1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 //===----------------------------------------------------------------------===//
9 //
10
11 #include "AMDGPU.h"
12 #include "GCNSubtarget.h"
13 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
14 #include "SIMachineFunctionInfo.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/CodeGen/MachineFunctionPass.h"
17
18 #define DEBUG_TYPE "si-fold-operands"
19 using namespace llvm;
20
21 namespace {
22
23 struct FoldCandidate {
24 MachineInstr *UseMI;
25 union {
26 MachineOperand *OpToFold;
27 uint64_t ImmToFold;
28 int FrameIndexToFold;
29 };
30 int ShrinkOpcode;
31 unsigned UseOpNo;
32 MachineOperand::MachineOperandType Kind;
33 bool Commuted;
34
FoldCandidate__anon0d537dfc0111::FoldCandidate35 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
36 bool Commuted_ = false,
37 int ShrinkOp = -1) :
38 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
39 Kind(FoldOp->getType()),
40 Commuted(Commuted_) {
41 if (FoldOp->isImm()) {
42 ImmToFold = FoldOp->getImm();
43 } else if (FoldOp->isFI()) {
44 FrameIndexToFold = FoldOp->getIndex();
45 } else {
46 assert(FoldOp->isReg() || FoldOp->isGlobal());
47 OpToFold = FoldOp;
48 }
49 }
50
isFI__anon0d537dfc0111::FoldCandidate51 bool isFI() const {
52 return Kind == MachineOperand::MO_FrameIndex;
53 }
54
isImm__anon0d537dfc0111::FoldCandidate55 bool isImm() const {
56 return Kind == MachineOperand::MO_Immediate;
57 }
58
isReg__anon0d537dfc0111::FoldCandidate59 bool isReg() const {
60 return Kind == MachineOperand::MO_Register;
61 }
62
isGlobal__anon0d537dfc0111::FoldCandidate63 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }
64
isCommuted__anon0d537dfc0111::FoldCandidate65 bool isCommuted() const {
66 return Commuted;
67 }
68
needsShrink__anon0d537dfc0111::FoldCandidate69 bool needsShrink() const {
70 return ShrinkOpcode != -1;
71 }
72
getShrinkOpcode__anon0d537dfc0111::FoldCandidate73 int getShrinkOpcode() const {
74 return ShrinkOpcode;
75 }
76 };
77
78 class SIFoldOperands : public MachineFunctionPass {
79 public:
80 static char ID;
81 MachineRegisterInfo *MRI;
82 const SIInstrInfo *TII;
83 const SIRegisterInfo *TRI;
84 const GCNSubtarget *ST;
85 const SIMachineFunctionInfo *MFI;
86
87 void foldOperand(MachineOperand &OpToFold,
88 MachineInstr *UseMI,
89 int UseOpIdx,
90 SmallVectorImpl<FoldCandidate> &FoldList,
91 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
92
93 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
94
95 const MachineOperand *isClamp(const MachineInstr &MI) const;
96 bool tryFoldClamp(MachineInstr &MI);
97
98 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
99 bool tryFoldOMod(MachineInstr &MI);
100
101 public:
SIFoldOperands()102 SIFoldOperands() : MachineFunctionPass(ID) {
103 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
104 }
105
106 bool runOnMachineFunction(MachineFunction &MF) override;
107
getPassName() const108 StringRef getPassName() const override { return "SI Fold Operands"; }
109
getAnalysisUsage(AnalysisUsage & AU) const110 void getAnalysisUsage(AnalysisUsage &AU) const override {
111 AU.setPreservesCFG();
112 MachineFunctionPass::getAnalysisUsage(AU);
113 }
114 };
115
116 } // End anonymous namespace.
117
118 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
119 "SI Fold Operands", false, false)
120
121 char SIFoldOperands::ID = 0;
122
123 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
124
125 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any.
macToMad(unsigned Opc)126 static unsigned macToMad(unsigned Opc) {
127 switch (Opc) {
128 case AMDGPU::V_MAC_F32_e64:
129 return AMDGPU::V_MAD_F32_e64;
130 case AMDGPU::V_MAC_F16_e64:
131 return AMDGPU::V_MAD_F16_e64;
132 case AMDGPU::V_FMAC_F32_e64:
133 return AMDGPU::V_FMA_F32_e64;
134 case AMDGPU::V_FMAC_F16_e64:
135 return AMDGPU::V_FMA_F16_gfx9_e64;
136 case AMDGPU::V_FMAC_LEGACY_F32_e64:
137 return AMDGPU::V_FMA_LEGACY_F32_e64;
138 }
139 return AMDGPU::INSTRUCTION_LIST_END;
140 }
141
142 // Wrapper around isInlineConstant that understands special cases when
143 // instruction types are replaced during operand folding.
isInlineConstantIfFolded(const SIInstrInfo * TII,const MachineInstr & UseMI,unsigned OpNo,const MachineOperand & OpToFold)144 static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
145 const MachineInstr &UseMI,
146 unsigned OpNo,
147 const MachineOperand &OpToFold) {
148 if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
149 return true;
150
151 unsigned Opc = UseMI.getOpcode();
152 unsigned NewOpc = macToMad(Opc);
153 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) {
154 // Special case for mac. Since this is replaced with mad when folded into
155 // src2, we need to check the legality for the final instruction.
156 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
157 if (static_cast<int>(OpNo) == Src2Idx) {
158 const MCInstrDesc &MadDesc = TII->get(NewOpc);
159 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
160 }
161 }
162
163 return false;
164 }
165
166 // TODO: Add heuristic that the frame index might not fit in the addressing mode
167 // immediate offset to avoid materializing in loops.
frameIndexMayFold(const SIInstrInfo * TII,const MachineInstr & UseMI,int OpNo,const MachineOperand & OpToFold)168 static bool frameIndexMayFold(const SIInstrInfo *TII,
169 const MachineInstr &UseMI,
170 int OpNo,
171 const MachineOperand &OpToFold) {
172 if (!OpToFold.isFI())
173 return false;
174
175 if (TII->isMUBUF(UseMI))
176 return OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(),
177 AMDGPU::OpName::vaddr);
178 if (!TII->isFLATScratch(UseMI))
179 return false;
180
181 int SIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(),
182 AMDGPU::OpName::saddr);
183 if (OpNo == SIdx)
184 return true;
185
186 int VIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(),
187 AMDGPU::OpName::vaddr);
188 return OpNo == VIdx && SIdx == -1;
189 }
190
createSIFoldOperandsPass()191 FunctionPass *llvm::createSIFoldOperandsPass() {
192 return new SIFoldOperands();
193 }
194
updateOperand(FoldCandidate & Fold,const SIInstrInfo & TII,const TargetRegisterInfo & TRI,const GCNSubtarget & ST)195 static bool updateOperand(FoldCandidate &Fold,
196 const SIInstrInfo &TII,
197 const TargetRegisterInfo &TRI,
198 const GCNSubtarget &ST) {
199 MachineInstr *MI = Fold.UseMI;
200 MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
201 assert(Old.isReg());
202
203 if (Fold.isImm()) {
204 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked &&
205 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) &&
206 AMDGPU::isFoldableLiteralV216(Fold.ImmToFold,
207 ST.hasInv2PiInlineImm())) {
208 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
209 // already set.
