1 //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/SymbolTable.h"
10 #include "mlir/IR/Builders.h"
11 #include "mlir/IR/OpImplementation.h"
12 #include "llvm/ADT/SetVector.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallString.h"
15 #include "llvm/ADT/StringSwitch.h"
16 
17 using namespace mlir;
18 
19 /// Return true if the given operation is unknown and may potentially define a
20 /// symbol table.
isPotentiallyUnknownSymbolTable(Operation * op)21 static bool isPotentiallyUnknownSymbolTable(Operation *op) {
22   return op->getNumRegions() == 1 && !op->getDialect();
23 }
24 
25 /// Returns the string name of the given symbol, or None if this is not a
26 /// symbol.
getNameIfSymbol(Operation * symbol)27 static Optional<StringRef> getNameIfSymbol(Operation *symbol) {
28   auto nameAttr =
29       symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
30   return nameAttr ? nameAttr.getValue() : Optional<StringRef>();
31 }
getNameIfSymbol(Operation * symbol,Identifier symbolAttrNameId)32 static Optional<StringRef> getNameIfSymbol(Operation *symbol,
33                                            Identifier symbolAttrNameId) {
34   auto nameAttr = symbol->getAttrOfType<StringAttr>(symbolAttrNameId);
35   return nameAttr ? nameAttr.getValue() : Optional<StringRef>();
36 }
37 
38 /// Computes the nested symbol reference attribute for the symbol 'symbolName'
39 /// that are usable within the symbol table operations from 'symbol' as far up
40 /// to the given operation 'within', where 'within' is an ancestor of 'symbol'.
41 /// Returns success if all references up to 'within' could be computed.
42 static LogicalResult
collectValidReferencesFor(Operation * symbol,StringRef symbolName,Operation * within,SmallVectorImpl<SymbolRefAttr> & results)43 collectValidReferencesFor(Operation *symbol, StringRef symbolName,
44                           Operation *within,
45                           SmallVectorImpl<SymbolRefAttr> &results) {
46   assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor");
47   MLIRContext *ctx = symbol->getContext();
48 
49   auto leafRef = FlatSymbolRefAttr::get(symbolName, ctx);
50   results.push_back(leafRef);
51 
52   // Early exit for when 'within' is the parent of 'symbol'.
53   Operation *symbolTableOp = symbol->getParentOp();
54   if (within == symbolTableOp)
55     return success();
56 
57   // Collect references until 'symbolTableOp' reaches 'within'.
58   SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef);
59   Identifier symbolNameId =
60       Identifier::get(SymbolTable::getSymbolAttrName(), ctx);
61   do {
62     // Each parent of 'symbol' should define a symbol table.
63     if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
64       return failure();
65     // Each parent of 'symbol' should also be a symbol.
66     Optional<StringRef> symbolTableName =
67         getNameIfSymbol(symbolTableOp, symbolNameId);
68     if (!symbolTableName)
69       return failure();
70     results.push_back(SymbolRefAttr::get(*symbolTableName, nestedRefs, ctx));
71 
72     symbolTableOp = symbolTableOp->getParentOp();
73     if (symbolTableOp == within)
74       break;
75     nestedRefs.insert(nestedRefs.begin(),
76                       FlatSymbolRefAttr::get(*symbolTableName, ctx));
77   } while (true);
78   return success();
79 }
80 
81 /// Walk all of the operations within the given set of regions, without
82 /// traversing into any nested symbol tables. Stops walking if the result of the
83 /// callback is anything other than `WalkResult::advance`.
84 static Optional<WalkResult>
walkSymbolTable(MutableArrayRef<Region> regions,function_ref<Optional<WalkResult> (Operation *)> callback)85 walkSymbolTable(MutableArrayRef<Region> regions,
86                 function_ref<Optional<WalkResult>(Operation *)> callback) {
87   SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions));
88   while (!worklist.empty()) {
89     for (Operation &op : worklist.pop_back_val()->getOps()) {
90       Optional<WalkResult> result = callback(&op);
91       if (result != WalkResult::advance())
92         return result;
93 
94       // If this op defines a new symbol table scope, we can't traverse. Any
95       // symbol references nested within 'op' are different semantically.
96       if (!op.hasTrait<OpTrait::SymbolTable>()) {
97         for (Region &region : op.getRegions())
98           worklist.push_back(&region);
99       }
100     }
101   }
102   return WalkResult::advance();
103 }
104 
105 //===----------------------------------------------------------------------===//
106 // SymbolTable
107 //===----------------------------------------------------------------------===//
108 
109 /// Build a symbol table with the symbols within the given operation.
