1 //===------ IslExprBuilder.cpp ----- Code generate isl AST expressions ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 
11 #include "polly/CodeGen/IslExprBuilder.h"
12 #include "polly/CodeGen/RuntimeDebugBuilder.h"
13 #include "polly/Options.h"
14 #include "polly/ScopInfo.h"
15 #include "polly/Support/GICHelper.h"
16 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
17 
18 using namespace llvm;
19 using namespace polly;
20 
21 /// Different overflow tracking modes.
22 enum OverflowTrackingChoice {
23   OT_NEVER,   ///< Never tack potential overflows.
24   OT_REQUEST, ///< Track potential overflows if requested.
25   OT_ALWAYS   ///< Always track potential overflows.
26 };
27 
28 static cl::opt<OverflowTrackingChoice> OTMode(
29     "polly-overflow-tracking",
30     cl::desc("Define where potential integer overflows in generated "
31              "expressions should be tracked."),
32     cl::values(clEnumValN(OT_NEVER, "never", "Never track the overflow bit."),
33                clEnumValN(OT_REQUEST, "request",
34                           "Track the overflow bit if requested."),
35                clEnumValN(OT_ALWAYS, "always",
36                           "Always track the overflow bit.")),
37     cl::Hidden, cl::init(OT_REQUEST), cl::ZeroOrMore, cl::cat(PollyCategory));
38 
IslExprBuilder(Scop & S,PollyIRBuilder & Builder,IDToValueTy & IDToValue,ValueMapT & GlobalMap,const DataLayout & DL,ScalarEvolution & SE,DominatorTree & DT,LoopInfo & LI,BasicBlock * StartBlock)39 IslExprBuilder::IslExprBuilder(Scop &S, PollyIRBuilder &Builder,
40                                IDToValueTy &IDToValue, ValueMapT &GlobalMap,
41                                const DataLayout &DL, ScalarEvolution &SE,
42                                DominatorTree &DT, LoopInfo &LI,
43                                BasicBlock *StartBlock)
44     : S(S), Builder(Builder), IDToValue(IDToValue), GlobalMap(GlobalMap),
45       DL(DL), SE(SE), DT(DT), LI(LI), StartBlock(StartBlock) {
46   OverflowState = (OTMode == OT_ALWAYS) ? Builder.getFalse() : nullptr;
47 }
48 
setTrackOverflow(bool Enable)49 void IslExprBuilder::setTrackOverflow(bool Enable) {
50   // If potential overflows are tracked always or never we ignore requests
51   // to change the behavior.
52   if (OTMode != OT_REQUEST)
53     return;
54 
55   if (Enable) {
56     // If tracking should be enabled initialize the OverflowState.
57     OverflowState = Builder.getFalse();
58   } else {
59     // If tracking should be disabled just unset the OverflowState.
60     OverflowState = nullptr;
61   }
62 }
63 
getOverflowState() const64 Value *IslExprBuilder::getOverflowState() const {
65   // If the overflow tracking was requested but it is disabled we avoid the
66   // additional nullptr checks at the call sides but instead provide a
67   // meaningful result.
68   if (OTMode == OT_NEVER)
69     return Builder.getFalse();
70   return OverflowState;
71 }
72 
hasLargeInts(isl::ast_expr Expr)73 bool IslExprBuilder::hasLargeInts(isl::ast_expr Expr) {
74   enum isl_ast_expr_type Type = isl_ast_expr_get_type(Expr.get());
75 
76   if (Type == isl_ast_expr_id)
77     return false;
78 
79   if (Type == isl_ast_expr_int) {
80     isl::val Val = Expr.get_val();
81     APInt APValue = APIntFromVal(Val);
82     auto BitWidth = APValue.getBitWidth();
83     return BitWidth >= 64;
84   }
85 
86   assert(Type == isl_ast_expr_op && "Expected isl_ast_expr of type operation");
87 
88   int NumArgs = isl_ast_expr_get_op_n_arg(Expr.get());
89 
90   for (int i = 0; i < NumArgs; i++) {
91     isl::ast_expr Operand = Expr.get_op_arg(i);
92     if (hasLargeInts(Operand))
93       return true;
94   }
95 
96   return false;
97 }
98 
createBinOp(BinaryOperator::BinaryOps Opc,Value * LHS,Value * RHS,const Twine & Name)99 Value *IslExprBuilder::createBinOp(BinaryOperator::BinaryOps Opc, Value *LHS,
100                                    Value *RHS, const Twine &Name) {
101   // Handle the plain operation (without overflow tracking) first.