210 unsigned Opcode = MI->getOpcode();
211 int OpNo = MI->getOperandNo(&Old);
212 int ModIdx = -1;
213 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
214 ModIdx = AMDGPU::OpName::src0_modifiers;
215 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
216 ModIdx = AMDGPU::OpName::src1_modifiers;
217 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
218 ModIdx = AMDGPU::OpName::src2_modifiers;
219 assert(ModIdx != -1);
220 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
221 MachineOperand &Mod = MI->getOperand(ModIdx);
222 unsigned Val = Mod.getImm();
223 if (!(Val & SISrcMods::OP_SEL_0) && (Val & SISrcMods::OP_SEL_1)) {
224 // Only apply the following transformation if that operand requries
225 // a packed immediate.
226 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) {
227 case AMDGPU::OPERAND_REG_IMM_V2FP16:
228 case AMDGPU::OPERAND_REG_IMM_V2INT16:
229 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
230 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
231 // If upper part is all zero we do not need op_sel_hi.
232 if (!isUInt<16>(Fold.ImmToFold)) {
233 if (!(Fold.ImmToFold & 0xffff)) {
234 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
235 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
236 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
237 return true;
238 }
239 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
240 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff);
241 return true;
242 }
243 break;
244 default:
245 break;
246 }
247 }
248 }
249 }
250
251 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
252 MachineBasicBlock *MBB = MI->getParent();
253 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16);
254 if (Liveness != MachineBasicBlock::LQR_Dead) {
255 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n");
256 return false;
257 }
258
259 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
260 int Op32 = Fold.getShrinkOpcode();
261 MachineOperand &Dst0 = MI->getOperand(0);
262 MachineOperand &Dst1 = MI->getOperand(1);
263 assert(Dst0.isDef() && Dst1.isDef());
264
265 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg());
266
267 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg());
268 Register NewReg0 = MRI.createVirtualRegister(Dst0RC);
269
270 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32);
271
272 if (HaveNonDbgCarryUse) {
273 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg())
274 .addReg(AMDGPU::VCC, RegState::Kill);
275 }
276
277 // Keep the old instruction around to avoid breaking iterators, but
278 // replace it with a dummy instruction to remove uses.
279 //
280 // FIXME: We should not invert how this pass looks at operands to avoid
281 // this. Should track set of foldable movs instead of looking for uses
282 // when looking at a use.
283 Dst0.setReg(NewReg0);
284 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
285 MI->RemoveOperand(I);
286 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF));
287
288 if (Fold.isCommuted())
289 TII.commuteInstruction(*Inst32, false);
290 return true;
291 }
292
293 assert(!Fold.needsShrink() && "not handled");
294
295 if (Fold.isImm()) {
296 Old.ChangeToImmediate(Fold.ImmToFold);
297 return true;
298 }
299
300 if (Fold.isGlobal()) {
301 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(),
302 Fold.OpToFold->getTargetFlags());
303 return true;
304 }
305
306 if (Fold.isFI()) {
307 Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
308 return true;
309 }
310
311 MachineOperand *New = Fold.OpToFold;
312 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
313 Old.setIsUndef(New->isUndef());
314 return true;
315 }
316
isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,const MachineInstr * MI)317 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
318 const MachineInstr *MI) {
319 for (auto Candidate : FoldList) {
320 if (Candidate.UseMI == MI)
321 return true;
322 }
323 return false;
324 }
325
appendFoldCandidate(SmallVectorImpl<FoldCandidate> & FoldList,MachineInstr * MI,unsigned OpNo,MachineOperand * FoldOp,bool Commuted=false,int ShrinkOp=-1)326 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList,
327 MachineInstr *MI, unsigned OpNo,
328 MachineOperand *FoldOp, bool Commuted = false,
329 int ShrinkOp = -1) {
330 // Skip additional folding on the same operand.
331 for (FoldCandidate &Fold : FoldList)
332 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo)
333 return;
334 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal")
335 << " operand " << OpNo << "\n " << *MI << '\n');
336 FoldList.push_back(FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp));
337 }
338
tryAddToFoldList(SmallVectorImpl<FoldCandidate> & FoldList,MachineInstr * MI,unsigned OpNo,MachineOperand * OpToFold,const SIInstrInfo * TII)339 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
340 MachineInstr *MI, unsigned OpNo,
341 MachineOperand *OpToFold,
342 const SIInstrInfo *TII) {
343 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
344 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
345 unsigned Opc = MI->getOpcode();
346 unsigned NewOpc = macToMad(Opc);
347 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) {
348 // Check if changing this to a v_mad_{f16, f32} instruction will allow us
349 // to fold the operand.
350 MI->setDesc(TII->get(NewOpc));
351 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
352 if (FoldAsMAD) {
353 MI->untieRegOperand(OpNo);
354 return true;
355 }
356 MI->setDesc(TII->get(Opc));
357 }
358
359 // Special case for s_setreg_b32
360 if (OpToFold->isImm()) {
361 unsigned ImmOpc = 0;
362 if (Opc == AMDGPU::S_SETREG_B32)
363 ImmOpc = AMDGPU::S_SETREG_IMM32_B32;
364 else if (Opc == AMDGPU::S_SETREG_B32_mode)
365 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode;
366 if (ImmOpc) {
367 MI->setDesc(TII->get(ImmOpc));
368 appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
369 return true;
370 }
371 }
372
373 // If we are already folding into another operand of MI, then
374 // we can't commute the instruction, otherwise we risk making the
375 // other fold illegal.
376 if (isUseMIInFoldList(FoldList, MI))
377 return false;
378
379 unsigned CommuteOpNo = OpNo;
380
381 // Operand is not legal, so try to commute the instruction to
382 // see if this makes it possible to fold.
383 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
384 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
385 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
386
387 if (CanCommute) {
388 if (CommuteIdx0 == OpNo)
389 CommuteOpNo = CommuteIdx1;
390 else if (CommuteIdx1 == OpNo)
391 CommuteOpNo = CommuteIdx0;
392 }
393
394
395 // One of operands might be an Imm operand, and OpNo may refer to it after
396 // the call of commuteInstruction() below. Such situations are avoided
397 // here explicitly as OpNo must be a register operand to be a candidate
398 // for memory folding.
