1 /*
2 * Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
3 *
4 * This software is provided 'as-is', without any express or implied
5 * warranty.  In no event will the authors be held liable for any damages
6 * arising from the use of this software.
7 * Permission is granted to anyone to use this software for any purpose,
8 * including commercial applications, and to alter it and redistribute it
9 * freely, subject to the following restrictions:
10 * 1. The origin of this software must not be misrepresented; you must not
11 * claim that you wrote the original software. If you use this software
12 * in a product, an acknowledgment in the product documentation would be
13 * appreciated but is not required.
14 * 2. Altered source versions must be plainly marked as such, and must not be
15 * misrepresented as being the original software.
16 * 3. This notice may not be removed or altered from any source distribution.
17 */
18 
19 #include "b2FrictionJoint.h"
20 #include "b2Body.h"
21 #include "b2TimeStep.h"
22 
23 // Point-to-point constraint
24 // Cdot = v2 - v1
25 //      = v2 + cross(w2, r2) - v1 - cross(w1, r1)
26 // J = [-I -r1_skew I r2_skew ]
27 // Identity used:
28 // w k % (rx i + ry j) = w * (-ry i + rx j)
29 
30 // Angle constraint
31 // Cdot = w2 - w1
32 // J = [0 0 -1 0 0 1]
33 // K = invI1 + invI2
34 
Initialize(b2Body * bA,b2Body * bB,const b2Vec2 & anchor)35 void b2FrictionJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor)
36 {
37 	bodyA = bA;
38 	bodyB = bB;
39 	localAnchorA = bodyA->GetLocalPoint(anchor);
40 	localAnchorB = bodyB->GetLocalPoint(anchor);
41 }
42 
b2FrictionJoint(const b2FrictionJointDef * def)43 b2FrictionJoint::b2FrictionJoint(const b2FrictionJointDef* def)
44 : b2Joint(def)
45 {
46 	m_localAnchorA = def->localAnchorA;
47 	m_localAnchorB = def->localAnchorB;
48 
49 	m_linearImpulse.SetZero();
50 	m_angularImpulse = 0.0f;
51 
52 	m_maxForce = def->maxForce;
53 	m_maxTorque = def->maxTorque;
54 }
55 
InitVelocityConstraints(const b2TimeStep & step)56 void b2FrictionJoint::InitVelocityConstraints(const b2TimeStep& step)
57 {
58 	b2Body* bA = m_bodyA;
59 	b2Body* bB = m_bodyB;
60 
61 	// Compute the effective mass matrix.
62 	b2Vec2 rA = b2Mul(bA->GetTransform().R, m_localAnchorA - bA->GetLocalCenter());
63 	b2Vec2 rB = b2Mul(bB->GetTransform().R, m_localAnchorB - bB->GetLocalCenter());
64 
65 	// J = [-I -r1_skew I r2_skew]
66 	//     [ 0       -1 0       1]
67 	// r_skew = [-ry; rx]
68 
69 	// Matlab
70 	// K = [ mA+r1y^2*iA+mB+r2y^2*iB,  -r1y*iA*r1x-r2y*iB*r2x,          -r1y*iA-r2y*iB]
71 	//     [  -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB,           r1x*iA+r2x*iB]
72 	//     [          -r1y*iA-r2y*iB,           r1x*iA+r2x*iB,                   iA+iB]
73 
74 	float32 mA = bA->m_invMass, mB = bB->m_invMass;
75 	float32 iA = bA->m_invI, iB = bB->m_invI;
76 
77 	b2Mat22 K1;
78 	K1.col1.x = mA + mB;	K1.col2.x = 0.0f;
79 	K1.col1.y = 0.0f;		K1.col2.y = mA + mB;
80 
81 	b2Mat22 K2;
82 	K2.col1.x =  iA * rA.y * rA.y;	K2.col2.x = -iA * rA.x * rA.y;
83 	K2.col1.y = -iA * rA.x * rA.y;	K2.col2.y =  iA * rA.x * rA.x;
84 
85 	b2Mat22 K3;
86 	K3.col1.x =  iB * rB.y * rB.y;	K3.col2.x = -iB * rB.x * rB.y;
87 	K3.col1.y = -iB * rB.x * rB.y;	K3.col2.y =  iB * rB.x * rB.x;
88 
89 	b2Mat22 K = K1 + K2 + K3;
90 	m_linearMass = K.GetInverse();
91 
92 	m_angularMass = iA + iB;
93 	if (m_angularMass > 0.0f)
94 	{
95 		m_angularMass = 1.0f / m_angularMass;
96 	}
97 
98 	if (step.warmStarting)
99 	{
100 		// Scale impulses to support a variable time step.
