1 //===--- amdgpu/impl/system.cpp ----------------------------------- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include <libelf.h>
9 
10 #include <cassert>
11 #include <sstream>
12 #include <string>
13 
14 #include "internal.h"
15 #include "machine.h"
16 #include "rt.h"
17 
18 #include "msgpack.h"
19 
20 namespace hsa {
21 // Wrap HSA iterate API in a shim that allows passing general callables
22 template <typename C>
executable_iterate_symbols(hsa_executable_t executable,C cb)23 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) {
24   auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol,
25               void *data) -> hsa_status_t {
26     C *unwrapped = static_cast<C *>(data);
27     return (*unwrapped)(executable, symbol);
28   };
29   return hsa_executable_iterate_symbols(executable, L,
30                                         static_cast<void *>(&cb));
31 }
32 } // namespace hsa
33 
34 typedef unsigned char *address;
35 /*
36  * Note descriptors.
37  */
38 // FreeBSD already declares Elf_Note (indirectly via <libelf.h>)
39 #if !defined(__FreeBSD__)
40 typedef struct {
41   uint32_t n_namesz; /* Length of note's name. */
42   uint32_t n_descsz; /* Length of note's value. */
43   uint32_t n_type;   /* Type of note. */
44   // then name
45   // then padding, optional
46   // then desc, at 4 byte alignment (not 8, despite being elf64)
47 } Elf_Note;
48 #endif
49 
50 // The following include file and following structs/enums
51 // have been replicated on a per-use basis below. For example,
52 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields,
53 // but we may care only about kernargSegmentSize_ for now, so
54 // we just include that field in our KernelMD implementation. We
55 // chose this approach to replicate in order to avoid forcing
56 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime.
57 // #include "llvm/Support/AMDGPUMetadata.h"
58 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD;
59 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD;
60 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD;
61 // using llvm::AMDGPU::HSAMD::AccessQualifier;
62 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier;
63 // using llvm::AMDGPU::HSAMD::ValueKind;
64 // using llvm::AMDGPU::HSAMD::ValueType;
65 
66 class KernelArgMD {
67 public:
68   enum class ValueKind {
69     HiddenGlobalOffsetX,
70     HiddenGlobalOffsetY,
71     HiddenGlobalOffsetZ,
72     HiddenNone,
73     HiddenPrintfBuffer,
74     HiddenDefaultQueue,
75     HiddenCompletionAction,
76     HiddenMultiGridSyncArg,
77     HiddenHostcallBuffer,
78     Unknown
79   };
80 
KernelArgMD()81   KernelArgMD()
82       : name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
83         align_(0), valueKind_(ValueKind::Unknown) {}
84 
85   // fields
86   std::string name_;
87   std::string typeName_;
88   uint32_t size_;
89   uint32_t offset_;
90   uint32_t align_;
91   ValueKind valueKind_;
92 };
93 
94 class KernelMD {
95 public:
KernelMD()96   KernelMD() : kernargSegmentSize_(0ull) {}
97 
98   // fields
99   uint64_t kernargSegmentSize_;
100 };
101 
102 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
103     //    Including only those fields that are relevant to the runtime.
