1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <utility>
86
87 using namespace llvm;
88 using namespace llvm::PatternMatch;
89
90 #define DEBUG_TYPE "local"
91
92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
93
94 // Max recursion depth for collectBitParts used when detecting bswap and
95 // bitreverse idioms
96 static const unsigned BitPartRecursionMaxDepth = 64;
97
98 //===----------------------------------------------------------------------===//
99 // Local constant propagation.
100 //
101
102 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
103 /// constant value, convert it into an unconditional branch to the constant
104 /// destination. This is a nontrivial operation because the successors of this
105 /// basic block must have their PHI nodes updated.
106 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
107 /// conditions and indirectbr addresses this might make dead if
108 /// DeleteDeadConditions is true.
ConstantFoldTerminator(BasicBlock * BB,bool DeleteDeadConditions,const TargetLibraryInfo * TLI,DomTreeUpdater * DTU)109 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
110 const TargetLibraryInfo *TLI,
111 DomTreeUpdater *DTU) {
112 Instruction *T = BB->getTerminator();
113 IRBuilder<> Builder(T);
114
115 // Branch - See if we are conditional jumping on constant
116 if (auto *BI = dyn_cast<BranchInst>(T)) {
117 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
118 BasicBlock *Dest1 = BI->getSuccessor(0);
119 BasicBlock *Dest2 = BI->getSuccessor(1);
120
121 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
122 // Are we branching on constant?
123 // YES. Change to unconditional branch...
124 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
125 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
126
127 // Let the basic block know that we are letting go of it. Based on this,
128 // it will adjust it's PHI nodes.
129 OldDest->removePredecessor(BB);
130
131 // Replace the conditional branch with an unconditional one.
132 Builder.CreateBr(Destination);
133 BI->eraseFromParent();
134 if (DTU)
135 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}});
136 return true;
137 }
138
139 if (Dest2 == Dest1) { // Conditional branch to same location?
140 // This branch matches something like this:
141 // br bool %cond, label %Dest, label %Dest
142 // and changes it into: br label %Dest
143
144 // Let the basic block know that we are letting go of one copy of it.
145 assert(BI->getParent() && "Terminator not inserted in block!");
146 Dest1->removePredecessor(BI->getParent());
147
148 // Replace the conditional branch with an unconditional one.
149 Builder.CreateBr(Dest1);
150 Value *Cond = BI->getCondition();
151 BI->eraseFromParent();
152 if (DeleteDeadConditions)
153 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
154 return true;
155 }
156 return false;
157 }
158
159 if (auto *SI = dyn_cast<SwitchInst>(T)) {
160 // If we are switching on a constant, we can convert the switch to an
161 // unconditional branch.
162 auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
163 BasicBlock *DefaultDest = SI->getDefaultDest();
164 BasicBlock *TheOnlyDest = DefaultDest;
165
166 // If the default is unreachable, ignore it when searching for TheOnlyDest.
167 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
168 SI->getNumCases() > 0) {
169 TheOnlyDest = SI->case_begin()->getCaseSuccessor();
170 }
171
172 // Figure out which case it goes to.
173 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
174 // Found case matching a constant operand?
175 if (i->getCaseValue() == CI) {
176 TheOnlyDest = i->getCaseSuccessor();
177 break;
178 }
179
180 // Check to see if this branch is going to the same place as the default
181 // dest. If so, eliminate it as an explicit compare.
182 if (i->getCaseSuccessor() == DefaultDest) {
183 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
184 unsigned NCases = SI->getNumCases();
185 // Fold the case metadata into the default if there will be any branches
186 // left, unless the metadata doesn't match the switch.
187 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
188 // Collect branch weights into a vector.
189 SmallVector<uint32_t, 8> Weights;
190 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
191 ++MD_i) {
192 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
193 Weights.push_back(CI->getValue().getZExtValue());
194 }
195 // Merge weight of this case to the default weight.
196 unsigned idx = i->getCaseIndex();
197 Weights[0] += Weights[idx+1];
198 // Remove weight for this case.
199 std::swap(Weights[idx+1], Weights.back());
200 Weights.pop_back();
201 SI->setMetadata(LLVMContext::MD_prof,
202 MDBuilder(BB->getContext()).
203 createBranchWeights(Weights));
204 }
205 // Remove this entry.
206 BasicBlock *ParentBB = SI->getParent();
207 DefaultDest->removePredecessor(ParentBB);
208 i = SI->removeCase(i);
209 e = SI->case_end();
210 if (DTU)
211 DTU->applyUpdatesPermissive(
212 {{DominatorTree::Delete, ParentBB, DefaultDest}});
213 continue;
214 }
215
216 // Otherwise, check to see if the switch only branches to one destination.
217 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
218 // destinations.
219 if (i->getCaseSuccessor() != TheOnlyDest)
220 TheOnlyDest = nullptr;
221
222 // Increment this iterator as we haven't removed the case.
223 ++i;
224 }
225
226 if (CI && !TheOnlyDest) {
227 // Branching on a constant, but not any of the cases, go to the default
228 // successor.
229 TheOnlyDest = SI->getDefaultDest();
230 }
231
232 // If we found a single destination that we can fold the switch into, do so
233 // now.
234 if (TheOnlyDest) {
235 // Insert the new branch.
236 Builder.CreateBr(TheOnlyDest);
237 BasicBlock *BB = SI->getParent();
238 std::vector <DominatorTree::UpdateType> Updates;
239 if (DTU)
240 Updates.reserve(SI->getNumSuccessors() - 1);
241
242 // Remove entries from PHI nodes which we no longer branch to...
243 for (BasicBlock *Succ : successors(SI)) {
244 // Found case matching a constant operand?
245 if (Succ == TheOnlyDest) {
246 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
247 } else {
248 Succ->removePredecessor(BB);
249 if (DTU)
250 Updates.push_back({DominatorTree::Delete, BB, Succ});
251 }
252 }
253
254 // Delete the old switch.
255 Value *Cond = SI->getCondition();
256 SI->eraseFromParent();
257 if (DeleteDeadConditions)
258 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
259 if (DTU)
260 DTU->applyUpdatesPermissive(Updates);
261 return true;
262 }
263
264 if (SI->getNumCases() == 1) {
265 // Otherwise, we can fold this switch into a conditional branch
266 // instruction if it has only one non-default destination.
267 auto FirstCase = *SI->case_begin();
268 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
269 FirstCase.getCaseValue(), "cond");
270
271 // Insert the new branch.
272 BranchInst *NewBr = Builder.CreateCondBr(Cond,
273 FirstCase.getCaseSuccessor(),
274 SI->getDefaultDest());
275 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
276 if (MD && MD->getNumOperands() == 3) {
277 ConstantInt *SICase =
278 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
279 ConstantInt *SIDef =
280 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
281 assert(SICase && SIDef);
282 // The TrueWeight should be the weight for the single case of SI.
283 NewBr->setMetadata(LLVMContext::MD_prof,
284 MDBuilder(BB->getContext()).
285 createBranchWeights(SICase->getValue().getZExtValue(),
286 SIDef->getValue().getZExtValue()));
287 }
288
289 // Update make.implicit metadata to the newly-created conditional branch.
290 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
291 if (MakeImplicitMD)
292 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
293
294 // Delete the old switch.
295 SI->eraseFromParent();
296 return true;
297 }
298 return false;
299 }
300
301 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
302 // indirectbr blockaddress(@F, @BB) -> br label @BB
303 if (auto *BA =
304 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
305 BasicBlock *TheOnlyDest = BA->getBasicBlock();
306 std::vector <DominatorTree::UpdateType> Updates;
307 if (DTU)
308 Updates.reserve(IBI->getNumDestinations() - 1);
309
310 // Insert the new branch.
311 Builder.CreateBr(TheOnlyDest);
312
313 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
314 if (IBI->getDestination(i) == TheOnlyDest) {
315 TheOnlyDest = nullptr;
316 } else {
317 BasicBlock *ParentBB = IBI->getParent();
318 BasicBlock *DestBB = IBI->getDestination(i);
319 DestBB->removePredecessor(ParentBB);
320 if (DTU)
321 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
322 }
323 }
324 Value *Address = IBI->getAddress();
325 IBI->eraseFromParent();
326 if (DeleteDeadConditions)
327 // Delete pointer cast instructions.
328 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
329
330 // Also zap the blockaddress constant if there are no users remaining,
331 // otherwise the destination is still marked as having its address taken.
332 if (BA->use_empty())
333 BA->destroyConstant();
334
335 // If we didn't find our destination in the IBI successor list, then we
336 // have undefined behavior. Replace the unconditional branch with an
337 // 'unreachable' instruction.
338 if (TheOnlyDest) {
339 BB->getTerminator()->eraseFromParent();
340 new UnreachableInst(BB->getContext(), BB);
341 }
342
343 if (DTU)
344 DTU->applyUpdatesPermissive(Updates);
345 return true;
346 }
347 }
348
349 return false;
350 }
351
352 //===----------------------------------------------------------------------===//
353 // Local dead code elimination.
354 //
355
356 /// isInstructionTriviallyDead - Return true if the result produced by the
357 /// instruction is not used, and the instruction has no side effects.
358 ///
isInstructionTriviallyDead(Instruction * I,const TargetLibraryInfo * TLI)359 bool llvm::isInstructionTriviallyDead(Instruction *I,
360 const TargetLibraryInfo *TLI) {
361 if (!I->use_empty())
362 return false;
363 return wouldInstructionBeTriviallyDead(I, TLI);
364 }
365
wouldInstructionBeTriviallyDead(Instruction * I,const TargetLibraryInfo * TLI)366 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
367 const TargetLibraryInfo *TLI) {
368 if (I->isTerminator())
369 return false;
370
371 // We don't want the landingpad-like instructions removed by anything this
372 // general.
373 if (I->isEHPad())
374 return false;
375
376 // We don't want debug info removed by anything this general, unless
377 // debug info is empty.
378 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
379 if (DDI->getAddress())
380 return false;
381 return true;
382 }
383 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
384 if (DVI->getValue())
385 return false;
386 return true;
387 }
388 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
389 if (DLI->getLabel())
390 return false;
391 return true;
392 }
393
394 if (!I->mayHaveSideEffects())
395 return true;
396
397 // Special case intrinsics that "may have side effects" but can be deleted
398 // when dead.
399 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
400 // Safe to delete llvm.stacksave and launder.invariant.group if dead.
401 if (II->getIntrinsicID() == Intrinsic::stacksave ||
402 II->getIntrinsicID() == Intrinsic::launder_invariant_group)
403 return true;
404
405 // Lifetime intrinsics are dead when their right-hand is undef.
406 if (II->isLifetimeStartOrEnd())
407 return isa<UndefValue>(II->getArgOperand(1));
408
409 // Assumptions are dead if their condition is trivially true. Guards on
410 // true are operationally no-ops. In the future we can consider more
411 // sophisticated tradeoffs for guards considering potential for check
412 // widening, but for now we keep things simple.
413 if (II->getIntrinsicID() == Intrinsic::assume ||
414 II->getIntrinsicID() == Intrinsic::experimental_guard) {
415 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
416 return !Cond->isZero();
417
418 return false;
419 }
420 }
421
422 if (isAllocLikeFn(I, TLI))
423 return true;
424
425 if (CallInst *CI = isFreeCall(I, TLI))
426 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
427 return C->isNullValue() || isa<UndefValue>(C);
428
429 if (auto *Call = dyn_cast<CallBase>(I))
430 if (isMathLibCallNoop(Call, TLI))
431 return true;
432
433 return false;
434 }
435
436 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
437 /// trivially dead instruction, delete it. If that makes any of its operands
438 /// trivially dead, delete them too, recursively. Return true if any
439 /// instructions were deleted.
RecursivelyDeleteTriviallyDeadInstructions(Value * V,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU)440 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
441 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
442 Instruction *I = dyn_cast<Instruction>(V);
443 if (!I || !isInstructionTriviallyDead(I, TLI))
444 return false;
445
446 SmallVector<Instruction*, 16> DeadInsts;
447 DeadInsts.push_back(I);
448 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
449
450 return true;
451 }
452
RecursivelyDeleteTriviallyDeadInstructions(SmallVectorImpl<Instruction * > & DeadInsts,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU)453 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
454 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
455 MemorySSAUpdater *MSSAU) {
456 // Process the dead instruction list until empty.
457 while (!DeadInsts.empty()) {
458 Instruction &I = *DeadInsts.pop_back_val();
459 assert(I.use_empty() && "Instructions with uses are not dead.");
460 assert(isInstructionTriviallyDead(&I, TLI) &&
461 "Live instruction found in dead worklist!");
462
463 // Don't lose the debug info while deleting the instructions.
464 salvageDebugInfo(I);
465
466 // Null out all of the instruction's operands to see if any operand becomes
467 // dead as we go.
468 for (Use &OpU : I.operands()) {
469 Value *OpV = OpU.get();
470 OpU.set(nullptr);
471
472 if (!OpV->use_empty())
473 continue;
474
475 // If the operand is an instruction that became dead as we nulled out the
476 // operand, and if it is 'trivially' dead, delete it in a future loop
477 // iteration.
