1 //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Object/IRSymtab.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/SmallPtrSet.h"
13 #include "llvm/ADT/SmallString.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Config/llvm-config.h"
18 #include "llvm/IR/Comdat.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/GlobalAlias.h"
21 #include "llvm/IR/GlobalObject.h"
22 #include "llvm/IR/Mangler.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Bitcode/BitcodeReader.h"
26 #include "llvm/MC/StringTableBuilder.h"
27 #include "llvm/Object/IRObjectFile.h"
IRObjectFile(MemoryBufferRef Object,std::vector<std::unique_ptr<Module>> Mods)28 #include "llvm/Object/ModuleSymbolTable.h"
29 #include "llvm/Object/SymbolicFile.h"
30 #include "llvm/Support/Allocator.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/Error.h"
33 #include "llvm/Support/StringSaver.h"
34 #include "llvm/Support/VCSRevision.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <cassert>
37 #include <string>
38 #include <utility>
39 #include <vector>
40 
41 using namespace llvm;
42 using namespace irsymtab;
43 
44 static const char *LibcallRoutineNames[] = {
printSymbolName(raw_ostream & OS,DataRefImpl Symb) const45 #define HANDLE_LIBCALL(code, name) name,
46 #include "llvm/IR/RuntimeLibcalls.def"
47 #undef HANDLE_LIBCALL
48 };
49 
getSymbolFlags(DataRefImpl Symb) const50 namespace {
51 
52 const char *getExpectedProducerName() {
53   static char DefaultName[] = LLVM_VERSION_STRING
54 #ifdef LLVM_REVISION
55       " " LLVM_REVISION
56 #endif
57       ;
58   // Allows for testing of the irsymtab writer and upgrade mechanism. This
59   // environment variable should not be set by users.
60   if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER"))
61     return OverrideName;
62   return DefaultName;
63 }
64 
65 const char *kExpectedProducerName = getExpectedProducerName();
66 
67 /// Stores the temporary state that is required to build an IR symbol table.
68 struct Builder {
69   SmallVector<char, 0> &Symtab;
70   StringTableBuilder &StrtabBuilder;
71   StringSaver Saver;
72 
73   // This ctor initializes a StringSaver using the passed in BumpPtrAllocator.
74   // The StringTableBuilder does not create a copy of any strings added to it,
75   // so this provides somewhere to store any strings that we create.
76   Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder,
77           BumpPtrAllocator &Alloc)
78       : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {}
79 
80   DenseMap<const Comdat *, int> ComdatMap;
81   Mangler Mang;
82   Triple TT;
83 
84   std::vector<storage::Comdat> Comdats;
85   std::vector<storage::Module> Mods;
86   std::vector<storage::Symbol> Syms;
87   std::vector<storage::Uncommon> Uncommons;
88 
89   std::string COFFLinkerOpts;
90   raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts};
91 
92   std::vector<storage::Str> DependentLibraries;
93 
94   void setStr(storage::Str &S, StringRef Value) {
95     S.Offset = StrtabBuilder.add(Value);
96     S.Size = Value.size();
97   }
98 
99   template <typename T>
100   void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) {
101     R.Offset = Symtab.size();
102     R.Size = Objs.size();
103     Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()),
104                   reinterpret_cast<const char *>(Objs.data() + Objs.size()));
105   }
106 
107   Expected<int> getComdatIndex(const Comdat *C, const Module *M);
108 
109   Error addModule(Module *M);
110   Error addSymbol(const ModuleSymbolTable &Msymtab,
111                   const SmallPtrSet<GlobalValue *, 4> &Used,
112                   ModuleSymbolTable::Symbol Sym);
113 
114   Error build(ArrayRef<Module *> Mods);
115 };
116 
117 Error Builder::addModule(Module *M) {
118   if (M->getDataLayoutStr().empty())
119     return make_error<StringError>("input module has no datalayout",
120                                    inconvertibleErrorCode());
121 
122   // Symbols in the llvm.used list will get the FB_Used bit and will not be
123   // internalized. We do this for llvm.compiler.used as well:
124   //
125   // IR symbol table tracks module-level asm symbol references but not inline
126   // asm. A symbol only referenced by inline asm is not in the IR symbol table,
127   // so we may not know that the definition (in another translation unit) is
128   // referenced. That definition may have __attribute__((used)) (which lowers to
129   // llvm.compiler.used on ELF targets) to communicate to the compiler that it
130   // may be used by inline asm. The usage is perfectly fine, so we treat
131   // llvm.compiler.used conservatively as llvm.used to work around our own
132   // limitation.
