1 /***************************************************************************/
2 /*                                                                         */
3 /*  ftcalc.c                                                               */
4 /*                                                                         */
5 /*    Arithmetic computations (body).                                      */
6 /*                                                                         */
7 /*  Copyright 1996-2006, 2008, 2012-2013 by                                */
8 /*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
9 /*                                                                         */
10 /*  This file is part of the FreeType project, and may only be used,       */
11 /*  modified, and distributed under the terms of the FreeType project      */
12 /*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
13 /*  this file you indicate that you have read the license and              */
14 /*  understand and accept it fully.                                        */
15 /*                                                                         */
16 /***************************************************************************/
17 
18   /*************************************************************************/
19   /*                                                                       */
20   /* Support for 1-complement arithmetic has been totally dropped in this  */
21   /* release.  You can still write your own code if you need it.           */
22   /*                                                                       */
23   /*************************************************************************/
24 
25   /*************************************************************************/
26   /*                                                                       */
27   /* Implementing basic computation routines.                              */
28   /*                                                                       */
29   /* FT_MulDiv(), FT_MulFix(), FT_DivFix(), FT_RoundFix(), FT_CeilFix(),   */
30   /* and FT_FloorFix() are declared in freetype.h.                         */
31   /*                                                                       */
32   /*************************************************************************/
33 
34 
35 #include <ft2build.h>
36 #include FT_GLYPH_H
37 #include FT_TRIGONOMETRY_H
38 #include FT_INTERNAL_CALC_H
39 #include FT_INTERNAL_DEBUG_H
40 #include FT_INTERNAL_OBJECTS_H
41 
42 #ifdef FT_MULFIX_INLINED
43 #undef FT_MulFix
44 #endif
45 
46 /* we need to emulate a 64-bit data type if a real one isn't available */
47 
48 #ifndef FT_LONG64
49 
50   typedef struct  FT_Int64_
51   {
52     FT_UInt32  lo;
53     FT_UInt32  hi;
54 
55   } FT_Int64;
56 
57 #endif /* !FT_LONG64 */
58 
59 
60   /*************************************************************************/
61   /*                                                                       */
62   /* The macro FT_COMPONENT is used in trace mode.  It is an implicit      */
63   /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log  */
64   /* messages during execution.                                            */
65   /*                                                                       */
66 #undef  FT_COMPONENT
67 #define FT_COMPONENT  trace_calc
68 
69 
70   /* The following three functions are available regardless of whether */
71   /* FT_LONG64 is defined.                                             */
72 
73   /* documentation is in freetype.h */