102   if (!OverflowState) {
103     switch (Opc) {
104     case Instruction::Add:
105       return Builder.CreateNSWAdd(LHS, RHS, Name);
106     case Instruction::Sub:
107       return Builder.CreateNSWSub(LHS, RHS, Name);
108     case Instruction::Mul:
109       return Builder.CreateNSWMul(LHS, RHS, Name);
110     default:
111       llvm_unreachable("Unknown binary operator!");
112     }
113   }
114 
115   Function *F = nullptr;
116   Module *M = Builder.GetInsertBlock()->getModule();
117   switch (Opc) {
118   case Instruction::Add:
119     F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
120                                   {LHS->getType()});
121     break;
122   case Instruction::Sub:
123     F = Intrinsic::getDeclaration(M, Intrinsic::ssub_with_overflow,
124                                   {LHS->getType()});
125     break;
126   case Instruction::Mul:
127     F = Intrinsic::getDeclaration(M, Intrinsic::smul_with_overflow,
128                                   {LHS->getType()});
129     break;
130   default:
131     llvm_unreachable("No overflow intrinsic for binary operator found!");
132   }
133 
134   auto *ResultStruct = Builder.CreateCall(F, {LHS, RHS}, Name);
135   assert(ResultStruct->getType()->isStructTy());
136 
137   auto *OverflowFlag =
138       Builder.CreateExtractValue(ResultStruct, 1, Name + ".obit");
139 
140   // If all overflows are tracked we do not combine the results as this could
141   // cause dominance problems. Instead we will always keep the last overflow
142   // flag as current state.
143   if (OTMode == OT_ALWAYS)
144     OverflowState = OverflowFlag;
145   else
146     OverflowState =
147         Builder.CreateOr(OverflowState, OverflowFlag, "polly.overflow.state");
148 
149   return Builder.CreateExtractValue(ResultStruct, 0, Name + ".res");
150 }
151 
createAdd(Value * LHS,Value * RHS,const Twine & Name)152 Value *IslExprBuilder::createAdd(Value *LHS, Value *RHS, const Twine &Name) {
153   return createBinOp(Instruction::Add, LHS, RHS, Name);
154 }
155 
createSub(Value * LHS,Value * RHS,const Twine & Name)156 Value *IslExprBuilder::createSub(Value *LHS, Value *RHS, const Twine &Name) {
157   return createBinOp(Instruction::Sub, LHS, RHS, Name);
158 }
159 
createMul(Value * LHS,Value * RHS,const Twine & Name)160 Value *IslExprBuilder::createMul(Value *LHS, Value *RHS, const Twine &Name) {
161   return createBinOp(Instruction::Mul, LHS, RHS, Name);
162 }
163 
getWidestType(Type * T1,Type * T2)164 Type *IslExprBuilder::getWidestType(Type *T1, Type *T2) {
165   assert(isa<IntegerType>(T1) && isa<IntegerType>(T2));
166 
167   if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits())
168     return T2;
169   else
170     return T1;
171 }
172 
createOpUnary(__isl_take isl_ast_expr * Expr)173 Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) {
174   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus &&
175          "Unsupported unary operation");
176 
177   Value *V;
178   Type *MaxType = getType(Expr);
179   assert(MaxType->isIntegerTy() &&
180          "Unary expressions can only be created for integer types");
181 
182   V = create(isl_ast_expr_get_op_arg(Expr, 0));
183   MaxType = getWidestType(MaxType, V->getType());
184 
185   if (MaxType != V->getType())
186     V = Builder.CreateSExt(V, MaxType);
187 
188   isl_ast_expr_free(Expr);
189   return createSub(ConstantInt::getNullValue(MaxType), V);
190 }
191 
createOpNAry(__isl_take isl_ast_expr * Expr)192 Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) {
193   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
194          "isl ast expression not of type isl_ast_op");
195   assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 &&
196          "We need at least two operands in an n-ary operation");
197 
198   CmpInst::Predicate Pred;
199   switch (isl_ast_expr_get_op_type(Expr)) {
200   default:
201     llvm_unreachable("This is not a an n-ary isl ast expression");