478 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
479 if (isInstructionTriviallyDead(OpI, TLI))
480 DeadInsts.push_back(OpI);
481 }
482 if (MSSAU)
483 MSSAU->removeMemoryAccess(&I);
484
485 I.eraseFromParent();
486 }
487 }
488
replaceDbgUsesWithUndef(Instruction * I)489 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
490 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
491 findDbgUsers(DbgUsers, I);
492 for (auto *DII : DbgUsers) {
493 Value *Undef = UndefValue::get(I->getType());
494 DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
495 ValueAsMetadata::get(Undef)));
496 }
497 return !DbgUsers.empty();
498 }
499
500 /// areAllUsesEqual - Check whether the uses of a value are all the same.
501 /// This is similar to Instruction::hasOneUse() except this will also return
502 /// true when there are no uses or multiple uses that all refer to the same
503 /// value.
areAllUsesEqual(Instruction * I)504 static bool areAllUsesEqual(Instruction *I) {
505 Value::user_iterator UI = I->user_begin();
506 Value::user_iterator UE = I->user_end();
507 if (UI == UE)
508 return true;
509
510 User *TheUse = *UI;
511 for (++UI; UI != UE; ++UI) {
512 if (*UI != TheUse)
513 return false;
514 }
515 return true;
516 }
517
518 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
519 /// dead PHI node, due to being a def-use chain of single-use nodes that
520 /// either forms a cycle or is terminated by a trivially dead instruction,
521 /// delete it. If that makes any of its operands trivially dead, delete them
522 /// too, recursively. Return true if a change was made.
RecursivelyDeleteDeadPHINode(PHINode * PN,const TargetLibraryInfo * TLI)523 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
524 const TargetLibraryInfo *TLI) {
525 SmallPtrSet<Instruction*, 4> Visited;
526 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
527 I = cast<Instruction>(*I->user_begin())) {
528 if (I->use_empty())
529 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
530
531 // If we find an instruction more than once, we're on a cycle that
532 // won't prove fruitful.
533 if (!Visited.insert(I).second) {
534 // Break the cycle and delete the instruction and its operands.
535 I->replaceAllUsesWith(UndefValue::get(I->getType()));
536 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
537 return true;
538 }
539 }
540 return false;
541 }
542
543 static bool
simplifyAndDCEInstruction(Instruction * I,SmallSetVector<Instruction *,16> & WorkList,const DataLayout & DL,const TargetLibraryInfo * TLI)544 simplifyAndDCEInstruction(Instruction *I,
545 SmallSetVector<Instruction *, 16> &WorkList,
546 const DataLayout &DL,
547 const TargetLibraryInfo *TLI) {
548 if (isInstructionTriviallyDead(I, TLI)) {
549 salvageDebugInfo(*I);
550
551 // Null out all of the instruction's operands to see if any operand becomes
552 // dead as we go.
553 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
554 Value *OpV = I->getOperand(i);
555 I->setOperand(i, nullptr);
556
557 if (!OpV->use_empty() || I == OpV)
558 continue;
559
560 // If the operand is an instruction that became dead as we nulled out the
561 // operand, and if it is 'trivially' dead, delete it in a future loop
562 // iteration.
563 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
564 if (isInstructionTriviallyDead(OpI, TLI))
565 WorkList.insert(OpI);
566 }
567
568 I->eraseFromParent();
569
570 return true;
571 }
572
573 if (Value *SimpleV = SimplifyInstruction(I, DL)) {
574 // Add the users to the worklist. CAREFUL: an instruction can use itself,
575 // in the case of a phi node.
576 for (User *U : I->users()) {
577 if (U != I) {
578 WorkList.insert(cast<Instruction>(U));
579 }
580 }
581
582 // Replace the instruction with its simplified value.
583 bool Changed = false;
584 if (!I->use_empty()) {
585 I->replaceAllUsesWith(SimpleV);
586 Changed = true;
587 }
588 if (isInstructionTriviallyDead(I, TLI)) {
589 I->eraseFromParent();
590 Changed = true;
591 }
592 return Changed;
593 }
594 return false;
595 }
596
597 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
598 /// simplify any instructions in it and recursively delete dead instructions.
599 ///
600 /// This returns true if it changed the code, note that it can delete
601 /// instructions in other blocks as well in this block.
SimplifyInstructionsInBlock(BasicBlock * BB,const TargetLibraryInfo * TLI)602 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
603 const TargetLibraryInfo *TLI) {
604 bool MadeChange = false;
605 const DataLayout &DL = BB->getModule()->getDataLayout();
606
607 #ifndef NDEBUG
608 // In debug builds, ensure that the terminator of the block is never replaced
609 // or deleted by these simplifications. The idea of simplification is that it
610 // cannot introduce new instructions, and there is no way to replace the
611 // terminator of a block without introducing a new instruction.
612 AssertingVH<Instruction> TerminatorVH(&BB->back());
613 #endif
614
615 SmallSetVector<Instruction *, 16> WorkList;
616 // Iterate over the original function, only adding insts to the worklist
617 // if they actually need to be revisited. This avoids having to pre-init
618 // the worklist with the entire function's worth of instructions.
619 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
620 BI != E;) {
621 assert(!BI->isTerminator());
622 Instruction *I = &*BI;
623 ++BI;
624
625 // We're visiting this instruction now, so make sure it's not in the
626 // worklist from an earlier visit.
627 if (!WorkList.count(I))
628 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
629 }
630
631 while (!WorkList.empty()) {
632 Instruction *I = WorkList.pop_back_val();
633 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
634 }
635 return MadeChange;
636 }
637
638 //===----------------------------------------------------------------------===//
639 // Control Flow Graph Restructuring.
640 //
641
RemovePredecessorAndSimplify(BasicBlock * BB,BasicBlock * Pred,DomTreeUpdater * DTU)642 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
643 DomTreeUpdater *DTU) {
644 // This only adjusts blocks with PHI nodes.
645 if (!isa<PHINode>(BB->begin()))
646 return;
647
648 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
649 // them down. This will leave us with single entry phi nodes and other phis
650 // that can be removed.
651 BB->removePredecessor(Pred, true);
652
653 WeakTrackingVH PhiIt = &BB->front();
654 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
655 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
656 Value *OldPhiIt = PhiIt;
657
658 if (!recursivelySimplifyInstruction(PN))
659 continue;
660
661 // If recursive simplification ended up deleting the next PHI node we would
662 // iterate to, then our iterator is invalid, restart scanning from the top
663 // of the block.
664 if (PhiIt != OldPhiIt) PhiIt = &BB->front();
665 }
666 if (DTU)
667 DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}});
668 }
669
MergeBasicBlockIntoOnlyPred(BasicBlock * DestBB,DomTreeUpdater * DTU)670 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
671 DomTreeUpdater *DTU) {
672
673 // If BB has single-entry PHI nodes, fold them.
674 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
675 Value *NewVal = PN->getIncomingValue(0);
676 // Replace self referencing PHI with undef, it must be dead.
677 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
678 PN->replaceAllUsesWith(NewVal);
679 PN->eraseFromParent();
680 }
681
682 BasicBlock *PredBB = DestBB->getSinglePredecessor();
683 assert(PredBB && "Block doesn't have a single predecessor!");
684
685 bool ReplaceEntryBB = false;
686 if (PredBB == &DestBB->getParent()->getEntryBlock())
687 ReplaceEntryBB = true;
688
689 // DTU updates: Collect all the edges that enter
690 // PredBB. These dominator edges will be redirected to DestBB.
691 SmallVector<DominatorTree::UpdateType, 32> Updates;
692
693 if (DTU) {
694 Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
695 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
696 Updates.push_back({DominatorTree::Delete, *I, PredBB});
697 // This predecessor of PredBB may already have DestBB as a successor.
698 if (llvm::find(successors(*I), DestBB) == succ_end(*I))
699 Updates.push_back({DominatorTree::Insert, *I, DestBB});
700 }
701 }
702
703 // Zap anything that took the address of DestBB. Not doing this will give the
704 // address an invalid value.
705 if (DestBB->hasAddressTaken()) {
706 BlockAddress *BA = BlockAddress::get(DestBB);
707 Constant *Replacement =
708 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
709 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
710 BA->getType()));
711 BA->destroyConstant();
712 }
713
714 // Anything that branched to PredBB now branches to DestBB.
715 PredBB->replaceAllUsesWith(DestBB);
716
717 // Splice all the instructions from PredBB to DestBB.
718 PredBB->getTerminator()->eraseFromParent();
719 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
720 new UnreachableInst(PredBB->getContext(), PredBB);
721
722 // If the PredBB is the entry block of the function, move DestBB up to
723 // become the entry block after we erase PredBB.
724 if (ReplaceEntryBB)
725 DestBB->moveAfter(PredBB);
726
727 if (DTU) {
728 assert(PredBB->getInstList().size() == 1 &&
729 isa<UnreachableInst>(PredBB->getTerminator()) &&
730 "The successor list of PredBB isn't empty before "
731 "applying corresponding DTU updates.");
732 DTU->applyUpdatesPermissive(Updates);
733 DTU->deleteBB(PredBB);
734 // Recalculation of DomTree is needed when updating a forward DomTree and
735 // the Entry BB is replaced.
736 if (ReplaceEntryBB && DTU->hasDomTree()) {
737 // The entry block was removed and there is no external interface for
738 // the dominator tree to be notified of this change. In this corner-case
739 // we recalculate the entire tree.
740 DTU->recalculate(*(DestBB->getParent()));
741 }
742 }
743
744 else {
745 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
746 }
747 }
748
749 /// Return true if we can choose one of these values to use in place of the
750 /// other. Note that we will always choose the non-undef value to keep.
CanMergeValues(Value * First,Value * Second)751 static bool CanMergeValues(Value *First, Value *Second) {
752 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
753 }
754
755 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
756 /// branch to Succ, into Succ.
757 ///
758 /// Assumption: Succ is the single successor for BB.
CanPropagatePredecessorsForPHIs(BasicBlock * BB,BasicBlock * Succ)759 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
760 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
761
762 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
763 << Succ->getName() << "\n");
764 // Shortcut, if there is only a single predecessor it must be BB and merging
765 // is always safe
766 if (Succ->getSinglePredecessor()) return true;
767
768 // Make a list of the predecessors of BB
769 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
770
771 // Look at all the phi nodes in Succ, to see if they present a conflict when
772 // merging these blocks
773 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
774 PHINode *PN = cast<PHINode>(I);
775
776 // If the incoming value from BB is again a PHINode in
777 // BB which has the same incoming value for *PI as PN does, we can
778 // merge the phi nodes and then the blocks can still be merged
779 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
780 if (BBPN && BBPN->getParent() == BB) {
781 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
782 BasicBlock *IBB = PN->getIncomingBlock(PI);
783 if (BBPreds.count(IBB) &&
784 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
785 PN->getIncomingValue(PI))) {
786 LLVM_DEBUG(dbgs()
787 << "Can't fold, phi node " << PN->getName() << " in "
788 << Succ->getName() << " is conflicting with "
789 << BBPN->getName() << " with regard to common predecessor "
790 << IBB->getName() << "\n");
791 return false;
792 }
793 }
794 } else {
795 Value* Val = PN->getIncomingValueForBlock(BB);
796 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
797 // See if the incoming value for the common predecessor is equal to the
798 // one for BB, in which case this phi node will not prevent the merging
799 // of the block.
800 BasicBlock *IBB = PN->getIncomingBlock(PI);
801 if (BBPreds.count(IBB) &&
802 !CanMergeValues(Val, PN->getIncomingValue(PI))) {
803 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
804 << " in " << Succ->getName()
805 << " is conflicting with regard to common "
806 << "predecessor " << IBB->getName() << "\n");
807 return false;
808 }
809 }
810 }
811 }
812
813 return true;
814 }
815
816 using PredBlockVector = SmallVector<BasicBlock *, 16>;
817 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
818
819 /// Determines the value to use as the phi node input for a block.
820 ///
821 /// Select between \p OldVal any value that we know flows from \p BB
822 /// to a particular phi on the basis of which one (if either) is not
823 /// undef. Update IncomingValues based on the selected value.
824 ///
825 /// \param OldVal The value we are considering selecting.
826 /// \param BB The block that the value flows in from.
827 /// \param IncomingValues A map from block-to-value for other phi inputs
828 /// that we have examined.
829 ///
830 /// \returns the selected value.
selectIncomingValueForBlock(Value * OldVal,BasicBlock * BB,IncomingValueMap & IncomingValues)831 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
832 IncomingValueMap &IncomingValues) {
833 if (!isa<UndefValue>(OldVal)) {
834 assert((!IncomingValues.count(BB) ||
835 IncomingValues.find(BB)->second == OldVal) &&
836 "Expected OldVal to match incoming value from BB!");
837
838 IncomingValues.insert(std::make_pair(BB, OldVal));
839 return OldVal;
840 }
841
842 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
843 if (It != IncomingValues.end()) return It->second;
844
845 return OldVal;
846 }
847
848 /// Create a map from block to value for the operands of a
849 /// given phi.
