1 /*
2  * This code implements the MD5 message-digest algorithm.
3  * The algorithm is due to Ron Rivest.  This code was
4  * written by Colin Plumb in 1993, no copyright is claimed.
5  * This code is in the public domain; do with it what you wish.
6  *
7  * Equivalent code is available from RSA Data Security, Inc.
8  * This code has been tested against that, and is equivalent,
9  * except that you don't need to include two pages of legalese
10  * with every copy.
11  *
12  * To compute the message digest of a chunk of bytes, declare an
13  * MD5Context structure, pass it to MD5Init, call MD5Update as
14  * needed on buffers full of bytes, and then call MD5Final, which
15  * will fill a supplied 16-byte array with the digest.
16  */
17 #include <string.h>		/* for memcpy() */
18 
19 #include "md5.h"
20 
21 #if !defined(WORDS_BIGENDIAN)
22 # define byteReverse(buf, len)	/* Nothing */
23 #else
24 static void byteReverse(unsigned char *buf, unsigned longs);
25 
26 #ifndef ASM_MD5
27 /*
28  * Note: this code is harmless on little-endian machines.
29  */
byteReverse(unsigned char * buf,unsigned longs)30 static void byteReverse(unsigned char *buf, unsigned longs)
31 {
32     uint32_t t;
33     do {
34 	t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
35 	    ((unsigned) buf[1] << 8 | buf[0]);
36 	*(uint32_t *) buf = t;
37 	buf += 4;
38     } while (--longs);
39 }
40 #endif /* !ASM_MD5 */
41 #endif /* !WORDS_BIGENDIAN */
42 
43 /*
44  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
45  * initialization constants.
46  */
ul_MD5Init(struct UL_MD5Context * ctx)47 void ul_MD5Init(struct UL_MD5Context *ctx)
48 {
49     ctx->buf[0] = 0x67452301;
50     ctx->buf[1] = 0xefcdab89;
51     ctx->buf[2] = 0x98badcfe;
52     ctx->buf[3] = 0x10325476;
53 
54     ctx->bits[0] = 0;
55     ctx->bits[1] = 0;
56 }
57 
58 /*
59  * Update context to reflect the concatenation of another buffer full
60  * of bytes.
61  */
ul_MD5Update(struct UL_MD5Context * ctx,unsigned char const * buf,unsigned len)62 void ul_MD5Update(struct UL_MD5Context *ctx, unsigned char const *buf, unsigned len)
63 {
64     uint32_t t;
65 
66     /* Update bitcount */
67 
68     t = ctx->bits[0];
69     if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)
70 	ctx->bits[1]++;		/* Carry from low to high */
71     ctx->bits[1] += len >> 29;
72 
73     t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
74 
75     /* Handle any leading odd-sized chunks */
76 
77     if (t) {
78 	unsigned char *p = (unsigned char *) ctx->in + t;
79 
80 	t = 64 - t;
81 	if (len < t) {
82 	    memcpy(p, buf, len);
83 	    return;
84 	}
85 	memcpy(p, buf, t);
86 	byteReverse(ctx->in, 16);
87 	ul_MD5Transform(ctx->buf, (uint32_t *) ctx->in);
88 	buf += t;
89 	len -= t;
90     }
91     /* Process data in 64-byte chunks */
92 
93     while (len >= 64) {
94 	memcpy(ctx->in, buf, 64);
95 	byteReverse(ctx->in, 16);
96 	ul_MD5Transform(ctx->buf, (uint32_t *) ctx->in);
97 	buf += 64;
98 	len -= 64;
99     }
100 
101     /* Handle any remaining bytes of data. */
102 
103     memcpy(ctx->in, buf, len);
104 }
105 
106 /*
107  * Final wrapup - pad to 64-byte boundary with the bit pattern
108  * 1 0* (64-bit count of bits processed, MSB-first)
109  */
ul_MD5Final(unsigned char digest[UL_MD5LENGTH],struct UL_MD5Context * ctx)110 void ul_MD5Final(unsigned char digest[UL_MD5LENGTH], struct UL_MD5Context *ctx)
111 {
112     unsigned count;
113     unsigned char *p;
114 
115     /* Compute number of bytes mod 64 */
116     count = (ctx->bits[0] >> 3) & 0x3F;
117 
118     /* Set the first char of padding to 0x80.  This is safe since there is
119        always at least one byte free */
120     p = ctx->in + count;
121     *p++ = 0x80;
122 
123     /* Bytes of padding needed to make 64 bytes */
124     count = 64 - 1 - count;
125 
126     /* Pad out to 56 mod 64 */
127     if (count < 8) {
128 	/* Two lots of padding:  Pad the first block to 64 bytes */
129 	memset(p, 0, count);
130 	byteReverse(ctx->in, 16);
131 	ul_MD5Transform(ctx->buf, (uint32_t *) ctx->in);
132 
133 	/* Now fill the next block with 56 bytes */
134 	memset(ctx->in, 0, 56);
135     } else {
136 	/* Pad block to 56 bytes */
137 	memset(p, 0, count - 8);
138     }
139     byteReverse(ctx->in, 14);
140 
141     /* Append length in bits and transform.