202   case isl_ast_op_max:
203     Pred = CmpInst::ICMP_SGT;
204     break;
205   case isl_ast_op_min:
206     Pred = CmpInst::ICMP_SLT;
207     break;
208   }
209 
210   Value *V = create(isl_ast_expr_get_op_arg(Expr, 0));
211 
212   for (int i = 1; i < isl_ast_expr_get_op_n_arg(Expr); ++i) {
213     Value *OpV = create(isl_ast_expr_get_op_arg(Expr, i));
214     Type *Ty = getWidestType(V->getType(), OpV->getType());
215 
216     if (Ty != OpV->getType())
217       OpV = Builder.CreateSExt(OpV, Ty);
218 
219     if (Ty != V->getType())
220       V = Builder.CreateSExt(V, Ty);
221 
222     Value *Cmp = Builder.CreateICmp(Pred, V, OpV);
223     V = Builder.CreateSelect(Cmp, V, OpV);
224   }
225 
226   // TODO: We can truncate the result, if it fits into a smaller type. This can
227   // help in cases where we have larger operands (e.g. i67) but the result is
228   // known to fit into i64. Without the truncation, the larger i67 type may
229   // force all subsequent operations to be performed on a non-native type.
230   isl_ast_expr_free(Expr);
231   return V;
232 }
233 
createAccessAddress(isl_ast_expr * Expr)234 Value *IslExprBuilder::createAccessAddress(isl_ast_expr *Expr) {
235   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
236          "isl ast expression not of type isl_ast_op");
237   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_access &&
238          "not an access isl ast expression");
239   assert(isl_ast_expr_get_op_n_arg(Expr) >= 1 &&
240          "We need at least two operands to create a member access.");
241 
242   Value *Base, *IndexOp, *Access;
243   isl_ast_expr *BaseExpr;
244   isl_id *BaseId;
245 
246   BaseExpr = isl_ast_expr_get_op_arg(Expr, 0);
247   BaseId = isl_ast_expr_get_id(BaseExpr);
248   isl_ast_expr_free(BaseExpr);
249 
250   const ScopArrayInfo *SAI = nullptr;
251 
252   if (PollyDebugPrinting)
253     RuntimeDebugBuilder::createCPUPrinter(Builder, isl_id_get_name(BaseId));
254 
255   if (IDToSAI)
256     SAI = (*IDToSAI)[BaseId];
257 
258   if (!SAI)
259     SAI = ScopArrayInfo::getFromId(isl::manage(BaseId));
260   else
261     isl_id_free(BaseId);
262 
263   assert(SAI && "No ScopArrayInfo found for this isl_id.");
264 
265   Base = SAI->getBasePtr();
266 
267   if (auto NewBase = GlobalMap.lookup(Base))
268     Base = NewBase;
269 
270   assert(Base->getType()->isPointerTy() && "Access base should be a pointer");
271   StringRef BaseName = Base->getName();
272 
273   auto PointerTy = PointerType::get(SAI->getElementType(),
274                                     Base->getType()->getPointerAddressSpace());
275   if (Base->getType() != PointerTy) {
276     Base =
277         Builder.CreateBitCast(Base, PointerTy, "polly.access.cast." + BaseName);
278   }
279 
280   if (isl_ast_expr_get_op_n_arg(Expr) == 1) {
281     isl_ast_expr_free(Expr);
282     if (PollyDebugPrinting)
283       RuntimeDebugBuilder::createCPUPrinter(Builder, "\n");
284     return Base;
285   }
286 
287   IndexOp = nullptr;
288   for (unsigned u = 1, e = isl_ast_expr_get_op_n_arg(Expr); u < e; u++) {
289     Value *NextIndex = create(isl_ast_expr_get_op_arg(Expr, u));
290     assert(NextIndex->getType()->isIntegerTy() &&
291            "Access index should be an integer");
292 
293     if (PollyDebugPrinting)
294       RuntimeDebugBuilder::createCPUPrinter(Builder, "[", NextIndex, "]");
295 
296     if (!IndexOp) {
297       IndexOp = NextIndex;
298     } else {
299       Type *Ty = getWidestType(NextIndex->getType(), IndexOp->getType());
300 
301       if (Ty != NextIndex->getType())
302         NextIndex = Builder.CreateIntCast(NextIndex, Ty, true);
303       if (Ty != IndexOp->getType())
304         IndexOp = Builder.CreateIntCast(IndexOp, Ty, true);
305 
306       IndexOp = createAdd(IndexOp, NextIndex, "polly.access.add." + BaseName);
307     }
308 
309     // For every but the last dimension multiply the size, for the last
310     // dimension we can exit the loop.