850 ///
851 /// Create a map from block to value for each non-undef value flowing
852 /// into \p PN.
853 ///
854 /// \param PN The phi we are collecting the map for.
855 /// \param IncomingValues [out] The map from block to value for this phi.
gatherIncomingValuesToPhi(PHINode * PN,IncomingValueMap & IncomingValues)856 static void gatherIncomingValuesToPhi(PHINode *PN,
857 IncomingValueMap &IncomingValues) {
858 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
859 BasicBlock *BB = PN->getIncomingBlock(i);
860 Value *V = PN->getIncomingValue(i);
861
862 if (!isa<UndefValue>(V))
863 IncomingValues.insert(std::make_pair(BB, V));
864 }
865 }
866
867 /// Replace the incoming undef values to a phi with the values
868 /// from a block-to-value map.
869 ///
870 /// \param PN The phi we are replacing the undefs in.
871 /// \param IncomingValues A map from block to value.
replaceUndefValuesInPhi(PHINode * PN,const IncomingValueMap & IncomingValues)872 static void replaceUndefValuesInPhi(PHINode *PN,
873 const IncomingValueMap &IncomingValues) {
874 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
875 Value *V = PN->getIncomingValue(i);
876
877 if (!isa<UndefValue>(V)) continue;
878
879 BasicBlock *BB = PN->getIncomingBlock(i);
880 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
881 if (It == IncomingValues.end()) continue;
882
883 PN->setIncomingValue(i, It->second);
884 }
885 }
886
887 /// Replace a value flowing from a block to a phi with
888 /// potentially multiple instances of that value flowing from the
889 /// block's predecessors to the phi.
890 ///
891 /// \param BB The block with the value flowing into the phi.
892 /// \param BBPreds The predecessors of BB.
893 /// \param PN The phi that we are updating.
redirectValuesFromPredecessorsToPhi(BasicBlock * BB,const PredBlockVector & BBPreds,PHINode * PN)894 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
895 const PredBlockVector &BBPreds,
896 PHINode *PN) {
897 Value *OldVal = PN->removeIncomingValue(BB, false);
898 assert(OldVal && "No entry in PHI for Pred BB!");
899
900 IncomingValueMap IncomingValues;
901
902 // We are merging two blocks - BB, and the block containing PN - and
903 // as a result we need to redirect edges from the predecessors of BB
904 // to go to the block containing PN, and update PN
905 // accordingly. Since we allow merging blocks in the case where the
906 // predecessor and successor blocks both share some predecessors,
907 // and where some of those common predecessors might have undef
908 // values flowing into PN, we want to rewrite those values to be
909 // consistent with the non-undef values.
910
911 gatherIncomingValuesToPhi(PN, IncomingValues);
912
913 // If this incoming value is one of the PHI nodes in BB, the new entries
914 // in the PHI node are the entries from the old PHI.
915 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
916 PHINode *OldValPN = cast<PHINode>(OldVal);
917 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
918 // Note that, since we are merging phi nodes and BB and Succ might
919 // have common predecessors, we could end up with a phi node with
920 // identical incoming branches. This will be cleaned up later (and
921 // will trigger asserts if we try to clean it up now, without also
922 // simplifying the corresponding conditional branch).
923 BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
924 Value *PredVal = OldValPN->getIncomingValue(i);
925 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
926 IncomingValues);
927
928 // And add a new incoming value for this predecessor for the
929 // newly retargeted branch.
930 PN->addIncoming(Selected, PredBB);
931 }
932 } else {
933 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
934 // Update existing incoming values in PN for this
935 // predecessor of BB.
936 BasicBlock *PredBB = BBPreds[i];
937 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
938 IncomingValues);
939
940 // And add a new incoming value for this predecessor for the
941 // newly retargeted branch.
942 PN->addIncoming(Selected, PredBB);
943 }
944 }
945
946 replaceUndefValuesInPhi(PN, IncomingValues);
947 }
948
TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock * BB,DomTreeUpdater * DTU)949 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
950 DomTreeUpdater *DTU) {
951 assert(BB != &BB->getParent()->getEntryBlock() &&
952 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
953
954 // We can't eliminate infinite loops.
955 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
956 if (BB == Succ) return false;
957
958 // Check to see if merging these blocks would cause conflicts for any of the
959 // phi nodes in BB or Succ. If not, we can safely merge.
960 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
961
962 // Check for cases where Succ has multiple predecessors and a PHI node in BB
963 // has uses which will not disappear when the PHI nodes are merged. It is
964 // possible to handle such cases, but difficult: it requires checking whether
965 // BB dominates Succ, which is non-trivial to calculate in the case where
966 // Succ has multiple predecessors. Also, it requires checking whether
967 // constructing the necessary self-referential PHI node doesn't introduce any
968 // conflicts; this isn't too difficult, but the previous code for doing this
969 // was incorrect.
970 //
971 // Note that if this check finds a live use, BB dominates Succ, so BB is
972 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
973 // folding the branch isn't profitable in that case anyway.
974 if (!Succ->getSinglePredecessor()) {
975 BasicBlock::iterator BBI = BB->begin();
976 while (isa<PHINode>(*BBI)) {
977 for (Use &U : BBI->uses()) {
978 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
979 if (PN->getIncomingBlock(U) != BB)
980 return false;
981 } else {
982 return false;
983 }
984 }
985 ++BBI;
986 }
987 }
988
989 // We cannot fold the block if it's a branch to an already present callbr
990 // successor because that creates duplicate successors.
991 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
992 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
993 if (Succ == CBI->getDefaultDest())
994 return false;
995 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
996 if (Succ == CBI->getIndirectDest(i))
997 return false;
998 }
999 }
1000
1001 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1002
1003 SmallVector<DominatorTree::UpdateType, 32> Updates;
1004 if (DTU) {
1005 Updates.push_back({DominatorTree::Delete, BB, Succ});
1006 // All predecessors of BB will be moved to Succ.
1007 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1008 Updates.push_back({DominatorTree::Delete, *I, BB});
1009 // This predecessor of BB may already have Succ as a successor.
1010 if (llvm::find(successors(*I), Succ) == succ_end(*I))
1011 Updates.push_back({DominatorTree::Insert, *I, Succ});
1012 }
1013 }
1014
1015 if (isa<PHINode>(Succ->begin())) {
1016 // If there is more than one pred of succ, and there are PHI nodes in
1017 // the successor, then we need to add incoming edges for the PHI nodes
1018 //
1019 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1020
1021 // Loop over all of the PHI nodes in the successor of BB.
1022 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1023 PHINode *PN = cast<PHINode>(I);
1024
1025 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1026 }
1027 }
1028
1029 if (Succ->getSinglePredecessor()) {
1030 // BB is the only predecessor of Succ, so Succ will end up with exactly
1031 // the same predecessors BB had.
1032
1033 // Copy over any phi, debug or lifetime instruction.
1034 BB->getTerminator()->eraseFromParent();
1035 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1036 BB->getInstList());
1037 } else {
1038 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1039 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1040 assert(PN->use_empty() && "There shouldn't be any uses here!");
1041 PN->eraseFromParent();
1042 }
1043 }
1044
1045 // If the unconditional branch we replaced contains llvm.loop metadata, we
1046 // add the metadata to the branch instructions in the predecessors.
1047 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1048 Instruction *TI = BB->getTerminator();
1049 if (TI)
1050 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1051 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1052 BasicBlock *Pred = *PI;
1053 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1054 }
1055
1056 // Everything that jumped to BB now goes to Succ.
1057 BB->replaceAllUsesWith(Succ);
1058 if (!Succ->hasName()) Succ->takeName(BB);
1059
1060 // Clear the successor list of BB to match updates applying to DTU later.
1061 if (BB->getTerminator())
1062 BB->getInstList().pop_back();
1063 new UnreachableInst(BB->getContext(), BB);
1064 assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1065 "applying corresponding DTU updates.");
1066
1067 if (DTU) {
1068 DTU->applyUpdatesPermissive(Updates);
1069 DTU->deleteBB(BB);
1070 } else {
1071 BB->eraseFromParent(); // Delete the old basic block.
1072 }
1073 return true;
1074 }
1075
EliminateDuplicatePHINodes(BasicBlock * BB)1076 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1077 // This implementation doesn't currently consider undef operands
1078 // specially. Theoretically, two phis which are identical except for
1079 // one having an undef where the other doesn't could be collapsed.
1080
1081 struct PHIDenseMapInfo {
1082 static PHINode *getEmptyKey() {
1083 return DenseMapInfo<PHINode *>::getEmptyKey();
1084 }
1085
1086 static PHINode *getTombstoneKey() {
1087 return DenseMapInfo<PHINode *>::getTombstoneKey();
1088 }
1089
1090 static unsigned getHashValue(PHINode *PN) {
1091 // Compute a hash value on the operands. Instcombine will likely have
1092 // sorted them, which helps expose duplicates, but we have to check all
1093 // the operands to be safe in case instcombine hasn't run.
1094 return static_cast<unsigned>(hash_combine(
1095 hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1096 hash_combine_range(PN->block_begin(), PN->block_end())));
1097 }
1098
1099 static bool isEqual(PHINode *LHS, PHINode *RHS) {
1100 if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1101 RHS == getEmptyKey() || RHS == getTombstoneKey())
1102 return LHS == RHS;
1103 return LHS->isIdenticalTo(RHS);
1104 }
1105 };
1106
1107 // Set of unique PHINodes.
1108 DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1109
1110 // Examine each PHI.
1111 bool Changed = false;
1112 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1113 auto Inserted = PHISet.insert(PN);
1114 if (!Inserted.second) {
1115 // A duplicate. Replace this PHI with its duplicate.
1116 PN->replaceAllUsesWith(*Inserted.first);
1117 PN->eraseFromParent();
1118 Changed = true;
1119
1120 // The RAUW can change PHIs that we already visited. Start over from the
1121 // beginning.
1122 PHISet.clear();
1123 I = BB->begin();
1124 }
1125 }
1126
1127 return Changed;
1128 }
1129
1130 /// enforceKnownAlignment - If the specified pointer points to an object that
1131 /// we control, modify the object's alignment to PrefAlign. This isn't
1132 /// often possible though. If alignment is important, a more reliable approach
1133 /// is to simply align all global variables and allocation instructions to
1134 /// their preferred alignment from the beginning.
enforceKnownAlignment(Value * V,unsigned Alignment,unsigned PrefAlign,const DataLayout & DL)1135 static unsigned enforceKnownAlignment(Value *V, unsigned Alignment,
1136 unsigned PrefAlign,
1137 const DataLayout &DL) {
1138 assert(PrefAlign > Alignment);
1139
1140 V = V->stripPointerCasts();
1141
1142 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1143 // TODO: ideally, computeKnownBits ought to have used
1144 // AllocaInst::getAlignment() in its computation already, making
1145 // the below max redundant. But, as it turns out,
1146 // stripPointerCasts recurses through infinite layers of bitcasts,
1147 // while computeKnownBits is not allowed to traverse more than 6
1148 // levels.
1149 Alignment = std::max(AI->getAlignment(), Alignment);
1150 if (PrefAlign <= Alignment)
1151 return Alignment;
1152
1153 // If the preferred alignment is greater than the natural stack alignment
1154 // then don't round up. This avoids dynamic stack realignment.
1155 if (DL.exceedsNaturalStackAlignment(Align(PrefAlign)))
1156 return Alignment;
1157 AI->setAlignment(MaybeAlign(PrefAlign));
1158 return PrefAlign;
1159 }
1160
1161 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1162 // TODO: as above, this shouldn't be necessary.
1163 Alignment = std::max(GO->getAlignment(), Alignment);
1164 if (PrefAlign <= Alignment)
1165 return Alignment;
1166
1167 // If there is a large requested alignment and we can, bump up the alignment
1168 // of the global. If the memory we set aside for the global may not be the
1169 // memory used by the final program then it is impossible for us to reliably
1170 // enforce the preferred alignment.
1171 if (!GO->canIncreaseAlignment())
1172 return Alignment;
1173
1174 GO->setAlignment(MaybeAlign(PrefAlign));
1175 return PrefAlign;
1176 }
1177
1178 return Alignment;
1179 }
1180
getOrEnforceKnownAlignment(Value * V,unsigned PrefAlign,const DataLayout & DL,const Instruction * CxtI,AssumptionCache * AC,const DominatorTree * DT)1181 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1182 const DataLayout &DL,
1183 const Instruction *CxtI,
1184 AssumptionCache *AC,
1185 const DominatorTree *DT) {
1186 assert(V->getType()->isPointerTy() &&
1187 "getOrEnforceKnownAlignment expects a pointer!");
1188
1189 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1190 unsigned TrailZ = Known.countMinTrailingZeros();
1191
1192 // Avoid trouble with ridiculously large TrailZ values, such as
1193 // those computed from a null pointer.
1194 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1195
1196 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1197
1198 // LLVM doesn't support alignments larger than this currently.
1199 Align = std::min(Align, +Value::MaximumAlignment);
1200
1201 if (PrefAlign > Align)
1202 Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1203
1204 // We don't need to make any adjustment.
