1 #include <atomic>
2 #include <chrono>
3 #include <cstdlib>
4 #include <cstring>
5 #include <errno.h>
6 #include <inttypes.h>
7 #include <memory>
8 #include <mutex>
9 #if !defined(_WIN32)
10 #include <pthread.h>
11 #include <signal.h>
12 #include <unistd.h>
13 #endif
14 #include "thread.h"
15 #include <setjmp.h>
16 #include <stdint.h>
17 #include <stdio.h>
18 #include <string.h>
19 #include <string>
20 #include <thread>
21 #include <time.h>
22 #include <vector>
23 #if defined(__APPLE__)
24 #include <TargetConditionals.h>
25 #endif
26 
27 static const char *const PRINT_PID_COMMAND = "print-pid";
28 
29 static bool g_print_thread_ids = false;
30 static std::mutex g_print_mutex;
31 static bool g_threads_do_segfault = false;
32 
33 static std::mutex g_jump_buffer_mutex;
34 static jmp_buf g_jump_buffer;
35 static bool g_is_segfaulting = false;
36 
37 static char g_message[256];
38 
39 static volatile char g_c1 = '0';
40 static volatile char g_c2 = '1';
41 
print_pid()42 static void print_pid() {
43 #if defined(_WIN32)
44   fprintf(stderr, "PID: %d\n", ::GetCurrentProcessId());
45 #else
46   fprintf(stderr, "PID: %d\n", getpid());
47 #endif
48 }
49 
signal_handler(int signo)50 static void signal_handler(int signo) {
51 #if defined(_WIN32)
52   // No signal support on Windows.
53 #else
54   const char *signal_name = nullptr;
55   switch (signo) {
56   case SIGUSR1:
57     signal_name = "SIGUSR1";
58     break;
59   case SIGSEGV:
60     signal_name = "SIGSEGV";
61     break;
62   default:
63     signal_name = nullptr;
64   }
65 
66   // Print notice that we received the signal on a given thread.
67   char buf[100];
68   if (signal_name)
69     snprintf(buf, sizeof(buf), "received %s on thread id: %" PRIx64 "\n", signal_name, get_thread_id());
70   else
71     snprintf(buf, sizeof(buf), "received signo %d (%s) on thread id: %" PRIx64 "\n", signo, strsignal(signo), get_thread_id());
72   write(STDOUT_FILENO, buf, strlen(buf));
73 
74   // Reset the signal handler if we're one of the expected signal handlers.
75   switch (signo) {
76   case SIGSEGV:
77     if (g_is_segfaulting) {
78       // Fix up the pointer we're writing to.  This needs to happen if nothing
79       // intercepts the SIGSEGV (i.e. if somebody runs this from the command
80       // line).
81       longjmp(g_jump_buffer, 1);
82     }
83     break;
84   case SIGUSR1:
85     if (g_is_segfaulting) {
86       // Fix up the pointer we're writing to.  This is used to test gdb remote
87       // signal delivery. A SIGSEGV will be raised when the thread is created,
88       // switched out for a SIGUSR1, and then this code still needs to fix the
89       // seg fault. (i.e. if somebody runs this from the command line).
90       longjmp(g_jump_buffer, 1);
91     }
92     break;
93   }
94 
95   // Reset the signal handler.
96   sig_t sig_result = signal(signo, signal_handler);
97   if (sig_result == SIG_ERR) {
98     fprintf(stderr, "failed to set signal handler: errno=%d\n", errno);
99     exit(1);
100   }
101 #endif
102 }
103 
swap_chars()104 static void swap_chars() {
105 #if defined(__x86_64__) || defined(__i386__)
106   asm volatile("movb %1, (%2)\n\t"
107                "movb %0, (%3)\n\t"
108                "movb %0, (%2)\n\t"
109                "movb %1, (%3)\n\t"
110                :
111                : "i"('0'), "i"('1'), "r"(&g_c1), "r"(&g_c2)
112                : "memory");
113 #elif defined(__aarch64__)
114   asm volatile("strb %w1, [%2]\n\t"
115                "strb %w0, [%3]\n\t"
116                "strb %w0, [%2]\n\t"
117                "strb %w1, [%3]\n\t"
118                :
119                : "r"('0'), "r"('1'), "r"(&g_c1), "r"(&g_c2)
120                : "memory");
121 #elif defined(__arm__)
122   asm volatile("strb %1, [%2]\n\t"
123                "strb %0, [%3]\n\t"
124                "strb %0, [%2]\n\t"
125                "strb %1, [%3]\n\t"
126                :
127                : "r"('0'), "r"('1'), "r"(&g_c1), "r"(&g_c2)
128                : "memory");
129 #else
130 #warning This may generate unpredictible assembly and cause the single-stepping test to fail.