311     if (u + 1 >= e)
312       break;
313 
314     const SCEV *DimSCEV = SAI->getDimensionSize(u);
315 
316     llvm::ValueToValueMap Map(GlobalMap.begin(), GlobalMap.end());
317     DimSCEV = SCEVParameterRewriter::rewrite(DimSCEV, SE, Map);
318     Value *DimSize =
319         expandCodeFor(S, SE, DL, "polly", DimSCEV, DimSCEV->getType(),
320                       &*Builder.GetInsertPoint(), nullptr,
321                       StartBlock->getSinglePredecessor());
322 
323     Type *Ty = getWidestType(DimSize->getType(), IndexOp->getType());
324 
325     if (Ty != IndexOp->getType())
326       IndexOp = Builder.CreateSExtOrTrunc(IndexOp, Ty,
327                                           "polly.access.sext." + BaseName);
328     if (Ty != DimSize->getType())
329       DimSize = Builder.CreateSExtOrTrunc(DimSize, Ty,
330                                           "polly.access.sext." + BaseName);
331     IndexOp = createMul(IndexOp, DimSize, "polly.access.mul." + BaseName);
332   }
333 
334   Access = Builder.CreateGEP(Base, IndexOp, "polly.access." + BaseName);
335 
336   if (PollyDebugPrinting)
337     RuntimeDebugBuilder::createCPUPrinter(Builder, "\n");
338   isl_ast_expr_free(Expr);
339   return Access;
340 }
341 
createOpAccess(isl_ast_expr * Expr)342 Value *IslExprBuilder::createOpAccess(isl_ast_expr *Expr) {
343   Value *Addr = createAccessAddress(Expr);
344   assert(Addr && "Could not create op access address");
345   return Builder.CreateLoad(Addr, Addr->getName() + ".load");
346 }
347 
createOpBin(__isl_take isl_ast_expr * Expr)348 Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) {
349   Value *LHS, *RHS, *Res;
350   Type *MaxType;
351   isl_ast_op_type OpType;
352 
353   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
354          "isl ast expression not of type isl_ast_op");
355   assert(isl_ast_expr_get_op_n_arg(Expr) == 2 &&
356          "not a binary isl ast expression");
357 
358   OpType = isl_ast_expr_get_op_type(Expr);
359 
360   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
361   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
362 
363   Type *LHSType = LHS->getType();
364   Type *RHSType = RHS->getType();
365 
366   MaxType = getWidestType(LHSType, RHSType);
367 
368   // Take the result into account when calculating the widest type.
369   //
370   // For operations such as '+' the result may require a type larger than
371   // the type of the individual operands. For other operations such as '/', the
372   // result type cannot be larger than the type of the individual operand. isl
373   // does not calculate correct types for these operations and we consequently
374   // exclude those operations here.