133   SmallVector<GlobalValue *, 4> UsedV;
134   collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/false);
135   collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/true);
136   SmallPtrSet<GlobalValue *, 4> Used(UsedV.begin(), UsedV.end());
137 
138   ModuleSymbolTable Msymtab;
139   Msymtab.addModule(M);
140 
141   storage::Module Mod;
142   Mod.Begin = Syms.size();
143   Mod.End = Syms.size() + Msymtab.symbols().size();
144   Mod.UncBegin = Uncommons.size();
145   Mods.push_back(Mod);
146 
147   if (TT.isOSBinFormatCOFF()) {
148     if (auto E = M->materializeMetadata())
149       return E;
150     if (NamedMDNode *LinkerOptions =
151             M->getNamedMetadata("llvm.linker.options")) {
152       for (MDNode *MDOptions : LinkerOptions->operands())
153         for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
154           COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString();
155     }
156   }
157 
158   if (TT.isOSBinFormatELF()) {
159     if (auto E = M->materializeMetadata())
160       return E;
161     if (NamedMDNode *N = M->getNamedMetadata("llvm.dependent-libraries")) {
162       for (MDNode *MDOptions : N->operands()) {
163         const auto OperandStr =
164             cast<MDString>(cast<MDNode>(MDOptions)->getOperand(0))->getString();
165         storage::Str Specifier;
166         setStr(Specifier, OperandStr);
167         DependentLibraries.emplace_back(Specifier);
168       }
169     }
170   }
171 
172   for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols())
173     if (Error Err = addSymbol(Msymtab, Used, Msym))
174       return Err;
175 
176   return Error::success();
177 }
178 
179 Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) {
180   auto P = ComdatMap.insert(std::make_pair(C, Comdats.size()));
181   if (P.second) {
182     std::string Name;
183     if (TT.isOSBinFormatCOFF()) {
184       const GlobalValue *GV = M->getNamedValue(C->getName());
185       if (!GV)
186         return make_error<StringError>("Could not find leader",
187                                        inconvertibleErrorCode());
188       // Internal leaders do not affect symbol resolution, therefore they do not
189       // appear in the symbol table.
190       if (GV->hasLocalLinkage()) {
191         P.first->second = -1;
192         return -1;
193       }
194       llvm::raw_string_ostream OS(Name);
195       Mang.getNameWithPrefix(OS, GV, false);
196     } else {
197       Name = std::string(C->getName());
198     }
199 
200     storage::Comdat Comdat;
201     setStr(Comdat.Name, Saver.save(Name));
202     Comdat.SelectionKind = C->getSelectionKind();
203     Comdats.push_back(Comdat);
204   }
205 
206   return P.first->second;
207 }
208 
209 Error Builder::addSymbol(const ModuleSymbolTable &Msymtab,
210                          const SmallPtrSet<GlobalValue *, 4> &Used,
211                          ModuleSymbolTable::Symbol Msym) {
212   Syms.emplace_back();
213   storage::Symbol &Sym = Syms.back();
214   Sym = {};
215 
216   storage::Uncommon *Unc = nullptr;
217   auto Uncommon = [&]() -> storage::Uncommon & {
218     if (Unc)
219       return *Unc;
220     Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon;
221     Uncommons.emplace_back();
222     Unc = &Uncommons.back();
223     *Unc = {};
224     setStr(Unc->COFFWeakExternFallbackName, "");
225     setStr(Unc->SectionName, "");
226     return *Unc;
227   };
228 
229   SmallString<64> Name;
230   {
231     raw_svector_ostream OS(Name);
232     Msymtab.printSymbolName(OS, Msym);
233   }
234   setStr(Sym.Name, Saver.save(Name.str()));
235 
236   auto Flags = Msymtab.getSymbolFlags(Msym);
237   if (Flags & object::BasicSymbolRef::SF_Undefined)
238     Sym.Flags |= 1 << storage::Symbol::FB_undefined;
239   if (Flags & object::BasicSymbolRef::SF_Weak)
240     Sym.Flags |= 1 << storage::Symbol::FB_weak;
241   if (Flags & object::BasicSymbolRef::SF_Common)
242     Sym.Flags |= 1 << storage::Symbol::FB_common;
