initialize_block_local_data;
430   walk_data.before_dom_children_before_stmts = NULL;
431   walk_data.before_dom_children_walk_stmts = dse_optimize_stmt;
432   walk_data.before_dom_children_after_stmts = dse_record_phis;
433   walk_data.after_dom_children_before_stmts = NULL;
434   walk_data.after_dom_children_walk_stmts = NULL;
435   walk_data.after_dom_children_after_stmts = dse_finalize_block;
436   walk_data.interesting_blocks = NULL;
437 
438   walk_data.block_local_data_size = sizeof (struct dse_block_local_data);
439 
440   /* This is the main hash table for the dead store elimination pass.  */
441   dse_gd.stores = BITMAP_ALLOC (NULL);
442   walk_data.global_data = &dse_gd;
443 
444   /* Initialize the dominator walker.  */
445   init_walk_dominator_tree (&walk_data);
446 
447   /* Recursively walk the dominator tree.  */
448   walk_dominator_tree (&walk_data, EXIT_BLOCK_PTR);
449 
450   /* Finalize the dominator walker.  */
451   fini_walk_dominator_tree (&walk_data);
452 
453   /* Release the main bitmap.  */
454   BITMAP_FREE (dse_gd.stores);
455 
456   /* For now, just wipe the post-dominator information.  */
457   free_dominance_info (CDI_POST_DOMINATORS);
458 }
459 
460 static bool
gate_dse(void)461 gate_dse (void)
462 {
463   return flag_tree_dse != 0;
464 }
465 
466 struct tree_opt_pass pass_dse = {
467   "dse",			/* name */
468   gate_dse,			/* gate */
469   tree_ssa_dse,			/* execute */
470   NULL,				/* sub */
471   NULL,				/* next */
472   0,				/* static_pass_number */
473   TV_TREE_DSE,			/* tv_id */
474   PROP_cfg
475     | PROP_ssa
476     | PROP_alias,		/* properties_required */
477   0,				/* properties_provided */
478   0,				/* properties_destroyed */
479   0,				/* todo_flags_start */
480   TODO_dump_func
481     | TODO_ggc_collect
482     | TODO_verify_ssa,		/* todo_flags_finish */
483   0				/* letter */
484 };
485