1 /*
2  * Copyright 2008-2009 Katholieke Universiteit Leuven
3  * Copyright 2010      INRIA Saclay
4  * Copyright 2012      Ecole Normale Superieure
5  *
6  * Use of this software is governed by the MIT license
7  *
8  * Written by Sven Verdoolaege, K.U.Leuven, Departement
9  * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10  * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11  * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12  * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13  */
14 
15 #include <isl_ctx_private.h>
16 #include <isl_map_private.h>
17 #include <isl_seq.h>
18 #include <isl/set.h>
19 #include <isl/lp.h>
20 #include <isl/map.h>
21 #include "isl_equalities.h"
22 #include "isl_sample.h"
23 #include "isl_tab.h"
24 #include <isl_mat_private.h>
25 #include <isl_vec_private.h>
26 
27 #include <bset_to_bmap.c>
28 #include <bset_from_bmap.c>
29 #include <set_to_map.c>
30 #include <set_from_map.c>
31 
isl_basic_map_implicit_equalities(__isl_take isl_basic_map * bmap)32 __isl_give isl_basic_map *isl_basic_map_implicit_equalities(
33 	__isl_take isl_basic_map *bmap)
34 {
35 	struct isl_tab *tab;
36 
37 	if (!bmap)
38 		return bmap;
39 
40 	bmap = isl_basic_map_gauss(bmap, NULL);
41 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
42 		return bmap;
43 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
44 		return bmap;
45 	if (bmap->n_ineq <= 1)
46 		return bmap;
47 
48 	tab = isl_tab_from_basic_map(bmap, 0);
49 	if (isl_tab_detect_implicit_equalities(tab) < 0)
50 		goto error;
51 	bmap = isl_basic_map_update_from_tab(bmap, tab);
52 	isl_tab_free(tab);
53 	bmap = isl_basic_map_gauss(bmap, NULL);
54 	ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
55 	return bmap;
56 error:
57 	isl_tab_free(tab);
58 	isl_basic_map_free(bmap);
59 	return NULL;
60 }
61 
isl_basic_set_implicit_equalities(struct isl_basic_set * bset)62 struct isl_basic_set *isl_basic_set_implicit_equalities(
63 						struct isl_basic_set *bset)
64 {
65 	return bset_from_bmap(
66 		isl_basic_map_implicit_equalities(bset_to_bmap(bset)));
67 }
68 
69 /* Make eq[row][col] of both bmaps equal so we can add the row
70  * add the column to the common matrix.
71  * Note that because of the echelon form, the columns of row row
72  * after column col are zero.
73  */
set_common_multiple(struct isl_basic_set * bset1,struct isl_basic_set * bset2,unsigned row,unsigned col)74 static void set_common_multiple(
75 	struct isl_basic_set *bset1, struct isl_basic_set *bset2,
76 	unsigned row, unsigned col)
77 {
78 	isl_int m, c;
79 
80 	if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
81 		return;
82 
83 	isl_int_init(c);
84 	isl_int_init(m);
85 	isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
86 	isl_int_divexact(c, m, bset1->eq[row][col]);
87 	isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
88 	isl_int_divexact(c, m, bset2->eq[row][col]);
89 	isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
90 	isl_int_clear(c);
91 	isl_int_clear(m);
92 }
93 
94 /* Delete a given equality, moving all the following equalities one up.
95  */
delete_row(struct isl_basic_set * bset,unsigned row)96 static void delete_row(struct isl_basic_set *bset, unsigned row)
97 {
98 	isl_int *t;
99 	int r;
100 
101 	t = bset->eq[row];
102 	bset->n_eq--;
103 	for (r = row; r < bset->n_eq; ++r)
104 		bset->eq[r] = bset->eq[r+1];
105 	bset->eq[bset->n_eq] = t;
106 }
107 
108 /* Make first row entries in column col of bset1 identical to
109  * those of bset2, using the fact that entry bset1->eq[row][col]=a
110  * is non-zero.  Initially, these elements of bset1 are all zero.
111  * For each row i < row, we set
112  *		A[i] = a * A[i] + B[i][col] * A[row]
113  *		B[i] = a * B[i]
114  * so that
115  *		A[i][col] = B[i][col] = a * old(B[i][col])
116  */
construct_column(struct isl_basic_set * bset1,struct isl_basic_set * bset2,unsigned row,unsigned col)117 static void construct_column(
118 	struct isl_basic_set *bset1, struct isl_basic_set *bset2,
119 	unsigned row, unsigned col)
120 {
121 	int r;
122 	isl_int a;
123 	isl_int b;
124 	unsigned total;
125 
126 	isl_int_init(a);
127 	isl_int_init(b);
128 	total = 1 + isl_basic_set_n_dim(bset1);
129 	for (r = 0; r < row; ++r) {
130 		if (isl_int_is_zero(bset2->eq[r][col]))
131 			continue;
132 		isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
133 		isl_int_divexact(a, bset1->eq[row][col], b);
134 		isl_int_divexact(b, bset2->eq[r][col], b);
135 		isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
136 					      b, bset1->eq[row], total);
137 		isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
138 	}
139 	isl_int_clear(a);
140 	isl_int_clear(b);
141 	delete_row(bset1, row);
142 }
143 
144 /* Make first row entries in column col of bset1 identical to
145  * those of bset2, using only these entries of the two matrices.
146  * Let t be the last row with different entries.
