1 //===-- DNBArchImplARM64.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  Created by Greg Clayton on 6/25/07.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__)
14 
15 #include "MacOSX/arm64/DNBArchImplARM64.h"
16 
17 #if defined(ARM_THREAD_STATE64_COUNT)
18 
19 #include "DNB.h"
20 #include "DNBBreakpoint.h"
21 #include "DNBLog.h"
22 #include "DNBRegisterInfo.h"
23 #include "MacOSX/MachProcess.h"
24 #include "MacOSX/MachThread.h"
25 
26 #include <inttypes.h>
27 #include <sys/sysctl.h>
28 
29 #if __has_feature(ptrauth_calls)
30 #include <ptrauth.h>
31 #endif
32 
33 // Break only in privileged or user mode
34 // (PAC bits in the DBGWVRn_EL1 watchpoint control register)
35 #define S_USER ((uint32_t)(2u << 1))
36 
37 #define BCR_ENABLE ((uint32_t)(1u))
38 #define WCR_ENABLE ((uint32_t)(1u))
39 
40 // Watchpoint load/store
41 // (LSC bits in the DBGWVRn_EL1 watchpoint control register)
42 #define WCR_LOAD ((uint32_t)(1u << 3))
43 #define WCR_STORE ((uint32_t)(1u << 4))
44 
45 // Enable breakpoint, watchpoint, and vector catch debug exceptions.
46 // (MDE bit in the MDSCR_EL1 register.  Equivalent to the MDBGen bit in
47 // DBGDSCRext in Aarch32)
48 #define MDE_ENABLE ((uint32_t)(1u << 15))
49 
50 // Single instruction step
51 // (SS bit in the MDSCR_EL1 register)
52 #define SS_ENABLE ((uint32_t)(1u))
53 
54 static const uint8_t g_arm64_breakpoint_opcode[] = {
55     0x00, 0x00, 0x20, 0xD4}; // "brk #0", 0xd4200000 in BE byte order
56 
57 // If we need to set one logical watchpoint by using
58 // two hardware watchpoint registers, the watchpoint
59 // will be split into a "high" and "low" watchpoint.
60 // Record both of them in the LoHi array.
61 
62 // It's safe to initialize to all 0's since
63 // hi > lo and therefore LoHi[i] cannot be 0.
64 static uint32_t LoHi[16] = {0};
65 
Initialize()66 void DNBArchMachARM64::Initialize() {
67   DNBArchPluginInfo arch_plugin_info = {
68       CPU_TYPE_ARM64, DNBArchMachARM64::Create,
69       DNBArchMachARM64::GetRegisterSetInfo,
70       DNBArchMachARM64::SoftwareBreakpointOpcode};
71 
72   // Register this arch plug-in with the main protocol class
73   DNBArchProtocol::RegisterArchPlugin(arch_plugin_info);
74 
75   DNBArchPluginInfo arch_plugin_info_32 = {
76       CPU_TYPE_ARM64_32, DNBArchMachARM64::Create,
77       DNBArchMachARM64::GetRegisterSetInfo,
78       DNBArchMachARM64::SoftwareBreakpointOpcode};
79 
80   // Register this arch plug-in with the main protocol class
81   DNBArchProtocol::RegisterArchPlugin(arch_plugin_info_32);
82 }
83 
Create(MachThread * thread)84 DNBArchProtocol *DNBArchMachARM64::Create(MachThread *thread) {
85   DNBArchMachARM64 *obj = new DNBArchMachARM64(thread);
86 
87   return obj;
88 }
89 
90 const uint8_t *
SoftwareBreakpointOpcode(nub_size_t byte_size)91 DNBArchMachARM64::SoftwareBreakpointOpcode(nub_size_t byte_size) {
92   return g_arm64_breakpoint_opcode;
93 }
94 
GetCPUType()95 uint32_t DNBArchMachARM64::GetCPUType() { return CPU_TYPE_ARM64; }
96 
GetPC(uint64_t failValue)97 uint64_t DNBArchMachARM64::GetPC(uint64_t failValue) {
98   // Get program counter
99   if (GetGPRState(false) == KERN_SUCCESS)
100 #if defined(__LP64__)
101     return arm_thread_state64_get_pc(m_state.context.gpr);
102 #else
103     return m_state.context.gpr.__pc;
104 #endif
105   return failValue;
106 }
107 
SetPC(uint64_t value)108 kern_return_t DNBArchMachARM64::SetPC(uint64_t value) {
109   // Get program counter
110   kern_return_t err = GetGPRState(false);
111   if (err == KERN_SUCCESS) {
112 #if defined(__LP64__)
113 #if __has_feature(ptrauth_calls)
114     // The incoming value could be garbage.  Strip it to avoid
115     // trapping when it gets resigned in the thread state.
116     value = (uint64_t) ptrauth_strip((void*) value, ptrauth_key_function_pointer);
117     value = (uint64_t) ptrauth_sign_unauthenticated((void*) value, ptrauth_key_function_pointer, 0);
118 #endif
119     arm_thread_state64_set_pc_fptr (m_state.context.gpr, (void*) value);
120 #else
121     m_state.context.gpr.__pc = value;
122 #endif
123     err = SetGPRState();
124   }
125   return err == KERN_SUCCESS;
126 }
127 
GetSP(uint64_t failValue)128 uint64_t DNBArchMachARM64::GetSP(uint64_t failValue) {
129   // Get stack pointer
130   if (GetGPRState(false) == KERN_SUCCESS)
131 #if defined(__LP64__)
132     return arm_thread_state64_get_sp(m_state.context.gpr);
133 #else
134     return m_state.context.gpr.__sp;
135 #endif
136   return failValue;
137 }
138 
GetGPRState(bool force)139 kern_return_t DNBArchMachARM64::GetGPRState(bool force) {
140   int set = e_regSetGPR;
141   // Check if we have valid cached registers
142   if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
143     return KERN_SUCCESS;
144 
145   // Read the registers from our thread
146   mach_msg_type_number_t count = e_regSetGPRCount;
147   kern_return_t kret =
148       ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE64,
149                          (thread_state_t)&m_state.context.gpr, &count);
150   if (DNBLogEnabledForAny(LOG_THREAD)) {
151     uint64_t *x = &m_state.context.gpr.__x[0];
152     DNBLogThreaded(
153         "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs"
154         "\n   x0=%16.16llx"
155         "\n   x1=%16.16llx"
156         "\n   x2=%16.16llx"
157         "\n   x3=%16.16llx"
158         "\n   x4=%16.16llx"
159         "\n   x5=%16.16llx"
160         "\n   x6=%16.16llx"
161         "\n   x7=%16.16llx"
162         "\n   x8=%16.16llx"
163         "\n   x9=%16.16llx"
164         "\n  x10=%16.16llx"
165         "\n  x11=%16.16llx"
166         "\n  x12=%16.16llx"
167         "\n  x13=%16.16llx"
168         "\n  x14=%16.16llx"
169         "\n  x15=%16.16llx"
170         "\n  x16=%16.16llx"
171         "\n  x17=%16.16llx"
172         "\n  x18=%16.16llx"
173         "\n  x19=%16.16llx"
174         "\n  x20=%16.16llx"
175         "\n  x21=%16.16llx"
176         "\n  x22=%16.16llx"
177         "\n  x23=%16.16llx"
178         "\n  x24=%16.16llx"
179         "\n  x25=%16.16llx"
180         "\n  x26=%16.16llx"
181         "\n  x27=%16.16llx"
182         "\n  x28=%16.16llx"
183         "\n   fp=%16.16llx"
184         "\n   lr=%16.16llx"
185         "\n   sp=%16.16llx"
186         "\n   pc=%16.16llx"
187         "\n cpsr=%8.8x",
188         m_thread->MachPortNumber(), e_regSetGPR, e_regSetGPRCount, kret, count,
189         x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[0], x[11],
190         x[12], x[13], x[14], x[15], x[16], x[17], x[18], x[19], x[20], x[21],
191         x[22], x[23], x[24], x[25], x[26], x[27], x[28],
192 #if defined(__LP64__)
193         (uint64_t) arm_thread_state64_get_fp (m_state.context.gpr),
194         (uint64_t) arm_thread_state64_get_lr (m_state.context.gpr),
195         (uint64_t) arm_thread_state64_get_sp (m_state.context.gpr),
196         (uint64_t) arm_thread_state64_get_pc (m_state.context.gpr),
197 #else
198         m_state.context.gpr.__fp, m_state.context.gpr.__lr,
199         m_state.context.gpr.__sp, m_state.context.gpr.__pc,
200 #endif
201         m_state.context.gpr.__cpsr);
202   }
203   m_state.SetError(set, Read, kret);
204   return kret;
205 }
206 
GetVFPState(bool force)207 kern_return_t DNBArchMachARM64::GetVFPState(bool force) {
208   int set = e_regSetVFP;
209   // Check if we have valid cached registers
210   if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
211     return KERN_SUCCESS;
212 
213   // Read the registers from our thread
214   mach_msg_type_number_t count = e_regSetVFPCount;
215   kern_return_t kret =
216       ::thread_get_state(m_thread->MachPortNumber(), ARM_NEON_STATE64,
217                          (thread_state_t)&m_state.context.vfp, &count);
218   if (DNBLogEnabledForAny(LOG_THREAD)) {
219 #if defined(__arm64__) || defined(__aarch64__)
220     DNBLogThreaded(
221         "thread_get_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs"
222         "\n   q0  = 0x%16.16llx%16.16llx"
223         "\n   q1  = 0x%16.16llx%16.16llx"
224         "\n   q2  = 0x%16.16llx%16.16llx"
225         "\n   q3  = 0x%16.16llx%16.16llx"
226         "\n   q4  = 0x%16.16llx%16.16llx"
227         "\n   q5  = 0x%16.16llx%16.16llx"
228         "\n   q6  = 0x%16.16llx%16.16llx"
229         "\n   q7  = 0x%16.16llx%16.16llx"
230         "\n   q8  = 0x%16.16llx%16.16llx"
231         "\n   q9  = 0x%16.16llx%16.16llx"
232         "\n   q10 = 0x%16.16llx%16.16llx"
233         "\n   q11 = 0x%16.16llx%16.16llx"
234         "\n   q12 = 0x%16.16llx%16.16llx"
235         "\n   q13 = 0x%16.16llx%16.16llx"
236         "\n   q14 = 0x%16.16llx%16.16llx"
237         "\n   q15 = 0x%16.16llx%16.16llx"
238         "\n   q16 = 0x%16.16llx%16.16llx"
239         "\n   q17 = 0x%16.16llx%16.16llx"
240         "\n   q18 = 0x%16.16llx%16.16llx"
241         "\n   q19 = 0x%16.16llx%16.16llx"
242         "\n   q20 = 0x%16.16llx%16.16llx"
243         "\n   q21 = 0x%16.16llx%16.16llx"
244         "\n   q22 = 0x%16.16llx%16.16llx"
245         "\n   q23 = 0x%16.16llx%16.16llx"
246         "\n   q24 = 0x%16.16llx%16.16llx"
247         "\n   q25 = 0x%16.16llx%16.16llx"
248         "\n   q26 = 0x%16.16llx%16.16llx"
249         "\n   q27 = 0x%16.16llx%16.16llx"
250         "\n   q28 = 0x%16.16llx%16.16llx"
251         "\n   q29 = 0x%16.16llx%16.16llx"
252         "\n   q30 = 0x%16.16llx%16.16llx"
253         "\n   q31 = 0x%16.16llx%16.16llx"
254         "\n  fpsr = 0x%8.8x"
255         "\n  fpcr = 0x%8.8x\n\n",
256         m_thread->MachPortNumber(), e_regSetVFP, e_regSetVFPCount, kret, count,
257         ((uint64_t *)&m_state.context.vfp.__v[0])[0],
258         ((uint64_t *)&m_state.context.vfp.__v[0])[1],
259         ((uint64_t *)&m_state.context.vfp.__v[1])[0],
260         ((uint64_t *)&m_state.context.vfp.__v[1])[1],
261         ((uint64_t *)&m_state.context.vfp.__v[2])[0],
262         ((uint64_t *)&m_state.context.vfp.__v[2])[1],
263         ((uint64_t *)&m_state.context.vfp.__v[3])[0],
264         ((uint64_t *)&m_state.context.vfp.__v[3])[1],
265         ((uint64_t *)&m_state.context.vfp.__v[4])[0],
266         ((uint64_t *)&m_state.context.vfp.__v[4])[1],
267         ((uint64_t *)&m_state.context.vfp.__v[5])[0],
268         ((uint64_t *)&m_state.context.vfp.__v[5])[1],
269         ((uint64_t *)&m_state.context.vfp.__v[6])[0],
270         ((uint64_t *)&m_state.context.vfp.__v[6])[1],
271         ((uint64_t *)&m_state.context.vfp.__v[7])[0],
272         ((uint64_t *)&m_state.context.vfp.__v[7])[1],
273         ((uint64_t *)&m_state.context.vfp.__v[8])[0],
274         ((uint64_t *)&m_state.context.vfp.__v[8])[1],
275         ((uint64_t *)&m_state.context.vfp.__v[9])[0],
276         ((uint64_t *)&m_state.context.vfp.__v[9])[1],
277         ((uint64_t *)&m_state.context.vfp.__v[10])[0],
278         ((uint64_t *)&m_state.context.vfp.__v[10])[1],
279         ((uint64_t *)&m_state.context.vfp.__v[11])[0],
280         ((uint64_t *)&m_state.context.vfp.__v[11])[1],
281         ((uint64_t *)&m_state.context.vfp.__v[12])[0],
282         ((uint64_t *)&m_state.context.vfp.__v[12])[1],
283         ((uint64_t *)&m_state.context.vfp.__v[13])[0],
284         ((uint64_t *)&m_state.context.vfp.__v[13])[1],
285         ((uint64_t *)&m_state.context.vfp.__v[14])[0],
286         ((uint64_t *)&m_state.context.vfp.__v[14])[1],
287         ((uint64_t *)&m_state.context.vfp.__v[15])[0],
288         ((uint64_t *)&m_state.context.vfp.__v[15])[1],
289         ((uint64_t *)&m_state.context.vfp.__v[16])[0],
290         ((uint64_t *)&m_state.context.vfp.__v[16])[1],
291         ((uint64_t *)&m_state.context.vfp.__v[17])[0],
292         ((uint64_t *)&m_state.context.vfp.__v[17])[1],
293         ((uint64_t *)&m_state.context.vfp.__v[18])[0],