104     //    {"ByValue", KernelArgMD::ValueKind::ByValue},
105     //    {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer},
106     //    {"DynamicSharedPointer",
107     //    KernelArgMD::ValueKind::DynamicSharedPointer},
108     //    {"Sampler", KernelArgMD::ValueKind::Sampler},
109     //    {"Image", KernelArgMD::ValueKind::Image},
110     //    {"Pipe", KernelArgMD::ValueKind::Pipe},
111     //    {"Queue", KernelArgMD::ValueKind::Queue},
112     {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
113     {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
114     {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
115     {"HiddenNone", KernelArgMD::ValueKind::HiddenNone},
116     {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
117     {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue},
118     {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction},
119     {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
120     {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
121     // v3
122     //    {"by_value", KernelArgMD::ValueKind::ByValue},
123     //    {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
124     //    {"dynamic_shared_pointer",
125     //    KernelArgMD::ValueKind::DynamicSharedPointer},
126     //    {"sampler", KernelArgMD::ValueKind::Sampler},
127     //    {"image", KernelArgMD::ValueKind::Image},
128     //    {"pipe", KernelArgMD::ValueKind::Pipe},
129     //    {"queue", KernelArgMD::ValueKind::Queue},
130     {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
131     {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
132     {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
133     {"hidden_none", KernelArgMD::ValueKind::HiddenNone},
134     {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
135     {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
136     {"hidden_completion_action",
137      KernelArgMD::ValueKind::HiddenCompletionAction},
138     {"hidden_multigrid_sync_arg",
139      KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
140     {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
141 };
142 
143 ATLMachine g_atl_machine;
144 
145 namespace core {
146 
147 // Implement memory_pool iteration function
get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,void * data)148 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,
149                                          void *data) {
150   ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data);
151   hsa_status_t err = HSA_STATUS_SUCCESS;
152   // Check if the memory_pool is allowed to allocate, i.e. do not return group
153   // memory
154   bool alloc_allowed = false;
155   err = hsa_amd_memory_pool_get_info(
156       memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
157       &alloc_allowed);
158   if (err != HSA_STATUS_SUCCESS) {
159     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
160            "Alloc allowed in memory pool check", get_error_string(err));
161     return err;
162   }
163   if (alloc_allowed) {
164     uint32_t global_flag = 0;
165     err = hsa_amd_memory_pool_get_info(
166         memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag);
167     if (err != HSA_STATUS_SUCCESS) {
168       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
169              "Get memory pool info", get_error_string(err));
170       return err;
171     }
172     if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) {
173       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED);
174       proc->addMemory(new_mem);
175     } else {
176       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED);
177       proc->addMemory(new_mem);
178     }
179   }
180 
181   return err;
182 }
183 
get_agent_info(hsa_agent_t agent,void * data)184 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) {
185   hsa_status_t err = HSA_STATUS_SUCCESS;
186   hsa_device_type_t device_type;
187   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
188   if (err != HSA_STATUS_SUCCESS) {
189     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
190            "Get device type info", get_error_string(err));
191     return err;
192   }
193   switch (device_type) {
194   case HSA_DEVICE_TYPE_CPU: {
195     ATLCPUProcessor new_proc(agent);
196     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
197                                              &new_proc);
198     if (err != HSA_STATUS_SUCCESS) {
199       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
200              "Iterate all memory pools", get_error_string(err));
201       return err;
202     }
203     g_atl_machine.addProcessor(new_proc);
204   } break;
205   case HSA_DEVICE_TYPE_GPU: {
206     hsa_profile_t profile;
207     err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile);
208     if (err != HSA_STATUS_SUCCESS) {
209       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
210              "Query the agent profile", get_error_string(err));
211       return err;
212     }
213     atmi_devtype_t gpu_type;
214     gpu_type =
215         (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU;
216     ATLGPUProcessor new_proc(agent, gpu_type);
217     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
218                                              &new_proc);
219     if (err != HSA_STATUS_SUCCESS) {
220       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
221              "Iterate all memory pools", get_error_string(err));
222       return err;
223     }
224     g_atl_machine.addProcessor(new_proc);
225   } break;
226   case HSA_DEVICE_TYPE_DSP: {
227     err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
228   } break;
229   }
230 
231   return err;
232 }
233 
init_compute_and_memory()234 static hsa_status_t init_compute_and_memory() {
235   hsa_status_t err;
236 
237   /* Iterate over the agents and pick the gpu agent */
238   err = hsa_iterate_agents(get_agent_info, NULL);
239   if (err == HSA_STATUS_INFO_BREAK) {
240     err = HSA_STATUS_SUCCESS;
241   }
242   if (err != HSA_STATUS_SUCCESS) {
243     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent",
244            get_error_string(err));
245     return err;
246   }
247 
248   /* Init all devices or individual device types? */
249   std::vector<ATLCPUProcessor> &cpu_procs =
250       g_atl_machine.processors<ATLCPUProcessor>();
251   std::vector<ATLGPUProcessor> &gpu_procs =
252       g_atl_machine.processors<ATLGPUProcessor>();
253   /* For CPU memory pools, add other devices that can access them directly
254    * or indirectly */
255   for (auto &cpu_proc : cpu_procs) {
256     for (auto &cpu_mem : cpu_proc.memories()) {
257       hsa_amd_memory_pool_t pool = cpu_mem.memory();
258       for (auto &gpu_proc : gpu_procs) {
259         hsa_agent_t agent = gpu_proc.agent();
260         hsa_amd_memory_pool_access_t access;
261         hsa_amd_agent_memory_pool_get_info(
262             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
263         if (access != 0) {
264           // this means not NEVER, but could be YES or NO
265           // add this memory pool to the proc
266           gpu_proc.addMemory(cpu_mem);
267         }
268       }
269     }
270   }
271 
272   /* FIXME: are the below combinations of procs and memory pools needed?