SymbolTable(Operation * symbolTableOp)110 SymbolTable::SymbolTable(Operation *symbolTableOp)
111     : symbolTableOp(symbolTableOp) {
112   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() &&
113          "expected operation to have SymbolTable trait");
114   assert(symbolTableOp->getNumRegions() == 1 &&
115          "expected operation to have a single region");
116   assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) &&
117          "expected operation to have a single block");
118 
119   Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(),
120                                             symbolTableOp->getContext());
121   for (auto &op : symbolTableOp->getRegion(0).front()) {
122     Optional<StringRef> name = getNameIfSymbol(&op, symbolNameId);
123     if (!name)
124       continue;
125 
126     auto inserted = symbolTable.insert({*name, &op});
127     (void)inserted;
128     assert(inserted.second &&
129            "expected region to contain uniquely named symbol operations");
130   }
131 }
132 
133 /// Look up a symbol with the specified name, returning null if no such name
134 /// exists. Names never include the @ on them.
lookup(StringRef name) const135 Operation *SymbolTable::lookup(StringRef name) const {
136   return symbolTable.lookup(name);
137 }
138 
139 /// Erase the given symbol from the table.
erase(Operation * symbol)140 void SymbolTable::erase(Operation *symbol) {
141   Optional<StringRef> name = getNameIfSymbol(symbol);
142   assert(name && "expected valid 'name' attribute");
143   assert(symbol->getParentOp() == symbolTableOp &&
144          "expected this operation to be inside of the operation with this "
145          "SymbolTable");
146 
147   auto it = symbolTable.find(*name);
148   if (it != symbolTable.end() && it->second == symbol) {
149     symbolTable.erase(it);
150     symbol->erase();
151   }
152 }
153 
154 // TODO: Consider if this should be renamed to something like insertOrUpdate
155 /// Insert a new symbol into the table and associated operation if not already
156 /// there and rename it as necessary to avoid collisions.
insert(Operation * symbol,Block::iterator insertPt)157 void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) {
158   // The symbol cannot be the child of another op and must be the child of the
159   // symbolTableOp after this.
160   //
161   // TODO: consider if SymbolTable's constructor should behave the same.
162   if (!symbol->getParentOp()) {
163     auto &body = symbolTableOp->getRegion(0).front();
164     if (insertPt == Block::iterator() || insertPt == body.end())
165       insertPt = Block::iterator(body.getTerminator());
166 
167     assert(insertPt->getParentOp() == symbolTableOp &&
168            "expected insertPt to be in the associated module operation");
169 
170     body.getOperations().insert(insertPt, symbol);
171   }
172   assert(symbol->getParentOp() == symbolTableOp &&
173          "symbol is already inserted in another op");
174 
175   // Add this symbol to the symbol table, uniquing the name if a conflict is
176   // detected.
177   StringRef name = getSymbolName(symbol);
178   if (symbolTable.insert({name, symbol}).second)
179     return;
180   // If the symbol was already in the table, also return.
181   if (symbolTable.lookup(name) == symbol)
182     return;
183   // If a conflict was detected, then the symbol will not have been added to
184   // the symbol table. Try suffixes until we get to a unique name that works.
185   SmallString<128> nameBuffer(name);
186   unsigned originalLength = nameBuffer.size();
187 
188   // Iteratively try suffixes until we find one that isn't used.
189   do {
190     nameBuffer.resize(originalLength);
191     nameBuffer += '_';
192     nameBuffer += std::to_string(uniquingCounter++);
193   } while (!symbolTable.insert({nameBuffer, symbol}).second);
194   setSymbolName(symbol, nameBuffer);
195 }
196 
197 /// Returns the name of the given symbol operation.
getSymbolName(Operation * symbol)198 StringRef SymbolTable::getSymbolName(Operation *symbol) {
199   Optional<StringRef> name = getNameIfSymbol(symbol);
200   assert(name && "expected valid symbol name");
201   return *name;
202 }
203 /// Sets the name of the given symbol operation.
setSymbolName(Operation * symbol,StringRef name)204 void SymbolTable::setSymbolName(Operation *symbol, StringRef name) {
205   symbol->setAttr(getSymbolAttrName(),
206                   StringAttr::get(name, symbol->getContext()));
207 }
208 
209 /// Returns the visibility of the given symbol operation.
getSymbolVisibility(Operation * symbol)210 SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) {
211   // If the attribute doesn't exist, assume public.
212   StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName());
213   if (!vis)
214     return Visibility::Public;
215 
216   // Otherwise, switch on the string value.
217   return StringSwitch<Visibility>(vis.getValue())
218       .Case("private", Visibility::Private)
219       .Case("nested", Visibility::Nested)
220       .Case("public", Visibility::Public);
221 }
222 /// Sets the visibility of the given symbol operation.
setSymbolVisibility(Operation * symbol,Visibility vis)223 void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) {
224   MLIRContext *ctx = symbol->getContext();
225 
226   // If the visibility is public, just drop the attribute as this is the
227   // default.
228   if (vis == Visibility::Public) {
229     symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx));
230     return;
231   }
232 
233   // Otherwise, update the attribute.
234   assert((vis == Visibility::Private || vis == Visibility::Nested) &&
235          "unknown symbol visibility kind");
236 
237   StringRef visName = vis == Visibility::Private ? "private" : "nested";
238   symbol->setAttr(getVisibilityAttrName(), StringAttr::get(visName, ctx));
239 }
240 
241 /// Returns the nearest symbol table from a given operation `from`. Returns
242 /// nullptr if no valid parent symbol table could be found.
getNearestSymbolTable(Operation * from)243 Operation *SymbolTable::getNearestSymbolTable(Operation *from) {
244   assert(from && "expected valid operation");
245   if (isPotentiallyUnknownSymbolTable(from))
246     return nullptr;
247 
248   while (!from->hasTrait<OpTrait::SymbolTable>()) {
249     from = from->getParentOp();
250 
251     // Check that this is a valid op and isn't an unknown symbol table.