101 		m_linearImpulse *= step.dtRatio;
102 		m_angularImpulse *= step.dtRatio;
103 
104 		b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y);
105 
106 		bA->m_linearVelocity -= mA * P;
107 		bA->m_angularVelocity -= iA * (b2Cross(rA, P) + m_angularImpulse);
108 
109 		bB->m_linearVelocity += mB * P;
110 		bB->m_angularVelocity += iB * (b2Cross(rB, P) + m_angularImpulse);
111 	}
112 	else
113 	{
114 		m_linearImpulse.SetZero();
115 		m_angularImpulse = 0.0f;
116 	}
117 }
118 
SolveVelocityConstraints(const b2TimeStep & step)119 void b2FrictionJoint::SolveVelocityConstraints(const b2TimeStep& step)
120 {
121 	B2_NOT_USED(step);
122 
123 	b2Body* bA = m_bodyA;
124 	b2Body* bB = m_bodyB;
125 
126 	b2Vec2 vA = bA->m_linearVelocity;
127 	float32 wA = bA->m_angularVelocity;
128 	b2Vec2 vB = bB->m_linearVelocity;
129 	float32 wB = bB->m_angularVelocity;
130 
131 	float32 mA = bA->m_invMass, mB = bB->m_invMass;
132 	float32 iA = bA->m_invI, iB = bB->m_invI;
133 
134 	b2Vec2 rA = b2Mul(bA->GetTransform().R, m_localAnchorA - bA->GetLocalCenter());
135 	b2Vec2 rB = b2Mul(bB->GetTransform().R, m_localAnchorB - bB->GetLocalCenter());
136 
137 	// Solve angular friction
138 	{
139 		float32 Cdot = wB - wA;
140 		float32 impulse = -m_angularMass * Cdot;
141 
142 		float32 oldImpulse = m_angularImpulse;
143 		float32 maxImpulse = step.dt * m_maxTorque;
144 		m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse);
145 		impulse = m_angularImpulse - oldImpulse;
146 
147 		wA -= iA * impulse;
148 		wB += iB * impulse;
149 	}
150 
151 	// Solve linear friction
152 	{
153 		b2Vec2 Cdot = vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA);
154 
155 		b2Vec2 impulse = -b2Mul(m_linearMass, Cdot);
156 		b2Vec2 oldImpulse = m_linearImpulse;
157 		m_linearImpulse += impulse;
158 
159 		float32 maxImpulse = step.dt * m_maxForce;
160 
161 		if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse)
162 		{
163 			m_linearImpulse.Normalize();
164 			m_linearImpulse *= maxImpulse;
165 		}
166 
167 		impulse = m_linearImpulse - oldImpulse;
168 
169 		vA -= mA * impulse;
170 		wA -= iA * b2Cross(rA, impulse);
171 
172 		vB += mB * impulse;
173 		wB += iB * b2Cross(rB, impulse);
174 	}
175 
176 	bA->m_linearVelocity = vA;
177 	bA->m_angularVelocity = wA;
178 	bB->m_linearVelocity = vB;
179 	bB->m_angularVelocity = wB;
180 }
181 
SolvePositionConstraints(float32 baumgarte)182 bool b2FrictionJoint::SolvePositionConstraints(float32 baumgarte)
183 {
184 	B2_NOT_USED(baumgarte);
185 
186 	return true;
187 }
188 
GetAnchorA() const189 b2Vec2 b2FrictionJoint::GetAnchorA() const
190 {
191 	return m_bodyA->GetWorldPoint(m_localAnchorA);
192 }
193 
GetAnchorB() const194 b2Vec2 b2FrictionJoint::GetAnchorB() const
195 {
196 	return m_bodyB->GetWorldPoint(m_localAnchorB);
197 }
198 
GetReactionForce(float32 inv_dt) const199 b2Vec2 b2FrictionJoint::GetReactionForce(float32 inv_dt) const
200 {
201 	return inv_dt * m_linearImpulse;
202 }
203 
GetReactionTorque(float32 inv_dt) const204 float32 b2FrictionJoint::GetReactionTorque(float32 inv_dt) const
205 {
206 	return inv_dt * m_angularImpulse;
207 }
208 
SetMaxForce(float32 force)209 void b2FrictionJoint::SetMaxForce(float32 force)
210 {
211 	b2Assert(b2IsValid(force) && force >= 0.0f);
212 	m_maxForce = force;
213 }
214 
GetMaxForce() const215 float32 b2FrictionJoint::GetMaxForce() const
216 {
217 	return m_maxForce;
218 }
219 
SetMaxTorque(float32 torque)220 void b2FrictionJoint::SetMaxTorque(float32 torque)
221 {
222 	b2Assert(b2IsValid(torque) && torque >= 0.0f);
223 	m_maxTorque = torque;
224 }
225 
GetMaxTorque() const226 float32 b2FrictionJoint::GetMaxTorque() const
227 {
228 	return m_maxTorque;
229 }
230