273    * all to all compare procs with their memory pools and add those memory
274    * pools that are accessible by the target procs */
275   for (auto &gpu_proc : gpu_procs) {
276     for (auto &gpu_mem : gpu_proc.memories()) {
277       hsa_amd_memory_pool_t pool = gpu_mem.memory();
278       for (auto &cpu_proc : cpu_procs) {
279         hsa_agent_t agent = cpu_proc.agent();
280         hsa_amd_memory_pool_access_t access;
281         hsa_amd_agent_memory_pool_get_info(
282             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
283         if (access != 0) {
284           // this means not NEVER, but could be YES or NO
285           // add this memory pool to the proc
286           cpu_proc.addMemory(gpu_mem);
287         }
288       }
289     }
290   }
291 
292   size_t num_procs = cpu_procs.size() + gpu_procs.size();
293   int num_iGPUs = 0;
294   int num_dGPUs = 0;
295   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
296     if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU)
297       num_iGPUs++;
298     else
299       num_dGPUs++;
300   }
301   assert(num_iGPUs + num_dGPUs == gpu_procs.size() &&
302          "Number of dGPUs and iGPUs do not add up");
303   DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size());
304   DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs);
305   DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs);
306   DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size());
307 
308   int cpus_begin = 0;
309   int cpus_end = cpu_procs.size();
310   int gpus_begin = cpu_procs.size();
311   int gpus_end = cpu_procs.size() + gpu_procs.size();
312   int proc_index = 0;
313   for (int i = cpus_begin; i < cpus_end; i++) {
314     std::vector<ATLMemory> memories = cpu_procs[proc_index].memories();
315     int fine_memories_size = 0;
316     int coarse_memories_size = 0;
317     DEBUG_PRINT("CPU memory types:\t");
318     for (auto &memory : memories) {
319       atmi_memtype_t type = memory.type();
320       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
321         fine_memories_size++;
322         DEBUG_PRINT("Fine\t");
323       } else {
324         coarse_memories_size++;
325         DEBUG_PRINT("Coarse\t");
326       }
327     }
328     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
329     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
330     proc_index++;
331   }
332   proc_index = 0;
333   for (int i = gpus_begin; i < gpus_end; i++) {
334     std::vector<ATLMemory> memories = gpu_procs[proc_index].memories();
335     int fine_memories_size = 0;
336     int coarse_memories_size = 0;
337     DEBUG_PRINT("GPU memory types:\t");
338     for (auto &memory : memories) {
339       atmi_memtype_t type = memory.type();
340       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
341         fine_memories_size++;
342         DEBUG_PRINT("Fine\t");
343       } else {
344         coarse_memories_size++;
345         DEBUG_PRINT("Coarse\t");
346       }
347     }
348     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
349     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
350     proc_index++;
351   }
352   if (num_procs > 0)
353     return HSA_STATUS_SUCCESS;
354   else
355     return HSA_STATUS_ERROR_NOT_INITIALIZED;
356 }
357 
init_hsa()358 hsa_status_t init_hsa() {
359   DEBUG_PRINT("Initializing HSA...");
360   hsa_status_t err = hsa_init();
361   if (err != HSA_STATUS_SUCCESS) {
362     return err;
363   }
364 
365   err = init_compute_and_memory();
366   if (err != HSA_STATUS_SUCCESS)
367     return err;
368   if (err != HSA_STATUS_SUCCESS) {
369     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
370            "After initializing compute and memory", get_error_string(err));
371     return err;
372   }
373 
374   DEBUG_PRINT("done\n");
375   return HSA_STATUS_SUCCESS;
376 }
377 
callbackEvent(const hsa_amd_event_t * event,void * data)378 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
379 #if (ROCM_VERSION_MAJOR >= 3) ||                                               \
380     (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3)
381   if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
382 #else
383   if (event->event_type == GPU_MEMORY_FAULT_EVENT) {
384 #endif
385     hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
386     // memory_fault.agent
387     // memory_fault.virtual_address
388     // memory_fault.fault_reason_mask
389     // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