252     if (!from || isPotentiallyUnknownSymbolTable(from))
253       return nullptr;
254   }
255   return from;
256 }
257 
258 /// Walks all symbol table operations nested within, and including, `op`. For
259 /// each symbol table operation, the provided callback is invoked with the op
260 /// and a boolean signifying if the symbols within that symbol table can be
261 /// treated as if all uses are visible. `allSymUsesVisible` identifies whether
262 /// all of the symbol uses of symbols within `op` are visible.
walkSymbolTables(Operation * op,bool allSymUsesVisible,function_ref<void (Operation *,bool)> callback)263 void SymbolTable::walkSymbolTables(
264     Operation *op, bool allSymUsesVisible,
265     function_ref<void(Operation *, bool)> callback) {
266   bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>();
267   if (isSymbolTable) {
268     SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op);
269     allSymUsesVisible |= !symbol || symbol.isPrivate();
270   } else {
271     // Otherwise if 'op' is not a symbol table, any nested symbols are
272     // guaranteed to be hidden.
273     allSymUsesVisible = true;
274   }
275 
276   for (Region &region : op->getRegions())
277     for (Block &block : region)
278       for (Operation &nestedOp : block)
279         walkSymbolTables(&nestedOp, allSymUsesVisible, callback);
280 
281   // If 'op' had the symbol table trait, visit it after any nested symbol
282   // tables.
283   if (isSymbolTable)
284     callback(op, allSymUsesVisible);
285 }
286 
287 /// Returns the operation registered with the given symbol name with the
288 /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
289 /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
290 /// was found.
lookupSymbolIn(Operation * symbolTableOp,StringRef symbol)291 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
292                                        StringRef symbol) {
293   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
294 
295   // Look for a symbol with the given name.
296   Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(),
297                                             symbolTableOp->getContext());
298   for (auto &op : symbolTableOp->getRegion(0).front().without_terminator())
299     if (getNameIfSymbol(&op, symbolNameId) == symbol)
300       return &op;
301   return nullptr;
302 }
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr symbol)303 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
304                                        SymbolRefAttr symbol) {
305   SmallVector<Operation *, 4> resolvedSymbols;
306   if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols)))
307     return nullptr;
308   return resolvedSymbols.back();
309 }
310 
311 /// Internal implementation of `lookupSymbolIn` that allows for specialized
312 /// implementations of the lookup function.
lookupSymbolInImpl(Operation * symbolTableOp,SymbolRefAttr symbol,SmallVectorImpl<Operation * > & symbols,function_ref<Operation * (Operation *,StringRef)> lookupSymbolFn)313 static LogicalResult lookupSymbolInImpl(
314     Operation *symbolTableOp, SymbolRefAttr symbol,
315     SmallVectorImpl<Operation *> &symbols,
316     function_ref<Operation *(Operation *, StringRef)> lookupSymbolFn) {
317   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
318 
319   // Lookup the root reference for this symbol.
320   symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference());
321   if (!symbolTableOp)
322     return failure();
323   symbols.push_back(symbolTableOp);
324 
325   // If there are no nested references, just return the root symbol directly.
326   ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences();
327   if (nestedRefs.empty())
328     return success();
329 
330   // Verify that the root is also a symbol table.
331   if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
332     return failure();
333 
334   // Otherwise, lookup each of the nested non-leaf references and ensure that
335   // each corresponds to a valid symbol table.
336   for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) {
337     symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getValue());
338     if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>())
339       return failure();
340     symbols.push_back(symbolTableOp);
341   }
342   symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference()));
343   return success(symbols.back());
344 }
345 
346 LogicalResult
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr symbol,SmallVectorImpl<Operation * > & symbols)347 SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol,
348                             SmallVectorImpl<Operation *> &symbols) {
349   auto lookupFn = [](Operation *symbolTableOp, StringRef symbol) {
350     return lookupSymbolIn(symbolTableOp, symbol);
351   };
352   return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn);
353 }
354 
355 /// Returns the operation registered with the given symbol name within the
356 /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
357 /// nullptr if no valid symbol was found.
lookupNearestSymbolFrom(Operation * from,StringRef symbol)358 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
359                                                 StringRef symbol) {
360   Operation *symbolTableOp = getNearestSymbolTable(from);
361   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
362 }
lookupNearestSymbolFrom(Operation * from,SymbolRefAttr symbol)363 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
364                                                 SymbolRefAttr symbol) {
365   Operation *symbolTableOp = getNearestSymbolTable(from);
366   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
367 }
368 
369 //===----------------------------------------------------------------------===//
370 // SymbolTable Trait Types
371 //===----------------------------------------------------------------------===//
372 
verifySymbolTable(Operation * op)373 LogicalResult detail::verifySymbolTable(Operation *op) {
374   if (op->getNumRegions() != 1)
375     return op->emitOpError()
376            << "Operations with a 'SymbolTable' must have exactly one region";
377   if (!llvm::hasSingleElement(op->getRegion(0)))
378     return op->emitOpError()
379            << "Operations with a 'SymbolTable' must have exactly one block";
380 
381   // Check that all symbols are uniquely named within child regions.
382   DenseMap<Attribute, Location> nameToOrigLoc;
383   for (auto &block : op->getRegion(0)) {
384     for (auto &op : block) {
385       // Check for a symbol name attribute.
386       auto nameAttr =
387           op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
388       if (!nameAttr)
389         continue;
390 
391       // Try to insert this symbol into the table.