142      * Use memcpy to avoid aliasing problems.  On most systems,
143      * this will be optimized away to the same code.
144      */
145     memcpy(&ctx->in[14 * sizeof(uint32_t)], &ctx->bits[0], 4);
146     memcpy(&ctx->in[15 * sizeof(uint32_t)], &ctx->bits[1], 4);
147 
148     ul_MD5Transform(ctx->buf, (uint32_t *) ctx->in);
149     byteReverse((unsigned char *) ctx->buf, 4);
150     memcpy(digest, ctx->buf, UL_MD5LENGTH);
151     memset(ctx, 0, sizeof(*ctx));	/* In case it's sensitive */
152 }
153 
154 #ifndef ASM_MD5
155 
156 /* The four core functions - F1 is optimized somewhat */
157 
158 /* #define F1(x, y, z) (x & y | ~x & z) */
159 #define F1(x, y, z) (z ^ (x & (y ^ z)))
160 #define F2(x, y, z) F1(z, x, y)
161 #define F3(x, y, z) (x ^ y ^ z)
162 #define F4(x, y, z) (y ^ (x | ~z))
163 
164 /* This is the central step in the MD5 algorithm. */
165 #define MD5STEP(f, w, x, y, z, data, s) \
166 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
167 
168 /*
169  * The core of the MD5 algorithm, this alters an existing MD5 hash to
170  * reflect the addition of 16 longwords of new data.  MD5Update blocks
171  * the data and converts bytes into longwords for this routine.
172  */
ul_MD5Transform(uint32_t buf[4],uint32_t const in[16])173 void ul_MD5Transform(uint32_t buf[4], uint32_t const in[16])
174 {
175     register uint32_t a, b, c, d;
176 
177     a = buf[0];
178     b = buf[1];
179     c = buf[2];
180     d = buf[3];
181 
182     MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
183     MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
184     MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
185     MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
186     MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
187     MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
188     MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
189     MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
190     MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
191     MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
192     MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
193     MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
194     MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
195     MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
196     MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
197     MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
198 
199     MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
200     MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
201     MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
202     MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
203     MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
204     MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
205     MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
206     MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
207     MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
208     MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
209     MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
210     MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
211     MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
212     MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
213     MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
214     MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
215 
216     MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
217     MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
218     MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
219     MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
220     MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
221     MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
222     MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
223     MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
224     MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
225     MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
226     MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
227     MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
228     MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
229     MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
230     MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
231     MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
232 
233     MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
234     MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
235     MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
236     MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
237     MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
238     MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
239     MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
240     MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
241     MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
242     MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
243     MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
244     MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
245     MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
246     MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
247     MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
248     MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
249 
250     buf[0] += a;
251     buf[1] += b;
252     buf[2] += c;
253     buf[3] += d;
254 }
255 
256 #endif
257 
258