243   if (Flags & object::BasicSymbolRef::SF_Indirect)
244     Sym.Flags |= 1 << storage::Symbol::FB_indirect;
245   if (Flags & object::BasicSymbolRef::SF_Global)
246     Sym.Flags |= 1 << storage::Symbol::FB_global;
247   if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
248     Sym.Flags |= 1 << storage::Symbol::FB_format_specific;
249   if (Flags & object::BasicSymbolRef::SF_Executable)
250     Sym.Flags |= 1 << storage::Symbol::FB_executable;
251 
252   Sym.ComdatIndex = -1;
253   auto *GV = Msym.dyn_cast<GlobalValue *>();
254   if (!GV) {
255     // Undefined module asm symbols act as GC roots and are implicitly used.
256     if (Flags & object::BasicSymbolRef::SF_Undefined)
257       Sym.Flags |= 1 << storage::Symbol::FB_used;
258     setStr(Sym.IRName, "");
259     return Error::success();
260   }
261 
262   setStr(Sym.IRName, GV->getName());
263 
264   bool IsBuiltinFunc = llvm::is_contained(LibcallRoutineNames, GV->getName());
265 
266   if (Used.count(GV) || IsBuiltinFunc)
267     Sym.Flags |= 1 << storage::Symbol::FB_used;
268   if (GV->isThreadLocal())
269     Sym.Flags |= 1 << storage::Symbol::FB_tls;
270   if (GV->hasGlobalUnnamedAddr())
271     Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr;
272   if (GV->canBeOmittedFromSymbolTable())
273     Sym.Flags |= 1 << storage::Symbol::FB_may_omit;
274   Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility;
275 
276   if (Flags & object::BasicSymbolRef::SF_Common) {
277     auto *GVar = dyn_cast<GlobalVariable>(GV);
278     if (!GVar)
279       return make_error<StringError>("Only variables can have common linkage!",
280                                      inconvertibleErrorCode());
281     Uncommon().CommonSize =
282         GV->getParent()->getDataLayout().getTypeAllocSize(GV->getValueType());
283     Uncommon().CommonAlign = GVar->getAlignment();
284   }
285 
286   const GlobalObject *Base = GV->getBaseObject();
287   if (!Base)
288     return make_error<StringError>("Unable to determine comdat of alias!",
289                                    inconvertibleErrorCode());
290   if (const Comdat *C = Base->getComdat()) {
291     Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent());
292     if (!ComdatIndexOrErr)
293       return ComdatIndexOrErr.takeError();
294     Sym.ComdatIndex = *ComdatIndexOrErr;
295   }
296 
297   if (TT.isOSBinFormatCOFF()) {
298     emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang);
299 
300     if ((Flags & object::BasicSymbolRef::SF_Weak) &&
301         (Flags & object::BasicSymbolRef::SF_Indirect)) {
302       auto *Fallback = dyn_cast<GlobalValue>(
303           cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts());
304       if (!Fallback)
305         return make_error<StringError>("Invalid weak external",
306                                        inconvertibleErrorCode());
307       std::string FallbackName;
308       raw_string_ostream OS(FallbackName);
309       Msymtab.printSymbolName(OS, Fallback);
310       OS.flush();
311       setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName));
312     }
313   }
314 
315   if (!Base->getSection().empty())
316     setStr(Uncommon().SectionName, Saver.save(Base->getSection()));
317 
318   return Error::success();
319 }
320 
321 Error Builder::build(ArrayRef<Module *> IRMods) {
322   storage::Header Hdr;
323 
324   assert(!IRMods.empty());
325   Hdr.Version = storage::Header::kCurrentVersion;
326   setStr(Hdr.Producer, kExpectedProducerName);
327   setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple());
328   setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName());
329   TT = Triple(IRMods[0]->getTargetTriple());
330 
331   for (auto *M : IRMods)
332     if (Error Err = addModule(M))
333       return Err;
334 
335   COFFLinkerOptsOS.flush();
336   setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts));
337 
338   // We are about to fill in the header's range fields, so reserve space for it
339   // and copy it in afterwards.