294         ((uint64_t *)&m_state.context.vfp.__v[18])[1],
295         ((uint64_t *)&m_state.context.vfp.__v[19])[0],
296         ((uint64_t *)&m_state.context.vfp.__v[19])[1],
297         ((uint64_t *)&m_state.context.vfp.__v[20])[0],
298         ((uint64_t *)&m_state.context.vfp.__v[20])[1],
299         ((uint64_t *)&m_state.context.vfp.__v[21])[0],
300         ((uint64_t *)&m_state.context.vfp.__v[21])[1],
301         ((uint64_t *)&m_state.context.vfp.__v[22])[0],
302         ((uint64_t *)&m_state.context.vfp.__v[22])[1],
303         ((uint64_t *)&m_state.context.vfp.__v[23])[0],
304         ((uint64_t *)&m_state.context.vfp.__v[23])[1],
305         ((uint64_t *)&m_state.context.vfp.__v[24])[0],
306         ((uint64_t *)&m_state.context.vfp.__v[24])[1],
307         ((uint64_t *)&m_state.context.vfp.__v[25])[0],
308         ((uint64_t *)&m_state.context.vfp.__v[25])[1],
309         ((uint64_t *)&m_state.context.vfp.__v[26])[0],
310         ((uint64_t *)&m_state.context.vfp.__v[26])[1],
311         ((uint64_t *)&m_state.context.vfp.__v[27])[0],
312         ((uint64_t *)&m_state.context.vfp.__v[27])[1],
313         ((uint64_t *)&m_state.context.vfp.__v[28])[0],
314         ((uint64_t *)&m_state.context.vfp.__v[28])[1],
315         ((uint64_t *)&m_state.context.vfp.__v[29])[0],
316         ((uint64_t *)&m_state.context.vfp.__v[29])[1],
317         ((uint64_t *)&m_state.context.vfp.__v[30])[0],
318         ((uint64_t *)&m_state.context.vfp.__v[30])[1],
319         ((uint64_t *)&m_state.context.vfp.__v[31])[0],
320         ((uint64_t *)&m_state.context.vfp.__v[31])[1],
321         m_state.context.vfp.__fpsr, m_state.context.vfp.__fpcr);
322 #endif
323   }
324   m_state.SetError(set, Read, kret);
325   return kret;
326 }
327 
GetEXCState(bool force)328 kern_return_t DNBArchMachARM64::GetEXCState(bool force) {
329   int set = e_regSetEXC;
330   // Check if we have valid cached registers
331   if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
332     return KERN_SUCCESS;
333 
334   // Read the registers from our thread
335   mach_msg_type_number_t count = e_regSetEXCCount;
336   kern_return_t kret =
337       ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64,
338                          (thread_state_t)&m_state.context.exc, &count);
339   m_state.SetError(set, Read, kret);
340   return kret;
341 }
342 
DumpDBGState(const arm_debug_state_t & dbg)343 static void DumpDBGState(const arm_debug_state_t &dbg) {
344   uint32_t i = 0;
345   for (i = 0; i < 16; i++)
346     DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } "
347                                "WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
348                      i, i, dbg.__bvr[i], dbg.__bcr[i], i, i, dbg.__wvr[i],
349                      dbg.__wcr[i]);
350 }
351 
GetDBGState(bool force)352 kern_return_t DNBArchMachARM64::GetDBGState(bool force) {
353   int set = e_regSetDBG;
354 
355   // Check if we have valid cached registers
356   if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
357     return KERN_SUCCESS;
358 
359   // Read the registers from our thread
360   mach_msg_type_number_t count = e_regSetDBGCount;
361   kern_return_t kret =
362       ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64,
363                          (thread_state_t)&m_state.dbg, &count);
364   m_state.SetError(set, Read, kret);
365 
366   return kret;
367 }
368 
SetGPRState()369 kern_return_t DNBArchMachARM64::SetGPRState() {
370   int set = e_regSetGPR;
371   kern_return_t kret = ::thread_set_state(
372       m_thread->MachPortNumber(), ARM_THREAD_STATE64,
373       (thread_state_t)&m_state.context.gpr, e_regSetGPRCount);
374   m_state.SetError(set, Write,
375                    kret); // Set the current write error for this register set
376   m_state.InvalidateRegisterSetState(set); // Invalidate the current register
377                                            // state in case registers are read
378                                            // back differently
379   return kret;                             // Return the error code
380 }
381 
SetVFPState()382 kern_return_t DNBArchMachARM64::SetVFPState() {
383   int set = e_regSetVFP;
384   kern_return_t kret = ::thread_set_state(
385       m_thread->MachPortNumber(), ARM_NEON_STATE64,
386       (thread_state_t)&m_state.context.vfp, e_regSetVFPCount);
387   m_state.SetError(set, Write,
388                    kret); // Set the current write error for this register set
389   m_state.InvalidateRegisterSetState(set); // Invalidate the current register
390                                            // state in case registers are read
391                                            // back differently
392   return kret;                             // Return the error code
393 }
394 
SetEXCState()395 kern_return_t DNBArchMachARM64::SetEXCState() {
396   int set = e_regSetEXC;
397   kern_return_t kret = ::thread_set_state(
398       m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64,
399       (thread_state_t)&m_state.context.exc, e_regSetEXCCount);
400   m_state.SetError(set, Write,
401                    kret); // Set the current write error for this register set
402   m_state.InvalidateRegisterSetState(set); // Invalidate the current register
403                                            // state in case registers are read
404                                            // back differently
405   return kret;                             // Return the error code
406 }
407 
SetDBGState(bool also_set_on_task)408 kern_return_t DNBArchMachARM64::SetDBGState(bool also_set_on_task) {
409   int set = e_regSetDBG;
410   kern_return_t kret =
411       ::thread_set_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64,
412                          (thread_state_t)&m_state.dbg, e_regSetDBGCount);
413   if (also_set_on_task) {
414     kern_return_t task_kret = task_set_state(
415         m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE64,
416         (thread_state_t)&m_state.dbg, e_regSetDBGCount);
417     if (task_kret != KERN_SUCCESS)
418       DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::SetDBGState failed "
419                                         "to set debug control register state: "
420                                         "0x%8.8x.",
421                        task_kret);
422   }
423   m_state.SetError(set, Write,
424                    kret); // Set the current write error for this register set
425   m_state.InvalidateRegisterSetState(set); // Invalidate the current register
426                                            // state in case registers are read
427                                            // back differently
428 
429   return kret; // Return the error code
430 }
431 
ThreadWillResume()432 void DNBArchMachARM64::ThreadWillResume() {
433   // Do we need to step this thread? If so, let the mach thread tell us so.
434   if (m_thread->IsStepping()) {
435     EnableHardwareSingleStep(true);
436   }
437 
438   // Disable the triggered watchpoint temporarily before we resume.
439   // Plus, we try to enable hardware single step to execute past the instruction
440   // which triggered our watchpoint.
441   if (m_watchpoint_did_occur) {
442     if (m_watchpoint_hw_index >= 0) {
443       kern_return_t kret = GetDBGState(false);
444       if (kret == KERN_SUCCESS &&
445           !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
446         // The watchpoint might have been disabled by the user.  We don't need
447         // to do anything at all
448         // to enable hardware single stepping.
449         m_watchpoint_did_occur = false;
450         m_watchpoint_hw_index = -1;
451         return;
452       }
453 
454       DisableHardwareWatchpoint(m_watchpoint_hw_index, false);
455       DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() "
456                                         "DisableHardwareWatchpoint(%d) called",
457                        m_watchpoint_hw_index);
458 
459       // Enable hardware single step to move past the watchpoint-triggering
460       // instruction.
461       m_watchpoint_resume_single_step_enabled =
462           (EnableHardwareSingleStep(true) == KERN_SUCCESS);
463 
464       // If we are not able to enable single step to move past the
465       // watchpoint-triggering instruction,
466       // at least we should reset the two watchpoint member variables so that
467       // the next time around
468       // this callback function is invoked, the enclosing logical branch is
469       // skipped.
470       if (!m_watchpoint_resume_single_step_enabled) {
471         // Reset the two watchpoint member variables.
472         m_watchpoint_did_occur = false;
473         m_watchpoint_hw_index = -1;
474         DNBLogThreadedIf(
475             LOG_WATCHPOINTS,
476             "DNBArchMachARM::ThreadWillResume() failed to enable single step");
477       } else
478         DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() "
479                                           "succeeded to enable single step");
480     }
481   }
482 }
483 
NotifyException(MachException::Data & exc)484 bool DNBArchMachARM64::NotifyException(MachException::Data &exc) {
485 
486   switch (exc.exc_type) {
487   default:
488     break;
489   case EXC_BREAKPOINT:
490     if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG) {
491       // The data break address is passed as exc_data[1].
492       nub_addr_t addr = exc.exc_data[1];
493       // Find the hardware index with the side effect of possibly massaging the
494       // addr to return the starting address as seen from the debugger side.
495       uint32_t hw_index = GetHardwareWatchpointHit(addr);
496 
497       // One logical watchpoint was split into two watchpoint locations because
498       // it was too big.  If the watchpoint exception is indicating the 2nd half
499       // of the two-parter, find the address of the 1st half and report that --
500       // that's what lldb is going to expect to see.
501       DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException "
502                                         "watchpoint %d was hit on address "
503                                         "0x%llx",
504                        hw_index, (uint64_t)addr);
505       const int num_watchpoints = NumSupportedHardwareWatchpoints();
506       for (int i = 0; i < num_watchpoints; i++) {
507         if (LoHi[i] != 0 && LoHi[i] == hw_index && LoHi[i] != i &&
508             GetWatchpointAddressByIndex(i) != INVALID_NUB_ADDRESS) {
509           addr = GetWatchpointAddressByIndex(i);
510           DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException "
511                                             "It is a linked watchpoint; "
512                                             "rewritten to index %d addr 0x%llx",
513                            LoHi[i], (uint64_t)addr);
514         }
515       }
516 
517       if (hw_index != INVALID_NUB_HW_INDEX) {
518         m_watchpoint_did_occur = true;
519         m_watchpoint_hw_index = hw_index;
520         exc.exc_data[1] = addr;
521         // Piggyback the hw_index in the exc.data.
522         exc.exc_data.push_back(hw_index);
523       }
524 
525       return true;
526     }
527     break;
528   }
529   return false;
530 }
531 
ThreadDidStop()532 bool DNBArchMachARM64::ThreadDidStop() {
533   bool success = true;
534 
535   m_state.InvalidateAllRegisterStates();
536 
537   if (m_watchpoint_resume_single_step_enabled) {
538     // Great!  We now disable the hardware single step as well as re-enable the
539     // hardware watchpoint.
540     // See also ThreadWillResume().