390     std::stringstream stream;
391     stream << std::hex << (uintptr_t)memory_fault.virtual_address;
392     std::string addr("0x" + stream.str());
393 
394     std::string err_string = "[GPU Memory Error] Addr: " + addr;
395     err_string += " Reason: ";
396     if (!(memory_fault.fault_reason_mask & 0x00111111)) {
397       err_string += "No Idea! ";
398     } else {
399       if (memory_fault.fault_reason_mask & 0x00000001)
400         err_string += "Page not present or supervisor privilege. ";
401       if (memory_fault.fault_reason_mask & 0x00000010)
402         err_string += "Write access to a read-only page. ";
403       if (memory_fault.fault_reason_mask & 0x00000100)
404         err_string += "Execute access to a page marked NX. ";
405       if (memory_fault.fault_reason_mask & 0x00001000)
406         err_string += "Host access only. ";
407       if (memory_fault.fault_reason_mask & 0x00010000)
408         err_string += "ECC failure (if supported by HW). ";
409       if (memory_fault.fault_reason_mask & 0x00100000)
410         err_string += "Can't determine the exact fault address. ";
411     }
412     fprintf(stderr, "%s\n", err_string.c_str());
413     return HSA_STATUS_ERROR;
414   }
415   return HSA_STATUS_SUCCESS;
416 }
417 
418 hsa_status_t atl_init_gpu_context() {
419   hsa_status_t err;
420   err = init_hsa();
421   if (err != HSA_STATUS_SUCCESS)
422     return HSA_STATUS_ERROR;
423 
424   err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
425   if (err != HSA_STATUS_SUCCESS) {
426     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
427            "Registering the system for memory faults", get_error_string(err));
428     return HSA_STATUS_ERROR;
429   }
430 
431   return HSA_STATUS_SUCCESS;
432 }
433 
434 static bool isImplicit(KernelArgMD::ValueKind value_kind) {
435   switch (value_kind) {
436   case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
437   case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
438   case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
439   case KernelArgMD::ValueKind::HiddenNone:
440   case KernelArgMD::ValueKind::HiddenPrintfBuffer:
441   case KernelArgMD::ValueKind::HiddenDefaultQueue:
442   case KernelArgMD::ValueKind::HiddenCompletionAction:
443   case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
444   case KernelArgMD::ValueKind::HiddenHostcallBuffer:
445     return true;
446   default:
447     return false;
448   }
449 }
450 
451 static std::pair<unsigned char *, unsigned char *>
452 find_metadata(void *binary, size_t binSize) {
453   std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
454 
455   Elf *e = elf_memory(static_cast<char *>(binary), binSize);
456   if (elf_kind(e) != ELF_K_ELF) {
457     return failure;
458   }
459 
460   size_t numpHdrs;
461   if (elf_getphdrnum(e, &numpHdrs) != 0) {
462     return failure;
463   }
464 
465   Elf64_Phdr *pHdrs = elf64_getphdr(e);
466   for (size_t i = 0; i < numpHdrs; ++i) {
467     Elf64_Phdr pHdr = pHdrs[i];
468 
469     // Look for the runtime metadata note
470     if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
471       // Iterate over the notes in this segment
472       address ptr = (address)binary + pHdr.p_offset;
473       address segmentEnd = ptr + pHdr.p_filesz;
474 
475       while (ptr < segmentEnd) {
476         Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
477         address name = (address)&note[1];
478 
479         if (note->n_type == 7 || note->n_type == 8) {
480           return failure;
481         } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
482                    note->n_namesz == sizeof "AMD" &&
483                    !memcmp(name, "AMD", note->n_namesz)) {
484           // code object v2 uses yaml metadata, no longer supported
485           return failure;
486         } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
487                    note->n_namesz == sizeof "AMDGPU" &&
488                    !memcmp(name, "AMDGPU", note->n_namesz)) {
489 
490           // n_descsz = 485
491           // value is padded to 4 byte alignment, may want to move end up to
492           // match
493           size_t offset = sizeof(uint32_t) * 3 /* fields */
494                           + sizeof("AMDGPU")   /* name */
495                           + 1 /* padding to 4 byte alignment */;
496 
497           // Including the trailing padding means both pointers are 4 bytes
498           // aligned, which may be useful later.
