1 /* Optimize by combining instructions for GNU compiler.
2    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA.  */
21 
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23    Portable Optimizer, but redone to work on our list-structured
24    representation for RTL instead of their string representation.
25 
26    The LOG_LINKS of each insn identify the most recent assignment
27    to each REG used in the insn.  It is a list of previous insns,
28    each of which contains a SET for a REG that is used in this insn
29    and not used or set in between.  LOG_LINKs never cross basic blocks.
30    They were set up by the preceding pass (lifetime analysis).
31 
32    We try to combine each pair of insns joined by a logical link.
33    We also try to combine triples of insns A, B and C when
34    C has a link back to B and B has a link back to A.
35 
36    LOG_LINKS does not have links for use of the CC0.  They don't
37    need to, because the insn that sets the CC0 is always immediately
38    before the insn that tests it.  So we always regard a branch
39    insn as having a logical link to the preceding insn.  The same is true
40    for an insn explicitly using CC0.
41 
42    We check (with use_crosses_set_p) to avoid combining in such a way
43    as to move a computation to a place where its value would be different.
44 
45    Combination is done by mathematically substituting the previous
46    insn(s) values for the regs they set into the expressions in
47    the later insns that refer to these regs.  If the result is a valid insn
48    for our target machine, according to the machine description,
49    we install it, delete the earlier insns, and update the data flow
50    information (LOG_LINKS and REG_NOTES) for what we did.
51 
52    There are a few exceptions where the dataflow information created by
53    flow.c aren't completely updated:
54 
55    - reg_live_length is not updated
56    - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57      removed because there is no way to know which register it was
58      linking
59 
60    To simplify substitution, we combine only when the earlier insn(s)
61    consist of only a single assignment.  To simplify updating afterward,
62    we never combine when a subroutine call appears in the middle.
63 
64    Since we do not represent assignments to CC0 explicitly except when that
65    is all an insn does, there is no LOG_LINKS entry in an insn that uses
66    the condition code for the insn that set the condition code.
67    Fortunately, these two insns must be consecutive.
68    Therefore, every JUMP_INSN is taken to have an implicit logical link
69    to the preceding insn.  This is not quite right, since non-jumps can
70    also use the condition code; but in practice such insns would not
71    combine anyway.  */
72 
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 
94 #ifndef SHIFT_COUNT_TRUNCATED
95 #define SHIFT_COUNT_TRUNCATED 0
96 #endif
97 
98 /* It is not safe to use ordinary gen_lowpart in combine.
99    Use gen_lowpart_for_combine instead.  See comments there.  */
100 #define gen_lowpart dont_use_gen_lowpart_you_dummy
101 
102 /* Number of attempts to combine instructions in this function.  */
103 
104 static int combine_attempts;
105 
106 /* Number of attempts that got as far as substitution in this function.  */
107 
108 static int combine_merges;
109 
110 /* Number of instructions combined with added SETs in this function.  */
111 
112 static int combine_extras;
113 
114 /* Number of instructions combined in this function.  */
115 
116 static int combine_successes;
117 
118 /* Totals over entire compilation.  */
119 
120 static int total_attempts, total_merges, total_extras, total_successes;
121 
122 
123 /* Vector mapping INSN_UIDs to cuids.
124    The cuids are like uids but increase monotonically always.
125    Combine always uses cuids so that it can compare them.
126    But actually renumbering the uids, which we used to do,
127    proves to be a bad idea because it makes it hard to compare
128    the dumps produced by earlier passes with those from later passes.  */
129 
130 static int *uid_cuid;
131 static int max_uid_cuid;
132 
133 /* Get the cuid of an insn.  */
134 
135 #define INSN_CUID(INSN) \
136 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
137 
138 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
139    BITS_PER_WORD would invoke undefined behavior.  Work around it.  */
140 
141 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
142   (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
143 
144 #define nonzero_bits(X, M) \
145   cached_nonzero_bits (X, M, NULL_RTX, VOIDmode, 0)
146 
147 #define num_sign_bit_copies(X, M) \
148   cached_num_sign_bit_copies (X, M, NULL_RTX, VOIDmode, 0)
149 
150 /* Maximum register number, which is the size of the tables below.  */
151 
152 static unsigned int combine_max_regno;
153 
154 /* Record last point of death of (hard or pseudo) register n.  */
155 
156 static rtx *reg_last_death;
157 
158 /* Record last point of modification of (hard or pseudo) register n.  */
159 
160 static rtx *reg_last_set;
161 
162 /* Record the cuid of the last insn that invalidated memory
163    (anything that writes memory, and subroutine calls, but not pushes).  */
164 
165 static int mem_last_set;
166 
167 /* Record the cuid of the last CALL_INSN
168    so we can tell whether a potential combination crosses any calls.  */
169 
170 static int last_call_cuid;
171 
172 /* When `subst' is called, this is the insn that is being modified
173    (by combining in a previous insn).  The PATTERN of this insn
174    is still the old pattern partially modified and it should not be
175    looked at, but this may be used to examine the successors of the insn
176    to judge whether a simplification is valid.  */
177 
178 static rtx subst_insn;
179 
180 /* This is the lowest CUID that `subst' is currently dealing with.
181    get_last_value will not return a value if the register was set at or
182    after this CUID.  If not for this mechanism, we could get confused if
183    I2 or I1 in try_combine were an insn that used the old value of a register
184    to obtain a new value.  In that case, we might erroneously get the
185    new value of the register when we wanted the old one.  */
186 
187 static int subst_low_cuid;
188 
189 /* This contains any hard registers that are used in newpat; reg_dead_at_p
190    must consider all these registers to be always live.  */
191 
192 static HARD_REG_SET newpat_used_regs;
193 
194 /* This is an insn to which a LOG_LINKS entry has been added.  If this
195    insn is the earlier than I2 or I3, combine should rescan starting at
196    that location.  */
197 
198 static rtx added_links_insn;
199 
200 /* Basic block in which we are performing combines.  */
201 static basic_block this_basic_block;
202 
203 /* A bitmap indicating which blocks had registers go dead at entry.
204    After combine, we'll need to re-do global life analysis with
205    those blocks as starting points.  */
206 static sbitmap refresh_blocks;
207 
208 /* The next group of arrays allows the recording of the last value assigned
209    to (hard or pseudo) register n.  We use this information to see if an
210    operation being processed is redundant given a prior operation performed
211    on the register.  For example, an `and' with a constant is redundant if
212    all the zero bits are already known to be turned off.
213 
214    We use an approach similar to that used by cse, but change it in the
215    following ways:
216 
217    (1) We do not want to reinitialize at each label.
218    (2) It is useful, but not critical, to know the actual value assigned
219        to a register.  Often just its form is helpful.
220 
221    Therefore, we maintain the following arrays:
222 
223    reg_last_set_value		the last value assigned
224    reg_last_set_label		records the value of label_tick when the
225 				register was assigned
226    reg_last_set_table_tick	records the value of label_tick when a
227 				value using the register is assigned
228    reg_last_set_invalid		set to nonzero when it is not valid
229 				to use the value of this register in some
230 				register's value
231 
232    To understand the usage of these tables, it is important to understand
233    the distinction between the value in reg_last_set_value being valid
234    and the register being validly contained in some other expression in the
235    table.
236 
237    Entry I in reg_last_set_value is valid if it is nonzero, and either
238    reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
239 
240    Register I may validly appear in any expression returned for the value
241    of another register if reg_n_sets[i] is 1.  It may also appear in the
242    value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
243    reg_last_set_invalid[j] is zero.
244 
245    If an expression is found in the table containing a register which may
246    not validly appear in an expression, the register is replaced by
247    something that won't match, (clobber (const_int 0)).
248 
249    reg_last_set_invalid[i] is set nonzero when register I is being assigned
250    to and reg_last_set_table_tick[i] == label_tick.  */
251 
252 /* Record last value assigned to (hard or pseudo) register n.  */
253 
254 static rtx *reg_last_set_value;
255 
256 /* Record the value of label_tick when the value for register n is placed in
257    reg_last_set_value[n].  */
258 
259 static int *reg_last_set_label;
260 
261 /* Record the value of label_tick when an expression involving register n
262    is placed in reg_last_set_value.  */
263 
264 static int *reg_last_set_table_tick;
265 
266 /* Set nonzero if references to register n in expressions should not be
267    used.  */
268 
269 static char *reg_last_set_invalid;
270 
271 /* Incremented for each label.  */
272 
273 static int label_tick;
274 
275 /* Some registers that are set more than once and used in more than one
276    basic block are nevertheless always set in similar ways.  For example,
277    a QImode register may be loaded from memory in two places on a machine
278    where byte loads zero extend.
279 
280    We record in the following array what we know about the nonzero
281    bits of a register, specifically which bits are known to be zero.
282 
283    If an entry is zero, it means that we don't know anything special.  */
284 
285 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
286 
287 /* Mode used to compute significance in reg_nonzero_bits.  It is the largest
288    integer mode that can fit in HOST_BITS_PER_WIDE_INT.  */
289 
290 static enum machine_mode nonzero_bits_mode;
291 
292 /* Nonzero if we know that a register has some leading bits that are always
293    equal to the sign bit.  */
294 
295 static unsigned char *reg_sign_bit_copies;
296 
297 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
298    It is zero while computing them and after combine has completed.  This
299    former test prevents propagating values based on previously set values,
300    which can be incorrect if a variable is modified in a loop.  */
301 
302 static int nonzero_sign_valid;
303 
304 /* These arrays are maintained in parallel with reg_last_set_value
305    and are used to store the mode in which the register was last set,
306    the bits that were known to be zero when it was last set, and the
307    number of sign bits copies it was known to have when it was last set.  */
308 
309 static enum machine_mode *reg_last_set_mode;
310 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
311 static char *reg_last_set_sign_bit_copies;
312 
313 /* Record one modification to rtl structure
314    to be undone by storing old_contents into *where.
315    is_int is 1 if the contents are an int.  */
316 
317 struct undo
318 {
319   struct undo *next;
320   int is_int;
321   union {rtx r; int i;} old_contents;
322   union {rtx *r; int *i;} where;
323 };
324 
325 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
326    num_undo says how many are currently recorded.
327 
328    other_insn is nonzero if we have modified some other insn in the process
329    of working on subst_insn.  It must be verified too.  */
330 
331 struct undobuf
332 {
333   struct undo *undos;
334   struct undo *frees;
335   rtx other_insn;
336 };
337 
338 static struct undobuf undobuf;
339 
340 /* Number of times the pseudo being substituted for
341    was found and replaced.  */
342 
343 static int n_occurrences;
344 
345 static void do_SUBST (rtx *, rtx);
346 static void do_SUBST_INT (int *, int);
347 static void init_reg_last_arrays (void);
348 static void setup_incoming_promotions (void);
349 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
350 static int cant_combine_insn_p (rtx);
351 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
352 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
353 static int contains_muldiv (rtx);
354 static rtx try_combine (rtx, rtx, rtx, int *);
355 static void undo_all (void);
356 static void undo_commit (void);
357 static rtx *find_split_point (rtx *, rtx);
358 static rtx subst (rtx, rtx, rtx, int, int);
359 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
360 static rtx simplify_if_then_else (rtx);
361 static rtx simplify_set (rtx);
362 static rtx simplify_logical (rtx, int);
363 static rtx expand_compound_operation (rtx);
364 static rtx expand_field_assignment (rtx);
365 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
366 			    rtx, unsigned HOST_WIDE_INT, int, int, int);
367 static rtx extract_left_shift (rtx, int);
368 static rtx make_compound_operation (rtx, enum rtx_code);
369 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
370 			      unsigned HOST_WIDE_INT *);
371 static rtx force_to_mode (rtx, enum machine_mode,
372 			  unsigned HOST_WIDE_INT, rtx, int);
373 static rtx if_then_else_cond (rtx, rtx *, rtx *);
374 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
375 static int rtx_equal_for_field_assignment_p (rtx, rtx);
376 static rtx make_field_assignment (rtx);
377 static rtx apply_distributive_law (rtx);
378 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
379 				   unsigned HOST_WIDE_INT);
380 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
381 						   rtx, enum machine_mode,
382 						   unsigned HOST_WIDE_INT);
383 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
384 					     enum machine_mode,
385 					     unsigned HOST_WIDE_INT);
386 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
387 						enum machine_mode,
388 						unsigned int);
389 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
390 					  enum machine_mode, unsigned int);
391 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
392 			    HOST_WIDE_INT, enum machine_mode, int *);
393 static rtx simplify_shift_const	(rtx, enum rtx_code, enum machine_mode, rtx,
394 				 int);
395 static int recog_for_combine (rtx *, rtx, rtx *);
396 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
397 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
398 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
399 static void update_table_tick (rtx);
400 static void record_value_for_reg (rtx, rtx, rtx);
401 static void check_promoted_subreg (rtx, rtx);
402 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
403 static void record_dead_and_set_regs (rtx);
404 static int get_last_value_validate (rtx *, rtx, int, int);
405 static rtx get_last_value (rtx);
406 static int use_crosses_set_p (rtx, int);
407 static void reg_dead_at_p_1 (rtx, rtx, void *);
408 static int reg_dead_at_p (rtx, rtx);
409 static void move_deaths (rtx, rtx, int, rtx, rtx *);
410 static int reg_bitfield_target_p (rtx, rtx);
411 static void distribute_notes (rtx, rtx, rtx, rtx);
412 static void distribute_links (rtx);
413 static void mark_used_regs_combine (rtx);
414 static int insn_cuid (rtx);
415 static void record_promoted_value (rtx, rtx);
416 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
417 static enum rtx_code combine_reversed_comparison_code (rtx);
418 
419 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
420    insn.  The substitution can be undone by undo_all.  If INTO is already
421    set to NEWVAL, do not record this change.  Because computing NEWVAL might
422    also call SUBST, we have to compute it before we put anything into
423    the undo table.  */
424 
425 static void
do_SUBST(rtx * into,rtx newval)426 do_SUBST (rtx *into, rtx newval)
427 {
428   struct undo *buf;
429   rtx oldval = *into;
430 
431   if (oldval == newval)
432     return;
433 
434   /* We'd like to catch as many invalid transformations here as
435      possible.  Unfortunately, there are way too many mode changes
436      that are perfectly valid, so we'd waste too much effort for
437      little gain doing the checks here.  Focus on catching invalid
438      transformations involving integer constants.  */
439   if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
440       && GET_CODE (newval) == CONST_INT)
441     {
442       /* Sanity check that we're replacing oldval with a CONST_INT
443 	 that is a valid sign-extension for the original mode.  */
444       if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
445 						 GET_MODE (oldval)))
446 	abort ();
447 
448       /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
449 	 CONST_INT is not valid, because after the replacement, the
450 	 original mode would be gone.  Unfortunately, we can't tell
451 	 when do_SUBST is called to replace the operand thereof, so we
452 	 perform this test on oldval instead, checking whether an
453 	 invalid replacement took place before we got here.  */
454       if ((GET_CODE (oldval) == SUBREG
455 	   && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
456 	  || (GET_CODE (oldval) == ZERO_EXTEND
457 	      && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
458 	abort ();
459     }
460 
461   if (undobuf.frees)
462     buf = undobuf.frees, undobuf.frees = buf->next;
463   else
464     buf = xmalloc (sizeof (struct undo));
465 
466   buf->is_int = 0;
467   buf->where.r = into;
468   buf->old_contents.r = oldval;
469   *into = newval;
470 
471   buf->next = undobuf.undos, undobuf.undos = buf;
472 }
473 
474 #define SUBST(INTO, NEWVAL)	do_SUBST(&(INTO), (NEWVAL))
475 
476 /* Similar to SUBST, but NEWVAL is an int expression.  Note that substitution
477    for the value of a HOST_WIDE_INT value (including CONST_INT) is
478    not safe.  */
479 
480 static void
do_SUBST_INT(int * into,int newval)481 do_SUBST_INT (int *into, int newval)
482 {
483   struct undo *buf;
484   int oldval = *into;
485 
486   if (oldval == newval)
487     return;
488 
489   if (undobuf.frees)
490     buf = undobuf.frees, undobuf.frees = buf->next;
491   else
492     buf = xmalloc (sizeof (struct undo));
493 
494   buf->is_int = 1;
495   buf->where.i = into;
496   buf->old_contents.i = oldval;
497   *into = newval;
498 
499   buf->next = undobuf.undos, undobuf.undos = buf;
500 }
501 
502 #define SUBST_INT(INTO, NEWVAL)  do_SUBST_INT(&(INTO), (NEWVAL))
503 
504 /* Main entry point for combiner.  F is the first insn of the function.
505    NREGS is the first unused pseudo-reg number.
506 
507    Return nonzero if the combiner has turned an indirect jump
508    instruction into a direct jump.  */
509 int
combine_instructions(rtx f,unsigned int nregs)510 combine_instructions (rtx f, unsigned int nregs)
511 {
512   rtx insn, next;
513 #ifdef HAVE_cc0
514   rtx prev;
515 #endif
516   int i;
517   rtx links, nextlinks;
518 
519   int new_direct_jump_p = 0;
520 
521   combine_attempts = 0;
522   combine_merges = 0;
523   combine_extras = 0;
524   combine_successes = 0;
525 
526   combine_max_regno = nregs;
527 
528   reg_nonzero_bits = xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT));
529   reg_sign_bit_copies = xcalloc (nregs, sizeof (unsigned char));
530 
531   reg_last_death = xmalloc (nregs * sizeof (rtx));
532   reg_last_set = xmalloc (nregs * sizeof (rtx));
533   reg_last_set_value = xmalloc (nregs * sizeof (rtx));
534   reg_last_set_table_tick = xmalloc (nregs * sizeof (int));
535   reg_last_set_label = xmalloc (nregs * sizeof (int));
536   reg_last_set_invalid = xmalloc (nregs * sizeof (char));
537   reg_last_set_mode = xmalloc (nregs * sizeof (enum machine_mode));
538   reg_last_set_nonzero_bits = xmalloc (nregs * sizeof (HOST_WIDE_INT));
539   reg_last_set_sign_bit_copies = xmalloc (nregs * sizeof (char));
540 
541   init_reg_last_arrays ();
542 
543   init_recog_no_volatile ();
544 
545   /* Compute maximum uid value so uid_cuid can be allocated.  */
546 
547   for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
548     if (INSN_UID (insn) > i)
549       i = INSN_UID (insn);
550 
551   uid_cuid = xmalloc ((i + 1) * sizeof (int));
552   max_uid_cuid = i;
553 
554   nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
555 
556   /* Don't use reg_nonzero_bits when computing it.  This can cause problems
557      when, for example, we have j <<= 1 in a loop.  */
558 
559   nonzero_sign_valid = 0;
560 
561   /* Compute the mapping from uids to cuids.
562      Cuids are numbers assigned to insns, like uids,
563      except that cuids increase monotonically through the code.
564 
565      Scan all SETs and see if we can deduce anything about what
566      bits are known to be zero for some registers and how many copies
567      of the sign bit are known to exist for those registers.
568 
569      Also set any known values so that we can use it while searching
570      for what bits are known to be set.  */
571 
572   label_tick = 1;
573 
574   setup_incoming_promotions ();
575 
576   refresh_blocks = sbitmap_alloc (last_basic_block);
577   sbitmap_zero (refresh_blocks);
578 
579   for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
580     {
581       uid_cuid[INSN_UID (insn)] = ++i;
582       subst_low_cuid = i;
583       subst_insn = insn;
584 
585       if (INSN_P (insn))
586 	{
587 	  note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
588 		       NULL);
589 	  record_dead_and_set_regs (insn);
590 
591 #ifdef AUTO_INC_DEC
592 	  for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
593 	    if (REG_NOTE_KIND (links) == REG_INC)
594 	      set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
595 						NULL);
596 #endif
597 	}
598 
599       if (GET_CODE (insn) == CODE_LABEL)
600 	label_tick++;
601     }
602 
603   nonzero_sign_valid = 1;
604 
605   /* Now scan all the insns in forward order.  */
606 
607   label_tick = 1;
608   last_call_cuid = 0;
609   mem_last_set = 0;
610   init_reg_last_arrays ();
611   setup_incoming_promotions ();
612 
613   FOR_EACH_BB (this_basic_block)
614     {
615       for (insn = BB_HEAD (this_basic_block);
616            insn != NEXT_INSN (BB_END (this_basic_block));
617 	   insn = next ? next : NEXT_INSN (insn))
618 	{
619 	  next = 0;
620 
621 	  if (GET_CODE (insn) == CODE_LABEL)
622 	    label_tick++;
623 
624 	  else if (INSN_P (insn))
625 	    {
626 	      /* See if we know about function return values before this
627 		 insn based upon SUBREG flags.  */
628 	      check_promoted_subreg (insn, PATTERN (insn));
629 
630 	      /* Try this insn with each insn it links back to.  */
631 
632 	      for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
633 		if ((next = try_combine (insn, XEXP (links, 0),
634 					 NULL_RTX, &new_direct_jump_p)) != 0)
635 		  goto retry;
636 
637 	      /* Try each sequence of three linked insns ending with this one.  */
638 
639 	      for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
640 		{
641 		  rtx link = XEXP (links, 0);
642 
643 		  /* If the linked insn has been replaced by a note, then there
644 		     is no point in pursuing this chain any further.  */
645 		  if (GET_CODE (link) == NOTE)
646 		    continue;
647 
648 		  for (nextlinks = LOG_LINKS (link);
649 		       nextlinks;
650 		       nextlinks = XEXP (nextlinks, 1))
651 		    if ((next = try_combine (insn, link,
652 					     XEXP (nextlinks, 0),
653 					     &new_direct_jump_p)) != 0)
654 		      goto retry;
655 		}
656 
657 #ifdef HAVE_cc0
658 	      /* Try to combine a jump insn that uses CC0
659 		 with a preceding insn that sets CC0, and maybe with its
660 		 logical predecessor as well.
661 		 This is how we make decrement-and-branch insns.
662 		 We need this special code because data flow connections
663 		 via CC0 do not get entered in LOG_LINKS.  */
664 
665 	      if (GET_CODE (insn) == JUMP_INSN
666 		  && (prev = prev_nonnote_insn (insn)) != 0
667 		  && GET_CODE (prev) == INSN
668 		  && sets_cc0_p (PATTERN (prev)))
669 		{
670 		  if ((next = try_combine (insn, prev,
671 					   NULL_RTX, &new_direct_jump_p)) != 0)
672 		    goto retry;
673 
674 		  for (nextlinks = LOG_LINKS (prev); nextlinks;
675 		       nextlinks = XEXP (nextlinks, 1))
676 		    if ((next = try_combine (insn, prev,
677 					     XEXP (nextlinks, 0),
678 					     &new_direct_jump_p)) != 0)
679 		      goto retry;
680 		}
681 
682 	      /* Do the same for an insn that explicitly references CC0.  */
683 	      if (GET_CODE (insn) == INSN
684 		  && (prev = prev_nonnote_insn (insn)) != 0
685 		  && GET_CODE (prev) == INSN
686 		  && sets_cc0_p (PATTERN (prev))
687 		  && GET_CODE (PATTERN (insn)) == SET
688 		  && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
689 		{
690 		  if ((next = try_combine (insn, prev,
691 					   NULL_RTX, &new_direct_jump_p)) != 0)
692 		    goto retry;
693 
694 		  for (nextlinks = LOG_LINKS (prev); nextlinks;
695 		       nextlinks = XEXP (nextlinks, 1))
696 		    if ((next = try_combine (insn, prev,
697 					     XEXP (nextlinks, 0),
698 					     &new_direct_jump_p)) != 0)
699 		      goto retry;
700 		}
701 
702 	      /* Finally, see if any of the insns that this insn links to
703 		 explicitly references CC0.  If so, try this insn, that insn,
704 		 and its predecessor if it sets CC0.  */
705 	      for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
706 		if (GET_CODE (XEXP (links, 0)) == INSN
707 		    && GET_CODE (PATTERN (XEXP (links, 0))) == SET
708 		    && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
709 		    && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
710 		    && GET_CODE (prev) == INSN
711 		    && sets_cc0_p (PATTERN (prev))
712 		    && (next = try_combine (insn, XEXP (links, 0),
713 					    prev, &new_direct_jump_p)) != 0)
714 		  goto retry;
715 #endif
716 
717 	      /* Try combining an insn with two different insns whose results it
718 		 uses.  */
719 	      for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
720 		for (nextlinks = XEXP (links, 1); nextlinks;
721 		     nextlinks = XEXP (nextlinks, 1))
722 		  if ((next = try_combine (insn, XEXP (links, 0),
723 					   XEXP (nextlinks, 0),
724 					   &new_direct_jump_p)) != 0)
725 		    goto retry;
726 
727 	      if (GET_CODE (insn) != NOTE)
728 		record_dead_and_set_regs (insn);
729 
730 	    retry:
731 	      ;
732 	    }
733 	}
734     }
735   clear_bb_flags ();
736 
737   EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
738 			     BASIC_BLOCK (i)->flags |= BB_DIRTY);
739   new_direct_jump_p |= purge_all_dead_edges (0);
740   delete_noop_moves (f);
741 
742   update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
743 				    PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
744 				    | PROP_KILL_DEAD_CODE);
745 
746   /* Clean up.  */
747   sbitmap_free (refresh_blocks);
748   free (reg_nonzero_bits);
749   free (reg_sign_bit_copies);
750   free (reg_last_death);
751   free (reg_last_set);
752   free (reg_last_set_value);
753   free (reg_last_set_table_tick);
754   free (reg_last_set_label);
755   free (reg_last_set_invalid);
756   free (reg_last_set_mode);
757   free (reg_last_set_nonzero_bits);
758   free (reg_last_set_sign_bit_copies);
759   free (uid_cuid);
760 
761   {
762     struct undo *undo, *next;
763     for (undo = undobuf.frees; undo; undo = next)
764       {
765 	next = undo->next;
766 	free (undo);
767       }
768     undobuf.frees = 0;
769   }
770 
771   total_attempts += combine_attempts;
772   total_merges += combine_merges;
773   total_extras += combine_extras;
774   total_successes += combine_successes;
775 
776   nonzero_sign_valid = 0;
777 
778   /* Make recognizer allow volatile MEMs again.  */
779   init_recog ();
780 
781   return new_direct_jump_p;
782 }
783 
784 /* Wipe the reg_last_xxx arrays in preparation for another pass.  */
785 
786 static void
init_reg_last_arrays(void)787 init_reg_last_arrays (void)
788 {
789   unsigned int nregs = combine_max_regno;
790 
791   memset (reg_last_death, 0, nregs * sizeof (rtx));
792   memset (reg_last_set, 0, nregs * sizeof (rtx));
793   memset (reg_last_set_value, 0, nregs * sizeof (rtx));
794   memset (reg_last_set_table_tick, 0, nregs * sizeof (int));
795   memset (reg_last_set_label, 0, nregs * sizeof (int));
796   memset (reg_last_set_invalid, 0, nregs * sizeof (char));
797   memset (reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
798   memset (reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
799   memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
800 }
801 
802 /* Set up any promoted values for incoming argument registers.  */
803 
804 static void
setup_incoming_promotions(void)805 setup_incoming_promotions (void)
806 {
807   unsigned int regno;
808   rtx reg;
809   enum machine_mode mode;
810   int unsignedp;
811   rtx first = get_insns ();
812 
813   if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
814     {
815 #ifndef OUTGOING_REGNO
816 #define OUTGOING_REGNO(N) N
817 #endif
818       for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
819 	/* Check whether this register can hold an incoming pointer
820 	   argument.  FUNCTION_ARG_REGNO_P tests outgoing register
821 	   numbers, so translate if necessary due to register windows.  */
822 	if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
823 	    && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
824 	  {
825 	    record_value_for_reg
826 	      (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
827 					   : SIGN_EXTEND),
828 					  GET_MODE (reg),
829 					  gen_rtx_CLOBBER (mode, const0_rtx)));
830 	  }
831     }
832 }
833 
834 /* Called via note_stores.  If X is a pseudo that is narrower than
835    HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
836 
837    If we are setting only a portion of X and we can't figure out what
838    portion, assume all bits will be used since we don't know what will
839    be happening.
840 
841    Similarly, set how many bits of X are known to be copies of the sign bit
842    at all locations in the function.  This is the smallest number implied
843    by any set of X.  */
844 
845 static void
set_nonzero_bits_and_sign_copies(rtx x,rtx set,void * data ATTRIBUTE_UNUSED)846 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
847 				  void *data ATTRIBUTE_UNUSED)
848 {
849   unsigned int num;
850 
851   if (GET_CODE (x) == REG
852       && REGNO (x) >= FIRST_PSEUDO_REGISTER
853       /* If this register is undefined at the start of the file, we can't
854 	 say what its contents were.  */
855       && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
856       && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
857     {
858       if (set == 0 || GET_CODE (set) == CLOBBER)
859 	{
860 	  reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
861 	  reg_sign_bit_copies[REGNO (x)] = 1;
862 	  return;
863 	}
864 
865       /* If this is a complex assignment, see if we can convert it into a
866 	 simple assignment.  */
867       set = expand_field_assignment (set);
868 
869       /* If this is a simple assignment, or we have a paradoxical SUBREG,
870 	 set what we know about X.  */
871 
872       if (SET_DEST (set) == x
873 	  || (GET_CODE (SET_DEST (set)) == SUBREG
874 	      && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
875 		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
876 	      && SUBREG_REG (SET_DEST (set)) == x))
877 	{
878 	  rtx src = SET_SRC (set);
879 
880 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
881 	  /* If X is narrower than a word and SRC is a non-negative
882 	     constant that would appear negative in the mode of X,
883 	     sign-extend it for use in reg_nonzero_bits because some
884 	     machines (maybe most) will actually do the sign-extension
885 	     and this is the conservative approach.
886 
887 	     ??? For 2.5, try to tighten up the MD files in this regard
888 	     instead of this kludge.  */
889 
890 	  if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
891 	      && GET_CODE (src) == CONST_INT
892 	      && INTVAL (src) > 0
893 	      && 0 != (INTVAL (src)
894 		       & ((HOST_WIDE_INT) 1
895 			  << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
896 	    src = GEN_INT (INTVAL (src)
897 			   | ((HOST_WIDE_INT) (-1)
898 			      << GET_MODE_BITSIZE (GET_MODE (x))));
899 #endif
900 
901 	  /* Don't call nonzero_bits if it cannot change anything.  */
902 	  if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
903 	    reg_nonzero_bits[REGNO (x)]
904 	      |= nonzero_bits (src, nonzero_bits_mode);
905 	  num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
906 	  if (reg_sign_bit_copies[REGNO (x)] == 0
907 	      || reg_sign_bit_copies[REGNO (x)] > num)
908 	    reg_sign_bit_copies[REGNO (x)] = num;
909 	}
910       else
911 	{
912 	  reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
913 	  reg_sign_bit_copies[REGNO (x)] = 1;
914 	}
915     }
916 }
917 
918 /* See if INSN can be combined into I3.  PRED and SUCC are optionally
919    insns that were previously combined into I3 or that will be combined
920    into the merger of INSN and I3.
921 
922    Return 0 if the combination is not allowed for any reason.
923 
924    If the combination is allowed, *PDEST will be set to the single
925    destination of INSN and *PSRC to the single source, and this function
926    will return 1.  */
927 
928 static int
can_combine_p(rtx insn,rtx i3,rtx pred ATTRIBUTE_UNUSED,rtx succ,rtx * pdest,rtx * psrc)929 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
930 	       rtx *pdest, rtx *psrc)
931 {
932   int i;
933   rtx set = 0, src, dest;
934   rtx p;
935 #ifdef AUTO_INC_DEC
936   rtx link;
937 #endif
938   int all_adjacent = (succ ? (next_active_insn (insn) == succ
939 			      && next_active_insn (succ) == i3)
940 		      : next_active_insn (insn) == i3);
941 
942   /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
943      or a PARALLEL consisting of such a SET and CLOBBERs.