131 #warning Please add appropriate assembly for your target.
132   g_c1 = '1';
133   g_c2 = '0';
134 
135   g_c1 = '0';
136   g_c2 = '1';
137 #endif
138 }
139 
hello()140 static void hello() {
141   std::lock_guard<std::mutex> lock(g_print_mutex);
142   printf("hello, world\n");
143 }
144 
thread_func(void * arg)145 static void *thread_func(void *arg) {
146   static std::atomic<int> s_thread_index(1);
147   const int this_thread_index = s_thread_index++;
148   if (g_print_thread_ids) {
149     std::lock_guard<std::mutex> lock(g_print_mutex);
150     printf("thread %d id: %" PRIx64 "\n", this_thread_index, get_thread_id());
151   }
152 
153   if (g_threads_do_segfault) {
154     // Sleep for a number of seconds based on the thread index.
155     // TODO add ability to send commands to test exe so we can
156     // handle timing more precisely.  This is clunky.  All we're
157     // trying to do is add predictability as to the timing of
158     // signal generation by created threads.
159     int sleep_seconds = 2 * (this_thread_index - 1);
160     std::this_thread::sleep_for(std::chrono::seconds(sleep_seconds));
161 
162     // Test creating a SEGV.
163     {
164       std::lock_guard<std::mutex> lock(g_jump_buffer_mutex);
165       g_is_segfaulting = true;
166       int *bad_p = nullptr;
167       if (setjmp(g_jump_buffer) == 0) {
168         // Force a seg fault signal on this thread.
169         *bad_p = 0;
170       } else {
171         // Tell the system we're no longer seg faulting.
172         // Used by the SIGUSR1 signal handler that we inject
173         // in place of the SIGSEGV so it only tries to
174         // recover from the SIGSEGV if this seg fault code
175         // was in play.
176         g_is_segfaulting = false;
177       }
178     }
179 
180     {
181       std::lock_guard<std::mutex> lock(g_print_mutex);
182       printf("thread %" PRIx64 ": past SIGSEGV\n", get_thread_id());
183     }
184   }
185 
186   int sleep_seconds_remaining = 60;
187   std::this_thread::sleep_for(std::chrono::seconds(sleep_seconds_remaining));
188 
189   return nullptr;
190 }
191 
consume_front(std::string & str,const std::string & front)192 static bool consume_front(std::string &str, const std::string &front) {
193   if (str.find(front) != 0)
194     return false;
195 
196   str = str.substr(front.size());
197   return true;
198 }
199 
main(int argc,char ** argv)200 int main(int argc, char **argv) {
201   lldb_enable_attach();
202 
203   std::vector<std::thread> threads;
204   std::unique_ptr<uint8_t[]> heap_array_up;
205   int return_value = 0;
206 
207 #if !defined(_WIN32)
208   // Set the signal handler.
209   sig_t sig_result = signal(SIGALRM, signal_handler);
210   if (sig_result == SIG_ERR) {
211     fprintf(stderr, "failed to set SIGALRM signal handler: errno=%d\n", errno);
212     exit(1);
213   }
214 
215   sig_result = signal(SIGUSR1, signal_handler);
216   if (sig_result == SIG_ERR) {
217     fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno);
218     exit(1);
219   }
220 
221   sig_result = signal(SIGSEGV, signal_handler);
222   if (sig_result == SIG_ERR) {
223     fprintf(stderr, "failed to set SIGSEGV handler: errno=%d\n", errno);
224     exit(1);
225   }
226 
227   sig_result = signal(SIGCHLD, SIG_IGN);
228   if (sig_result == SIG_ERR) {
229     fprintf(stderr, "failed to set SIGCHLD handler: errno=%d\n", errno);
230     exit(1);
231   }
232 #endif
233 
234   // Process command line args.