499           unsigned char *metadata_start = (unsigned char *)ptr + offset;
500           unsigned char *metadata_end =
501               metadata_start + core::alignUp(note->n_descsz, 4);
502           return {metadata_start, metadata_end};
503         }
504         ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
505                core::alignUp(note->n_descsz, sizeof(int));
506       }
507     }
508   }
509 
510   return failure;
511 }
512 
513 namespace {
514 int map_lookup_array(msgpack::byte_range message, const char *needle,
515                      msgpack::byte_range *res, uint64_t *size) {
516   unsigned count = 0;
517   struct s : msgpack::functors_defaults<s> {
518     s(unsigned &count, uint64_t *size) : count(count), size(size) {}
519     unsigned &count;
520     uint64_t *size;
521     const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
522       count++;
523       *size = N;
524       return bytes.end;
525     }
526   };
527 
528   msgpack::foreach_map(message,
529                        [&](msgpack::byte_range key, msgpack::byte_range value) {
530                          if (msgpack::message_is_string(key, needle)) {
531                            // If the message is an array, record number of
532                            // elements in *size
533                            msgpack::handle_msgpack<s>(value, {count, size});
534                            // return the whole array
535                            *res = value;
536                          }
537                        });
538   // Only claim success if exactly one key/array pair matched
539   return count != 1;
540 }
541 
542 int map_lookup_string(msgpack::byte_range message, const char *needle,
543                       std::string *res) {
544   unsigned count = 0;
545   struct s : public msgpack::functors_defaults<s> {
546     s(unsigned &count, std::string *res) : count(count), res(res) {}
547     unsigned &count;
548     std::string *res;
549     void handle_string(size_t N, const unsigned char *str) {
550       count++;
551       *res = std::string(str, str + N);
552     }
553   };
554   msgpack::foreach_map(message,
555                        [&](msgpack::byte_range key, msgpack::byte_range value) {
556                          if (msgpack::message_is_string(key, needle)) {
557                            msgpack::handle_msgpack<s>(value, {count, res});
558                          }
559                        });
560   return count != 1;
561 }
562 
563 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
564                         uint64_t *res) {
565   unsigned count = 0;
566   msgpack::foreach_map(message,
567                        [&](msgpack::byte_range key, msgpack::byte_range value) {
568                          if (msgpack::message_is_string(key, needle)) {
569                            msgpack::foronly_unsigned(value, [&](uint64_t x) {
570                              count++;
571                              *res = x;
572                            });
573                          }
574                        });
575   return count != 1;
576 }
577 
578 int array_lookup_element(msgpack::byte_range message, uint64_t elt,
579                          msgpack::byte_range *res) {
580   int rc = 1;
581   uint64_t i = 0;
582   msgpack::foreach_array(message, [&](msgpack::byte_range value) {
583     if (i == elt) {
584       *res = value;
585       rc = 0;
586     }
587     i++;
588   });
589   return rc;
590 }
591 
592 int populate_kernelArgMD(msgpack::byte_range args_element,
593                          KernelArgMD *kernelarg) {
594   using namespace msgpack;
595   int error = 0;
596   foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
597     if (message_is_string(key, ".name")) {
598       foronly_string(value, [&](size_t N, const unsigned char *str) {
599         kernelarg->name_ = std::string(str, str + N);
600       });
601     } else if (message_is_string(key, ".type_name")) {
602       foronly_string(value, [&](size_t N, const unsigned char *str) {
603         kernelarg->typeName_ = std::string(str, str + N);
604       });
605     } else if (message_is_string(key, ".size")) {
606       foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
607     } else if (message_is_string(key, ".offset")) {
608       foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
609     } else if (message_is_string(key, ".value_kind")) {
610       foronly_string(value, [&](size_t N, const unsigned char *str) {
611         std::string s = std::string(str, str + N);
612         auto itValueKind = ArgValueKind.find(s);
613         if (itValueKind != ArgValueKind.end()) {
614           kernelarg->valueKind_ = itValueKind->second;
615         }
616       });
617     }
618   });
619   return error;
620 }
621 } // namespace
622 
623 static hsa_status_t get_code_object_custom_metadata(
624     void *binary, size_t binSize,
625     std::map<std::string, atl_kernel_info_t> &KernelInfoTable) {
626   // parse code object with different keys from v2
627   // also, the kernel name is not the same as the symbol name -- so a
628   // symbol->name map is needed
629 
630   std::pair<unsigned char *, unsigned char *> metadata =
631       find_metadata(binary, binSize);
632   if (!metadata.first) {
633     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
634   }
635 
636   uint64_t kernelsSize = 0;
637   int msgpack_errors = 0;
638   msgpack::byte_range kernel_array;
639   msgpack_errors =
640       map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
641                        &kernel_array, &kernelsSize);
642   if (msgpack_errors != 0) {