944 
945      If INSN has CLOBBER parallel parts, ignore them for our processing.
946      By definition, these happen during the execution of the insn.  When it
947      is merged with another insn, all bets are off.  If they are, in fact,
948      needed and aren't also supplied in I3, they may be added by
949      recog_for_combine.  Otherwise, it won't match.
950 
951      We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
952      note.
953 
954      Get the source and destination of INSN.  If more than one, can't
955      combine.  */
956 
957   if (GET_CODE (PATTERN (insn)) == SET)
958     set = PATTERN (insn);
959   else if (GET_CODE (PATTERN (insn)) == PARALLEL
960 	   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
961     {
962       for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
963 	{
964 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
965 	  rtx note;
966 
967 	  switch (GET_CODE (elt))
968 	    {
969 	    /* This is important to combine floating point insns
970 	       for the SH4 port.  */
971 	    case USE:
972 	      /* Combining an isolated USE doesn't make sense.
973 		 We depend here on combinable_i3pat to reject them.  */
974 	      /* The code below this loop only verifies that the inputs of
975 		 the SET in INSN do not change.  We call reg_set_between_p
976 		 to verify that the REG in the USE does not change between
977 		 I3 and INSN.
978 		 If the USE in INSN was for a pseudo register, the matching
979 		 insn pattern will likely match any register; combining this
980 		 with any other USE would only be safe if we knew that the
981 		 used registers have identical values, or if there was
982 		 something to tell them apart, e.g. different modes.  For
983 		 now, we forgo such complicated tests and simply disallow
984 		 combining of USES of pseudo registers with any other USE.  */
985 	      if (GET_CODE (XEXP (elt, 0)) == REG
986 		  && GET_CODE (PATTERN (i3)) == PARALLEL)
987 		{
988 		  rtx i3pat = PATTERN (i3);
989 		  int i = XVECLEN (i3pat, 0) - 1;
990 		  unsigned int regno = REGNO (XEXP (elt, 0));
991 
992 		  do
993 		    {
994 		      rtx i3elt = XVECEXP (i3pat, 0, i);
995 
996 		      if (GET_CODE (i3elt) == USE
997 			  && GET_CODE (XEXP (i3elt, 0)) == REG
998 			  && (REGNO (XEXP (i3elt, 0)) == regno
999 			      ? reg_set_between_p (XEXP (elt, 0),
1000 						   PREV_INSN (insn), i3)
1001 			      : regno >= FIRST_PSEUDO_REGISTER))
1002 			return 0;
1003 		    }
1004 		  while (--i >= 0);
1005 		}
1006 	      break;
1007 
1008 	      /* We can ignore CLOBBERs.  */
1009 	    case CLOBBER:
1010 	      break;
1011 
1012 	    case SET:
1013 	      /* Ignore SETs whose result isn't used but not those that
1014 		 have side-effects.  */
1015 	      if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1016 		  && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1017 		      || INTVAL (XEXP (note, 0)) <= 0)
1018 		  && ! side_effects_p (elt))
1019 		break;
1020 
1021 	      /* If we have already found a SET, this is a second one and
1022 		 so we cannot combine with this insn.  */
1023 	      if (set)
1024 		return 0;
1025 
1026 	      set = elt;
1027 	      break;
1028 
1029 	    default:
1030 	      /* Anything else means we can't combine.  */
1031 	      return 0;
1032 	    }
1033 	}
1034 
1035       if (set == 0
1036 	  /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1037 	     so don't do anything with it.  */
1038 	  || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1039 	return 0;
1040     }
1041   else
1042     return 0;
1043 
1044   if (set == 0)
1045     return 0;
1046 
1047   set = expand_field_assignment (set);
1048   src = SET_SRC (set), dest = SET_DEST (set);
1049 
1050   /* Don't eliminate a store in the stack pointer.  */
1051   if (dest == stack_pointer_rtx
1052       /* Don't combine with an insn that sets a register to itself if it has
1053 	 a REG_EQUAL note.  This may be part of a REG_NO_CONFLICT sequence.  */
1054       || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1055       /* Can't merge an ASM_OPERANDS.  */
1056       || GET_CODE (src) == ASM_OPERANDS
1057       /* Can't merge a function call.  */
1058       || GET_CODE (src) == CALL
1059       /* Don't eliminate a function call argument.  */
1060       || (GET_CODE (i3) == CALL_INSN
1061 	  && (find_reg_fusage (i3, USE, dest)
1062 	      || (GET_CODE (dest) == REG
1063 		  && REGNO (dest) < FIRST_PSEUDO_REGISTER
1064 		  && global_regs[REGNO (dest)])))
1065       /* Don't substitute into an incremented register.  */
1066       || FIND_REG_INC_NOTE (i3, dest)
1067       || (succ && FIND_REG_INC_NOTE (succ, dest))
1068 #if 0
1069       /* Don't combine the end of a libcall into anything.  */
1070       /* ??? This gives worse code, and appears to be unnecessary, since no
1071 	 pass after flow uses REG_LIBCALL/REG_RETVAL notes.  Local-alloc does
1072 	 use REG_RETVAL notes for noconflict blocks, but other code here
1073 	 makes sure that those insns don't disappear.  */
1074       || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1075 #endif
1076       /* Make sure that DEST is not used after SUCC but before I3.  */
1077       || (succ && ! all_adjacent
1078 	  && reg_used_between_p (dest, succ, i3))
1079       /* Make sure that the value that is to be substituted for the register
1080 	 does not use any registers whose values alter in between.  However,
1081 	 If the insns are adjacent, a use can't cross a set even though we
1082 	 think it might (this can happen for a sequence of insns each setting
1083 	 the same destination; reg_last_set of that register might point to
1084 	 a NOTE).  If INSN has a REG_EQUIV note, the register is always
1085 	 equivalent to the memory so the substitution is valid even if there
1086 	 are intervening stores.  Also, don't move a volatile asm or
1087 	 UNSPEC_VOLATILE across any other insns.  */
1088       || (! all_adjacent
1089 	  && (((GET_CODE (src) != MEM
1090 		|| ! find_reg_note (insn, REG_EQUIV, src))
1091 	       && use_crosses_set_p (src, INSN_CUID (insn)))
1092 	      || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1093 	      || GET_CODE (src) == UNSPEC_VOLATILE))
1094       /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1095 	 better register allocation by not doing the combine.  */
1096       || find_reg_note (i3, REG_NO_CONFLICT, dest)
1097       || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1098       /* Don't combine across a CALL_INSN, because that would possibly
1099 	 change whether the life span of some REGs crosses calls or not,
1100 	 and it is a pain to update that information.
1101 	 Exception: if source is a constant, moving it later can't hurt.
1102 	 Accept that special case, because it helps -fforce-addr a lot.  */
1103       || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1104     return 0;
1105 
1106   /* DEST must either be a REG or CC0.  */
1107   if (GET_CODE (dest) == REG)
1108     {
1109       /* If register alignment is being enforced for multi-word items in all
1110 	 cases except for parameters, it is possible to have a register copy
1111 	 insn referencing a hard register that is not allowed to contain the
1112 	 mode being copied and which would not be valid as an operand of most
1113 	 insns.  Eliminate this problem by not combining with such an insn.
1114 
1115 	 Also, on some machines we don't want to extend the life of a hard
1116 	 register.  */
1117 
1118       if (GET_CODE (src) == REG
1119 	  && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1120 	       && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1121 	      /* Don't extend the life of a hard register unless it is
1122 		 user variable (if we have few registers) or it can't
1123 		 fit into the desired register (meaning something special
1124 		 is going on).
1125 		 Also avoid substituting a return register into I3, because
1126 		 reload can't handle a conflict with constraints of other
1127 		 inputs.  */
1128 	      || (REGNO (src) < FIRST_PSEUDO_REGISTER
1129 		  && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1130 	return 0;
1131     }
1132   else if (GET_CODE (dest) != CC0)
1133     return 0;
1134 
1135   /* Don't substitute for a register intended as a clobberable operand.
1136      Similarly, don't substitute an expression containing a register that
1137      will be clobbered in I3.  */
1138   if (GET_CODE (PATTERN (i3)) == PARALLEL)
1139     for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1140       if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1141 	  && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1142 				       src)
1143 	      || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1144 	return 0;
1145 
1146   /* If INSN contains anything volatile, or is an `asm' (whether volatile
1147      or not), reject, unless nothing volatile comes between it and I3 */
1148 
1149   if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1150     {
1151       /* Make sure succ doesn't contain a volatile reference.  */
1152       if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1153         return 0;
1154 
1155       for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1156         if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1157 	  return 0;
1158     }
1159 
1160   /* If INSN is an asm, and DEST is a hard register, reject, since it has
1161      to be an explicit register variable, and was chosen for a reason.  */
1162 
1163   if (GET_CODE (src) == ASM_OPERANDS
1164       && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1165     return 0;
1166 
1167   /* If there are any volatile insns between INSN and I3, reject, because
1168      they might affect machine state.  */
1169 
1170   for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1171     if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1172       return 0;
1173 
1174   /* If INSN or I2 contains an autoincrement or autodecrement,
1175      make sure that register is not used between there and I3,
1176      and not already used in I3 either.
1177      Also insist that I3 not be a jump; if it were one
1178      and the incremented register were spilled, we would lose.  */
1179 
1180 #ifdef AUTO_INC_DEC
1181   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1182     if (REG_NOTE_KIND (link) == REG_INC
1183 	&& (GET_CODE (i3) == JUMP_INSN
1184 	    || reg_used_between_p (XEXP (link, 0), insn, i3)
1185 	    || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1186       return 0;
1187 #endif
1188 
1189 #ifdef HAVE_cc0
1190   /* Don't combine an insn that follows a CC0-setting insn.
1191      An insn that uses CC0 must not be separated from the one that sets it.
1192      We do, however, allow I2 to follow a CC0-setting insn if that insn
1193      is passed as I1; in that case it will be deleted also.
1194      We also allow combining in this case if all the insns are adjacent
1195      because that would leave the two CC0 insns adjacent as well.
1196      It would be more logical to test whether CC0 occurs inside I1 or I2,
1197      but that would be much slower, and this ought to be equivalent.  */
1198 
1199   p = prev_nonnote_insn (insn);
1200   if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1201       && ! all_adjacent)
1202     return 0;
1203 #endif
1204 
1205   /* If we get here, we have passed all the tests and the combination is
1206      to be allowed.  */
1207 
1208   *pdest = dest;
1209   *psrc = src;
1210 
1211   return 1;
1212 }
1213 
1214 /* LOC is the location within I3 that contains its pattern or the component
1215    of a PARALLEL of the pattern.  We validate that it is valid for combining.
1216 
1217    One problem is if I3 modifies its output, as opposed to replacing it
1218    entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1219    so would produce an insn that is not equivalent to the original insns.
1220 
1221    Consider:
1222 
1223          (set (reg:DI 101) (reg:DI 100))
1224 	 (set (subreg:SI (reg:DI 101) 0) <foo>)
1225 
1226    This is NOT equivalent to:
1227 
1228          (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1229 		    (set (reg:DI 101) (reg:DI 100))])
1230 
1231    Not only does this modify 100 (in which case it might still be valid
1232    if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1233 
1234    We can also run into a problem if I2 sets a register that I1
1235    uses and I1 gets directly substituted into I3 (not via I2).  In that
1236    case, we would be getting the wrong value of I2DEST into I3, so we
1237    must reject the combination.  This case occurs when I2 and I1 both
1238    feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1239    If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1240    of a SET must prevent combination from occurring.
1241 
1242    Before doing the above check, we first try to expand a field assignment
1243    into a set of logical operations.
1244 
1245    If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1246    we place a register that is both set and used within I3.  If more than one
1247    such register is detected, we fail.
1248 
1249    Return 1 if the combination is valid, zero otherwise.  */
1250 
1251 static int
combinable_i3pat(rtx i3,rtx * loc,rtx i2dest,rtx i1dest,int i1_not_in_src,rtx * pi3dest_killed)1252 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1253 		  int i1_not_in_src, rtx *pi3dest_killed)
1254 {
1255   rtx x = *loc;
1256 
1257   if (GET_CODE (x) == SET)
1258     {
1259       rtx set = x ;
1260       rtx dest = SET_DEST (set);
1261       rtx src = SET_SRC (set);
1262       rtx inner_dest = dest;
1263 
1264       while (GET_CODE (inner_dest) == STRICT_LOW_PART
1265 	     || GET_CODE (inner_dest) == SUBREG
1266 	     || GET_CODE (inner_dest) == ZERO_EXTRACT)
1267 	inner_dest = XEXP (inner_dest, 0);
1268 
1269       /* Check for the case where I3 modifies its output, as discussed
1270 	 above.  We don't want to prevent pseudos from being combined
1271 	 into the address of a MEM, so only prevent the combination if
1272 	 i1 or i2 set the same MEM.  */
1273       if ((inner_dest != dest &&
1274 	   (GET_CODE (inner_dest) != MEM
1275 	    || rtx_equal_p (i2dest, inner_dest)
1276 	    || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1277 	   && (reg_overlap_mentioned_p (i2dest, inner_dest)
1278 	       || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1279 
1280 	  /* This is the same test done in can_combine_p except we can't test
1281 	     all_adjacent; we don't have to, since this instruction will stay
1282 	     in place, thus we are not considering increasing the lifetime of
1283 	     INNER_DEST.
1284 
1285 	     Also, if this insn sets a function argument, combining it with
1286 	     something that might need a spill could clobber a previous
1287 	     function argument; the all_adjacent test in can_combine_p also
1288 	     checks this; here, we do a more specific test for this case.  */
1289 
1290 	  || (GET_CODE (inner_dest) == REG
1291 	      && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1292 	      && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1293 					GET_MODE (inner_dest))))
1294 	  || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1295 	return 0;
1296 
1297       /* If DEST is used in I3, it is being killed in this insn,
1298 	 so record that for later.
1299 	 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1300 	 STACK_POINTER_REGNUM, since these are always considered to be
1301 	 live.  Similarly for ARG_POINTER_REGNUM if it is fixed.  */
1302       if (pi3dest_killed && GET_CODE (dest) == REG
1303 	  && reg_referenced_p (dest, PATTERN (i3))
1304 	  && REGNO (dest) != FRAME_POINTER_REGNUM
1305 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1306 	  && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1307 #endif
1308 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1309 	  && (REGNO (dest) != ARG_POINTER_REGNUM
1310 	      || ! fixed_regs [REGNO (dest)])
1311 #endif
1312 	  && REGNO (dest) != STACK_POINTER_REGNUM)
1313 	{
1314 	  if (*pi3dest_killed)
1315 	    return 0;
1316 
1317 	  *pi3dest_killed = dest;
1318 	}
1319     }
1320 
1321   else if (GET_CODE (x) == PARALLEL)
1322     {
1323       int i;
1324 
1325       for (i = 0; i < XVECLEN (x, 0); i++)
1326 	if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1327 				i1_not_in_src, pi3dest_killed))
1328 	  return 0;
1329     }
1330 
1331   return 1;
1332 }
1333 
1334 /* Return 1 if X is an arithmetic expression that contains a multiplication
1335    and division.  We don't count multiplications by powers of two here.  */
1336 
1337 static int
contains_muldiv(rtx x)1338 contains_muldiv (rtx x)
1339 {
1340   switch (GET_CODE (x))
1341     {
1342     case MOD:  case DIV:  case UMOD:  case UDIV:
1343       return 1;
1344 
1345     case MULT:
1346       return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1347 		&& exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1348     default:
1349       switch (GET_RTX_CLASS (GET_CODE (x)))
1350 	{
1351 	case 'c':  case '<':  case '2':
1352 	  return contains_muldiv (XEXP (x, 0))
1353 	    || contains_muldiv (XEXP (x, 1));
1354 
1355 	case '1':
1356 	  return contains_muldiv (XEXP (x, 0));
1357 
1358 	default:
1359 	  return 0;
1360 	}
1361     }
1362 }
1363 
1364 /* Determine whether INSN can be used in a combination.  Return nonzero if
1365    not.  This is used in try_combine to detect early some cases where we
1366    can't perform combinations.  */
1367 
1368 static int
cant_combine_insn_p(rtx insn)1369 cant_combine_insn_p (rtx insn)
1370 {
1371   rtx set;
1372   rtx src, dest;
1373 
1374   /* If this isn't really an insn, we can't do anything.
1375      This can occur when flow deletes an insn that it has merged into an
1376      auto-increment address.  */
1377   if (! INSN_P (insn))
1378     return 1;
1379 
1380   /* Never combine loads and stores involving hard regs that are likely
1381      to be spilled.  The register allocator can usually handle such
1382      reg-reg moves by tying.  If we allow the combiner to make
1383      substitutions of likely-spilled regs, we may abort in reload.
1384      As an exception, we allow combinations involving fixed regs; these are
1385      not available to the register allocator so there's no risk involved.  */
1386 
1387   set = single_set (insn);
1388   if (! set)
1389     return 0;
1390   src = SET_SRC (set);
1391   dest = SET_DEST (set);
1392   if (GET_CODE (src) == SUBREG)
1393     src = SUBREG_REG (src);
1394   if (GET_CODE (dest) == SUBREG)
1395     dest = SUBREG_REG (dest);
1396   if (REG_P (src) && REG_P (dest)
1397       && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1398 	   && ! fixed_regs[REGNO (src)]
1399 	   && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1400 	  || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1401 	      && ! fixed_regs[REGNO (dest)]
1402 	      && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1403     return 1;
1404 
1405   return 0;
1406 }
1407 
1408 /* Adjust INSN after we made a change to its destination.
1409 
1410    Changing the destination can invalidate notes that say something about
1411    the results of the insn and a LOG_LINK pointing to the insn.  */
1412 
1413 static void
adjust_for_new_dest(rtx insn)1414 adjust_for_new_dest (rtx insn)
1415 {
1416   rtx *loc;
1417 
1418   /* For notes, be conservative and simply remove them.  */
1419   loc = &REG_NOTES (insn);
1420   while (*loc)
1421     {
1422       enum reg_note kind = REG_NOTE_KIND (*loc);
1423       if (kind == REG_EQUAL || kind == REG_EQUIV)
1424 	*loc = XEXP (*loc, 1);
1425       else
1426 	loc = &XEXP (*loc, 1);
1427     }
1428 
1429   /* The new insn will have a destination that was previously the destination
1430      of an insn just above it.  Call distribute_links to make a LOG_LINK from
1431      the next use of that destination.  */
1432   distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1433 }
1434 
1435 /* Try to combine the insns I1 and I2 into I3.
1436    Here I1 and I2 appear earlier than I3.
1437    I1 can be zero; then we combine just I2 into I3.
1438 
1439    If we are combining three insns and the resulting insn is not recognized,
1440    try splitting it into two insns.  If that happens, I2 and I3 are retained
1441    and I1 is pseudo-deleted by turning it into a NOTE.  Otherwise, I1 and I2
1442    are pseudo-deleted.
1443 
1444    Return 0 if the combination does not work.  Then nothing is changed.
1445    If we did the combination, return the insn at which combine should
1446    resume scanning.
1447 
1448    Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1449    new direct jump instruction.  */
1450 
1451 static rtx
try_combine(rtx i3,rtx i2,rtx i1,int * new_direct_jump_p)1452 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1453 {
1454   /* New patterns for I3 and I2, respectively.  */
1455   rtx newpat, newi2pat = 0;
1456   int substed_i2 = 0, substed_i1 = 0;
1457   /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead.  */
1458   int added_sets_1, added_sets_2;
1459   /* Total number of SETs to put into I3.  */
1460   int total_sets;
1461   /* Nonzero is I2's body now appears in I3.  */
1462   int i2_is_used;
1463   /* INSN_CODEs for new I3, new I2, and user of condition code.  */
1464   int insn_code_number, i2_code_number = 0, other_code_number = 0;
1465   /* Contains I3 if the destination of I3 is used in its source, which means
1466      that the old life of I3 is being killed.  If that usage is placed into
1467      I2 and not in I3, a REG_DEAD note must be made.  */
1468   rtx i3dest_killed = 0;
1469   /* SET_DEST and SET_SRC of I2 and I1.  */
1470   rtx i2dest, i2src, i1dest = 0, i1src = 0;
1471   /* PATTERN (I2), or a copy of it in certain cases.  */
1472   rtx i2pat;
1473   /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC.  */
1474   int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1475   int i1_feeds_i3 = 0;
1476   /* Notes that must be added to REG_NOTES in I3 and I2.  */
1477   rtx new_i3_notes, new_i2_notes;
1478   /* Notes that we substituted I3 into I2 instead of the normal case.  */
1479   int i3_subst_into_i2 = 0;
1480   /* Notes that I1, I2 or I3 is a MULT operation.  */
1481   int have_mult = 0;
1482 
1483   int maxreg;
1484   rtx temp;
1485   rtx link;
1486   int i;
1487 
1488   /* Exit early if one of the insns involved can't be used for
1489      combinations.  */
1490   if (cant_combine_insn_p (i3)
1491       || cant_combine_insn_p (i2)
1492       || (i1 && cant_combine_insn_p (i1))
1493       /* We also can't do anything if I3 has a
1494 	 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1495 	 libcall.  */
1496 #if 0
1497       /* ??? This gives worse code, and appears to be unnecessary, since no
1498 	 pass after flow uses REG_LIBCALL/REG_RETVAL notes.  */
1499       || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1500 #endif
1501       )
1502     return 0;
1503 
1504   combine_attempts++;
1505   undobuf.other_insn = 0;
1506 
1507   /* Reset the hard register usage information.  */
1508   CLEAR_HARD_REG_SET (newpat_used_regs);
1509 
1510   /* If I1 and I2 both feed I3, they can be in any order.  To simplify the
1511      code below, set I1 to be the earlier of the two insns.  */
1512   if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1513     temp = i1, i1 = i2, i2 = temp;
1514 
1515   added_links_insn = 0;
1516 
1517   /* First check for one important special-case that the code below will
1518      not handle.  Namely, the case where I1 is zero, I2 is a PARALLEL
1519      and I3 is a SET whose SET_SRC is a SET_DEST in I2.  In that case,
1520      we may be able to replace that destination with the destination of I3.
1521      This occurs in the common code where we compute both a quotient and
1522      remainder into a structure, in which case we want to do the computation
1523      directly into the structure to avoid register-register copies.
1524 
1525      Note that this case handles both multiple sets in I2 and also
1526      cases where I2 has a number of CLOBBER or PARALLELs.
1527 
1528      We make very conservative checks below and only try to handle the
1529      most common cases of this.  For example, we only handle the case
1530      where I2 and I3 are adjacent to avoid making difficult register
1531      usage tests.  */
1532 
1533   if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1534       && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1535       && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1536       && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1537       && GET_CODE (PATTERN (i2)) == PARALLEL
1538       && ! side_effects_p (SET_DEST (PATTERN (i3)))
1539       /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1540 	 below would need to check what is inside (and reg_overlap_mentioned_p
1541 	 doesn't support those codes anyway).  Don't allow those destinations;
1542 	 the resulting insn isn't likely to be recognized anyway.  */
1543       && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1544       && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1545       && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1546 				    SET_DEST (PATTERN (i3)))
1547       && next_real_insn (i2) == i3)
1548     {
1549       rtx p2 = PATTERN (i2);
1550 
1551       /* Make sure that the destination of I3,
1552 	 which we are going to substitute into one output of I2,
1553 	 is not used within another output of I2.  We must avoid making this:
1554 	 (parallel [(set (mem (reg 69)) ...)
1555 		    (set (reg 69) ...)])
1556 	 which is not well-defined as to order of actions.
1557 	 (Besides, reload can't handle output reloads for this.)
1558 
1559 	 The problem can also happen if the dest of I3 is a memory ref,
1560 	 if another dest in I2 is an indirect memory ref.  */
1561       for (i = 0; i < XVECLEN (p2, 0); i++)
1562 	if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1563 	     || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1564 	    && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1565 					SET_DEST (XVECEXP (p2, 0, i))))
1566 	  break;
1567 
1568       if (i == XVECLEN (p2, 0))
1569 	for (i = 0; i < XVECLEN (p2, 0); i++)
1570 	  if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1571 	       || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1572 	      && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1573 	    {
1574 	      combine_merges++;
1575 
1576 	      subst_insn = i3;
1577 	      subst_low_cuid = INSN_CUID (i2);
1578 
1579 	      added_sets_2 = added_sets_1 = 0;
1580 	      i2dest = SET_SRC (PATTERN (i3));
1581 
1582 	      /* Replace the dest in I2 with our dest and make the resulting
1583 		 insn the new pattern for I3.  Then skip to where we
1584 		 validate the pattern.  Everything was set up above.  */
1585 	      SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1586 		     SET_DEST (PATTERN (i3)));
1587 
1588 	      newpat = p2;
1589 	      i3_subst_into_i2 = 1;
1590 	      goto validate_replacement;
1591 	    }
1592     }
1593 
1594   /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1595      one of those words to another constant, merge them by making a new
1596      constant.  */
1597   if (i1 == 0
1598       && (temp = single_set (i2)) != 0
1599       && (GET_CODE (SET_SRC (temp)) == CONST_INT
1600 	  || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1601       && GET_CODE (SET_DEST (temp)) == REG
1602       && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1603       && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1604       && GET_CODE (PATTERN (i3)) == SET
1605       && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1606       && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1607       && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1608       && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1609       && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1610     {
1611       HOST_WIDE_INT lo, hi;
1612 
1613       if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1614 	lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1615       else
1616 	{
1617 	  lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1618 	  hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1619 	}
1620 
1621       if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1622 	{
1623 	  /* We don't handle the case of the target word being wider
1624 	     than a host wide int.  */
1625 	  if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1626 	    abort ();
1627 
1628 	  lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1629 	  lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1630 		 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1631 	}
1632       else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1633 	hi = INTVAL (SET_SRC (PATTERN (i3)));
1634       else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1635 	{
1636 	  int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1637 			     >> (HOST_BITS_PER_WIDE_INT - 1));
1638 
1639 	  lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1640 		   (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1641 	  lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1642 		 (INTVAL (SET_SRC (PATTERN (i3)))));
1643 	  if (hi == sign)
1644 	    hi = lo < 0 ? -1 : 0;
1645 	}
1646       else
1647 	/* We don't handle the case of the higher word not fitting
1648 	   entirely in either hi or lo.  */
1649 	abort ();
1650 
1651       combine_merges++;
1652       subst_insn = i3;
1653       subst_low_cuid = INSN_CUID (i2);
1654       added_sets_2 = added_sets_1 = 0;
1655       i2dest = SET_DEST (temp);
1656 
1657       SUBST (SET_SRC (temp),
1658 	     immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1659 
1660       newpat = PATTERN (i2);
1661       goto validate_replacement;
1662     }
1663 
1664 #ifndef HAVE_cc0
1665   /* If we have no I1 and I2 looks like:
1666 	(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1667 		   (set Y OP)])
1668      make up a dummy I1 that is
1669 	(set Y OP)
1670      and change I2 to be
1671         (set (reg:CC X) (compare:CC Y (const_int 0)))
1672 
1673      (We can ignore any trailing CLOBBERs.)
1674 
1675      This undoes a previous combination and allows us to match a branch-and-
1676      decrement insn.  */
1677 
1678   if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1679       && XVECLEN (PATTERN (i2), 0) >= 2
1680       && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1681       && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1682 	  == MODE_CC)
1683       && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1684       && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1685       && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1686       && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1687       && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1688 		      SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1689     {
1690       for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1691 	if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1692 	  break;
1693 
1694       if (i == 1)
1695 	{
1696 	  /* We make I1 with the same INSN_UID as I2.  This gives it
1697 	     the same INSN_CUID for value tracking.  Our fake I1 will
1698 	     never appear in the insn stream so giving it the same INSN_UID
1699 	     as I2 will not cause a problem.  */
1700 
1701 	  i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1702 			     BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1703 			     XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1704 			     NULL_RTX);
1705 
1706 	  SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1707 	  SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1708 		 SET_DEST (PATTERN (i1)));
1709 	}
1710     }
1711 #endif
1712 
1713   /* Verify that I2 and I1 are valid for combining.  */
1714   if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1715       || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1716     {
1717       undo_all ();
1718       return 0;
1719     }
1720 
1721   /* Record whether I2DEST is used in I2SRC and similarly for the other
1722      cases.  Knowing this will help in register status updating below.  */
1723   i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1724   i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1725   i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1726 
1727   /* See if I1 directly feeds into I3.  It does if I1DEST is not used
1728      in I2SRC.  */
1729   i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1730 
1731   /* Ensure that I3's pattern can be the destination of combines.  */
1732   if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1733 			  i1 && i2dest_in_i1src && i1_feeds_i3,
1734 			  &i3dest_killed))
1735     {
1736       undo_all ();
1737       return 0;
1738     }
1739 
1740   /* See if any of the insns is a MULT operation.  Unless one is, we will
1741      reject a combination that is, since it must be slower.  Be conservative
1742      here.  */
1743   if (GET_CODE (i2src) == MULT
1744       || (i1 != 0 && GET_CODE (i1src) == MULT)
1745       || (GET_CODE (PATTERN (i3)) == SET
1746 	  && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1747     have_mult = 1;
1748 
1749   /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1750      We used to do this EXCEPT in one case: I3 has a post-inc in an
1751      output operand.  However, that exception can give rise to insns like
1752 	mov r3,(r3)+
1753      which is a famous insn on the PDP-11 where the value of r3 used as the
1754      source was model-dependent.  Avoid this sort of thing.  */
1755 
1756 #if 0
1757   if (!(GET_CODE (PATTERN (i3)) == SET
1758 	&& GET_CODE (SET_SRC (PATTERN (i3))) == REG
1759 	&& GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1760 	&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1761 	    || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1762     /* It's not the exception.  */
1763 #endif
1764 #ifdef AUTO_INC_DEC
1765     for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1766       if (REG_NOTE_KIND (link) == REG_INC
1767 	  && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1768 	      || (i1 != 0
1769 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1770 	{
1771 	  undo_all ();
1772 	  return 0;
1773 	}
1774 #endif
1775 
1776   /* See if the SETs in I1 or I2 need to be kept around in the merged
1777      instruction: whenever the value set there is still needed past I3.
1778      For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1779 
1780      For the SET in I1, we have two cases:  If I1 and I2 independently
1781      feed into I3, the set in I1 needs to be kept around if I1DEST dies
1782      or is set in I3.  Otherwise (if I1 feeds I2 which feeds I3), the set
1783      in I1 needs to be kept around unless I1DEST dies or is set in either
1784      I2 or I3.  We can distinguish these cases by seeing if I2SRC mentions
1785      I1DEST.  If so, we know I1 feeds into I2.  */
1786 
1787   added_sets_2 = ! dead_or_set_p (i3, i2dest);
1788 
1789   added_sets_1
1790     = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1791 	       : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1792 
1793   /* If the set in I2 needs to be kept around, we must make a copy of
1794      PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1795      PATTERN (I2), we are only substituting for the original I1DEST, not into
1796      an already-substituted copy.  This also prevents making self-referential
1797      rtx.  If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1798      I2DEST.  */
1799 
1800   i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1801 	   ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1802 	   : PATTERN (i2));
1803 
1804   if (added_sets_2)
1805     i2pat = copy_rtx (i2pat);
1806 
1807   combine_merges++;
1808 
1809   /* Substitute in the latest insn for the regs set by the earlier ones.  */
1810 
1811   maxreg = max_reg_num ();
1812 
1813   subst_insn = i3;
1814 
1815   /* It is possible that the source of I2 or I1 may be performing an
1816      unneeded operation, such as a ZERO_EXTEND of something that is known
1817      to have the high part zero.  Handle that case by letting subst look at
1818      the innermost one of them.