74 
75   FT_EXPORT_DEF( FT_Fixed )
FT_RoundFix(FT_Fixed a)76   FT_RoundFix( FT_Fixed  a )
77   {
78     return ( a >= 0 ) ?   ( a + 0x8000L ) & ~0xFFFFL
79                       : -((-a + 0x8000L ) & ~0xFFFFL );
80   }
81 
82 
83   /* documentation is in freetype.h */
84 
85   FT_EXPORT_DEF( FT_Fixed )
FT_CeilFix(FT_Fixed a)86   FT_CeilFix( FT_Fixed  a )
87   {
88     return ( a >= 0 ) ?   ( a + 0xFFFFL ) & ~0xFFFFL
89                       : -((-a + 0xFFFFL ) & ~0xFFFFL );
90   }
91 
92 
93   /* documentation is in freetype.h */
94 
95   FT_EXPORT_DEF( FT_Fixed )
FT_FloorFix(FT_Fixed a)96   FT_FloorFix( FT_Fixed  a )
97   {
98     return ( a >= 0 ) ?   a & ~0xFFFFL
99                       : -((-a) & ~0xFFFFL );
100   }
101 
102 
103   FT_BASE_DEF ( FT_Int )
FT_MSB(FT_UInt32 z)104   FT_MSB( FT_UInt32 z )
105   {
106     FT_Int shift = 0;
107 
108     /* determine msb bit index in `shift' */
109     if ( z >= ( 1L << 16 ) )
110     {
111       z     >>= 16;
112       shift  += 16;
113     }
114     if ( z >= ( 1L << 8 ) )
115     {
116       z     >>= 8;
117       shift  += 8;
118     }
119     if ( z >= ( 1L << 4 ) )
120     {
121       z     >>= 4;
122       shift  += 4;
123     }
124     if ( z >= ( 1L << 2 ) )
125     {
126       z     >>= 2;
127       shift  += 2;
128     }
129     if ( z >= ( 1L << 1 ) )
130     {
131       z     >>= 1;
132       shift  += 1;
133     }
134 
135     return shift;
136   }
137 
138 
139   /* documentation is in ftcalc.h */
140 
141   FT_BASE_DEF( FT_Fixed )
FT_Hypot(FT_Fixed x,FT_Fixed y)142   FT_Hypot( FT_Fixed  x,
143             FT_Fixed  y )
144   {
145     FT_Vector  v;
146 
147 
148     v.x = x;
149     v.y = y;
150 
151     return FT_Vector_Length( &v );
152   }
153 
154 
155 #ifdef FT_LONG64
156 
157 
158   /* documentation is in freetype.h */
159 
160   FT_EXPORT_DEF( FT_Long )
FT_MulDiv(FT_Long a,FT_Long b,FT_Long c)161   FT_MulDiv( FT_Long  a,
162              FT_Long  b,
163              FT_Long  c )
164   {
165     FT_Int   s;
166     FT_Long  d;
167 
168 
169     s = 1;
170     if ( a < 0 ) { a = -a; s = -1; }
171     if ( b < 0 ) { b = -b; s = -s; }
172     if ( c < 0 ) { c = -c; s = -s; }
173 
174     d = (FT_Long)( c > 0 ? ( (FT_Int64)a * b + ( c >> 1 ) ) / c
175                          : 0x7FFFFFFFL );
176 
177     return ( s > 0 ) ? d : -d;
178   }
179 
180 
181   /* documentation is in ftcalc.h */
182 
183   FT_BASE_DEF( FT_Long )
FT_MulDiv_No_Round(FT_Long a,FT_Long b,FT_Long c)184   FT_MulDiv_No_Round( FT_Long  a,
185                       FT_Long  b,
186                       FT_Long  c )
187   {
188     FT_Int   s;
189     FT_Long  d;
190 
191 
192     s = 1;
193     if ( a < 0 ) { a = -a; s = -1; }
194     if ( b < 0 ) { b = -b; s = -s; }
195     if ( c < 0 ) { c = -c; s = -s; }
196 
197     d = (FT_Long)( c > 0 ? (FT_Int64)a * b / c
198                          : 0x7FFFFFFFL );
199 
200     return ( s > 0 ) ? d : -d;
201   }
202 
203 
204   /* documentation is in freetype.h */
205 
206   FT_EXPORT_DEF( FT_Long )
FT_MulFix(FT_Long a,FT_Long b)207   FT_MulFix( FT_Long  a,
208              FT_Long  b )
209   {
210 #ifdef FT_MULFIX_ASSEMBLER
211 
212     return FT_MULFIX_ASSEMBLER( a, b );
213 
214 #else
215 
216     FT_Int   s = 1;
217     FT_Long  c;
218 
219 
220     if ( a < 0 )
221     {
222       a = -a;
223       s = -1;
224     }
225 
226     if ( b < 0 )
227     {
228       b = -b;
229       s = -s;
230     }
231 
232     c = (FT_Long)( ( (FT_Int64)a * b + 0x8000L ) >> 16 );
233 
234     return ( s > 0 ) ? c : -c;
235 
236 #endif /* FT_MULFIX_ASSEMBLER */
237   }
238 