340   Symtab.resize(sizeof(storage::Header));
341   writeRange(Hdr.Modules, Mods);
342   writeRange(Hdr.Comdats, Comdats);
343   writeRange(Hdr.Symbols, Syms);
344   writeRange(Hdr.Uncommons, Uncommons);
345   writeRange(Hdr.DependentLibraries, DependentLibraries);
346   *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr;
347   return Error::success();
348 }
349 
350 } // end anonymous namespace
351 
352 Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
353                       StringTableBuilder &StrtabBuilder,
354                       BumpPtrAllocator &Alloc) {
355   return Builder(Symtab, StrtabBuilder, Alloc).build(Mods);
356 }
357 
358 // Upgrade a vector of bitcode modules created by an old version of LLVM by
359 // creating an irsymtab for them in the current format.
360 static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) {
361   FileContents FC;
362 
363   LLVMContext Ctx;
364   std::vector<Module *> Mods;
365   std::vector<std::unique_ptr<Module>> OwnedMods;
366   for (auto BM : BMs) {
367     Expected<std::unique_ptr<Module>> MOrErr =
368         BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true,
369                          /*IsImporting*/ false);
370     if (!MOrErr)
371       return MOrErr.takeError();
372 
373     Mods.push_back(MOrErr->get());
374     OwnedMods.push_back(std::move(*MOrErr));
375   }
376 
377   StringTableBuilder StrtabBuilder(StringTableBuilder::RAW);
378   BumpPtrAllocator Alloc;
379   if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc))
380     return std::move(E);
381 
382   StrtabBuilder.finalizeInOrder();
383   FC.Strtab.resize(StrtabBuilder.getSize());
384   StrtabBuilder.write((uint8_t *)FC.Strtab.data());
385 
386   FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()},
387                   {FC.Strtab.data(), FC.Strtab.size()}};
388   return std::move(FC);
389 }
390 
391 Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) {
392   if (BFC.Mods.empty())
393     return make_error<StringError>("Bitcode file does not contain any modules",
394                                    inconvertibleErrorCode());
395 
396   if (BFC.StrtabForSymtab.empty() ||
397       BFC.Symtab.size() < sizeof(storage::Header))
398     return upgrade(BFC.Mods);
399 
400   // We cannot use the regular reader to read the version and producer, because
401   // it will expect the header to be in the current format. The only thing we
402   // can rely on is that the version and producer will be present as the first
403   // struct elements.
404   auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data());
405   unsigned Version = Hdr->Version;
406   StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab);
407   if (Version != storage::Header::kCurrentVersion ||
408       Producer != kExpectedProducerName)
409     return upgrade(BFC.Mods);
410 
411   FileContents FC;
412   FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()},
413                   {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}};
414 
415   // Finally, make sure that the number of modules in the symbol table matches
416   // the number of modules in the bitcode file. If they differ, it may mean that
417   // the bitcode file was created by binary concatenation, so we need to create
418   // a new symbol table from scratch.
419   if (FC.TheReader.getNumModules() != BFC.Mods.size())
420     return upgrade(std::move(BFC.Mods));
421 
422   return std::move(FC);
423 }
424