399 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
400 !MI->getOperand(CommuteIdx1).isReg()))
401 return false;
402
403 if (!CanCommute ||
404 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
405 return false;
406
407 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
408 if ((Opc == AMDGPU::V_ADD_CO_U32_e64 ||
409 Opc == AMDGPU::V_SUB_CO_U32_e64 ||
410 Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME
411 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) {
412 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
413
414 // Verify the other operand is a VGPR, otherwise we would violate the
415 // constant bus restriction.
416 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0;
417 MachineOperand &OtherOp = MI->getOperand(OtherIdx);
418 if (!OtherOp.isReg() ||
419 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg()))
420 return false;
421
422 assert(MI->getOperand(1).isDef());
423
424 // Make sure to get the 32-bit version of the commuted opcode.
425 unsigned MaybeCommutedOpc = MI->getOpcode();
426 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);
427
428 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32);
429 return true;
430 }
431
432 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
433 return false;
434 }
435
436 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true);
437 return true;
438 }
439
440 // Check the case where we might introduce a second constant operand to a
441 // scalar instruction
442 if (TII->isSALU(MI->getOpcode())) {
443 const MCInstrDesc &InstDesc = MI->getDesc();
444 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo];
445 const SIRegisterInfo &SRI = TII->getRegisterInfo();
446
447 // Fine if the operand can be encoded as an inline constant
448 if (OpToFold->isImm()) {
449 if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) ||
450 !TII->isInlineConstant(*OpToFold, OpInfo)) {
451 // Otherwise check for another constant
452 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) {
453 auto &Op = MI->getOperand(i);
454 if (OpNo != i &&
455 TII->isLiteralConstantLike(Op, OpInfo)) {
456 return false;
457 }
458 }
459 }
460 }
461 }
462
463 appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
464 return true;
465 }
466
467 // If the use operand doesn't care about the value, this may be an operand only
468 // used for register indexing, in which case it is unsafe to fold.
isUseSafeToFold(const SIInstrInfo * TII,const MachineInstr & MI,const MachineOperand & UseMO)469 static bool isUseSafeToFold(const SIInstrInfo *TII,
470 const MachineInstr &MI,
471 const MachineOperand &UseMO) {
472 if (UseMO.isUndef() || TII->isSDWA(MI))
473 return false;
474
475 switch (MI.getOpcode()) {
476 case AMDGPU::V_MOV_B32_e32:
477 case AMDGPU::V_MOV_B32_e64:
478 case AMDGPU::V_MOV_B64_PSEUDO:
479 // Do not fold into an indirect mov.
480 return !MI.hasRegisterImplicitUseOperand(AMDGPU::M0);
481 }
482
483 return true;
484 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
485 }
486
487 // Find a def of the UseReg, check if it is a reg_seqence and find initializers
488 // for each subreg, tracking it to foldable inline immediate if possible.
489 // Returns true on success.
getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *,unsigned>> & Defs,Register UseReg,uint8_t OpTy,const SIInstrInfo * TII,const MachineRegisterInfo & MRI)490 static bool getRegSeqInit(
491 SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs,
492 Register UseReg, uint8_t OpTy,
493 const SIInstrInfo *TII, const MachineRegisterInfo &MRI) {
494 MachineInstr *Def = MRI.getUniqueVRegDef(UseReg);
495 if (!Def || !Def->isRegSequence())
496 return false;
497
498 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
499 MachineOperand *Sub = &Def->getOperand(I);
500 assert (Sub->isReg());
501
502 for (MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub->getReg());
503 SubDef && Sub->isReg() && !Sub->getSubReg() &&
504 TII->isFoldableCopy(*SubDef);
505 SubDef = MRI.getUniqueVRegDef(Sub->getReg())) {
506 MachineOperand *Op = &SubDef->getOperand(1);
507 if (Op->isImm()) {
508 if (TII->isInlineConstant(*Op, OpTy))
509 Sub = Op;
510 break;
511 }
512 if (!Op->isReg())
513 break;
514 Sub = Op;
515 }
516
517 Defs.push_back(std::make_pair(Sub, Def->getOperand(I + 1).getImm()));
518 }
519
520 return true;
521 }
522
tryToFoldACImm(const SIInstrInfo * TII,const MachineOperand & OpToFold,MachineInstr * UseMI,unsigned UseOpIdx,SmallVectorImpl<FoldCandidate> & FoldList)523 static bool tryToFoldACImm(const SIInstrInfo *TII,
524 const MachineOperand &OpToFold,
525 MachineInstr *UseMI,
526 unsigned UseOpIdx,
527 SmallVectorImpl<FoldCandidate> &FoldList) {
528 const MCInstrDesc &Desc = UseMI->getDesc();
529 const MCOperandInfo *OpInfo = Desc.OpInfo;
530 if (!OpInfo || UseOpIdx >= Desc.getNumOperands())
531 return false;
532
533 uint8_t OpTy = OpInfo[UseOpIdx].OperandType;
534 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST ||
535 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST)
536 return false;
537
538 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) &&
539 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) {
540 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm());
541 return true;
542 }
543
544 if (!OpToFold.isReg())
545 return false;
546
547 Register UseReg = OpToFold.getReg();
548 if (!UseReg.isVirtual())
549 return false;
550
551 if (llvm::any_of(FoldList, [UseMI](const FoldCandidate &FC) {
552 return FC.UseMI == UseMI;
553 }))
554 return false;
555
556 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo();
557 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
558 if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI))
559 return false;
560
561 int32_t Imm;
562 for (unsigned I = 0, E = Defs.size(); I != E; ++I) {
563 const MachineOperand *Op = Defs[I].first;
564 if (!Op->isImm())
565 return false;
566
567 auto SubImm = Op->getImm();
568 if (!I) {
569 Imm = SubImm;
570 if (!TII->isInlineConstant(*Op, OpTy) ||
571 !TII->isOperandLegal(*UseMI, UseOpIdx, Op))
572 return false;
573
574 continue;
575 }
576 if (Imm != SubImm)
577 return false; // Can only fold splat constants
578 }
579
580 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first);
581 return true;
582 }
583
foldOperand(MachineOperand & OpToFold,MachineInstr * UseMI,int UseOpIdx,SmallVectorImpl<FoldCandidate> & FoldList,SmallVectorImpl<MachineInstr * > & CopiesToReplace) const584 void SIFoldOperands::foldOperand(
585 MachineOperand &OpToFold,
586 MachineInstr *UseMI,
587 int UseOpIdx,
588 SmallVectorImpl<FoldCandidate> &FoldList,
589 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
590 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
591
592 if (!isUseSafeToFold(TII, *UseMI, UseOp))
593 return;
594
595 // FIXME: Fold operands with subregs.