239 
240   /* documentation is in freetype.h */
241 
242   FT_EXPORT_DEF( FT_Long )
FT_DivFix(FT_Long a,FT_Long b)243   FT_DivFix( FT_Long  a,
244              FT_Long  b )
245   {
246     FT_Int32   s;
247     FT_UInt32  q;
248 
249 
250     s = 1;
251     if ( a < 0 )
252     {
253       a = -a;
254       s = -1;
255     }
256     if ( b < 0 )
257     {
258       b = -b;
259       s = -s;
260     }
261 
262     if ( b == 0 )
263       /* check for division by 0 */
264       q = 0x7FFFFFFFL;
265     else
266       /* compute result directly */
267       q = (FT_UInt32)( ( ( (FT_UInt64)a << 16 ) + ( b >> 1 ) ) / b );
268 
269     return ( s < 0 ? -(FT_Long)q : (FT_Long)q );
270   }
271 
272 
273 #else /* !FT_LONG64 */
274 
275 
276   static void
ft_multo64(FT_UInt32 x,FT_UInt32 y,FT_Int64 * z)277   ft_multo64( FT_UInt32  x,
278               FT_UInt32  y,
279               FT_Int64  *z )
280   {
281     FT_UInt32  lo1, hi1, lo2, hi2, lo, hi, i1, i2;
282 
283 
284     lo1 = x & 0x0000FFFFU;  hi1 = x >> 16;
285     lo2 = y & 0x0000FFFFU;  hi2 = y >> 16;
286 
287     lo = lo1 * lo2;
288     i1 = lo1 * hi2;
289     i2 = lo2 * hi1;
290     hi = hi1 * hi2;
291 
292     /* Check carry overflow of i1 + i2 */
293     i1 += i2;
294     hi += (FT_UInt32)( i1 < i2 ) << 16;
295 
296     hi += i1 >> 16;
297     i1  = i1 << 16;
298 
299     /* Check carry overflow of i1 + lo */
300     lo += i1;
301     hi += ( lo < i1 );
302 
303     z->lo = lo;
304     z->hi = hi;
305   }
306 
307 
308   static FT_UInt32
ft_div64by32(FT_UInt32 hi,FT_UInt32 lo,FT_UInt32 y)309   ft_div64by32( FT_UInt32  hi,
310                 FT_UInt32  lo,
311                 FT_UInt32  y )
312   {
313     FT_UInt32  r, q;
314     FT_Int     i;
315 
316 
317     q = 0;
318     r = hi;
319 
320     if ( r >= y )
321       return (FT_UInt32)0x7FFFFFFFL;
322 
323     i = 32;
324     do
325     {
326       r <<= 1;
327       q <<= 1;
328       r  |= lo >> 31;
329 
330       if ( r >= y )
331       {
332         r -= y;
333         q |= 1;
334       }
335       lo <<= 1;
336     } while ( --i );
337 
338     return q;
339   }
340 
341 
342   static void
FT_Add64(FT_Int64 * x,FT_Int64 * y,FT_Int64 * z)343   FT_Add64( FT_Int64*  x,
344             FT_Int64*  y,
345             FT_Int64  *z )
346   {
347     register FT_UInt32  lo, hi;
348 
349 
350     lo = x->lo + y->lo;
351     hi = x->hi + y->hi + ( lo < x->lo );
352 
353     z->lo = lo;
354     z->hi = hi;
355   }
356 
357 
358   /* documentation is in freetype.h */
359 
360   /* The FT_MulDiv function has been optimized thanks to ideas from      */
361   /* Graham Asher.  The trick is to optimize computation when everything */
362   /* fits within 32-bits (a rather common case).                         */
363   /*                                                                     */
364   /*  we compute 'a*b+c/2', then divide it by 'c'. (positive values)     */
365   /*                                                                     */
366   /*  46340 is FLOOR(SQRT(2^31-1)).                                      */
367   /*                                                                     */
368   /*  if ( a <= 46340 && b <= 46340 ) then ( a*b <= 0x7FFEA810 )         */
369   /*                                                                     */
370   /*  0x7FFFFFFF - 0x7FFEA810 = 0x157F0                                  */
371   /*                                                                     */
372   /*  if ( c < 0x157F0*2 ) then ( a*b+c/2 <= 0x7FFFFFFF )                */
373   /*                                                                     */