1819 
1820      Another way to do this would be to have a function that tries to
1821      simplify a single insn instead of merging two or more insns.  We don't
1822      do this because of the potential of infinite loops and because
1823      of the potential extra memory required.  However, doing it the way
1824      we are is a bit of a kludge and doesn't catch all cases.
1825 
1826      But only do this if -fexpensive-optimizations since it slows things down
1827      and doesn't usually win.  */
1828 
1829   if (flag_expensive_optimizations)
1830     {
1831       /* Pass pc_rtx so no substitutions are done, just simplifications.
1832 	 The cases that we are interested in here do not involve the few
1833 	 cases were is_replaced is checked.  */
1834       if (i1)
1835 	{
1836 	  subst_low_cuid = INSN_CUID (i1);
1837 	  i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1838 	}
1839       else
1840 	{
1841 	  subst_low_cuid = INSN_CUID (i2);
1842 	  i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1843 	}
1844     }
1845 
1846 #ifndef HAVE_cc0
1847   /* Many machines that don't use CC0 have insns that can both perform an
1848      arithmetic operation and set the condition code.  These operations will
1849      be represented as a PARALLEL with the first element of the vector
1850      being a COMPARE of an arithmetic operation with the constant zero.
1851      The second element of the vector will set some pseudo to the result
1852      of the same arithmetic operation.  If we simplify the COMPARE, we won't
1853      match such a pattern and so will generate an extra insn.   Here we test
1854      for this case, where both the comparison and the operation result are
1855      needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1856      I2SRC.  Later we will make the PARALLEL that contains I2.  */
1857 
1858   if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1859       && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1860       && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1861       && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1862     {
1863 #ifdef SELECT_CC_MODE
1864       rtx *cc_use;
1865       enum machine_mode compare_mode;
1866 #endif
1867 
1868       newpat = PATTERN (i3);
1869       SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1870 
1871       i2_is_used = 1;
1872 
1873 #ifdef SELECT_CC_MODE
1874       /* See if a COMPARE with the operand we substituted in should be done
1875 	 with the mode that is currently being used.  If not, do the same
1876 	 processing we do in `subst' for a SET; namely, if the destination
1877 	 is used only once, try to replace it with a register of the proper
1878 	 mode and also replace the COMPARE.  */
1879       if (undobuf.other_insn == 0
1880 	  && (cc_use = find_single_use (SET_DEST (newpat), i3,
1881 					&undobuf.other_insn))
1882 	  && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1883 					      i2src, const0_rtx))
1884 	      != GET_MODE (SET_DEST (newpat))))
1885 	{
1886 	  unsigned int regno = REGNO (SET_DEST (newpat));
1887 	  rtx new_dest = gen_rtx_REG (compare_mode, regno);
1888 
1889 	  if (regno < FIRST_PSEUDO_REGISTER
1890 	      || (REG_N_SETS (regno) == 1 && ! added_sets_2
1891 		  && ! REG_USERVAR_P (SET_DEST (newpat))))
1892 	    {
1893 	      if (regno >= FIRST_PSEUDO_REGISTER)
1894 		SUBST (regno_reg_rtx[regno], new_dest);
1895 
1896 	      SUBST (SET_DEST (newpat), new_dest);
1897 	      SUBST (XEXP (*cc_use, 0), new_dest);
1898 	      SUBST (SET_SRC (newpat),
1899 		     gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1900 	    }
1901 	  else
1902 	    undobuf.other_insn = 0;
1903 	}
1904 #endif
1905     }
1906   else
1907 #endif
1908     {
1909       n_occurrences = 0;		/* `subst' counts here */
1910 
1911       /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1912 	 need to make a unique copy of I2SRC each time we substitute it
1913 	 to avoid self-referential rtl.  */
1914 
1915       subst_low_cuid = INSN_CUID (i2);
1916       newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1917 		      ! i1_feeds_i3 && i1dest_in_i1src);
1918       substed_i2 = 1;
1919 
1920       /* Record whether i2's body now appears within i3's body.  */
1921       i2_is_used = n_occurrences;
1922     }
1923 
1924   /* If we already got a failure, don't try to do more.  Otherwise,
1925      try to substitute in I1 if we have it.  */
1926 
1927   if (i1 && GET_CODE (newpat) != CLOBBER)
1928     {
1929       /* Before we can do this substitution, we must redo the test done
1930 	 above (see detailed comments there) that ensures  that I1DEST
1931 	 isn't mentioned in any SETs in NEWPAT that are field assignments.  */
1932 
1933       if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1934 			      0, (rtx*) 0))
1935 	{
1936 	  undo_all ();
1937 	  return 0;
1938 	}
1939 
1940       n_occurrences = 0;
1941       subst_low_cuid = INSN_CUID (i1);
1942       newpat = subst (newpat, i1dest, i1src, 0, 0);
1943       substed_i1 = 1;
1944     }
1945 
1946   /* Fail if an autoincrement side-effect has been duplicated.  Be careful
1947      to count all the ways that I2SRC and I1SRC can be used.  */
1948   if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1949        && i2_is_used + added_sets_2 > 1)
1950       || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1951 	  && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1952 	      > 1))
1953       /* Fail if we tried to make a new register (we used to abort, but there's
1954 	 really no reason to).  */
1955       || max_reg_num () != maxreg
1956       /* Fail if we couldn't do something and have a CLOBBER.  */
1957       || GET_CODE (newpat) == CLOBBER
1958       /* Fail if this new pattern is a MULT and we didn't have one before
1959 	 at the outer level.  */
1960       || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1961 	  && ! have_mult))
1962     {
1963       undo_all ();
1964       return 0;
1965     }
1966 
1967   /* If the actions of the earlier insns must be kept
1968      in addition to substituting them into the latest one,
1969      we must make a new PARALLEL for the latest insn
1970      to hold additional the SETs.  */
1971 
1972   if (added_sets_1 || added_sets_2)
1973     {
1974       combine_extras++;
1975 
1976       if (GET_CODE (newpat) == PARALLEL)
1977 	{
1978 	  rtvec old = XVEC (newpat, 0);
1979 	  total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1980 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1981 	  memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
1982 		  sizeof (old->elem[0]) * old->num_elem);
1983 	}
1984       else
1985 	{
1986 	  rtx old = newpat;
1987 	  total_sets = 1 + added_sets_1 + added_sets_2;
1988 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1989 	  XVECEXP (newpat, 0, 0) = old;
1990 	}
1991 
1992       if (added_sets_1)
1993 	XVECEXP (newpat, 0, --total_sets)
1994 	  = (GET_CODE (PATTERN (i1)) == PARALLEL
1995 	     ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
1996 
1997       if (added_sets_2)
1998 	{
1999 	  /* If there is no I1, use I2's body as is.  We used to also not do
2000 	     the subst call below if I2 was substituted into I3,
2001 	     but that could lose a simplification.  */
2002 	  if (i1 == 0)
2003 	    XVECEXP (newpat, 0, --total_sets) = i2pat;
2004 	  else
2005 	    /* See comment where i2pat is assigned.  */
2006 	    XVECEXP (newpat, 0, --total_sets)
2007 	      = subst (i2pat, i1dest, i1src, 0, 0);
2008 	}
2009     }
2010 
2011   /* We come here when we are replacing a destination in I2 with the
2012      destination of I3.  */
2013  validate_replacement:
2014 
2015   /* Note which hard regs this insn has as inputs.  */
2016   mark_used_regs_combine (newpat);
2017 
2018   /* Is the result of combination a valid instruction?  */
2019   insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2020 
2021   /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2022      the second SET's destination is a register that is unused and isn't
2023      marked as an instruction that might trap in an EH region.  In that case,
2024      we just need the first SET.   This can occur when simplifying a divmod
2025      insn.  We *must* test for this case here because the code below that
2026      splits two independent SETs doesn't handle this case correctly when it
2027      updates the register status.  Also check the case where the first
2028      SET's destination is unused.  That would not cause incorrect code, but
2029      does cause an unneeded insn to remain.  */
2030 
2031   if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2032       && XVECLEN (newpat, 0) == 2
2033       && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2034       && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2035       && asm_noperands (newpat) < 0)
2036     {
2037       rtx set0 = XVECEXP (newpat, 0, 0);
2038       rtx set1 = XVECEXP (newpat, 0, 1);
2039       rtx note;
2040 
2041       if (((GET_CODE (SET_DEST (set1)) == REG
2042 	    && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2043 	   || (GET_CODE (SET_DEST (set1)) == SUBREG
2044 	       && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2045 	  && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2046 	      || INTVAL (XEXP (note, 0)) <= 0)
2047 	  && ! side_effects_p (SET_SRC (set1)))
2048 	{
2049 	  newpat = set0;
2050 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2051 	}
2052 
2053       else if (((GET_CODE (SET_DEST (set0)) == REG
2054 		 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2055 		|| (GET_CODE (SET_DEST (set0)) == SUBREG
2056 		    && find_reg_note (i3, REG_UNUSED,
2057 				      SUBREG_REG (SET_DEST (set0)))))
2058 	       && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2059 		   || INTVAL (XEXP (note, 0)) <= 0)
2060 	       && ! side_effects_p (SET_SRC (set0)))
2061 	{
2062 	  newpat = set1;
2063 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2064 
2065 	  if (insn_code_number >= 0)
2066 	    {
2067 	      /* If we will be able to accept this, we have made a
2068 		 change to the destination of I3.  This requires us to
2069 		 do a few adjustments.  */
2070 
2071 	      PATTERN (i3) = newpat;
2072 	      adjust_for_new_dest (i3);
2073 	    }
2074 	}
2075     }
2076 
2077   /* If we were combining three insns and the result is a simple SET
2078      with no ASM_OPERANDS that wasn't recognized, try to split it into two
2079      insns.  There are two ways to do this.  It can be split using a
2080      machine-specific method (like when you have an addition of a large
2081      constant) or by combine in the function find_split_point.  */
2082 
2083   if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2084       && asm_noperands (newpat) < 0)
2085     {
2086       rtx m_split, *split;
2087       rtx ni2dest = i2dest;
2088 
2089       /* See if the MD file can split NEWPAT.  If it can't, see if letting it
2090 	 use I2DEST as a scratch register will help.  In the latter case,
2091 	 convert I2DEST to the mode of the source of NEWPAT if we can.  */
2092 
2093       m_split = split_insns (newpat, i3);
2094 
2095       /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2096 	 inputs of NEWPAT.  */
2097 
2098       /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2099 	 possible to try that as a scratch reg.  This would require adding
2100 	 more code to make it work though.  */
2101 
2102       if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2103 	{
2104 	  /* If I2DEST is a hard register or the only use of a pseudo,
2105 	     we can change its mode.  */
2106 	  if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2107 	      && GET_MODE (SET_DEST (newpat)) != VOIDmode
2108 	      && GET_CODE (i2dest) == REG
2109 	      && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2110 		  || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2111 		      && ! REG_USERVAR_P (i2dest))))
2112 	    ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2113 				   REGNO (i2dest));
2114 
2115 	  m_split = split_insns (gen_rtx_PARALLEL
2116 				 (VOIDmode,
2117 				  gen_rtvec (2, newpat,
2118 					     gen_rtx_CLOBBER (VOIDmode,
2119 							      ni2dest))),
2120 				 i3);
2121 	  /* If the split with the mode-changed register didn't work, try
2122 	     the original register.  */
2123 	  if (! m_split && ni2dest != i2dest)
2124 	    {
2125 	      ni2dest = i2dest;
2126 	      m_split = split_insns (gen_rtx_PARALLEL
2127 				     (VOIDmode,
2128 				      gen_rtvec (2, newpat,
2129 						 gen_rtx_CLOBBER (VOIDmode,
2130 								  i2dest))),
2131 				     i3);
2132 	    }
2133 	}
2134 
2135       if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2136 	{
2137 	  m_split = PATTERN (m_split);
2138 	  insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2139 	  if (insn_code_number >= 0)
2140 	    newpat = m_split;
2141 	}
2142       else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2143 	       && (next_real_insn (i2) == i3
2144 		   || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2145 	{
2146 	  rtx i2set, i3set;
2147 	  rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2148 	  newi2pat = PATTERN (m_split);
2149 
2150 	  i3set = single_set (NEXT_INSN (m_split));
2151 	  i2set = single_set (m_split);
2152 
2153 	  /* In case we changed the mode of I2DEST, replace it in the
2154 	     pseudo-register table here.  We can't do it above in case this
2155 	     code doesn't get executed and we do a split the other way.  */
2156 
2157 	  if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2158 	    SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2159 
2160 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2161 
2162 	  /* If I2 or I3 has multiple SETs, we won't know how to track
2163 	     register status, so don't use these insns.  If I2's destination
2164 	     is used between I2 and I3, we also can't use these insns.  */
2165 
2166 	  if (i2_code_number >= 0 && i2set && i3set
2167 	      && (next_real_insn (i2) == i3
2168 		  || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2169 	    insn_code_number = recog_for_combine (&newi3pat, i3,
2170 						  &new_i3_notes);
2171 	  if (insn_code_number >= 0)
2172 	    newpat = newi3pat;
2173 
2174 	  /* It is possible that both insns now set the destination of I3.
2175 	     If so, we must show an extra use of it.  */
2176 
2177 	  if (insn_code_number >= 0)
2178 	    {
2179 	      rtx new_i3_dest = SET_DEST (i3set);
2180 	      rtx new_i2_dest = SET_DEST (i2set);
2181 
2182 	      while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2183 		     || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2184 		     || GET_CODE (new_i3_dest) == SUBREG)
2185 		new_i3_dest = XEXP (new_i3_dest, 0);
2186 
2187 	      while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2188 		     || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2189 		     || GET_CODE (new_i2_dest) == SUBREG)
2190 		new_i2_dest = XEXP (new_i2_dest, 0);
2191 
2192 	      if (GET_CODE (new_i3_dest) == REG
2193 		  && GET_CODE (new_i2_dest) == REG
2194 		  && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2195 		REG_N_SETS (REGNO (new_i2_dest))++;
2196 	    }
2197 	}
2198 
2199       /* If we can split it and use I2DEST, go ahead and see if that
2200 	 helps things be recognized.  Verify that none of the registers
2201 	 are set between I2 and I3.  */
2202       if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2203 #ifdef HAVE_cc0
2204 	  && GET_CODE (i2dest) == REG
2205 #endif
2206 	  /* We need I2DEST in the proper mode.  If it is a hard register
2207 	     or the only use of a pseudo, we can change its mode.  */
2208 	  && (GET_MODE (*split) == GET_MODE (i2dest)
2209 	      || GET_MODE (*split) == VOIDmode
2210 	      || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2211 	      || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2212 		  && ! REG_USERVAR_P (i2dest)))
2213 	  && (next_real_insn (i2) == i3
2214 	      || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2215 	  /* We can't overwrite I2DEST if its value is still used by
2216 	     NEWPAT.  */
2217 	  && ! reg_referenced_p (i2dest, newpat))
2218 	{
2219 	  rtx newdest = i2dest;
2220 	  enum rtx_code split_code = GET_CODE (*split);
2221 	  enum machine_mode split_mode = GET_MODE (*split);
2222 
2223 	  /* Get NEWDEST as a register in the proper mode.  We have already
2224 	     validated that we can do this.  */
2225 	  if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2226 	    {
2227 	      newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2228 
2229 	      if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2230 		SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2231 	    }
2232 
2233 	  /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2234 	     an ASHIFT.  This can occur if it was inside a PLUS and hence
2235 	     appeared to be a memory address.  This is a kludge.  */
2236 	  if (split_code == MULT
2237 	      && GET_CODE (XEXP (*split, 1)) == CONST_INT
2238 	      && INTVAL (XEXP (*split, 1)) > 0
2239 	      && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2240 	    {
2241 	      SUBST (*split, gen_rtx_ASHIFT (split_mode,
2242 					     XEXP (*split, 0), GEN_INT (i)));
2243 	      /* Update split_code because we may not have a multiply
2244 		 anymore.  */
2245 	      split_code = GET_CODE (*split);
2246 	    }
2247 
2248 #ifdef INSN_SCHEDULING
2249 	  /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2250 	     be written as a ZERO_EXTEND.  */
2251 	  if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2252 	    {
2253 #ifdef LOAD_EXTEND_OP
2254 	      /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2255 		 what it really is.  */
2256 	      if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2257 		  == SIGN_EXTEND)
2258 		SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2259 						    SUBREG_REG (*split)));
2260 	      else
2261 #endif
2262 		SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2263 						    SUBREG_REG (*split)));
2264 	    }
2265 #endif
2266 
2267 	  newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2268 	  SUBST (*split, newdest);
2269 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2270 
2271 	  /* If the split point was a MULT and we didn't have one before,
2272 	     don't use one now.  */
2273 	  if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2274 	    insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2275 	}
2276     }
2277 
2278   /* Check for a case where we loaded from memory in a narrow mode and
2279      then sign extended it, but we need both registers.  In that case,
2280      we have a PARALLEL with both loads from the same memory location.
2281      We can split this into a load from memory followed by a register-register
2282      copy.  This saves at least one insn, more if register allocation can
2283      eliminate the copy.
2284 
2285      We cannot do this if the destination of the first assignment is a
2286      condition code register or cc0.  We eliminate this case by making sure
2287      the SET_DEST and SET_SRC have the same mode.
2288 
2289      We cannot do this if the destination of the second assignment is
2290      a register that we have already assumed is zero-extended.  Similarly
2291      for a SUBREG of such a register.  */
2292 
2293   else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2294 	   && GET_CODE (newpat) == PARALLEL
2295 	   && XVECLEN (newpat, 0) == 2
2296 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2297 	   && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2298 	   && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2299 	       == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2300 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2301 	   && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2302 			   XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2303 	   && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2304 				   INSN_CUID (i2))
2305 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2306 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2307 	   && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2308 		 (GET_CODE (temp) == REG
2309 		  && reg_nonzero_bits[REGNO (temp)] != 0
2310 		  && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2311 		  && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2312 		  && (reg_nonzero_bits[REGNO (temp)]
2313 		      != GET_MODE_MASK (word_mode))))
2314 	   && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2315 		 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2316 		     (GET_CODE (temp) == REG
2317 		      && reg_nonzero_bits[REGNO (temp)] != 0
2318 		      && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2319 		      && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2320 		      && (reg_nonzero_bits[REGNO (temp)]
2321 			  != GET_MODE_MASK (word_mode)))))
2322 	   && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2323 					 SET_SRC (XVECEXP (newpat, 0, 1)))
2324 	   && ! find_reg_note (i3, REG_UNUSED,
2325 			       SET_DEST (XVECEXP (newpat, 0, 0))))
2326     {
2327       rtx ni2dest;
2328 
2329       newi2pat = XVECEXP (newpat, 0, 0);
2330       ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2331       newpat = XVECEXP (newpat, 0, 1);
2332       SUBST (SET_SRC (newpat),
2333 	     gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2334       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2335 
2336       if (i2_code_number >= 0)
2337 	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2338 
2339       if (insn_code_number >= 0)
2340 	{
2341 	  rtx insn;
2342 	  rtx link;
2343 
2344 	  /* If we will be able to accept this, we have made a change to the
2345 	     destination of I3.  This requires us to do a few adjustments.  */
2346 	  PATTERN (i3) = newpat;
2347 	  adjust_for_new_dest (i3);
2348 
2349 	  /* I3 now uses what used to be its destination and which is
2350 	     now I2's destination.  That means we need a LOG_LINK from
2351 	     I3 to I2.  But we used to have one, so we still will.
2352 
2353 	     However, some later insn might be using I2's dest and have
2354 	     a LOG_LINK pointing at I3.  We must remove this link.
2355 	     The simplest way to remove the link is to point it at I1,
2356 	     which we know will be a NOTE.  */
2357 
2358 	  for (insn = NEXT_INSN (i3);
2359 	       insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2360 			|| insn != BB_HEAD (this_basic_block->next_bb));
2361 	       insn = NEXT_INSN (insn))
2362 	    {
2363 	      if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2364 		{
2365 		  for (link = LOG_LINKS (insn); link;
2366 		       link = XEXP (link, 1))
2367 		    if (XEXP (link, 0) == i3)
2368 		      XEXP (link, 0) = i1;
2369 
2370 		  break;
2371 		}
2372 	    }
2373 	}
2374     }
2375 
2376   /* Similarly, check for a case where we have a PARALLEL of two independent
2377      SETs but we started with three insns.  In this case, we can do the sets
2378      as two separate insns.  This case occurs when some SET allows two
2379      other insns to combine, but the destination of that SET is still live.  */
2380 
2381   else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2382 	   && GET_CODE (newpat) == PARALLEL
2383 	   && XVECLEN (newpat, 0) == 2
2384 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2385 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2386 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2387 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2388 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2389 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2390 	   && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2391 				   INSN_CUID (i2))
2392 	   /* Don't pass sets with (USE (MEM ...)) dests to the following.  */
2393 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2394 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2395 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2396 				  XVECEXP (newpat, 0, 0))
2397 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2398 				  XVECEXP (newpat, 0, 1))
2399 	   && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2400 		 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2401     {
2402       /* Normally, it doesn't matter which of the two is done first,
2403 	 but it does if one references cc0.  In that case, it has to
2404 	 be first.  */
2405 #ifdef HAVE_cc0
2406       if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2407 	{
2408 	  newi2pat = XVECEXP (newpat, 0, 0);
2409 	  newpat = XVECEXP (newpat, 0, 1);
2410 	}
2411       else
2412 #endif
2413 	{
2414 	  newi2pat = XVECEXP (newpat, 0, 1);
2415 	  newpat = XVECEXP (newpat, 0, 0);
2416 	}
2417 
2418       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2419 
2420       if (i2_code_number >= 0)
2421 	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2422     }
2423 
2424   /* If it still isn't recognized, fail and change things back the way they
2425      were.  */
2426   if ((insn_code_number < 0
2427        /* Is the result a reasonable ASM_OPERANDS?  */
2428        && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2429     {
2430       undo_all ();
2431       return 0;
2432     }
2433 
2434   /* If we had to change another insn, make sure it is valid also.  */
2435   if (undobuf.other_insn)
2436     {
2437       rtx other_pat = PATTERN (undobuf.other_insn);
2438       rtx new_other_notes;
2439       rtx note, next;
2440 
2441       CLEAR_HARD_REG_SET (newpat_used_regs);
2442 
2443       other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2444 					     &new_other_notes);
2445 
2446       if (other_code_number < 0 && ! check_asm_operands (other_pat))
2447 	{
2448 	  undo_all ();
2449 	  return 0;
2450 	}
2451 
2452       PATTERN (undobuf.other_insn) = other_pat;
2453 
2454       /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2455 	 are still valid.  Then add any non-duplicate notes added by
2456 	 recog_for_combine.  */
2457       for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2458 	{
2459 	  next = XEXP (note, 1);
2460 
2461 	  if (REG_NOTE_KIND (note) == REG_UNUSED
2462 	      && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2463 	    {
2464 	      if (GET_CODE (XEXP (note, 0)) == REG)
2465 		REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2466 
2467 	      remove_note (undobuf.other_insn, note);
2468 	    }
2469 	}
2470 
2471       for (note = new_other_notes; note; note = XEXP (note, 1))
2472 	if (GET_CODE (XEXP (note, 0)) == REG)
2473 	  REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2474 
2475       distribute_notes (new_other_notes, undobuf.other_insn,
2476 			undobuf.other_insn, NULL_RTX);
2477     }
2478 #ifdef HAVE_cc0
2479   /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2480      they are adjacent to each other or not.  */
2481   {
2482     rtx p = prev_nonnote_insn (i3);
2483     if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2484 	&& sets_cc0_p (newi2pat))
2485       {
2486 	undo_all ();
2487 	return 0;
2488       }
2489   }
2490 #endif
2491 
2492   /* We now know that we can do this combination.  Merge the insns and
2493      update the status of registers and LOG_LINKS.  */
2494 
2495   {
2496     rtx i3notes, i2notes, i1notes = 0;
2497     rtx i3links, i2links, i1links = 0;
2498     rtx midnotes = 0;
2499     unsigned int regno;
2500 
2501     /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2502        clear them.  */
2503     i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2504     i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2505     if (i1)
2506       i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2507 
2508     /* Ensure that we do not have something that should not be shared but
2509        occurs multiple times in the new insns.  Check this by first
2510        resetting all the `used' flags and then copying anything is shared.  */
2511 
2512     reset_used_flags (i3notes);
2513     reset_used_flags (i2notes);
2514     reset_used_flags (i1notes);
2515     reset_used_flags (newpat);
2516     reset_used_flags (newi2pat);
2517     if (undobuf.other_insn)
2518       reset_used_flags (PATTERN (undobuf.other_insn));
2519 
2520     i3notes = copy_rtx_if_shared (i3notes);
2521     i2notes = copy_rtx_if_shared (i2notes);
2522     i1notes = copy_rtx_if_shared (i1notes);
2523     newpat = copy_rtx_if_shared (newpat);
2524     newi2pat = copy_rtx_if_shared (newi2pat);
2525     if (undobuf.other_insn)
2526       reset_used_flags (PATTERN (undobuf.other_insn));
2527 
2528     INSN_CODE (i3) = insn_code_number;
2529     PATTERN (i3) = newpat;
2530 
2531     if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2532       {
2533 	rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2534 
2535 	reset_used_flags (call_usage);
2536 	call_usage = copy_rtx (call_usage);
2537 
2538 	if (substed_i2)
2539 	  replace_rtx (call_usage, i2dest, i2src);
2540 
2541 	if (substed_i1)
2542 	  replace_rtx (call_usage, i1dest, i1src);
2543 
2544 	CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2545       }
2546 
2547     if (undobuf.other_insn)
2548       INSN_CODE (undobuf.other_insn) = other_code_number;
2549 
2550     /* We had one special case above where I2 had more than one set and
2551        we replaced a destination of one of those sets with the destination
2552        of I3.  In that case, we have to update LOG_LINKS of insns later
2553        in this basic block.  Note that this (expensive) case is rare.
2554 
2555        Also, in this case, we must pretend that all REG_NOTEs for I2
2556        actually came from I3, so that REG_UNUSED notes from I2 will be
2557        properly handled.  */
2558 
2559     if (i3_subst_into_i2)
2560       {
2561 	for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2562 	  if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2563 	      && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2564 	      && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2565 	      && ! find_reg_note (i2, REG_UNUSED,
2566 				  SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2567 	    for (temp = NEXT_INSN (i2);
2568 		 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2569 			  || BB_HEAD (this_basic_block) != temp);
2570 		 temp = NEXT_INSN (temp))
2571 	      if (temp != i3 && INSN_P (temp))
2572 		for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2573 		  if (XEXP (link, 0) == i2)
2574 		    XEXP (link, 0) = i3;
2575 
2576 	if (i3notes)
2577 	  {
2578 	    rtx link = i3notes;
2579 	    while (XEXP (link, 1))
2580 	      link = XEXP (link, 1);
2581 	    XEXP (link, 1) = i2notes;
2582 	  }
2583 	else
2584 	  i3notes = i2notes;
2585 	i2notes = 0;
2586       }
2587 
2588     LOG_LINKS (i3) = 0;
2589     REG_NOTES (i3) = 0;
2590     LOG_LINKS (i2) = 0;
2591     REG_NOTES (i2) = 0;
2592 
2593     if (newi2pat)
2594       {
2595 	INSN_CODE (i2) = i2_code_number;
2596 	PATTERN (i2) = newi2pat;
2597       }
2598     else
2599       {
2600 	PUT_CODE (i2, NOTE);
2601 	NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2602 	NOTE_SOURCE_FILE (i2) = 0;
2603       }
2604 
2605     if (i1)
2606       {
2607 	LOG_LINKS (i1) = 0;
2608 	REG_NOTES (i1) = 0;
2609 	PUT_CODE (i1, NOTE);
2610 	NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2611 	NOTE_SOURCE_FILE (i1) = 0;
2612       }
2613 
2614     /* Get death notes for everything that is now used in either I3 or
2615        I2 and used to die in a previous insn.  If we built two new
2616        patterns, move from I1 to I2 then I2 to I3 so that we get the
2617        proper movement on registers that I2 modifies.  */
2618 
2619     if (newi2pat)
2620       {
2621 	move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2622 	move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2623       }
2624     else
2625       move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2626 		   i3, &midnotes);
2627 
2628     /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3.  */
2629     if (i3notes)
2630       distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2631     if (i2notes)
2632       distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2633     if (i1notes)
2634       distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2635     if (midnotes)
2636       distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2637 
2638     /* Distribute any notes added to I2 or I3 by recog_for_combine.  We
2639        know these are REG_UNUSED and want them to go to the desired insn,
2640        so we always pass it as i3.  We have not counted the notes in
2641        reg_n_deaths yet, so we need to do so now.  */
2642 
2643     if (newi2pat && new_i2_notes)
2644       {
2645 	for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2646 	  if (GET_CODE (XEXP (temp, 0)) == REG)
2647 	    REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2648 
2649 	distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2650       }
2651 
2652     if (new_i3_notes)
2653       {
2654 	for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2655 	  if (GET_CODE (XEXP (temp, 0)) == REG)
2656 	    REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2657 
2658 	distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2659       }
2660 
2661     /* If I3DEST was used in I3SRC, it really died in I3.  We may need to
2662        put a REG_DEAD note for it somewhere.  If NEWI2PAT exists and sets
2663        I3DEST, the death must be somewhere before I2, not I3.  If we passed I3
2664        in that case, it might delete I2.  Similarly for I2 and I1.
2665        Show an additional death due to the REG_DEAD note we make here.  If
2666        we discard it in distribute_notes, we will decrement it again.  */
2667 
2668     if (i3dest_killed)
2669       {
2670 	if (GET_CODE (i3dest_killed) == REG)
2671 	  REG_N_DEATHS (REGNO (i3dest_killed))++;
2672 
2673 	if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2674 	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2675 					       NULL_RTX),
2676 			    NULL_RTX, i2, NULL_RTX);
2677 	else
2678 	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2679 					       NULL_RTX),
2680 			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2681       }
2682 
2683     if (i2dest_in_i2src)
2684       {
2685 	if (GET_CODE (i2dest) == REG)
2686 	  REG_N_DEATHS (REGNO (i2dest))++;
2687 
2688 	if (newi2pat && reg_set_p (i2dest, newi2pat))
2689 	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2690 			    NULL_RTX, i2, NULL_RTX);
2691 	else
2692 	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2693 			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2694       }
2695 
2696     if (i1dest_in_i1src)
2697       {
2698 	if (GET_CODE (i1dest) == REG)
2699 	  REG_N_DEATHS (REGNO (i1dest))++;
2700 
2701 	if (newi2pat && reg_set_p (i1dest, newi2pat))
2702 	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2703 			    NULL_RTX, i2, NULL_RTX);
2704 	else
2705 	  distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2706 			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2707       }
2708 
2709     distribute_links (i3links);
2710     distribute_links (i2links);
2711     distribute_links (i1links);
2712 
2713     if (GET_CODE (i2dest) == REG)
2714       {
2715 	rtx link;
2716 	rtx i2_insn = 0, i2_val = 0, set;
2717 
2718 	/* The insn that used to set this register doesn't exist, and
2719 	   this life of the register may not exist either.  See if one of
2720 	   I3's links points to an insn that sets I2DEST.  If it does,
2721 	   that is now the last known value for I2DEST. If we don't update
2722 	   this and I2 set the register to a value that depended on its old
2723 	   contents, we will get confused.  If this insn is used, thing
2724 	   will be set correctly in combine_instructions.  */
2725 
2726 	for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2727 	  if ((set = single_set (XEXP (link, 0))) != 0
2728 	      && rtx_equal_p (i2dest, SET_DEST (set)))
2729 	    i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2730 
2731 	record_value_for_reg (i2dest, i2_insn, i2_val);
2732 
2733 	/* If the reg formerly set in I2 died only once and that was in I3,
2734 	   zero its use count so it won't make `reload' do any work.  */
2735 	if (! added_sets_2
2736 	    && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2737 	    && ! i2dest_in_i2src)
2738 	  {
2739 	    regno = REGNO (i2dest);
2740 	    REG_N_SETS (regno)--;
2741 	  }
2742       }
2743 
2744     if (i1 && GET_CODE (i1dest) == REG)
2745       {
2746 	rtx link;
2747 	rtx i1_insn = 0, i1_val = 0, set;
2748 
2749 	for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2750 	  if ((set = single_set (XEXP (link, 0))) != 0
2751 	      && rtx_equal_p (i1dest, SET_DEST (set)))
2752 	    i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2753 
2754 	record_value_for_reg (i1dest, i1_insn, i1_val);
2755 
2756 	regno = REGNO (i1dest);
2757 	if (! added_sets_1 && ! i1dest_in_i1src)
2758 	  REG_N_SETS (regno)--;
2759       }
2760 
2761     /* Update reg_nonzero_bits et al for any changes that may have been made
2762        to this insn.  The order of set_nonzero_bits_and_sign_copies() is
2763        important.  Because newi2pat can affect nonzero_bits of newpat */
2764     if (newi2pat)
2765       note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2766     note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2767 
2768     /* Set new_direct_jump_p if a new return or simple jump instruction
2769        has been created.