1205 return Align;
1206 }
1207
1208 ///===---------------------------------------------------------------------===//
1209 /// Dbg Intrinsic utilities
1210 ///
1211
1212 /// See if there is a dbg.value intrinsic for DIVar before I.
LdStHasDebugValue(DILocalVariable * DIVar,DIExpression * DIExpr,Instruction * I)1213 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1214 Instruction *I) {
1215 // Since we can't guarantee that the original dbg.declare instrinsic
1216 // is removed by LowerDbgDeclare(), we need to make sure that we are
1217 // not inserting the same dbg.value intrinsic over and over.
1218 BasicBlock::InstListType::iterator PrevI(I);
1219 if (PrevI != I->getParent()->getInstList().begin()) {
1220 --PrevI;
1221 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1222 if (DVI->getValue() == I->getOperand(0) &&
1223 DVI->getVariable() == DIVar &&
1224 DVI->getExpression() == DIExpr)
1225 return true;
1226 }
1227 return false;
1228 }
1229
1230 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
PhiHasDebugValue(DILocalVariable * DIVar,DIExpression * DIExpr,PHINode * APN)1231 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1232 DIExpression *DIExpr,
1233 PHINode *APN) {
1234 // Since we can't guarantee that the original dbg.declare instrinsic
1235 // is removed by LowerDbgDeclare(), we need to make sure that we are
1236 // not inserting the same dbg.value intrinsic over and over.
1237 SmallVector<DbgValueInst *, 1> DbgValues;
1238 findDbgValues(DbgValues, APN);
1239 for (auto *DVI : DbgValues) {
1240 assert(DVI->getValue() == APN);
1241 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1242 return true;
1243 }
1244 return false;
1245 }
1246
1247 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1248 /// (or fragment of the variable) described by \p DII.
1249 ///
1250 /// This is primarily intended as a helper for the different
1251 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1252 /// converted describes an alloca'd variable, so we need to use the
1253 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1254 /// identified as covering an n-bit fragment, if the store size of i1 is at
1255 /// least n bits.
valueCoversEntireFragment(Type * ValTy,DbgVariableIntrinsic * DII)1256 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1257 const DataLayout &DL = DII->getModule()->getDataLayout();
1258 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1259 if (auto FragmentSize = DII->getFragmentSizeInBits())
1260 return ValueSize >= *FragmentSize;
1261 // We can't always calculate the size of the DI variable (e.g. if it is a
1262 // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1263 // intead.
1264 if (DII->isAddressOfVariable())
1265 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1266 if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1267 return ValueSize >= *FragmentSize;
1268 // Could not determine size of variable. Conservatively return false.
1269 return false;
1270 }
1271
1272 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1273 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1274 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1275 /// case this DebugLoc leaks into any adjacent instructions.
getDebugValueLoc(DbgVariableIntrinsic * DII,Instruction * Src)1276 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1277 // Original dbg.declare must have a location.
1278 DebugLoc DeclareLoc = DII->getDebugLoc();
1279 MDNode *Scope = DeclareLoc.getScope();
1280 DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1281 // Produce an unknown location with the correct scope / inlinedAt fields.
1282 return DebugLoc::get(0, 0, Scope, InlinedAt);
1283 }
1284
1285 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1286 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic * DII,StoreInst * SI,DIBuilder & Builder)1287 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1288 StoreInst *SI, DIBuilder &Builder) {
1289 assert(DII->isAddressOfVariable());
1290 auto *DIVar = DII->getVariable();
1291 assert(DIVar && "Missing variable");
1292 auto *DIExpr = DII->getExpression();
1293 Value *DV = SI->getValueOperand();
1294
1295 DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1296
1297 if (!valueCoversEntireFragment(DV->getType(), DII)) {
1298 // FIXME: If storing to a part of the variable described by the dbg.declare,
1299 // then we want to insert a dbg.value for the corresponding fragment.
1300 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1301 << *DII << '\n');
1302 // For now, when there is a store to parts of the variable (but we do not
1303 // know which part) we insert an dbg.value instrinsic to indicate that we
1304 // know nothing about the variable's content.
1305 DV = UndefValue::get(DV->getType());
1306 if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1307 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1308 return;
1309 }
1310
1311 if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1312 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1313 }
1314
1315 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1316 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic * DII,LoadInst * LI,DIBuilder & Builder)1317 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1318 LoadInst *LI, DIBuilder &Builder) {
1319 auto *DIVar = DII->getVariable();
1320 auto *DIExpr = DII->getExpression();
1321 assert(DIVar && "Missing variable");
1322
1323 if (LdStHasDebugValue(DIVar, DIExpr, LI))
1324 return;
1325
1326 if (!valueCoversEntireFragment(LI->getType(), DII)) {
1327 // FIXME: If only referring to a part of the variable described by the
1328 // dbg.declare, then we want to insert a dbg.value for the corresponding
1329 // fragment.
1330 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1331 << *DII << '\n');
1332 return;
1333 }
1334
1335 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1336
1337 // We are now tracking the loaded value instead of the address. In the
1338 // future if multi-location support is added to the IR, it might be
1339 // preferable to keep tracking both the loaded value and the original
1340 // address in case the alloca can not be elided.
1341 Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1342 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1343 DbgValue->insertAfter(LI);
1344 }
1345
1346 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1347 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic * DII,PHINode * APN,DIBuilder & Builder)1348 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1349 PHINode *APN, DIBuilder &Builder) {
1350 auto *DIVar = DII->getVariable();
1351 auto *DIExpr = DII->getExpression();
1352 assert(DIVar && "Missing variable");
1353
1354 if (PhiHasDebugValue(DIVar, DIExpr, APN))
1355 return;
1356
1357 if (!valueCoversEntireFragment(APN->getType(), DII)) {
1358 // FIXME: If only referring to a part of the variable described by the
1359 // dbg.declare, then we want to insert a dbg.value for the corresponding
1360 // fragment.
1361 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1362 << *DII << '\n');
1363 return;
1364 }
1365
1366 BasicBlock *BB = APN->getParent();
1367 auto InsertionPt = BB->getFirstInsertionPt();
1368
1369 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1370
1371 // The block may be a catchswitch block, which does not have a valid
1372 // insertion point.
1373 // FIXME: Insert dbg.value markers in the successors when appropriate.
1374 if (InsertionPt != BB->end())
1375 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1376 }
1377
1378 /// Determine whether this alloca is either a VLA or an array.
isArray(AllocaInst * AI)1379 static bool isArray(AllocaInst *AI) {
1380 return AI->isArrayAllocation() ||
1381 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1382 }
1383
1384 /// Determine whether this alloca is a structure.
isStructure(AllocaInst * AI)1385 static bool isStructure(AllocaInst *AI) {
1386 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1387 }
1388
1389 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1390 /// of llvm.dbg.value intrinsics.
LowerDbgDeclare(Function & F)1391 bool llvm::LowerDbgDeclare(Function &F) {
1392 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1393 SmallVector<DbgDeclareInst *, 4> Dbgs;
1394 for (auto &FI : F)
1395 for (Instruction &BI : FI)
1396 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1397 Dbgs.push_back(DDI);
1398
1399 if (Dbgs.empty())
1400 return false;
1401
1402 for (auto &I : Dbgs) {
1403 DbgDeclareInst *DDI = I;
1404 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1405 // If this is an alloca for a scalar variable, insert a dbg.value
1406 // at each load and store to the alloca and erase the dbg.declare.
1407 // The dbg.values allow tracking a variable even if it is not
1408 // stored on the stack, while the dbg.declare can only describe
1409 // the stack slot (and at a lexical-scope granularity). Later
1410 // passes will attempt to elide the stack slot.
1411 if (!AI || isArray(AI) || isStructure(AI))
1412 continue;
1413
1414 // A volatile load/store means that the alloca can't be elided anyway.
1415 if (llvm::any_of(AI->users(), [](User *U) -> bool {
1416 if (LoadInst *LI = dyn_cast<LoadInst>(U))
1417 return LI->isVolatile();
1418 if (StoreInst *SI = dyn_cast<StoreInst>(U))
1419 return SI->isVolatile();
1420 return false;
1421 }))
1422 continue;
1423
1424 SmallVector<const Value *, 8> WorkList;
1425 WorkList.push_back(AI);
1426 while (!WorkList.empty()) {
1427 const Value *V = WorkList.pop_back_val();
1428 for (auto &AIUse : V->uses()) {
1429 User *U = AIUse.getUser();
1430 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1431 if (AIUse.getOperandNo() == 1)
1432 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1433 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1434 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1435 } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1436 // This is a call by-value or some other instruction that takes a
1437 // pointer to the variable. Insert a *value* intrinsic that describes
1438 // the variable by dereferencing the alloca.
1439 if (!CI->isLifetimeStartOrEnd()) {
1440 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1441 auto *DerefExpr =
1442 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1443 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1444 NewLoc, CI);
1445 }
1446 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1447 if (BI->getType()->isPointerTy())
1448 WorkList.push_back(BI);
1449 }
1450 }
1451 }
1452 DDI->eraseFromParent();
1453 }
1454 return true;
1455 }
1456
1457 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
insertDebugValuesForPHIs(BasicBlock * BB,SmallVectorImpl<PHINode * > & InsertedPHIs)1458 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1459 SmallVectorImpl<PHINode *> &InsertedPHIs) {
1460 assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1461 if (InsertedPHIs.size() == 0)
1462 return;
1463
1464 // Map existing PHI nodes to their dbg.values.
1465 ValueToValueMapTy DbgValueMap;
1466 for (auto &I : *BB) {
1467 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1468 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1469 DbgValueMap.insert({Loc, DbgII});
1470 }
1471 }
1472 if (DbgValueMap.size() == 0)
1473 return;
1474
1475 // Then iterate through the new PHIs and look to see if they use one of the
1476 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1477 // propagate the info through the new PHI.
1478 LLVMContext &C = BB->getContext();
1479 for (auto PHI : InsertedPHIs) {
1480 BasicBlock *Parent = PHI->getParent();
1481 // Avoid inserting an intrinsic into an EH block.
1482 if (Parent->getFirstNonPHI()->isEHPad())
1483 continue;
1484 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1485 for (auto VI : PHI->operand_values()) {
1486 auto V = DbgValueMap.find(VI);
1487 if (V != DbgValueMap.end()) {
1488 auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1489 Instruction *NewDbgII = DbgII->clone();
1490 NewDbgII->setOperand(0, PhiMAV);
1491 auto InsertionPt = Parent->getFirstInsertionPt();
1492 assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1493 NewDbgII->insertBefore(&*InsertionPt);
1494 }
1495 }
1496 }
1497 }
1498
1499 /// Finds all intrinsics declaring local variables as living in the memory that
1500 /// 'V' points to. This may include a mix of dbg.declare and
1501 /// dbg.addr intrinsics.
FindDbgAddrUses(Value * V)1502 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1503 // This function is hot. Check whether the value has any metadata to avoid a
1504 // DenseMap lookup.
1505 if (!V->isUsedByMetadata())
1506 return {};
1507 auto *L = LocalAsMetadata::getIfExists(V);
1508 if (!L)
1509 return {};
1510 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1511 if (!MDV)
1512 return {};
1513
1514 TinyPtrVector<DbgVariableIntrinsic *> Declares;
1515 for (User *U : MDV->users()) {
1516 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1517 if (DII->isAddressOfVariable())
1518 Declares.push_back(DII);
1519 }
1520
1521 return Declares;
1522 }
1523
findDbgValues(SmallVectorImpl<DbgValueInst * > & DbgValues,Value * V)1524 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1525 // This function is hot. Check whether the value has any metadata to avoid a
1526 // DenseMap lookup.
1527 if (!V->isUsedByMetadata())
1528 return;
1529 if (auto *L = LocalAsMetadata::getIfExists(V))
1530 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1531 for (User *U : MDV->users())
1532 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1533 DbgValues.push_back(DVI);
1534 }
1535
findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic * > & DbgUsers,Value * V)1536 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1537 Value *V) {
1538 // This function is hot. Check whether the value has any metadata to avoid a
1539 // DenseMap lookup.
1540 if (!V->isUsedByMetadata())
1541 return;
1542 if (auto *L = LocalAsMetadata::getIfExists(V))
1543 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1544 for (User *U : MDV->users())
1545 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1546 DbgUsers.push_back(DII);
1547 }
1548
replaceDbgDeclare(Value * Address,Value * NewAddress,Instruction * InsertBefore,DIBuilder & Builder,uint8_t DIExprFlags,int Offset)1549 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1550 Instruction *InsertBefore, DIBuilder &Builder,
1551 uint8_t DIExprFlags, int Offset) {
1552 auto DbgAddrs = FindDbgAddrUses(Address);
1553 for (DbgVariableIntrinsic *DII : DbgAddrs) {
1554 DebugLoc Loc = DII->getDebugLoc();
1555 auto *DIVar = DII->getVariable();
1556 auto *DIExpr = DII->getExpression();
1557 assert(DIVar && "Missing variable");
1558 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1559 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1560 // llvm.dbg.declare.