374   /*  and 2*0x157F0 = 176096                                             */
375   /*                                                                     */
376 
377   FT_EXPORT_DEF( FT_Long )
FT_MulDiv(FT_Long a,FT_Long b,FT_Long c)378   FT_MulDiv( FT_Long  a,
379              FT_Long  b,
380              FT_Long  c )
381   {
382     long  s;
383 
384 
385     /* XXX: this function does not allow 64-bit arguments */
386     if ( a == 0 || b == c )
387       return a;
388 
389     s  = a; a = FT_ABS( a );
390     s ^= b; b = FT_ABS( b );
391     s ^= c; c = FT_ABS( c );
392 
393     if ( a <= 46340L && b <= 46340L && c <= 176095L && c > 0 )
394       a = ( a * b + ( c >> 1 ) ) / c;
395 
396     else if ( (FT_Int32)c > 0 )
397     {
398       FT_Int64  temp, temp2;
399 
400 
401       ft_multo64( (FT_Int32)a, (FT_Int32)b, &temp );
402 
403       temp2.hi = 0;
404       temp2.lo = (FT_UInt32)(c >> 1);
405       FT_Add64( &temp, &temp2, &temp );
406       a = ft_div64by32( temp.hi, temp.lo, (FT_Int32)c );
407     }
408     else
409       a = 0x7FFFFFFFL;
410 
411     return ( s < 0 ? -a : a );
412   }
413 
414 
415   FT_BASE_DEF( FT_Long )
FT_MulDiv_No_Round(FT_Long a,FT_Long b,FT_Long c)416   FT_MulDiv_No_Round( FT_Long  a,
417                       FT_Long  b,
418                       FT_Long  c )
419   {
420     long  s;
421 
422 
423     if ( a == 0 || b == c )
424       return a;
425 
426     s  = a; a = FT_ABS( a );
427     s ^= b; b = FT_ABS( b );
428     s ^= c; c = FT_ABS( c );
429 
430     if ( a <= 46340L && b <= 46340L && c > 0 )
431       a = a * b / c;
432 
433     else if ( (FT_Int32)c > 0 )
434     {
435       FT_Int64  temp;
436 
437 
438       ft_multo64( (FT_Int32)a, (FT_Int32)b, &temp );
439       a = ft_div64by32( temp.hi, temp.lo, (FT_Int32)c );
440     }
441     else
442       a = 0x7FFFFFFFL;
443 
444     return ( s < 0 ? -a : a );
445   }
446 
447 
448   /* documentation is in freetype.h */
449 
450   FT_EXPORT_DEF( FT_Long )
FT_MulFix(FT_Long a,FT_Long b)451   FT_MulFix( FT_Long  a,
452              FT_Long  b )
453   {
454 #ifdef FT_MULFIX_ASSEMBLER
455 
456     return FT_MULFIX_ASSEMBLER( a, b );
457 
458 #elif 0
459 
460     /*
461      *  This code is nonportable.  See comment below.
462      *
463      *  However, on a platform where right-shift of a signed quantity fills
464      *  the leftmost bits by copying the sign bit, it might be faster.
465      */
466 
467     FT_Long   sa, sb;
468     FT_ULong  ua, ub;
469 
470 
471     if ( a == 0 || b == 0x10000L )
472       return a;
473 
474     /*
475      *  This is a clever way of converting a signed number `a' into its
476      *  absolute value (stored back into `a') and its sign.  The sign is
477      *  stored in `sa'; 0 means `a' was positive or zero, and -1 means `a'
478      *  was negative.  (Similarly for `b' and `sb').
479      *
480      *  Unfortunately, it doesn't work (at least not portably).
481      *
482      *  It makes the assumption that right-shift on a negative signed value
483      *  fills the leftmost bits by copying the sign bit.  This is wrong.
484      *  According to K&R 2nd ed, section `A7.8 Shift Operators' on page 206,
485      *  the result of right-shift of a negative signed value is
486      *  implementation-defined.  At least one implementation fills the
487      *  leftmost bits with 0s (i.e., it is exactly the same as an unsigned
488      *  right shift).  This means that when `a' is negative, `sa' ends up
489      *  with the value 1 rather than -1.  After that, everything else goes
490      *  wrong.