2770 
2771        If I3 is now an unconditional jump, ensure that it has a
2772        BARRIER following it since it may have initially been a
2773        conditional jump.  It may also be the last nonnote insn.  */
2774 
2775     if (returnjump_p (i3) || any_uncondjump_p (i3))
2776       {
2777 	*new_direct_jump_p = 1;
2778 	mark_jump_label (PATTERN (i3), i3, 0);
2779 
2780 	if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2781 	    || GET_CODE (temp) != BARRIER)
2782 	  emit_barrier_after (i3);
2783       }
2784 
2785     if (undobuf.other_insn != NULL_RTX
2786 	&& (returnjump_p (undobuf.other_insn)
2787 	    || any_uncondjump_p (undobuf.other_insn)))
2788       {
2789 	*new_direct_jump_p = 1;
2790 
2791 	if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2792 	    || GET_CODE (temp) != BARRIER)
2793 	  emit_barrier_after (undobuf.other_insn);
2794       }
2795 
2796     /* An NOOP jump does not need barrier, but it does need cleaning up
2797        of CFG.  */
2798     if (GET_CODE (newpat) == SET
2799 	&& SET_SRC (newpat) == pc_rtx
2800 	&& SET_DEST (newpat) == pc_rtx)
2801       *new_direct_jump_p = 1;
2802   }
2803 
2804   combine_successes++;
2805   undo_commit ();
2806 
2807   if (added_links_insn
2808       && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2809       && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2810     return added_links_insn;
2811   else
2812     return newi2pat ? i2 : i3;
2813 }
2814 
2815 /* Undo all the modifications recorded in undobuf.  */
2816 
2817 static void
undo_all(void)2818 undo_all (void)
2819 {
2820   struct undo *undo, *next;
2821 
2822   for (undo = undobuf.undos; undo; undo = next)
2823     {
2824       next = undo->next;
2825       if (undo->is_int)
2826 	*undo->where.i = undo->old_contents.i;
2827       else
2828 	*undo->where.r = undo->old_contents.r;
2829 
2830       undo->next = undobuf.frees;
2831       undobuf.frees = undo;
2832     }
2833 
2834   undobuf.undos = 0;
2835 }
2836 
2837 /* We've committed to accepting the changes we made.  Move all
2838    of the undos to the free list.  */
2839 
2840 static void
undo_commit(void)2841 undo_commit (void)
2842 {
2843   struct undo *undo, *next;
2844 
2845   for (undo = undobuf.undos; undo; undo = next)
2846     {
2847       next = undo->next;
2848       undo->next = undobuf.frees;
2849       undobuf.frees = undo;
2850     }
2851   undobuf.undos = 0;
2852 }
2853 
2854 
2855 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2856    where we have an arithmetic expression and return that point.  LOC will
2857    be inside INSN.
2858 
2859    try_combine will call this function to see if an insn can be split into
2860    two insns.  */
2861 
2862 static rtx *
find_split_point(rtx * loc,rtx insn)2863 find_split_point (rtx *loc, rtx insn)
2864 {
2865   rtx x = *loc;
2866   enum rtx_code code = GET_CODE (x);
2867   rtx *split;
2868   unsigned HOST_WIDE_INT len = 0;
2869   HOST_WIDE_INT pos = 0;
2870   int unsignedp = 0;
2871   rtx inner = NULL_RTX;
2872 
2873   /* First special-case some codes.  */
2874   switch (code)
2875     {
2876     case SUBREG:
2877 #ifdef INSN_SCHEDULING
2878       /* If we are making a paradoxical SUBREG invalid, it becomes a split
2879 	 point.  */
2880       if (GET_CODE (SUBREG_REG (x)) == MEM)
2881 	return loc;
2882 #endif
2883       return find_split_point (&SUBREG_REG (x), insn);
2884 
2885     case MEM:
2886 #ifdef HAVE_lo_sum
2887       /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2888 	 using LO_SUM and HIGH.  */
2889       if (GET_CODE (XEXP (x, 0)) == CONST
2890 	  || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2891 	{
2892 	  SUBST (XEXP (x, 0),
2893 		 gen_rtx_LO_SUM (Pmode,
2894 				 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2895 				 XEXP (x, 0)));
2896 	  return &XEXP (XEXP (x, 0), 0);
2897 	}
2898 #endif
2899 
2900       /* If we have a PLUS whose second operand is a constant and the
2901 	 address is not valid, perhaps will can split it up using
2902 	 the machine-specific way to split large constants.  We use
2903 	 the first pseudo-reg (one of the virtual regs) as a placeholder;
2904 	 it will not remain in the result.  */
2905       if (GET_CODE (XEXP (x, 0)) == PLUS
2906 	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2907 	  && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2908 	{
2909 	  rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2910 	  rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2911 				 subst_insn);
2912 
2913 	  /* This should have produced two insns, each of which sets our
2914 	     placeholder.  If the source of the second is a valid address,
2915 	     we can make put both sources together and make a split point
2916 	     in the middle.  */
2917 
2918 	  if (seq
2919 	      && NEXT_INSN (seq) != NULL_RTX
2920 	      && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2921 	      && GET_CODE (seq) == INSN
2922 	      && GET_CODE (PATTERN (seq)) == SET
2923 	      && SET_DEST (PATTERN (seq)) == reg
2924 	      && ! reg_mentioned_p (reg,
2925 				    SET_SRC (PATTERN (seq)))
2926 	      && GET_CODE (NEXT_INSN (seq)) == INSN
2927 	      && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2928 	      && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2929 	      && memory_address_p (GET_MODE (x),
2930 				   SET_SRC (PATTERN (NEXT_INSN (seq)))))
2931 	    {
2932 	      rtx src1 = SET_SRC (PATTERN (seq));
2933 	      rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2934 
2935 	      /* Replace the placeholder in SRC2 with SRC1.  If we can
2936 		 find where in SRC2 it was placed, that can become our
2937 		 split point and we can replace this address with SRC2.
2938 		 Just try two obvious places.  */
2939 
2940 	      src2 = replace_rtx (src2, reg, src1);
2941 	      split = 0;
2942 	      if (XEXP (src2, 0) == src1)
2943 		split = &XEXP (src2, 0);
2944 	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2945 		       && XEXP (XEXP (src2, 0), 0) == src1)
2946 		split = &XEXP (XEXP (src2, 0), 0);
2947 
2948 	      if (split)
2949 		{
2950 		  SUBST (XEXP (x, 0), src2);
2951 		  return split;
2952 		}
2953 	    }
2954 
2955 	  /* If that didn't work, perhaps the first operand is complex and
2956 	     needs to be computed separately, so make a split point there.
2957 	     This will occur on machines that just support REG + CONST
2958 	     and have a constant moved through some previous computation.  */
2959 
2960 	  else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2961 		   && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2962 			 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2963 			     == 'o')))
2964 	    return &XEXP (XEXP (x, 0), 0);
2965 	}
2966       break;
2967 
2968     case SET:
2969 #ifdef HAVE_cc0
2970       /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2971 	 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2972 	 we need to put the operand into a register.  So split at that
2973 	 point.  */
2974 
2975       if (SET_DEST (x) == cc0_rtx
2976 	  && GET_CODE (SET_SRC (x)) != COMPARE
2977 	  && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2978 	  && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2979 	  && ! (GET_CODE (SET_SRC (x)) == SUBREG
2980 		&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2981 	return &SET_SRC (x);
2982 #endif
2983 
2984       /* See if we can split SET_SRC as it stands.  */
2985       split = find_split_point (&SET_SRC (x), insn);
2986       if (split && split != &SET_SRC (x))
2987 	return split;
2988 
2989       /* See if we can split SET_DEST as it stands.  */
2990       split = find_split_point (&SET_DEST (x), insn);
2991       if (split && split != &SET_DEST (x))
2992 	return split;
2993 
2994       /* See if this is a bitfield assignment with everything constant.  If
2995 	 so, this is an IOR of an AND, so split it into that.  */
2996       if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2997 	  && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2998 	      <= HOST_BITS_PER_WIDE_INT)
2999 	  && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3000 	  && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3001 	  && GET_CODE (SET_SRC (x)) == CONST_INT
3002 	  && ((INTVAL (XEXP (SET_DEST (x), 1))
3003 	       + INTVAL (XEXP (SET_DEST (x), 2)))
3004 	      <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3005 	  && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3006 	{
3007 	  HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3008 	  unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3009 	  unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3010 	  rtx dest = XEXP (SET_DEST (x), 0);
3011 	  enum machine_mode mode = GET_MODE (dest);
3012 	  unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3013 
3014 	  if (BITS_BIG_ENDIAN)
3015 	    pos = GET_MODE_BITSIZE (mode) - len - pos;
3016 
3017 	  if (src == mask)
3018 	    SUBST (SET_SRC (x),
3019 		   gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3020 	  else
3021 	    SUBST (SET_SRC (x),
3022 		   gen_binary (IOR, mode,
3023 			       gen_binary (AND, mode, dest,
3024 					   gen_int_mode (~(mask << pos),
3025 							 mode)),
3026 			       GEN_INT (src << pos)));
3027 
3028 	  SUBST (SET_DEST (x), dest);
3029 
3030 	  split = find_split_point (&SET_SRC (x), insn);
3031 	  if (split && split != &SET_SRC (x))
3032 	    return split;
3033 	}
3034 
3035       /* Otherwise, see if this is an operation that we can split into two.
3036 	 If so, try to split that.  */
3037       code = GET_CODE (SET_SRC (x));
3038 
3039       switch (code)
3040 	{
3041 	case AND:
3042 	  /* If we are AND'ing with a large constant that is only a single
3043 	     bit and the result is only being used in a context where we
3044 	     need to know if it is zero or nonzero, replace it with a bit
3045 	     extraction.  This will avoid the large constant, which might
3046 	     have taken more than one insn to make.  If the constant were
3047 	     not a valid argument to the AND but took only one insn to make,
3048 	     this is no worse, but if it took more than one insn, it will
3049 	     be better.  */
3050 
3051 	  if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3052 	      && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3053 	      && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3054 	      && GET_CODE (SET_DEST (x)) == REG
3055 	      && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3056 	      && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3057 	      && XEXP (*split, 0) == SET_DEST (x)
3058 	      && XEXP (*split, 1) == const0_rtx)
3059 	    {
3060 	      rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3061 						XEXP (SET_SRC (x), 0),
3062 						pos, NULL_RTX, 1, 1, 0, 0);
3063 	      if (extraction != 0)
3064 		{
3065 		  SUBST (SET_SRC (x), extraction);
3066 		  return find_split_point (loc, insn);
3067 		}
3068 	    }
3069 	  break;
3070 
3071 	case NE:
3072 	  /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3073 	     is known to be on, this can be converted into a NEG of a shift.  */
3074 	  if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3075 	      && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3076 	      && 1 <= (pos = exact_log2
3077 		       (nonzero_bits (XEXP (SET_SRC (x), 0),
3078 				      GET_MODE (XEXP (SET_SRC (x), 0))))))
3079 	    {
3080 	      enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3081 
3082 	      SUBST (SET_SRC (x),
3083 		     gen_rtx_NEG (mode,
3084 				  gen_rtx_LSHIFTRT (mode,
3085 						    XEXP (SET_SRC (x), 0),
3086 						    GEN_INT (pos))));
3087 
3088 	      split = find_split_point (&SET_SRC (x), insn);
3089 	      if (split && split != &SET_SRC (x))
3090 		return split;
3091 	    }
3092 	  break;
3093 
3094 	case SIGN_EXTEND:
3095 	  inner = XEXP (SET_SRC (x), 0);
3096 
3097 	  /* We can't optimize if either mode is a partial integer
3098 	     mode as we don't know how many bits are significant
3099 	     in those modes.  */
3100 	  if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3101 	      || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3102 	    break;
3103 
3104 	  pos = 0;
3105 	  len = GET_MODE_BITSIZE (GET_MODE (inner));
3106 	  unsignedp = 0;
3107 	  break;
3108 
3109 	case SIGN_EXTRACT:
3110 	case ZERO_EXTRACT:
3111 	  if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3112 	      && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3113 	    {
3114 	      inner = XEXP (SET_SRC (x), 0);
3115 	      len = INTVAL (XEXP (SET_SRC (x), 1));
3116 	      pos = INTVAL (XEXP (SET_SRC (x), 2));
3117 
3118 	      if (BITS_BIG_ENDIAN)
3119 		pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3120 	      unsignedp = (code == ZERO_EXTRACT);
3121 	    }
3122 	  break;
3123 
3124 	default:
3125 	  break;
3126 	}
3127 
3128       if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3129 	{
3130 	  enum machine_mode mode = GET_MODE (SET_SRC (x));
3131 
3132 	  /* For unsigned, we have a choice of a shift followed by an
3133 	     AND or two shifts.  Use two shifts for field sizes where the
3134 	     constant might be too large.  We assume here that we can
3135 	     always at least get 8-bit constants in an AND insn, which is
3136 	     true for every current RISC.  */
3137 
3138 	  if (unsignedp && len <= 8)
3139 	    {
3140 	      SUBST (SET_SRC (x),
3141 		     gen_rtx_AND (mode,
3142 				  gen_rtx_LSHIFTRT
3143 				  (mode, gen_lowpart_for_combine (mode, inner),
3144 				   GEN_INT (pos)),
3145 				  GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3146 
3147 	      split = find_split_point (&SET_SRC (x), insn);
3148 	      if (split && split != &SET_SRC (x))
3149 		return split;
3150 	    }
3151 	  else
3152 	    {
3153 	      SUBST (SET_SRC (x),
3154 		     gen_rtx_fmt_ee
3155 		     (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3156 		      gen_rtx_ASHIFT (mode,
3157 				      gen_lowpart_for_combine (mode, inner),
3158 				      GEN_INT (GET_MODE_BITSIZE (mode)
3159 					       - len - pos)),
3160 		      GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3161 
3162 	      split = find_split_point (&SET_SRC (x), insn);
3163 	      if (split && split != &SET_SRC (x))
3164 		return split;
3165 	    }
3166 	}
3167 
3168       /* See if this is a simple operation with a constant as the second
3169 	 operand.  It might be that this constant is out of range and hence
3170 	 could be used as a split point.  */
3171       if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3172 	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3173 	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3174 	  && CONSTANT_P (XEXP (SET_SRC (x), 1))
3175 	  && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3176 	      || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3177 		  && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3178 		      == 'o'))))
3179 	return &XEXP (SET_SRC (x), 1);
3180 
3181       /* Finally, see if this is a simple operation with its first operand
3182 	 not in a register.  The operation might require this operand in a
3183 	 register, so return it as a split point.  We can always do this
3184 	 because if the first operand were another operation, we would have
3185 	 already found it as a split point.  */
3186       if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3187 	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3188 	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3189 	   || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3190 	  && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3191 	return &XEXP (SET_SRC (x), 0);
3192 
3193       return 0;
3194 
3195     case AND:
3196     case IOR:
3197       /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3198 	 it is better to write this as (not (ior A B)) so we can split it.
3199 	 Similarly for IOR.  */
3200       if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3201 	{
3202 	  SUBST (*loc,
3203 		 gen_rtx_NOT (GET_MODE (x),
3204 			      gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3205 					      GET_MODE (x),
3206 					      XEXP (XEXP (x, 0), 0),
3207 					      XEXP (XEXP (x, 1), 0))));
3208 	  return find_split_point (loc, insn);
3209 	}
3210 
3211       /* Many RISC machines have a large set of logical insns.  If the
3212 	 second operand is a NOT, put it first so we will try to split the
3213 	 other operand first.  */
3214       if (GET_CODE (XEXP (x, 1)) == NOT)
3215 	{
3216 	  rtx tem = XEXP (x, 0);
3217 	  SUBST (XEXP (x, 0), XEXP (x, 1));
3218 	  SUBST (XEXP (x, 1), tem);
3219 	}
3220       break;
3221 
3222     default:
3223       break;
3224     }
3225 
3226   /* Otherwise, select our actions depending on our rtx class.  */
3227   switch (GET_RTX_CLASS (code))
3228     {
3229     case 'b':			/* This is ZERO_EXTRACT and SIGN_EXTRACT.  */
3230     case '3':
3231       split = find_split_point (&XEXP (x, 2), insn);
3232       if (split)
3233 	return split;
3234       /* ... fall through ...  */
3235     case '2':
3236     case 'c':
3237     case '<':
3238       split = find_split_point (&XEXP (x, 1), insn);
3239       if (split)
3240 	return split;
3241       /* ... fall through ...  */
3242     case '1':
3243       /* Some machines have (and (shift ...) ...) insns.  If X is not
3244 	 an AND, but XEXP (X, 0) is, use it as our split point.  */
3245       if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3246 	return &XEXP (x, 0);
3247 
3248       split = find_split_point (&XEXP (x, 0), insn);
3249       if (split)
3250 	return split;
3251       return loc;
3252     }
3253 
3254   /* Otherwise, we don't have a split point.  */
3255   return 0;
3256 }
3257 
3258 /* Throughout X, replace FROM with TO, and return the result.
3259    The result is TO if X is FROM;
3260    otherwise the result is X, but its contents may have been modified.
3261    If they were modified, a record was made in undobuf so that
3262    undo_all will (among other things) return X to its original state.
3263 
3264    If the number of changes necessary is too much to record to undo,
3265    the excess changes are not made, so the result is invalid.
3266    The changes already made can still be undone.
3267    undobuf.num_undo is incremented for such changes, so by testing that
3268    the caller can tell whether the result is valid.
3269 
3270    `n_occurrences' is incremented each time FROM is replaced.
3271 
3272    IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3273 
3274    UNIQUE_COPY is nonzero if each substitution must be unique.  We do this
3275    by copying if `n_occurrences' is nonzero.  */
3276 
3277 static rtx
subst(rtx x,rtx from,rtx to,int in_dest,int unique_copy)3278 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3279 {
3280   enum rtx_code code = GET_CODE (x);
3281   enum machine_mode op0_mode = VOIDmode;
3282   const char *fmt;
3283   int len, i;
3284   rtx new;
3285 
3286 /* Two expressions are equal if they are identical copies of a shared
3287    RTX or if they are both registers with the same register number
3288    and mode.  */
3289 
3290 #define COMBINE_RTX_EQUAL_P(X,Y)			\
3291   ((X) == (Y)						\
3292    || (GET_CODE (X) == REG && GET_CODE (Y) == REG	\
3293        && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3294 
3295   if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3296     {
3297       n_occurrences++;
3298       return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3299     }
3300 
3301   /* If X and FROM are the same register but different modes, they will
3302      not have been seen as equal above.  However, flow.c will make a
3303      LOG_LINKS entry for that case.  If we do nothing, we will try to
3304      rerecognize our original insn and, when it succeeds, we will
3305      delete the feeding insn, which is incorrect.
3306 
3307      So force this insn not to match in this (rare) case.  */
3308   if (! in_dest && code == REG && GET_CODE (from) == REG
3309       && REGNO (x) == REGNO (from))
3310     return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3311 
3312   /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3313      of which may contain things that can be combined.  */
3314   if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3315     return x;
3316 
3317   /* It is possible to have a subexpression appear twice in the insn.
3318      Suppose that FROM is a register that appears within TO.
3319      Then, after that subexpression has been scanned once by `subst',
3320      the second time it is scanned, TO may be found.  If we were
3321      to scan TO here, we would find FROM within it and create a
3322      self-referent rtl structure which is completely wrong.  */
3323   if (COMBINE_RTX_EQUAL_P (x, to))
3324     return to;
3325 
3326   /* Parallel asm_operands need special attention because all of the
3327      inputs are shared across the arms.  Furthermore, unsharing the
3328      rtl results in recognition failures.  Failure to handle this case
3329      specially can result in circular rtl.
3330 
3331      Solve this by doing a normal pass across the first entry of the
3332      parallel, and only processing the SET_DESTs of the subsequent
3333      entries.  Ug.  */
3334 
3335   if (code == PARALLEL
3336       && GET_CODE (XVECEXP (x, 0, 0)) == SET
3337       && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3338     {
3339       new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3340 
3341       /* If this substitution failed, this whole thing fails.  */
3342       if (GET_CODE (new) == CLOBBER
3343 	  && XEXP (new, 0) == const0_rtx)
3344 	return new;
3345 
3346       SUBST (XVECEXP (x, 0, 0), new);
3347 
3348       for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3349 	{
3350 	  rtx dest = SET_DEST (XVECEXP (x, 0, i));
3351 
3352 	  if (GET_CODE (dest) != REG
3353 	      && GET_CODE (dest) != CC0
3354 	      && GET_CODE (dest) != PC)
3355 	    {
3356 	      new = subst (dest, from, to, 0, unique_copy);
3357 
3358 	      /* If this substitution failed, this whole thing fails.  */
3359 	      if (GET_CODE (new) == CLOBBER
3360 		  && XEXP (new, 0) == const0_rtx)
3361 		return new;
3362 
3363 	      SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3364 	    }
3365 	}
3366     }
3367   else
3368     {
3369       len = GET_RTX_LENGTH (code);
3370       fmt = GET_RTX_FORMAT (code);
3371 
3372       /* We don't need to process a SET_DEST that is a register, CC0,
3373 	 or PC, so set up to skip this common case.  All other cases
3374 	 where we want to suppress replacing something inside a
3375 	 SET_SRC are handled via the IN_DEST operand.  */
3376       if (code == SET
3377 	  && (GET_CODE (SET_DEST (x)) == REG
3378 	      || GET_CODE (SET_DEST (x)) == CC0
3379 	      || GET_CODE (SET_DEST (x)) == PC))
3380 	fmt = "ie";
3381 
3382       /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3383 	 constant.  */
3384       if (fmt[0] == 'e')
3385 	op0_mode = GET_MODE (XEXP (x, 0));
3386 
3387       for (i = 0; i < len; i++)
3388 	{
3389 	  if (fmt[i] == 'E')
3390 	    {
3391 	      int j;
3392 	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3393 		{
3394 		  if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3395 		    {
3396 		      new = (unique_copy && n_occurrences
3397 			     ? copy_rtx (to) : to);
3398 		      n_occurrences++;
3399 		    }
3400 		  else
3401 		    {
3402 		      new = subst (XVECEXP (x, i, j), from, to, 0,
3403 				   unique_copy);
3404 
3405 		      /* If this substitution failed, this whole thing
3406 			 fails.  */
3407 		      if (GET_CODE (new) == CLOBBER
3408 			  && XEXP (new, 0) == const0_rtx)
3409 			return new;
3410 		    }
3411 
3412 		  SUBST (XVECEXP (x, i, j), new);
3413 		}
3414 	    }
3415 	  else if (fmt[i] == 'e')
3416 	    {
3417 	      /* If this is a register being set, ignore it.  */
3418 	      new = XEXP (x, i);
3419 	      if (in_dest
3420 		  && (code == SUBREG || code == STRICT_LOW_PART
3421 		      || code == ZERO_EXTRACT)
3422 		  && i == 0
3423 		  && GET_CODE (new) == REG)
3424 		;
3425 
3426 	      else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3427 		{
3428 		  /* In general, don't install a subreg involving two
3429 		     modes not tieable.  It can worsen register
3430 		     allocation, and can even make invalid reload
3431 		     insns, since the reg inside may need to be copied
3432 		     from in the outside mode, and that may be invalid
3433 		     if it is an fp reg copied in integer mode.
3434 
3435 		     We allow two exceptions to this: It is valid if
3436 		     it is inside another SUBREG and the mode of that
3437 		     SUBREG and the mode of the inside of TO is
3438 		     tieable and it is valid if X is a SET that copies
3439 		     FROM to CC0.  */
3440 
3441 		  if (GET_CODE (to) == SUBREG
3442 		      && ! MODES_TIEABLE_P (GET_MODE (to),
3443 					    GET_MODE (SUBREG_REG (to)))
3444 		      && ! (code == SUBREG
3445 			    && MODES_TIEABLE_P (GET_MODE (x),
3446 						GET_MODE (SUBREG_REG (to))))
3447 #ifdef HAVE_cc0
3448 		      && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3449 #endif
3450 		      )
3451 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3452 
3453 #ifdef CANNOT_CHANGE_MODE_CLASS
3454 		  if (code == SUBREG
3455 		      && GET_CODE (to) == REG
3456 		      && REGNO (to) < FIRST_PSEUDO_REGISTER
3457 		      && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3458 						   GET_MODE (to),
3459 						   GET_MODE (x)))
3460 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3461 #endif
3462 
3463 		  new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3464 		  n_occurrences++;
3465 		}
3466 	      else
3467 		/* If we are in a SET_DEST, suppress most cases unless we
3468 		   have gone inside a MEM, in which case we want to
3469 		   simplify the address.  We assume here that things that
3470 		   are actually part of the destination have their inner
3471 		   parts in the first expression.  This is true for SUBREG,
3472 		   STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3473 		   things aside from REG and MEM that should appear in a
3474 		   SET_DEST.  */
3475 		new = subst (XEXP (x, i), from, to,
3476 			     (((in_dest
3477 				&& (code == SUBREG || code == STRICT_LOW_PART
3478 				    || code == ZERO_EXTRACT))
3479 			       || code == SET)
3480 			      && i == 0), unique_copy);
3481 
3482 	      /* If we found that we will have to reject this combination,
3483 		 indicate that by returning the CLOBBER ourselves, rather than
3484 		 an expression containing it.  This will speed things up as
3485 		 well as prevent accidents where two CLOBBERs are considered
3486 		 to be equal, thus producing an incorrect simplification.  */
3487 
3488 	      if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3489 		return new;
3490 
3491 	      if (GET_CODE (x) == SUBREG
3492 		  && (GET_CODE (new) == CONST_INT
3493 		      || GET_CODE (new) == CONST_DOUBLE))
3494 		{
3495 		  enum machine_mode mode = GET_MODE (x);
3496 
3497 		  x = simplify_subreg (GET_MODE (x), new,
3498 				       GET_MODE (SUBREG_REG (x)),
3499 				       SUBREG_BYTE (x));
3500 		  if (! x)
3501 		    x = gen_rtx_CLOBBER (mode, const0_rtx);
3502 		}
3503 	      else if (GET_CODE (new) == CONST_INT
3504 		       && GET_CODE (x) == ZERO_EXTEND)
3505 		{
3506 		  x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3507 						new, GET_MODE (XEXP (x, 0)));
3508 		  if (! x)
3509 		    abort ();
3510 		}
3511 	      else
3512 		SUBST (XEXP (x, i), new);
3513 	    }
3514 	}
3515     }
3516 
3517   /* Try to simplify X.  If the simplification changed the code, it is likely
3518      that further simplification will help, so loop, but limit the number
3519      of repetitions that will be performed.  */
3520 
3521   for (i = 0; i < 4; i++)
3522     {
3523       /* If X is sufficiently simple, don't bother trying to do anything
3524 	 with it.  */
3525       if (code != CONST_INT && code != REG && code != CLOBBER)
3526 	x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3527 
3528       if (GET_CODE (x) == code)
3529 	break;
3530 
3531       code = GET_CODE (x);
3532 
3533       /* We no longer know the original mode of operand 0 since we
3534 	 have changed the form of X)  */
3535       op0_mode = VOIDmode;
3536     }
3537 
3538   return x;
3539 }
3540 
3541 /* Simplify X, a piece of RTL.  We just operate on the expression at the
3542    outer level; call `subst' to simplify recursively.  Return the new
3543    expression.
3544 
3545    OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3546    will be the iteration even if an expression with a code different from
3547    X is returned; IN_DEST is nonzero if we are inside a SET_DEST.  */
3548 
3549 static rtx
combine_simplify_rtx(rtx x,enum machine_mode op0_mode,int last,int in_dest)3550 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int last,
3551 		      int in_dest)
3552 {
3553   enum rtx_code code = GET_CODE (x);
3554   enum machine_mode mode = GET_MODE (x);
3555   rtx temp;
3556   rtx reversed;
3557   int i;
3558 
3559   /* If this is a commutative operation, put a constant last and a complex
3560      expression first.  We don't need to do this for comparisons here.  */
3561   if (GET_RTX_CLASS (code) == 'c'
3562       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3563     {
3564       temp = XEXP (x, 0);
3565       SUBST (XEXP (x, 0), XEXP (x, 1));
3566       SUBST (XEXP (x, 1), temp);
3567     }
3568 
3569   /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3570      sign extension of a PLUS with a constant, reverse the order of the sign
3571      extension and the addition. Note that this not the same as the original
3572      code, but overflow is undefined for signed values.  Also note that the
3573      PLUS will have been partially moved "inside" the sign-extension, so that
3574      the first operand of X will really look like:
3575          (ashiftrt (plus (ashift A C4) C5) C4).
3576      We convert this to
3577          (plus (ashiftrt (ashift A C4) C2) C4)
3578      and replace the first operand of X with that expression.  Later parts
3579      of this function may simplify the expression further.
3580 
3581      For example, if we start with (mult (sign_extend (plus A C1)) C2),
3582      we swap the SIGN_EXTEND and PLUS.  Later code will apply the
3583      distributive law to produce (plus (mult (sign_extend X) C1) C3).
3584 
3585      We do this to simplify address expressions.  */
3586 
3587   if ((code == PLUS || code == MINUS || code == MULT)
3588       && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3589       && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3590       && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3591       && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3592       && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3593       && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3594       && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3595       && (temp = simplify_binary_operation (ASHIFTRT, mode,
3596 					    XEXP (XEXP (XEXP (x, 0), 0), 1),
3597 					    XEXP (XEXP (x, 0), 1))) != 0)
3598     {
3599       rtx new
3600 	= simplify_shift_const (NULL_RTX, ASHIFT, mode,
3601 				XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3602 				INTVAL (XEXP (XEXP (x, 0), 1)));
3603 
3604       new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3605 				  INTVAL (XEXP (XEXP (x, 0), 1)));
3606 
3607       SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3608     }
3609 
3610   /* If this is a simple operation applied to an IF_THEN_ELSE, try
3611      applying it to the arms of the IF_THEN_ELSE.  This often simplifies
3612      things.  Check for cases where both arms are testing the same
3613      condition.