375   switch (OpType) {
376   case isl_ast_op_pdiv_q:
377   case isl_ast_op_pdiv_r:
378   case isl_ast_op_div:
379   case isl_ast_op_fdiv_q:
380   case isl_ast_op_zdiv_r:
381     // Do nothing
382     break;
383   case isl_ast_op_add:
384   case isl_ast_op_sub:
385   case isl_ast_op_mul:
386     MaxType = getWidestType(MaxType, getType(Expr));
387     break;
388   default:
389     llvm_unreachable("This is no binary isl ast expression");
390   }
391 
392   if (MaxType != RHS->getType())
393     RHS = Builder.CreateSExt(RHS, MaxType);
394 
395   if (MaxType != LHS->getType())
396     LHS = Builder.CreateSExt(LHS, MaxType);
397 
398   switch (OpType) {
399   default:
400     llvm_unreachable("This is no binary isl ast expression");
401   case isl_ast_op_add:
402     Res = createAdd(LHS, RHS);
403     break;
404   case isl_ast_op_sub:
405     Res = createSub(LHS, RHS);
406     break;
407   case isl_ast_op_mul:
408     Res = createMul(LHS, RHS);
409     break;
410   case isl_ast_op_div:
411     Res = Builder.CreateSDiv(LHS, RHS, "pexp.div", true);
412     break;
413   case isl_ast_op_pdiv_q: // Dividend is non-negative
414     Res = Builder.CreateUDiv(LHS, RHS, "pexp.p_div_q");
415     break;
416   case isl_ast_op_fdiv_q: { // Round towards -infty
417     if (auto *Const = dyn_cast<ConstantInt>(RHS)) {
418       auto &Val = Const->getValue();
419       if (Val.isPowerOf2() && Val.isNonNegative()) {
420         Res = Builder.CreateAShr(LHS, Val.ceilLogBase2(), "polly.fdiv_q.shr");
421         break;
422       }
423     }
424     // TODO: Review code and check that this calculation does not yield
425     //       incorrect overflow in some edge cases.
426     //
427     // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d
428     Value *One = ConstantInt::get(MaxType, 1);
429     Value *Zero = ConstantInt::get(MaxType, 0);
430     Value *Sum1 = createSub(LHS, RHS, "pexp.fdiv_q.0");
431     Value *Sum2 = createAdd(Sum1, One, "pexp.fdiv_q.1");
432     Value *isNegative = Builder.CreateICmpSLT(LHS, Zero, "pexp.fdiv_q.2");
433     Value *Dividend =
434         Builder.CreateSelect(isNegative, Sum2, LHS, "pexp.fdiv_q.3");
435     Res = Builder.CreateSDiv(Dividend, RHS, "pexp.fdiv_q.4");
436     break;
437   }
438   case isl_ast_op_pdiv_r: // Dividend is non-negative
439     Res = Builder.CreateURem(LHS, RHS, "pexp.pdiv_r");
440     break;
441 
442   case isl_ast_op_zdiv_r: // Result only compared against zero
443     Res = Builder.CreateSRem(LHS, RHS, "pexp.zdiv_r");
444     break;
445   }
446 
447   // TODO: We can truncate the result, if it fits into a smaller type. This can
448   // help in cases where we have larger operands (e.g. i67) but the result is
449   // known to fit into i64. Without the truncation, the larger i67 type may
450   // force all subsequent operations to be performed on a non-native type.
451   isl_ast_expr_free(Expr);
452   return Res;
453 }
454 
createOpSelect(__isl_take isl_ast_expr * Expr)455 Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) {
456   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_select &&
457          "Unsupported unary isl ast expression");
458   Value *LHS, *RHS, *Cond;
459   Type *MaxType = getType(Expr);
460 
461   Cond = create(isl_ast_expr_get_op_arg(Expr, 0));
462   if (!Cond->getType()->isIntegerTy(1))
463     Cond = Builder.CreateIsNotNull(Cond);
464 
465   LHS = create(isl_ast_expr_get_op_arg(Expr, 1));
466   RHS = create(isl_ast_expr_get_op_arg(Expr, 2));
467 
468   MaxType = getWidestType(MaxType, LHS->getType());
469   MaxType = getWidestType(MaxType, RHS->getType());
470 
471   if (MaxType != RHS->getType())
472     RHS = Builder.CreateSExt(RHS, MaxType);
473 
474   if (MaxType != LHS->getType())
475     LHS = Builder.CreateSExt(LHS, MaxType);
476 
477   // TODO: Do we want to truncate the result?