392       auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc());
393       if (!it.second)
394         return op.emitError()
395             .append("redefinition of symbol named '", nameAttr.getValue(), "'")
396             .attachNote(it.first->second)
397             .append("see existing symbol definition here");
398     }
399   }
400 
401   // Verify any nested symbol user operations.
402   SymbolTableCollection symbolTable;
403   auto verifySymbolUserFn = [&](Operation *op) -> Optional<WalkResult> {
404     if (SymbolUserOpInterface user = dyn_cast<SymbolUserOpInterface>(op))
405       return WalkResult(user.verifySymbolUses(symbolTable));
406     return WalkResult::advance();
407   };
408 
409   Optional<WalkResult> result =
410       walkSymbolTable(op->getRegions(), verifySymbolUserFn);
411   return success(result && !result->wasInterrupted());
412 }
413 
verifySymbol(Operation * op)414 LogicalResult detail::verifySymbol(Operation *op) {
415   // Verify the name attribute.
416   if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()))
417     return op->emitOpError() << "requires string attribute '"
418                              << mlir::SymbolTable::getSymbolAttrName() << "'";
419 
420   // Verify the visibility attribute.
421   if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) {
422     StringAttr visStrAttr = vis.dyn_cast<StringAttr>();
423     if (!visStrAttr)
424       return op->emitOpError() << "requires visibility attribute '"
425                                << mlir::SymbolTable::getVisibilityAttrName()
426                                << "' to be a string attribute, but got " << vis;
427 
428     if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"},
429                             visStrAttr.getValue()))
430       return op->emitOpError()
431              << "visibility expected to be one of [\"public\", \"private\", "
432                 "\"nested\"], but got "
433              << visStrAttr;
434   }
435   return success();
436 }
437 
438 //===----------------------------------------------------------------------===//
439 // Symbol Use Lists
440 //===----------------------------------------------------------------------===//
441 
442 /// Walk all of the symbol references within the given operation, invoking the
443 /// provided callback for each found use. The callbacks takes as arguments: the
444 /// use of the symbol, and the nested access chain to the attribute within the
445 /// operation dictionary. An access chain is a set of indices into nested
446 /// container attributes. For example, a symbol use in an attribute dictionary
447 /// that looks like the following:
448 ///
449 ///    {use = [{other_attr, @symbol}]}
450 ///
451 /// May have the following access chain:
452 ///
453 ///     [0, 0, 1]
454 ///
walkSymbolRefs(Operation * op,function_ref<WalkResult (SymbolTable::SymbolUse,ArrayRef<int>)> callback)455 static WalkResult walkSymbolRefs(
456     Operation *op,
457     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
458   // Check to see if the operation has any attributes.
459   DictionaryAttr attrDict = op->getAttrDictionary();
460   if (attrDict.empty())
461     return WalkResult::advance();
462 
463   // A worklist of a container attribute and the current index into the held
464   // attribute list.
465   SmallVector<Attribute, 1> attrWorklist(1, attrDict);
466   SmallVector<int, 1> curAccessChain(1, /*Value=*/-1);
467 
468   // Process the symbol references within the given nested attribute range.
469   auto processAttrs = [&](int &index, auto attrRange) -> WalkResult {
470     for (Attribute attr : llvm::drop_begin(attrRange, index)) {
471       /// Check for a nested container attribute, these will also need to be
472       /// walked.
473       if (attr.isa<ArrayAttr, DictionaryAttr>()) {
474         attrWorklist.push_back(attr);
475         curAccessChain.push_back(-1);
476         return WalkResult::advance();
477       }
478 
479       // Invoke the provided callback if we find a symbol use and check for a
480       // requested interrupt.
481       if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>())
482         if (callback({op, symbolRef}, curAccessChain).wasInterrupted())
483           return WalkResult::interrupt();
484 
485       // Make sure to keep the index counter in sync.
486       ++index;
487     }
488 
489     // Pop this container attribute from the worklist.
490     attrWorklist.pop_back();
491     curAccessChain.pop_back();
492     return WalkResult::advance();
493   };
494 
495   WalkResult result = WalkResult::advance();
496   do {
497     Attribute attr = attrWorklist.back();
498     int &index = curAccessChain.back();
499     ++index;
500 
501     // Process the given attribute, which is guaranteed to be a container.
502     if (auto dict = attr.dyn_cast<DictionaryAttr>())
503       result = processAttrs(index, make_second_range(dict.getValue()));
504     else
505       result = processAttrs(index, attr.cast<ArrayAttr>().getValue());
506   } while (!attrWorklist.empty() && !result.wasInterrupted());
507   return result;
508 }
509 
510 /// Walk all of the uses, for any symbol, that are nested within the given
511 /// regions, invoking the provided callback for each. This does not traverse
512 /// into any nested symbol tables.
walkSymbolUses(MutableArrayRef<Region> regions,function_ref<WalkResult (SymbolTable::SymbolUse,ArrayRef<int>)> callback)513 static Optional<WalkResult> walkSymbolUses(
514     MutableArrayRef<Region> regions,
515     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
516   return walkSymbolTable(regions, [&](Operation *op) -> Optional<WalkResult> {
517     // Check that this isn't a potentially unknown symbol table.