3614 
3615      Don't do anything if all operands are very simple.  */
3616 
3617   if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3618 	|| GET_RTX_CLASS (code) == '<')
3619        && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3620 	    && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3621 		  && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3622 		      == 'o')))
3623 	   || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3624 	       && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3625 		     && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3626 			 == 'o')))))
3627       || (GET_RTX_CLASS (code) == '1'
3628 	  && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3629 	       && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3630 		     && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3631 			 == 'o'))))))
3632     {
3633       rtx cond, true_rtx, false_rtx;
3634 
3635       cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3636       if (cond != 0
3637 	  /* If everything is a comparison, what we have is highly unlikely
3638 	     to be simpler, so don't use it.  */
3639 	  && ! (GET_RTX_CLASS (code) == '<'
3640 		&& (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3641 		    || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3642 	{
3643 	  rtx cop1 = const0_rtx;
3644 	  enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3645 
3646 	  if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3647 	    return x;
3648 
3649 	  /* Simplify the alternative arms; this may collapse the true and
3650 	     false arms to store-flag values.  Be careful to use copy_rtx
3651 	     here since true_rtx or false_rtx might share RTL with x as a
3652 	     result of the if_then_else_cond call above.  */
3653 	  true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3654 	  false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3655 
3656 	  /* If true_rtx and false_rtx are not general_operands, an if_then_else
3657 	     is unlikely to be simpler.  */
3658 	  if (general_operand (true_rtx, VOIDmode)
3659 	      && general_operand (false_rtx, VOIDmode))
3660 	    {
3661 	      enum rtx_code reversed;
3662 
3663 	      /* Restarting if we generate a store-flag expression will cause
3664 		 us to loop.  Just drop through in this case.  */
3665 
3666 	      /* If the result values are STORE_FLAG_VALUE and zero, we can
3667 		 just make the comparison operation.  */
3668 	      if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3669 		x = gen_binary (cond_code, mode, cond, cop1);
3670 	      else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3671 		       && ((reversed = reversed_comparison_code_parts
3672 					(cond_code, cond, cop1, NULL))
3673 		           != UNKNOWN))
3674 		x = gen_binary (reversed, mode, cond, cop1);
3675 
3676 	      /* Likewise, we can make the negate of a comparison operation
3677 		 if the result values are - STORE_FLAG_VALUE and zero.  */
3678 	      else if (GET_CODE (true_rtx) == CONST_INT
3679 		       && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3680 		       && false_rtx == const0_rtx)
3681 		x = simplify_gen_unary (NEG, mode,
3682 					gen_binary (cond_code, mode, cond,
3683 						    cop1),
3684 					mode);
3685 	      else if (GET_CODE (false_rtx) == CONST_INT
3686 		       && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3687 		       && true_rtx == const0_rtx
3688 		       && ((reversed = reversed_comparison_code_parts
3689 					(cond_code, cond, cop1, NULL))
3690 		           != UNKNOWN))
3691 		x = simplify_gen_unary (NEG, mode,
3692 					gen_binary (reversed, mode,
3693 						    cond, cop1),
3694 					mode);
3695 	      else
3696 		return gen_rtx_IF_THEN_ELSE (mode,
3697 					     gen_binary (cond_code, VOIDmode,
3698 							 cond, cop1),
3699 					     true_rtx, false_rtx);
3700 
3701 	      code = GET_CODE (x);
3702 	      op0_mode = VOIDmode;
3703 	    }
3704 	}
3705     }
3706 
3707   /* Try to fold this expression in case we have constants that weren't
3708      present before.  */
3709   temp = 0;
3710   switch (GET_RTX_CLASS (code))
3711     {
3712     case '1':
3713       if (op0_mode == VOIDmode)
3714 	op0_mode = GET_MODE (XEXP (x, 0));
3715       temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3716       break;
3717     case '<':
3718       {
3719 	enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3720 	if (cmp_mode == VOIDmode)
3721 	  {
3722 	    cmp_mode = GET_MODE (XEXP (x, 1));
3723 	    if (cmp_mode == VOIDmode)
3724 	      cmp_mode = op0_mode;
3725 	  }
3726 	temp = simplify_relational_operation (code, cmp_mode,
3727 					      XEXP (x, 0), XEXP (x, 1));
3728       }
3729 #ifdef FLOAT_STORE_FLAG_VALUE
3730       if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3731 	{
3732 	  if (temp == const0_rtx)
3733 	    temp = CONST0_RTX (mode);
3734 	  else
3735 	    temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3736 						 mode);
3737 	}
3738 #endif
3739       break;
3740     case 'c':
3741     case '2':
3742       temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3743       break;
3744     case 'b':
3745     case '3':
3746       temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3747 					 XEXP (x, 1), XEXP (x, 2));
3748       break;
3749     }
3750 
3751   if (temp)
3752     {
3753       x = temp;
3754       code = GET_CODE (temp);
3755       op0_mode = VOIDmode;
3756       mode = GET_MODE (temp);
3757     }
3758 
3759   /* First see if we can apply the inverse distributive law.  */
3760   if (code == PLUS || code == MINUS
3761       || code == AND || code == IOR || code == XOR)
3762     {
3763       x = apply_distributive_law (x);
3764       code = GET_CODE (x);
3765       op0_mode = VOIDmode;
3766     }
3767 
3768   /* If CODE is an associative operation not otherwise handled, see if we
3769      can associate some operands.  This can win if they are constants or
3770      if they are logically related (i.e. (a & b) & a).  */
3771   if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3772        || code == AND || code == IOR || code == XOR
3773        || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3774       && ((INTEGRAL_MODE_P (mode) && code != DIV)
3775 	  || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3776     {
3777       if (GET_CODE (XEXP (x, 0)) == code)
3778 	{
3779 	  rtx other = XEXP (XEXP (x, 0), 0);
3780 	  rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3781 	  rtx inner_op1 = XEXP (x, 1);
3782 	  rtx inner;
3783 
3784 	  /* Make sure we pass the constant operand if any as the second
3785 	     one if this is a commutative operation.  */
3786 	  if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3787 	    {
3788 	      rtx tem = inner_op0;
3789 	      inner_op0 = inner_op1;
3790 	      inner_op1 = tem;
3791 	    }
3792 	  inner = simplify_binary_operation (code == MINUS ? PLUS
3793 					     : code == DIV ? MULT
3794 					     : code,
3795 					     mode, inner_op0, inner_op1);
3796 
3797 	  /* For commutative operations, try the other pair if that one
3798 	     didn't simplify.  */
3799 	  if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3800 	    {
3801 	      other = XEXP (XEXP (x, 0), 1);
3802 	      inner = simplify_binary_operation (code, mode,
3803 						 XEXP (XEXP (x, 0), 0),
3804 						 XEXP (x, 1));
3805 	    }
3806 
3807 	  if (inner)
3808 	    return gen_binary (code, mode, other, inner);
3809 	}
3810     }
3811 
3812   /* A little bit of algebraic simplification here.  */
3813   switch (code)
3814     {
3815     case MEM:
3816       /* Ensure that our address has any ASHIFTs converted to MULT in case
3817 	 address-recognizing predicates are called later.  */
3818       temp = make_compound_operation (XEXP (x, 0), MEM);
3819       SUBST (XEXP (x, 0), temp);
3820       break;
3821 
3822     case SUBREG:
3823       if (op0_mode == VOIDmode)
3824 	op0_mode = GET_MODE (SUBREG_REG (x));
3825 
3826       /* simplify_subreg can't use gen_lowpart_for_combine.  */
3827       if (CONSTANT_P (SUBREG_REG (x))
3828 	  && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3829 	     /* Don't call gen_lowpart_for_combine if the inner mode
3830 		is VOIDmode and we cannot simplify it, as SUBREG without
3831 		inner mode is invalid.  */
3832 	  && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3833 	      || gen_lowpart_common (mode, SUBREG_REG (x))))
3834 	return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3835 
3836       if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3837         break;
3838       {
3839 	rtx temp;
3840 	temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3841 				SUBREG_BYTE (x));
3842 	if (temp)
3843 	  return temp;
3844       }
3845 
3846       /* Don't change the mode of the MEM if that would change the meaning
3847 	 of the address.  */
3848       if (GET_CODE (SUBREG_REG (x)) == MEM
3849 	  && (MEM_VOLATILE_P (SUBREG_REG (x))
3850 	      || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3851 	return gen_rtx_CLOBBER (mode, const0_rtx);
3852 
3853       /* Note that we cannot do any narrowing for non-constants since
3854 	 we might have been counting on using the fact that some bits were
3855 	 zero.  We now do this in the SET.  */
3856 
3857       break;
3858 
3859     case NOT:
3860       if (GET_CODE (XEXP (x, 0)) == SUBREG
3861 	  && subreg_lowpart_p (XEXP (x, 0))
3862 	  && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3863 	      < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3864 	  && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3865 	  && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3866 	{
3867 	  enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3868 
3869 	  x = gen_rtx_ROTATE (inner_mode,
3870 			      simplify_gen_unary (NOT, inner_mode, const1_rtx,
3871 						  inner_mode),
3872 			      XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3873 	  return gen_lowpart_for_combine (mode, x);
3874 	}
3875 
3876       /* Apply De Morgan's laws to reduce number of patterns for machines
3877 	 with negating logical insns (and-not, nand, etc.).  If result has
3878 	 only one NOT, put it first, since that is how the patterns are
3879 	 coded.  */
3880 
3881       if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3882 	{
3883 	  rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3884 	  enum machine_mode op_mode;
3885 
3886 	  op_mode = GET_MODE (in1);
3887 	  in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3888 
3889 	  op_mode = GET_MODE (in2);
3890 	  if (op_mode == VOIDmode)
3891 	    op_mode = mode;
3892 	  in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3893 
3894 	  if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3895 	    {
3896 	      rtx tem = in2;
3897 	      in2 = in1; in1 = tem;
3898 	    }
3899 
3900 	  return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3901 				 mode, in1, in2);
3902 	}
3903       break;
3904 
3905     case NEG:
3906       /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1.  */
3907       if (GET_CODE (XEXP (x, 0)) == XOR
3908 	  && XEXP (XEXP (x, 0), 1) == const1_rtx
3909 	  && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3910 	return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3911 
3912       temp = expand_compound_operation (XEXP (x, 0));
3913 
3914       /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3915 	 replaced by (lshiftrt X C).  This will convert
3916 	 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y).  */
3917 
3918       if (GET_CODE (temp) == ASHIFTRT
3919 	  && GET_CODE (XEXP (temp, 1)) == CONST_INT
3920 	  && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3921 	return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3922 				     INTVAL (XEXP (temp, 1)));
3923 
3924       /* If X has only a single bit that might be nonzero, say, bit I, convert
3925 	 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3926 	 MODE minus 1.  This will convert (neg (zero_extract X 1 Y)) to
3927 	 (sign_extract X 1 Y).  But only do this if TEMP isn't a register
3928 	 or a SUBREG of one since we'd be making the expression more
3929 	 complex if it was just a register.  */
3930 
3931       if (GET_CODE (temp) != REG
3932 	  && ! (GET_CODE (temp) == SUBREG
3933 		&& GET_CODE (SUBREG_REG (temp)) == REG)
3934 	  && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3935 	{
3936 	  rtx temp1 = simplify_shift_const
3937 	    (NULL_RTX, ASHIFTRT, mode,
3938 	     simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3939 				   GET_MODE_BITSIZE (mode) - 1 - i),
3940 	     GET_MODE_BITSIZE (mode) - 1 - i);
3941 
3942 	  /* If all we did was surround TEMP with the two shifts, we
3943 	     haven't improved anything, so don't use it.  Otherwise,
3944 	     we are better off with TEMP1.  */
3945 	  if (GET_CODE (temp1) != ASHIFTRT
3946 	      || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3947 	      || XEXP (XEXP (temp1, 0), 0) != temp)
3948 	    return temp1;
3949 	}
3950       break;
3951 
3952     case TRUNCATE:
3953       /* We can't handle truncation to a partial integer mode here
3954 	 because we don't know the real bitsize of the partial
3955 	 integer mode.  */
3956       if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3957 	break;
3958 
3959       if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3960 	  && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3961 				    GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3962 	SUBST (XEXP (x, 0),
3963 	       force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3964 			      GET_MODE_MASK (mode), NULL_RTX, 0));
3965 
3966       /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI.  */
3967       if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3968 	   || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3969 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3970 	return XEXP (XEXP (x, 0), 0);
3971 
3972       /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
3973 	 (OP:SI foo:SI) if OP is NEG or ABS.  */
3974       if ((GET_CODE (XEXP (x, 0)) == ABS
3975 	   || GET_CODE (XEXP (x, 0)) == NEG)
3976 	  && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
3977 	      || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
3978 	  && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3979 	return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
3980 				   XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
3981 
3982       /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
3983 	 (truncate:SI x).  */
3984       if (GET_CODE (XEXP (x, 0)) == SUBREG
3985 	  && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
3986 	  && subreg_lowpart_p (XEXP (x, 0)))
3987 	return SUBREG_REG (XEXP (x, 0));
3988 
3989       /* If we know that the value is already truncated, we can
3990          replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
3991          is nonzero for the corresponding modes.  But don't do this
3992          for an (LSHIFTRT (MULT ...)) since this will cause problems
3993          with the umulXi3_highpart patterns.  */
3994       if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3995 				 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
3996 	  && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
3997 	     >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
3998 	  && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
3999 		&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4000 	return gen_lowpart_for_combine (mode, XEXP (x, 0));
4001 
4002       /* A truncate of a comparison can be replaced with a subreg if
4003          STORE_FLAG_VALUE permits.  This is like the previous test,
4004          but it works even if the comparison is done in a mode larger
4005          than HOST_BITS_PER_WIDE_INT.  */
4006       if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4007 	  && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4008 	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4009 	return gen_lowpart_for_combine (mode, XEXP (x, 0));
4010 
4011       /* Similarly, a truncate of a register whose value is a
4012          comparison can be replaced with a subreg if STORE_FLAG_VALUE
4013          permits.  */
4014       if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4015 	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4016 	  && (temp = get_last_value (XEXP (x, 0)))
4017 	  && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4018 	return gen_lowpart_for_combine (mode, XEXP (x, 0));
4019 
4020       break;
4021 
4022     case FLOAT_TRUNCATE:
4023       /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF.  */
4024       if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4025 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4026 	return XEXP (XEXP (x, 0), 0);
4027 
4028       /* (float_truncate:SF (float_truncate:DF foo:XF))
4029          = (float_truncate:SF foo:XF).
4030 	 This may eliminate double rounding, so it is unsafe.
4031 
4032          (float_truncate:SF (float_extend:XF foo:DF))
4033          = (float_truncate:SF foo:DF).
4034 
4035          (float_truncate:DF (float_extend:XF foo:SF))
4036          = (float_extend:SF foo:DF).  */
4037       if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4038 	   && flag_unsafe_math_optimizations)
4039 	  || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4040 	return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4041 							    0)))
4042 				   > GET_MODE_SIZE (mode)
4043 				   ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4044 				   mode,
4045 				   XEXP (XEXP (x, 0), 0), mode);
4046 
4047       /*  (float_truncate (float x)) is (float x)  */
4048       if (GET_CODE (XEXP (x, 0)) == FLOAT
4049 	  && (flag_unsafe_math_optimizations
4050 	      || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4051 		  >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4052 		      - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4053 					     GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4054 	return simplify_gen_unary (FLOAT, mode,
4055 				   XEXP (XEXP (x, 0), 0),
4056 				   GET_MODE (XEXP (XEXP (x, 0), 0)));
4057 
4058       /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4059 	 (OP:SF foo:SF) if OP is NEG or ABS.  */
4060       if ((GET_CODE (XEXP (x, 0)) == ABS
4061 	   || GET_CODE (XEXP (x, 0)) == NEG)
4062 	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4063 	  && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4064 	return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4065 				   XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4066 
4067       /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4068 	 is (float_truncate:SF x).  */
4069       if (GET_CODE (XEXP (x, 0)) == SUBREG
4070 	  && subreg_lowpart_p (XEXP (x, 0))
4071 	  && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4072 	return SUBREG_REG (XEXP (x, 0));
4073       break;
4074     case FLOAT_EXTEND:
4075       /*  (float_extend (float_extend x)) is (float_extend x)
4076 
4077 	  (float_extend (float x)) is (float x) assuming that double
4078 	  rounding can't happen.
4079           */
4080       if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4081 	  || (GET_CODE (XEXP (x, 0)) == FLOAT
4082 	      && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4083 		  >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4084 		      - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4085 					     GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4086 	return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4087 				   XEXP (XEXP (x, 0), 0),
4088 				   GET_MODE (XEXP (XEXP (x, 0), 0)));
4089 
4090       break;
4091 #ifdef HAVE_cc0
4092     case COMPARE:
4093       /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4094 	 using cc0, in which case we want to leave it as a COMPARE
4095 	 so we can distinguish it from a register-register-copy.  */
4096       if (XEXP (x, 1) == const0_rtx)
4097 	return XEXP (x, 0);
4098 
4099       /* x - 0 is the same as x unless x's mode has signed zeros and
4100 	 allows rounding towards -infinity.  Under those conditions,
4101 	 0 - 0 is -0.  */
4102       if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4103 	    && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4104 	  && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4105 	return XEXP (x, 0);
4106       break;
4107 #endif
4108 
4109     case CONST:
4110       /* (const (const X)) can become (const X).  Do it this way rather than
4111 	 returning the inner CONST since CONST can be shared with a
4112 	 REG_EQUAL note.  */
4113       if (GET_CODE (XEXP (x, 0)) == CONST)
4114 	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4115       break;
4116 
4117 #ifdef HAVE_lo_sum
4118     case LO_SUM:
4119       /* Convert (lo_sum (high FOO) FOO) to FOO.  This is necessary so we
4120 	 can add in an offset.  find_split_point will split this address up
4121 	 again if it doesn't match.  */
4122       if (GET_CODE (XEXP (x, 0)) == HIGH
4123 	  && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4124 	return XEXP (x, 1);
4125       break;
4126 #endif
4127 
4128     case PLUS:
4129       /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4130        */
4131       if (GET_CODE (XEXP (x, 0)) == MULT
4132 	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4133 	{
4134 	  rtx in1, in2;
4135 
4136 	  in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4137 	  in2 = XEXP (XEXP (x, 0), 1);
4138 	  return gen_binary (MINUS, mode, XEXP (x, 1),
4139 			     gen_binary (MULT, mode, in1, in2));
4140 	}
4141 
4142       /* If we have (plus (plus (A const) B)), associate it so that CONST is
4143 	 outermost.  That's because that's the way indexed addresses are
4144 	 supposed to appear.  This code used to check many more cases, but
4145 	 they are now checked elsewhere.  */
4146       if (GET_CODE (XEXP (x, 0)) == PLUS
4147 	  && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4148 	return gen_binary (PLUS, mode,
4149 			   gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4150 				       XEXP (x, 1)),
4151 			   XEXP (XEXP (x, 0), 1));
4152 
4153       /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4154 	 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4155 	 bit-field and can be replaced by either a sign_extend or a
4156 	 sign_extract.  The `and' may be a zero_extend and the two
4157 	 <c>, -<c> constants may be reversed.  */
4158       if (GET_CODE (XEXP (x, 0)) == XOR
4159 	  && GET_CODE (XEXP (x, 1)) == CONST_INT
4160 	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4161 	  && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4162 	  && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4163 	      || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4164 	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4165 	  && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4166 	       && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4167 	       && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4168 		   == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4169 	      || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4170 		  && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4171 		      == (unsigned int) i + 1))))
4172 	return simplify_shift_const
4173 	  (NULL_RTX, ASHIFTRT, mode,
4174 	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
4175 				 XEXP (XEXP (XEXP (x, 0), 0), 0),
4176 				 GET_MODE_BITSIZE (mode) - (i + 1)),
4177 	   GET_MODE_BITSIZE (mode) - (i + 1));
4178 
4179       /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4180 	 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4181 	 is 1.  This produces better code than the alternative immediately
4182 	 below.  */
4183       if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4184 	  && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4185 	      || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4186 	  && (reversed = reversed_comparison (XEXP (x, 0), mode,
4187 					      XEXP (XEXP (x, 0), 0),
4188 					      XEXP (XEXP (x, 0), 1))))
4189 	return
4190 	  simplify_gen_unary (NEG, mode, reversed, mode);
4191 
4192       /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4193 	 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4194 	 the bitsize of the mode - 1.  This allows simplification of
4195 	 "a = (b & 8) == 0;"  */
4196       if (XEXP (x, 1) == constm1_rtx
4197 	  && GET_CODE (XEXP (x, 0)) != REG
4198 	  && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4199 		&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4200 	  && nonzero_bits (XEXP (x, 0), mode) == 1)
4201 	return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4202 	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
4203 				 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4204 				 GET_MODE_BITSIZE (mode) - 1),
4205 	   GET_MODE_BITSIZE (mode) - 1);
4206 
4207       /* If we are adding two things that have no bits in common, convert
4208 	 the addition into an IOR.  This will often be further simplified,
4209 	 for example in cases like ((a & 1) + (a & 2)), which can
4210 	 become a & 3.  */
4211 
4212       if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4213 	  && (nonzero_bits (XEXP (x, 0), mode)
4214 	      & nonzero_bits (XEXP (x, 1), mode)) == 0)
4215 	{
4216 	  /* Try to simplify the expression further.  */
4217 	  rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4218 	  temp = combine_simplify_rtx (tor, mode, last, in_dest);
4219 
4220 	  /* If we could, great.  If not, do not go ahead with the IOR
4221 	     replacement, since PLUS appears in many special purpose
4222 	     address arithmetic instructions.  */
4223 	  if (GET_CODE (temp) != CLOBBER && temp != tor)
4224 	    return temp;
4225 	}
4226       break;
4227 
4228     case MINUS:
4229       /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4230 	 by reversing the comparison code if valid.  */
4231       if (STORE_FLAG_VALUE == 1
4232 	  && XEXP (x, 0) == const1_rtx
4233 	  && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4234 	  && (reversed = reversed_comparison (XEXP (x, 1), mode,
4235 					      XEXP (XEXP (x, 1), 0),
4236 					      XEXP (XEXP (x, 1), 1))))
4237 	return reversed;
4238 
4239       /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4240 	 (and <foo> (const_int pow2-1))  */
4241       if (GET_CODE (XEXP (x, 1)) == AND
4242 	  && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4243 	  && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4244 	  && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4245 	return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4246 				       -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4247 
4248       /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4249        */
4250       if (GET_CODE (XEXP (x, 1)) == MULT
4251 	  && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4252 	{
4253 	  rtx in1, in2;
4254 
4255 	  in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4256 	  in2 = XEXP (XEXP (x, 1), 1);
4257 	  return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4258 			     XEXP (x, 0));
4259 	}
4260 
4261       /* Canonicalize (minus (neg A) (mult B C)) to
4262 	 (minus (mult (neg B) C) A).  */
4263       if (GET_CODE (XEXP (x, 1)) == MULT
4264 	  && GET_CODE (XEXP (x, 0)) == NEG)
4265 	{
4266 	  rtx in1, in2;
4267 
4268 	  in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4269 	  in2 = XEXP (XEXP (x, 1), 1);
4270 	  return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4271 			     XEXP (XEXP (x, 0), 0));
4272 	}
4273 
4274       /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4275 	 integers.  */
4276       if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4277 	return gen_binary (MINUS, mode,
4278 			   gen_binary (MINUS, mode, XEXP (x, 0),
4279 				       XEXP (XEXP (x, 1), 0)),
4280 			   XEXP (XEXP (x, 1), 1));
4281       break;
4282 
4283     case MULT:
4284       /* If we have (mult (plus A B) C), apply the distributive law and then
4285 	 the inverse distributive law to see if things simplify.  This
4286 	 occurs mostly in addresses, often when unrolling loops.  */
4287 
4288       if (GET_CODE (XEXP (x, 0)) == PLUS)
4289 	{
4290 	  x = apply_distributive_law
4291 	    (gen_binary (PLUS, mode,
4292 			 gen_binary (MULT, mode,
4293 				     XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4294 			 gen_binary (MULT, mode,
4295 				     XEXP (XEXP (x, 0), 1),
4296 				     copy_rtx (XEXP (x, 1)))));
4297 
4298 	  if (GET_CODE (x) != MULT)
4299 	    return x;
4300 	}
4301       /* Try simplify a*(b/c) as (a*b)/c.  */
4302       if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4303 	  && GET_CODE (XEXP (x, 0)) == DIV)
4304 	{
4305 	  rtx tem = simplify_binary_operation (MULT, mode,
4306 					       XEXP (XEXP (x, 0), 0),
4307 					       XEXP (x, 1));
4308 	  if (tem)
4309 	    return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4310 	}
4311       break;
4312 
4313     case UDIV:
4314       /* If this is a divide by a power of two, treat it as a shift if
4315 	 its first operand is a shift.  */
4316       if (GET_CODE (XEXP (x, 1)) == CONST_INT
4317 	  && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4318 	  && (GET_CODE (XEXP (x, 0)) == ASHIFT
4319 	      || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4320 	      || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4321 	      || GET_CODE (XEXP (x, 0)) == ROTATE
4322 	      || GET_CODE (XEXP (x, 0)) == ROTATERT))
4323 	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4324       break;
4325 
4326     case EQ:  case NE:
4327     case GT:  case GTU:  case GE:  case GEU:
4328     case LT:  case LTU:  case LE:  case LEU:
4329     case UNEQ:  case LTGT:
4330     case UNGT:  case UNGE:
4331     case UNLT:  case UNLE:
4332     case UNORDERED: case ORDERED:
4333       /* If the first operand is a condition code, we can't do anything
4334 	 with it.  */
4335       if (GET_CODE (XEXP (x, 0)) == COMPARE
4336 	  || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4337 	      && ! CC0_P (XEXP (x, 0))))
4338 	{
4339 	  rtx op0 = XEXP (x, 0);
4340 	  rtx op1 = XEXP (x, 1);
4341 	  enum rtx_code new_code;
4342 
4343 	  if (GET_CODE (op0) == COMPARE)
4344 	    op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4345 
4346 	  /* Simplify our comparison, if possible.  */
4347 	  new_code = simplify_comparison (code, &op0, &op1);
4348 
4349 	  /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4350 	     if only the low-order bit is possibly nonzero in X (such as when
4351 	     X is a ZERO_EXTRACT of one bit).  Similarly, we can convert EQ to
4352 	     (xor X 1) or (minus 1 X); we use the former.  Finally, if X is
4353 	     known to be either 0 or -1, NE becomes a NEG and EQ becomes
4354 	     (plus X 1).
4355 
4356 	     Remove any ZERO_EXTRACT we made when thinking this was a
4357 	     comparison.  It may now be simpler to use, e.g., an AND.  If a
4358 	     ZERO_EXTRACT is indeed appropriate, it will be placed back by
4359 	     the call to make_compound_operation in the SET case.  */
4360 
4361 	  if (STORE_FLAG_VALUE == 1
4362 	      && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4363 	      && op1 == const0_rtx
4364 	      && mode == GET_MODE (op0)
4365 	      && nonzero_bits (op0, mode) == 1)
4366 	    return gen_lowpart_for_combine (mode,
4367 					    expand_compound_operation (op0));
4368 
4369 	  else if (STORE_FLAG_VALUE == 1
4370 		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4371 		   && op1 == const0_rtx
4372 		   && mode == GET_MODE (op0)
4373 		   && (num_sign_bit_copies (op0, mode)
4374 		       == GET_MODE_BITSIZE (mode)))
4375 	    {
4376 	      op0 = expand_compound_operation (op0);
4377 	      return simplify_gen_unary (NEG, mode,
4378 					 gen_lowpart_for_combine (mode, op0),
4379 					 mode);
4380 	    }
4381 
4382 	  else if (STORE_FLAG_VALUE == 1
4383 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4384 		   && op1 == const0_rtx
4385 		   && mode == GET_MODE (op0)
4386 		   && nonzero_bits (op0, mode) == 1)
4387 	    {
4388 	      op0 = expand_compound_operation (op0);
4389 	      return gen_binary (XOR, mode,
4390 				 gen_lowpart_for_combine (mode, op0),
4391 				 const1_rtx);
4392 	    }
4393 
4394 	  else if (STORE_FLAG_VALUE == 1
4395 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4396 		   && op1 == const0_rtx
4397 		   && mode == GET_MODE (op0)
4398 		   && (num_sign_bit_copies (op0, mode)
4399 		       == GET_MODE_BITSIZE (mode)))
4400 	    {
4401 	      op0 = expand_compound_operation (op0);
4402 	      return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4403 	    }
4404 
4405 	  /* If STORE_FLAG_VALUE is -1, we have cases similar to
4406 	     those above.  */
4407 	  if (STORE_FLAG_VALUE == -1
4408 	      && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4409 	      && op1 == const0_rtx
4410 	      && (num_sign_bit_copies (op0, mode)
4411 		  == GET_MODE_BITSIZE (mode)))
4412 	    return gen_lowpart_for_combine (mode,
4413 					    expand_compound_operation (op0));
4414 
4415 	  else if (STORE_FLAG_VALUE == -1
4416 		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4417 		   && op1 == const0_rtx
4418 		   && mode == GET_MODE (op0)
4419 		   && nonzero_bits (op0, mode) == 1)
4420 	    {
4421 	      op0 = expand_compound_operation (op0);
4422 	      return simplify_gen_unary (NEG, mode,
4423 					 gen_lowpart_for_combine (mode, op0),
4424 					 mode);
4425 	    }
4426 
4427 	  else if (STORE_FLAG_VALUE == -1
4428 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4429 		   && op1 == const0_rtx
4430 		   && mode == GET_MODE (op0)
4431 		   && (num_sign_bit_copies (op0, mode)
4432 		       == GET_MODE_BITSIZE (mode)))
4433 	    {
4434 	      op0 = expand_compound_operation (op0);
4435 	      return simplify_gen_unary (NOT, mode,
4436 					 gen_lowpart_for_combine (mode, op0),
4437 					 mode);
4438 	    }
4439 
4440 	  /* If X is 0/1, (eq X 0) is X-1.  */
4441 	  else if (STORE_FLAG_VALUE == -1
4442 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4443 		   && op1 == const0_rtx
4444 		   && mode == GET_MODE (op0)
4445 		   && nonzero_bits (op0, mode) == 1)
4446 	    {
4447 	      op0 = expand_compound_operation (op0);
4448 	      return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4449 	    }
4450 
4451 	  /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4452 	     one bit that might be nonzero, we can convert (ne x 0) to
4453 	     (ashift x c) where C puts the bit in the sign bit.  Remove any
4454 	     AND with STORE_FLAG_VALUE when we are done, since we are only
4455 	     going to test the sign bit.  */
4456 	  if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4457 	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4458 	      && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4459 		  == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4460 	      && op1 == const0_rtx
4461 	      && mode == GET_MODE (op0)
4462 	      && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4463 	    {
4464 	      x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4465 					expand_compound_operation (op0),
4466 					GET_MODE_BITSIZE (mode) - 1 - i);
4467 	      if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4468 		return XEXP (x, 0);
4469 	      else
4470 		return x;
4471 	    }
4472 
4473 	  /* If the code changed, return a whole new comparison.  */
4474 	  if (new_code != code)
4475 	    return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4476 
4477 	  /* Otherwise, keep this operation, but maybe change its operands.