478   isl_ast_expr_free(Expr);
479   return Builder.CreateSelect(Cond, LHS, RHS);
480 }
481 
createOpICmp(__isl_take isl_ast_expr * Expr)482 Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) {
483   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
484          "Expected an isl_ast_expr_op expression");
485 
486   Value *LHS, *RHS, *Res;
487 
488   auto *Op0 = isl_ast_expr_get_op_arg(Expr, 0);
489   auto *Op1 = isl_ast_expr_get_op_arg(Expr, 1);
490   bool HasNonAddressOfOperand =
491       isl_ast_expr_get_type(Op0) != isl_ast_expr_op ||
492       isl_ast_expr_get_type(Op1) != isl_ast_expr_op ||
493       isl_ast_expr_get_op_type(Op0) != isl_ast_op_address_of ||
494       isl_ast_expr_get_op_type(Op1) != isl_ast_op_address_of;
495 
496   LHS = create(Op0);
497   RHS = create(Op1);
498 
499   auto *LHSTy = LHS->getType();
500   auto *RHSTy = RHS->getType();
501   bool IsPtrType = LHSTy->isPointerTy() || RHSTy->isPointerTy();
502   bool UseUnsignedCmp = IsPtrType && !HasNonAddressOfOperand;
503 
504   auto *PtrAsIntTy = Builder.getIntNTy(DL.getPointerSizeInBits());
505   if (LHSTy->isPointerTy())
506     LHS = Builder.CreatePtrToInt(LHS, PtrAsIntTy);
507   if (RHSTy->isPointerTy())
508     RHS = Builder.CreatePtrToInt(RHS, PtrAsIntTy);
509 
510   if (LHS->getType() != RHS->getType()) {
511     Type *MaxType = LHS->getType();
512     MaxType = getWidestType(MaxType, RHS->getType());
513 
514     if (MaxType != RHS->getType())
515       RHS = Builder.CreateSExt(RHS, MaxType);
516 
517     if (MaxType != LHS->getType())
518       LHS = Builder.CreateSExt(LHS, MaxType);
519   }
520 
521   isl_ast_op_type OpType = isl_ast_expr_get_op_type(Expr);
522   assert(OpType >= isl_ast_op_eq && OpType <= isl_ast_op_gt &&
523          "Unsupported ICmp isl ast expression");
524   assert(isl_ast_op_eq + 4 == isl_ast_op_gt &&
525          "Isl ast op type interface changed");
526 
527   CmpInst::Predicate Predicates[5][2] = {
528       {CmpInst::ICMP_EQ, CmpInst::ICMP_EQ},
529       {CmpInst::ICMP_SLE, CmpInst::ICMP_ULE},
530       {CmpInst::ICMP_SLT, CmpInst::ICMP_ULT},
531       {CmpInst::ICMP_SGE, CmpInst::ICMP_UGE},
532       {CmpInst::ICMP_SGT, CmpInst::ICMP_UGT},
533   };
534 
535   Res = Builder.CreateICmp(Predicates[OpType - isl_ast_op_eq][UseUnsignedCmp],
536                            LHS, RHS);
537 
538   isl_ast_expr_free(Expr);
539   return Res;
540 }
541 
createOpBoolean(__isl_take isl_ast_expr * Expr)542 Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) {
543   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
544          "Expected an isl_ast_expr_op expression");
545 
546   Value *LHS, *RHS, *Res;
547   isl_ast_op_type OpType;
548 
549   OpType = isl_ast_expr_get_op_type(Expr);
550 
551   assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) &&
552          "Unsupported isl_ast_op_type");
553 
554   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
555   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
556 
557   // Even though the isl pretty printer prints the expressions as 'exp && exp'
558   // or 'exp || exp', we actually code generate the bitwise expressions
559   // 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches,
560   // but it is, due to the use of i1 types, otherwise equivalent. The reason
561   // to go for bitwise operations is, that we assume the reduced control flow
562   // will outweigh the overhead introduced by evaluating unneeded expressions.
563   // The isl code generation currently does not take advantage of the fact that
564   // the expression after an '||' or '&&' is in some cases not evaluated.
565   // Evaluating it anyways does not cause any undefined behaviour.
566   //
567   // TODO: Document in isl itself, that the unconditionally evaluating the
568   // second part of '||' or '&&' expressions is safe.