491      */
492     sa = ( a >> ( sizeof ( a ) * 8 - 1 ) );
493     a  = ( a ^ sa ) - sa;
494     sb = ( b >> ( sizeof ( b ) * 8 - 1 ) );
495     b  = ( b ^ sb ) - sb;
496 
497     ua = (FT_ULong)a;
498     ub = (FT_ULong)b;
499 
500     if ( ua <= 2048 && ub <= 1048576L )
501       ua = ( ua * ub + 0x8000U ) >> 16;
502     else
503     {
504       FT_ULong  al = ua & 0xFFFFU;
505 
506 
507       ua = ( ua >> 16 ) * ub +  al * ( ub >> 16 ) +
508            ( ( al * ( ub & 0xFFFFU ) + 0x8000U ) >> 16 );
509     }
510 
511     sa ^= sb,
512     ua  = (FT_ULong)(( ua ^ sa ) - sa);
513 
514     return (FT_Long)ua;
515 
516 #else /* 0 */
517 
518     FT_Long   s;
519     FT_ULong  ua, ub;
520 
521 
522     if ( a == 0 || b == 0x10000L )
523       return a;
524 
525     s  = a; a = FT_ABS( a );
526     s ^= b; b = FT_ABS( b );
527 
528     ua = (FT_ULong)a;
529     ub = (FT_ULong)b;
530 
531     if ( ua <= 2048 && ub <= 1048576L )
532       ua = ( ua * ub + 0x8000UL ) >> 16;
533     else
534     {
535       FT_ULong  al = ua & 0xFFFFUL;
536 
537 
538       ua = ( ua >> 16 ) * ub +  al * ( ub >> 16 ) +
539            ( ( al * ( ub & 0xFFFFUL ) + 0x8000UL ) >> 16 );
540     }
541 
542     return ( s < 0 ? -(FT_Long)ua : (FT_Long)ua );
543 
544 #endif /* 0 */
545 
546   }
547 
548 
549   /* documentation is in freetype.h */
550 
551   FT_EXPORT_DEF( FT_Long )
FT_DivFix(FT_Long a,FT_Long b)552   FT_DivFix( FT_Long  a,
553              FT_Long  b )
554   {
555     FT_Int32   s;
556     FT_UInt32  q;
557 
558 
559     /* XXX: this function does not allow 64-bit arguments */
560     s  = (FT_Int32)a; a = FT_ABS( a );
561     s ^= (FT_Int32)b; b = FT_ABS( b );
562 
563     if ( (FT_UInt32)b == 0 )
564     {
565       /* check for division by 0 */
566       q = (FT_UInt32)0x7FFFFFFFL;
567     }
568     else if ( ( a >> 16 ) == 0 )
569     {
570       /* compute result directly */
571       q = (FT_UInt32)( ( (FT_ULong)a << 16 ) + ( b >> 1 ) ) / (FT_UInt32)b;
572     }
573     else
574     {
575       /* we need more bits; we have to do it by hand */
576       FT_Int64  temp, temp2;
577 
578 
579       temp.hi  = (FT_Int32)( a >> 16 );
580       temp.lo  = (FT_UInt32)a << 16;
581       temp2.hi = 0;
582       temp2.lo = (FT_UInt32)( b >> 1 );
583       FT_Add64( &temp, &temp2, &temp );
584       q = ft_div64by32( temp.hi, temp.lo, (FT_Int32)b );
585     }
586 
587     return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
588   }
589 
590 
591 #if 0
592 
593   /* documentation is in ftcalc.h */
594 
595   FT_EXPORT_DEF( void )
596   FT_MulTo64( FT_Int32   x,
597               FT_Int32   y,
598               FT_Int64  *z )
599   {
600     FT_Int32  s;
601 
602 
603     s  = x; x = FT_ABS( x );
604     s ^= y; y = FT_ABS( y );
605 
606     ft_multo64( x, y, z );
607 
608     if ( s < 0 )
609     {
610       z->lo = (FT_UInt32)-(FT_Int32)z->lo;
611       z->hi = ~z->hi + !( z->lo );
612     }
613   }
614 
615 
616   /* apparently, the second version of this code is not compiled correctly */
617   /* on Mac machines with the MPW C compiler..  tsk, tsk, tsk...           */
618 
619 #if 1
620 
621   FT_EXPORT_DEF( FT_Int32 )
622   FT_Div64by32( FT_Int64*  x,
623                 FT_Int32   y )
624   {
625     FT_Int32   s;
626     FT_UInt32  q, r, i, lo;
627 
628 
629     s  = x->hi;
630     if ( s < 0 )
631     {