4478 	     This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR).  */
4479 	  SUBST (XEXP (x, 0), op0);
4480 	  SUBST (XEXP (x, 1), op1);
4481 	}
4482       break;
4483 
4484     case IF_THEN_ELSE:
4485       return simplify_if_then_else (x);
4486 
4487     case ZERO_EXTRACT:
4488     case SIGN_EXTRACT:
4489     case ZERO_EXTEND:
4490     case SIGN_EXTEND:
4491       /* If we are processing SET_DEST, we are done.  */
4492       if (in_dest)
4493 	return x;
4494 
4495       return expand_compound_operation (x);
4496 
4497     case SET:
4498       return simplify_set (x);
4499 
4500     case AND:
4501     case IOR:
4502     case XOR:
4503       return simplify_logical (x, last);
4504 
4505     case ABS:
4506       /* (abs (neg <foo>)) -> (abs <foo>) */
4507       if (GET_CODE (XEXP (x, 0)) == NEG)
4508 	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4509 
4510       /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4511          do nothing.  */
4512       if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4513 	break;
4514 
4515       /* If operand is something known to be positive, ignore the ABS.  */
4516       if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4517 	  || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4518 	       <= HOST_BITS_PER_WIDE_INT)
4519 	      && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4520 		   & ((HOST_WIDE_INT) 1
4521 		      << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4522 		  == 0)))
4523 	return XEXP (x, 0);
4524 
4525       /* If operand is known to be only -1 or 0, convert ABS to NEG.  */
4526       if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4527 	return gen_rtx_NEG (mode, XEXP (x, 0));
4528 
4529       break;
4530 
4531     case FFS:
4532       /* (ffs (*_extend <X>)) = (ffs <X>) */
4533       if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4534 	  || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4535 	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4536       break;
4537 
4538     case POPCOUNT:
4539     case PARITY:
4540       /* (pop* (zero_extend <X>)) = (pop* <X>) */
4541       if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4542 	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4543       break;
4544 
4545     case FLOAT:
4546       /* (float (sign_extend <X>)) = (float <X>).  */
4547       if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4548 	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4549       break;
4550 
4551     case ASHIFT:
4552     case LSHIFTRT:
4553     case ASHIFTRT:
4554     case ROTATE:
4555     case ROTATERT:
4556       /* If this is a shift by a constant amount, simplify it.  */
4557       if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4558 	return simplify_shift_const (x, code, mode, XEXP (x, 0),
4559 				     INTVAL (XEXP (x, 1)));
4560 
4561       else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4562 	SUBST (XEXP (x, 1),
4563 	       force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4564 			      ((HOST_WIDE_INT) 1
4565 			       << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4566 			      - 1,
4567 			      NULL_RTX, 0));
4568       break;
4569 
4570     case VEC_SELECT:
4571       {
4572 	rtx op0 = XEXP (x, 0);
4573 	rtx op1 = XEXP (x, 1);
4574 	int len;
4575 
4576 	if (GET_CODE (op1) != PARALLEL)
4577 	  abort ();
4578 	len = XVECLEN (op1, 0);
4579 	if (len == 1
4580 	    && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4581 	    && GET_CODE (op0) == VEC_CONCAT)
4582 	  {
4583 	    int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4584 
4585 	    /* Try to find the element in the VEC_CONCAT.  */
4586 	    for (;;)
4587 	      {
4588 		if (GET_MODE (op0) == GET_MODE (x))
4589 		  return op0;
4590 		if (GET_CODE (op0) == VEC_CONCAT)
4591 		  {
4592 		    HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4593 		    if (op0_size < offset)
4594 		      op0 = XEXP (op0, 0);
4595 		    else
4596 		      {
4597 			offset -= op0_size;
4598 			op0 = XEXP (op0, 1);
4599 		      }
4600 		  }
4601 		else
4602 		  break;
4603 	      }
4604 	  }
4605       }
4606 
4607       break;
4608 
4609     default:
4610       break;
4611     }
4612 
4613   return x;
4614 }
4615 
4616 /* Simplify X, an IF_THEN_ELSE expression.  Return the new expression.  */
4617 
4618 static rtx
simplify_if_then_else(rtx x)4619 simplify_if_then_else (rtx x)
4620 {
4621   enum machine_mode mode = GET_MODE (x);
4622   rtx cond = XEXP (x, 0);
4623   rtx true_rtx = XEXP (x, 1);
4624   rtx false_rtx = XEXP (x, 2);
4625   enum rtx_code true_code = GET_CODE (cond);
4626   int comparison_p = GET_RTX_CLASS (true_code) == '<';
4627   rtx temp;
4628   int i;
4629   enum rtx_code false_code;
4630   rtx reversed;
4631 
4632   /* Simplify storing of the truth value.  */
4633   if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4634     return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4635 
4636   /* Also when the truth value has to be reversed.  */
4637   if (comparison_p
4638       && true_rtx == const0_rtx && false_rtx == const_true_rtx
4639       && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4640 					  XEXP (cond, 1))))
4641     return reversed;
4642 
4643   /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4644      in it is being compared against certain values.  Get the true and false
4645      comparisons and see if that says anything about the value of each arm.  */
4646 
4647   if (comparison_p
4648       && ((false_code = combine_reversed_comparison_code (cond))
4649 	  != UNKNOWN)
4650       && GET_CODE (XEXP (cond, 0)) == REG)
4651     {
4652       HOST_WIDE_INT nzb;
4653       rtx from = XEXP (cond, 0);
4654       rtx true_val = XEXP (cond, 1);
4655       rtx false_val = true_val;
4656       int swapped = 0;
4657 
4658       /* If FALSE_CODE is EQ, swap the codes and arms.  */
4659 
4660       if (false_code == EQ)
4661 	{
4662 	  swapped = 1, true_code = EQ, false_code = NE;
4663 	  temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4664 	}
4665 
4666       /* If we are comparing against zero and the expression being tested has
4667 	 only a single bit that might be nonzero, that is its value when it is
4668 	 not equal to zero.  Similarly if it is known to be -1 or 0.  */
4669 
4670       if (true_code == EQ && true_val == const0_rtx
4671 	  && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4672 	false_code = EQ, false_val = GEN_INT (nzb);
4673       else if (true_code == EQ && true_val == const0_rtx
4674 	       && (num_sign_bit_copies (from, GET_MODE (from))
4675 		   == GET_MODE_BITSIZE (GET_MODE (from))))
4676 	false_code = EQ, false_val = constm1_rtx;
4677 
4678       /* Now simplify an arm if we know the value of the register in the
4679 	 branch and it is used in the arm.  Be careful due to the potential
4680 	 of locally-shared RTL.  */
4681 
4682       if (reg_mentioned_p (from, true_rtx))
4683 	true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4684 				      from, true_val),
4685 		      pc_rtx, pc_rtx, 0, 0);
4686       if (reg_mentioned_p (from, false_rtx))
4687 	false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4688 				   from, false_val),
4689 		       pc_rtx, pc_rtx, 0, 0);
4690 
4691       SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4692       SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4693 
4694       true_rtx = XEXP (x, 1);
4695       false_rtx = XEXP (x, 2);
4696       true_code = GET_CODE (cond);
4697     }
4698 
4699   /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4700      reversed, do so to avoid needing two sets of patterns for
4701      subtract-and-branch insns.  Similarly if we have a constant in the true
4702      arm, the false arm is the same as the first operand of the comparison, or
4703      the false arm is more complicated than the true arm.  */
4704 
4705   if (comparison_p
4706       && combine_reversed_comparison_code (cond) != UNKNOWN
4707       && (true_rtx == pc_rtx
4708 	  || (CONSTANT_P (true_rtx)
4709 	      && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4710 	  || true_rtx == const0_rtx
4711 	  || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4712 	      && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4713 	  || (GET_CODE (true_rtx) == SUBREG
4714 	      && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4715 	      && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4716 	  || reg_mentioned_p (true_rtx, false_rtx)
4717 	  || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4718     {
4719       true_code = reversed_comparison_code (cond, NULL);
4720       SUBST (XEXP (x, 0),
4721 	     reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4722 				  XEXP (cond, 1)));
4723 
4724       SUBST (XEXP (x, 1), false_rtx);
4725       SUBST (XEXP (x, 2), true_rtx);
4726 
4727       temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4728       cond = XEXP (x, 0);
4729 
4730       /* It is possible that the conditional has been simplified out.  */
4731       true_code = GET_CODE (cond);
4732       comparison_p = GET_RTX_CLASS (true_code) == '<';
4733     }
4734 
4735   /* If the two arms are identical, we don't need the comparison.  */
4736 
4737   if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4738     return true_rtx;
4739 
4740   /* Convert a == b ? b : a to "a".  */
4741   if (true_code == EQ && ! side_effects_p (cond)
4742       && !HONOR_NANS (mode)
4743       && rtx_equal_p (XEXP (cond, 0), false_rtx)
4744       && rtx_equal_p (XEXP (cond, 1), true_rtx))
4745     return false_rtx;
4746   else if (true_code == NE && ! side_effects_p (cond)
4747 	   && !HONOR_NANS (mode)
4748 	   && rtx_equal_p (XEXP (cond, 0), true_rtx)
4749 	   && rtx_equal_p (XEXP (cond, 1), false_rtx))
4750     return true_rtx;
4751 
4752   /* Look for cases where we have (abs x) or (neg (abs X)).  */
4753 
4754   if (GET_MODE_CLASS (mode) == MODE_INT
4755       && GET_CODE (false_rtx) == NEG
4756       && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4757       && comparison_p
4758       && rtx_equal_p (true_rtx, XEXP (cond, 0))
4759       && ! side_effects_p (true_rtx))
4760     switch (true_code)
4761       {
4762       case GT:
4763       case GE:
4764 	return simplify_gen_unary (ABS, mode, true_rtx, mode);
4765       case LT:
4766       case LE:
4767 	return
4768 	  simplify_gen_unary (NEG, mode,
4769 			      simplify_gen_unary (ABS, mode, true_rtx, mode),
4770 			      mode);
4771       default:
4772 	break;
4773       }
4774 
4775   /* Look for MIN or MAX.  */
4776 
4777   if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4778       && comparison_p
4779       && rtx_equal_p (XEXP (cond, 0), true_rtx)
4780       && rtx_equal_p (XEXP (cond, 1), false_rtx)
4781       && ! side_effects_p (cond))
4782     switch (true_code)
4783       {
4784       case GE:
4785       case GT:
4786 	return gen_binary (SMAX, mode, true_rtx, false_rtx);
4787       case LE:
4788       case LT:
4789 	return gen_binary (SMIN, mode, true_rtx, false_rtx);
4790       case GEU:
4791       case GTU:
4792 	return gen_binary (UMAX, mode, true_rtx, false_rtx);
4793       case LEU:
4794       case LTU:
4795 	return gen_binary (UMIN, mode, true_rtx, false_rtx);
4796       default:
4797 	break;
4798       }
4799 
4800   /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4801      second operand is zero, this can be done as (OP Z (mult COND C2)) where
4802      C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4803      SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4804      We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4805      neither 1 or -1, but it isn't worth checking for.  */
4806 
4807   if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4808       && comparison_p
4809       && GET_MODE_CLASS (mode) == MODE_INT
4810       && ! side_effects_p (x))
4811     {
4812       rtx t = make_compound_operation (true_rtx, SET);
4813       rtx f = make_compound_operation (false_rtx, SET);
4814       rtx cond_op0 = XEXP (cond, 0);
4815       rtx cond_op1 = XEXP (cond, 1);
4816       enum rtx_code op = NIL, extend_op = NIL;
4817       enum machine_mode m = mode;
4818       rtx z = 0, c1 = NULL_RTX;
4819 
4820       if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4821 	   || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4822 	   || GET_CODE (t) == ASHIFT
4823 	   || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4824 	  && rtx_equal_p (XEXP (t, 0), f))
4825 	c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4826 
4827       /* If an identity-zero op is commutative, check whether there
4828 	 would be a match if we swapped the operands.  */
4829       else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4830 		|| GET_CODE (t) == XOR)
4831 	       && rtx_equal_p (XEXP (t, 1), f))
4832 	c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4833       else if (GET_CODE (t) == SIGN_EXTEND
4834 	       && (GET_CODE (XEXP (t, 0)) == PLUS
4835 		   || GET_CODE (XEXP (t, 0)) == MINUS
4836 		   || GET_CODE (XEXP (t, 0)) == IOR
4837 		   || GET_CODE (XEXP (t, 0)) == XOR
4838 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
4839 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4840 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4841 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4842 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4843 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4844 	       && (num_sign_bit_copies (f, GET_MODE (f))
4845 		   > (unsigned int)
4846 		     (GET_MODE_BITSIZE (mode)
4847 		      - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4848 	{
4849 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4850 	  extend_op = SIGN_EXTEND;
4851 	  m = GET_MODE (XEXP (t, 0));
4852 	}
4853       else if (GET_CODE (t) == SIGN_EXTEND
4854 	       && (GET_CODE (XEXP (t, 0)) == PLUS
4855 		   || GET_CODE (XEXP (t, 0)) == IOR
4856 		   || GET_CODE (XEXP (t, 0)) == XOR)
4857 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4858 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4859 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4860 	       && (num_sign_bit_copies (f, GET_MODE (f))
4861 		   > (unsigned int)
4862 		     (GET_MODE_BITSIZE (mode)
4863 		      - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4864 	{
4865 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4866 	  extend_op = SIGN_EXTEND;
4867 	  m = GET_MODE (XEXP (t, 0));
4868 	}
4869       else if (GET_CODE (t) == ZERO_EXTEND
4870 	       && (GET_CODE (XEXP (t, 0)) == PLUS
4871 		   || GET_CODE (XEXP (t, 0)) == MINUS
4872 		   || GET_CODE (XEXP (t, 0)) == IOR
4873 		   || GET_CODE (XEXP (t, 0)) == XOR
4874 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
4875 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4876 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4877 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4878 	       && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4879 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4880 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4881 	       && ((nonzero_bits (f, GET_MODE (f))
4882 		    & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4883 		   == 0))
4884 	{
4885 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4886 	  extend_op = ZERO_EXTEND;
4887 	  m = GET_MODE (XEXP (t, 0));
4888 	}
4889       else if (GET_CODE (t) == ZERO_EXTEND
4890 	       && (GET_CODE (XEXP (t, 0)) == PLUS
4891 		   || GET_CODE (XEXP (t, 0)) == IOR
4892 		   || GET_CODE (XEXP (t, 0)) == XOR)
4893 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4894 	       && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4895 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4896 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4897 	       && ((nonzero_bits (f, GET_MODE (f))
4898 		    & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4899 		   == 0))
4900 	{
4901 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4902 	  extend_op = ZERO_EXTEND;
4903 	  m = GET_MODE (XEXP (t, 0));
4904 	}
4905 
4906       if (z)
4907 	{
4908 	  temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4909 			pc_rtx, pc_rtx, 0, 0);
4910 	  temp = gen_binary (MULT, m, temp,
4911 			     gen_binary (MULT, m, c1, const_true_rtx));
4912 	  temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4913 	  temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4914 
4915 	  if (extend_op != NIL)
4916 	    temp = simplify_gen_unary (extend_op, mode, temp, m);
4917 
4918 	  return temp;
4919 	}
4920     }
4921 
4922   /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4923      1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4924      negation of a single bit, we can convert this operation to a shift.  We
4925      can actually do this more generally, but it doesn't seem worth it.  */
4926 
4927   if (true_code == NE && XEXP (cond, 1) == const0_rtx
4928       && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4929       && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4930 	   && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4931 	  || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4932 	       == GET_MODE_BITSIZE (mode))
4933 	      && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4934     return
4935       simplify_shift_const (NULL_RTX, ASHIFT, mode,
4936 			    gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4937 
4938   /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8.  */
4939   if (true_code == NE && XEXP (cond, 1) == const0_rtx
4940       && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4941       && GET_MODE (XEXP (cond, 0)) == mode
4942       && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
4943 	  == nonzero_bits (XEXP (cond, 0), mode)
4944       && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
4945     return XEXP (cond, 0);
4946 
4947   return x;
4948 }
4949 
4950 /* Simplify X, a SET expression.  Return the new expression.  */
4951 
4952 static rtx
simplify_set(rtx x)4953 simplify_set (rtx x)
4954 {
4955   rtx src = SET_SRC (x);
4956   rtx dest = SET_DEST (x);
4957   enum machine_mode mode
4958     = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4959   rtx other_insn;
4960   rtx *cc_use;
4961 
4962   /* (set (pc) (return)) gets written as (return).  */
4963   if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4964     return src;
4965 
4966   /* Now that we know for sure which bits of SRC we are using, see if we can
4967      simplify the expression for the object knowing that we only need the
4968      low-order bits.  */
4969 
4970   if (GET_MODE_CLASS (mode) == MODE_INT
4971       && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4972     {
4973       src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4974       SUBST (SET_SRC (x), src);
4975     }
4976 
4977   /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4978      the comparison result and try to simplify it unless we already have used
4979      undobuf.other_insn.  */
4980   if ((GET_MODE_CLASS (mode) == MODE_CC
4981        || GET_CODE (src) == COMPARE
4982        || CC0_P (dest))
4983       && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4984       && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4985       && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4986       && rtx_equal_p (XEXP (*cc_use, 0), dest))
4987     {
4988       enum rtx_code old_code = GET_CODE (*cc_use);
4989       enum rtx_code new_code;
4990       rtx op0, op1, tmp;
4991       int other_changed = 0;
4992       enum machine_mode compare_mode = GET_MODE (dest);
4993       enum machine_mode tmp_mode;
4994 
4995       if (GET_CODE (src) == COMPARE)
4996 	op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4997       else
4998 	op0 = src, op1 = const0_rtx;
4999 
5000       /* Check whether the comparison is known at compile time.  */
5001       if (GET_MODE (op0) != VOIDmode)
5002 	tmp_mode = GET_MODE (op0);
5003       else if (GET_MODE (op1) != VOIDmode)
5004 	tmp_mode = GET_MODE (op1);
5005       else
5006 	tmp_mode = compare_mode;
5007       tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
5008       if (tmp != NULL_RTX)
5009 	{
5010 	  rtx pat = PATTERN (other_insn);
5011 	  undobuf.other_insn = other_insn;
5012 	  SUBST (*cc_use, tmp);
5013 
5014 	  /* Attempt to simplify CC user.  */
5015 	  if (GET_CODE (pat) == SET)
5016 	    {
5017 	      rtx new = simplify_rtx (SET_SRC (pat));
5018 	      if (new != NULL_RTX)
5019 		SUBST (SET_SRC (pat), new);
5020 	    }
5021 
5022 	  /* Convert X into a no-op move.  */
5023 	  SUBST (SET_DEST (x), pc_rtx);
5024 	  SUBST (SET_SRC (x), pc_rtx);
5025 	  return x;
5026 	}
5027 
5028       /* Simplify our comparison, if possible.  */
5029       new_code = simplify_comparison (old_code, &op0, &op1);
5030 
5031 #ifdef SELECT_CC_MODE
5032       /* If this machine has CC modes other than CCmode, check to see if we
5033 	 need to use a different CC mode here.  */
5034       compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5035 
5036 #ifndef HAVE_cc0
5037       /* If the mode changed, we have to change SET_DEST, the mode in the
5038 	 compare, and the mode in the place SET_DEST is used.  If SET_DEST is
5039 	 a hard register, just build new versions with the proper mode.  If it
5040 	 is a pseudo, we lose unless it is only time we set the pseudo, in
5041 	 which case we can safely change its mode.  */
5042       if (compare_mode != GET_MODE (dest))
5043 	{
5044 	  unsigned int regno = REGNO (dest);
5045 	  rtx new_dest = gen_rtx_REG (compare_mode, regno);
5046 
5047 	  if (regno < FIRST_PSEUDO_REGISTER
5048 	      || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5049 	    {
5050 	      if (regno >= FIRST_PSEUDO_REGISTER)
5051 		SUBST (regno_reg_rtx[regno], new_dest);
5052 
5053 	      SUBST (SET_DEST (x), new_dest);
5054 	      SUBST (XEXP (*cc_use, 0), new_dest);
5055 	      other_changed = 1;
5056 
5057 	      dest = new_dest;
5058 	    }
5059 	}
5060 #endif  /* cc0 */
5061 #endif  /* SELECT_CC_MODE */
5062 
5063       /* If the code changed, we have to build a new comparison in
5064 	 undobuf.other_insn.  */
5065       if (new_code != old_code)
5066 	{
5067 	  int other_changed_previously = other_changed;
5068 	  unsigned HOST_WIDE_INT mask;
5069 
5070 	  SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5071 					  dest, const0_rtx));
5072 	  other_changed = 1;
5073 
5074 	  /* If the only change we made was to change an EQ into an NE or
5075 	     vice versa, OP0 has only one bit that might be nonzero, and OP1
5076 	     is zero, check if changing the user of the condition code will
5077 	     produce a valid insn.  If it won't, we can keep the original code
5078 	     in that insn by surrounding our operation with an XOR.  */
5079 
5080 	  if (((old_code == NE && new_code == EQ)
5081 	       || (old_code == EQ && new_code == NE))
5082 	      && ! other_changed_previously && op1 == const0_rtx
5083 	      && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5084 	      && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5085 	    {
5086 	      rtx pat = PATTERN (other_insn), note = 0;
5087 
5088 	      if ((recog_for_combine (&pat, other_insn, &note) < 0
5089 		   && ! check_asm_operands (pat)))
5090 		{
5091 		  PUT_CODE (*cc_use, old_code);
5092 		  other_changed = 0;
5093 
5094 		  op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5095 		}
5096 	    }
5097 	}
5098 
5099       if (other_changed)
5100 	undobuf.other_insn = other_insn;
5101 
5102 #ifdef HAVE_cc0
5103       /* If we are now comparing against zero, change our source if
5104 	 needed.  If we do not use cc0, we always have a COMPARE.  */
5105       if (op1 == const0_rtx && dest == cc0_rtx)
5106 	{
5107 	  SUBST (SET_SRC (x), op0);
5108 	  src = op0;
5109 	}
5110       else
5111 #endif
5112 
5113       /* Otherwise, if we didn't previously have a COMPARE in the
5114 	 correct mode, we need one.  */
5115       if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5116 	{
5117 	  SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5118 	  src = SET_SRC (x);
5119 	}
5120       else
5121 	{
5122 	  /* Otherwise, update the COMPARE if needed.  */
5123 	  SUBST (XEXP (src, 0), op0);
5124 	  SUBST (XEXP (src, 1), op1);
5125 	}
5126     }
5127   else
5128     {
5129       /* Get SET_SRC in a form where we have placed back any
5130 	 compound expressions.  Then do the checks below.  */
5131       src = make_compound_operation (src, SET);
5132       SUBST (SET_SRC (x), src);
5133     }
5134 
5135   /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5136      and X being a REG or (subreg (reg)), we may be able to convert this to
5137      (set (subreg:m2 x) (op)).
5138 
5139      We can always do this if M1 is narrower than M2 because that means that
5140      we only care about the low bits of the result.
5141 
5142      However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5143      perform a narrower operation than requested since the high-order bits will
5144      be undefined.  On machine where it is defined, this transformation is safe
5145      as long as M1 and M2 have the same number of words.  */
5146 
5147   if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5148       && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5149       && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5150 	   / UNITS_PER_WORD)
5151 	  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5152 	       + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5153 #ifndef WORD_REGISTER_OPERATIONS
5154       && (GET_MODE_SIZE (GET_MODE (src))
5155         < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5156 #endif
5157 #ifdef CANNOT_CHANGE_MODE_CLASS
5158       && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5159 	    && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5160 					 GET_MODE (SUBREG_REG (src)),
5161 					 GET_MODE (src)))
5162 #endif
5163       && (GET_CODE (dest) == REG
5164 	  || (GET_CODE (dest) == SUBREG
5165 	      && GET_CODE (SUBREG_REG (dest)) == REG)))
5166     {
5167       SUBST (SET_DEST (x),
5168 	     gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5169 				      dest));
5170       SUBST (SET_SRC (x), SUBREG_REG (src));
5171 
5172       src = SET_SRC (x), dest = SET_DEST (x);
5173     }
5174 
5175 #ifdef HAVE_cc0
5176   /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5177      in SRC.  */
5178   if (dest == cc0_rtx
5179       && GET_CODE (src) == SUBREG
5180       && subreg_lowpart_p (src)
5181       && (GET_MODE_BITSIZE (GET_MODE (src))
5182 	  < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5183     {
5184       rtx inner = SUBREG_REG (src);
5185       enum machine_mode inner_mode = GET_MODE (inner);
5186 
5187       /* Here we make sure that we don't have a sign bit on.  */
5188       if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5189 	  && (nonzero_bits (inner, inner_mode)
5190 	      < ((unsigned HOST_WIDE_INT) 1
5191 		 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5192 	{
5193 	  SUBST (SET_SRC (x), inner);
5194 	  src = SET_SRC (x);
5195 	}
5196     }
5197 #endif
5198 
5199 #ifdef LOAD_EXTEND_OP
5200   /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5201      would require a paradoxical subreg.  Replace the subreg with a
5202      zero_extend to avoid the reload that would otherwise be required.  */
5203 
5204   if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5205       && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5206       && SUBREG_BYTE (src) == 0
5207       && (GET_MODE_SIZE (GET_MODE (src))
5208 	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5209       && GET_CODE (SUBREG_REG (src)) == MEM)
5210     {
5211       SUBST (SET_SRC (x),
5212 	     gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5213 		      GET_MODE (src), SUBREG_REG (src)));
5214 
5215       src = SET_SRC (x);
5216     }
5217 #endif
5218 
5219   /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5220      are comparing an item known to be 0 or -1 against 0, use a logical
5221      operation instead. Check for one of the arms being an IOR of the other
5222      arm with some value.  We compute three terms to be IOR'ed together.  In
5223      practice, at most two will be nonzero.  Then we do the IOR's.  */
5224 
5225   if (GET_CODE (dest) != PC
5226       && GET_CODE (src) == IF_THEN_ELSE
5227       && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5228       && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5229       && XEXP (XEXP (src, 0), 1) == const0_rtx
5230       && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5231 #ifdef HAVE_conditional_move
5232       && ! can_conditionally_move_p (GET_MODE (src))
5233 #endif
5234       && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5235 			       GET_MODE (XEXP (XEXP (src, 0), 0)))
5236 	  == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5237       && ! side_effects_p (src))
5238     {
5239       rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5240 		      ? XEXP (src, 1) : XEXP (src, 2));
5241       rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5242 		   ? XEXP (src, 2) : XEXP (src, 1));
5243       rtx term1 = const0_rtx, term2, term3;
5244 
5245       if (GET_CODE (true_rtx) == IOR
5246 	  && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5247 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5248       else if (GET_CODE (true_rtx) == IOR
5249 	       && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5250 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5251       else if (GET_CODE (false_rtx) == IOR
5252 	       && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5253 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5254       else if (GET_CODE (false_rtx) == IOR
5255 	       && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5256 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5257 
5258       term2 = gen_binary (AND, GET_MODE (src),
5259 			  XEXP (XEXP (src, 0), 0), true_rtx);
5260       term3 = gen_binary (AND, GET_MODE (src),
5261 			  simplify_gen_unary (NOT, GET_MODE (src),
5262 					      XEXP (XEXP (src, 0), 0),
5263 					      GET_MODE (src)),
5264 			  false_rtx);
5265 
5266       SUBST (SET_SRC (x),
5267 	     gen_binary (IOR, GET_MODE (src),
5268 			 gen_binary (IOR, GET_MODE (src), term1, term2),
5269 			 term3));
5270 
5271       src = SET_SRC (x);
5272     }
5273 
5274   /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5275      whole thing fail.  */
5276   if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5277     return src;
5278   else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5279     return dest;
5280   else
5281     /* Convert this into a field assignment operation, if possible.  */
5282     return make_field_assignment (x);
5283 }
5284 
5285 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5286    result.  LAST is nonzero if this is the last retry.  */
5287 
5288 static rtx
simplify_logical(rtx x,int last)5289 simplify_logical (rtx x, int last)
5290 {
5291   enum machine_mode mode = GET_MODE (x);
5292   rtx op0 = XEXP (x, 0);
5293   rtx op1 = XEXP (x, 1);
5294   rtx reversed;
5295 
5296   switch (GET_CODE (x))
5297     {
5298     case AND:
5299       /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5300 	 insn (and may simplify more).  */
5301       if (GET_CODE (op0) == XOR
5302 	  && rtx_equal_p (XEXP (op0, 0), op1)
5303 	  && ! side_effects_p (op1))
5304 	x = gen_binary (AND, mode,
5305 			simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5306 			op1);
5307 
5308       if (GET_CODE (op0) == XOR
5309 	  && rtx_equal_p (XEXP (op0, 1), op1)
5310 	  && ! side_effects_p (op1))
5311 	x = gen_binary (AND, mode,
5312 			simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5313 			op1);
5314 
5315       /* Similarly for (~(A ^ B)) & A.  */
5316       if (GET_CODE (op0) == NOT
5317 	  && GET_CODE (XEXP (op0, 0)) == XOR
5318 	  && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5319 	  && ! side_effects_p (op1))
5320 	x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5321 
5322       if (GET_CODE (op0) == NOT
5323 	  && GET_CODE (XEXP (op0, 0)) == XOR
5324 	  && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5325 	  && ! side_effects_p (op1))
5326 	x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5327 
5328       /* We can call simplify_and_const_int only if we don't lose
5329 	 any (sign) bits when converting INTVAL (op1) to
5330 	 "unsigned HOST_WIDE_INT".  */
5331       if (GET_CODE (op1) == CONST_INT
5332 	  && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5333 	      || INTVAL (op1) > 0))
5334 	{
5335 	  x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5336 
5337 	  /* If we have (ior (and (X C1) C2)) and the next restart would be
5338 	     the last, simplify this by making C1 as small as possible
5339 	     and then exit.  */
5340 	  if (last
5341 	      && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5342 	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
5343 	      && GET_CODE (op1) == CONST_INT)
5344 	    return gen_binary (IOR, mode,
5345 			       gen_binary (AND, mode, XEXP (op0, 0),
5346 					   GEN_INT (INTVAL (XEXP (op0, 1))
5347 						    & ~INTVAL (op1))), op1);
5348 
5349 	  if (GET_CODE (x) != AND)
5350 	    return x;
5351 
5352 	  if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5353 	      || GET_RTX_CLASS (GET_CODE (x)) == '2')
5354 	    op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5355 	}
5356 
5357       /* Convert (A | B) & A to A.  */
5358       if (GET_CODE (op0) == IOR
5359 	  && (rtx_equal_p (XEXP (op0, 0), op1)
5360 	      || rtx_equal_p (XEXP (op0, 1), op1))
5361 	  && ! side_effects_p (XEXP (op0, 0))
5362 	  && ! side_effects_p (XEXP (op0, 1)))
5363 	return op1;
5364 
5365       /* In the following group of tests (and those in case IOR below),
5366 	 we start with some combination of logical operations and apply
5367 	 the distributive law followed by the inverse distributive law.
5368 	 Most of the time, this results in no change.  However, if some of
5369 	 the operands are the same or inverses of each other, simplifications
5370 	 will result.
5371 
5372 	 For example, (and (ior A B) (not B)) can occur as the result of
5373 	 expanding a bit field assignment.  When we apply the distributive
5374 	 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5375 	 which then simplifies to (and (A (not B))).