147  * For each row i < t, we set
148  *	A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
149  *	B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
150  * so that
151  *	A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
152  */
transform_column(struct isl_basic_set * bset1,struct isl_basic_set * bset2,unsigned row,unsigned col)153 static int transform_column(
154 	struct isl_basic_set *bset1, struct isl_basic_set *bset2,
155 	unsigned row, unsigned col)
156 {
157 	int i, t;
158 	isl_int a, b, g;
159 	unsigned total;
160 
161 	for (t = row-1; t >= 0; --t)
162 		if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
163 			break;
164 	if (t < 0)
165 		return 0;
166 
167 	total = 1 + isl_basic_set_n_dim(bset1);
168 	isl_int_init(a);
169 	isl_int_init(b);
170 	isl_int_init(g);
171 	isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
172 	for (i = 0; i < t; ++i) {
173 		isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
174 		isl_int_gcd(g, a, b);
175 		isl_int_divexact(a, a, g);
176 		isl_int_divexact(g, b, g);
177 		isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
178 				total);
179 		isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
180 				total);
181 	}
182 	isl_int_clear(a);
183 	isl_int_clear(b);
184 	isl_int_clear(g);
185 	delete_row(bset1, t);
186 	delete_row(bset2, t);
187 	return 1;
188 }
189 
190 /* The implementation is based on Section 5.2 of Michael Karr,
191  * "Affine Relationships Among Variables of a Program",
192  * except that the echelon form we use starts from the last column
193  * and that we are dealing with integer coefficients.
194  */
affine_hull(struct isl_basic_set * bset1,struct isl_basic_set * bset2)195 static struct isl_basic_set *affine_hull(
196 	struct isl_basic_set *bset1, struct isl_basic_set *bset2)
197 {
198 	unsigned total;
199 	int col;
200 	int row;
201 
202 	if (!bset1 || !bset2)
203 		goto error;
204 
205 	total = 1 + isl_basic_set_n_dim(bset1);
206 
207 	row = 0;
208 	for (col = total-1; col >= 0; --col) {
209 		int is_zero1 = row >= bset1->n_eq ||
210 			isl_int_is_zero(bset1->eq[row][col]);
211 		int is_zero2 = row >= bset2->n_eq ||
212 			isl_int_is_zero(bset2->eq[row][col]);
213 		if (!is_zero1 && !is_zero2) {
214 			set_common_multiple(bset1, bset2, row, col);
215 			++row;
216 		} else if (!is_zero1 && is_zero2) {
217 			construct_column(bset1, bset2, row, col);
218 		} else if (is_zero1 && !is_zero2) {
219 			construct_column(bset2, bset1, row, col);
220 		} else {
221 			if (transform_column(bset1, bset2, row, col))
222 				--row;
223 		}
224 	}
225 	isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
226 	isl_basic_set_free(bset2);
227 	bset1 = isl_basic_set_normalize_constraints(bset1);
228 	return bset1;
229 error:
230 	isl_basic_set_free(bset1);
231 	isl_basic_set_free(bset2);
232 	return NULL;
233 }
234 
235 /* Find an integer point in the set represented by "tab"
236  * that lies outside of the equality "eq" e(x) = 0.
237  * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
238  * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
239  * The point, if found, is returned.
240  * If no point can be found, a zero-length vector is returned.
241  *
242  * Before solving an ILP problem, we first check if simply
243  * adding the normal of the constraint to one of the known
244  * integer points in the basic set represented by "tab"
245  * yields another point inside the basic set.
246  *
247  * The caller of this function ensures that the tableau is bounded or
248  * that tab->basis and tab->n_unbounded have been set appropriately.
249  */
outside_point(struct isl_tab * tab,isl_int * eq,int up)250 static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
251 {
252 	struct isl_ctx *ctx;
253 	struct isl_vec *sample = NULL;
254 	struct isl_tab_undo *snap;
255 	unsigned dim;
256 
257 	if (!tab)
258 		return NULL;
259 	ctx = tab->mat->ctx;
260 
261 	dim = tab->n_var;
262 	sample = isl_vec_alloc(ctx, 1 + dim);
263 	if (!sample)
264 		return NULL;
265 	isl_int_set_si(sample->el[0], 1);
266 	isl_seq_combine(sample->el + 1,
267 		ctx->one, tab->bmap->sample->el + 1,
268 		up ? ctx->one : ctx->negone, eq + 1, dim);
269 	if (isl_basic_map_contains(tab->bmap, sample))
270 		return sample;
271 	isl_vec_free(sample);
272 	sample = NULL;
273 
274 	snap = isl_tab_snap(tab);
275 
276 	if (!up)
277 		isl_seq_neg(eq, eq, 1 + dim);
278 	isl_int_sub_ui(eq[0], eq[0], 1);
279 
280 	if (isl_tab_extend_cons(tab, 1) < 0)
281 		goto error;
282 	if (isl_tab_add_ineq(tab, eq) < 0)
283 		goto error;
284 
285 	sample = isl_tab_sample(tab);
286 
287 	isl_int_add_ui(eq[0], eq[0], 1);
288 	if (!up)
289 		isl_seq_neg(eq, eq, 1 + dim);
290 
291 	if (sample && isl_tab_rollback(tab, snap) < 0)
292 		goto error;
293 
294 	return sample;
295 error:
296 	isl_vec_free(sample);
297 	return NULL;
298 }
299 
isl_basic_set_recession_cone(__isl_take isl_basic_set * bset)300 __isl_give isl_basic_set *isl_basic_set_recession_cone(
301 	__isl_take isl_basic_set *bset)
302 {
303 	int i;
304 
305 	bset = isl_basic_set_cow(bset);
306 	if (!bset)
307 		return NULL;
308 	isl_assert(bset->ctx, bset->n_div == 0, goto error);
309 
310 	for (i = 0; i < bset->n_eq; ++i)
311 		isl_int_set_si(bset->eq[i][0], 0);
312 
313 	for (i = 0; i < bset->n_ineq; ++i)
314 		isl_int_set_si(bset->ineq[i][0], 0);
315 
316 	ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
317 	return isl_basic_set_implicit_equalities(bset);
318 error:
319 	isl_basic_set_free(bset);
320 	return NULL;
321 }
322 
323 /* Move "sample" to a point that is one up (or down) from the original
324  * point in dimension "pos".