541     if (EnableHardwareSingleStep(false) == KERN_SUCCESS) {
542       if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) {
543         ReenableHardwareWatchpoint(m_watchpoint_hw_index);
544         m_watchpoint_resume_single_step_enabled = false;
545         m_watchpoint_did_occur = false;
546         m_watchpoint_hw_index = -1;
547       } else {
548         DNBLogError("internal error detected: m_watchpoint_resume_step_enabled "
549                     "is true but (m_watchpoint_did_occur && "
550                     "m_watchpoint_hw_index >= 0) does not hold!");
551       }
552     } else {
553       DNBLogError("internal error detected: m_watchpoint_resume_step_enabled "
554                   "is true but unable to disable single step!");
555     }
556   }
557 
558   // Are we stepping a single instruction?
559   if (GetGPRState(true) == KERN_SUCCESS) {
560     // We are single stepping, was this the primary thread?
561     if (m_thread->IsStepping()) {
562       // This was the primary thread, we need to clear the trace
563       // bit if so.
564       success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
565     } else {
566       // The MachThread will automatically restore the suspend count
567       // in ThreadDidStop(), so we don't need to do anything here if
568       // we weren't the primary thread the last time
569     }
570   }
571   return success;
572 }
573 
574 // Set the single step bit in the processor status register.
EnableHardwareSingleStep(bool enable)575 kern_return_t DNBArchMachARM64::EnableHardwareSingleStep(bool enable) {
576   DNBError err;
577   DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
578 
579   err = GetGPRState(false);
580 
581   if (err.Fail()) {
582     err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
583     return err.Status();
584   }
585 
586   err = GetDBGState(false);
587 
588   if (err.Fail()) {
589     err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
590     return err.Status();
591   }
592 
593   if (enable) {
594     DNBLogThreadedIf(LOG_STEP,
595                      "%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx",
596 #if defined(__LP64__)
597                      __FUNCTION__, (uint64_t)arm_thread_state64_get_pc (m_state.context.gpr));
598 #else
599                      __FUNCTION__, (uint64_t)m_state.context.gpr.__pc);
600 #endif
601     m_state.dbg.__mdscr_el1 |= SS_ENABLE;
602   } else {
603     DNBLogThreadedIf(LOG_STEP,
604                      "%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx",
605 #if defined(__LP64__)
606                      __FUNCTION__, (uint64_t)arm_thread_state64_get_pc (m_state.context.gpr));
607 #else
608                      __FUNCTION__, (uint64_t)m_state.context.gpr.__pc);
609 #endif
610     m_state.dbg.__mdscr_el1 &= ~(SS_ENABLE);
611   }
612 
613   return SetDBGState(false);
614 }
615 
616 // return 1 if bit "BIT" is set in "value"
bit(uint32_t value,uint32_t bit)617 static inline uint32_t bit(uint32_t value, uint32_t bit) {
618   return (value >> bit) & 1u;
619 }
620 
621 // return the bitfield "value[msbit:lsbit]".
bits(uint64_t value,uint32_t msbit,uint32_t lsbit)622 static inline uint64_t bits(uint64_t value, uint32_t msbit, uint32_t lsbit) {
623   assert(msbit >= lsbit);
624   uint64_t shift_left = sizeof(value) * 8 - 1 - msbit;
625   value <<=
626       shift_left; // shift anything above the msbit off of the unsigned edge
627   value >>= shift_left + lsbit; // shift it back again down to the lsbit
628                                 // (including undoing any shift from above)
629   return value;                 // return our result
630 }
631 
NumSupportedHardwareWatchpoints()632 uint32_t DNBArchMachARM64::NumSupportedHardwareWatchpoints() {
633   // Set the init value to something that will let us know that we need to
634   // autodetect how many watchpoints are supported dynamically...
635   static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
636   if (g_num_supported_hw_watchpoints == UINT_MAX) {
637     // Set this to zero in case we can't tell if there are any HW breakpoints
638     g_num_supported_hw_watchpoints = 0;
639 
640     size_t len;
641     uint32_t n = 0;
642     len = sizeof(n);
643     if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0) {
644       g_num_supported_hw_watchpoints = n;
645       DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
646     } else {
647 // For AArch64 we would need to look at ID_AA64DFR0_EL1 but debugserver runs in
648 // EL0 so it can't
649 // access that reg.  The kernel should have filled in the sysctls based on it
650 // though.
651 #if defined(__arm__)
652       uint32_t register_DBGDIDR;
653 
654       asm("mrc p14, 0, %0, c0, c0, 0" : "=r"(register_DBGDIDR));
655       uint32_t numWRPs = bits(register_DBGDIDR, 31, 28);
656       // Zero is reserved for the WRP count, so don't increment it if it is zero
657       if (numWRPs > 0)
658         numWRPs++;
659       g_num_supported_hw_watchpoints = numWRPs;
660       DNBLogThreadedIf(LOG_THREAD,
661                        "Number of supported hw watchpoints via asm():  %d",
662                        g_num_supported_hw_watchpoints);
663 #endif
664     }
665   }
666   return g_num_supported_hw_watchpoints;
667 }
668 
EnableHardwareWatchpoint(nub_addr_t addr,nub_size_t size,bool read,bool write,bool also_set_on_task)669 uint32_t DNBArchMachARM64::EnableHardwareWatchpoint(nub_addr_t addr,
670                                                     nub_size_t size, bool read,
671                                                     bool write,
672                                                     bool also_set_on_task) {
673   DNBLogThreadedIf(LOG_WATCHPOINTS,
674                    "DNBArchMachARM64::EnableHardwareWatchpoint(addr = "
675                    "0x%8.8llx, size = %zu, read = %u, write = %u)",
676                    (uint64_t)addr, size, read, write);
677 
678   const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
679 
680   // Can't watch zero bytes
681   if (size == 0)
682     return INVALID_NUB_HW_INDEX;
683 
684   // We must watch for either read or write
685   if (read == false && write == false)
686     return INVALID_NUB_HW_INDEX;
687 
688   // Otherwise, can't watch more than 8 bytes per WVR/WCR pair
689   if (size > 8)
690     return INVALID_NUB_HW_INDEX;
691 
692   // Aarch64 watchpoints are in one of two forms: (1) 1-8 bytes, aligned to
693   // an 8 byte address, or (2) a power-of-two size region of memory; minimum
694   // 8 bytes, maximum 2GB; the starting address must be aligned to that power
695   // of two.
696   //
697   // For (1), 1-8 byte watchpoints, using the Byte Address Selector field in
698   // DBGWCR<n>.BAS.  Any of the bytes may be watched, but if multiple bytes
699   // are watched, the bytes selected must be contiguous.  The start address
700   // watched must be doubleword (8-byte) aligned; if the start address is
701   // word (4-byte) aligned, only 4 bytes can be watched.
702   //
703   // For (2), the MASK field in DBGWCR<n>.MASK is used.
704   //
705   // See the ARM ARM, section "Watchpoint exceptions", and more specifically,
706   // "Watchpoint data address comparisons".
707   //
708   // debugserver today only supports (1) - the Byte Address Selector 1-8 byte
709   // watchpoints that are 8-byte aligned.  To support larger watchpoints,
710   // debugserver would need to interpret the mach exception when the watched
711   // region was hit, see if the address accessed lies within the subset
712   // of the power-of-two region that lldb asked us to watch (v. ARM ARM,
713   // "Determining the memory location that caused a Watchpoint exception"),
714   // and silently resume the inferior (disable watchpoint, stepi, re-enable
715   // watchpoint) if the address lies outside the region that lldb asked us
716   // to watch.
717   //
718   // Alternatively, lldb would need to be prepared for a larger region
719   // being watched than it requested, and silently resume the inferior if
720   // the accessed address is outside the region lldb wants to watch.
721 
722   nub_addr_t aligned_wp_address = addr & ~0x7;
723   uint32_t addr_dword_offset = addr & 0x7;
724 
725   // Do we need to split up this logical watchpoint into two hardware watchpoint
726   // registers?
727   // e.g. a watchpoint of length 4 on address 6.  We need do this with
728   //   one watchpoint on address 0 with bytes 6 & 7 being monitored
729   //   one watchpoint on address 8 with bytes 0, 1, 2, 3 being monitored
730 
731   if (addr_dword_offset + size > 8) {
732     DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::"
733                                       "EnableHardwareWatchpoint(addr = "
734                                       "0x%8.8llx, size = %zu) needs two "
735                                       "hardware watchpoints slots to monitor",
736                      (uint64_t)addr, size);
737     int low_watchpoint_size = 8 - addr_dword_offset;
738     int high_watchpoint_size = addr_dword_offset + size - 8;
739 
740     uint32_t lo = EnableHardwareWatchpoint(addr, low_watchpoint_size, read,
741                                            write, also_set_on_task);
742     if (lo == INVALID_NUB_HW_INDEX)
743       return INVALID_NUB_HW_INDEX;
744     uint32_t hi =
745         EnableHardwareWatchpoint(aligned_wp_address + 8, high_watchpoint_size,
746                                  read, write, also_set_on_task);
747     if (hi == INVALID_NUB_HW_INDEX) {
748       DisableHardwareWatchpoint(lo, also_set_on_task);
749       return INVALID_NUB_HW_INDEX;
750     }
751     // Tag this lo->hi mapping in our database.
752     LoHi[lo] = hi;
753     return lo;
754   }
755 
756   // At this point
757   //  1 aligned_wp_address is the requested address rounded down to 8-byte
758   //  alignment
759   //  2 addr_dword_offset is the offset into that double word (8-byte) region
760   //  that we are watching
761   //  3 size is the number of bytes within that 8-byte region that we are
762   //  watching
763 
764   // Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the
765   // above.
766   // The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4,
767   // etc, up to 0b11111111 for 8.
768   // then we shift those bits left by the offset into this dword that we are
769   // interested in.
770   // e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of
771   // 0b11110000.
772   uint32_t byte_address_select = ((1 << size) - 1) << addr_dword_offset;
773 
774   // Read the debug state
775   kern_return_t kret = GetDBGState(false);
776 
777   if (kret == KERN_SUCCESS) {
778     // Check to make sure we have the needed hardware support
779     uint32_t i = 0;
780 
781     for (i = 0; i < num_hw_watchpoints; ++i) {
782       if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
783         break; // We found an available hw watchpoint slot (in i)
784     }
785 
786     // See if we found an available hw watchpoint slot above
787     if (i < num_hw_watchpoints) {
788       // DumpDBGState(m_state.dbg);
789 
790       // Clear any previous LoHi joined-watchpoint that may have been in use
791       LoHi[i] = 0;
792 
793       // shift our Byte Address Select bits up to the correct bit range for the
794       // DBGWCRn_EL1
795       byte_address_select = byte_address_select << 5;
796 
797       // Make sure bits 1:0 are clear in our address
798       m_state.dbg.__wvr[i] = aligned_wp_address;   // DVA (Data Virtual Address)
799       m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow
800                                                    // the DVA that we will watch
801                              S_USER |              // Stop only in user mode
802                              (read ? WCR_LOAD : 0) |   // Stop on read access?
803                              (write ? WCR_STORE : 0) | // Stop on write access?
804                              WCR_ENABLE; // Enable this watchpoint;
805 
806       DNBLogThreadedIf(
807           LOG_WATCHPOINTS, "DNBArchMachARM64::EnableHardwareWatchpoint() "
808                            "adding watchpoint on address 0x%llx with control "
809                            "register value 0x%x",
810           (uint64_t)m_state.dbg.__wvr[i], (uint32_t)m_state.dbg.__wcr[i]);
811 
812       // The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us
813       // automatically, don't need to do it here.
814 
815       kret = SetDBGState(also_set_on_task);
816       // DumpDBGState(m_state.dbg);
817 
818       DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::"
819                                         "EnableHardwareWatchpoint() "
820                                         "SetDBGState() => 0x%8.8x.",
821                        kret);
822 
823       if (kret == KERN_SUCCESS)
824         return i;
825     } else {
826       DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::"
827                                         "EnableHardwareWatchpoint(): All "
828                                         "hardware resources (%u) are in use.",
829                        num_hw_watchpoints);
830     }
831   }
832   return INVALID_NUB_HW_INDEX;
833 }
834 
ReenableHardwareWatchpoint(uint32_t hw_index)835 bool DNBArchMachARM64::ReenableHardwareWatchpoint(uint32_t hw_index) {
836   // If this logical watchpoint # is actually implemented using
837   // two hardware watchpoint registers, re-enable both of them.