5376 
5377 	 If we have (and (ior A B) C), apply the distributive law and then
5378 	 the inverse distributive law to see if things simplify.  */
5379 
5380       if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5381 	{
5382 	  x = apply_distributive_law
5383 	    (gen_binary (GET_CODE (op0), mode,
5384 			 gen_binary (AND, mode, XEXP (op0, 0), op1),
5385 			 gen_binary (AND, mode, XEXP (op0, 1),
5386 				     copy_rtx (op1))));
5387 	  if (GET_CODE (x) != AND)
5388 	    return x;
5389 	}
5390 
5391       if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5392 	return apply_distributive_law
5393 	  (gen_binary (GET_CODE (op1), mode,
5394 		       gen_binary (AND, mode, XEXP (op1, 0), op0),
5395 		       gen_binary (AND, mode, XEXP (op1, 1),
5396 				   copy_rtx (op0))));
5397 
5398       /* Similarly, taking advantage of the fact that
5399 	 (and (not A) (xor B C)) == (xor (ior A B) (ior A C))  */
5400 
5401       if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5402 	return apply_distributive_law
5403 	  (gen_binary (XOR, mode,
5404 		       gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5405 		       gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5406 				   XEXP (op1, 1))));
5407 
5408       else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5409 	return apply_distributive_law
5410 	  (gen_binary (XOR, mode,
5411 		       gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5412 		       gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5413       break;
5414 
5415     case IOR:
5416       /* (ior A C) is C if all bits of A that might be nonzero are on in C.  */
5417       if (GET_CODE (op1) == CONST_INT
5418 	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5419 	  && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5420 	return op1;
5421 
5422       /* Convert (A & B) | A to A.  */
5423       if (GET_CODE (op0) == AND
5424 	  && (rtx_equal_p (XEXP (op0, 0), op1)
5425 	      || rtx_equal_p (XEXP (op0, 1), op1))
5426 	  && ! side_effects_p (XEXP (op0, 0))
5427 	  && ! side_effects_p (XEXP (op0, 1)))
5428 	return op1;
5429 
5430       /* If we have (ior (and A B) C), apply the distributive law and then
5431 	 the inverse distributive law to see if things simplify.  */
5432 
5433       if (GET_CODE (op0) == AND)
5434 	{
5435 	  x = apply_distributive_law
5436 	    (gen_binary (AND, mode,
5437 			 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5438 			 gen_binary (IOR, mode, XEXP (op0, 1),
5439 				     copy_rtx (op1))));
5440 
5441 	  if (GET_CODE (x) != IOR)
5442 	    return x;
5443 	}
5444 
5445       if (GET_CODE (op1) == AND)
5446 	{
5447 	  x = apply_distributive_law
5448 	    (gen_binary (AND, mode,
5449 			 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5450 			 gen_binary (IOR, mode, XEXP (op1, 1),
5451 				     copy_rtx (op0))));
5452 
5453 	  if (GET_CODE (x) != IOR)
5454 	    return x;
5455 	}
5456 
5457       /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5458 	 mode size to (rotate A CX).  */
5459 
5460       if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5461 	   || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5462 	  && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5463 	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
5464 	  && GET_CODE (XEXP (op1, 1)) == CONST_INT
5465 	  && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5466 	      == GET_MODE_BITSIZE (mode)))
5467 	return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5468 			       (GET_CODE (op0) == ASHIFT
5469 				? XEXP (op0, 1) : XEXP (op1, 1)));
5470 
5471       /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5472 	 a (sign_extend (plus ...)).  If so, OP1 is a CONST_INT, and the PLUS
5473 	 does not affect any of the bits in OP1, it can really be done
5474 	 as a PLUS and we can associate.  We do this by seeing if OP1
5475 	 can be safely shifted left C bits.  */
5476       if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5477 	  && GET_CODE (XEXP (op0, 0)) == PLUS
5478 	  && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5479 	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
5480 	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5481 	{
5482 	  int count = INTVAL (XEXP (op0, 1));
5483 	  HOST_WIDE_INT mask = INTVAL (op1) << count;
5484 
5485 	  if (mask >> count == INTVAL (op1)
5486 	      && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5487 	    {
5488 	      SUBST (XEXP (XEXP (op0, 0), 1),
5489 		     GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5490 	      return op0;
5491 	    }
5492 	}
5493       break;
5494 
5495     case XOR:
5496       /* If we are XORing two things that have no bits in common,
5497 	 convert them into an IOR.  This helps to detect rotation encoded
5498 	 using those methods and possibly other simplifications.  */
5499 
5500       if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5501 	  && (nonzero_bits (op0, mode)
5502 	      & nonzero_bits (op1, mode)) == 0)
5503 	return (gen_binary (IOR, mode, op0, op1));
5504 
5505       /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5506 	 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5507 	 (NOT y).  */
5508       {
5509 	int num_negated = 0;
5510 
5511 	if (GET_CODE (op0) == NOT)
5512 	  num_negated++, op0 = XEXP (op0, 0);
5513 	if (GET_CODE (op1) == NOT)
5514 	  num_negated++, op1 = XEXP (op1, 0);
5515 
5516 	if (num_negated == 2)
5517 	  {
5518 	    SUBST (XEXP (x, 0), op0);
5519 	    SUBST (XEXP (x, 1), op1);
5520 	  }
5521 	else if (num_negated == 1)
5522 	  return
5523 	    simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5524 				mode);
5525       }
5526 
5527       /* Convert (xor (and A B) B) to (and (not A) B).  The latter may
5528 	 correspond to a machine insn or result in further simplifications
5529 	 if B is a constant.  */
5530 
5531       if (GET_CODE (op0) == AND
5532 	  && rtx_equal_p (XEXP (op0, 1), op1)
5533 	  && ! side_effects_p (op1))
5534 	return gen_binary (AND, mode,
5535 			   simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5536 			   op1);
5537 
5538       else if (GET_CODE (op0) == AND
5539 	       && rtx_equal_p (XEXP (op0, 0), op1)
5540 	       && ! side_effects_p (op1))
5541 	return gen_binary (AND, mode,
5542 			   simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5543 			   op1);
5544 
5545       /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5546 	 comparison if STORE_FLAG_VALUE is 1.  */
5547       if (STORE_FLAG_VALUE == 1
5548 	  && op1 == const1_rtx
5549 	  && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5550 	  && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5551 					      XEXP (op0, 1))))
5552 	return reversed;
5553 
5554       /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5555 	 is (lt foo (const_int 0)), so we can perform the above
5556 	 simplification if STORE_FLAG_VALUE is 1.  */
5557 
5558       if (STORE_FLAG_VALUE == 1
5559 	  && op1 == const1_rtx
5560 	  && GET_CODE (op0) == LSHIFTRT
5561 	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
5562 	  && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5563 	return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5564 
5565       /* (xor (comparison foo bar) (const_int sign-bit))
5566 	 when STORE_FLAG_VALUE is the sign bit.  */
5567       if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5568 	  && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5569 	      == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5570 	  && op1 == const_true_rtx
5571 	  && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5572 	  && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5573 					      XEXP (op0, 1))))
5574 	return reversed;
5575 
5576       break;
5577 
5578     default:
5579       abort ();
5580     }
5581 
5582   return x;
5583 }
5584 
5585 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5586    operations" because they can be replaced with two more basic operations.
5587    ZERO_EXTEND is also considered "compound" because it can be replaced with
5588    an AND operation, which is simpler, though only one operation.
5589 
5590    The function expand_compound_operation is called with an rtx expression
5591    and will convert it to the appropriate shifts and AND operations,
5592    simplifying at each stage.
5593 
5594    The function make_compound_operation is called to convert an expression
5595    consisting of shifts and ANDs into the equivalent compound expression.
5596    It is the inverse of this function, loosely speaking.  */
5597 
5598 static rtx
expand_compound_operation(rtx x)5599 expand_compound_operation (rtx x)
5600 {
5601   unsigned HOST_WIDE_INT pos = 0, len;
5602   int unsignedp = 0;
5603   unsigned int modewidth;
5604   rtx tem;
5605 
5606   switch (GET_CODE (x))
5607     {
5608     case ZERO_EXTEND:
5609       unsignedp = 1;
5610     case SIGN_EXTEND:
5611       /* We can't necessarily use a const_int for a multiword mode;
5612 	 it depends on implicitly extending the value.
5613 	 Since we don't know the right way to extend it,
5614 	 we can't tell whether the implicit way is right.
5615 
5616 	 Even for a mode that is no wider than a const_int,
5617 	 we can't win, because we need to sign extend one of its bits through
5618 	 the rest of it, and we don't know which bit.  */
5619       if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5620 	return x;
5621 
5622       /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5623 	 (zero_extend:MODE FROM) or (sign_extend:MODE FROM).  It is for any MEM
5624 	 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5625 	 reloaded. If not for that, MEM's would very rarely be safe.
5626 
5627 	 Reject MODEs bigger than a word, because we might not be able
5628 	 to reference a two-register group starting with an arbitrary register
5629 	 (and currently gen_lowpart might crash for a SUBREG).  */
5630 
5631       if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5632 	return x;
5633 
5634       /* Reject MODEs that aren't scalar integers because turning vector
5635 	 or complex modes into shifts causes problems.  */
5636 
5637       if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5638 	return x;
5639 
5640       len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5641       /* If the inner object has VOIDmode (the only way this can happen
5642 	 is if it is an ASM_OPERANDS), we can't do anything since we don't
5643 	 know how much masking to do.  */
5644       if (len == 0)
5645 	return x;
5646 
5647       break;
5648 
5649     case ZERO_EXTRACT:
5650       unsignedp = 1;
5651     case SIGN_EXTRACT:
5652       /* If the operand is a CLOBBER, just return it.  */
5653       if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5654 	return XEXP (x, 0);
5655 
5656       if (GET_CODE (XEXP (x, 1)) != CONST_INT
5657 	  || GET_CODE (XEXP (x, 2)) != CONST_INT
5658 	  || GET_MODE (XEXP (x, 0)) == VOIDmode)
5659 	return x;
5660 
5661       /* Reject MODEs that aren't scalar integers because turning vector
5662 	 or complex modes into shifts causes problems.  */
5663 
5664       if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5665 	return x;
5666 
5667       len = INTVAL (XEXP (x, 1));
5668       pos = INTVAL (XEXP (x, 2));
5669 
5670       /* If this goes outside the object being extracted, replace the object
5671 	 with a (use (mem ...)) construct that only combine understands
5672 	 and is used only for this purpose.  */
5673       if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5674 	SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5675 
5676       if (BITS_BIG_ENDIAN)
5677 	pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5678 
5679       break;
5680 
5681     default:
5682       return x;
5683     }
5684   /* Convert sign extension to zero extension, if we know that the high
5685      bit is not set, as this is easier to optimize.  It will be converted
5686      back to cheaper alternative in make_extraction.  */
5687   if (GET_CODE (x) == SIGN_EXTEND
5688       && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5689 	  && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5690 		& ~(((unsigned HOST_WIDE_INT)
5691 		      GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5692 		     >> 1))
5693 	       == 0)))
5694     {
5695       rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5696       rtx temp2 = expand_compound_operation (temp);
5697 
5698       /* Make sure this is a profitable operation.  */
5699       if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5700        return temp2;
5701       else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5702        return temp;
5703       else
5704        return x;
5705     }
5706 
5707   /* We can optimize some special cases of ZERO_EXTEND.  */
5708   if (GET_CODE (x) == ZERO_EXTEND)
5709     {
5710       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5711          know that the last value didn't have any inappropriate bits
5712          set.  */
5713       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5714 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5715 	  && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5716 	  && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5717 	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5718 	return XEXP (XEXP (x, 0), 0);
5719 
5720       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
5721       if (GET_CODE (XEXP (x, 0)) == SUBREG
5722 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5723 	  && subreg_lowpart_p (XEXP (x, 0))
5724 	  && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5725 	  && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5726 	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5727 	return SUBREG_REG (XEXP (x, 0));
5728 
5729       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5730          is a comparison and STORE_FLAG_VALUE permits.  This is like
5731          the first case, but it works even when GET_MODE (x) is larger
5732          than HOST_WIDE_INT.  */
5733       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5734 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5735 	  && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5736 	  && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5737 	      <= HOST_BITS_PER_WIDE_INT)
5738 	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5739 	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5740 	return XEXP (XEXP (x, 0), 0);
5741 
5742       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
5743       if (GET_CODE (XEXP (x, 0)) == SUBREG
5744 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5745 	  && subreg_lowpart_p (XEXP (x, 0))
5746 	  && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5747 	  && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5748 	      <= HOST_BITS_PER_WIDE_INT)
5749 	  && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5750 	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5751 	return SUBREG_REG (XEXP (x, 0));
5752 
5753     }
5754 
5755   /* If we reach here, we want to return a pair of shifts.  The inner
5756      shift is a left shift of BITSIZE - POS - LEN bits.  The outer
5757      shift is a right shift of BITSIZE - LEN bits.  It is arithmetic or
5758      logical depending on the value of UNSIGNEDP.
5759 
5760      If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5761      converted into an AND of a shift.
5762 
5763      We must check for the case where the left shift would have a negative
5764      count.  This can happen in a case like (x >> 31) & 255 on machines
5765      that can't shift by a constant.  On those machines, we would first
5766      combine the shift with the AND to produce a variable-position
5767      extraction.  Then the constant of 31 would be substituted in to produce
5768      a such a position.  */
5769 
5770   modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5771   if (modewidth + len >= pos)
5772     tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5773 				GET_MODE (x),
5774 				simplify_shift_const (NULL_RTX, ASHIFT,
5775 						      GET_MODE (x),
5776 						      XEXP (x, 0),
5777 						      modewidth - pos - len),
5778 				modewidth - len);
5779 
5780   else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5781     tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5782 				  simplify_shift_const (NULL_RTX, LSHIFTRT,
5783 							GET_MODE (x),
5784 							XEXP (x, 0), pos),
5785 				  ((HOST_WIDE_INT) 1 << len) - 1);
5786   else
5787     /* Any other cases we can't handle.  */
5788     return x;
5789 
5790   /* If we couldn't do this for some reason, return the original
5791      expression.  */
5792   if (GET_CODE (tem) == CLOBBER)
5793     return x;
5794 
5795   return tem;
5796 }
5797 
5798 /* X is a SET which contains an assignment of one object into
5799    a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5800    or certain SUBREGS). If possible, convert it into a series of
5801    logical operations.
5802 
5803    We half-heartedly support variable positions, but do not at all
5804    support variable lengths.  */
5805 
5806 static rtx
expand_field_assignment(rtx x)5807 expand_field_assignment (rtx x)
5808 {
5809   rtx inner;
5810   rtx pos;			/* Always counts from low bit.  */
5811   int len;
5812   rtx mask;
5813   enum machine_mode compute_mode;
5814 
5815   /* Loop until we find something we can't simplify.  */
5816   while (1)
5817     {
5818       if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5819 	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5820 	{
5821 	  inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5822 	  len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5823 	  pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5824 	}
5825       else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5826 	       && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5827 	{
5828 	  inner = XEXP (SET_DEST (x), 0);
5829 	  len = INTVAL (XEXP (SET_DEST (x), 1));
5830 	  pos = XEXP (SET_DEST (x), 2);
5831 
5832 	  /* If the position is constant and spans the width of INNER,
5833 	     surround INNER  with a USE to indicate this.  */
5834 	  if (GET_CODE (pos) == CONST_INT
5835 	      && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5836 	    inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5837 
5838 	  if (BITS_BIG_ENDIAN)
5839 	    {
5840 	      if (GET_CODE (pos) == CONST_INT)
5841 		pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5842 			       - INTVAL (pos));
5843 	      else if (GET_CODE (pos) == MINUS
5844 		       && GET_CODE (XEXP (pos, 1)) == CONST_INT
5845 		       && (INTVAL (XEXP (pos, 1))
5846 			   == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5847 		/* If position is ADJUST - X, new position is X.  */
5848 		pos = XEXP (pos, 0);
5849 	      else
5850 		pos = gen_binary (MINUS, GET_MODE (pos),
5851 				  GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5852 					   - len),
5853 				  pos);
5854 	    }
5855 	}
5856 
5857       /* A SUBREG between two modes that occupy the same numbers of words
5858 	 can be done by moving the SUBREG to the source.  */
5859       else if (GET_CODE (SET_DEST (x)) == SUBREG
5860 	       /* We need SUBREGs to compute nonzero_bits properly.  */
5861 	       && nonzero_sign_valid
5862 	       && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5863 		     + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5864 		   == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5865 			+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5866 	{
5867 	  x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5868 			   gen_lowpart_for_combine
5869 			   (GET_MODE (SUBREG_REG (SET_DEST (x))),
5870 			    SET_SRC (x)));
5871 	  continue;
5872 	}
5873       else
5874 	break;
5875 
5876       while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5877 	inner = SUBREG_REG (inner);
5878 
5879       compute_mode = GET_MODE (inner);
5880 
5881       /* Don't attempt bitwise arithmetic on non scalar integer modes.  */
5882       if (! SCALAR_INT_MODE_P (compute_mode))
5883 	{
5884 	  enum machine_mode imode;
5885 
5886 	  /* Don't do anything for vector or complex integral types.  */
5887 	  if (! FLOAT_MODE_P (compute_mode))
5888 	    break;
5889 
5890 	  /* Try to find an integral mode to pun with.  */
5891 	  imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5892 	  if (imode == BLKmode)
5893 	    break;
5894 
5895 	  compute_mode = imode;
5896 	  inner = gen_lowpart_for_combine (imode, inner);
5897 	}
5898 
5899       /* Compute a mask of LEN bits, if we can do this on the host machine.  */
5900       if (len < HOST_BITS_PER_WIDE_INT)
5901 	mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5902       else
5903 	break;
5904 
5905       /* Now compute the equivalent expression.  Make a copy of INNER
5906 	 for the SET_DEST in case it is a MEM into which we will substitute;
5907 	 we don't want shared RTL in that case.  */
5908       x = gen_rtx_SET
5909 	(VOIDmode, copy_rtx (inner),
5910 	 gen_binary (IOR, compute_mode,
5911 		     gen_binary (AND, compute_mode,
5912 				 simplify_gen_unary (NOT, compute_mode,
5913 						     gen_binary (ASHIFT,
5914 								 compute_mode,
5915 								 mask, pos),
5916 						     compute_mode),
5917 				 inner),
5918 		     gen_binary (ASHIFT, compute_mode,
5919 				 gen_binary (AND, compute_mode,
5920 					     gen_lowpart_for_combine
5921 					     (compute_mode, SET_SRC (x)),
5922 					     mask),
5923 				 pos)));
5924     }
5925 
5926   return x;
5927 }
5928 
5929 /* Return an RTX for a reference to LEN bits of INNER.  If POS_RTX is nonzero,
5930    it is an RTX that represents a variable starting position; otherwise,
5931    POS is the (constant) starting bit position (counted from the LSB).
5932 
5933    INNER may be a USE.  This will occur when we started with a bitfield
5934    that went outside the boundary of the object in memory, which is
5935    allowed on most machines.  To isolate this case, we produce a USE
5936    whose mode is wide enough and surround the MEM with it.  The only
5937    code that understands the USE is this routine.  If it is not removed,
5938    it will cause the resulting insn not to match.
5939 
5940    UNSIGNEDP is nonzero for an unsigned reference and zero for a
5941    signed reference.
5942 
5943    IN_DEST is nonzero if this is a reference in the destination of a
5944    SET.  This is used when a ZERO_ or SIGN_EXTRACT isn't needed.  If nonzero,
5945    a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5946    be used.
5947 
5948    IN_COMPARE is nonzero if we are in a COMPARE.  This means that a
5949    ZERO_EXTRACT should be built even for bits starting at bit 0.
5950 
5951    MODE is the desired mode of the result (if IN_DEST == 0).
5952 
5953    The result is an RTX for the extraction or NULL_RTX if the target
5954    can't handle it.  */
5955 
5956 static rtx
make_extraction(enum machine_mode mode,rtx inner,HOST_WIDE_INT pos,rtx pos_rtx,unsigned HOST_WIDE_INT len,int unsignedp,int in_dest,int in_compare)5957 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
5958 		 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
5959 		 int in_dest, int in_compare)
5960 {
5961   /* This mode describes the size of the storage area
5962      to fetch the overall value from.  Within that, we
5963      ignore the POS lowest bits, etc.  */
5964   enum machine_mode is_mode = GET_MODE (inner);
5965   enum machine_mode inner_mode;
5966   enum machine_mode wanted_inner_mode = byte_mode;
5967   enum machine_mode wanted_inner_reg_mode = word_mode;
5968   enum machine_mode pos_mode = word_mode;
5969   enum machine_mode extraction_mode = word_mode;
5970   enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5971   int spans_byte = 0;
5972   rtx new = 0;
5973   rtx orig_pos_rtx = pos_rtx;
5974   HOST_WIDE_INT orig_pos;
5975 
5976   /* Get some information about INNER and get the innermost object.  */
5977   if (GET_CODE (inner) == USE)
5978     /* (use:SI (mem:QI foo)) stands for (mem:SI foo).  */
5979     /* We don't need to adjust the position because we set up the USE
5980        to pretend that it was a full-word object.  */
5981     spans_byte = 1, inner = XEXP (inner, 0);
5982   else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5983     {
5984       /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5985 	 consider just the QI as the memory to extract from.
5986 	 The subreg adds or removes high bits; its mode is
5987 	 irrelevant to the meaning of this extraction,
5988 	 since POS and LEN count from the lsb.  */
5989       if (GET_CODE (SUBREG_REG (inner)) == MEM)
5990 	is_mode = GET_MODE (SUBREG_REG (inner));
5991       inner = SUBREG_REG (inner);
5992     }
5993   else if (GET_CODE (inner) == ASHIFT
5994 	   && GET_CODE (XEXP (inner, 1)) == CONST_INT
5995 	   && pos_rtx == 0 && pos == 0
5996 	   && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
5997     {
5998       /* We're extracting the least significant bits of an rtx
5999 	 (ashift X (const_int C)), where LEN > C.  Extract the
6000 	 least significant (LEN - C) bits of X, giving an rtx
6001 	 whose mode is MODE, then shift it left C times.  */
6002       new = make_extraction (mode, XEXP (inner, 0),
6003 			     0, 0, len - INTVAL (XEXP (inner, 1)),
6004 			     unsignedp, in_dest, in_compare);
6005       if (new != 0)
6006 	return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6007     }
6008 
6009   inner_mode = GET_MODE (inner);
6010 
6011   if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6012     pos = INTVAL (pos_rtx), pos_rtx = 0;
6013 
6014   /* See if this can be done without an extraction.  We never can if the
6015      width of the field is not the same as that of some integer mode. For
6016      registers, we can only avoid the extraction if the position is at the
6017      low-order bit and this is either not in the destination or we have the
6018      appropriate STRICT_LOW_PART operation available.
6019 
6020      For MEM, we can avoid an extract if the field starts on an appropriate
6021      boundary and we can change the mode of the memory reference.  However,
6022      we cannot directly access the MEM if we have a USE and the underlying
6023      MEM is not TMODE.  This combination means that MEM was being used in a
6024      context where bits outside its mode were being referenced; that is only
6025      valid in bit-field insns.  */
6026 
6027   if (tmode != BLKmode
6028       && ! (spans_byte && inner_mode != tmode)
6029       && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6030 	   && GET_CODE (inner) != MEM
6031 	   && (! in_dest
6032 	       || (GET_CODE (inner) == REG
6033 		   && have_insn_for (STRICT_LOW_PART, tmode))))
6034 	  || (GET_CODE (inner) == MEM && pos_rtx == 0
6035 	      && (pos
6036 		  % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6037 		     : BITS_PER_UNIT)) == 0
6038 	      /* We can't do this if we are widening INNER_MODE (it
6039 		 may not be aligned, for one thing).  */
6040 	      && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6041 	      && (inner_mode == tmode
6042 		  || (! mode_dependent_address_p (XEXP (inner, 0))
6043 		      && ! MEM_VOLATILE_P (inner))))))
6044     {
6045       /* If INNER is a MEM, make a new MEM that encompasses just the desired
6046 	 field.  If the original and current mode are the same, we need not
6047 	 adjust the offset.  Otherwise, we do if bytes big endian.
6048 
6049 	 If INNER is not a MEM, get a piece consisting of just the field
6050 	 of interest (in this case POS % BITS_PER_WORD must be 0).  */
6051 
6052       if (GET_CODE (inner) == MEM)
6053 	{
6054 	  HOST_WIDE_INT offset;
6055 
6056 	  /* POS counts from lsb, but make OFFSET count in memory order.  */
6057 	  if (BYTES_BIG_ENDIAN)
6058 	    offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6059 	  else
6060 	    offset = pos / BITS_PER_UNIT;
6061 
6062 	  new = adjust_address_nv (inner, tmode, offset);
6063 	}
6064       else if (GET_CODE (inner) == REG)
6065 	{
6066 	  if (tmode != inner_mode)
6067 	    {
6068 	      /* We can't call gen_lowpart_for_combine in a DEST since we
6069 		 always want a SUBREG (see below) and it would sometimes
6070 		 return a new hard register.  */
6071 	      if (pos || in_dest)
6072 		{
6073 		  HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6074 
6075 		  if (WORDS_BIG_ENDIAN
6076 		      && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6077 		    final_word = ((GET_MODE_SIZE (inner_mode)
6078 				   - GET_MODE_SIZE (tmode))
6079 				  / UNITS_PER_WORD) - final_word;
6080 
6081 		  final_word *= UNITS_PER_WORD;
6082 		  if (BYTES_BIG_ENDIAN &&
6083 		      GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6084 		    final_word += (GET_MODE_SIZE (inner_mode)
6085 				   - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6086 
6087 		  /* Avoid creating invalid subregs, for example when
6088 		     simplifying (x>>32)&255.  */
6089 		  if (final_word >= GET_MODE_SIZE (inner_mode))
6090 		    return NULL_RTX;
6091 
6092 		  new = gen_rtx_SUBREG (tmode, inner, final_word);
6093 		}
6094 	      else
6095 		new = gen_lowpart_for_combine (tmode, inner);
6096 	    }
6097 	  else
6098 	    new = inner;
6099 	}
6100       else
6101 	new = force_to_mode (inner, tmode,
6102 			     len >= HOST_BITS_PER_WIDE_INT
6103 			     ? ~(unsigned HOST_WIDE_INT) 0
6104 			     : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6105 			     NULL_RTX, 0);
6106 
6107       /* If this extraction is going into the destination of a SET,
6108 	 make a STRICT_LOW_PART unless we made a MEM.  */
6109 
6110       if (in_dest)
6111 	return (GET_CODE (new) == MEM ? new
6112 		: (GET_CODE (new) != SUBREG
6113 		   ? gen_rtx_CLOBBER (tmode, const0_rtx)
6114 		   : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6115 
6116       if (mode == tmode)
6117 	return new;
6118 
6119       if (GET_CODE (new) == CONST_INT)
6120 	return gen_int_mode (INTVAL (new), mode);
6121 
6122       /* If we know that no extraneous bits are set, and that the high
6123 	 bit is not set, convert the extraction to the cheaper of
6124 	 sign and zero extension, that are equivalent in these cases.  */
6125       if (flag_expensive_optimizations
6126 	  && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6127 	      && ((nonzero_bits (new, tmode)
6128 		   & ~(((unsigned HOST_WIDE_INT)
6129 			GET_MODE_MASK (tmode))
6130 		       >> 1))
6131 		  == 0)))
6132 	{
6133 	  rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6134 	  rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6135 
6136 	  /* Prefer ZERO_EXTENSION, since it gives more information to
6137 	     backends.  */
6138 	  if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6139 	    return temp;
6140 	  return temp1;
6141 	}
6142 
6143       /* Otherwise, sign- or zero-extend unless we already are in the
6144 	 proper mode.  */
6145 
6146       return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6147 			     mode, new));
6148     }
6149 
6150   /* Unless this is a COMPARE or we have a funny memory reference,
6151      don't do anything with zero-extending field extracts starting at
6152      the low-order bit since they are simple AND operations.  */
6153   if (pos_rtx == 0 && pos == 0 && ! in_dest
6154       && ! in_compare && ! spans_byte && unsignedp)
6155     return 0;
6156 
6157   /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6158      we would be spanning bytes or if the position is not a constant and the
6159      length is not 1.  In all other cases, we would only be going outside
6160      our object in cases when an original shift would have been
6161      undefined.  */
6162   if (! spans_byte && GET_CODE (inner) == MEM
6163       && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6164 	  || (pos_rtx != 0 && len != 1)))
6165     return 0;
6166 
6167   /* Get the mode to use should INNER not be a MEM, the mode for the position,
6168      and the mode for the result.  */
6169   if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6170     {
6171       wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6172       pos_mode = mode_for_extraction (EP_insv, 2);
6173       extraction_mode = mode_for_extraction (EP_insv, 3);
6174     }
6175 
6176   if (! in_dest && unsignedp
6177       && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6178     {
6179       wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6180       pos_mode = mode_for_extraction (EP_extzv, 3);
6181       extraction_mode = mode_for_extraction (EP_extzv, 0);
6182     }
6183 
6184   if (! in_dest && ! unsignedp
6185       && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6186     {
6187       wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6188       pos_mode = mode_for_extraction (EP_extv, 3);
6189       extraction_mode = mode_for_extraction (EP_extv, 0);
6190     }
6191 
6192   /* Never narrow an object, since that might not be safe.  */
6193 
6194   if (mode != VOIDmode
6195       && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6196     extraction_mode = mode;
6197 
6198   if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6199       && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6200     pos_mode = GET_MODE (pos_rtx);
6201 
6202   /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6203      if we have to change the mode of memory and cannot, the desired mode is
6204      EXTRACTION_MODE.  */
6205   if (GET_CODE (inner) != MEM)
6206     wanted_inner_mode = wanted_inner_reg_mode;
6207   else if (inner_mode != wanted_inner_mode
6208 	   && (mode_dependent_address_p (XEXP (inner, 0))
6209 	       || MEM_VOLATILE_P (inner)))
6210     wanted_inner_mode = extraction_mode;
6211 
6212   orig_pos = pos;
6213 
6214   if (BITS_BIG_ENDIAN)
6215     {
6216       /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6217 	 BITS_BIG_ENDIAN style.  If position is constant, compute new
6218 	 position.  Otherwise, build subtraction.
6219 	 Note that POS is relative to the mode of the original argument.
6220 	 If it's a MEM we need to recompute POS relative to that.
6221 	 However, if we're extracting from (or inserting into) a register,
6222 	 we want to recompute POS relative to wanted_inner_mode.  */
6223       int width = (GET_CODE (inner) == MEM
6224 		   ? GET_MODE_BITSIZE (is_mode)
6225 		   : GET_MODE_BITSIZE (wanted_inner_mode));
6226 
6227       if (pos_rtx == 0)
6228 	pos = width - len - pos;
6229       else
6230 	pos_rtx
6231 	  = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6232       /* POS may be less than 0 now, but we check for that below.
6233 	 Note that it can only be less than 0 if GET_CODE (inner) != MEM.  */
6234     }
6235 
6236   /* If INNER has a wider mode, make it smaller.  If this is a constant
6237      extract, try to adjust the byte to point to the byte containing
6238      the value.  */
6239   if (wanted_inner_mode != VOIDmode
6240       && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6241       && ((GET_CODE (inner) == MEM
6242 	   && (inner_mode == wanted_inner_mode
6243 	       || (! mode_dependent_address_p (XEXP (inner, 0))
6244 		   && ! MEM_VOLATILE_P (inner))))))
6245     {
6246       int offset = 0;
6247 
6248       /* The computations below will be correct if the machine is big
6249 	 endian in both bits and bytes or little endian in bits and bytes.