325  */
adjacent_point(__isl_keep isl_vec * sample,int pos,int up)326 static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up)
327 {
328 	if (up)
329 		isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
330 	else
331 		isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
332 }
333 
334 /* Check if any points that are adjacent to "sample" also belong to "bset".
335  * If so, add them to "hull" and return the updated hull.
336  *
337  * Before checking whether and adjacent point belongs to "bset", we first
338  * check whether it already belongs to "hull" as this test is typically
339  * much cheaper.
340  */
add_adjacent_points(__isl_take isl_basic_set * hull,__isl_take isl_vec * sample,__isl_keep isl_basic_set * bset)341 static __isl_give isl_basic_set *add_adjacent_points(
342 	__isl_take isl_basic_set *hull, __isl_take isl_vec *sample,
343 	__isl_keep isl_basic_set *bset)
344 {
345 	int i, up;
346 	int dim;
347 
348 	if (!sample)
349 		goto error;
350 
351 	dim = isl_basic_set_dim(hull, isl_dim_set);
352 
353 	for (i = 0; i < dim; ++i) {
354 		for (up = 0; up <= 1; ++up) {
355 			int contains;
356 			isl_basic_set *point;
357 
358 			adjacent_point(sample, i, up);
359 			contains = isl_basic_set_contains(hull, sample);
360 			if (contains < 0)
361 				goto error;
362 			if (contains) {
363 				adjacent_point(sample, i, !up);
364 				continue;
365 			}
366 			contains = isl_basic_set_contains(bset, sample);
367 			if (contains < 0)
368 				goto error;
369 			if (contains) {
370 				point = isl_basic_set_from_vec(
371 							isl_vec_copy(sample));
372 				hull = affine_hull(hull, point);
373 			}
374 			adjacent_point(sample, i, !up);
375 			if (contains)
376 				break;
377 		}
378 	}
379 
380 	isl_vec_free(sample);
381 
382 	return hull;
383 error:
384 	isl_vec_free(sample);
385 	isl_basic_set_free(hull);
386 	return NULL;
387 }
388 
389 /* Extend an initial (under-)approximation of the affine hull of basic
390  * set represented by the tableau "tab"
391  * by looking for points that do not satisfy one of the equalities
392  * in the current approximation and adding them to that approximation
393  * until no such points can be found any more.
394  *
395  * The caller of this function ensures that "tab" is bounded or
396  * that tab->basis and tab->n_unbounded have been set appropriately.
397  *
398  * "bset" may be either NULL or the basic set represented by "tab".
399  * If "bset" is not NULL, we check for any point we find if any
400  * of its adjacent points also belong to "bset".
401  */
extend_affine_hull(struct isl_tab * tab,__isl_take isl_basic_set * hull,__isl_keep isl_basic_set * bset)402 static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab,
403 	__isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset)
404 {
405 	int i, j;
406 	unsigned dim;
407 
408 	if (!tab || !hull)
409 		goto error;
410 
411 	dim = tab->n_var;
412 
413 	if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
414 		goto error;
415 
416 	for (i = 0; i < dim; ++i) {
417 		struct isl_vec *sample;
418 		struct isl_basic_set *point;
419 		for (j = 0; j < hull->n_eq; ++j) {
420 			sample = outside_point(tab, hull->eq[j], 1);
421 			if (!sample)
422 				goto error;
423 			if (sample->size > 0)
424 				break;
425 			isl_vec_free(sample);
426 			sample = outside_point(tab, hull->eq[j], 0);
427 			if (!sample)
428 				goto error;
429 			if (sample->size > 0)
430 				break;
431 			isl_vec_free(sample);
432 
433 			if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
434 				goto error;
435 		}
436 		if (j == hull->n_eq)
437 			break;
438 		if (tab->samples &&
439 		    isl_tab_add_sample(tab, isl_vec_copy(sample)) < 0)
440 			hull = isl_basic_set_free(hull);
441 		if (bset)
442 			hull = add_adjacent_points(hull, isl_vec_copy(sample),
443 						    bset);
444 		point = isl_basic_set_from_vec(sample);
445 		hull = affine_hull(hull, point);
446 		if (!hull)
447 			return NULL;
448 	}
449 
450 	return hull;
451 error:
452 	isl_basic_set_free(hull);
453 	return NULL;
454 }
455 
456 /* Construct an initial underapproximation of the hull of "bset"
457  * from "sample" and any of its adjacent points that also belong to "bset".
458  */
initialize_hull(__isl_keep isl_basic_set * bset,__isl_take isl_vec * sample)459 static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset,
460 	__isl_take isl_vec *sample)
461 {
462 	isl_basic_set *hull;
463 
464 	hull = isl_basic_set_from_vec(isl_vec_copy(sample));
465 	hull = add_adjacent_points(hull, sample, bset);
466 
467 	return hull;
468 }
469 
470 /* Look for all equalities satisfied by the integer points in bset,
471  * which is assumed to be bounded.
472  *
473  * The equalities are obtained by successively looking for
474  * a point that is affinely independent of the points found so far.