838 
839   if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) {
840     return ReenableHardwareWatchpoint_helper(hw_index) &&
841            ReenableHardwareWatchpoint_helper(LoHi[hw_index]);
842   } else {
843     return ReenableHardwareWatchpoint_helper(hw_index);
844   }
845 }
846 
ReenableHardwareWatchpoint_helper(uint32_t hw_index)847 bool DNBArchMachARM64::ReenableHardwareWatchpoint_helper(uint32_t hw_index) {
848   kern_return_t kret = GetDBGState(false);
849   if (kret != KERN_SUCCESS)
850     return false;
851 
852   const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
853   if (hw_index >= num_hw_points)
854     return false;
855 
856   m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr;
857   m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control;
858 
859   DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::"
860                                     "EnableHardwareWatchpoint( %u ) - WVR%u = "
861                                     "0x%8.8llx  WCR%u = 0x%8.8llx",
862                    hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index],
863                    hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]);
864 
865   // The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us
866   // automatically, don't need to do it here.
867 
868   kret = SetDBGState(false);
869 
870   return (kret == KERN_SUCCESS);
871 }
872 
DisableHardwareWatchpoint(uint32_t hw_index,bool also_set_on_task)873 bool DNBArchMachARM64::DisableHardwareWatchpoint(uint32_t hw_index,
874                                                  bool also_set_on_task) {
875   if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) {
876     return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task) &&
877            DisableHardwareWatchpoint_helper(LoHi[hw_index], also_set_on_task);
878   } else {
879     return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task);
880   }
881 }
882 
DisableHardwareWatchpoint_helper(uint32_t hw_index,bool also_set_on_task)883 bool DNBArchMachARM64::DisableHardwareWatchpoint_helper(uint32_t hw_index,
884                                                         bool also_set_on_task) {
885   kern_return_t kret = GetDBGState(false);
886   if (kret != KERN_SUCCESS)
887     return false;
888 
889   const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
890   if (hw_index >= num_hw_points)
891     return false;
892 
893   m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index];
894   m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index];
895 
896   m_state.dbg.__wcr[hw_index] &= ~((nub_addr_t)WCR_ENABLE);
897   DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::"
898                                     "DisableHardwareWatchpoint( %u ) - WVR%u = "
899                                     "0x%8.8llx  WCR%u = 0x%8.8llx",
900                    hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index],
901                    hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]);
902 
903   kret = SetDBGState(also_set_on_task);
904 
905   return (kret == KERN_SUCCESS);
906 }
907 
908 // This is for checking the Byte Address Select bits in the DBRWCRn_EL1 control
909 // register.
910 // Returns -1 if the trailing bit patterns are not one of:
911 // { 0b???????1, 0b??????10, 0b?????100, 0b????1000, 0b???10000, 0b??100000,
912 // 0b?1000000, 0b10000000 }.
LowestBitSet(uint32_t val)913 static inline int32_t LowestBitSet(uint32_t val) {
914   for (unsigned i = 0; i < 8; ++i) {
915     if (bit(val, i))
916       return i;
917   }
918   return -1;
919 }
920 
921 // Iterate through the debug registers; return the index of the first watchpoint
922 // whose address matches.
923 // As a side effect, the starting address as understood by the debugger is
924 // returned which could be
925 // different from 'addr' passed as an in/out argument.
GetHardwareWatchpointHit(nub_addr_t & addr)926 uint32_t DNBArchMachARM64::GetHardwareWatchpointHit(nub_addr_t &addr) {
927   // Read the debug state
928   kern_return_t kret = GetDBGState(true);
929   // DumpDBGState(m_state.dbg);
930   DNBLogThreadedIf(
931       LOG_WATCHPOINTS,
932       "DNBArchMachARM64::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.",
933       kret);
934   DNBLogThreadedIf(LOG_WATCHPOINTS,
935                    "DNBArchMachARM64::GetHardwareWatchpointHit() addr = 0x%llx",
936                    (uint64_t)addr);
937 
938   // This is the watchpoint value to match against, i.e., word address.
939   nub_addr_t wp_val = addr & ~((nub_addr_t)3);
940   if (kret == KERN_SUCCESS) {
941     DBG &debug_state = m_state.dbg;
942     uint32_t i, num = NumSupportedHardwareWatchpoints();
943     for (i = 0; i < num; ++i) {
944       nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
945       DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::"
946                                         "GetHardwareWatchpointHit() slot: %u "
947                                         "(addr = 0x%llx).",
948                        i, (uint64_t)wp_addr);
949       if (wp_val == wp_addr) {
950         uint32_t byte_mask = bits(debug_state.__wcr[i], 12, 5);
951 
952         // Sanity check the byte_mask, first.
953         if (LowestBitSet(byte_mask) < 0)
954           continue;
955 
956         // Check that the watchpoint is enabled.
957         if (!IsWatchpointEnabled(debug_state, i))
958           continue;
959 
960         // Compute the starting address (from the point of view of the
961         // debugger).
962         addr = wp_addr + LowestBitSet(byte_mask);
963         return i;
964       }
965     }
966   }
967   return INVALID_NUB_HW_INDEX;
968 }
969 
GetWatchpointAddressByIndex(uint32_t hw_index)970 nub_addr_t DNBArchMachARM64::GetWatchpointAddressByIndex(uint32_t hw_index) {
971   kern_return_t kret = GetDBGState(true);
972   if (kret != KERN_SUCCESS)
973     return INVALID_NUB_ADDRESS;
974   const uint32_t num = NumSupportedHardwareWatchpoints();
975   if (hw_index >= num)
976     return INVALID_NUB_ADDRESS;
977   if (IsWatchpointEnabled(m_state.dbg, hw_index))
978     return GetWatchAddress(m_state.dbg, hw_index);
979   return INVALID_NUB_ADDRESS;
980 }
981 
IsWatchpointEnabled(const DBG & debug_state,uint32_t hw_index)982 bool DNBArchMachARM64::IsWatchpointEnabled(const DBG &debug_state,
983                                            uint32_t hw_index) {
984   // Watchpoint Control Registers, bitfield definitions
985   // ...
986   // Bits    Value    Description
987   // [0]     0        Watchpoint disabled
988   //         1        Watchpoint enabled.
989   return (debug_state.__wcr[hw_index] & 1u);
990 }
991 
GetWatchAddress(const DBG & debug_state,uint32_t hw_index)992 nub_addr_t DNBArchMachARM64::GetWatchAddress(const DBG &debug_state,
993                                              uint32_t hw_index) {
994   // Watchpoint Value Registers, bitfield definitions
995   // Bits        Description
996   // [31:2]      Watchpoint value (word address, i.e., 4-byte aligned)
997   // [1:0]       RAZ/SBZP
998   return bits(debug_state.__wvr[hw_index], 63, 0);
999 }
1000 
1001 // Register information definitions for 64 bit ARMv8.
1002 enum gpr_regnums {
1003   gpr_x0 = 0,
1004   gpr_x1,
1005   gpr_x2,
1006   gpr_x3,
1007   gpr_x4,
1008   gpr_x5,
1009   gpr_x6,
1010   gpr_x7,
1011   gpr_x8,
1012   gpr_x9,
1013   gpr_x10,
1014   gpr_x11,
1015   gpr_x12,
1016   gpr_x13,
1017   gpr_x14,
1018   gpr_x15,
1019   gpr_x16,
1020   gpr_x17,
1021   gpr_x18,
1022   gpr_x19,
1023   gpr_x20,
1024   gpr_x21,
1025   gpr_x22,
1026   gpr_x23,
1027   gpr_x24,
1028   gpr_x25,
1029   gpr_x26,
1030   gpr_x27,
1031   gpr_x28,
1032   gpr_fp,
1033   gpr_x29 = gpr_fp,
1034   gpr_lr,
1035   gpr_x30 = gpr_lr,
1036   gpr_sp,
1037   gpr_x31 = gpr_sp,
1038   gpr_pc,
1039   gpr_cpsr,
1040   gpr_w0,
1041   gpr_w1,
1042   gpr_w2,
1043   gpr_w3,
1044   gpr_w4,
1045   gpr_w5,
1046   gpr_w6,
1047   gpr_w7,
1048   gpr_w8,
1049   gpr_w9,
1050   gpr_w10,
1051   gpr_w11,
1052   gpr_w12,
1053   gpr_w13,
1054   gpr_w14,
1055   gpr_w15,
1056   gpr_w16,
1057   gpr_w17,
1058   gpr_w18,
1059   gpr_w19,
1060   gpr_w20,
1061   gpr_w21,
1062   gpr_w22,
1063   gpr_w23,
1064   gpr_w24,
1065   gpr_w25,
1066   gpr_w26,
1067   gpr_w27,
1068   gpr_w28
1069 
1070 };
1071 
1072 enum {
1073   vfp_v0 = 0,
1074   vfp_v1,
1075   vfp_v2,
1076   vfp_v3,
1077   vfp_v4,
1078   vfp_v5,
1079   vfp_v6,
1080   vfp_v7,
1081   vfp_v8,
1082   vfp_v9,
1083   vfp_v10,
1084   vfp_v11,
1085   vfp_v12,
1086   vfp_v13,
1087   vfp_v14,
1088   vfp_v15,
1089   vfp_v16,
1090   vfp_v17,
1091   vfp_v18,
1092   vfp_v19,
1093   vfp_v20,
1094   vfp_v21,
1095   vfp_v22,
1096   vfp_v23,
1097   vfp_v24,
1098   vfp_v25,
1099   vfp_v26,
1100   vfp_v27,
1101   vfp_v28,
1102   vfp_v29,
1103   vfp_v30,
1104   vfp_v31,
1105   vfp_fpsr,
1106   vfp_fpcr,
1107 
1108   // lower 32 bits of the corresponding vfp_v<n> reg.
1109   vfp_s0,
1110   vfp_s1,
1111   vfp_s2,
1112   vfp_s3,
1113   vfp_s4,
1114   vfp_s5,
1115   vfp_s6,
1116   vfp_s7,
1117   vfp_s8,
1118   vfp_s9,
1119   vfp_s10,
1120   vfp_s11,
1121   vfp_s12,
1122   vfp_s13,
1123   vfp_s14,
1124   vfp_s15,
1125   vfp_s16,
1126   vfp_s17,
1127   vfp_s18,
1128   vfp_s19,
1129   vfp_s20,
1130   vfp_s21,
1131   vfp_s22,
1132   vfp_s23,
1133   vfp_s24,
1134   vfp_s25,
1135   vfp_s26,
1136   vfp_s27,
1137   vfp_s28,
1138   vfp_s29,
1139   vfp_s30,
1140   vfp_s31,
1141 
1142   // lower 64 bits of the corresponding vfp_v<n> reg.
1143   vfp_d0,
1144   vfp_d1,
1145   vfp_d2,
1146   vfp_d3,
1147   vfp_d4,
1148   vfp_d5,
1149   vfp_d6,
1150   vfp_d7,
1151   vfp_d8,
1152   vfp_d9,
1153   vfp_d10,
1154   vfp_d11,
1155   vfp_d12,
1156   vfp_d13,
1157   vfp_d14,
1158   vfp_d15,
1159   vfp_d16,
1160   vfp_d17,
1161   vfp_d18,
1162   vfp_d19,
1163   vfp_d20,
1164   vfp_d21,
1165   vfp_d22,
1166   vfp_d23,
1167   vfp_d24,
1168   vfp_d25,
1169   vfp_d26,
1170   vfp_d27,
1171   vfp_d28,
1172   vfp_d29,
1173   vfp_d30,
1174   vfp_d31
1175 };
1176 
1177 enum { exc_far = 0, exc_esr, exc_exception };
1178 
1179 // These numbers from the "DWARF for the ARM 64-bit Architecture (AArch64)"
1180 // document.