643     printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
644            "kernels lookup in program metadata");
645     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
646   }
647 
648   for (size_t i = 0; i < kernelsSize; i++) {
649     assert(msgpack_errors == 0);
650     std::string kernelName;
651     std::string symbolName;
652 
653     msgpack::byte_range element;
654     msgpack_errors += array_lookup_element(kernel_array, i, &element);
655     if (msgpack_errors != 0) {
656       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
657              "element lookup in kernel metadata");
658       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
659     }
660 
661     msgpack_errors += map_lookup_string(element, ".name", &kernelName);
662     msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
663     if (msgpack_errors != 0) {
664       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
665              "strings lookup in kernel metadata");
666       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
667     }
668 
669     // Make sure that kernelName + ".kd" == symbolName
670     if ((kernelName + ".kd") != symbolName) {
671       printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n",
672              __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str());
673       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
674     }
675 
676     atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}};
677 
678     uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
679     msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
680     if (msgpack_errors != 0) {
681       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
682              "sgpr count metadata lookup in kernel metadata");
683       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
684     }
685 
686     info.sgpr_count = sgpr_count;
687 
688     msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
689     if (msgpack_errors != 0) {
690       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
691              "vgpr count metadata lookup in kernel metadata");
692       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
693     }
694 
695     info.vgpr_count = vgpr_count;
696 
697     msgpack_errors +=
698         map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
699     if (msgpack_errors != 0) {
700       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
701              "sgpr spill count metadata lookup in kernel metadata");
702       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
703     }
704 
705     info.sgpr_spill_count = sgpr_spill_count;
706 
707     msgpack_errors +=
708         map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
709     if (msgpack_errors != 0) {
710       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
711              "vgpr spill count metadata lookup in kernel metadata");
712       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
713     }
714 
715     info.vgpr_spill_count = vgpr_spill_count;
716 
717     size_t kernel_explicit_args_size = 0;
718     uint64_t kernel_segment_size;
719     msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
720                                           &kernel_segment_size);
721     if (msgpack_errors != 0) {
722       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
723              "kernarg segment size metadata lookup in kernel metadata");
724       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
725     }
726 
727     bool hasHiddenArgs = false;
728     if (kernel_segment_size > 0) {
729       uint64_t argsSize;
730       size_t offset = 0;
731 
732       msgpack::byte_range args_array;
733       msgpack_errors +=
734           map_lookup_array(element, ".args", &args_array, &argsSize);
735       if (msgpack_errors != 0) {
736         printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
737                "kernel args metadata lookup in kernel metadata");
738         return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
739       }
740 
741       info.num_args = argsSize;
742 
743       for (size_t i = 0; i < argsSize; ++i) {
744         KernelArgMD lcArg;
745 
746         msgpack::byte_range args_element;
747         msgpack_errors += array_lookup_element(args_array, i, &args_element);
748         if (msgpack_errors != 0) {
749           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
750                  "iterate args map in kernel args metadata");
751           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
752         }
753 
754         msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
755         if (msgpack_errors != 0) {
756           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
757                  "iterate args map in kernel args metadata");
758           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
759         }
760         // populate info with sizes and offsets
761         info.arg_sizes.push_back(lcArg.size_);
762         // v3 has offset field and not align field
763         size_t new_offset = lcArg.offset_;
764         size_t padding = new_offset - offset;
765         offset = new_offset;
766         info.arg_offsets.push_back(lcArg.offset_);
767         DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(),
768                     lcArg.size_, lcArg.offset_);
769         offset += lcArg.size_;
770 
771         // check if the arg is a hidden/implicit arg
772         // this logic assumes that all hidden args are 8-byte aligned
773         if (!isImplicit(lcArg.valueKind_)) {
774           kernel_explicit_args_size += lcArg.size_;