475  * In particular, for each equality satisfied by the points so far,
476  * we check if there is any point on a hyperplane parallel to the
477  * corresponding hyperplane shifted by at least one (in either direction).
478  */
uset_affine_hull_bounded(struct isl_basic_set * bset)479 static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset)
480 {
481 	struct isl_vec *sample = NULL;
482 	struct isl_basic_set *hull;
483 	struct isl_tab *tab = NULL;
484 	unsigned dim;
485 
486 	if (isl_basic_set_plain_is_empty(bset))
487 		return bset;
488 
489 	dim = isl_basic_set_n_dim(bset);
490 
491 	if (bset->sample && bset->sample->size == 1 + dim) {
492 		int contains = isl_basic_set_contains(bset, bset->sample);
493 		if (contains < 0)
494 			goto error;
495 		if (contains) {
496 			if (dim == 0)
497 				return bset;
498 			sample = isl_vec_copy(bset->sample);
499 		} else {
500 			isl_vec_free(bset->sample);
501 			bset->sample = NULL;
502 		}
503 	}
504 
505 	tab = isl_tab_from_basic_set(bset, 1);
506 	if (!tab)
507 		goto error;
508 	if (tab->empty) {
509 		isl_tab_free(tab);
510 		isl_vec_free(sample);
511 		return isl_basic_set_set_to_empty(bset);
512 	}
513 
514 	if (!sample) {
515 		struct isl_tab_undo *snap;
516 		snap = isl_tab_snap(tab);
517 		sample = isl_tab_sample(tab);
518 		if (isl_tab_rollback(tab, snap) < 0)
519 			goto error;
520 		isl_vec_free(tab->bmap->sample);
521 		tab->bmap->sample = isl_vec_copy(sample);
522 	}
523 
524 	if (!sample)
525 		goto error;
526 	if (sample->size == 0) {
527 		isl_tab_free(tab);
528 		isl_vec_free(sample);
529 		return isl_basic_set_set_to_empty(bset);
530 	}
531 
532 	hull = initialize_hull(bset, sample);
533 
534 	hull = extend_affine_hull(tab, hull, bset);
535 	isl_basic_set_free(bset);
536 	isl_tab_free(tab);
537 
538 	return hull;
539 error:
540 	isl_vec_free(sample);
541 	isl_tab_free(tab);
542 	isl_basic_set_free(bset);
543 	return NULL;
544 }
545 
546 /* Given an unbounded tableau and an integer point satisfying the tableau,
547  * construct an initial affine hull containing the recession cone
548  * shifted to the given point.
549  *
550  * The unbounded directions are taken from the last rows of the basis,
551  * which is assumed to have been initialized appropriately.
552  */
initial_hull(struct isl_tab * tab,__isl_take isl_vec * vec)553 static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
554 	__isl_take isl_vec *vec)
555 {
556 	int i;
557 	int k;
558 	struct isl_basic_set *bset = NULL;
559 	struct isl_ctx *ctx;
560 	unsigned dim;
561 
562 	if (!vec || !tab)
563 		return NULL;
564 	ctx = vec->ctx;
565 	isl_assert(ctx, vec->size != 0, goto error);
566 
567 	bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
568 	if (!bset)
569 		goto error;
570 	dim = isl_basic_set_n_dim(bset) - tab->n_unbounded;
571 	for (i = 0; i < dim; ++i) {
572 		k = isl_basic_set_alloc_equality(bset);
573 		if (k < 0)
574 			goto error;
575 		isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
576 			    vec->size - 1);
577 		isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
578 				      vec->size - 1, &bset->eq[k][0]);
579 		isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
580 	}
581 	bset->sample = vec;
582 	bset = isl_basic_set_gauss(bset, NULL);
583 
584 	return bset;
585 error:
586 	isl_basic_set_free(bset);
587 	isl_vec_free(vec);
588 	return NULL;
589 }
590 
591 /* Given a tableau of a set and a tableau of the corresponding
592  * recession cone, detect and add all equalities to the tableau.
593  * If the tableau is bounded, then we can simply keep the
594  * tableau in its state after the return from extend_affine_hull.
595  * However, if the tableau is unbounded, then
596  * isl_tab_set_initial_basis_with_cone will add some additional
597  * constraints to the tableau that have to be removed again.
598  * In this case, we therefore rollback to the state before
599  * any constraints were added and then add the equalities back in.
600  */
isl_tab_detect_equalities(struct isl_tab * tab,struct isl_tab * tab_cone)601 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
602 	struct isl_tab *tab_cone)
603 {
604 	int j;
605 	struct isl_vec *sample;
606 	struct isl_basic_set *hull = NULL;
607 	struct isl_tab_undo *snap;
608 
609 	if (!tab || !tab_cone)
610 		goto error;
611 
612 	snap = isl_tab_snap(tab);
613 
614 	isl_mat_free(tab->basis);
615 	tab->basis = NULL;
616 
617 	isl_assert(tab->mat->ctx, tab->bmap, goto error);
618 	isl_assert(tab->mat->ctx, tab->samples, goto error);
619 	isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
620 	isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
621 
622 	if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
623 		goto error;
624 
625 	sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
626 	if (!sample)
627 		goto error;
628 
629 	isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
630 
631 	isl_vec_free(tab->bmap->sample);
632 	tab->bmap->sample = isl_vec_copy(sample);
633 
634 	if (tab->n_unbounded == 0)
635 		hull = isl_basic_set_from_vec(isl_vec_copy(sample));
636 	else
637 		hull = initial_hull(tab, isl_vec_copy(sample));
638 
639 	for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
640 		isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
641 		hull = affine_hull(hull,
642 				isl_basic_set_from_vec(isl_vec_copy(sample)));
643 	}
644 
645 	isl_vec_free(sample);
646 
647 	hull = extend_affine_hull(tab, hull, NULL);
648 	if (!hull)
649 		goto error;
650 
651 	if (tab->n_unbounded == 0) {
652 		isl_basic_set_free(hull);
653 		return tab;
654 	}
655 
656 	if (isl_tab_rollback(tab, snap) < 0)
657 		goto error;
658 
659 	if (hull->n_eq > tab->n_zero) {
660 		for (j = 0; j < hull->n_eq; ++j) {
661 			isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
662 			if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
663 				goto error;
664 		}
665 	}
666 
667 	isl_basic_set_free(hull);
668 
669 	return tab;
670 error:
671 	isl_basic_set_free(hull);
672 	isl_tab_free(tab);
673 	return NULL;
674 }
675 
676 /* Compute the affine hull of "bset", where "cone" is the recession cone
677  * of "bset".