1561 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1562 if (DII == InsertBefore)
1563 InsertBefore = InsertBefore->getNextNode();
1564 DII->eraseFromParent();
1565 }
1566 return !DbgAddrs.empty();
1567 }
1568
replaceDbgDeclareForAlloca(AllocaInst * AI,Value * NewAllocaAddress,DIBuilder & Builder,uint8_t DIExprFlags,int Offset)1569 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1570 DIBuilder &Builder, uint8_t DIExprFlags,
1571 int Offset) {
1572 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1573 DIExprFlags, Offset);
1574 }
1575
replaceOneDbgValueForAlloca(DbgValueInst * DVI,Value * NewAddress,DIBuilder & Builder,int Offset)1576 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1577 DIBuilder &Builder, int Offset) {
1578 DebugLoc Loc = DVI->getDebugLoc();
1579 auto *DIVar = DVI->getVariable();
1580 auto *DIExpr = DVI->getExpression();
1581 assert(DIVar && "Missing variable");
1582
1583 // This is an alloca-based llvm.dbg.value. The first thing it should do with
1584 // the alloca pointer is dereference it. Otherwise we don't know how to handle
1585 // it and give up.
1586 if (!DIExpr || DIExpr->getNumElements() < 1 ||
1587 DIExpr->getElement(0) != dwarf::DW_OP_deref)
1588 return;
1589
1590 // Insert the offset before the first deref.
1591 // We could just change the offset argument of dbg.value, but it's unsigned...
1592 if (Offset)
1593 DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1594
1595 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1596 DVI->eraseFromParent();
1597 }
1598
replaceDbgValueForAlloca(AllocaInst * AI,Value * NewAllocaAddress,DIBuilder & Builder,int Offset)1599 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1600 DIBuilder &Builder, int Offset) {
1601 if (auto *L = LocalAsMetadata::getIfExists(AI))
1602 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1603 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1604 Use &U = *UI++;
1605 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1606 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1607 }
1608 }
1609
1610 /// Wrap \p V in a ValueAsMetadata instance.
wrapValueInMetadata(LLVMContext & C,Value * V)1611 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1612 return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1613 }
1614
salvageDebugInfo(Instruction & I)1615 bool llvm::salvageDebugInfo(Instruction &I) {
1616 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1617 findDbgUsers(DbgUsers, &I);
1618 if (DbgUsers.empty())
1619 return false;
1620
1621 return salvageDebugInfoForDbgValues(I, DbgUsers);
1622 }
1623
salvageDebugInfoOrMarkUndef(Instruction & I)1624 void llvm::salvageDebugInfoOrMarkUndef(Instruction &I) {
1625 if (!salvageDebugInfo(I))
1626 replaceDbgUsesWithUndef(&I);
1627 }
1628
salvageDebugInfoForDbgValues(Instruction & I,ArrayRef<DbgVariableIntrinsic * > DbgUsers)1629 bool llvm::salvageDebugInfoForDbgValues(
1630 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1631 auto &Ctx = I.getContext();
1632 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1633
1634 for (auto *DII : DbgUsers) {
1635 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1636 // are implicitly pointing out the value as a DWARF memory location
1637 // description.
1638 bool StackValue = isa<DbgValueInst>(DII);
1639
1640 DIExpression *DIExpr =
1641 salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1642
1643 // salvageDebugInfoImpl should fail on examining the first element of
1644 // DbgUsers, or none of them.
1645 if (!DIExpr)
1646 return false;
1647
1648 DII->setOperand(0, wrapMD(I.getOperand(0)));
1649 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1650 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1651 }
1652
1653 return true;
1654 }
1655
salvageDebugInfoImpl(Instruction & I,DIExpression * SrcDIExpr,bool WithStackValue)1656 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1657 DIExpression *SrcDIExpr,
1658 bool WithStackValue) {
1659 auto &M = *I.getModule();
1660 auto &DL = M.getDataLayout();
1661
1662 // Apply a vector of opcodes to the source DIExpression.
1663 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1664 DIExpression *DIExpr = SrcDIExpr;
1665 if (!Ops.empty()) {
1666 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1667 }
1668 return DIExpr;
1669 };
1670
1671 // Apply the given offset to the source DIExpression.
1672 auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1673 SmallVector<uint64_t, 8> Ops;
1674 DIExpression::appendOffset(Ops, Offset);
1675 return doSalvage(Ops);
1676 };
1677
1678 // initializer-list helper for applying operators to the source DIExpression.
1679 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * {
1680 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1681 return doSalvage(Ops);
1682 };
1683
1684 if (auto *CI = dyn_cast<CastInst>(&I)) {
1685 // No-op casts and zexts are irrelevant for debug info.
1686 if (CI->isNoopCast(DL) || isa<ZExtInst>(&I))
1687 return SrcDIExpr;
1688
1689 Type *Type = CI->getType();
1690 // Casts other than Trunc or SExt to scalar types cannot be salvaged.
1691 if (Type->isVectorTy() || (!isa<TruncInst>(&I) && !isa<SExtInst>(&I)))
1692 return nullptr;
1693
1694 Value *FromValue = CI->getOperand(0);
1695 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1696 unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1697
1698 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1699 isa<SExtInst>(&I)));
1700 }
1701
1702 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1703 unsigned BitWidth =
1704 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1705 // Rewrite a constant GEP into a DIExpression.
1706 APInt Offset(BitWidth, 0);
1707 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1708 return applyOffset(Offset.getSExtValue());
1709 } else {
1710 return nullptr;
1711 }
1712 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1713 // Rewrite binary operations with constant integer operands.
1714 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1715 if (!ConstInt || ConstInt->getBitWidth() > 64)
1716 return nullptr;
1717
1718 uint64_t Val = ConstInt->getSExtValue();
1719 switch (BI->getOpcode()) {
1720 case Instruction::Add:
1721 return applyOffset(Val);
1722 case Instruction::Sub:
1723 return applyOffset(-int64_t(Val));
1724 case Instruction::Mul:
1725 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1726 case Instruction::SDiv:
1727 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1728 case Instruction::SRem:
1729 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1730 case Instruction::Or:
1731 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1732 case Instruction::And:
1733 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1734 case Instruction::Xor:
1735 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1736 case Instruction::Shl:
1737 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1738 case Instruction::LShr:
1739 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1740 case Instruction::AShr:
1741 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1742 default:
1743 // TODO: Salvage constants from each kind of binop we know about.
1744 return nullptr;
1745 }
1746 // *Not* to do: we should not attempt to salvage load instructions,
1747 // because the validity and lifetime of a dbg.value containing
1748 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1749 }
1750 return nullptr;
1751 }
1752
1753 /// A replacement for a dbg.value expression.
1754 using DbgValReplacement = Optional<DIExpression *>;
1755
1756 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1757 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1758 /// changes are made.
rewriteDebugUsers(Instruction & From,Value & To,Instruction & DomPoint,DominatorTree & DT,function_ref<DbgValReplacement (DbgVariableIntrinsic & DII)> RewriteExpr)1759 static bool rewriteDebugUsers(
1760 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1761 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1762 // Find debug users of From.
1763 SmallVector<DbgVariableIntrinsic *, 1> Users;
1764 findDbgUsers(Users, &From);
1765 if (Users.empty())
1766 return false;
1767
1768 // Prevent use-before-def of To.
1769 bool Changed = false;
1770 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1771 if (isa<Instruction>(&To)) {
1772 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1773
1774 for (auto *DII : Users) {
1775 // It's common to see a debug user between From and DomPoint. Move it
1776 // after DomPoint to preserve the variable update without any reordering.
1777 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1778 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n');
1779 DII->moveAfter(&DomPoint);
1780 Changed = true;
1781
1782 // Users which otherwise aren't dominated by the replacement value must
1783 // be salvaged or deleted.
1784 } else if (!DT.dominates(&DomPoint, DII)) {
1785 UndefOrSalvage.insert(DII);
1786 }
1787 }
1788 }
1789
1790 // Update debug users without use-before-def risk.
1791 for (auto *DII : Users) {
1792 if (UndefOrSalvage.count(DII))
1793 continue;
1794
1795 LLVMContext &Ctx = DII->getContext();
1796 DbgValReplacement DVR = RewriteExpr(*DII);
1797 if (!DVR)
1798 continue;
1799
1800 DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1801 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1802 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n');
1803 Changed = true;
1804 }
1805
1806 if (!UndefOrSalvage.empty()) {
1807 // Try to salvage the remaining debug users.
1808 salvageDebugInfoOrMarkUndef(From);
1809 Changed = true;
1810 }
1811
1812 return Changed;
1813 }
1814
1815 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1816 /// losslessly preserve the bits and semantics of the value. This predicate is
1817 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1818 ///
1819 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1820 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1821 /// and also does not allow lossless pointer <-> integer conversions.
isBitCastSemanticsPreserving(const DataLayout & DL,Type * FromTy,Type * ToTy)1822 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1823 Type *ToTy) {
1824 // Trivially compatible types.
1825 if (FromTy == ToTy)
1826 return true;
1827
1828 // Handle compatible pointer <-> integer conversions.
1829 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1830 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1831 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1832 !DL.isNonIntegralPointerType(ToTy);
1833 return SameSize && LosslessConversion;
1834 }
1835
1836 // TODO: This is not exhaustive.
1837 return false;
1838 }
1839
replaceAllDbgUsesWith(Instruction & From,Value & To,Instruction & DomPoint,DominatorTree & DT)1840 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1841 Instruction &DomPoint, DominatorTree &DT) {
1842 // Exit early if From has no debug users.
1843 if (!From.isUsedByMetadata())
1844 return false;
1845
1846 assert(&From != &To && "Can't replace something with itself");
1847
1848 Type *FromTy = From.getType();
1849 Type *ToTy = To.getType();
1850
1851 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1852 return DII.getExpression();
1853 };
1854
1855 // Handle no-op conversions.
1856 Module &M = *From.getModule();
1857 const DataLayout &DL = M.getDataLayout();
1858 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1859 return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1860
1861 // Handle integer-to-integer widening and narrowing.
1862 // FIXME: Use DW_OP_convert when it's available everywhere.
1863 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1864 uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1865 uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1866 assert(FromBits != ToBits && "Unexpected no-op conversion");
1867
1868 // When the width of the result grows, assume that a debugger will only
1869 // access the low `FromBits` bits when inspecting the source variable.
1870 if (FromBits < ToBits)
1871 return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1872
1873 // The width of the result has shrunk. Use sign/zero extension to describe
1874 // the source variable's high bits.
1875 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1876 DILocalVariable *Var = DII.getVariable();
1877
1878 // Without knowing signedness, sign/zero extension isn't possible.
1879 auto Signedness = Var->getSignedness();
1880 if (!Signedness)
1881 return None;
1882
1883 bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1884 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
1885 Signed);
1886 };
1887 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1888 }
1889
1890 // TODO: Floating-point conversions, vectors.
1891 return false;
1892 }
1893
removeAllNonTerminatorAndEHPadInstructions(BasicBlock * BB)1894 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1895 unsigned NumDeadInst = 0;
1896 // Delete the instructions backwards, as it has a reduced likelihood of
1897 // having to update as many def-use and use-def chains.
1898 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1899 while (EndInst != &BB->front()) {
1900 // Delete the next to last instruction.
1901 Instruction *Inst = &*--EndInst->getIterator();
1902 if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1903 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1904 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1905 EndInst = Inst;
1906 continue;
1907 }
1908 if (!isa<DbgInfoIntrinsic>(Inst))
1909 ++NumDeadInst;
1910 Inst->eraseFromParent();
1911 }
1912 return NumDeadInst;
1913 }
1914
changeToUnreachable(Instruction * I,bool UseLLVMTrap,bool PreserveLCSSA,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU)1915 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1916 bool PreserveLCSSA, DomTreeUpdater *DTU,
1917 MemorySSAUpdater *MSSAU) {
1918 BasicBlock *BB = I->getParent();
1919 std::vector <DominatorTree::UpdateType> Updates;
1920
1921 if (MSSAU)
1922 MSSAU->changeToUnreachable(I);
1923
1924 // Loop over all of the successors, removing BB's entry from any PHI
1925 // nodes.
1926 if (DTU)
1927 Updates.reserve(BB->getTerminator()->getNumSuccessors());
1928 for (BasicBlock *Successor : successors(BB)) {
1929 Successor->removePredecessor(BB, PreserveLCSSA);
1930 if (DTU)
1931 Updates.push_back({DominatorTree::Delete, BB, Successor});
1932 }
1933 // Insert a call to llvm.trap right before this. This turns the undefined
1934 // behavior into a hard fail instead of falling through into random code.
1935 if (UseLLVMTrap) {
1936 Function *TrapFn =
1937 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1938 CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1939 CallTrap->setDebugLoc(I->getDebugLoc());
1940 }
1941 auto *UI = new UnreachableInst(I->getContext(), I);
1942 UI->setDebugLoc(I->getDebugLoc());
1943
1944 // All instructions after this are dead.