596 if (UseOp.isReg() && OpToFold.isReg()) {
597 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
598 return;
599 }
600
601 // Special case for REG_SEQUENCE: We can't fold literals into
602 // REG_SEQUENCE instructions, so we have to fold them into the
603 // uses of REG_SEQUENCE.
604 if (UseMI->isRegSequence()) {
605 Register RegSeqDstReg = UseMI->getOperand(0).getReg();
606 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
607
608 MachineRegisterInfo::use_nodbg_iterator Next;
609 for (MachineRegisterInfo::use_nodbg_iterator
610 RSUse = MRI->use_nodbg_begin(RegSeqDstReg), RSE = MRI->use_nodbg_end();
611 RSUse != RSE; RSUse = Next) {
612 Next = std::next(RSUse);
613
614 MachineInstr *RSUseMI = RSUse->getParent();
615
616 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI,
617 RSUse.getOperandNo(), FoldList))
618 continue;
619
620 if (RSUse->getSubReg() != RegSeqDstSubReg)
621 continue;
622
623 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
624 CopiesToReplace);
625 }
626
627 return;
628 }
629
630 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList))
631 return;
632
633 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) {
634 // Sanity check that this is a stack access.
635 // FIXME: Should probably use stack pseudos before frame lowering.
636
637 if (TII->isMUBUF(*UseMI)) {
638 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
639 MFI->getScratchRSrcReg())
640 return;
641
642 // Ensure this is either relative to the current frame or the current
643 // wave.
644 MachineOperand &SOff =
645 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
646 if (!SOff.isImm() || SOff.getImm() != 0)
647 return;
648 }
649
650 // A frame index will resolve to a positive constant, so it should always be
651 // safe to fold the addressing mode, even pre-GFX9.
652 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex());
653
654 if (TII->isFLATScratch(*UseMI) &&
655 AMDGPU::getNamedOperandIdx(UseMI->getOpcode(),
656 AMDGPU::OpName::vaddr) != -1) {
657 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(UseMI->getOpcode());
658 UseMI->setDesc(TII->get(NewOpc));
659 }
660
661 return;
662 }
663
664 bool FoldingImmLike =
665 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
666
667 if (FoldingImmLike && UseMI->isCopy()) {
668 Register DestReg = UseMI->getOperand(0).getReg();
669 Register SrcReg = UseMI->getOperand(1).getReg();
670 assert(SrcReg.isVirtual());
671
672 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg);
673
674 // Don't fold into a copy to a physical register with the same class. Doing
675 // so would interfere with the register coalescer's logic which would avoid
676 // redundant initalizations.
677 if (DestReg.isPhysical() && SrcRC->contains(DestReg))
678 return;
679
680 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg);
681 if (!DestReg.isPhysical()) {
682 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) {
683 MachineRegisterInfo::use_nodbg_iterator NextUse;
684 SmallVector<FoldCandidate, 4> CopyUses;
685 for (MachineRegisterInfo::use_nodbg_iterator Use = MRI->use_nodbg_begin(DestReg),
686 E = MRI->use_nodbg_end();
687 Use != E; Use = NextUse) {
688 NextUse = std::next(Use);
689 // There's no point trying to fold into an implicit operand.
690 if (Use->isImplicit())
691 continue;
692
693 FoldCandidate FC = FoldCandidate(Use->getParent(), Use.getOperandNo(),
694 &UseMI->getOperand(1));
695 CopyUses.push_back(FC);
696 }
697 for (auto &F : CopyUses) {
698 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, FoldList, CopiesToReplace);
699 }
700 }
701
702 if (DestRC == &AMDGPU::AGPR_32RegClass &&
703 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
704 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
705 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
706 CopiesToReplace.push_back(UseMI);
707 return;
708 }
709 }
710
711 // In order to fold immediates into copies, we need to change the
712 // copy to a MOV.
713
714 unsigned MovOp = TII->getMovOpcode(DestRC);
715 if (MovOp == AMDGPU::COPY)
716 return;
717
718 UseMI->setDesc(TII->get(MovOp));
719 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin();
720 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end();
721 while (ImpOpI != ImpOpE) {
722 MachineInstr::mop_iterator Tmp = ImpOpI;
723 ImpOpI++;
724 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp));
725 }
726 CopiesToReplace.push_back(UseMI);
727 } else {
728 if (UseMI->isCopy() && OpToFold.isReg() &&
729 UseMI->getOperand(0).getReg().isVirtual() &&
730 !UseMI->getOperand(1).getSubReg()) {
731 LLVM_DEBUG(dbgs() << "Folding " << OpToFold
732 << "\n into " << *UseMI << '\n');
733 unsigned Size = TII->getOpSize(*UseMI, 1);
734 Register UseReg = OpToFold.getReg();
735 UseMI->getOperand(1).setReg(UseReg);
736 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
737 UseMI->getOperand(1).setIsKill(false);
738 CopiesToReplace.push_back(UseMI);
739 OpToFold.setIsKill(false);
740
741 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32
742 // can only accept VGPR or inline immediate. Recreate a reg_sequence with
743 // its initializers right here, so we will rematerialize immediates and
744 // avoid copies via different reg classes.
745 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
746 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
747 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII,
748 *MRI)) {
749 const DebugLoc &DL = UseMI->getDebugLoc();
750 MachineBasicBlock &MBB = *UseMI->getParent();
751
752 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE));
753 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I)
754 UseMI->RemoveOperand(I);
755
756 MachineInstrBuilder B(*MBB.getParent(), UseMI);
757 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies;
758 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs;
759 for (unsigned I = 0; I < Size / 4; ++I) {
760 MachineOperand *Def = Defs[I].first;
761 TargetInstrInfo::RegSubRegPair CopyToVGPR;
762 if (Def->isImm() &&
763 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
764 int64_t Imm = Def->getImm();
765
766 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
767 BuildMI(MBB, UseMI, DL,
768 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm);
769 B.addReg(Tmp);
770 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) {
771 auto Src = getRegSubRegPair(*Def);
772 Def->setIsKill(false);
773 if (!SeenAGPRs.insert(Src)) {
774 // We cannot build a reg_sequence out of the same registers, they
775 // must be copied. Better do it here before copyPhysReg() created
776 // several reads to do the AGPR->VGPR->AGPR copy.
777 CopyToVGPR = Src;
778 } else {
779 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0,
780 Src.SubReg);
781 }
782 } else {
783 assert(Def->isReg());
784 Def->setIsKill(false);
785 auto Src = getRegSubRegPair(*Def);
786
787 // Direct copy from SGPR to AGPR is not possible. To avoid creation
788 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later,
789 // create a copy here and track if we already have such a copy.