678  *
679  * We first compute a unimodular transformation that puts the unbounded
680  * directions in the last dimensions.  In particular, we take a transformation
681  * that maps all equalities to equalities (in HNF) on the first dimensions.
682  * Let x be the original dimensions and y the transformed, with y_1 bounded
683  * and y_2 unbounded.
684  *
685  *	       [ y_1 ]			[ y_1 ]   [ Q_1 ]
686  *	x = U  [ y_2 ]			[ y_2 ] = [ Q_2 ] x
687  *
688  * Let's call the input basic set S.  We compute S' = preimage(S, U)
689  * and drop the final dimensions including any constraints involving them.
690  * This results in set S''.
691  * Then we compute the affine hull A'' of S''.
692  * Let F y_1 >= g be the constraint system of A''.  In the transformed
693  * space the y_2 are unbounded, so we can add them back without any constraints,
694  * resulting in
695  *
696  *		        [ y_1 ]
697  *		[ F 0 ] [ y_2 ] >= g
698  * or
699  *		        [ Q_1 ]
700  *		[ F 0 ] [ Q_2 ] x >= g
701  * or
702  *		F Q_1 x >= g
703  *
704  * The affine hull in the original space is then obtained as
705  * A = preimage(A'', Q_1).
706  */
affine_hull_with_cone(struct isl_basic_set * bset,struct isl_basic_set * cone)707 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
708 	struct isl_basic_set *cone)
709 {
710 	unsigned total;
711 	unsigned cone_dim;
712 	struct isl_basic_set *hull;
713 	struct isl_mat *M, *U, *Q;
714 
715 	if (!bset || !cone)
716 		goto error;
717 
718 	total = isl_basic_set_total_dim(cone);
719 	cone_dim = total - cone->n_eq;
720 
721 	M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
722 	M = isl_mat_left_hermite(M, 0, &U, &Q);
723 	if (!M)
724 		goto error;
725 	isl_mat_free(M);
726 
727 	U = isl_mat_lin_to_aff(U);
728 	bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
729 
730 	bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim,
731 							cone_dim);
732 	bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
733 
734 	Q = isl_mat_lin_to_aff(Q);
735 	Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
736 
737 	if (bset && bset->sample && bset->sample->size == 1 + total)
738 		bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
739 
740 	hull = uset_affine_hull_bounded(bset);
741 
742 	if (!hull) {
743 		isl_mat_free(Q);
744 		isl_mat_free(U);
745 	} else {
746 		struct isl_vec *sample = isl_vec_copy(hull->sample);
747 		U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
748 		if (sample && sample->size > 0)
749 			sample = isl_mat_vec_product(U, sample);
750 		else
751 			isl_mat_free(U);
752 		hull = isl_basic_set_preimage(hull, Q);
753 		if (hull) {
754 			isl_vec_free(hull->sample);
755 			hull->sample = sample;
756 		} else
757 			isl_vec_free(sample);
758 	}
759 
760 	isl_basic_set_free(cone);
761 
762 	return hull;
763 error:
764 	isl_basic_set_free(bset);
765 	isl_basic_set_free(cone);
766 	return NULL;
767 }
768 
769 /* Look for all equalities satisfied by the integer points in bset,
770  * which is assumed not to have any explicit equalities.
771  *
772  * The equalities are obtained by successively looking for
773  * a point that is affinely independent of the points found so far.
774  * In particular, for each equality satisfied by the points so far,
775  * we check if there is any point on a hyperplane parallel to the
776  * corresponding hyperplane shifted by at least one (in either direction).
777  *
778  * Before looking for any outside points, we first compute the recession
779  * cone.  The directions of this recession cone will always be part
780  * of the affine hull, so there is no need for looking for any points
781  * in these directions.
782  * In particular, if the recession cone is full-dimensional, then
783  * the affine hull is simply the whole universe.
784  */
uset_affine_hull(struct isl_basic_set * bset)785 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
786 {
787 	struct isl_basic_set *cone;
788 
789 	if (isl_basic_set_plain_is_empty(bset))
790 		return bset;
791 
792 	cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
793 	if (!cone)
794 		goto error;
795 	if (cone->n_eq == 0) {
796 		isl_space *space;
797 		space = isl_basic_set_get_space(bset);
798 		isl_basic_set_free(cone);
799 		isl_basic_set_free(bset);
800 		return isl_basic_set_universe(space);
801 	}
802 
803 	if (cone->n_eq < isl_basic_set_total_dim(cone))
804 		return affine_hull_with_cone(bset, cone);
805 
806 	isl_basic_set_free(cone);
807 	return uset_affine_hull_bounded(bset);
808 error:
809 	isl_basic_set_free(bset);
810 	return NULL;
811 }
812 
813 /* Look for all equalities satisfied by the integer points in bmap
814  * that are independent of the equalities already explicitly available
815  * in bmap.