775         } else {
776           hasHiddenArgs = true;
777         }
778         kernel_explicit_args_size += padding;
779       }
780     }
781 
782     // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
783     // in ATMI, do not count the compiler set implicit args, but set your own
784     // implicit args by discounting the compiler set implicit args
785     info.kernel_segment_size =
786         (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
787         sizeof(atmi_implicit_args_t);
788     DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
789                 kernel_segment_size, info.kernel_segment_size);
790 
791     // kernel received, now add it to the kernel info table
792     KernelInfoTable[kernelName] = info;
793   }
794 
795   return HSA_STATUS_SUCCESS;
796 }
797 
798 static hsa_status_t
799 populate_InfoTables(hsa_executable_symbol_t symbol,
800                     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
801                     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) {
802   hsa_symbol_kind_t type;
803 
804   uint32_t name_length;
805   hsa_status_t err;
806   err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
807                                        &type);
808   if (err != HSA_STATUS_SUCCESS) {
809     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
810            "Symbol info extraction", get_error_string(err));
811     return err;
812   }
813   DEBUG_PRINT("Exec Symbol type: %d\n", type);
814   if (type == HSA_SYMBOL_KIND_KERNEL) {
815     err = hsa_executable_symbol_get_info(
816         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
817     if (err != HSA_STATUS_SUCCESS) {
818       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
819              "Symbol info extraction", get_error_string(err));
820       return err;
821     }
822     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
823     err = hsa_executable_symbol_get_info(symbol,
824                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
825     if (err != HSA_STATUS_SUCCESS) {
826       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
827              "Symbol info extraction", get_error_string(err));
828       return err;
829     }
830     // remove the suffix .kd from symbol name.
831     name[name_length - 3] = 0;
832 
833     atl_kernel_info_t info;
834     std::string kernelName(name);
835     // by now, the kernel info table should already have an entry
836     // because the non-ROCr custom code object parsing is called before
837     // iterating over the code object symbols using ROCr
838     if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) {
839       if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) {
840         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
841                "Finding the entry kernel info table",
842                get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT));
843         exit(1);
844       }
845     }
846     // found, so assign and update
847     info = KernelInfoTable[kernelName];
848 
849     /* Extract dispatch information from the symbol */
850     err = hsa_executable_symbol_get_info(
851         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
852         &(info.kernel_object));
853     if (err != HSA_STATUS_SUCCESS) {
854       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
855              "Extracting the symbol from the executable",
856              get_error_string(err));
857       return err;
858     }
859     err = hsa_executable_symbol_get_info(
860         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
861         &(info.group_segment_size));
862     if (err != HSA_STATUS_SUCCESS) {
863       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
864              "Extracting the group segment size from the executable",
865              get_error_string(err));
866       return err;
867     }
868     err = hsa_executable_symbol_get_info(
869         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
870         &(info.private_segment_size));
871     if (err != HSA_STATUS_SUCCESS) {
872       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
873              "Extracting the private segment from the executable",
874              get_error_string(err));
875       return err;
876     }
877 
878     DEBUG_PRINT(
879         "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
880         "kernarg\n",
881         kernelName.c_str(), info.kernel_object, info.group_segment_size,
882         info.private_segment_size, info.kernel_segment_size);
883 
884     // assign it back to the kernel info table
885     KernelInfoTable[kernelName] = info;
886     free(name);
887   } else if (type == HSA_SYMBOL_KIND_VARIABLE) {
888     err = hsa_executable_symbol_get_info(
889         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
890     if (err != HSA_STATUS_SUCCESS) {
891       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
892              "Symbol info extraction", get_error_string(err));
893       return err;
894     }
895     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
896     err = hsa_executable_symbol_get_info(symbol,
897                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
898     if (err != HSA_STATUS_SUCCESS) {
899       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
900              "Symbol info extraction", get_error_string(err));
901       return err;
902     }
903     name[name_length] = 0;
904 
905     atl_symbol_info_t info;
906 
907     err = hsa_executable_symbol_get_info(