790 if (TRI->isSGPRReg(*MRI, Src.Reg)) {
791 CopyToVGPR = Src;
792 } else {
793 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
794 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def);
795 B.addReg(Tmp);
796 }
797 }
798
799 if (CopyToVGPR.Reg) {
800 Register Vgpr;
801 if (VGPRCopies.count(CopyToVGPR)) {
802 Vgpr = VGPRCopies[CopyToVGPR];
803 } else {
804 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
805 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def);
806 VGPRCopies[CopyToVGPR] = Vgpr;
807 }
808 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
809 BuildMI(MBB, UseMI, DL,
810 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr);
811 B.addReg(Tmp);
812 }
813
814 B.addImm(Defs[I].second);
815 }
816 LLVM_DEBUG(dbgs() << "Folded " << *UseMI << '\n');
817 return;
818 }
819
820 if (Size != 4)
821 return;
822 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
823 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg()))
824 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
825 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) &&
826 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg()))
827 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64));
828 return;
829 }
830
831 unsigned UseOpc = UseMI->getOpcode();
832 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
833 (UseOpc == AMDGPU::V_READLANE_B32 &&
834 (int)UseOpIdx ==
835 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
836 // %vgpr = V_MOV_B32 imm
837 // %sgpr = V_READFIRSTLANE_B32 %vgpr
838 // =>
839 // %sgpr = S_MOV_B32 imm
840 if (FoldingImmLike) {
841 if (execMayBeModifiedBeforeUse(*MRI,
842 UseMI->getOperand(UseOpIdx).getReg(),
843 *OpToFold.getParent(),
844 *UseMI))
845 return;
846
847 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
848
849 if (OpToFold.isImm())
850 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
851 else
852 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex());
853 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
854 return;
855 }
856
857 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) {
858 if (execMayBeModifiedBeforeUse(*MRI,
859 UseMI->getOperand(UseOpIdx).getReg(),
860 *OpToFold.getParent(),
861 *UseMI))
862 return;
863
864 // %vgpr = COPY %sgpr0
865 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
866 // =>
867 // %sgpr1 = COPY %sgpr0
868 UseMI->setDesc(TII->get(AMDGPU::COPY));
869 UseMI->getOperand(1).setReg(OpToFold.getReg());
870 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
871 UseMI->getOperand(1).setIsKill(false);
872 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
873 return;
874 }
875 }
876
877 const MCInstrDesc &UseDesc = UseMI->getDesc();
878
879 // Don't fold into target independent nodes. Target independent opcodes
880 // don't have defined register classes.
881 if (UseDesc.isVariadic() ||
882 UseOp.isImplicit() ||
883 UseDesc.OpInfo[UseOpIdx].RegClass == -1)
884 return;
885 }
886
887 if (!FoldingImmLike) {
888 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
889
890 // FIXME: We could try to change the instruction from 64-bit to 32-bit
891 // to enable more folding opportunites. The shrink operands pass
892 // already does this.
893 return;
894 }
895
896
897 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
898 const TargetRegisterClass *FoldRC =
899 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
900
901 // Split 64-bit constants into 32-bits for folding.
902 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
903 Register UseReg = UseOp.getReg();
904 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg);
905
906 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
907 return;
908
909 APInt Imm(64, OpToFold.getImm());
910 if (UseOp.getSubReg() == AMDGPU::sub0) {
911 Imm = Imm.getLoBits(32);
912 } else {
913 assert(UseOp.getSubReg() == AMDGPU::sub1);
914 Imm = Imm.getHiBits(32);
915 }
916
917 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
918 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
919 return;
920 }
921
922
923
924 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
925 }
926
evalBinaryInstruction(unsigned Opcode,int32_t & Result,uint32_t LHS,uint32_t RHS)927 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
928 uint32_t LHS, uint32_t RHS) {
929 switch (Opcode) {
930 case AMDGPU::V_AND_B32_e64:
931 case AMDGPU::V_AND_B32_e32:
932 case AMDGPU::S_AND_B32:
933 Result = LHS & RHS;
934 return true;
935 case AMDGPU::V_OR_B32_e64:
936 case AMDGPU::V_OR_B32_e32:
937 case AMDGPU::S_OR_B32:
938 Result = LHS | RHS;
939 return true;
940 case AMDGPU::V_XOR_B32_e64:
941 case AMDGPU::V_XOR_B32_e32:
942 case AMDGPU::S_XOR_B32:
943 Result = LHS ^ RHS;
944 return true;
945 case AMDGPU::S_XNOR_B32:
946 Result = ~(LHS ^ RHS);
947 return true;
948 case AMDGPU::S_NAND_B32:
949 Result = ~(LHS & RHS);
950 return true;
951 case AMDGPU::S_NOR_B32:
952 Result = ~(LHS | RHS);
953 return true;
954 case AMDGPU::S_ANDN2_B32:
955 Result = LHS & ~RHS;
956 return true;
957 case AMDGPU::S_ORN2_B32:
958 Result = LHS | ~RHS;
959 return true;
960 case AMDGPU::V_LSHL_B32_e64:
961 case AMDGPU::V_LSHL_B32_e32:
962 case AMDGPU::S_LSHL_B32:
963 // The instruction ignores the high bits for out of bounds shifts.
964 Result = LHS << (RHS & 31);
965 return true;
966 case AMDGPU::V_LSHLREV_B32_e64:
967 case AMDGPU::V_LSHLREV_B32_e32:
968 Result = RHS << (LHS & 31);
969 return true;
970 case AMDGPU::V_LSHR_B32_e64:
971 case AMDGPU::V_LSHR_B32_e32:
972 case AMDGPU::S_LSHR_B32:
973 Result = LHS >> (RHS & 31);
974 return true;
975 case AMDGPU::V_LSHRREV_B32_e64:
976 case AMDGPU::V_LSHRREV_B32_e32:
977 Result = RHS >> (LHS & 31);
978 return true;
979 case AMDGPU::V_ASHR_I32_e64:
980 case AMDGPU::V_ASHR_I32_e32:
981 case AMDGPU::S_ASHR_I32:
982 Result = static_cast<int32_t>(LHS) >> (RHS & 31);
983 return true;
984 case AMDGPU::V_ASHRREV_I32_e64:
985 case AMDGPU::V_ASHRREV_I32_e32:
986 Result = static_cast<int32_t>(RHS) >> (LHS & 31);
987 return true;
988 default:
989 return false;
990 }
991 }
992
getMovOpc(bool IsScalar)993 static unsigned getMovOpc(bool IsScalar) {
994 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
995 }
996
997 /// Remove any leftover implicit operands from mutating the instruction. e.g.