816  *
817  * We first remove all equalities already explicitly available,
818  * then look for additional equalities in the reduced space
819  * and then transform the result to the original space.
820  * The original equalities are _not_ added to this set.  This is
821  * the responsibility of the calling function.
822  * The resulting basic set has all meaning about the dimensions removed.
823  * In particular, dimensions that correspond to existential variables
824  * in bmap and that are found to be fixed are not removed.
825  */
equalities_in_underlying_set(struct isl_basic_map * bmap)826 static struct isl_basic_set *equalities_in_underlying_set(
827 						struct isl_basic_map *bmap)
828 {
829 	struct isl_mat *T1 = NULL;
830 	struct isl_mat *T2 = NULL;
831 	struct isl_basic_set *bset = NULL;
832 	struct isl_basic_set *hull = NULL;
833 
834 	bset = isl_basic_map_underlying_set(bmap);
835 	if (!bset)
836 		return NULL;
837 	if (bset->n_eq)
838 		bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
839 	if (!bset)
840 		goto error;
841 
842 	hull = uset_affine_hull(bset);
843 	if (!T2)
844 		return hull;
845 
846 	if (!hull) {
847 		isl_mat_free(T1);
848 		isl_mat_free(T2);
849 	} else {
850 		struct isl_vec *sample = isl_vec_copy(hull->sample);
851 		if (sample && sample->size > 0)
852 			sample = isl_mat_vec_product(T1, sample);
853 		else
854 			isl_mat_free(T1);
855 		hull = isl_basic_set_preimage(hull, T2);
856 		if (hull) {
857 			isl_vec_free(hull->sample);
858 			hull->sample = sample;
859 		} else
860 			isl_vec_free(sample);
861 	}
862 
863 	return hull;
864 error:
865 	isl_mat_free(T1);
866 	isl_mat_free(T2);
867 	isl_basic_set_free(bset);
868 	isl_basic_set_free(hull);
869 	return NULL;
870 }
871 
872 /* Detect and make explicit all equalities satisfied by the (integer)
873  * points in bmap.
874  */
isl_basic_map_detect_equalities(__isl_take isl_basic_map * bmap)875 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
876 	__isl_take isl_basic_map *bmap)
877 {
878 	int i, j;
879 	struct isl_basic_set *hull = NULL;
880 
881 	if (!bmap)
882 		return NULL;
883 	if (bmap->n_ineq == 0)
884 		return bmap;
885 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
886 		return bmap;
887 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
888 		return bmap;
889 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
890 		return isl_basic_map_implicit_equalities(bmap);
891 
892 	hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
893 	if (!hull)
894 		goto error;
895 	if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
896 		isl_basic_set_free(hull);
897 		return isl_basic_map_set_to_empty(bmap);
898 	}
899 	bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), 0,
900 					hull->n_eq, 0);
901 	for (i = 0; i < hull->n_eq; ++i) {
902 		j = isl_basic_map_alloc_equality(bmap);
903 		if (j < 0)
904 			goto error;
905 		isl_seq_cpy(bmap->eq[j], hull->eq[i],
906 				1 + isl_basic_set_total_dim(hull));
907 	}
908 	isl_vec_free(bmap->sample);
909 	bmap->sample = isl_vec_copy(hull->sample);
910 	isl_basic_set_free(hull);
911 	ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
912 	bmap = isl_basic_map_simplify(bmap);
913 	return isl_basic_map_finalize(bmap);
914 error:
915 	isl_basic_set_free(hull);
916 	isl_basic_map_free(bmap);
917 	return NULL;
918 }
919 
isl_basic_set_detect_equalities(__isl_take isl_basic_set * bset)920 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
921 						__isl_take isl_basic_set *bset)
922 {
923 	return bset_from_bmap(
924 		isl_basic_map_detect_equalities(bset_to_bmap(bset)));
925 }
926 
isl_map_detect_equalities(__isl_take isl_map * map)927 __isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map)
928 {
929 	return isl_map_inline_foreach_basic_map(map,
930 					    &isl_basic_map_detect_equalities);
931 }
932 
isl_set_detect_equalities(__isl_take isl_set * set)933 __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
934 {
935 	return set_from_map(isl_map_detect_equalities(set_to_map(set)));
936 }
937 
938 /* Return the superset of "bmap" described by the equalities
939  * satisfied by "bmap" that are already known.
940  */
isl_basic_map_plain_affine_hull(__isl_take isl_basic_map * bmap)941 __isl_give isl_basic_map *isl_basic_map_plain_affine_hull(
942 	__isl_take isl_basic_map *bmap)
943 {
944 	bmap = isl_basic_map_cow(bmap);
945 	if (bmap)
946 		isl_basic_map_free_inequality(bmap, bmap->n_ineq);
947 	bmap = isl_basic_map_finalize(bmap);
948 	return bmap;
949 }
950 
951 /* Return the superset of "bset" described by the equalities
952  * satisfied by "bset" that are already known.
953  */
isl_basic_set_plain_affine_hull(__isl_take isl_basic_set * bset)954 __isl_give isl_basic_set *isl_basic_set_plain_affine_hull(
955 	__isl_take isl_basic_set *bset)
956 {
957 	return isl_basic_map_plain_affine_hull(bset);
958 }
959 
960 /* After computing the rational affine hull (by detecting the implicit
961  * equalities), we compute the additional equalities satisfied by
962  * the integer points (if any) and add the original equalities back in.