518     if (isPotentiallyUnknownSymbolTable(op))
519       return llvm::None;
520 
521     return walkSymbolRefs(op, callback);
522   });
523 }
524 /// Walk all of the uses, for any symbol, that are nested within the given
525 /// operation 'from', invoking the provided callback for each. This does not
526 /// traverse into any nested symbol tables.
walkSymbolUses(Operation * from,function_ref<WalkResult (SymbolTable::SymbolUse,ArrayRef<int>)> callback)527 static Optional<WalkResult> walkSymbolUses(
528     Operation *from,
529     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
530   // If this operation has regions, and it, as well as its dialect, isn't
531   // registered then conservatively fail. The operation may define a
532   // symbol table, so we can't opaquely know if we should traverse to find
533   // nested uses.
534   if (isPotentiallyUnknownSymbolTable(from))
535     return llvm::None;
536 
537   // Walk the uses on this operation.
538   if (walkSymbolRefs(from, callback).wasInterrupted())
539     return WalkResult::interrupt();
540 
541   // Only recurse if this operation is not a symbol table. A symbol table
542   // defines a new scope, so we can't walk the attributes from within the symbol
543   // table op.
544   if (!from->hasTrait<OpTrait::SymbolTable>())
545     return walkSymbolUses(from->getRegions(), callback);
546   return WalkResult::advance();
547 }
548 
549 namespace {
550 /// This class represents a single symbol scope. A symbol scope represents the
551 /// set of operations nested within a symbol table that may reference symbols
552 /// within that table. A symbol scope does not contain the symbol table
553 /// operation itself, just its contained operations. A scope ends at leaf
554 /// operations or another symbol table operation.
555 struct SymbolScope {
556   /// Walk the symbol uses within this scope, invoking the given callback.
557   /// This variant is used when the callback type matches that expected by
558   /// 'walkSymbolUses'.
559   template <typename CallbackT,
560             typename std::enable_if_t<!std::is_same<
561                 typename llvm::function_traits<CallbackT>::result_t,
562                 void>::value> * = nullptr>
walk__anon2d4c167d0511::SymbolScope563   Optional<WalkResult> walk(CallbackT cback) {
564     if (Region *region = limit.dyn_cast<Region *>())
565       return walkSymbolUses(*region, cback);
566     return walkSymbolUses(limit.get<Operation *>(), cback);
567   }
568   /// This variant is used when the callback type matches a stripped down type:
569   /// void(SymbolTable::SymbolUse use)
570   template <typename CallbackT,
571             typename std::enable_if_t<std::is_same<
572                 typename llvm::function_traits<CallbackT>::result_t,
573                 void>::value> * = nullptr>
walk__anon2d4c167d0511::SymbolScope574   Optional<WalkResult> walk(CallbackT cback) {
575     return walk([=](SymbolTable::SymbolUse use, ArrayRef<int>) {
576       return cback(use), WalkResult::advance();
577     });
578   }
579 
580   /// The representation of the symbol within this scope.
581   SymbolRefAttr symbol;
582 
583   /// The IR unit representing this scope.
584   llvm::PointerUnion<Operation *, Region *> limit;
585 };
586 } // end anonymous namespace
587 
588 /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'.
collectSymbolScopes(Operation * symbol,Operation * limit)589 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
590                                                        Operation *limit) {
591   StringRef symName = SymbolTable::getSymbolName(symbol);
592   assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit);
593 
594   // Compute the ancestors of 'limit'.
595   llvm::SetVector<Operation *, SmallVector<Operation *, 4>,
596                   SmallPtrSet<Operation *, 4>>
597       limitAncestors;
598   Operation *limitAncestor = limit;
599   do {
600     // Check to see if 'symbol' is an ancestor of 'limit'.
601     if (limitAncestor == symbol) {
602       // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr
603       // doesn't support parent references.
604       if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) ==
605           symbol->getParentOp())
606         return {{SymbolRefAttr::get(symName, symbol->getContext()), limit}};
607       return {};
608     }
609 
610     limitAncestors.insert(limitAncestor);
611   } while ((limitAncestor = limitAncestor->getParentOp()));
612 
613   // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'.
614   Operation *commonAncestor = symbol->getParentOp();
615   do {
616     if (limitAncestors.count(commonAncestor))
617       break;
618   } while ((commonAncestor = commonAncestor->getParentOp()));
619   assert(commonAncestor && "'limit' and 'symbol' have no common ancestor");
620 
621   // Compute the set of valid nested references for 'symbol' as far up to the
622   // common ancestor as possible.
623   SmallVector<SymbolRefAttr, 2> references;
624   bool collectedAllReferences = succeeded(
625       collectValidReferencesFor(symbol, symName, commonAncestor, references));
626 
627   // Handle the case where the common ancestor is 'limit'.
628   if (commonAncestor == limit) {
629     SmallVector<SymbolScope, 2> scopes;
630 
631     // Walk each of the ancestors of 'symbol', calling the compute function for
632     // each one.
633     Operation *limitIt = symbol->getParentOp();
634     for (size_t i = 0, e = references.size(); i != e;
635          ++i, limitIt = limitIt->getParentOp()) {
636       assert(limitIt->hasTrait<OpTrait::SymbolTable>());
637       scopes.push_back({references[i], &limitIt->getRegion(0)});
638     }
639     return scopes;
640   }
641 
642   // Otherwise, we just need the symbol reference for 'symbol' that will be
643   // used within 'limit'. This is the last reference in the list we computed
644   // above if we were able to collect all references.