1945 unsigned NumInstrsRemoved = 0;
1946 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1947 while (BBI != BBE) {
1948 if (!BBI->use_empty())
1949 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1950 BB->getInstList().erase(BBI++);
1951 ++NumInstrsRemoved;
1952 }
1953 if (DTU)
1954 DTU->applyUpdatesPermissive(Updates);
1955 return NumInstrsRemoved;
1956 }
1957
createCallMatchingInvoke(InvokeInst * II)1958 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
1959 SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end());
1960 SmallVector<OperandBundleDef, 1> OpBundles;
1961 II->getOperandBundlesAsDefs(OpBundles);
1962 CallInst *NewCall = CallInst::Create(II->getFunctionType(),
1963 II->getCalledValue(), Args, OpBundles);
1964 NewCall->setCallingConv(II->getCallingConv());
1965 NewCall->setAttributes(II->getAttributes());
1966 NewCall->setDebugLoc(II->getDebugLoc());
1967 NewCall->copyMetadata(*II);
1968 return NewCall;
1969 }
1970
1971 /// changeToCall - Convert the specified invoke into a normal call.
changeToCall(InvokeInst * II,DomTreeUpdater * DTU)1972 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
1973 CallInst *NewCall = createCallMatchingInvoke(II);
1974 NewCall->takeName(II);
1975 NewCall->insertBefore(II);
1976 II->replaceAllUsesWith(NewCall);
1977
1978 // Follow the call by a branch to the normal destination.
1979 BasicBlock *NormalDestBB = II->getNormalDest();
1980 BranchInst::Create(NormalDestBB, II);
1981
1982 // Update PHI nodes in the unwind destination
1983 BasicBlock *BB = II->getParent();
1984 BasicBlock *UnwindDestBB = II->getUnwindDest();
1985 UnwindDestBB->removePredecessor(BB);
1986 II->eraseFromParent();
1987 if (DTU)
1988 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}});
1989 }
1990
changeToInvokeAndSplitBasicBlock(CallInst * CI,BasicBlock * UnwindEdge)1991 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1992 BasicBlock *UnwindEdge) {
1993 BasicBlock *BB = CI->getParent();
1994
1995 // Convert this function call into an invoke instruction. First, split the
1996 // basic block.
1997 BasicBlock *Split =
1998 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1999
2000 // Delete the unconditional branch inserted by splitBasicBlock
2001 BB->getInstList().pop_back();
2002
2003 // Create the new invoke instruction.
2004 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
2005 SmallVector<OperandBundleDef, 1> OpBundles;
2006
2007 CI->getOperandBundlesAsDefs(OpBundles);
2008
2009 // Note: we're round tripping operand bundles through memory here, and that
2010 // can potentially be avoided with a cleverer API design that we do not have
2011 // as of this time.
2012
2013 InvokeInst *II =
2014 InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split,
2015 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2016 II->setDebugLoc(CI->getDebugLoc());
2017 II->setCallingConv(CI->getCallingConv());
2018 II->setAttributes(CI->getAttributes());
2019
2020 // Make sure that anything using the call now uses the invoke! This also
2021 // updates the CallGraph if present, because it uses a WeakTrackingVH.
2022 CI->replaceAllUsesWith(II);
2023
2024 // Delete the original call
2025 Split->getInstList().pop_front();
2026 return Split;
2027 }
2028
markAliveBlocks(Function & F,SmallPtrSetImpl<BasicBlock * > & Reachable,DomTreeUpdater * DTU=nullptr)2029 static bool markAliveBlocks(Function &F,
2030 SmallPtrSetImpl<BasicBlock *> &Reachable,
2031 DomTreeUpdater *DTU = nullptr) {
2032 SmallVector<BasicBlock*, 128> Worklist;
2033 BasicBlock *BB = &F.front();
2034 Worklist.push_back(BB);
2035 Reachable.insert(BB);
2036 bool Changed = false;
2037 do {
2038 BB = Worklist.pop_back_val();
2039
2040 // Do a quick scan of the basic block, turning any obviously unreachable
2041 // instructions into LLVM unreachable insts. The instruction combining pass
2042 // canonicalizes unreachable insts into stores to null or undef.
2043 for (Instruction &I : *BB) {
2044 if (auto *CI = dyn_cast<CallInst>(&I)) {
2045 Value *Callee = CI->getCalledValue();
2046 // Handle intrinsic calls.
2047 if (Function *F = dyn_cast<Function>(Callee)) {
2048 auto IntrinsicID = F->getIntrinsicID();
2049 // Assumptions that are known to be false are equivalent to
2050 // unreachable. Also, if the condition is undefined, then we make the
2051 // choice most beneficial to the optimizer, and choose that to also be
2052 // unreachable.
2053 if (IntrinsicID == Intrinsic::assume) {
2054 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2055 // Don't insert a call to llvm.trap right before the unreachable.
2056 changeToUnreachable(CI, false, false, DTU);
2057 Changed = true;
2058 break;
2059 }
2060 } else if (IntrinsicID == Intrinsic::experimental_guard) {
2061 // A call to the guard intrinsic bails out of the current
2062 // compilation unit if the predicate passed to it is false. If the
2063 // predicate is a constant false, then we know the guard will bail
2064 // out of the current compile unconditionally, so all code following
2065 // it is dead.
2066 //
2067 // Note: unlike in llvm.assume, it is not "obviously profitable" for
2068 // guards to treat `undef` as `false` since a guard on `undef` can
2069 // still be useful for widening.
2070 if (match(CI->getArgOperand(0), m_Zero()))
2071 if (!isa<UnreachableInst>(CI->getNextNode())) {
2072 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2073 false, DTU);
2074 Changed = true;
2075 break;
2076 }
2077 }
2078 } else if ((isa<ConstantPointerNull>(Callee) &&
2079 !NullPointerIsDefined(CI->getFunction())) ||
2080 isa<UndefValue>(Callee)) {
2081 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2082 Changed = true;
2083 break;
2084 }
2085 if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2086 // If we found a call to a no-return function, insert an unreachable
2087 // instruction after it. Make sure there isn't *already* one there
2088 // though.
2089 if (!isa<UnreachableInst>(CI->getNextNode())) {
2090 // Don't insert a call to llvm.trap right before the unreachable.
2091 changeToUnreachable(CI->getNextNode(), false, false, DTU);
2092 Changed = true;
2093 }
2094 break;
2095 }
2096 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2097 // Store to undef and store to null are undefined and used to signal
2098 // that they should be changed to unreachable by passes that can't
2099 // modify the CFG.
2100
2101 // Don't touch volatile stores.
2102 if (SI->isVolatile()) continue;
2103
2104 Value *Ptr = SI->getOperand(1);
2105
2106 if (isa<UndefValue>(Ptr) ||
2107 (isa<ConstantPointerNull>(Ptr) &&
2108 !NullPointerIsDefined(SI->getFunction(),
2109 SI->getPointerAddressSpace()))) {
2110 changeToUnreachable(SI, true, false, DTU);
2111 Changed = true;
2112 break;
2113 }
2114 }
2115 }
2116
2117 Instruction *Terminator = BB->getTerminator();
2118 if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2119 // Turn invokes that call 'nounwind' functions into ordinary calls.
2120 Value *Callee = II->getCalledValue();
2121 if ((isa<ConstantPointerNull>(Callee) &&
2122 !NullPointerIsDefined(BB->getParent())) ||
2123 isa<UndefValue>(Callee)) {
2124 changeToUnreachable(II, true, false, DTU);
2125 Changed = true;
2126 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2127 if (II->use_empty() && II->onlyReadsMemory()) {
2128 // jump to the normal destination branch.
2129 BasicBlock *NormalDestBB = II->getNormalDest();
2130 BasicBlock *UnwindDestBB = II->getUnwindDest();
2131 BranchInst::Create(NormalDestBB, II);
2132 UnwindDestBB->removePredecessor(II->getParent());
2133 II->eraseFromParent();
2134 if (DTU)
2135 DTU->applyUpdatesPermissive(
2136 {{DominatorTree::Delete, BB, UnwindDestBB}});
2137 } else
2138 changeToCall(II, DTU);
2139 Changed = true;
2140 }
2141 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2142 // Remove catchpads which cannot be reached.
2143 struct CatchPadDenseMapInfo {
2144 static CatchPadInst *getEmptyKey() {
2145 return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2146 }
2147
2148 static CatchPadInst *getTombstoneKey() {
2149 return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2150 }
2151
2152 static unsigned getHashValue(CatchPadInst *CatchPad) {
2153 return static_cast<unsigned>(hash_combine_range(
2154 CatchPad->value_op_begin(), CatchPad->value_op_end()));
2155 }
2156
2157 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2158 if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2159 RHS == getEmptyKey() || RHS == getTombstoneKey())
2160 return LHS == RHS;
2161 return LHS->isIdenticalTo(RHS);
2162 }
2163 };
2164
2165 // Set of unique CatchPads.
2166 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2167 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2168 HandlerSet;
2169 detail::DenseSetEmpty Empty;
2170 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2171 E = CatchSwitch->handler_end();
2172 I != E; ++I) {
2173 BasicBlock *HandlerBB = *I;
2174 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2175 if (!HandlerSet.insert({CatchPad, Empty}).second) {
2176 CatchSwitch->removeHandler(I);
2177 --I;
2178 --E;
2179 Changed = true;
2180 }
2181 }
2182 }
2183
2184 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2185 for (BasicBlock *Successor : successors(BB))
2186 if (Reachable.insert(Successor).second)
2187 Worklist.push_back(Successor);
2188 } while (!Worklist.empty());
2189 return Changed;
2190 }
2191
removeUnwindEdge(BasicBlock * BB,DomTreeUpdater * DTU)2192 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2193 Instruction *TI = BB->getTerminator();
2194
2195 if (auto *II = dyn_cast<InvokeInst>(TI)) {
2196 changeToCall(II, DTU);
2197 return;
2198 }
2199
2200 Instruction *NewTI;
2201 BasicBlock *UnwindDest;
2202
2203 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2204 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2205 UnwindDest = CRI->getUnwindDest();
2206 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2207 auto *NewCatchSwitch = CatchSwitchInst::Create(
2208 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2209 CatchSwitch->getName(), CatchSwitch);
2210 for (BasicBlock *PadBB : CatchSwitch->handlers())
2211 NewCatchSwitch->addHandler(PadBB);
2212
2213 NewTI = NewCatchSwitch;
2214 UnwindDest = CatchSwitch->getUnwindDest();
2215 } else {
2216 llvm_unreachable("Could not find unwind successor");
2217 }
2218
2219 NewTI->takeName(TI);
2220 NewTI->setDebugLoc(TI->getDebugLoc());
2221 UnwindDest->removePredecessor(BB);
2222 TI->replaceAllUsesWith(NewTI);
2223 TI->eraseFromParent();
2224 if (DTU)
2225 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}});
2226 }
2227
2228 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2229 /// if they are in a dead cycle. Return true if a change was made, false
2230 /// otherwise.
removeUnreachableBlocks(Function & F,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU)2231 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2232 MemorySSAUpdater *MSSAU) {
2233 SmallPtrSet<BasicBlock *, 16> Reachable;
2234 bool Changed = markAliveBlocks(F, Reachable, DTU);
2235
2236 // If there are unreachable blocks in the CFG...
2237 if (Reachable.size() == F.size())
2238 return Changed;
2239
2240 assert(Reachable.size() < F.size());
2241 NumRemoved += F.size() - Reachable.size();
2242
2243 SmallSetVector<BasicBlock *, 8> DeadBlockSet;
2244 for (BasicBlock &BB : F) {
2245 // Skip reachable basic blocks
2246 if (Reachable.find(&BB) != Reachable.end())
2247 continue;
2248 DeadBlockSet.insert(&BB);
2249 }
2250
2251 if (MSSAU)
2252 MSSAU->removeBlocks(DeadBlockSet);
2253
2254 // Loop over all of the basic blocks that are not reachable, dropping all of
2255 // their internal references. Update DTU if available.
2256 std::vector<DominatorTree::UpdateType> Updates;
2257 for (auto *BB : DeadBlockSet) {
2258 for (BasicBlock *Successor : successors(BB)) {
2259 if (!DeadBlockSet.count(Successor))
2260 Successor->removePredecessor(BB);
2261 if (DTU)
2262 Updates.push_back({DominatorTree::Delete, BB, Successor});
2263 }
2264 BB->dropAllReferences();
2265 if (DTU) {
2266 Instruction *TI = BB->getTerminator();
2267 assert(TI && "Basic block should have a terminator");
2268 // Terminators like invoke can have users. We have to replace their users,
2269 // before removing them.