963  */
isl_basic_map_affine_hull(__isl_take isl_basic_map * bmap)964 __isl_give isl_basic_map *isl_basic_map_affine_hull(
965 	__isl_take isl_basic_map *bmap)
966 {
967 	bmap = isl_basic_map_detect_equalities(bmap);
968 	bmap = isl_basic_map_plain_affine_hull(bmap);
969 	return bmap;
970 }
971 
isl_basic_set_affine_hull(struct isl_basic_set * bset)972 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
973 {
974 	return bset_from_bmap(isl_basic_map_affine_hull(bset_to_bmap(bset)));
975 }
976 
977 /* Given a rational affine matrix "M", add stride constraints to "bmap"
978  * that ensure that
979  *
980  *		M(x)
981  *
982  * is an integer vector.  The variables x include all the variables
983  * of "bmap" except the unknown divs.
984  *
985  * If d is the common denominator of M, then we need to impose that
986  *
987  *		d M(x) = 0 	mod d
988  *
989  * or
990  *
991  *		exists alpha : d M(x) = d alpha
992  *
993  * This function is similar to add_strides in isl_morph.c
994  */
add_strides(__isl_take isl_basic_map * bmap,__isl_keep isl_mat * M,int n_known)995 static __isl_give isl_basic_map *add_strides(__isl_take isl_basic_map *bmap,
996 	__isl_keep isl_mat *M, int n_known)
997 {
998 	int i, div, k;
999 	isl_int gcd;
1000 
1001 	if (isl_int_is_one(M->row[0][0]))
1002 		return bmap;
1003 
1004 	bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
1005 					M->n_row - 1, M->n_row - 1, 0);
1006 
1007 	isl_int_init(gcd);
1008 	for (i = 1; i < M->n_row; ++i) {
1009 		isl_seq_gcd(M->row[i], M->n_col, &gcd);
1010 		if (isl_int_is_divisible_by(gcd, M->row[0][0]))
1011 			continue;
1012 		div = isl_basic_map_alloc_div(bmap);
1013 		if (div < 0)
1014 			goto error;
1015 		isl_int_set_si(bmap->div[div][0], 0);
1016 		k = isl_basic_map_alloc_equality(bmap);
1017 		if (k < 0)
1018 			goto error;
1019 		isl_seq_cpy(bmap->eq[k], M->row[i], M->n_col);
1020 		isl_seq_clr(bmap->eq[k] + M->n_col, bmap->n_div - n_known);
1021 		isl_int_set(bmap->eq[k][M->n_col - n_known + div],
1022 			    M->row[0][0]);
1023 	}
1024 	isl_int_clear(gcd);
1025 
1026 	return bmap;
1027 error:
1028 	isl_int_clear(gcd);
1029 	isl_basic_map_free(bmap);
1030 	return NULL;
1031 }
1032 
1033 /* If there are any equalities that involve (multiple) unknown divs,
1034  * then extract the stride information encoded by those equalities
1035  * and make it explicitly available in "bmap".
1036  *
1037  * We first sort the divs so that the unknown divs appear last and
1038  * then we count how many equalities involve these divs.
1039  *
1040  * Let these equalities be of the form
1041  *
1042  *		A(x) + B y = 0
1043  *
1044  * where y represents the unknown divs and x the remaining variables.
1045  * Let [H 0] be the Hermite Normal Form of B, i.e.,
1046  *
1047  *		B = [H 0] Q
1048  *
1049  * Then x is a solution of the equalities iff
1050  *
1051  *		H^-1 A(x) (= - [I 0] Q y)
1052  *
1053  * is an integer vector.  Let d be the common denominator of H^-1.
1054  * We impose
1055  *
1056  *		d H^-1 A(x) = d alpha
1057  *
1058  * in add_strides, with alpha fresh existentially quantified variables.
1059  */
isl_basic_map_make_strides_explicit(__isl_take isl_basic_map * bmap)1060 static __isl_give isl_basic_map *isl_basic_map_make_strides_explicit(
1061 	__isl_take isl_basic_map *bmap)
1062 {
1063 	int known;
1064 	int n_known;
1065 	int n, n_col;
1066 	int total;
1067 	isl_ctx *ctx;
1068 	isl_mat *A, *B, *M;
1069 
1070 	known = isl_basic_map_divs_known(bmap);
1071 	if (known < 0)
1072 		return isl_basic_map_free(bmap);
1073 	if (known)
1074 		return bmap;
1075 	bmap = isl_basic_map_sort_divs(bmap);
1076 	bmap = isl_basic_map_gauss(bmap, NULL);
1077 	if (!bmap)
1078 		return NULL;
1079 
1080 	for (n_known = 0; n_known < bmap->n_div; ++n_known)
1081 		if (isl_int_is_zero(bmap->div[n_known][0]))
1082 			break;
1083 	ctx = isl_basic_map_get_ctx(bmap);
1084 	total = isl_space_dim(bmap->dim, isl_dim_all);
1085 	for (n = 0; n < bmap->n_eq; ++n)
1086 		if (isl_seq_first_non_zero(bmap->eq[n] + 1 + total + n_known,
1087 					    bmap->n_div - n_known) == -1)
1088 			break;
1089 	if (n == 0)
1090 		return bmap;
1091 	B = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 0, 1 + total + n_known);
1092 	n_col = bmap->n_div - n_known;
1093 	A = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 1 + total + n_known, n_col);
1094 	A = isl_mat_left_hermite(A, 0, NULL, NULL);
1095 	A = isl_mat_drop_cols(A, n, n_col - n);
1096 	A = isl_mat_lin_to_aff(A);
1097 	A = isl_mat_right_inverse(A);
1098 	B = isl_mat_insert_zero_rows(B, 0, 1);
1099 	B = isl_mat_set_element_si(B, 0, 0, 1);
1100 	M = isl_mat_product(A, B);
1101 	if (!M)
1102 		return isl_basic_map_free(bmap);
1103 	bmap = add_strides(bmap, M, n_known);
1104 	bmap = isl_basic_map_gauss(bmap, NULL);
1105 	isl_mat_free(M);
1106 
1107 	return bmap;
1108 }
1109 
1110 /* Compute the affine hull of each basic map in "map" separately
1111  * and make all stride information explicit so that we can remove
1112  * all unknown divs without losing this information.