645   if (!collectedAllReferences)
646     return {};
647   return {{references.back(), limit}};
648 }
collectSymbolScopes(Operation * symbol,Region * limit)649 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
650                                                        Region *limit) {
651   auto scopes = collectSymbolScopes(symbol, limit->getParentOp());
652 
653   // If we collected some scopes to walk, make sure to constrain the one for
654   // limit to the specific region requested.
655   if (!scopes.empty())
656     scopes.back().limit = limit;
657   return scopes;
658 }
659 template <typename IRUnit>
collectSymbolScopes(StringRef symbol,IRUnit * limit)660 static SmallVector<SymbolScope, 1> collectSymbolScopes(StringRef symbol,
661                                                        IRUnit *limit) {
662   return {{SymbolRefAttr::get(symbol, limit->getContext()), limit}};
663 }
664 
665 /// Returns true if the given reference 'SubRef' is a sub reference of the
666 /// reference 'ref', i.e. 'ref' is a further qualified reference.
isReferencePrefixOf(SymbolRefAttr subRef,SymbolRefAttr ref)667 static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) {
668   if (ref == subRef)
669     return true;
670 
671   // If the references are not pointer equal, check to see if `subRef` is a
672   // prefix of `ref`.
673   if (ref.isa<FlatSymbolRefAttr>() ||
674       ref.getRootReference() != subRef.getRootReference())
675     return false;
676 
677   auto refLeafs = ref.getNestedReferences();
678   auto subRefLeafs = subRef.getNestedReferences();
679   return subRefLeafs.size() < refLeafs.size() &&
680          subRefLeafs == refLeafs.take_front(subRefLeafs.size());
681 }
682 
683 //===----------------------------------------------------------------------===//
684 // SymbolTable::getSymbolUses
685 
686 /// The implementation of SymbolTable::getSymbolUses below.
687 template <typename FromT>
getSymbolUsesImpl(FromT from)688 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) {
689   std::vector<SymbolTable::SymbolUse> uses;
690   auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
691     uses.push_back(symbolUse);
692     return WalkResult::advance();
693   };
694   auto result = walkSymbolUses(from, walkFn);
695   return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None;
696 }
697 
698 /// Get an iterator range for all of the uses, for any symbol, that are nested
699 /// within the given operation 'from'. This does not traverse into any nested
700 /// symbol tables, and will also only return uses on 'from' if it does not
701 /// also define a symbol table. This is because we treat the region as the
702 /// boundary of the symbol table, and not the op itself. This function returns
703 /// None if there are any unknown operations that may potentially be symbol
704 /// tables.
getSymbolUses(Operation * from)705 auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> {
706   return getSymbolUsesImpl(from);
707 }
getSymbolUses(Region * from)708 auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> {
709   return getSymbolUsesImpl(MutableArrayRef<Region>(*from));
710 }
711 
712 //===----------------------------------------------------------------------===//
713 // SymbolTable::getSymbolUses
714 
715 /// The implementation of SymbolTable::getSymbolUses below.
716 template <typename SymbolT, typename IRUnitT>
getSymbolUsesImpl(SymbolT symbol,IRUnitT * limit)717 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol,
718                                                          IRUnitT *limit) {
719   std::vector<SymbolTable::SymbolUse> uses;
720   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
721     if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) {
722           if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()))
723             uses.push_back(symbolUse);
724         }))
725       return llvm::None;
726   }
727   return SymbolTable::UseRange(std::move(uses));
728 }
729 
730 /// Get all of the uses of the given symbol that are nested within the given
731 /// operation 'from', invoking the provided callback for each. This does not
732 /// traverse into any nested symbol tables. This function returns None if there
733 /// are any unknown operations that may potentially be symbol tables.
getSymbolUses(StringRef symbol,Operation * from)734 auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from)
735     -> Optional<UseRange> {
736   return getSymbolUsesImpl(symbol, from);
737 }
getSymbolUses(Operation * symbol,Operation * from)738 auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from)
739     -> Optional<UseRange> {
740   return getSymbolUsesImpl(symbol, from);
741 }
getSymbolUses(StringRef symbol,Region * from)742 auto SymbolTable::getSymbolUses(StringRef symbol, Region *from)
743     -> Optional<UseRange> {
744   return getSymbolUsesImpl(symbol, from);
745 }
getSymbolUses(Operation * symbol,Region * from)746 auto SymbolTable::getSymbolUses(Operation *symbol, Region *from)
747     -> Optional<UseRange> {
748   return getSymbolUsesImpl(symbol, from);
749 }
750 
751 //===----------------------------------------------------------------------===//
752 // SymbolTable::symbolKnownUseEmpty
753 
754 /// The implementation of SymbolTable::symbolKnownUseEmpty below.
755 template <typename SymbolT, typename IRUnitT>
symbolKnownUseEmptyImpl(SymbolT symbol,IRUnitT * limit)756 static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) {
757   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
758     // Walk all of the symbol uses looking for a reference to 'symbol'.