998 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
999 /// anymore.
stripExtraCopyOperands(MachineInstr & MI)1000 static void stripExtraCopyOperands(MachineInstr &MI) {
1001 const MCInstrDesc &Desc = MI.getDesc();
1002 unsigned NumOps = Desc.getNumOperands() +
1003 Desc.getNumImplicitUses() +
1004 Desc.getNumImplicitDefs();
1005
1006 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
1007 MI.RemoveOperand(I);
1008 }
1009
mutateCopyOp(MachineInstr & MI,const MCInstrDesc & NewDesc)1010 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
1011 MI.setDesc(NewDesc);
1012 stripExtraCopyOperands(MI);
1013 }
1014
getImmOrMaterializedImm(MachineRegisterInfo & MRI,MachineOperand & Op)1015 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
1016 MachineOperand &Op) {
1017 if (Op.isReg()) {
1018 // If this has a subregister, it obviously is a register source.
1019 if (Op.getSubReg() != AMDGPU::NoSubRegister || !Op.getReg().isVirtual())
1020 return &Op;
1021
1022 MachineInstr *Def = MRI.getVRegDef(Op.getReg());
1023 if (Def && Def->isMoveImmediate()) {
1024 MachineOperand &ImmSrc = Def->getOperand(1);
1025 if (ImmSrc.isImm())
1026 return &ImmSrc;
1027 }
1028 }
1029
1030 return &Op;
1031 }
1032
1033 // Try to simplify operations with a constant that may appear after instruction
1034 // selection.
1035 // TODO: See if a frame index with a fixed offset can fold.
tryConstantFoldOp(MachineRegisterInfo & MRI,const SIInstrInfo * TII,MachineInstr * MI,MachineOperand * ImmOp)1036 static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
1037 const SIInstrInfo *TII,
1038 MachineInstr *MI,
1039 MachineOperand *ImmOp) {
1040 unsigned Opc = MI->getOpcode();
1041 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
1042 Opc == AMDGPU::S_NOT_B32) {
1043 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
1044 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
1045 return true;
1046 }
1047
1048 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
1049 if (Src1Idx == -1)
1050 return false;
1051
1052 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
1053 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
1054 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
1055
1056 if (!Src0->isImm() && !Src1->isImm())
1057 return false;
1058
1059 // and k0, k1 -> v_mov_b32 (k0 & k1)
1060 // or k0, k1 -> v_mov_b32 (k0 | k1)
1061 // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
1062 if (Src0->isImm() && Src1->isImm()) {
1063 int32_t NewImm;
1064 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
1065 return false;
1066
1067 const SIRegisterInfo &TRI = TII->getRegisterInfo();
1068 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
1069
1070 // Be careful to change the right operand, src0 may belong to a different
1071 // instruction.
1072 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
1073 MI->RemoveOperand(Src1Idx);
1074 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
1075 return true;
1076 }
1077
1078 if (!MI->isCommutable())
1079 return false;
1080
1081 if (Src0->isImm() && !Src1->isImm()) {
1082 std::swap(Src0, Src1);
1083 std::swap(Src0Idx, Src1Idx);
1084 }
1085
1086 int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
1087 if (Opc == AMDGPU::V_OR_B32_e64 ||
1088 Opc == AMDGPU::V_OR_B32_e32 ||
1089 Opc == AMDGPU::S_OR_B32) {
1090 if (Src1Val == 0) {
1091 // y = or x, 0 => y = copy x
1092 MI->RemoveOperand(Src1Idx);
1093 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1094 } else if (Src1Val == -1) {
1095 // y = or x, -1 => y = v_mov_b32 -1
1096 MI->RemoveOperand(Src1Idx);
1097 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
1098 } else
1099 return false;
1100
1101 return true;
1102 }
1103
1104 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
1105 MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
1106 MI->getOpcode() == AMDGPU::S_AND_B32) {
1107 if (Src1Val == 0) {
1108 // y = and x, 0 => y = v_mov_b32 0
1109 MI->RemoveOperand(Src0Idx);
1110 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
1111 } else if (Src1Val == -1) {
1112 // y = and x, -1 => y = copy x
1113 MI->RemoveOperand(Src1Idx);
1114 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1115 stripExtraCopyOperands(*MI);
1116 } else
1117 return false;
1118
1119 return true;
1120 }
1121
1122 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
1123 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
1124 MI->getOpcode() == AMDGPU::S_XOR_B32) {
1125 if (Src1Val == 0) {
1126 // y = xor x, 0 => y = copy x
1127 MI->RemoveOperand(Src1Idx);
1128 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1129 return true;
1130 }
1131 }
1132
1133 return false;
1134 }
1135
1136 // Try to fold an instruction into a simpler one
tryFoldInst(const SIInstrInfo * TII,MachineInstr * MI)1137 static bool tryFoldInst(const SIInstrInfo *TII,
1138 MachineInstr *MI) {
1139 unsigned Opc = MI->getOpcode();
1140
1141 if (Opc == AMDGPU::V_CNDMASK_B32_e32 ||
1142 Opc == AMDGPU::V_CNDMASK_B32_e64 ||
1143 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) {
1144 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
1145 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1);
1146 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
1147 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
1148 if (Src1->isIdenticalTo(*Src0) &&
1149 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) &&
1150 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) {
1151 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into ");
1152 auto &NewDesc =
1153 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
1154 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1155 if (Src2Idx != -1)
1156 MI->RemoveOperand(Src2Idx);
1157 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
1158 if (Src1ModIdx != -1)
1159 MI->RemoveOperand(Src1ModIdx);
1160 if (Src0ModIdx != -1)
1161 MI->RemoveOperand(Src0ModIdx);
1162 mutateCopyOp(*MI, NewDesc);
1163 LLVM_DEBUG(dbgs() << *MI << '\n');
1164 return true;
1165 }
1166 }
1167
1168 return false;
1169 }
1170
foldInstOperand(MachineInstr & MI,MachineOperand & OpToFold) const1171 void SIFoldOperands::foldInstOperand(MachineInstr &MI,
1172 MachineOperand &OpToFold) const {
1173 // We need mutate the operands of new mov instructions to add implicit
1174 // uses of EXEC, but adding them invalidates the use_iterator, so defer
1175 // this.
1176 SmallVector<MachineInstr *, 4> CopiesToReplace;
1177 SmallVector<FoldCandidate, 4> FoldList;
1178 MachineOperand &Dst = MI.getOperand(0);
1179
1180 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1181 if (FoldingImm) {
1182 unsigned NumLiteralUses = 0;
1183 MachineOperand *NonInlineUse = nullptr;
1184 int NonInlineUseOpNo = -1;
1185
1186 MachineRegisterInfo::use_nodbg_iterator NextUse;
1187 for (MachineRegisterInfo::use_nodbg_iterator
1188 Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end();
1189 Use != E; Use = NextUse) {
1190 NextUse = std::next(Use);
1191 MachineInstr *UseMI = Use->getParent();
1192 unsigned OpNo = Use.getOperandNo();
1193
1194 // Folding the immediate may reveal operations that can be constant
1195 // folded or replaced with a copy. This can happen for example after
1196 // frame indices are lowered to constants or from splitting 64-bit
1197 // constants.