1181 
1182 enum {
1183   dwarf_x0 = 0,
1184   dwarf_x1,
1185   dwarf_x2,
1186   dwarf_x3,
1187   dwarf_x4,
1188   dwarf_x5,
1189   dwarf_x6,
1190   dwarf_x7,
1191   dwarf_x8,
1192   dwarf_x9,
1193   dwarf_x10,
1194   dwarf_x11,
1195   dwarf_x12,
1196   dwarf_x13,
1197   dwarf_x14,
1198   dwarf_x15,
1199   dwarf_x16,
1200   dwarf_x17,
1201   dwarf_x18,
1202   dwarf_x19,
1203   dwarf_x20,
1204   dwarf_x21,
1205   dwarf_x22,
1206   dwarf_x23,
1207   dwarf_x24,
1208   dwarf_x25,
1209   dwarf_x26,
1210   dwarf_x27,
1211   dwarf_x28,
1212   dwarf_x29,
1213   dwarf_x30,
1214   dwarf_x31,
1215   dwarf_pc = 32,
1216   dwarf_elr_mode = 33,
1217   dwarf_fp = dwarf_x29,
1218   dwarf_lr = dwarf_x30,
1219   dwarf_sp = dwarf_x31,
1220   // 34-63 reserved
1221 
1222   // V0-V31 (128 bit vector registers)
1223   dwarf_v0 = 64,
1224   dwarf_v1,
1225   dwarf_v2,
1226   dwarf_v3,
1227   dwarf_v4,
1228   dwarf_v5,
1229   dwarf_v6,
1230   dwarf_v7,
1231   dwarf_v8,
1232   dwarf_v9,
1233   dwarf_v10,
1234   dwarf_v11,
1235   dwarf_v12,
1236   dwarf_v13,
1237   dwarf_v14,
1238   dwarf_v15,
1239   dwarf_v16,
1240   dwarf_v17,
1241   dwarf_v18,
1242   dwarf_v19,
1243   dwarf_v20,
1244   dwarf_v21,
1245   dwarf_v22,
1246   dwarf_v23,
1247   dwarf_v24,
1248   dwarf_v25,
1249   dwarf_v26,
1250   dwarf_v27,
1251   dwarf_v28,
1252   dwarf_v29,
1253   dwarf_v30,
1254   dwarf_v31
1255 
1256   // 96-127 reserved
1257 };
1258 
1259 enum {
1260   debugserver_gpr_x0 = 0,
1261   debugserver_gpr_x1,
1262   debugserver_gpr_x2,
1263   debugserver_gpr_x3,
1264   debugserver_gpr_x4,
1265   debugserver_gpr_x5,
1266   debugserver_gpr_x6,
1267   debugserver_gpr_x7,
1268   debugserver_gpr_x8,
1269   debugserver_gpr_x9,
1270   debugserver_gpr_x10,
1271   debugserver_gpr_x11,
1272   debugserver_gpr_x12,
1273   debugserver_gpr_x13,
1274   debugserver_gpr_x14,
1275   debugserver_gpr_x15,
1276   debugserver_gpr_x16,
1277   debugserver_gpr_x17,
1278   debugserver_gpr_x18,
1279   debugserver_gpr_x19,
1280   debugserver_gpr_x20,
1281   debugserver_gpr_x21,
1282   debugserver_gpr_x22,
1283   debugserver_gpr_x23,
1284   debugserver_gpr_x24,
1285   debugserver_gpr_x25,
1286   debugserver_gpr_x26,
1287   debugserver_gpr_x27,
1288   debugserver_gpr_x28,
1289   debugserver_gpr_fp, // x29
1290   debugserver_gpr_lr, // x30
1291   debugserver_gpr_sp, // sp aka xsp
1292   debugserver_gpr_pc,
1293   debugserver_gpr_cpsr,
1294   debugserver_vfp_v0,
1295   debugserver_vfp_v1,
1296   debugserver_vfp_v2,
1297   debugserver_vfp_v3,
1298   debugserver_vfp_v4,
1299   debugserver_vfp_v5,
1300   debugserver_vfp_v6,
1301   debugserver_vfp_v7,
1302   debugserver_vfp_v8,
1303   debugserver_vfp_v9,
1304   debugserver_vfp_v10,
1305   debugserver_vfp_v11,
1306   debugserver_vfp_v12,
1307   debugserver_vfp_v13,
1308   debugserver_vfp_v14,
1309   debugserver_vfp_v15,
1310   debugserver_vfp_v16,
1311   debugserver_vfp_v17,
1312   debugserver_vfp_v18,
1313   debugserver_vfp_v19,
1314   debugserver_vfp_v20,
1315   debugserver_vfp_v21,
1316   debugserver_vfp_v22,
1317   debugserver_vfp_v23,
1318   debugserver_vfp_v24,
1319   debugserver_vfp_v25,
1320   debugserver_vfp_v26,
1321   debugserver_vfp_v27,
1322   debugserver_vfp_v28,
1323   debugserver_vfp_v29,
1324   debugserver_vfp_v30,
1325   debugserver_vfp_v31,
1326   debugserver_vfp_fpsr,
1327   debugserver_vfp_fpcr
1328 };
1329 
1330 const char *g_contained_x0[]{"x0", NULL};
1331 const char *g_contained_x1[]{"x1", NULL};
1332 const char *g_contained_x2[]{"x2", NULL};
1333 const char *g_contained_x3[]{"x3", NULL};
1334 const char *g_contained_x4[]{"x4", NULL};
1335 const char *g_contained_x5[]{"x5", NULL};
1336 const char *g_contained_x6[]{"x6", NULL};
1337 const char *g_contained_x7[]{"x7", NULL};
1338 const char *g_contained_x8[]{"x8", NULL};
1339 const char *g_contained_x9[]{"x9", NULL};
1340 const char *g_contained_x10[]{"x10", NULL};
1341 const char *g_contained_x11[]{"x11", NULL};
1342 const char *g_contained_x12[]{"x12", NULL};
1343 const char *g_contained_x13[]{"x13", NULL};
1344 const char *g_contained_x14[]{"x14", NULL};
1345 const char *g_contained_x15[]{"x15", NULL};
1346 const char *g_contained_x16[]{"x16", NULL};
1347 const char *g_contained_x17[]{"x17", NULL};
1348 const char *g_contained_x18[]{"x18", NULL};
1349 const char *g_contained_x19[]{"x19", NULL};
1350 const char *g_contained_x20[]{"x20", NULL};
1351 const char *g_contained_x21[]{"x21", NULL};
1352 const char *g_contained_x22[]{"x22", NULL};
1353 const char *g_contained_x23[]{"x23", NULL};
1354 const char *g_contained_x24[]{"x24", NULL};
1355 const char *g_contained_x25[]{"x25", NULL};
1356 const char *g_contained_x26[]{"x26", NULL};
1357 const char *g_contained_x27[]{"x27", NULL};
1358 const char *g_contained_x28[]{"x28", NULL};
1359 
1360 const char *g_invalidate_x0[]{"x0", "w0", NULL};
1361 const char *g_invalidate_x1[]{"x1", "w1", NULL};
1362 const char *g_invalidate_x2[]{"x2", "w2", NULL};
1363 const char *g_invalidate_x3[]{"x3", "w3", NULL};
1364 const char *g_invalidate_x4[]{"x4", "w4", NULL};
1365 const char *g_invalidate_x5[]{"x5", "w5", NULL};
1366 const char *g_invalidate_x6[]{"x6", "w6", NULL};
1367 const char *g_invalidate_x7[]{"x7", "w7", NULL};
1368 const char *g_invalidate_x8[]{"x8", "w8", NULL};
1369 const char *g_invalidate_x9[]{"x9", "w9", NULL};
1370 const char *g_invalidate_x10[]{"x10", "w10", NULL};
1371 const char *g_invalidate_x11[]{"x11", "w11", NULL};
1372 const char *g_invalidate_x12[]{"x12", "w12", NULL};
1373 const char *g_invalidate_x13[]{"x13", "w13", NULL};
1374 const char *g_invalidate_x14[]{"x14", "w14", NULL};
1375 const char *g_invalidate_x15[]{"x15", "w15", NULL};
1376 const char *g_invalidate_x16[]{"x16", "w16", NULL};
1377 const char *g_invalidate_x17[]{"x17", "w17", NULL};
1378 const char *g_invalidate_x18[]{"x18", "w18", NULL};
1379 const char *g_invalidate_x19[]{"x19", "w19", NULL};
1380 const char *g_invalidate_x20[]{"x20", "w20", NULL};
1381 const char *g_invalidate_x21[]{"x21", "w21", NULL};
1382 const char *g_invalidate_x22[]{"x22", "w22", NULL};
1383 const char *g_invalidate_x23[]{"x23", "w23", NULL};
1384 const char *g_invalidate_x24[]{"x24", "w24", NULL};
1385 const char *g_invalidate_x25[]{"x25", "w25", NULL};
1386 const char *g_invalidate_x26[]{"x26", "w26", NULL};
1387 const char *g_invalidate_x27[]{"x27", "w27", NULL};
1388 const char *g_invalidate_x28[]{"x28", "w28", NULL};
1389 
1390 #define GPR_OFFSET_IDX(idx) (offsetof(DNBArchMachARM64::GPR, __x[idx]))
1391 
1392 #define GPR_OFFSET_NAME(reg) (offsetof(DNBArchMachARM64::GPR, __##reg))
1393 
1394 // These macros will auto define the register name, alt name, register size,
1395 // register offset, encoding, format and native register. This ensures that
1396 // the register state structures are defined correctly and have the correct
1397 // sizes and offsets.
1398 #define DEFINE_GPR_IDX(idx, reg, alt, gen)                                     \
1399   {                                                                            \
1400     e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_IDX(idx),      \
1401         dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL,            \
1402         g_invalidate_x##idx                                                    \
1403   }
1404 #define DEFINE_GPR_NAME(reg, alt, gen)                                         \
1405   {                                                                            \
1406     e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_NAME(reg),     \
1407         dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL, NULL       \
1408   }
1409 #define DEFINE_PSEUDO_GPR_IDX(idx, reg)                                        \
1410   {                                                                            \
1411     e_regSetGPR, gpr_##reg, #reg, NULL, Uint, Hex, 4, 0, INVALID_NUB_REGNUM,   \
1412         INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,            \
1413         g_contained_x##idx, g_invalidate_x##idx                                \
1414   }
1415 
1416 //_STRUCT_ARM_THREAD_STATE64
1417 //{
1418 //	uint64_t    x[29];	/* General purpose registers x0-x28 */
1419 //	uint64_t    fp;		/* Frame pointer x29 */
1420 //	uint64_t    lr;		/* Link register x30 */
1421 //	uint64_t    sp;		/* Stack pointer x31 */
1422 //	uint64_t    pc;		/* Program counter */
1423 //	uint32_t    cpsr;	/* Current program status register */
1424 //};
1425 
1426 // General purpose registers
1427 const DNBRegisterInfo DNBArchMachARM64::g_gpr_registers[] = {
1428     DEFINE_GPR_IDX(0, x0, "arg1", GENERIC_REGNUM_ARG1),
1429     DEFINE_GPR_IDX(1, x1, "arg2", GENERIC_REGNUM_ARG2),
1430     DEFINE_GPR_IDX(2, x2, "arg3", GENERIC_REGNUM_ARG3),
1431     DEFINE_GPR_IDX(3, x3, "arg4", GENERIC_REGNUM_ARG4),
1432     DEFINE_GPR_IDX(4, x4, "arg5", GENERIC_REGNUM_ARG5),
1433     DEFINE_GPR_IDX(5, x5, "arg6", GENERIC_REGNUM_ARG6),
1434     DEFINE_GPR_IDX(6, x6, "arg7", GENERIC_REGNUM_ARG7),
1435     DEFINE_GPR_IDX(7, x7, "arg8", GENERIC_REGNUM_ARG8),
1436     DEFINE_GPR_IDX(8, x8, NULL, INVALID_NUB_REGNUM),
1437     DEFINE_GPR_IDX(9, x9, NULL, INVALID_NUB_REGNUM),
1438     DEFINE_GPR_IDX(10, x10, NULL, INVALID_NUB_REGNUM),
1439     DEFINE_GPR_IDX(11, x11, NULL, INVALID_NUB_REGNUM),
1440     DEFINE_GPR_IDX(12, x12, NULL, INVALID_NUB_REGNUM),
1441     DEFINE_GPR_IDX(13, x13, NULL, INVALID_NUB_REGNUM),
1442     DEFINE_GPR_IDX(14, x14, NULL, INVALID_NUB_REGNUM),
1443     DEFINE_GPR_IDX(15, x15, NULL, INVALID_NUB_REGNUM),
1444     DEFINE_GPR_IDX(16, x16, NULL, INVALID_NUB_REGNUM),
1445     DEFINE_GPR_IDX(17, x17, NULL, INVALID_NUB_REGNUM),
1446     DEFINE_GPR_IDX(18, x18, NULL, INVALID_NUB_REGNUM),
1447     DEFINE_GPR_IDX(19, x19, NULL, INVALID_NUB_REGNUM),
1448     DEFINE_GPR_IDX(20, x20, NULL, INVALID_NUB_REGNUM),
1449     DEFINE_GPR_IDX(21, x21, NULL, INVALID_NUB_REGNUM),
1450     DEFINE_GPR_IDX(22, x22, NULL, INVALID_NUB_REGNUM),
1451     DEFINE_GPR_IDX(23, x23, NULL, INVALID_NUB_REGNUM),
1452     DEFINE_GPR_IDX(24, x24, NULL, INVALID_NUB_REGNUM),
1453     DEFINE_GPR_IDX(25, x25, NULL, INVALID_NUB_REGNUM),
1454     DEFINE_GPR_IDX(26, x26, NULL, INVALID_NUB_REGNUM),
1455     DEFINE_GPR_IDX(27, x27, NULL, INVALID_NUB_REGNUM),
1456     DEFINE_GPR_IDX(28, x28, NULL, INVALID_NUB_REGNUM),
1457     // For the G/g packet we want to show where the offset into the regctx
1458     // is for fp/lr/sp/pc, but we cannot directly access them on arm64e
1459     // devices (and therefore can't offsetof() them)) - add the offset based
1460     // on the last accessible register by hand for advertising the location
1461     // in the regctx to lldb.  We'll go through the accessor functions when
1462     // we read/write them here.