632       x->lo = (FT_UInt32)-(FT_Int32)x->lo;
633       x->hi = ~x->hi + !x->lo;
634     }
635     s ^= y;  y = FT_ABS( y );
636 
637     /* Shortcut */
638     if ( x->hi == 0 )
639     {
640       if ( y > 0 )
641         q = x->lo / y;
642       else
643         q = 0x7FFFFFFFL;
644 
645       return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
646     }
647 
648     r  = x->hi;
649     lo = x->lo;
650 
651     if ( r >= (FT_UInt32)y ) /* we know y is to be treated as unsigned here */
652       return ( s < 0 ? 0x80000001UL : 0x7FFFFFFFUL );
653                              /* Return Max/Min Int32 if division overflow. */
654                              /* This includes division by zero!            */
655     q = 0;
656     for ( i = 0; i < 32; i++ )
657     {
658       r <<= 1;
659       q <<= 1;
660       r  |= lo >> 31;
661 
662       if ( r >= (FT_UInt32)y )
663       {
664         r -= y;
665         q |= 1;
666       }
667       lo <<= 1;
668     }
669 
670     return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
671   }
672 
673 #else /* 0 */
674 
675   FT_EXPORT_DEF( FT_Int32 )
676   FT_Div64by32( FT_Int64*  x,
677                 FT_Int32   y )
678   {
679     FT_Int32   s;
680     FT_UInt32  q;
681 
682 
683     s  = x->hi;
684     if ( s < 0 )
685     {
686       x->lo = (FT_UInt32)-(FT_Int32)x->lo;
687       x->hi = ~x->hi + !x->lo;
688     }
689     s ^= y;  y = FT_ABS( y );
690 
691     /* Shortcut */
692     if ( x->hi == 0 )
693     {
694       if ( y > 0 )
695         q = ( x->lo + ( y >> 1 ) ) / y;
696       else
697         q = 0x7FFFFFFFL;
698 
699       return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
700     }
701 
702     q = ft_div64by32( x->hi, x->lo, y );
703 
704     return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
705   }
706 
707 #endif /* 0 */
708 
709 #endif /* 0 */
710 
711 
712 #endif /* FT_LONG64 */
713 
714 
715   /* documentation is in ftglyph.h */
716 
717   FT_EXPORT_DEF( void )
FT_Matrix_Multiply(const FT_Matrix * a,FT_Matrix * b)718   FT_Matrix_Multiply( const FT_Matrix*  a,
719                       FT_Matrix        *b )
720   {
721     FT_Fixed  xx, xy, yx, yy;
722 
723 
724     if ( !a || !b )
725       return;
726 
727     xx = FT_MulFix( a->xx, b->xx ) + FT_MulFix( a->xy, b->yx );
728     xy = FT_MulFix( a->xx, b->xy ) + FT_MulFix( a->xy, b->yy );
729     yx = FT_MulFix( a->yx, b->xx ) + FT_MulFix( a->yy, b->yx );
730     yy = FT_MulFix( a->yx, b->xy ) + FT_MulFix( a->yy, b->yy );
731 
732     b->xx = xx;  b->xy = xy;
733     b->yx = yx;  b->yy = yy;
734   }
735 
736 
737   /* documentation is in ftglyph.h */
738 
739   FT_EXPORT_DEF( FT_Error )
FT_Matrix_Invert(FT_Matrix * matrix)740   FT_Matrix_Invert( FT_Matrix*  matrix )
741   {
742     FT_Pos  delta, xx, yy;
743 
744 
745     if ( !matrix )
746       return FT_THROW( Invalid_Argument );
747 
748     /* compute discriminant */
749     delta = FT_MulFix( matrix->xx, matrix->yy ) -
750             FT_MulFix( matrix->xy, matrix->yx );
751 
752     if ( !delta )
753       return FT_THROW( Invalid_Argument );  /* matrix can't be inverted */
754 
755     matrix->xy = - FT_DivFix( matrix->xy, delta );
756     matrix->yx = - FT_DivFix( matrix->yx, delta );
757 
758     xx = matrix->xx;
759     yy = matrix->yy;
760 
761     matrix->xx = FT_DivFix( yy, delta );
762     matrix->yy = FT_DivFix( xx, delta );