1198 //
1199 // We may also encounter cases where one or both operands are
1200 // immediates materialized into a register, which would ordinarily not
1201 // be folded due to multiple uses or operand constraints.
1202
1203 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
1204 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n');
1205
1206 // Some constant folding cases change the same immediate's use to a new
1207 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
1208 // again. The same constant folded instruction could also have a second
1209 // use operand.
1210 NextUse = MRI->use_nodbg_begin(Dst.getReg());
1211 FoldList.clear();
1212 continue;
1213 }
1214
1215 // Try to fold any inline immediate uses, and then only fold other
1216 // constants if they have one use.
1217 //
1218 // The legality of the inline immediate must be checked based on the use
1219 // operand, not the defining instruction, because 32-bit instructions
1220 // with 32-bit inline immediate sources may be used to materialize
1221 // constants used in 16-bit operands.
1222 //
1223 // e.g. it is unsafe to fold:
1224 // s_mov_b32 s0, 1.0 // materializes 0x3f800000
1225 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
1226
1227 // Folding immediates with more than one use will increase program size.
1228 // FIXME: This will also reduce register usage, which may be better
1229 // in some cases. A better heuristic is needed.
1230 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
1231 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
1232 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) {
1233 foldOperand(OpToFold, UseMI, OpNo, FoldList,
1234 CopiesToReplace);
1235 } else {
1236 if (++NumLiteralUses == 1) {
1237 NonInlineUse = &*Use;
1238 NonInlineUseOpNo = OpNo;
1239 }
1240 }
1241 }
1242
1243 if (NumLiteralUses == 1) {
1244 MachineInstr *UseMI = NonInlineUse->getParent();
1245 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
1246 }
1247 } else {
1248 // Folding register.
1249 SmallVector <MachineRegisterInfo::use_nodbg_iterator, 4> UsesToProcess;
1250 for (MachineRegisterInfo::use_nodbg_iterator
1251 Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end();
1252 Use != E; ++Use) {
1253 UsesToProcess.push_back(Use);
1254 }
1255 for (auto U : UsesToProcess) {
1256 MachineInstr *UseMI = U->getParent();
1257
1258 foldOperand(OpToFold, UseMI, U.getOperandNo(),
1259 FoldList, CopiesToReplace);
1260 }
1261 }
1262
1263 MachineFunction *MF = MI.getParent()->getParent();
1264 // Make sure we add EXEC uses to any new v_mov instructions created.
1265 for (MachineInstr *Copy : CopiesToReplace)
1266 Copy->addImplicitDefUseOperands(*MF);
1267
1268 SmallPtrSet<MachineInstr *, 16> Folded;
1269 for (FoldCandidate &Fold : FoldList) {
1270 assert(!Fold.isReg() || Fold.OpToFold);
1271 if (Folded.count(Fold.UseMI))
1272 continue;
1273 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) {
1274 Register Reg = Fold.OpToFold->getReg();
1275 MachineInstr *DefMI = Fold.OpToFold->getParent();
1276 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) &&
1277 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI))
1278 continue;
1279 }
1280 if (updateOperand(Fold, *TII, *TRI, *ST)) {
1281 // Clear kill flags.
1282 if (Fold.isReg()) {
1283 assert(Fold.OpToFold && Fold.OpToFold->isReg());
1284 // FIXME: Probably shouldn't bother trying to fold if not an
1285 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
1286 // copies.
1287 MRI->clearKillFlags(Fold.OpToFold->getReg());
1288 }
1289 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
1290 << static_cast<int>(Fold.UseOpNo) << " of "
1291 << *Fold.UseMI << '\n');
1292 if (tryFoldInst(TII, Fold.UseMI))
1293 Folded.insert(Fold.UseMI);
1294 } else if (Fold.isCommuted()) {
1295 // Restoring instruction's original operand order if fold has failed.
1296 TII->commuteInstruction(*Fold.UseMI, false);
1297 }
1298 }
1299 }
1300
1301 // Clamp patterns are canonically selected to v_max_* instructions, so only
1302 // handle them.
isClamp(const MachineInstr & MI) const1303 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
1304 unsigned Op = MI.getOpcode();
1305 switch (Op) {
1306 case AMDGPU::V_MAX_F32_e64:
1307 case AMDGPU::V_MAX_F16_e64:
1308 case AMDGPU::V_MAX_F64_e64:
1309 case AMDGPU::V_PK_MAX_F16: {
1310 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
1311 return nullptr;
1312
1313 // Make sure sources are identical.
1314 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1315 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1316 if (!Src0->isReg() || !Src1->isReg() ||
1317 Src0->getReg() != Src1->getReg() ||
1318 Src0->getSubReg() != Src1->getSubReg() ||
1319 Src0->getSubReg() != AMDGPU::NoSubRegister)
1320 return nullptr;
1321
1322 // Can't fold up if we have modifiers.
1323 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1324 return nullptr;
1325
1326 unsigned Src0Mods
1327 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
1328 unsigned Src1Mods
1329 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
1330
1331 // Having a 0 op_sel_hi would require swizzling the output in the source
1332 // instruction, which we can't do.
1333 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
1334 : 0u;
1335 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
1336 return nullptr;
1337 return Src0;
1338 }
1339 default:
1340 return nullptr;
1341 }
1342 }
1343
1344 // We obviously have multiple uses in a clamp since the register is used twice
1345 // in the same instruction.
hasOneNonDBGUseInst(const MachineRegisterInfo & MRI,unsigned Reg)1346 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
1347 int Count = 0;
1348 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
1349 I != E; ++I) {
1350 if (++Count > 1)
1351 return false;
1352 }
1353
1354 return true;
1355 }
1356
1357 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
tryFoldClamp(MachineInstr & MI)1358 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
1359 const MachineOperand *ClampSrc = isClamp(MI);
1360 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
1361 return false;
1362
1363 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
1364
1365 // The type of clamp must be compatible.
1366 if (TII->getClampMask(*Def) != TII->getClampMask(MI))
1367 return false;
1368
1369 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
1370 if (!DefClamp)
1371 return false;
1372
1373 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def
1374 << '\n');
1375
1376 // Clamp is applied after omod, so it is OK if omod is set.