1463     {
1464        e_regSetGPR, gpr_fp, "fp", "x29", Uint, Hex, 8, GPR_OFFSET_IDX(28) + 8,
1465        dwarf_fp, dwarf_fp, GENERIC_REGNUM_FP, debugserver_gpr_fp, NULL, NULL
1466     },
1467     {
1468        e_regSetGPR, gpr_lr, "lr", "x30", Uint, Hex, 8, GPR_OFFSET_IDX(28) + 16,
1469        dwarf_lr, dwarf_lr, GENERIC_REGNUM_RA, debugserver_gpr_lr, NULL, NULL
1470     },
1471     {
1472        e_regSetGPR, gpr_sp, "sp", "xsp", Uint, Hex, 8, GPR_OFFSET_IDX(28) + 24,
1473        dwarf_sp, dwarf_sp, GENERIC_REGNUM_SP, debugserver_gpr_sp, NULL, NULL
1474     },
1475     {
1476        e_regSetGPR, gpr_pc, "pc", NULL, Uint, Hex, 8, GPR_OFFSET_IDX(28) + 32,
1477        dwarf_pc, dwarf_pc, GENERIC_REGNUM_PC, debugserver_gpr_pc, NULL, NULL
1478     },
1479 
1480     // in armv7 we specify that writing to the CPSR should invalidate r8-12, sp,
1481     // lr.
1482     // this should be specified for arm64 too even though debugserver is only
1483     // used for
1484     // userland debugging.
1485     {e_regSetGPR, gpr_cpsr, "cpsr", "flags", Uint, Hex, 4,
1486      GPR_OFFSET_NAME(cpsr), dwarf_elr_mode, dwarf_elr_mode, INVALID_NUB_REGNUM,
1487      debugserver_gpr_cpsr, NULL, NULL},
1488 
1489     DEFINE_PSEUDO_GPR_IDX(0, w0),
1490     DEFINE_PSEUDO_GPR_IDX(1, w1),
1491     DEFINE_PSEUDO_GPR_IDX(2, w2),
1492     DEFINE_PSEUDO_GPR_IDX(3, w3),
1493     DEFINE_PSEUDO_GPR_IDX(4, w4),
1494     DEFINE_PSEUDO_GPR_IDX(5, w5),
1495     DEFINE_PSEUDO_GPR_IDX(6, w6),
1496     DEFINE_PSEUDO_GPR_IDX(7, w7),
1497     DEFINE_PSEUDO_GPR_IDX(8, w8),
1498     DEFINE_PSEUDO_GPR_IDX(9, w9),
1499     DEFINE_PSEUDO_GPR_IDX(10, w10),
1500     DEFINE_PSEUDO_GPR_IDX(11, w11),
1501     DEFINE_PSEUDO_GPR_IDX(12, w12),
1502     DEFINE_PSEUDO_GPR_IDX(13, w13),
1503     DEFINE_PSEUDO_GPR_IDX(14, w14),
1504     DEFINE_PSEUDO_GPR_IDX(15, w15),
1505     DEFINE_PSEUDO_GPR_IDX(16, w16),
1506     DEFINE_PSEUDO_GPR_IDX(17, w17),
1507     DEFINE_PSEUDO_GPR_IDX(18, w18),
1508     DEFINE_PSEUDO_GPR_IDX(19, w19),
1509     DEFINE_PSEUDO_GPR_IDX(20, w20),
1510     DEFINE_PSEUDO_GPR_IDX(21, w21),
1511     DEFINE_PSEUDO_GPR_IDX(22, w22),
1512     DEFINE_PSEUDO_GPR_IDX(23, w23),
1513     DEFINE_PSEUDO_GPR_IDX(24, w24),
1514     DEFINE_PSEUDO_GPR_IDX(25, w25),
1515     DEFINE_PSEUDO_GPR_IDX(26, w26),
1516     DEFINE_PSEUDO_GPR_IDX(27, w27),
1517     DEFINE_PSEUDO_GPR_IDX(28, w28)};
1518 
1519 const char *g_contained_v0[]{"v0", NULL};
1520 const char *g_contained_v1[]{"v1", NULL};
1521 const char *g_contained_v2[]{"v2", NULL};
1522 const char *g_contained_v3[]{"v3", NULL};
1523 const char *g_contained_v4[]{"v4", NULL};
1524 const char *g_contained_v5[]{"v5", NULL};
1525 const char *g_contained_v6[]{"v6", NULL};
1526 const char *g_contained_v7[]{"v7", NULL};
1527 const char *g_contained_v8[]{"v8", NULL};
1528 const char *g_contained_v9[]{"v9", NULL};
1529 const char *g_contained_v10[]{"v10", NULL};
1530 const char *g_contained_v11[]{"v11", NULL};
1531 const char *g_contained_v12[]{"v12", NULL};
1532 const char *g_contained_v13[]{"v13", NULL};
1533 const char *g_contained_v14[]{"v14", NULL};
1534 const char *g_contained_v15[]{"v15", NULL};
1535 const char *g_contained_v16[]{"v16", NULL};
1536 const char *g_contained_v17[]{"v17", NULL};
1537 const char *g_contained_v18[]{"v18", NULL};
1538 const char *g_contained_v19[]{"v19", NULL};
1539 const char *g_contained_v20[]{"v20", NULL};
1540 const char *g_contained_v21[]{"v21", NULL};
1541 const char *g_contained_v22[]{"v22", NULL};
1542 const char *g_contained_v23[]{"v23", NULL};
1543 const char *g_contained_v24[]{"v24", NULL};
1544 const char *g_contained_v25[]{"v25", NULL};
1545 const char *g_contained_v26[]{"v26", NULL};
1546 const char *g_contained_v27[]{"v27", NULL};
1547 const char *g_contained_v28[]{"v28", NULL};
1548 const char *g_contained_v29[]{"v29", NULL};
1549 const char *g_contained_v30[]{"v30", NULL};
1550 const char *g_contained_v31[]{"v31", NULL};
1551 
1552 const char *g_invalidate_v0[]{"v0", "d0", "s0", NULL};
1553 const char *g_invalidate_v1[]{"v1", "d1", "s1", NULL};
1554 const char *g_invalidate_v2[]{"v2", "d2", "s2", NULL};
1555 const char *g_invalidate_v3[]{"v3", "d3", "s3", NULL};
1556 const char *g_invalidate_v4[]{"v4", "d4", "s4", NULL};
1557 const char *g_invalidate_v5[]{"v5", "d5", "s5", NULL};
1558 const char *g_invalidate_v6[]{"v6", "d6", "s6", NULL};
1559 const char *g_invalidate_v7[]{"v7", "d7", "s7", NULL};
1560 const char *g_invalidate_v8[]{"v8", "d8", "s8", NULL};
1561 const char *g_invalidate_v9[]{"v9", "d9", "s9", NULL};
1562 const char *g_invalidate_v10[]{"v10", "d10", "s10", NULL};
1563 const char *g_invalidate_v11[]{"v11", "d11", "s11", NULL};
1564 const char *g_invalidate_v12[]{"v12", "d12", "s12", NULL};
1565 const char *g_invalidate_v13[]{"v13", "d13", "s13", NULL};
1566 const char *g_invalidate_v14[]{"v14", "d14", "s14", NULL};
1567 const char *g_invalidate_v15[]{"v15", "d15", "s15", NULL};
1568 const char *g_invalidate_v16[]{"v16", "d16", "s16", NULL};
1569 const char *g_invalidate_v17[]{"v17", "d17", "s17", NULL};
1570 const char *g_invalidate_v18[]{"v18", "d18", "s18", NULL};
1571 const char *g_invalidate_v19[]{"v19", "d19", "s19", NULL};
1572 const char *g_invalidate_v20[]{"v20", "d20", "s20", NULL};
1573 const char *g_invalidate_v21[]{"v21", "d21", "s21", NULL};
1574 const char *g_invalidate_v22[]{"v22", "d22", "s22", NULL};
1575 const char *g_invalidate_v23[]{"v23", "d23", "s23", NULL};
1576 const char *g_invalidate_v24[]{"v24", "d24", "s24", NULL};
1577 const char *g_invalidate_v25[]{"v25", "d25", "s25", NULL};
1578 const char *g_invalidate_v26[]{"v26", "d26", "s26", NULL};
1579 const char *g_invalidate_v27[]{"v27", "d27", "s27", NULL};
1580 const char *g_invalidate_v28[]{"v28", "d28", "s28", NULL};
1581 const char *g_invalidate_v29[]{"v29", "d29", "s29", NULL};
1582 const char *g_invalidate_v30[]{"v30", "d30", "s30", NULL};
1583 const char *g_invalidate_v31[]{"v31", "d31", "s31", NULL};
1584 
1585 #if defined(__arm64__) || defined(__aarch64__)
1586 #define VFP_V_OFFSET_IDX(idx)                                                  \
1587   (offsetof(DNBArchMachARM64::FPU, __v) + (idx * 16) +                         \
1588    offsetof(DNBArchMachARM64::Context, vfp))
1589 #else
1590 #define VFP_V_OFFSET_IDX(idx)                                                  \
1591   (offsetof(DNBArchMachARM64::FPU, opaque) + (idx * 16) +                      \
1592    offsetof(DNBArchMachARM64::Context, vfp))
1593 #endif
1594 #define VFP_OFFSET_NAME(reg)                                                   \
1595   (offsetof(DNBArchMachARM64::FPU, reg) +                                      \
1596    offsetof(DNBArchMachARM64::Context, vfp))
1597 #define EXC_OFFSET(reg)                                                        \
1598   (offsetof(DNBArchMachARM64::EXC, reg) +                                      \
1599    offsetof(DNBArchMachARM64::Context, exc))
1600 
1601 //#define FLOAT_FORMAT Float
1602 #define DEFINE_VFP_V_IDX(idx)                                                  \
1603   {                                                                            \
1604     e_regSetVFP, vfp_v##idx, "v" #idx, "q" #idx, Vector, VectorOfUInt8, 16,    \
1605         VFP_V_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_v##idx,               \
1606         INVALID_NUB_REGNUM, debugserver_vfp_v##idx, NULL, g_invalidate_v##idx  \
1607   }
1608 #define DEFINE_PSEUDO_VFP_S_IDX(idx)                                           \
1609   {                                                                            \
1610     e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, Float, 4, 0,             \
1611         INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,            \
1612         INVALID_NUB_REGNUM, g_contained_v##idx, g_invalidate_v##idx            \
1613   }
1614 #define DEFINE_PSEUDO_VFP_D_IDX(idx)                                           \
1615   {                                                                            \
1616     e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, Float, 8, 0,             \
1617         INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,            \
1618         INVALID_NUB_REGNUM, g_contained_v##idx, g_invalidate_v##idx            \
1619   }
1620 
1621 // Floating point registers
1622 const DNBRegisterInfo DNBArchMachARM64::g_vfp_registers[] = {
1623     DEFINE_VFP_V_IDX(0),
1624     DEFINE_VFP_V_IDX(1),
1625     DEFINE_VFP_V_IDX(2),
1626     DEFINE_VFP_V_IDX(3),
1627     DEFINE_VFP_V_IDX(4),
1628     DEFINE_VFP_V_IDX(5),
1629     DEFINE_VFP_V_IDX(6),
1630     DEFINE_VFP_V_IDX(7),
1631     DEFINE_VFP_V_IDX(8),
1632     DEFINE_VFP_V_IDX(9),
1633     DEFINE_VFP_V_IDX(10),
1634     DEFINE_VFP_V_IDX(11),
1635     DEFINE_VFP_V_IDX(12),
1636     DEFINE_VFP_V_IDX(13),
1637     DEFINE_VFP_V_IDX(14),
1638     DEFINE_VFP_V_IDX(15),
1639     DEFINE_VFP_V_IDX(16),
1640     DEFINE_VFP_V_IDX(17),
1641     DEFINE_VFP_V_IDX(18),
1642     DEFINE_VFP_V_IDX(19),
1643     DEFINE_VFP_V_IDX(20),
1644     DEFINE_VFP_V_IDX(21),
1645     DEFINE_VFP_V_IDX(22),
1646     DEFINE_VFP_V_IDX(23),
1647     DEFINE_VFP_V_IDX(24),
1648     DEFINE_VFP_V_IDX(25),
1649     DEFINE_VFP_V_IDX(26),
1650     DEFINE_VFP_V_IDX(27),
1651     DEFINE_VFP_V_IDX(28),
1652     DEFINE_VFP_V_IDX(29),
1653     DEFINE_VFP_V_IDX(30),
1654     DEFINE_VFP_V_IDX(31),
1655     {e_regSetVFP, vfp_fpsr, "fpsr", NULL, Uint, Hex, 4,
1656      VFP_V_OFFSET_IDX(32) + 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1657      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1658     {e_regSetVFP, vfp_fpcr, "fpcr", NULL, Uint, Hex, 4,
1659      VFP_V_OFFSET_IDX(32) + 4, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1660      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1661 
1662     DEFINE_PSEUDO_VFP_S_IDX(0),
1663     DEFINE_PSEUDO_VFP_S_IDX(1),
1664     DEFINE_PSEUDO_VFP_S_IDX(2),
1665     DEFINE_PSEUDO_VFP_S_IDX(3),
1666     DEFINE_PSEUDO_VFP_S_IDX(4),
1667     DEFINE_PSEUDO_VFP_S_IDX(5),
1668     DEFINE_PSEUDO_VFP_S_IDX(6),
1669     DEFINE_PSEUDO_VFP_S_IDX(7),
1670     DEFINE_PSEUDO_VFP_S_IDX(8),
1671     DEFINE_PSEUDO_VFP_S_IDX(9),
1672     DEFINE_PSEUDO_VFP_S_IDX(10),
1673     DEFINE_PSEUDO_VFP_S_IDX(11),
1674     DEFINE_PSEUDO_VFP_S_IDX(12),
1675     DEFINE_PSEUDO_VFP_S_IDX(13),
1676     DEFINE_PSEUDO_VFP_S_IDX(14),