2270 if (!TI->use_empty())
2271 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2272 TI->eraseFromParent();
2273 new UnreachableInst(BB->getContext(), BB);
2274 assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2275 "applying corresponding DTU updates.");
2276 }
2277 }
2278
2279 if (DTU) {
2280 DTU->applyUpdatesPermissive(Updates);
2281 bool Deleted = false;
2282 for (auto *BB : DeadBlockSet) {
2283 if (DTU->isBBPendingDeletion(BB))
2284 --NumRemoved;
2285 else
2286 Deleted = true;
2287 DTU->deleteBB(BB);
2288 }
2289 if (!Deleted)
2290 return false;
2291 } else {
2292 for (auto *BB : DeadBlockSet)
2293 BB->eraseFromParent();
2294 }
2295
2296 return true;
2297 }
2298
combineMetadata(Instruction * K,const Instruction * J,ArrayRef<unsigned> KnownIDs,bool DoesKMove)2299 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2300 ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2301 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2302 K->dropUnknownNonDebugMetadata(KnownIDs);
2303 K->getAllMetadataOtherThanDebugLoc(Metadata);
2304 for (const auto &MD : Metadata) {
2305 unsigned Kind = MD.first;
2306 MDNode *JMD = J->getMetadata(Kind);
2307 MDNode *KMD = MD.second;
2308
2309 switch (Kind) {
2310 default:
2311 K->setMetadata(Kind, nullptr); // Remove unknown metadata
2312 break;
2313 case LLVMContext::MD_dbg:
2314 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2315 case LLVMContext::MD_tbaa:
2316 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2317 break;
2318 case LLVMContext::MD_alias_scope:
2319 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2320 break;
2321 case LLVMContext::MD_noalias:
2322 case LLVMContext::MD_mem_parallel_loop_access:
2323 K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2324 break;
2325 case LLVMContext::MD_access_group:
2326 K->setMetadata(LLVMContext::MD_access_group,
2327 intersectAccessGroups(K, J));
2328 break;
2329 case LLVMContext::MD_range:
2330
2331 // If K does move, use most generic range. Otherwise keep the range of
2332 // K.
2333 if (DoesKMove)
2334 // FIXME: If K does move, we should drop the range info and nonnull.
2335 // Currently this function is used with DoesKMove in passes
2336 // doing hoisting/sinking and the current behavior of using the
2337 // most generic range is correct in those cases.
2338 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2339 break;
2340 case LLVMContext::MD_fpmath:
2341 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2342 break;
2343 case LLVMContext::MD_invariant_load:
2344 // Only set the !invariant.load if it is present in both instructions.
2345 K->setMetadata(Kind, JMD);
2346 break;
2347 case LLVMContext::MD_nonnull:
2348 // If K does move, keep nonull if it is present in both instructions.
2349 if (DoesKMove)
2350 K->setMetadata(Kind, JMD);
2351 break;
2352 case LLVMContext::MD_invariant_group:
2353 // Preserve !invariant.group in K.
2354 break;
2355 case LLVMContext::MD_align:
2356 K->setMetadata(Kind,
2357 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2358 break;
2359 case LLVMContext::MD_dereferenceable:
2360 case LLVMContext::MD_dereferenceable_or_null:
2361 K->setMetadata(Kind,
2362 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2363 break;
2364 case LLVMContext::MD_preserve_access_index:
2365 // Preserve !preserve.access.index in K.
2366 break;
2367 }
2368 }
2369 // Set !invariant.group from J if J has it. If both instructions have it
2370 // then we will just pick it from J - even when they are different.
2371 // Also make sure that K is load or store - f.e. combining bitcast with load
2372 // could produce bitcast with invariant.group metadata, which is invalid.
2373 // FIXME: we should try to preserve both invariant.group md if they are
2374 // different, but right now instruction can only have one invariant.group.
2375 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2376 if (isa<LoadInst>(K) || isa<StoreInst>(K))
2377 K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2378 }
2379
combineMetadataForCSE(Instruction * K,const Instruction * J,bool KDominatesJ)2380 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2381 bool KDominatesJ) {
2382 unsigned KnownIDs[] = {
2383 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
2384 LLVMContext::MD_noalias, LLVMContext::MD_range,
2385 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull,
2386 LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2387 LLVMContext::MD_dereferenceable,
2388 LLVMContext::MD_dereferenceable_or_null,
2389 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index};
2390 combineMetadata(K, J, KnownIDs, KDominatesJ);
2391 }
2392
copyMetadataForLoad(LoadInst & Dest,const LoadInst & Source)2393 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2394 SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2395 Source.getAllMetadata(MD);
2396 MDBuilder MDB(Dest.getContext());
2397 Type *NewType = Dest.getType();
2398 const DataLayout &DL = Source.getModule()->getDataLayout();
2399 for (const auto &MDPair : MD) {
2400 unsigned ID = MDPair.first;
2401 MDNode *N = MDPair.second;
2402 // Note, essentially every kind of metadata should be preserved here! This
2403 // routine is supposed to clone a load instruction changing *only its type*.
2404 // The only metadata it makes sense to drop is metadata which is invalidated
2405 // when the pointer type changes. This should essentially never be the case
2406 // in LLVM, but we explicitly switch over only known metadata to be
2407 // conservatively correct. If you are adding metadata to LLVM which pertains
2408 // to loads, you almost certainly want to add it here.
2409 switch (ID) {
2410 case LLVMContext::MD_dbg:
2411 case LLVMContext::MD_tbaa:
2412 case LLVMContext::MD_prof:
2413 case LLVMContext::MD_fpmath:
2414 case LLVMContext::MD_tbaa_struct:
2415 case LLVMContext::MD_invariant_load:
2416 case LLVMContext::MD_alias_scope:
2417 case LLVMContext::MD_noalias:
2418 case LLVMContext::MD_nontemporal:
2419 case LLVMContext::MD_mem_parallel_loop_access:
2420 case LLVMContext::MD_access_group:
2421 // All of these directly apply.
2422 Dest.setMetadata(ID, N);
2423 break;
2424
2425 case LLVMContext::MD_nonnull:
2426 copyNonnullMetadata(Source, N, Dest);
2427 break;
2428
2429 case LLVMContext::MD_align:
2430 case LLVMContext::MD_dereferenceable:
2431 case LLVMContext::MD_dereferenceable_or_null:
2432 // These only directly apply if the new type is also a pointer.
2433 if (NewType->isPointerTy())
2434 Dest.setMetadata(ID, N);
2435 break;
2436
2437 case LLVMContext::MD_range:
2438 copyRangeMetadata(DL, Source, N, Dest);
2439 break;
2440 }
2441 }
2442 }
2443
patchReplacementInstruction(Instruction * I,Value * Repl)2444 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2445 auto *ReplInst = dyn_cast<Instruction>(Repl);
2446 if (!ReplInst)
2447 return;
2448
2449 // Patch the replacement so that it is not more restrictive than the value
2450 // being replaced.
2451 // Note that if 'I' is a load being replaced by some operation,
2452 // for example, by an arithmetic operation, then andIRFlags()
2453 // would just erase all math flags from the original arithmetic
2454 // operation, which is clearly not wanted and not needed.
2455 if (!isa<LoadInst>(I))
2456 ReplInst->andIRFlags(I);
2457
2458 // FIXME: If both the original and replacement value are part of the
2459 // same control-flow region (meaning that the execution of one
2460 // guarantees the execution of the other), then we can combine the
2461 // noalias scopes here and do better than the general conservative
2462 // answer used in combineMetadata().
2463
2464 // In general, GVN unifies expressions over different control-flow
2465 // regions, and so we need a conservative combination of the noalias
2466 // scopes.
2467 static const unsigned KnownIDs[] = {
2468 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
2469 LLVMContext::MD_noalias, LLVMContext::MD_range,
2470 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
2471 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2472 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index};
2473 combineMetadata(ReplInst, I, KnownIDs, false);
2474 }
2475
2476 template <typename RootType, typename DominatesFn>
replaceDominatedUsesWith(Value * From,Value * To,const RootType & Root,const DominatesFn & Dominates)2477 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2478 const RootType &Root,
2479 const DominatesFn &Dominates) {
2480 assert(From->getType() == To->getType());
2481
2482 unsigned Count = 0;
2483 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2484 UI != UE;) {
2485 Use &U = *UI++;
2486 if (!Dominates(Root, U))
2487 continue;
2488 U.set(To);
2489 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2490 << "' as " << *To << " in " << *U << "\n");
2491 ++Count;
2492 }
2493 return Count;
2494 }
2495
replaceNonLocalUsesWith(Instruction * From,Value * To)2496 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2497 assert(From->getType() == To->getType());
2498 auto *BB = From->getParent();
2499 unsigned Count = 0;
2500
2501 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2502 UI != UE;) {
2503 Use &U = *UI++;
2504 auto *I = cast<Instruction>(U.getUser());
2505 if (I->getParent() == BB)
2506 continue;
2507 U.set(To);
2508 ++Count;
2509 }
2510 return Count;
2511 }
2512
replaceDominatedUsesWith(Value * From,Value * To,DominatorTree & DT,const BasicBlockEdge & Root)2513 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2514 DominatorTree &DT,
2515 const BasicBlockEdge &Root) {
2516 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2517 return DT.dominates(Root, U);
2518 };
2519 return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2520 }
2521
replaceDominatedUsesWith(Value * From,Value * To,DominatorTree & DT,const BasicBlock * BB)2522 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2523 DominatorTree &DT,
2524 const BasicBlock *BB) {
2525 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2526 auto *I = cast<Instruction>(U.getUser())->getParent();
2527 return DT.properlyDominates(BB, I);
2528 };
2529 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2530 }
2531
callsGCLeafFunction(const CallBase * Call,const TargetLibraryInfo & TLI)2532 bool llvm::callsGCLeafFunction(const CallBase *Call,
2533 const TargetLibraryInfo &TLI) {
2534 // Check if the function is specifically marked as a gc leaf function.
2535 if (Call->hasFnAttr("gc-leaf-function"))
2536 return true;
2537 if (const Function *F = Call->getCalledFunction()) {
2538 if (F->hasFnAttribute("gc-leaf-function"))
2539 return true;
2540
2541 if (auto IID = F->getIntrinsicID())
2542 // Most LLVM intrinsics do not take safepoints.
2543 return IID != Intrinsic::experimental_gc_statepoint &&
2544 IID != Intrinsic::experimental_deoptimize;
2545 }
2546
2547 // Lib calls can be materialized by some passes, and won't be
2548 // marked as 'gc-leaf-function.' All available Libcalls are
2549 // GC-leaf.
2550 LibFunc LF;
2551 if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) {
2552 return TLI.has(LF);
2553 }
2554
2555 return false;
2556 }
2557
copyNonnullMetadata(const LoadInst & OldLI,MDNode * N,LoadInst & NewLI)2558 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2559 LoadInst &NewLI) {
2560 auto *NewTy = NewLI.getType();
2561
2562 // This only directly applies if the new type is also a pointer.
2563 if (NewTy->isPointerTy()) {
2564 NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2565 return;
2566 }
2567
2568 // The only other translation we can do is to integral loads with !range
2569 // metadata.
2570 if (!NewTy->isIntegerTy())
2571 return;
2572
2573 MDBuilder MDB(NewLI.getContext());
2574 const Value *Ptr = OldLI.getPointerOperand();
2575 auto *ITy = cast<IntegerType>(NewTy);
2576 auto *NullInt = ConstantExpr::getPtrToInt(
2577 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2578 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2579 NewLI.setMetadata(LLVMContext::MD_range,
2580 MDB.createRange(NonNullInt, NullInt));
2581 }
2582
copyRangeMetadata(const DataLayout & DL,const LoadInst & OldLI,MDNode * N,LoadInst & NewLI)2583 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2584 MDNode *N, LoadInst &NewLI) {
2585 auto *NewTy = NewLI.getType();
2586
2587 // Give up unless it is converted to a pointer where there is a single very
2588 // valuable mapping we can do reliably.
2589 // FIXME: It would be nice to propagate this in more ways, but the type
2590 // conversions make it hard.
2591 if (!NewTy->isPointerTy())
2592 return;
2593
2594 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2595 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2596 MDNode *NN = MDNode::get(OldLI.getContext(), None);
2597 NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2598 }
2599 }
2600
dropDebugUsers(Instruction & I)2601 void llvm::dropDebugUsers(Instruction &I) {
2602 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2603 findDbgUsers(DbgUsers, &I);
2604 for (auto *DII : DbgUsers)
2605 DII->eraseFromParent();
2606 }
2607
hoistAllInstructionsInto(BasicBlock * DomBlock,Instruction * InsertPt,BasicBlock * BB)2608 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2609 BasicBlock *BB) {
2610 // Since we are moving the instructions out of its basic block, we do not
2611 // retain their original debug locations (DILocations) and debug intrinsic
2612 // instructions.
2613 //
2614 // Doing so would degrade the debugging experience and adversely affect the
2615 // accuracy of profiling information.
2616 //
2617 // Currently, when hoisting the instructions, we take the following actions:
2618 // - Remove their debug intrinsic instructions.
2619 // - Set their debug locations to the values from the insertion point.
2620 //
2621 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2622 // need to be deleted, is because there will not be any instructions with a
2623 // DILocation in either branch left after performing the transformation. We
2624 // can only insert a dbg.value after the two branches are joined again.
2625 //
2626 // See PR38762, PR39243 for more details.
2627 //
2628 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2629 // encode predicated DIExpressions that yield different results on different
2630 // code paths.