908         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
909     if (err != HSA_STATUS_SUCCESS) {
910       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
911              "Symbol info address extraction", get_error_string(err));
912       return err;
913     }
914 
915     err = hsa_executable_symbol_get_info(
916         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
917     if (err != HSA_STATUS_SUCCESS) {
918       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
919              "Symbol info size extraction", get_error_string(err));
920       return err;
921     }
922 
923     DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr,
924                 info.size);
925     SymbolInfoTable[std::string(name)] = info;
926     free(name);
927   } else {
928     DEBUG_PRINT("Symbol is an indirect function\n");
929   }
930   return HSA_STATUS_SUCCESS;
931 }
932 
933 hsa_status_t RegisterModuleFromMemory(
934     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
935     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
936     void *module_bytes, size_t module_size, hsa_agent_t agent,
937     hsa_status_t (*on_deserialized_data)(void *data, size_t size,
938                                          void *cb_state),
939     void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
940   hsa_status_t err;
941   hsa_executable_t executable = {0};
942   hsa_profile_t agent_profile;
943 
944   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
945   if (err != HSA_STATUS_SUCCESS) {
946     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
947            "Query the agent profile", get_error_string(err));
948     return HSA_STATUS_ERROR;
949   }
950   // FIXME: Assume that every profile is FULL until we understand how to build
951   // GCN with base profile
952   agent_profile = HSA_PROFILE_FULL;
953   /* Create the empty executable.  */
954   err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
955                               &executable);
956   if (err != HSA_STATUS_SUCCESS) {
957     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
958            "Create the executable", get_error_string(err));
959     return HSA_STATUS_ERROR;
960   }
961 
962   bool module_load_success = false;
963   do // Existing control flow used continue, preserve that for this patch
964   {
965     {
966       // Some metadata info is not available through ROCr API, so use custom
967       // code object metadata parsing to collect such metadata info
968 
969       err = get_code_object_custom_metadata(module_bytes, module_size,
970                                             KernelInfoTable);
971       if (err != HSA_STATUS_SUCCESS) {
972         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
973                     "Getting custom code object metadata",
974                     get_error_string(err));
975         continue;
976       }
977 
978       // Deserialize code object.
979       hsa_code_object_t code_object = {0};
980       err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
981                                         &code_object);
982       if (err != HSA_STATUS_SUCCESS) {
983         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
984                     "Code Object Deserialization", get_error_string(err));
985         continue;
986       }
987       assert(0 != code_object.handle);
988 
989       // Mutating the device image here avoids another allocation & memcpy
990       void *code_object_alloc_data =
991           reinterpret_cast<void *>(code_object.handle);
992       hsa_status_t atmi_err =
993           on_deserialized_data(code_object_alloc_data, module_size, cb_state);
994       if (atmi_err != HSA_STATUS_SUCCESS) {
995         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
996                "Error in deserialized_data callback",
997                get_error_string(atmi_err));
998         return atmi_err;
999       }
1000 
1001       /* Load the code object.  */
1002       err =
1003           hsa_executable_load_code_object(executable, agent, code_object, NULL);
1004       if (err != HSA_STATUS_SUCCESS) {
1005         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1006                     "Loading the code object", get_error_string(err));
1007         continue;
1008       }
1009 
1010       // cannot iterate over symbols until executable is frozen
1011     }
1012     module_load_success = true;
1013   } while (0);
1014   DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success);
1015   if (module_load_success) {
1016     /* Freeze the executable; it can now be queried for symbols.  */
1017     err = hsa_executable_freeze(executable, "");
1018     if (err != HSA_STATUS_SUCCESS) {
1019       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1020              "Freeze the executable", get_error_string(err));
1021       return HSA_STATUS_ERROR;
1022     }
1023 
1024     err = hsa::executable_iterate_symbols(
1025         executable,
1026         [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t {
1027           return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable);
1028         });
1029     if (err != HSA_STATUS_SUCCESS) {
1030       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1031              "Iterating over symbols for execuatable", get_error_string(err));
1032       return HSA_STATUS_ERROR;
1033     }
1034 
1035     // save the executable and destroy during finalize
1036     HSAExecutables.push_back(executable);
1037     return HSA_STATUS_SUCCESS;
1038   } else {
1039     return HSA_STATUS_ERROR;
1040   }
1041 }
1042 
1043 } // namespace core
1044