1377 DefClamp->setImm(1);
1378 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1379 MI.eraseFromParent();
1380 return true;
1381 }
1382
getOModValue(unsigned Opc,int64_t Val)1383 static int getOModValue(unsigned Opc, int64_t Val) {
1384 switch (Opc) {
1385 case AMDGPU::V_MUL_F32_e64: {
1386 switch (static_cast<uint32_t>(Val)) {
1387 case 0x3f000000: // 0.5
1388 return SIOutMods::DIV2;
1389 case 0x40000000: // 2.0
1390 return SIOutMods::MUL2;
1391 case 0x40800000: // 4.0
1392 return SIOutMods::MUL4;
1393 default:
1394 return SIOutMods::NONE;
1395 }
1396 }
1397 case AMDGPU::V_MUL_F16_e64: {
1398 switch (static_cast<uint16_t>(Val)) {
1399 case 0x3800: // 0.5
1400 return SIOutMods::DIV2;
1401 case 0x4000: // 2.0
1402 return SIOutMods::MUL2;
1403 case 0x4400: // 4.0
1404 return SIOutMods::MUL4;
1405 default:
1406 return SIOutMods::NONE;
1407 }
1408 }
1409 default:
1410 llvm_unreachable("invalid mul opcode");
1411 }
1412 }
1413
1414 // FIXME: Does this really not support denormals with f16?
1415 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
1416 // handled, so will anything other than that break?
1417 std::pair<const MachineOperand *, int>
isOMod(const MachineInstr & MI) const1418 SIFoldOperands::isOMod(const MachineInstr &MI) const {
1419 unsigned Op = MI.getOpcode();
1420 switch (Op) {
1421 case AMDGPU::V_MUL_F32_e64:
1422 case AMDGPU::V_MUL_F16_e64: {
1423 // If output denormals are enabled, omod is ignored.
1424 if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32OutputDenormals) ||
1425 (Op == AMDGPU::V_MUL_F16_e64 && MFI->getMode().FP64FP16OutputDenormals))
1426 return std::make_pair(nullptr, SIOutMods::NONE);
1427
1428 const MachineOperand *RegOp = nullptr;
1429 const MachineOperand *ImmOp = nullptr;
1430 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1431 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1432 if (Src0->isImm()) {
1433 ImmOp = Src0;
1434 RegOp = Src1;
1435 } else if (Src1->isImm()) {
1436 ImmOp = Src1;
1437 RegOp = Src0;
1438 } else
1439 return std::make_pair(nullptr, SIOutMods::NONE);
1440
1441 int OMod = getOModValue(Op, ImmOp->getImm());
1442 if (OMod == SIOutMods::NONE ||
1443 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1444 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
1445 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
1446 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
1447 return std::make_pair(nullptr, SIOutMods::NONE);
1448
1449 return std::make_pair(RegOp, OMod);
1450 }
1451 case AMDGPU::V_ADD_F32_e64:
1452 case AMDGPU::V_ADD_F16_e64: {
1453 // If output denormals are enabled, omod is ignored.
1454 if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32OutputDenormals) ||
1455 (Op == AMDGPU::V_ADD_F16_e64 && MFI->getMode().FP64FP16OutputDenormals))
1456 return std::make_pair(nullptr, SIOutMods::NONE);
1457
1458 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
1459 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1460 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1461
1462 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
1463 Src0->getSubReg() == Src1->getSubReg() &&
1464 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
1465 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
1466 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
1467 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1468 return std::make_pair(Src0, SIOutMods::MUL2);
1469
1470 return std::make_pair(nullptr, SIOutMods::NONE);
1471 }
1472 default:
1473 return std::make_pair(nullptr, SIOutMods::NONE);
1474 }
1475 }
1476
1477 // FIXME: Does this need to check IEEE bit on function?
tryFoldOMod(MachineInstr & MI)1478 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
1479 const MachineOperand *RegOp;
1480 int OMod;
1481 std::tie(RegOp, OMod) = isOMod(MI);
1482 if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
1483 RegOp->getSubReg() != AMDGPU::NoSubRegister ||
1484 !hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
1485 return false;
1486
1487 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
1488 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
1489 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
1490 return false;
1491
1492 // Clamp is applied after omod. If the source already has clamp set, don't
1493 // fold it.
1494 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
1495 return false;
1496
1497 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');
1498
1499 DefOMod->setImm(OMod);
1500 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1501 MI.eraseFromParent();
1502 return true;
1503 }
1504
runOnMachineFunction(MachineFunction & MF)1505 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
1506 if (skipFunction(MF.getFunction()))
1507 return false;
1508
1509 MRI = &MF.getRegInfo();
1510 ST = &MF.getSubtarget<GCNSubtarget>();
1511 TII = ST->getInstrInfo();
1512 TRI = &TII->getRegisterInfo();
1513 MFI = MF.getInfo<SIMachineFunctionInfo>();
1514
1515 // omod is ignored by hardware if IEEE bit is enabled. omod also does not
1516 // correctly handle signed zeros.
1517 //
1518 // FIXME: Also need to check strictfp
1519 bool IsIEEEMode = MFI->getMode().IEEE;
1520 bool HasNSZ = MFI->hasNoSignedZerosFPMath();
1521
1522 for (MachineBasicBlock *MBB : depth_first(&MF)) {
1523 MachineBasicBlock::iterator I, Next;
1524
1525 MachineOperand *CurrentKnownM0Val = nullptr;
1526 for (I = MBB->begin(); I != MBB->end(); I = Next) {
1527 Next = std::next(I);
1528 MachineInstr &MI = *I;
1529
1530 tryFoldInst(TII, &MI);
1531
1532 if (!TII->isFoldableCopy(MI)) {
1533 // Saw an unknown clobber of m0, so we no longer know what it is.
1534 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI))
1535 CurrentKnownM0Val = nullptr;
1536
1537 // TODO: Omod might be OK if there is NSZ only on the source
1538 // instruction, and not the omod multiply.
1539 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
1540 !tryFoldOMod(MI))
1541 tryFoldClamp(MI);
1542
1543 continue;
1544 }
1545
1546 // Specially track simple redefs of m0 to the same value in a block, so we
1547 // can erase the later ones.
1548 if (MI.getOperand(0).getReg() == AMDGPU::M0) {
1549 MachineOperand &NewM0Val = MI.getOperand(1);
1550 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) {
1551 MI.eraseFromParent();
1552 continue;
1553 }
1554
1555 // We aren't tracking other physical registers
1556 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ?
1557 nullptr : &NewM0Val;
1558 continue;
1559 }
1560
1561 MachineOperand &OpToFold = MI.getOperand(1);
1562 bool FoldingImm =
1563 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1564
1565 // FIXME: We could also be folding things like TargetIndexes.
1566 if (!FoldingImm && !OpToFold.isReg())
1567 continue;
1568
1569 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual())
1570 continue;
1571
1572 // Prevent folding operands backwards in the function. For example,
1573 // the COPY opcode must not be replaced by 1 in this example:
1574 //
1575 // %3 = COPY %vgpr0; VGPR_32:%3
1576 // ...
1577 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1578 MachineOperand &Dst = MI.getOperand(0);
1579 if (Dst.isReg() && !Dst.getReg().isVirtual())
1580 continue;
1581
1582 foldInstOperand(MI, OpToFold);
1583 }
1584 }
1585 return true;
1586 }
1587