569   if (!LHS->getType()->isIntegerTy(1))
570     LHS = Builder.CreateIsNotNull(LHS);
571   if (!RHS->getType()->isIntegerTy(1))
572     RHS = Builder.CreateIsNotNull(RHS);
573 
574   switch (OpType) {
575   default:
576     llvm_unreachable("Unsupported boolean expression");
577   case isl_ast_op_and:
578     Res = Builder.CreateAnd(LHS, RHS);
579     break;
580   case isl_ast_op_or:
581     Res = Builder.CreateOr(LHS, RHS);
582     break;
583   }
584 
585   isl_ast_expr_free(Expr);
586   return Res;
587 }
588 
589 Value *
createOpBooleanConditional(__isl_take isl_ast_expr * Expr)590 IslExprBuilder::createOpBooleanConditional(__isl_take isl_ast_expr *Expr) {
591   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
592          "Expected an isl_ast_expr_op expression");
593 
594   Value *LHS, *RHS;
595   isl_ast_op_type OpType;
596 
597   Function *F = Builder.GetInsertBlock()->getParent();
598   LLVMContext &Context = F->getContext();
599 
600   OpType = isl_ast_expr_get_op_type(Expr);
601 
602   assert((OpType == isl_ast_op_and_then || OpType == isl_ast_op_or_else) &&
603          "Unsupported isl_ast_op_type");
604 
605   auto InsertBB = Builder.GetInsertBlock();
606   auto InsertPoint = Builder.GetInsertPoint();
607   auto NextBB = SplitBlock(InsertBB, &*InsertPoint, &DT, &LI);
608   BasicBlock *CondBB = BasicBlock::Create(Context, "polly.cond", F);
609   LI.changeLoopFor(CondBB, LI.getLoopFor(InsertBB));
610   DT.addNewBlock(CondBB, InsertBB);
611 
612   InsertBB->getTerminator()->eraseFromParent();
613   Builder.SetInsertPoint(InsertBB);
614   auto BR = Builder.CreateCondBr(Builder.getTrue(), NextBB, CondBB);
615 
616   Builder.SetInsertPoint(CondBB);
617   Builder.CreateBr(NextBB);
618 
619   Builder.SetInsertPoint(InsertBB->getTerminator());
620 
621   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
622   if (!LHS->getType()->isIntegerTy(1))
623     LHS = Builder.CreateIsNotNull(LHS);
624   auto LeftBB = Builder.GetInsertBlock();
625 
626   if (OpType == isl_ast_op_and || OpType == isl_ast_op_and_then)
627     BR->setCondition(Builder.CreateNeg(LHS));
628   else
629     BR->setCondition(LHS);
630 
631   Builder.SetInsertPoint(CondBB->getTerminator());
632   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
633   if (!RHS->getType()->isIntegerTy(1))
634     RHS = Builder.CreateIsNotNull(RHS);
635   auto RightBB = Builder.GetInsertBlock();
636 
637   Builder.SetInsertPoint(NextBB->getTerminator());
638   auto PHI = Builder.CreatePHI(Builder.getInt1Ty(), 2);
639   PHI->addIncoming(OpType == isl_ast_op_and_then ? Builder.getFalse()
640                                                  : Builder.getTrue(),
641                    LeftBB);
642   PHI->addIncoming(RHS, RightBB);
643 
644   isl_ast_expr_free(Expr);
645   return PHI;
646 }
647 
createOp(__isl_take isl_ast_expr * Expr)648 Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) {
649   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
650          "Expression not of type isl_ast_expr_op");
651   switch (isl_ast_expr_get_op_type(Expr)) {
652   case isl_ast_op_error:
653   case isl_ast_op_cond:
654   case isl_ast_op_call:
655   case isl_ast_op_member:
656     llvm_unreachable("Unsupported isl ast expression");
657   case isl_ast_op_access:
658     return createOpAccess(Expr);
659   case isl_ast_op_max:
660   case isl_ast_op_min:
661     return createOpNAry(Expr);
662   case isl_ast_op_add:
663   case isl_ast_op_sub:
664   case isl_ast_op_mul:
665   case isl_ast_op_div:
666   case isl_ast_op_fdiv_q: // Round towards -infty
667   case isl_ast_op_pdiv_q: // Dividend is non-negative
668   case isl_ast_op_pdiv_r: // Dividend is non-negative
669   case isl_ast_op_zdiv_r: // Result only compared against zero
670     return createOpBin(Expr);
671   case isl_ast_op_minus:
672     return createOpUnary(Expr);
673   case isl_ast_op_select:
674     return createOpSelect(Expr);
675   case isl_ast_op_and:
676   case isl_ast_op_or:
677     return createOpBoolean(Expr);
678   case isl_ast_op_and_then:
679   case isl_ast_op_or_else:
680     return createOpBooleanConditional(Expr);
681   case isl_ast_op_eq:
682   case isl_ast_op_le:
683   case isl_ast_op_lt:
684   case isl_ast_op_ge:
685   case isl_ast_op_gt:
686     return createOpICmp(Expr);
687   case isl_ast_op_address_of:
688     return createOpAddressOf(Expr);
689   }
690 
691   llvm_unreachable("Unsupported isl_ast_expr_op kind.");
692 }
693 
createOpAddressOf(__isl_take isl_ast_expr * Expr)694 Value *IslExprBuilder::createOpAddressOf(__isl_take isl_ast_expr *Expr) {
695   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
696          "Expected an isl_ast_expr_op expression.");
697   assert(isl_ast_expr_get_op_n_arg(Expr) == 1 && "Address of should be unary.");
698 
699   isl_ast_expr *Op = isl_ast_expr_get_op_arg(Expr, 0);
700   assert(isl_ast_expr_get_type(Op) == isl_ast_expr_op &&
701          "Expected address of operator to be an isl_ast_expr_op expression.");
702   assert(isl_ast_expr_get_op_type(Op) == isl_ast_op_access &&
703          "Expected address of operator to be an access expression.");
704 
705   Value *V = createAccessAddress(Op);
706 
707   isl_ast_expr_free(Expr);
708 
709   return V;
710 }
711 
createId(__isl_take isl_ast_expr * Expr)712 Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) {
713   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id &&
714          "Expression not of type isl_ast_expr_ident");
715 
716   isl_id *Id;
717   Value *V;
718 
719   Id = isl_ast_expr_get_id(Expr);
720 
721   assert(IDToValue.count(Id) && "Identifier not found");
722 
723   V = IDToValue[Id];
724   if (!V)
725     V = UndefValue::get(getType(Expr));
726 
727   if (V->getType()->isPointerTy())
728     V = Builder.CreatePtrToInt(V, Builder.getIntNTy(DL.getPointerSizeInBits()));
729 
730   assert(V && "Unknown parameter id found");
731 
732   isl_id_free(Id);
733   isl_ast_expr_free(Expr);
734 
735   return V;
736 }
737 
getType(__isl_keep isl_ast_expr * Expr)738 IntegerType *IslExprBuilder::getType(__isl_keep isl_ast_expr *Expr) {
739   // XXX: We assume i64 is large enough. This is often true, but in general
740   //      incorrect. Also, on 32bit architectures, it would be beneficial to
741   //      use a smaller type. We can and should directly derive this information
742   //      during code generation.
743   return IntegerType::get(Builder.getContext(), 64);
744 }
745 
createInt(__isl_take isl_ast_expr * Expr)746 Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) {
747   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int &&
748          "Expression not of type isl_ast_expr_int");
749   isl_val *Val;
750   Value *V;
751   APInt APValue;
752   IntegerType *T;
753 
754   Val = isl_ast_expr_get_val(Expr);
755   APValue = APIntFromVal(Val);
756 
757   auto BitWidth = APValue.getBitWidth();
758   if (BitWidth <= 64)
759     T = getType(Expr);
760   else
761     T = Builder.getIntNTy(BitWidth);
762 
763   APValue = APValue.sextOrSelf(T->getBitWidth());
764   V = ConstantInt::get(T, APValue);
765 
766   isl_ast_expr_free(Expr);
767   return V;
768 }
769 
create(__isl_take isl_ast_expr * Expr)770 Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) {
771   switch (isl_ast_expr_get_type(Expr)) {
772   case isl_ast_expr_error:
773     llvm_unreachable("Code generation error");
774   case isl_ast_expr_op:
775     return createOp(Expr);
776   case isl_ast_expr_id:
777     return createId(Expr);
778   case isl_ast_expr_int:
779     return createInt(Expr);
780   }
781 
782   llvm_unreachable("Unexpected enum value");
783 }
784