763 
764     return FT_Err_Ok;
765   }
766 
767 
768   /* documentation is in ftcalc.h */
769 
770   FT_BASE_DEF( void )
FT_Matrix_Multiply_Scaled(const FT_Matrix * a,FT_Matrix * b,FT_Long scaling)771   FT_Matrix_Multiply_Scaled( const FT_Matrix*  a,
772                              FT_Matrix        *b,
773                              FT_Long           scaling )
774   {
775     FT_Fixed  xx, xy, yx, yy;
776 
777     FT_Long   val = 0x10000L * scaling;
778 
779 
780     if ( !a || !b )
781       return;
782 
783     xx = FT_MulDiv( a->xx, b->xx, val ) + FT_MulDiv( a->xy, b->yx, val );
784     xy = FT_MulDiv( a->xx, b->xy, val ) + FT_MulDiv( a->xy, b->yy, val );
785     yx = FT_MulDiv( a->yx, b->xx, val ) + FT_MulDiv( a->yy, b->yx, val );
786     yy = FT_MulDiv( a->yx, b->xy, val ) + FT_MulDiv( a->yy, b->yy, val );
787 
788     b->xx = xx;  b->xy = xy;
789     b->yx = yx;  b->yy = yy;
790   }
791 
792 
793   /* documentation is in ftcalc.h */
794 
795   FT_BASE_DEF( void )
FT_Vector_Transform_Scaled(FT_Vector * vector,const FT_Matrix * matrix,FT_Long scaling)796   FT_Vector_Transform_Scaled( FT_Vector*        vector,
797                               const FT_Matrix*  matrix,
798                               FT_Long           scaling )
799   {
800     FT_Pos   xz, yz;
801 
802     FT_Long  val = 0x10000L * scaling;
803 
804 
805     if ( !vector || !matrix )
806       return;
807 
808     xz = FT_MulDiv( vector->x, matrix->xx, val ) +
809          FT_MulDiv( vector->y, matrix->xy, val );
810 
811     yz = FT_MulDiv( vector->x, matrix->yx, val ) +
812          FT_MulDiv( vector->y, matrix->yy, val );
813 
814     vector->x = xz;
815     vector->y = yz;
816   }
817 
818 
819 #if 0
820 
821   /* documentation is in ftcalc.h */
822 
823   FT_BASE_DEF( FT_Int32 )
824   FT_SqrtFixed( FT_Int32  x )
825   {
826     FT_UInt32  root, rem_hi, rem_lo, test_div;
827     FT_Int     count;
828 
829 
830     root = 0;
831 
832     if ( x > 0 )
833     {
834       rem_hi = 0;
835       rem_lo = x;
836       count  = 24;
837       do
838       {
839         rem_hi   = ( rem_hi << 2 ) | ( rem_lo >> 30 );
840         rem_lo <<= 2;
841         root   <<= 1;
842         test_div = ( root << 1 ) + 1;
843 
844         if ( rem_hi >= test_div )
845         {
846           rem_hi -= test_div;
847           root   += 1;
848         }
849       } while ( --count );
850     }
851 
852     return (FT_Int32)root;
853   }
854 
855 #endif /* 0 */
856 
857 
858   /* documentation is in ftcalc.h */
859 
860   FT_BASE_DEF( FT_Int )
ft_corner_orientation(FT_Pos in_x,FT_Pos in_y,FT_Pos out_x,FT_Pos out_y)861   ft_corner_orientation( FT_Pos  in_x,
862                          FT_Pos  in_y,
863                          FT_Pos  out_x,
864                          FT_Pos  out_y )
865   {
866     FT_Long  result; /* avoid overflow on 16-bit system */
867 
868 
869     /* deal with the trivial cases quickly */
870     if ( in_y == 0 )
871     {
872       if ( in_x >= 0 )
873         result = out_y;
874       else
875         result = -out_y;
876     }
877     else if ( in_x == 0 )
878     {
879       if ( in_y >= 0 )
880         result = -out_x;
881       else
882         result = out_x;
883     }
884     else if ( out_y == 0 )
885     {
886       if ( out_x >= 0 )
887         result = in_y;
888       else
889         result = -in_y;
890     }