1677     DEFINE_PSEUDO_VFP_S_IDX(15),
1678     DEFINE_PSEUDO_VFP_S_IDX(16),
1679     DEFINE_PSEUDO_VFP_S_IDX(17),
1680     DEFINE_PSEUDO_VFP_S_IDX(18),
1681     DEFINE_PSEUDO_VFP_S_IDX(19),
1682     DEFINE_PSEUDO_VFP_S_IDX(20),
1683     DEFINE_PSEUDO_VFP_S_IDX(21),
1684     DEFINE_PSEUDO_VFP_S_IDX(22),
1685     DEFINE_PSEUDO_VFP_S_IDX(23),
1686     DEFINE_PSEUDO_VFP_S_IDX(24),
1687     DEFINE_PSEUDO_VFP_S_IDX(25),
1688     DEFINE_PSEUDO_VFP_S_IDX(26),
1689     DEFINE_PSEUDO_VFP_S_IDX(27),
1690     DEFINE_PSEUDO_VFP_S_IDX(28),
1691     DEFINE_PSEUDO_VFP_S_IDX(29),
1692     DEFINE_PSEUDO_VFP_S_IDX(30),
1693     DEFINE_PSEUDO_VFP_S_IDX(31),
1694 
1695     DEFINE_PSEUDO_VFP_D_IDX(0),
1696     DEFINE_PSEUDO_VFP_D_IDX(1),
1697     DEFINE_PSEUDO_VFP_D_IDX(2),
1698     DEFINE_PSEUDO_VFP_D_IDX(3),
1699     DEFINE_PSEUDO_VFP_D_IDX(4),
1700     DEFINE_PSEUDO_VFP_D_IDX(5),
1701     DEFINE_PSEUDO_VFP_D_IDX(6),
1702     DEFINE_PSEUDO_VFP_D_IDX(7),
1703     DEFINE_PSEUDO_VFP_D_IDX(8),
1704     DEFINE_PSEUDO_VFP_D_IDX(9),
1705     DEFINE_PSEUDO_VFP_D_IDX(10),
1706     DEFINE_PSEUDO_VFP_D_IDX(11),
1707     DEFINE_PSEUDO_VFP_D_IDX(12),
1708     DEFINE_PSEUDO_VFP_D_IDX(13),
1709     DEFINE_PSEUDO_VFP_D_IDX(14),
1710     DEFINE_PSEUDO_VFP_D_IDX(15),
1711     DEFINE_PSEUDO_VFP_D_IDX(16),
1712     DEFINE_PSEUDO_VFP_D_IDX(17),
1713     DEFINE_PSEUDO_VFP_D_IDX(18),
1714     DEFINE_PSEUDO_VFP_D_IDX(19),
1715     DEFINE_PSEUDO_VFP_D_IDX(20),
1716     DEFINE_PSEUDO_VFP_D_IDX(21),
1717     DEFINE_PSEUDO_VFP_D_IDX(22),
1718     DEFINE_PSEUDO_VFP_D_IDX(23),
1719     DEFINE_PSEUDO_VFP_D_IDX(24),
1720     DEFINE_PSEUDO_VFP_D_IDX(25),
1721     DEFINE_PSEUDO_VFP_D_IDX(26),
1722     DEFINE_PSEUDO_VFP_D_IDX(27),
1723     DEFINE_PSEUDO_VFP_D_IDX(28),
1724     DEFINE_PSEUDO_VFP_D_IDX(29),
1725     DEFINE_PSEUDO_VFP_D_IDX(30),
1726     DEFINE_PSEUDO_VFP_D_IDX(31)
1727 
1728 };
1729 
1730 //_STRUCT_ARM_EXCEPTION_STATE64
1731 //{
1732 //	uint64_t	far; /* Virtual Fault Address */
1733 //	uint32_t	esr; /* Exception syndrome */
1734 //	uint32_t	exception; /* number of arm exception taken */
1735 //};
1736 
1737 // Exception registers
1738 const DNBRegisterInfo DNBArchMachARM64::g_exc_registers[] = {
1739     {e_regSetEXC, exc_far, "far", NULL, Uint, Hex, 8, EXC_OFFSET(__far),
1740      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1741      INVALID_NUB_REGNUM, NULL, NULL},
1742     {e_regSetEXC, exc_esr, "esr", NULL, Uint, Hex, 4, EXC_OFFSET(__esr),
1743      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1744      INVALID_NUB_REGNUM, NULL, NULL},
1745     {e_regSetEXC, exc_exception, "exception", NULL, Uint, Hex, 4,
1746      EXC_OFFSET(__exception), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1747      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}};
1748 
1749 // Number of registers in each register set
1750 const size_t DNBArchMachARM64::k_num_gpr_registers =
1751     sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo);
1752 const size_t DNBArchMachARM64::k_num_vfp_registers =
1753     sizeof(g_vfp_registers) / sizeof(DNBRegisterInfo);
1754 const size_t DNBArchMachARM64::k_num_exc_registers =
1755     sizeof(g_exc_registers) / sizeof(DNBRegisterInfo);
1756 const size_t DNBArchMachARM64::k_num_all_registers =
1757     k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
1758 
1759 // Register set definitions. The first definitions at register set index
1760 // of zero is for all registers, followed by other registers sets. The
1761 // register information for the all register set need not be filled in.
1762 const DNBRegisterSetInfo DNBArchMachARM64::g_reg_sets[] = {
1763     {"ARM64 Registers", NULL, k_num_all_registers},
1764     {"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
1765     {"Floating Point Registers", g_vfp_registers, k_num_vfp_registers},
1766     {"Exception State Registers", g_exc_registers, k_num_exc_registers}};
1767 // Total number of register sets for this architecture
1768 const size_t DNBArchMachARM64::k_num_register_sets =
1769     sizeof(g_reg_sets) / sizeof(DNBRegisterSetInfo);
1770 
1771 const DNBRegisterSetInfo *
GetRegisterSetInfo(nub_size_t * num_reg_sets)1772 DNBArchMachARM64::GetRegisterSetInfo(nub_size_t *num_reg_sets) {
1773   *num_reg_sets = k_num_register_sets;
1774   return g_reg_sets;
1775 }
1776 
FixGenericRegisterNumber(uint32_t & set,uint32_t & reg)1777 bool DNBArchMachARM64::FixGenericRegisterNumber(uint32_t &set, uint32_t &reg) {
1778   if (set == REGISTER_SET_GENERIC) {
1779     switch (reg) {
1780     case GENERIC_REGNUM_PC: // Program Counter
1781       set = e_regSetGPR;
1782       reg = gpr_pc;
1783       break;
1784 
1785     case GENERIC_REGNUM_SP: // Stack Pointer
1786       set = e_regSetGPR;
1787       reg = gpr_sp;
1788       break;
1789 
1790     case GENERIC_REGNUM_FP: // Frame Pointer
1791       set = e_regSetGPR;
1792       reg = gpr_fp;
1793       break;
1794 
1795     case GENERIC_REGNUM_RA: // Return Address
1796       set = e_regSetGPR;
1797       reg = gpr_lr;
1798       break;
1799 
1800     case GENERIC_REGNUM_FLAGS: // Processor flags register
1801       set = e_regSetGPR;
1802       reg = gpr_cpsr;
1803       break;
1804 
1805     case GENERIC_REGNUM_ARG1:
1806     case GENERIC_REGNUM_ARG2:
1807     case GENERIC_REGNUM_ARG3:
1808     case GENERIC_REGNUM_ARG4:
1809     case GENERIC_REGNUM_ARG5:
1810     case GENERIC_REGNUM_ARG6:
1811       set = e_regSetGPR;
1812       reg = gpr_x0 + reg - GENERIC_REGNUM_ARG1;
1813       break;
1814 
1815     default:
1816       return false;
1817     }
1818   }
1819   return true;
1820 }
GetRegisterValue(uint32_t set,uint32_t reg,DNBRegisterValue * value)1821 bool DNBArchMachARM64::GetRegisterValue(uint32_t set, uint32_t reg,
1822                                         DNBRegisterValue *value) {
1823   if (!FixGenericRegisterNumber(set, reg))
1824     return false;
1825 
1826   if (GetRegisterState(set, false) != KERN_SUCCESS)
1827     return false;
1828 
1829   const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
1830   if (regInfo) {
1831     value->info = *regInfo;
1832     switch (set) {
1833     case e_regSetGPR:
1834       if (reg <= gpr_pc) {
1835 #if defined(__LP64__)
1836         if (reg == gpr_pc)
1837           value->value.uint64 = arm_thread_state64_get_pc (m_state.context.gpr);
1838         else if (reg == gpr_lr)
1839           value->value.uint64 = arm_thread_state64_get_lr (m_state.context.gpr);
1840         else if (reg == gpr_sp)
1841           value->value.uint64 = arm_thread_state64_get_sp (m_state.context.gpr);
1842         else if (reg == gpr_fp)
1843           value->value.uint64 = arm_thread_state64_get_fp (m_state.context.gpr);
1844         else
1845         value->value.uint64 = m_state.context.gpr.__x[reg];
1846 #else
1847         value->value.uint64 = m_state.context.gpr.__x[reg];
1848 #endif
1849         return true;
1850       } else if (reg == gpr_cpsr) {
1851         value->value.uint32 = m_state.context.gpr.__cpsr;
1852         return true;
1853       }
1854       break;
1855 
1856     case e_regSetVFP:
1857 
1858       if (reg >= vfp_v0 && reg <= vfp_v31) {
1859 #if defined(__arm64__) || defined(__aarch64__)
1860         memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_v0],
1861                16);
1862 #else
1863         memcpy(&value->value.v_uint8,
1864                ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16),
1865                16);
1866 #endif
1867         return true;
1868       } else if (reg == vfp_fpsr) {
1869 #if defined(__arm64__) || defined(__aarch64__)
1870         memcpy(&value->value.uint32, &m_state.context.vfp.__fpsr, 4);
1871 #else
1872         memcpy(&value->value.uint32,
1873                ((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 0, 4);
1874 #endif
1875         return true;
1876       } else if (reg == vfp_fpcr) {
1877 #if defined(__arm64__) || defined(__aarch64__)
1878         memcpy(&value->value.uint32, &m_state.context.vfp.__fpcr, 4);
1879 #else
1880         memcpy(&value->value.uint32,
1881                ((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 4, 4);
1882 #endif
1883         return true;
1884       } else if (reg >= vfp_s0 && reg <= vfp_s31) {
1885 #if defined(__arm64__) || defined(__aarch64__)
1886         memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_s0],
1887                4);
1888 #else
1889         memcpy(&value->value.v_uint8,
1890                ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16),
1891                4);
1892 #endif
1893         return true;
1894       } else if (reg >= vfp_d0 && reg <= vfp_d31) {
1895 #if defined(__arm64__) || defined(__aarch64__)
1896         memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_d0],
1897                8);
1898 #else
1899         memcpy(&value->value.v_uint8,
1900                ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16),
1901                8);
1902 #endif
1903         return true;
1904       }
1905       break;
1906 
1907     case e_regSetEXC:
1908       if (reg == exc_far) {
1909         value->value.uint64 = m_state.context.exc.__far;
1910         return true;
1911       } else if (reg == exc_esr) {
1912         value->value.uint32 = m_state.context.exc.__esr;
1913         return true;
1914       } else if (reg == exc_exception) {
1915         value->value.uint32 = m_state.context.exc.__exception;
1916         return true;
1917       }
1918       break;
1919     }
1920   }
1921   return false;
1922 }
1923 
SetRegisterValue(uint32_t set,uint32_t reg,const DNBRegisterValue * value)1924 bool DNBArchMachARM64::SetRegisterValue(uint32_t set, uint32_t reg,
1925                                         const DNBRegisterValue *value) {
1926   if (!FixGenericRegisterNumber(set, reg))
1927     return false;
1928 
1929   if (GetRegisterState(set, false) != KERN_SUCCESS)
1930     return false;
1931 
1932   bool success = false;
1933   const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
1934   if (regInfo) {
1935     switch (set) {
1936     case e_regSetGPR:
1937       if (reg <= gpr_pc) {
1938 #if defined(__LP64__)
1939           uint64_t signed_value = value->value.uint64;
1940 #if __has_feature(ptrauth_calls)
1941           // The incoming value could be garbage.  Strip it to avoid
1942           // trapping when it gets resigned in the thread state.