1113  * The result is also guaranteed to be gaussed.
1114  *
1115  * In simple cases where a div is determined by an equality,
1116  * calling isl_basic_map_gauss is enough to make the stride information
1117  * explicit, as it will derive an explicit representation for the div
1118  * from the equality.  If, however, the stride information
1119  * is encoded through multiple unknown divs then we need to make
1120  * some extra effort in isl_basic_map_make_strides_explicit.
1121  */
isl_map_local_affine_hull(__isl_take isl_map * map)1122 static __isl_give isl_map *isl_map_local_affine_hull(__isl_take isl_map *map)
1123 {
1124 	int i;
1125 
1126 	map = isl_map_cow(map);
1127 	if (!map)
1128 		return NULL;
1129 
1130 	for (i = 0; i < map->n; ++i) {
1131 		map->p[i] = isl_basic_map_affine_hull(map->p[i]);
1132 		map->p[i] = isl_basic_map_gauss(map->p[i], NULL);
1133 		map->p[i] = isl_basic_map_make_strides_explicit(map->p[i]);
1134 		if (!map->p[i])
1135 			return isl_map_free(map);
1136 	}
1137 
1138 	return map;
1139 }
1140 
isl_set_local_affine_hull(__isl_take isl_set * set)1141 static __isl_give isl_set *isl_set_local_affine_hull(__isl_take isl_set *set)
1142 {
1143 	return isl_map_local_affine_hull(set);
1144 }
1145 
1146 /* Return an empty basic map living in the same space as "map".
1147  */
replace_map_by_empty_basic_map(__isl_take isl_map * map)1148 static __isl_give isl_basic_map *replace_map_by_empty_basic_map(
1149 	__isl_take isl_map *map)
1150 {
1151 	isl_space *space;
1152 
1153 	space = isl_map_get_space(map);
1154 	isl_map_free(map);
1155 	return isl_basic_map_empty(space);
1156 }
1157 
1158 /* Compute the affine hull of "map".
1159  *
1160  * We first compute the affine hull of each basic map separately.
1161  * Then we align the divs and recompute the affine hulls of the basic
1162  * maps since some of them may now have extra divs.
1163  * In order to avoid performing parametric integer programming to
1164  * compute explicit expressions for the divs, possible leading to
1165  * an explosion in the number of basic maps, we first drop all unknown
1166  * divs before aligning the divs.  Note that isl_map_local_affine_hull tries
1167  * to make sure that all stride information is explicitly available
1168  * in terms of known divs.  This involves calling isl_basic_set_gauss,
1169  * which is also needed because affine_hull assumes its input has been gaussed,
1170  * while isl_map_affine_hull may be called on input that has not been gaussed,
1171  * in particular from initial_facet_constraint.
1172  * Similarly, align_divs may reorder some divs so that we need to
1173  * gauss the result again.
1174  * Finally, we combine the individual affine hulls into a single
1175  * affine hull.
1176  */
isl_map_affine_hull(__isl_take isl_map * map)1177 __isl_give isl_basic_map *isl_map_affine_hull(__isl_take isl_map *map)
1178 {
1179 	struct isl_basic_map *model = NULL;
1180 	struct isl_basic_map *hull = NULL;
1181 	struct isl_set *set;
1182 	isl_basic_set *bset;
1183 
1184 	map = isl_map_detect_equalities(map);
1185 	map = isl_map_local_affine_hull(map);
1186 	map = isl_map_remove_empty_parts(map);
1187 	map = isl_map_remove_unknown_divs(map);
1188 	map = isl_map_align_divs_internal(map);
1189 
1190 	if (!map)
1191 		return NULL;
1192 
1193 	if (map->n == 0)
1194 		return replace_map_by_empty_basic_map(map);
1195 
1196 	model = isl_basic_map_copy(map->p[0]);
1197 	set = isl_map_underlying_set(map);
1198 	set = isl_set_cow(set);
1199 	set = isl_set_local_affine_hull(set);
1200 	if (!set)
1201 		goto error;
1202 
1203 	while (set->n > 1)
1204 		set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
1205 
1206 	bset = isl_basic_set_copy(set->p[0]);
1207 	hull = isl_basic_map_overlying_set(bset, model);
1208 	isl_set_free(set);
1209 	hull = isl_basic_map_simplify(hull);
1210 	return isl_basic_map_finalize(hull);
1211 error:
1212 	isl_basic_map_free(model);
1213 	isl_set_free(set);
1214 	return NULL;
1215 }
1216 
isl_set_affine_hull(struct isl_set * set)1217 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
1218 {
1219 	return bset_from_bmap(isl_map_affine_hull(set_to_map(set)));
1220 }
1221