891     else if ( out_x == 0 )
892     {
893       if ( out_y >= 0 )
894         result = -in_x;
895       else
896         result =  in_x;
897     }
898     else /* general case */
899     {
900 #ifdef FT_LONG64
901 
902       FT_Int64  delta = (FT_Int64)in_x * out_y - (FT_Int64)in_y * out_x;
903 
904 
905       if ( delta == 0 )
906         result = 0;
907       else
908         result = 1 - 2 * ( delta < 0 );
909 
910 #else
911 
912       FT_Int64  z1, z2;
913 
914 
915       /* XXX: this function does not allow 64-bit arguments */
916       ft_multo64( (FT_Int32)in_x, (FT_Int32)out_y, &z1 );
917       ft_multo64( (FT_Int32)in_y, (FT_Int32)out_x, &z2 );
918 
919       if ( z1.hi > z2.hi )
920         result = +1;
921       else if ( z1.hi < z2.hi )
922         result = -1;
923       else if ( z1.lo > z2.lo )
924         result = +1;
925       else if ( z1.lo < z2.lo )
926         result = -1;
927       else
928         result = 0;
929 
930 #endif
931     }
932 
933     /* XXX: only the sign of return value, +1/0/-1 must be used */
934     return (FT_Int)result;
935   }
936 
937 
938   /* documentation is in ftcalc.h */
939 
940   FT_BASE_DEF( FT_Int )
ft_corner_is_flat(FT_Pos in_x,FT_Pos in_y,FT_Pos out_x,FT_Pos out_y)941   ft_corner_is_flat( FT_Pos  in_x,
942                      FT_Pos  in_y,
943                      FT_Pos  out_x,
944                      FT_Pos  out_y )
945   {
946     FT_Pos  ax = in_x;
947     FT_Pos  ay = in_y;
948 
949     FT_Pos  d_in, d_out, d_corner;
950 
951 
952     /* We approximate the Euclidean metric (sqrt(x^2 + y^2)) with */
953     /* the Taxicab metric (|x| + |y|), which can be computed much */
954     /* faster.  If one of the two vectors is much longer than the */
955     /* other one, the direction of the shorter vector doesn't     */
956     /* influence the result any more.                             */
957     /*                                                            */
958     /*                 corner                                     */
959     /*       x---------------------------x                        */
960     /*        \                      /                            */
961     /*         \                /                                 */
962     /*      in  \          /  out                                 */
963     /*           \    /                                           */
964     /*            o                                               */
965     /*              Point                                         */
966     /*                                                            */
967 
968     if ( ax < 0 )
969       ax = -ax;
970     if ( ay < 0 )
971       ay = -ay;
972     d_in = ax + ay;  /* d_in = || in || */
973 
974     ax = out_x;
975     if ( ax < 0 )
976       ax = -ax;
977     ay = out_y;
978     if ( ay < 0 )
979       ay = -ay;
980     d_out = ax + ay;  /* d_out = || out || */
981 
982     ax = out_x + in_x;
983     if ( ax < 0 )
984       ax = -ax;
985     ay = out_y + in_y;
986     if ( ay < 0 )
987       ay = -ay;
988     d_corner = ax + ay;  /* d_corner = || in + out || */
989 
990     /* now do a simple length comparison: */
991     /*                                    */
992     /*   d_in + d_out < 17/16 d_corner    */
993 
994     return ( d_in + d_out - d_corner ) < ( d_corner >> 4 );
995   }
996 
997 
998 /* END */
999