1943           signed_value = (uint64_t) ptrauth_strip((void*) signed_value, ptrauth_key_function_pointer);
1944           signed_value = (uint64_t) ptrauth_sign_unauthenticated((void*) signed_value, ptrauth_key_function_pointer, 0);
1945 #endif
1946         if (reg == gpr_pc)
1947          arm_thread_state64_set_pc_fptr (m_state.context.gpr, (void*) signed_value);
1948         else if (reg == gpr_lr)
1949           arm_thread_state64_set_lr_fptr (m_state.context.gpr, (void*) signed_value);
1950         else if (reg == gpr_sp)
1951           arm_thread_state64_set_sp (m_state.context.gpr, value->value.uint64);
1952         else if (reg == gpr_fp)
1953           arm_thread_state64_set_fp (m_state.context.gpr, value->value.uint64);
1954         else
1955           m_state.context.gpr.__x[reg] = value->value.uint64;
1956 #else
1957         m_state.context.gpr.__x[reg] = value->value.uint64;
1958 #endif
1959         success = true;
1960       } else if (reg == gpr_cpsr) {
1961         m_state.context.gpr.__cpsr = value->value.uint32;
1962         success = true;
1963       }
1964       break;
1965 
1966     case e_regSetVFP:
1967       if (reg >= vfp_v0 && reg <= vfp_v31) {
1968 #if defined(__arm64__) || defined(__aarch64__)
1969         memcpy(&m_state.context.vfp.__v[reg - vfp_v0], &value->value.v_uint8,
1970                16);
1971 #else
1972         memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16),
1973                &value->value.v_uint8, 16);
1974 #endif
1975         success = true;
1976       } else if (reg == vfp_fpsr) {
1977 #if defined(__arm64__) || defined(__aarch64__)
1978         memcpy(&m_state.context.vfp.__fpsr, &value->value.uint32, 4);
1979 #else
1980         memcpy(((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 0,
1981                &value->value.uint32, 4);
1982 #endif
1983         success = true;
1984       } else if (reg == vfp_fpcr) {
1985 #if defined(__arm64__) || defined(__aarch64__)
1986         memcpy(&m_state.context.vfp.__fpcr, &value->value.uint32, 4);
1987 #else
1988         memcpy(((uint8_t *)m_state.context.vfp.opaque) + (32 * 16) + 4,
1989                &value->value.uint32, 4);
1990 #endif
1991         success = true;
1992       } else if (reg >= vfp_s0 && reg <= vfp_s31) {
1993 #if defined(__arm64__) || defined(__aarch64__)
1994         memcpy(&m_state.context.vfp.__v[reg - vfp_s0], &value->value.v_uint8,
1995                4);
1996 #else
1997         memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16),
1998                &value->value.v_uint8, 4);
1999 #endif
2000         success = true;
2001       } else if (reg >= vfp_d0 && reg <= vfp_d31) {
2002 #if defined(__arm64__) || defined(__aarch64__)
2003         memcpy(&m_state.context.vfp.__v[reg - vfp_d0], &value->value.v_uint8,
2004                8);
2005 #else
2006         memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16),
2007                &value->value.v_uint8, 8);
2008 #endif
2009         success = true;
2010       }
2011       break;
2012 
2013     case e_regSetEXC:
2014       if (reg == exc_far) {
2015         m_state.context.exc.__far = value->value.uint64;
2016         success = true;
2017       } else if (reg == exc_esr) {
2018         m_state.context.exc.__esr = value->value.uint32;
2019         success = true;
2020       } else if (reg == exc_exception) {
2021         m_state.context.exc.__exception = value->value.uint32;
2022         success = true;
2023       }
2024       break;
2025     }
2026   }
2027   if (success)
2028     return SetRegisterState(set) == KERN_SUCCESS;
2029   return false;
2030 }
2031 
GetRegisterState(int set,bool force)2032 kern_return_t DNBArchMachARM64::GetRegisterState(int set, bool force) {
2033   switch (set) {
2034   case e_regSetALL:
2035     return GetGPRState(force) | GetVFPState(force) | GetEXCState(force) |
2036            GetDBGState(force);
2037   case e_regSetGPR:
2038     return GetGPRState(force);
2039   case e_regSetVFP:
2040     return GetVFPState(force);
2041   case e_regSetEXC:
2042     return GetEXCState(force);
2043   case e_regSetDBG:
2044     return GetDBGState(force);
2045   default:
2046     break;
2047   }
2048   return KERN_INVALID_ARGUMENT;
2049 }
2050 
SetRegisterState(int set)2051 kern_return_t DNBArchMachARM64::SetRegisterState(int set) {
2052   // Make sure we have a valid context to set.
2053   kern_return_t err = GetRegisterState(set, false);
2054   if (err != KERN_SUCCESS)
2055     return err;
2056 
2057   switch (set) {
2058   case e_regSetALL:
2059     return SetGPRState() | SetVFPState() | SetEXCState() | SetDBGState(false);
2060   case e_regSetGPR:
2061     return SetGPRState();
2062   case e_regSetVFP:
2063     return SetVFPState();
2064   case e_regSetEXC:
2065     return SetEXCState();
2066   case e_regSetDBG:
2067     return SetDBGState(false);
2068   default:
2069     break;
2070   }
2071   return KERN_INVALID_ARGUMENT;
2072 }
2073 
RegisterSetStateIsValid(int set) const2074 bool DNBArchMachARM64::RegisterSetStateIsValid(int set) const {
2075   return m_state.RegsAreValid(set);
2076 }
2077 
GetRegisterContext(void * buf,nub_size_t buf_len)2078 nub_size_t DNBArchMachARM64::GetRegisterContext(void *buf, nub_size_t buf_len) {
2079   nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) +
2080                     sizeof(m_state.context.exc);
2081 
2082   if (buf && buf_len) {
2083     if (size > buf_len)
2084       size = buf_len;
2085 
2086     bool force = false;
2087     if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
2088       return 0;
2089 
2090     // Copy each struct individually to avoid any padding that might be between
2091     // the structs in m_state.context
2092     uint8_t *p = (uint8_t *)buf;
2093     ::memcpy(p, &m_state.context.gpr, sizeof(m_state.context.gpr));
2094     p += sizeof(m_state.context.gpr);
2095     ::memcpy(p, &m_state.context.vfp, sizeof(m_state.context.vfp));
2096     p += sizeof(m_state.context.vfp);
2097     ::memcpy(p, &m_state.context.exc, sizeof(m_state.context.exc));
2098     p += sizeof(m_state.context.exc);
2099 
2100     size_t bytes_written = p - (uint8_t *)buf;
2101     UNUSED_IF_ASSERT_DISABLED(bytes_written);
2102     assert(bytes_written == size);
2103   }
2104   DNBLogThreadedIf(
2105       LOG_THREAD,
2106       "DNBArchMachARM64::GetRegisterContext (buf = %p, len = %zu) => %zu", buf,
2107       buf_len, size);
2108   // Return the size of the register context even if NULL was passed in
2109   return size;
2110 }
2111 
SetRegisterContext(const void * buf,nub_size_t buf_len)2112 nub_size_t DNBArchMachARM64::SetRegisterContext(const void *buf,
2113                                                 nub_size_t buf_len) {
2114   nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) +
2115                     sizeof(m_state.context.exc);
2116 
2117   if (buf == NULL || buf_len == 0)
2118     size = 0;
2119 
2120   if (size) {
2121     if (size > buf_len)
2122       size = buf_len;
2123 
2124     // Copy each struct individually to avoid any padding that might be between
2125     // the structs in m_state.context
2126     uint8_t *p = (uint8_t *)buf;
2127     ::memcpy(&m_state.context.gpr, p, sizeof(m_state.context.gpr));
2128     p += sizeof(m_state.context.gpr);
2129     ::memcpy(&m_state.context.vfp, p, sizeof(m_state.context.vfp));
2130     p += sizeof(m_state.context.vfp);
2131     ::memcpy(&m_state.context.exc, p, sizeof(m_state.context.exc));
2132     p += sizeof(m_state.context.exc);
2133 
2134     size_t bytes_written = p - (uint8_t *)buf;
2135     UNUSED_IF_ASSERT_DISABLED(bytes_written);
2136     assert(bytes_written == size);
2137     SetGPRState();
2138     SetVFPState();
2139     SetEXCState();
2140   }
2141   DNBLogThreadedIf(
2142       LOG_THREAD,
2143       "DNBArchMachARM64::SetRegisterContext (buf = %p, len = %zu) => %zu", buf,
2144       buf_len, size);
2145   return size;
2146 }
2147 
SaveRegisterState()2148 uint32_t DNBArchMachARM64::SaveRegisterState() {
2149   kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
2150   DNBLogThreadedIf(
2151       LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u "
2152                   "(SetGPRState() for stop_count = %u)",
2153       m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
2154 
2155   // Always re-read the registers because above we call thread_abort_safely();
2156   bool force = true;
2157 
2158   if ((kret = GetGPRState(force)) != KERN_SUCCESS) {
2159     DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () "
2160                                  "error: GPR regs failed to read: %u ",
2161                      kret);
2162   } else if ((kret = GetVFPState(force)) != KERN_SUCCESS) {
2163     DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () "
2164                                  "error: %s regs failed to read: %u",
2165                      "VFP", kret);
2166   } else {
2167     const uint32_t save_id = GetNextRegisterStateSaveID();
2168     m_saved_register_states[save_id] = m_state.context;
2169     return save_id;
2170   }
2171   return UINT32_MAX;
2172 }
2173 
RestoreRegisterState(uint32_t save_id)2174 bool DNBArchMachARM64::RestoreRegisterState(uint32_t save_id) {
2175   SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id);
2176   if (pos != m_saved_register_states.end()) {
2177     m_state.context.gpr = pos->second.gpr;
2178     m_state.context.vfp = pos->second.vfp;
2179     kern_return_t kret;
2180     bool success = true;
2181     if ((kret = SetGPRState()) != KERN_SUCCESS) {
2182       DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState "
2183                                    "(save_id = %u) error: GPR regs failed to "
2184                                    "write: %u",
2185                        save_id, kret);
2186       success = false;
2187     } else if ((kret = SetVFPState()) != KERN_SUCCESS) {
2188       DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState "
2189                                    "(save_id = %u) error: %s regs failed to "
2190                                    "write: %u",
2191                        save_id, "VFP", kret);
2192       success = false;
2193     }
2194     m_saved_register_states.erase(pos);
2195     return success;
2196   }
2197   return false;
2198 }
2199 
2200 #endif // #if defined (ARM_THREAD_STATE64_COUNT)
2201 #endif // #if defined (__arm__) || defined (__arm64__) || defined (__aarch64__)
2202