2631 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2632 Instruction *I = &*II;
2633 I->dropUnknownNonDebugMetadata();
2634 if (I->isUsedByMetadata())
2635 dropDebugUsers(*I);
2636 if (isa<DbgInfoIntrinsic>(I)) {
2637 // Remove DbgInfo Intrinsics.
2638 II = I->eraseFromParent();
2639 continue;
2640 }
2641 I->setDebugLoc(InsertPt->getDebugLoc());
2642 ++II;
2643 }
2644 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2645 BB->begin(),
2646 BB->getTerminator()->getIterator());
2647 }
2648
2649 namespace {
2650
2651 /// A potential constituent of a bitreverse or bswap expression. See
2652 /// collectBitParts for a fuller explanation.
2653 struct BitPart {
BitPart__anonf947a8e20a11::BitPart2654 BitPart(Value *P, unsigned BW) : Provider(P) {
2655 Provenance.resize(BW);
2656 }
2657
2658 /// The Value that this is a bitreverse/bswap of.
2659 Value *Provider;
2660
2661 /// The "provenance" of each bit. Provenance[A] = B means that bit A
2662 /// in Provider becomes bit B in the result of this expression.
2663 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2664
2665 enum { Unset = -1 };
2666 };
2667
2668 } // end anonymous namespace
2669
2670 /// Analyze the specified subexpression and see if it is capable of providing
2671 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2672 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2673 /// the output of the expression came from a corresponding bit in some other
2674 /// value. This function is recursive, and the end result is a mapping of
2675 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2676 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2677 ///
2678 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2679 /// that the expression deposits the low byte of %X into the high byte of the
2680 /// result and that all other bits are zero. This expression is accepted and a
2681 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2682 /// [0-7].
2683 ///
2684 /// To avoid revisiting values, the BitPart results are memoized into the
2685 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2686 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2687 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2688 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2689 /// type instead to provide the same functionality.
2690 ///
2691 /// Because we pass around references into \c BPS, we must use a container that
2692 /// does not invalidate internal references (std::map instead of DenseMap).
2693 static const Optional<BitPart> &
collectBitParts(Value * V,bool MatchBSwaps,bool MatchBitReversals,std::map<Value *,Optional<BitPart>> & BPS,int Depth)2694 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2695 std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2696 auto I = BPS.find(V);
2697 if (I != BPS.end())
2698 return I->second;
2699
2700 auto &Result = BPS[V] = None;
2701 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2702
2703 // Prevent stack overflow by limiting the recursion depth
2704 if (Depth == BitPartRecursionMaxDepth) {
2705 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2706 return Result;
2707 }
2708
2709 if (Instruction *I = dyn_cast<Instruction>(V)) {
2710 // If this is an or instruction, it may be an inner node of the bswap.
2711 if (I->getOpcode() == Instruction::Or) {
2712 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2713 MatchBitReversals, BPS, Depth + 1);
2714 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2715 MatchBitReversals, BPS, Depth + 1);
2716 if (!A || !B)
2717 return Result;
2718
2719 // Try and merge the two together.
2720 if (!A->Provider || A->Provider != B->Provider)
2721 return Result;
2722
2723 Result = BitPart(A->Provider, BitWidth);
2724 for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2725 if (A->Provenance[i] != BitPart::Unset &&
2726 B->Provenance[i] != BitPart::Unset &&
2727 A->Provenance[i] != B->Provenance[i])
2728 return Result = None;
2729
2730 if (A->Provenance[i] == BitPart::Unset)
2731 Result->Provenance[i] = B->Provenance[i];
2732 else
2733 Result->Provenance[i] = A->Provenance[i];
2734 }
2735
2736 return Result;
2737 }
2738
2739 // If this is a logical shift by a constant, recurse then shift the result.
2740 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2741 unsigned BitShift =
2742 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2743 // Ensure the shift amount is defined.
2744 if (BitShift > BitWidth)
2745 return Result;
2746
2747 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2748 MatchBitReversals, BPS, Depth + 1);
2749 if (!Res)
2750 return Result;
2751 Result = Res;
2752
2753 // Perform the "shift" on BitProvenance.
2754 auto &P = Result->Provenance;
2755 if (I->getOpcode() == Instruction::Shl) {
2756 P.erase(std::prev(P.end(), BitShift), P.end());
2757 P.insert(P.begin(), BitShift, BitPart::Unset);
2758 } else {
2759 P.erase(P.begin(), std::next(P.begin(), BitShift));
2760 P.insert(P.end(), BitShift, BitPart::Unset);
2761 }
2762
2763 return Result;
2764 }
2765
2766 // If this is a logical 'and' with a mask that clears bits, recurse then
2767 // unset the appropriate bits.
2768 if (I->getOpcode() == Instruction::And &&
2769 isa<ConstantInt>(I->getOperand(1))) {
2770 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2771 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2772
2773 // Check that the mask allows a multiple of 8 bits for a bswap, for an
2774 // early exit.
2775 unsigned NumMaskedBits = AndMask.countPopulation();
2776 if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2777 return Result;
2778
2779 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2780 MatchBitReversals, BPS, Depth + 1);
2781 if (!Res)
2782 return Result;
2783 Result = Res;
2784
2785 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2786 // If the AndMask is zero for this bit, clear the bit.
2787 if ((AndMask & Bit) == 0)
2788 Result->Provenance[i] = BitPart::Unset;
2789 return Result;
2790 }
2791
2792 // If this is a zext instruction zero extend the result.
2793 if (I->getOpcode() == Instruction::ZExt) {
2794 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2795 MatchBitReversals, BPS, Depth + 1);
2796 if (!Res)
2797 return Result;
2798
2799 Result = BitPart(Res->Provider, BitWidth);
2800 auto NarrowBitWidth =
2801 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2802 for (unsigned i = 0; i < NarrowBitWidth; ++i)
2803 Result->Provenance[i] = Res->Provenance[i];
2804 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2805 Result->Provenance[i] = BitPart::Unset;
2806 return Result;
2807 }
2808 }
2809
2810 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
2811 // the input value to the bswap/bitreverse.
2812 Result = BitPart(V, BitWidth);
2813 for (unsigned i = 0; i < BitWidth; ++i)
2814 Result->Provenance[i] = i;
2815 return Result;
2816 }
2817
bitTransformIsCorrectForBSwap(unsigned From,unsigned To,unsigned BitWidth)2818 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2819 unsigned BitWidth) {
2820 if (From % 8 != To % 8)
2821 return false;
2822 // Convert from bit indices to byte indices and check for a byte reversal.
2823 From >>= 3;
2824 To >>= 3;
2825 BitWidth >>= 3;
2826 return From == BitWidth - To - 1;
2827 }
2828
bitTransformIsCorrectForBitReverse(unsigned From,unsigned To,unsigned BitWidth)2829 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2830 unsigned BitWidth) {
2831 return From == BitWidth - To - 1;
2832 }
2833
recognizeBSwapOrBitReverseIdiom(Instruction * I,bool MatchBSwaps,bool MatchBitReversals,SmallVectorImpl<Instruction * > & InsertedInsts)2834 bool llvm::recognizeBSwapOrBitReverseIdiom(
2835 Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2836 SmallVectorImpl<Instruction *> &InsertedInsts) {
2837 if (Operator::getOpcode(I) != Instruction::Or)
2838 return false;
2839 if (!MatchBSwaps && !MatchBitReversals)
2840 return false;
2841 IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2842 if (!ITy || ITy->getBitWidth() > 128)
2843 return false; // Can't do vectors or integers > 128 bits.
2844 unsigned BW = ITy->getBitWidth();
2845
2846 unsigned DemandedBW = BW;
2847 IntegerType *DemandedTy = ITy;
2848 if (I->hasOneUse()) {
2849 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2850 DemandedTy = cast<IntegerType>(Trunc->getType());
2851 DemandedBW = DemandedTy->getBitWidth();
2852 }
2853 }
2854
2855 // Try to find all the pieces corresponding to the bswap.
2856 std::map<Value *, Optional<BitPart>> BPS;
2857 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
2858 if (!Res)
2859 return false;
2860 auto &BitProvenance = Res->Provenance;
2861
2862 // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2863 // only byteswap values with an even number of bytes.
2864 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2865 for (unsigned i = 0; i < DemandedBW; ++i) {
2866 OKForBSwap &=
2867 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2868 OKForBitReverse &=
2869 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2870 }
2871
2872 Intrinsic::ID Intrin;
2873 if (OKForBSwap && MatchBSwaps)
2874 Intrin = Intrinsic::bswap;
2875 else if (OKForBitReverse && MatchBitReversals)
2876 Intrin = Intrinsic::bitreverse;
2877 else
2878 return false;
2879
2880 if (ITy != DemandedTy) {
2881 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2882 Value *Provider = Res->Provider;
2883 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2884 // We may need to truncate the provider.
2885 if (DemandedTy != ProviderTy) {
2886 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2887 "trunc", I);
2888 InsertedInsts.push_back(Trunc);
2889 Provider = Trunc;
2890 }
2891 auto *CI = CallInst::Create(F, Provider, "rev", I);
2892 InsertedInsts.push_back(CI);
2893 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2894 InsertedInsts.push_back(ExtInst);
2895 return true;
2896 }
2897
2898 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2899 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2900 return true;
2901 }
2902
2903 // CodeGen has special handling for some string functions that may replace
2904 // them with target-specific intrinsics. Since that'd skip our interceptors
2905 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2906 // we mark affected calls as NoBuiltin, which will disable optimization
2907 // in CodeGen.
maybeMarkSanitizerLibraryCallNoBuiltin(CallInst * CI,const TargetLibraryInfo * TLI)2908 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2909 CallInst *CI, const TargetLibraryInfo *TLI) {
2910 Function *F = CI->getCalledFunction();
2911 LibFunc Func;
2912 if (F && !F->hasLocalLinkage() && F->hasName() &&
2913 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2914 !F->doesNotAccessMemory())
2915 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2916 }
2917
canReplaceOperandWithVariable(const Instruction * I,unsigned OpIdx)2918 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2919 // We can't have a PHI with a metadata type.
2920 if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2921 return false;
2922
2923 // Early exit.
2924 if (!isa<Constant>(I->getOperand(OpIdx)))
2925 return true;
2926
2927 switch (I->getOpcode()) {
2928 default:
2929 return true;
2930 case Instruction::Call:
2931 case Instruction::Invoke:
2932 // Can't handle inline asm. Skip it.
2933 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2934 return false;
2935 // Many arithmetic intrinsics have no issue taking a
2936 // variable, however it's hard to distingish these from
2937 // specials such as @llvm.frameaddress that require a constant.
2938 if (isa<IntrinsicInst>(I))
2939 return false;
2940
2941 // Constant bundle operands may need to retain their constant-ness for
2942 // correctness.
2943 if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2944 return false;
2945 return true;
2946 case Instruction::ShuffleVector:
2947 // Shufflevector masks are constant.
2948 return OpIdx != 2;
2949 case Instruction::Switch:
2950 case Instruction::ExtractValue:
2951 // All operands apart from the first are constant.
2952 return OpIdx == 0;
2953 case Instruction::InsertValue:
2954 // All operands apart from the first and the second are constant.
2955 return OpIdx < 2;
2956 case Instruction::Alloca:
2957 // Static allocas (constant size in the entry block) are handled by
2958 // prologue/epilogue insertion so they're free anyway. We definitely don't
2959 // want to make them non-constant.
2960 return !cast<AllocaInst>(I)->isStaticAlloca();
2961 case Instruction::GetElementPtr:
2962 if (OpIdx == 0)
2963 return true;
2964 gep_type_iterator It = gep_type_begin(I);
2965 for (auto E = std::next(It, OpIdx); It != E; ++It)
2966 if (It.isStruct())
2967 return false;
2968 return true;
2969 }
2970 }
2971
2972 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
findAllocaForValue(Value * V,AllocaForValueMapTy & AllocaForValue)2973 AllocaInst *llvm::findAllocaForValue(Value *V,
2974 AllocaForValueMapTy &AllocaForValue) {
2975 if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
2976 return AI;
2977 // See if we've already calculated (or started to calculate) alloca for a
2978 // given value.
2979 AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
2980 if (I != AllocaForValue.end())
2981 return I->second;
2982 // Store 0 while we're calculating alloca for value V to avoid
2983 // infinite recursion if the value references itself.
2984 AllocaForValue[V] = nullptr;
2985 AllocaInst *Res = nullptr;
2986 if (CastInst *CI = dyn_cast<CastInst>(V))
2987 Res = findAllocaForValue(CI->getOperand(0), AllocaForValue);
2988 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2989 for (Value *IncValue : PN->incoming_values()) {
2990 // Allow self-referencing phi-nodes.
2991 if (IncValue == PN)
2992 continue;
2993 AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue);
2994 // AI for incoming values should exist and should all be equal.
2995 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
2996 return nullptr;
2997 Res = IncValueAI;
2998 }
2999 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
3000 Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue);
3001 } else {
3002 LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: "
3003 << *V << "\n");
3004 }
3005 if (Res)
3006 AllocaForValue[V] = Res;
3007 return Res;
3008 }
3009