759     if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
760           return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())
761                      ? WalkResult::interrupt()
762                      : WalkResult::advance();
763         }) != WalkResult::advance())
764       return false;
765   }
766   return true;
767 }
768 
769 /// Return if the given symbol is known to have no uses that are nested within
770 /// the given operation 'from'. This does not traverse into any nested symbol
771 /// tables. This function will also return false if there are any unknown
772 /// operations that may potentially be symbol tables.
symbolKnownUseEmpty(StringRef symbol,Operation * from)773 bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) {
774   return symbolKnownUseEmptyImpl(symbol, from);
775 }
symbolKnownUseEmpty(Operation * symbol,Operation * from)776 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) {
777   return symbolKnownUseEmptyImpl(symbol, from);
778 }
symbolKnownUseEmpty(StringRef symbol,Region * from)779 bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Region *from) {
780   return symbolKnownUseEmptyImpl(symbol, from);
781 }
symbolKnownUseEmpty(Operation * symbol,Region * from)782 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) {
783   return symbolKnownUseEmptyImpl(symbol, from);
784 }
785 
786 //===----------------------------------------------------------------------===//
787 // SymbolTable::replaceAllSymbolUses
788 
789 /// Rebuild the given attribute container after replacing all references to a
790 /// symbol with the updated attribute in 'accesses'.
rebuildAttrAfterRAUW(Attribute container,ArrayRef<std::pair<SmallVector<int,1>,SymbolRefAttr>> accesses,unsigned depth)791 static Attribute rebuildAttrAfterRAUW(
792     Attribute container,
793     ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses,
794     unsigned depth) {
795   // Given a range of Attributes, update the ones referred to by the given
796   // access chains to point to the new symbol attribute.
797   auto updateAttrs = [&](auto &&attrRange) {
798     auto attrBegin = std::begin(attrRange);
799     for (unsigned i = 0, e = accesses.size(); i != e;) {
800       ArrayRef<int> access = accesses[i].first;
801       Attribute &attr = *std::next(attrBegin, access[depth]);
802 
803       // Check to see if this is a leaf access, i.e. a SymbolRef.
804       if (access.size() == depth + 1) {
805         attr = accesses[i].second;
806         ++i;
807         continue;
808       }
809 
810       // Otherwise, this is a container. Collect all of the accesses for this
811       // index and recurse. The recursion here is bounded by the size of the
812       // largest access array.
813       auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) {
814         ArrayRef<int> nextAccess = it.first;
815         return nextAccess.size() > depth + 1 &&
816                nextAccess[depth] == access[depth];
817       });
818       attr = rebuildAttrAfterRAUW(attr, nestedAccesses, depth + 1);
819 
820       // Skip over all of the accesses that refer to the nested container.
821       i += nestedAccesses.size();
822     }
823   };
824 
825   if (auto dictAttr = container.dyn_cast<DictionaryAttr>()) {
826     auto newAttrs = llvm::to_vector<4>(dictAttr.getValue());
827     updateAttrs(make_second_range(newAttrs));
828     return DictionaryAttr::get(newAttrs, dictAttr.getContext());
829   }
830   auto newAttrs = llvm::to_vector<4>(container.cast<ArrayAttr>().getValue());
831   updateAttrs(newAttrs);
832   return ArrayAttr::get(newAttrs, container.getContext());
833 }
834 
835 /// Generates a new symbol reference attribute with a new leaf reference.
generateNewRefAttr(SymbolRefAttr oldAttr,FlatSymbolRefAttr newLeafAttr)836 static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr,
837                                         FlatSymbolRefAttr newLeafAttr) {
838   if (oldAttr.isa<FlatSymbolRefAttr>())
839     return newLeafAttr;
840   auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences());
841   nestedRefs.back() = newLeafAttr;
842   return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs,
843                             oldAttr.getContext());
844 }
845 
846 /// The implementation of SymbolTable::replaceAllSymbolUses below.
847 template <typename SymbolT, typename IRUnitT>
848 static LogicalResult
replaceAllSymbolUsesImpl(SymbolT symbol,StringRef newSymbol,IRUnitT * limit)849 replaceAllSymbolUsesImpl(SymbolT symbol, StringRef newSymbol, IRUnitT *limit) {
850   // A collection of operations along with their new attribute dictionary.
851   std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts;
852 
853   // The current operation being processed.
854   Operation *curOp = nullptr;
855 
856   // The set of access chains into the attribute dictionary of the current
857   // operation, as well as the replacement attribute to use.
858   SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains;
859 
860   // Generate a new attribute dictionary for the current operation by replacing
861   // references to the old symbol.
862   auto generateNewAttrDict = [&] {
863     auto oldDict = curOp->getAttrDictionary();
864     auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0);
865     return newDict.cast<DictionaryAttr>();
866   };
867 
868   // Generate a new attribute to replace the given attribute.
869   MLIRContext *ctx = limit->getContext();
870   FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol, ctx);
871   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
872     SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr);
873     auto walkFn = [&](SymbolTable::SymbolUse symbolUse,
874                       ArrayRef<int> accessChain) {
875       SymbolRefAttr useRef = symbolUse.getSymbolRef();
876       if (!isReferencePrefixOf(scope.symbol, useRef))
877         return WalkResult::advance();
878 
879       // If we have a valid match, check to see if this is a proper
880       // subreference. If it is, then we will need to generate a different new
881       // attribute specifically for this use.