235   for (int i = 1; i < argc; ++i) {
236     std::string arg = argv[i];
237     if (consume_front(arg, "stderr:")) {
238       // Treat remainder as text to go to stderr.
239       fprintf(stderr, "%s\n", arg.c_str());
240     } else if (consume_front(arg, "retval:")) {
241       // Treat as the return value for the program.
242       return_value = std::atoi(arg.c_str());
243     } else if (consume_front(arg, "sleep:")) {
244       // Treat as the amount of time to have this process sleep (in seconds).
245       int sleep_seconds_remaining = std::atoi(arg.c_str());
246 
247       // Loop around, sleeping until all sleep time is used up.  Note that
248       // signals will cause sleep to end early with the number of seconds
249       // remaining.
250       std::this_thread::sleep_for(
251           std::chrono::seconds(sleep_seconds_remaining));
252 
253     } else if (consume_front(arg, "set-message:")) {
254       // Copy the contents after "set-message:" to the g_message buffer.
255       // Used for reading inferior memory and verifying contents match
256       // expectations.
257       strncpy(g_message, arg.c_str(), sizeof(g_message));
258 
259       // Ensure we're null terminated.
260       g_message[sizeof(g_message) - 1] = '\0';
261 
262     } else if (consume_front(arg, "print-message:")) {
263       std::lock_guard<std::mutex> lock(g_print_mutex);
264       printf("message: %s\n", g_message);
265     } else if (consume_front(arg, "get-data-address-hex:")) {
266       volatile void *data_p = nullptr;
267 
268       if (arg == "g_message")
269         data_p = &g_message[0];
270       else if (arg == "g_c1")
271         data_p = &g_c1;
272       else if (arg == "g_c2")
273         data_p = &g_c2;
274 
275       std::lock_guard<std::mutex> lock(g_print_mutex);
276       printf("data address: %p\n", data_p);
277     } else if (consume_front(arg, "get-heap-address-hex:")) {
278       // Create a byte array if not already present.
279       if (!heap_array_up)
280         heap_array_up.reset(new uint8_t[32]);
281 
282       std::lock_guard<std::mutex> lock(g_print_mutex);
283       printf("heap address: %p\n", heap_array_up.get());
284 
285     } else if (consume_front(arg, "get-stack-address-hex:")) {
286       std::lock_guard<std::mutex> lock(g_print_mutex);
287       printf("stack address: %p\n", &return_value);
288     } else if (consume_front(arg, "get-code-address-hex:")) {
289       void (*func_p)() = nullptr;
290 
291       if (arg == "hello")
292         func_p = hello;
293       else if (arg == "swap_chars")
294         func_p = swap_chars;
295 
296       std::lock_guard<std::mutex> lock(g_print_mutex);
297       printf("code address: %p\n", func_p);
298     } else if (consume_front(arg, "call-function:")) {
299       void (*func_p)() = nullptr;
300 
301       if (arg == "hello")
302         func_p = hello;
303       else if (arg == "swap_chars")
304         func_p = swap_chars;
305       func_p();
306 #if !defined(_WIN32) && !defined(TARGET_OS_WATCH) && !defined(TARGET_OS_TV)
307     } else if (arg == "fork") {
308       if (fork() == 0)
309         _exit(0);
310     } else if (arg == "vfork") {
311       if (vfork() == 0)
312         _exit(0);
313 #endif
314     } else if (consume_front(arg, "thread:new")) {
315         threads.push_back(std::thread(thread_func, nullptr));
316     } else if (consume_front(arg, "thread:print-ids")) {
317       // Turn on thread id announcing.
318       g_print_thread_ids = true;
319 
320       // And announce us.
321       {
322         std::lock_guard<std::mutex> lock(g_print_mutex);
323         printf("thread 0 id: %" PRIx64 "\n", get_thread_id());
324       }
325     } else if (consume_front(arg, "thread:segfault")) {
326       g_threads_do_segfault = true;
327     } else if (consume_front(arg, "print-pid")) {
328       print_pid();
329     } else {
330       // Treat the argument as text for stdout.
331       printf("%s\n", argv[i]);
332     }
333   }
334 
335   // If we launched any threads, join them
336   for (std::vector<std::thread>::iterator it = threads.begin();
337        it != threads.end(); ++it)
338     it->join();
339 
340   return return_value;
341 }
342