882       SymbolRefAttr replacementRef = newAttr;
883       if (useRef != scope.symbol) {
884         if (scope.symbol.isa<FlatSymbolRefAttr>()) {
885           replacementRef =
886               SymbolRefAttr::get(newSymbol, useRef.getNestedReferences(), ctx);
887         } else {
888           auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences());
889           nestedRefs[scope.symbol.getNestedReferences().size() - 1] =
890               newLeafAttr;
891           replacementRef =
892               SymbolRefAttr::get(useRef.getRootReference(), nestedRefs, ctx);
893         }
894       }
895 
896       // If there was a previous operation, generate a new attribute dict
897       // for it. This means that we've finished processing the current
898       // operation, so generate a new dictionary for it.
899       if (curOp && symbolUse.getUser() != curOp) {
900         updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
901         accessChains.clear();
902       }
903 
904       // Record this access.
905       curOp = symbolUse.getUser();
906       accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef});
907       return WalkResult::advance();
908     };
909     if (!scope.walk(walkFn))
910       return failure();
911 
912     // Check to see if we have a dangling op that needs to be processed.
913     if (curOp) {
914       updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
915       curOp = nullptr;
916     }
917   }
918 
919   // Update the attribute dictionaries as necessary.
920   for (auto &it : updatedAttrDicts)
921     it.first->setAttrs(it.second);
922   return success();
923 }
924 
925 /// Attempt to replace all uses of the given symbol 'oldSymbol' with the
926 /// provided symbol 'newSymbol' that are nested within the given operation
927 /// 'from'. This does not traverse into any nested symbol tables. If there are
928 /// any unknown operations that may potentially be symbol tables, no uses are
929 /// replaced and failure is returned.
replaceAllSymbolUses(StringRef oldSymbol,StringRef newSymbol,Operation * from)930 LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
931                                                 StringRef newSymbol,
932                                                 Operation *from) {
933   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
934 }
replaceAllSymbolUses(Operation * oldSymbol,StringRef newSymbol,Operation * from)935 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
936                                                 StringRef newSymbol,
937                                                 Operation *from) {
938   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
939 }
replaceAllSymbolUses(StringRef oldSymbol,StringRef newSymbol,Region * from)940 LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
941                                                 StringRef newSymbol,
942                                                 Region *from) {
943   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
944 }
replaceAllSymbolUses(Operation * oldSymbol,StringRef newSymbol,Region * from)945 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
946                                                 StringRef newSymbol,
947                                                 Region *from) {
948   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
949 }
950 
951 //===----------------------------------------------------------------------===//
952 // SymbolTableCollection
953 //===----------------------------------------------------------------------===//
954 
lookupSymbolIn(Operation * symbolTableOp,StringRef symbol)955 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
956                                                  StringRef symbol) {
957   return getSymbolTable(symbolTableOp).lookup(symbol);
958 }
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr name)959 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
960                                                  SymbolRefAttr name) {
961   SmallVector<Operation *, 4> symbols;
962   if (failed(lookupSymbolIn(symbolTableOp, name, symbols)))
963     return nullptr;
964   return symbols.back();
965 }
966 /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by
967 /// a given SymbolRefAttr. Returns failure if any of the nested references could
968 /// not be resolved.
969 LogicalResult
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr name,SmallVectorImpl<Operation * > & symbols)970 SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
971                                       SymbolRefAttr name,
972                                       SmallVectorImpl<Operation *> &symbols) {
973   auto lookupFn = [this](Operation *symbolTableOp, StringRef symbol) {
974     return lookupSymbolIn(symbolTableOp, symbol);
975   };
976   return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn);
977 }
978 
979 /// Returns the operation registered with the given symbol name within the
980 /// closest parent operation of, or including, 'from' with the
981 /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was
982 /// found.
lookupNearestSymbolFrom(Operation * from,StringRef symbol)983 Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
984                                                           StringRef symbol) {
985   Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
986   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
987 }
988 Operation *
lookupNearestSymbolFrom(Operation * from,SymbolRefAttr symbol)989 SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
990                                                SymbolRefAttr symbol) {
991   Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
992   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
993 }
994 
995 /// Lookup, or create, a symbol table for an operation.
getSymbolTable(Operation * op)996 SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) {
997   auto it = symbolTables.try_emplace(op, nullptr);
998   if (it.second)
999     it.first->second = std::make_unique<SymbolTable>(op);
1000   return *it.first->second;
1001 }
1002 
1003 //===----------------------------------------------------------------------===//
1004 // Visibility parsing implementation.
1005 //===----------------------------------------------------------------------===//
1006 
parseOptionalVisibilityKeyword(OpAsmParser & parser,NamedAttrList & attrs)1007 ParseResult impl::parseOptionalVisibilityKeyword(OpAsmParser &parser,
1008                                                  NamedAttrList &attrs) {
1009   StringRef visibility;
1010   if (parser.parseOptionalKeyword(&visibility, {"public", "private", "nested"}))
1011     return failure();
1012 
1013   StringAttr visibilityAttr = parser.getBuilder().getStringAttr(visibility);
1014   attrs.push_back(parser.getBuilder().getNamedAttr(
1015       SymbolTable::getVisibilityAttrName(), visibilityAttr));
1016   return success();
1017 }
1018 
1019 //===----------------------------------------------------------------------===//
1020 // Symbol Interfaces
1021 //===----------------------------------------------------------------------===//
1022 
1023 /// Include the generated symbol interfaces.
1024 #include "mlir/IR/SymbolInterfaces.cpp.inc"
1025