6250 	 If it is mixed, we must adjust.  */
6251 
6252       /* If bytes are big endian and we had a paradoxical SUBREG, we must
6253 	 adjust OFFSET to compensate.  */
6254       if (BYTES_BIG_ENDIAN
6255 	  && ! spans_byte
6256 	  && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6257 	offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6258 
6259       /* If this is a constant position, we can move to the desired byte.  */
6260       if (pos_rtx == 0)
6261 	{
6262 	  offset += pos / BITS_PER_UNIT;
6263 	  pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6264 	}
6265 
6266       if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6267 	  && ! spans_byte
6268 	  && is_mode != wanted_inner_mode)
6269 	offset = (GET_MODE_SIZE (is_mode)
6270 		  - GET_MODE_SIZE (wanted_inner_mode) - offset);
6271 
6272       if (offset != 0 || inner_mode != wanted_inner_mode)
6273 	inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6274     }
6275 
6276   /* If INNER is not memory, we can always get it into the proper mode.  If we
6277      are changing its mode, POS must be a constant and smaller than the size
6278      of the new mode.  */
6279   else if (GET_CODE (inner) != MEM)
6280     {
6281       if (GET_MODE (inner) != wanted_inner_mode
6282 	  && (pos_rtx != 0
6283 	      || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6284 	return 0;
6285 
6286       inner = force_to_mode (inner, wanted_inner_mode,
6287 			     pos_rtx
6288 			     || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6289 			     ? ~(unsigned HOST_WIDE_INT) 0
6290 			     : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6291 				<< orig_pos),
6292 			     NULL_RTX, 0);
6293     }
6294 
6295   /* Adjust mode of POS_RTX, if needed.  If we want a wider mode, we
6296      have to zero extend.  Otherwise, we can just use a SUBREG.  */
6297   if (pos_rtx != 0
6298       && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6299     {
6300       rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6301 
6302       /* If we know that no extraneous bits are set, and that the high
6303 	 bit is not set, convert extraction to cheaper one - either
6304 	 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6305 	 cases.  */
6306       if (flag_expensive_optimizations
6307 	  && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6308 	      && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6309 		   & ~(((unsigned HOST_WIDE_INT)
6310 			GET_MODE_MASK (GET_MODE (pos_rtx)))
6311 		       >> 1))
6312 		  == 0)))
6313 	{
6314 	  rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6315 
6316 	  /* Prefer ZERO_EXTENSION, since it gives more information to
6317 	     backends.  */
6318 	  if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6319 	    temp = temp1;
6320 	}
6321       pos_rtx = temp;
6322     }
6323   else if (pos_rtx != 0
6324 	   && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6325     pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6326 
6327   /* Make POS_RTX unless we already have it and it is correct.  If we don't
6328      have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6329      be a CONST_INT.  */
6330   if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6331     pos_rtx = orig_pos_rtx;
6332 
6333   else if (pos_rtx == 0)
6334     pos_rtx = GEN_INT (pos);
6335 
6336   /* Make the required operation.  See if we can use existing rtx.  */
6337   new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6338 			 extraction_mode, inner, GEN_INT (len), pos_rtx);
6339   if (! in_dest)
6340     new = gen_lowpart_for_combine (mode, new);
6341 
6342   return new;
6343 }
6344 
6345 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6346    with any other operations in X.  Return X without that shift if so.  */
6347 
6348 static rtx
extract_left_shift(rtx x,int count)6349 extract_left_shift (rtx x, int count)
6350 {
6351   enum rtx_code code = GET_CODE (x);
6352   enum machine_mode mode = GET_MODE (x);
6353   rtx tem;
6354 
6355   switch (code)
6356     {
6357     case ASHIFT:
6358       /* This is the shift itself.  If it is wide enough, we will return
6359 	 either the value being shifted if the shift count is equal to
6360 	 COUNT or a shift for the difference.  */
6361       if (GET_CODE (XEXP (x, 1)) == CONST_INT
6362 	  && INTVAL (XEXP (x, 1)) >= count)
6363 	return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6364 				     INTVAL (XEXP (x, 1)) - count);
6365       break;
6366 
6367     case NEG:  case NOT:
6368       if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6369 	return simplify_gen_unary (code, mode, tem, mode);
6370 
6371       break;
6372 
6373     case PLUS:  case IOR:  case XOR:  case AND:
6374       /* If we can safely shift this constant and we find the inner shift,
6375 	 make a new operation.  */
6376       if (GET_CODE (XEXP (x, 1)) == CONST_INT
6377 	  && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6378 	  && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6379 	return gen_binary (code, mode, tem,
6380 			   GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6381 
6382       break;
6383 
6384     default:
6385       break;
6386     }
6387 
6388   return 0;
6389 }
6390 
6391 /* Look at the expression rooted at X.  Look for expressions
6392    equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6393    Form these expressions.
6394 
6395    Return the new rtx, usually just X.
6396 
6397    Also, for machines like the VAX that don't have logical shift insns,
6398    try to convert logical to arithmetic shift operations in cases where
6399    they are equivalent.  This undoes the canonicalizations to logical
6400    shifts done elsewhere.
6401 
6402    We try, as much as possible, to re-use rtl expressions to save memory.
6403 
6404    IN_CODE says what kind of expression we are processing.  Normally, it is
6405    SET.  In a memory address (inside a MEM, PLUS or minus, the latter two
6406    being kludges), it is MEM.  When processing the arguments of a comparison
6407    or a COMPARE against zero, it is COMPARE.  */
6408 
6409 static rtx
make_compound_operation(rtx x,enum rtx_code in_code)6410 make_compound_operation (rtx x, enum rtx_code in_code)
6411 {
6412   enum rtx_code code = GET_CODE (x);
6413   enum machine_mode mode = GET_MODE (x);
6414   int mode_width = GET_MODE_BITSIZE (mode);
6415   rtx rhs, lhs;
6416   enum rtx_code next_code;
6417   int i;
6418   rtx new = 0;
6419   rtx tem;
6420   const char *fmt;
6421 
6422   /* Select the code to be used in recursive calls.  Once we are inside an
6423      address, we stay there.  If we have a comparison, set to COMPARE,
6424      but once inside, go back to our default of SET.  */
6425 
6426   next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6427 	       : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6428 		  && XEXP (x, 1) == const0_rtx) ? COMPARE
6429 	       : in_code == COMPARE ? SET : in_code);
6430 
6431   /* Process depending on the code of this operation.  If NEW is set
6432      nonzero, it will be returned.  */
6433 
6434   switch (code)
6435     {
6436     case ASHIFT:
6437       /* Convert shifts by constants into multiplications if inside
6438 	 an address.  */
6439       if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6440 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6441 	  && INTVAL (XEXP (x, 1)) >= 0)
6442 	{
6443 	  new = make_compound_operation (XEXP (x, 0), next_code);
6444 	  new = gen_rtx_MULT (mode, new,
6445 			      GEN_INT ((HOST_WIDE_INT) 1
6446 				       << INTVAL (XEXP (x, 1))));
6447 	}
6448       break;
6449 
6450     case AND:
6451       /* If the second operand is not a constant, we can't do anything
6452 	 with it.  */
6453       if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6454 	break;
6455 
6456       /* If the constant is a power of two minus one and the first operand
6457 	 is a logical right shift, make an extraction.  */
6458       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6459 	  && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6460 	{
6461 	  new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6462 	  new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6463 				 0, in_code == COMPARE);
6464 	}
6465 
6466       /* Same as previous, but for (subreg (lshiftrt ...)) in first op.  */
6467       else if (GET_CODE (XEXP (x, 0)) == SUBREG
6468 	       && subreg_lowpart_p (XEXP (x, 0))
6469 	       && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6470 	       && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6471 	{
6472 	  new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6473 					 next_code);
6474 	  new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6475 				 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6476 				 0, in_code == COMPARE);
6477 	}
6478       /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)).  */
6479       else if ((GET_CODE (XEXP (x, 0)) == XOR
6480 		|| GET_CODE (XEXP (x, 0)) == IOR)
6481 	       && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6482 	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6483 	       && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6484 	{
6485 	  /* Apply the distributive law, and then try to make extractions.  */
6486 	  new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6487 				gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6488 					     XEXP (x, 1)),
6489 				gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6490 					     XEXP (x, 1)));
6491 	  new = make_compound_operation (new, in_code);
6492 	}
6493 
6494       /* If we are have (and (rotate X C) M) and C is larger than the number
6495 	 of bits in M, this is an extraction.  */
6496 
6497       else if (GET_CODE (XEXP (x, 0)) == ROTATE
6498 	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6499 	       && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6500 	       && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6501 	{
6502 	  new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6503 	  new = make_extraction (mode, new,
6504 				 (GET_MODE_BITSIZE (mode)
6505 				  - INTVAL (XEXP (XEXP (x, 0), 1))),
6506 				 NULL_RTX, i, 1, 0, in_code == COMPARE);
6507 	}
6508 
6509       /* On machines without logical shifts, if the operand of the AND is
6510 	 a logical shift and our mask turns off all the propagated sign
6511 	 bits, we can replace the logical shift with an arithmetic shift.  */
6512       else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6513 	       && !have_insn_for (LSHIFTRT, mode)
6514 	       && have_insn_for (ASHIFTRT, mode)
6515 	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6516 	       && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6517 	       && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6518 	       && mode_width <= HOST_BITS_PER_WIDE_INT)
6519 	{
6520 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6521 
6522 	  mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6523 	  if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6524 	    SUBST (XEXP (x, 0),
6525 		   gen_rtx_ASHIFTRT (mode,
6526 				     make_compound_operation
6527 				     (XEXP (XEXP (x, 0), 0), next_code),
6528 				     XEXP (XEXP (x, 0), 1)));
6529 	}
6530 
6531       /* If the constant is one less than a power of two, this might be
6532 	 representable by an extraction even if no shift is present.
6533 	 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6534 	 we are in a COMPARE.  */
6535       else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6536 	new = make_extraction (mode,
6537 			       make_compound_operation (XEXP (x, 0),
6538 							next_code),
6539 			       0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6540 
6541       /* If we are in a comparison and this is an AND with a power of two,
6542 	 convert this into the appropriate bit extract.  */
6543       else if (in_code == COMPARE
6544 	       && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6545 	new = make_extraction (mode,
6546 			       make_compound_operation (XEXP (x, 0),
6547 							next_code),
6548 			       i, NULL_RTX, 1, 1, 0, 1);
6549 
6550       break;
6551 
6552     case LSHIFTRT:
6553       /* If the sign bit is known to be zero, replace this with an
6554 	 arithmetic shift.  */
6555       if (have_insn_for (ASHIFTRT, mode)
6556 	  && ! have_insn_for (LSHIFTRT, mode)
6557 	  && mode_width <= HOST_BITS_PER_WIDE_INT
6558 	  && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6559 	{
6560 	  new = gen_rtx_ASHIFTRT (mode,
6561 				  make_compound_operation (XEXP (x, 0),
6562 							   next_code),
6563 				  XEXP (x, 1));
6564 	  break;
6565 	}
6566 
6567       /* ... fall through ...  */
6568 
6569     case ASHIFTRT:
6570       lhs = XEXP (x, 0);
6571       rhs = XEXP (x, 1);
6572 
6573       /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6574 	 this is a SIGN_EXTRACT.  */
6575       if (GET_CODE (rhs) == CONST_INT
6576 	  && GET_CODE (lhs) == ASHIFT
6577 	  && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6578 	  && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6579 	{
6580 	  new = make_compound_operation (XEXP (lhs, 0), next_code);
6581 	  new = make_extraction (mode, new,
6582 				 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6583 				 NULL_RTX, mode_width - INTVAL (rhs),
6584 				 code == LSHIFTRT, 0, in_code == COMPARE);
6585 	  break;
6586 	}
6587 
6588       /* See if we have operations between an ASHIFTRT and an ASHIFT.
6589 	 If so, try to merge the shifts into a SIGN_EXTEND.  We could
6590 	 also do this for some cases of SIGN_EXTRACT, but it doesn't
6591 	 seem worth the effort; the case checked for occurs on Alpha.  */
6592 
6593       if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6594 	  && ! (GET_CODE (lhs) == SUBREG
6595 		&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6596 	  && GET_CODE (rhs) == CONST_INT
6597 	  && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6598 	  && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6599 	new = make_extraction (mode, make_compound_operation (new, next_code),
6600 			       0, NULL_RTX, mode_width - INTVAL (rhs),
6601 			       code == LSHIFTRT, 0, in_code == COMPARE);
6602 
6603       break;
6604 
6605     case SUBREG:
6606       /* Call ourselves recursively on the inner expression.  If we are
6607 	 narrowing the object and it has a different RTL code from
6608 	 what it originally did, do this SUBREG as a force_to_mode.  */
6609 
6610       tem = make_compound_operation (SUBREG_REG (x), in_code);
6611       if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6612 	  && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6613 	  && subreg_lowpart_p (x))
6614 	{
6615 	  rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6616 				     NULL_RTX, 0);
6617 
6618 	  /* If we have something other than a SUBREG, we might have
6619 	     done an expansion, so rerun ourselves.  */
6620 	  if (GET_CODE (newer) != SUBREG)
6621 	    newer = make_compound_operation (newer, in_code);
6622 
6623 	  return newer;
6624 	}
6625 
6626       /* If this is a paradoxical subreg, and the new code is a sign or
6627 	 zero extension, omit the subreg and widen the extension.  If it
6628 	 is a regular subreg, we can still get rid of the subreg by not
6629 	 widening so much, or in fact removing the extension entirely.  */
6630       if ((GET_CODE (tem) == SIGN_EXTEND
6631 	   || GET_CODE (tem) == ZERO_EXTEND)
6632 	  && subreg_lowpart_p (x))
6633 	{
6634 	  if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6635 	      || (GET_MODE_SIZE (mode) >
6636 		  GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6637 	    {
6638 	      if (! SCALAR_INT_MODE_P (mode))
6639 		break;
6640 	      tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6641 	    }
6642 	  else
6643 	    tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6644 	  return tem;
6645 	}
6646       break;
6647 
6648     default:
6649       break;
6650     }
6651 
6652   if (new)
6653     {
6654       x = gen_lowpart_for_combine (mode, new);
6655       code = GET_CODE (x);
6656     }
6657 
6658   /* Now recursively process each operand of this operation.  */
6659   fmt = GET_RTX_FORMAT (code);
6660   for (i = 0; i < GET_RTX_LENGTH (code); i++)
6661     if (fmt[i] == 'e')
6662       {
6663 	new = make_compound_operation (XEXP (x, i), next_code);
6664 	SUBST (XEXP (x, i), new);
6665       }
6666 
6667   return x;
6668 }
6669 
6670 /* Given M see if it is a value that would select a field of bits
6671    within an item, but not the entire word.  Return -1 if not.
6672    Otherwise, return the starting position of the field, where 0 is the
6673    low-order bit.
6674 
6675    *PLEN is set to the length of the field.  */
6676 
6677 static int
get_pos_from_mask(unsigned HOST_WIDE_INT m,unsigned HOST_WIDE_INT * plen)6678 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6679 {
6680   /* Get the bit number of the first 1 bit from the right, -1 if none.  */
6681   int pos = exact_log2 (m & -m);
6682   int len;
6683 
6684   if (pos < 0)
6685     return -1;
6686 
6687   /* Now shift off the low-order zero bits and see if we have a power of
6688      two minus 1.  */
6689   len = exact_log2 ((m >> pos) + 1);
6690 
6691   if (len <= 0)
6692     return -1;
6693 
6694   *plen = len;
6695   return pos;
6696 }
6697 
6698 /* See if X can be simplified knowing that we will only refer to it in
6699    MODE and will only refer to those bits that are nonzero in MASK.
6700    If other bits are being computed or if masking operations are done
6701    that select a superset of the bits in MASK, they can sometimes be
6702    ignored.
6703 
6704    Return a possibly simplified expression, but always convert X to
6705    MODE.  If X is a CONST_INT, AND the CONST_INT with MASK.
6706 
6707    Also, if REG is nonzero and X is a register equal in value to REG,
6708    replace X with REG.
6709 
6710    If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6711    are all off in X.  This is used when X will be complemented, by either
6712    NOT, NEG, or XOR.  */
6713 
6714 static rtx
force_to_mode(rtx x,enum machine_mode mode,unsigned HOST_WIDE_INT mask,rtx reg,int just_select)6715 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6716 	       rtx reg, int just_select)
6717 {
6718   enum rtx_code code = GET_CODE (x);
6719   int next_select = just_select || code == XOR || code == NOT || code == NEG;
6720   enum machine_mode op_mode;
6721   unsigned HOST_WIDE_INT fuller_mask, nonzero;
6722   rtx op0, op1, temp;
6723 
6724   /* If this is a CALL or ASM_OPERANDS, don't do anything.  Some of the
6725      code below will do the wrong thing since the mode of such an
6726      expression is VOIDmode.
6727 
6728      Also do nothing if X is a CLOBBER; this can happen if X was
6729      the return value from a call to gen_lowpart_for_combine.  */
6730   if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6731     return x;
6732 
6733   /* We want to perform the operation is its present mode unless we know
6734      that the operation is valid in MODE, in which case we do the operation
6735      in MODE.  */
6736   op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6737 	      && have_insn_for (code, mode))
6738 	     ? mode : GET_MODE (x));
6739 
6740   /* It is not valid to do a right-shift in a narrower mode
6741      than the one it came in with.  */
6742   if ((code == LSHIFTRT || code == ASHIFTRT)
6743       && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6744     op_mode = GET_MODE (x);
6745 
6746   /* Truncate MASK to fit OP_MODE.  */
6747   if (op_mode)
6748     mask &= GET_MODE_MASK (op_mode);
6749 
6750   /* When we have an arithmetic operation, or a shift whose count we
6751      do not know, we need to assume that all bits up to the highest-order
6752      bit in MASK will be needed.  This is how we form such a mask.  */
6753   if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6754     fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6755   else
6756     fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6757 		   - 1);
6758 
6759   /* Determine what bits of X are guaranteed to be (non)zero.  */
6760   nonzero = nonzero_bits (x, mode);
6761 
6762   /* If none of the bits in X are needed, return a zero.  */
6763   if (! just_select && (nonzero & mask) == 0)
6764     x = const0_rtx;
6765 
6766   /* If X is a CONST_INT, return a new one.  Do this here since the
6767      test below will fail.  */
6768   if (GET_CODE (x) == CONST_INT)
6769     {
6770       if (SCALAR_INT_MODE_P (mode))
6771         return gen_int_mode (INTVAL (x) & mask, mode);
6772       else
6773 	{
6774 	  x = GEN_INT (INTVAL (x) & mask);
6775 	  return gen_lowpart_common (mode, x);
6776 	}
6777     }
6778 
6779   /* If X is narrower than MODE and we want all the bits in X's mode, just
6780      get X in the proper mode.  */
6781   if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6782       && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6783     return gen_lowpart_for_combine (mode, x);
6784 
6785   /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6786      MASK are already known to be zero in X, we need not do anything.  */
6787   if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6788     return x;
6789 
6790   switch (code)
6791     {
6792     case CLOBBER:
6793       /* If X is a (clobber (const_int)), return it since we know we are
6794 	 generating something that won't match.  */
6795       return x;
6796 
6797     case USE:
6798       /* X is a (use (mem ..)) that was made from a bit-field extraction that
6799 	 spanned the boundary of the MEM.  If we are now masking so it is
6800 	 within that boundary, we don't need the USE any more.  */
6801       if (! BITS_BIG_ENDIAN
6802 	  && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6803 	return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6804       break;
6805 
6806     case SIGN_EXTEND:
6807     case ZERO_EXTEND:
6808     case ZERO_EXTRACT:
6809     case SIGN_EXTRACT:
6810       x = expand_compound_operation (x);
6811       if (GET_CODE (x) != code)
6812 	return force_to_mode (x, mode, mask, reg, next_select);
6813       break;
6814 
6815     case REG:
6816       if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6817 		       || rtx_equal_p (reg, get_last_value (x))))
6818 	x = reg;
6819       break;
6820 
6821     case SUBREG:
6822       if (subreg_lowpart_p (x)
6823 	  /* We can ignore the effect of this SUBREG if it narrows the mode or
6824 	     if the constant masks to zero all the bits the mode doesn't
6825 	     have.  */
6826 	  && ((GET_MODE_SIZE (GET_MODE (x))
6827 	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6828 	      || (0 == (mask
6829 			& GET_MODE_MASK (GET_MODE (x))
6830 			& ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6831 	return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6832       break;
6833 
6834     case AND:
6835       /* If this is an AND with a constant, convert it into an AND
6836 	 whose constant is the AND of that constant with MASK.  If it
6837 	 remains an AND of MASK, delete it since it is redundant.  */
6838 
6839       if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6840 	{
6841 	  x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6842 				      mask & INTVAL (XEXP (x, 1)));
6843 
6844 	  /* If X is still an AND, see if it is an AND with a mask that
6845 	     is just some low-order bits.  If so, and it is MASK, we don't
6846 	     need it.  */
6847 
6848 	  if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6849 	      && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6850 		  == mask))
6851 	    x = XEXP (x, 0);
6852 
6853 	  /* If it remains an AND, try making another AND with the bits
6854 	     in the mode mask that aren't in MASK turned on.  If the
6855 	     constant in the AND is wide enough, this might make a
6856 	     cheaper constant.  */
6857 
6858 	  if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6859 	      && GET_MODE_MASK (GET_MODE (x)) != mask
6860 	      && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6861 	    {
6862 	      HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6863 				    | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6864 	      int width = GET_MODE_BITSIZE (GET_MODE (x));
6865 	      rtx y;
6866 
6867 	      /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6868 		 number, sign extend it.  */
6869 	      if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6870 		  && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6871 		cval |= (HOST_WIDE_INT) -1 << width;
6872 
6873 	      y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6874 	      if (rtx_cost (y, SET) < rtx_cost (x, SET))
6875 		x = y;
6876 	    }
6877 
6878 	  break;
6879 	}
6880 
6881       goto binop;
6882 
6883     case PLUS:
6884       /* In (and (plus FOO C1) M), if M is a mask that just turns off
6885 	 low-order bits (as in an alignment operation) and FOO is already
6886 	 aligned to that boundary, mask C1 to that boundary as well.
6887 	 This may eliminate that PLUS and, later, the AND.  */
6888 
6889       {
6890 	unsigned int width = GET_MODE_BITSIZE (mode);
6891 	unsigned HOST_WIDE_INT smask = mask;
6892 
6893 	/* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6894 	   number, sign extend it.  */
6895 
6896 	if (width < HOST_BITS_PER_WIDE_INT
6897 	    && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6898 	  smask |= (HOST_WIDE_INT) -1 << width;
6899 
6900 	if (GET_CODE (XEXP (x, 1)) == CONST_INT
6901 	    && exact_log2 (- smask) >= 0
6902 	    && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6903 	    && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6904 	  return force_to_mode (plus_constant (XEXP (x, 0),
6905 					       (INTVAL (XEXP (x, 1)) & smask)),
6906 				mode, smask, reg, next_select);
6907       }
6908 
6909       /* ... fall through ...  */
6910 
6911     case MULT:
6912       /* For PLUS, MINUS and MULT, we need any bits less significant than the
6913 	 most significant bit in MASK since carries from those bits will
6914 	 affect the bits we are interested in.  */
6915       mask = fuller_mask;
6916       goto binop;
6917 
6918     case MINUS:
6919       /* If X is (minus C Y) where C's least set bit is larger than any bit
6920 	 in the mask, then we may replace with (neg Y).  */
6921       if (GET_CODE (XEXP (x, 0)) == CONST_INT
6922 	  && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6923 					& -INTVAL (XEXP (x, 0))))
6924 	      > mask))
6925 	{
6926 	  x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6927 				  GET_MODE (x));
6928 	  return force_to_mode (x, mode, mask, reg, next_select);
6929 	}
6930 
6931       /* Similarly, if C contains every bit in the fuller_mask, then we may
6932 	 replace with (not Y).  */
6933       if (GET_CODE (XEXP (x, 0)) == CONST_INT
6934 	  && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
6935 	      == INTVAL (XEXP (x, 0))))
6936 	{
6937 	  x = simplify_gen_unary (NOT, GET_MODE (x),
6938 				  XEXP (x, 1), GET_MODE (x));
6939 	  return force_to_mode (x, mode, mask, reg, next_select);
6940 	}
6941 
6942       mask = fuller_mask;
6943       goto binop;
6944 
6945     case IOR:
6946     case XOR:
6947       /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6948 	 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6949 	 operation which may be a bitfield extraction.  Ensure that the
6950 	 constant we form is not wider than the mode of X.  */
6951 
6952       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6953 	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6954 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6955 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6956 	  && GET_CODE (XEXP (x, 1)) == CONST_INT
6957 	  && ((INTVAL (XEXP (XEXP (x, 0), 1))
6958 	       + floor_log2 (INTVAL (XEXP (x, 1))))
6959 	      < GET_MODE_BITSIZE (GET_MODE (x)))
6960 	  && (INTVAL (XEXP (x, 1))
6961 	      & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6962 	{
6963 	  temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6964 			  << INTVAL (XEXP (XEXP (x, 0), 1)));
6965 	  temp = gen_binary (GET_CODE (x), GET_MODE (x),
6966 			     XEXP (XEXP (x, 0), 0), temp);
6967 	  x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6968 			  XEXP (XEXP (x, 0), 1));
6969 	  return force_to_mode (x, mode, mask, reg, next_select);
6970 	}
6971 
6972     binop:
6973       /* For most binary operations, just propagate into the operation and
6974 	 change the mode if we have an operation of that mode.  */
6975 
6976       op0 = gen_lowpart_for_combine (op_mode,
6977 				     force_to_mode (XEXP (x, 0), mode, mask,
6978 						    reg, next_select));
6979       op1 = gen_lowpart_for_combine (op_mode,
6980 				     force_to_mode (XEXP (x, 1), mode, mask,
6981 						    reg, next_select));
6982 
6983       if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6984 	x = gen_binary (code, op_mode, op0, op1);
6985       break;
6986 
6987     case ASHIFT:
6988       /* For left shifts, do the same, but just for the first operand.
6989 	 However, we cannot do anything with shifts where we cannot
6990 	 guarantee that the counts are smaller than the size of the mode
6991 	 because such a count will have a different meaning in a
6992 	 wider mode.  */
6993 
6994       if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6995 	     && INTVAL (XEXP (x, 1)) >= 0
6996 	     && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6997 	  && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6998 		&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6999 		    < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7000 	break;
7001 
7002       /* If the shift count is a constant and we can do arithmetic in
7003 	 the mode of the shift, refine which bits we need.  Otherwise, use the
7004 	 conservative form of the mask.  */
7005       if (GET_CODE (XEXP (x, 1)) == CONST_INT
7006 	  && INTVAL (XEXP (x, 1)) >= 0
7007 	  && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7008 	  && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7009 	mask >>= INTVAL (XEXP (x, 1));
7010       else
7011 	mask = fuller_mask;
7012 
7013       op0 = gen_lowpart_for_combine (op_mode,
7014 				     force_to_mode (XEXP (x, 0), op_mode,
7015 						    mask, reg, next_select));
7016 
7017       if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7018 	x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7019       break;
7020 
7021     case LSHIFTRT:
7022       /* Here we can only do something if the shift count is a constant,
7023 	 this shift constant is valid for the host, and we can do arithmetic
7024 	 in OP_MODE.  */
7025 
7026       if (GET_CODE (XEXP (x, 1)) == CONST_INT
7027 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7028 	  && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7029 	{
7030 	  rtx inner = XEXP (x, 0);
7031 	  unsigned HOST_WIDE_INT inner_mask;
7032 
7033 	  /* Select the mask of the bits we need for the shift operand.  */
7034 	  inner_mask = mask << INTVAL (XEXP (x, 1));
7035 
7036 	  /* We can only change the mode of the shift if we can do arithmetic
7037 	     in the mode of the shift and INNER_MASK is no wider than the
7038 	     width of OP_MODE.  */
7039 	  if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7040 	      || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7041 	    op_mode = GET_MODE (x);
7042 
7043 	  inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7044 
7045 	  if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7046 	    x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7047 	}
7048 
7049       /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7050 	 shift and AND produces only copies of the sign bit (C2 is one less
7051 	 than a power of two), we can do this with just a shift.  */
7052 
7053       if (GET_CODE (x) == LSHIFTRT
7054 	  && GET_CODE (XEXP (x, 1)) == CONST_INT
7055 	  /* The shift puts one of the sign bit copies in the least significant
7056 	     bit.  */
7057 	  && ((INTVAL (XEXP (x, 1))
7058 	       + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7059 	      >= GET_MODE_BITSIZE (GET_MODE (x)))
7060 	  && exact_log2 (mask + 1) >= 0
7061 	  /* Number of bits left after the shift must be more than the mask
7062 	     needs.  */
7063 	  && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7064 	      <= GET_MODE_BITSIZE (GET_MODE (x)))
7065 	  /* Must be more sign bit copies than the mask needs.  */
7066 	  && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7067 	      >= exact_log2 (mask + 1)))
7068 	x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7069 			GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7070 				 - exact_log2 (mask + 1)));
7071 
7072       goto shiftrt;
7073 
7074     case ASHIFTRT:
7075       /* If we are just looking for the sign bit, we don't need this shift at
7076 	 all, even if it has a variable count.  */
7077       if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7078 	  && (mask == ((unsigned HOST_WIDE_INT) 1
7079 		       << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7080 	return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7081 
7082       /* If this is a shift by a constant, get a mask that contains those bits
7083 	 that are not copies of the sign bit.  We then have two cases:  If
7084 	 MASK only includes those bits, this can be a logical shift, which may
7085 	 allow simplifications.  If MASK is a single-bit field not within
7086 	 those bits, we are requesting a copy of the sign bit and hence can
7087 	 shift the sign bit to the appropriate location.  */
7088 
7089       if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7090 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7091 	{
7092 	  int i = -1;
7093 
7094 	  /* If the considered data is wider than HOST_WIDE_INT, we can't
7095 	     represent a mask for all its bits in a single scalar.
7096 	     But we only care about the lower bits, so calculate these.  */
7097 
7098 	  if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7099 	    {
7100 	      nonzero = ~(HOST_WIDE_INT) 0;
7101 
7102 	      /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7103 		 is the number of bits a full-width mask would have set.
7104 		 We need only shift if these are fewer than nonzero can
7105 		 hold.  If not, we must keep all bits set in nonzero.  */
7106 
7107 	      if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7108 		  < HOST_BITS_PER_WIDE_INT)
7109 		nonzero >>= INTVAL (XEXP (x, 1))
7110 			    + HOST_BITS_PER_WIDE_INT
7111 			    - GET_MODE_BITSIZE (GET_MODE (x)) ;
7112 	    }
7113 	  else
7114 	    {
7115 	      nonzero = GET_MODE_MASK (GET_MODE (x));
7116 	      nonzero >>= INTVAL (XEXP (x, 1));
7117 	    }
7118 
7119 	  if ((mask & ~nonzero) == 0
7120 	      || (i = exact_log2 (mask)) >= 0)
7121 	    {
7122 	      x = simplify_shift_const
7123 		(x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7124 		 i < 0 ? INTVAL (XEXP (x, 1))
7125 		 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7126 
7127 	      if (GET_CODE (x) != ASHIFTRT)
7128 		return force_to_mode (x, mode, mask, reg, next_select);
7129 	    }
7130 	}
7131 
7132       /* If MASK is 1, convert this to an LSHIFTRT.  This can be done
7133 	 even if the shift count isn't a constant.  */
7134       if (mask == 1)
7135 	x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7136 
7137     shiftrt:
7138 
7139       /* If this is a zero- or sign-extension operation that just affects bits
7140 	 we don't care about, remove it.  Be sure the call above returned
7141 	 something that is still a shift.  */
7142 
7143       if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7144 	  && GET_CODE (XEXP (x, 1)) == CONST_INT
7145 	  && INTVAL (XEXP (x, 1)) >= 0
7146 	  && (INTVAL (XEXP (x, 1))
7147 	      <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7148 	  && GET_CODE (XEXP (x, 0)) == ASHIFT
7149 	  && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7150 	return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7151 			      reg, next_select);
7152 
7153       break;
7154 
7155     case ROTATE:
7156     case ROTATERT:
7157       /* If the shift count is constant and we can do computations
7158 	 in the mode of X, compute where the bits we care about are.
7159 	 Otherwise, we can't do anything.  Don't change the mode of
7160 	 the shift or propagate MODE into the shift, though.  */
7161       if (GET_CODE (XEXP (x, 1)) == CONST_INT
7162 	  && INTVAL (XEXP (x, 1)) >= 0)
7163 	{
7164 	  temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7165 					    GET_MODE (x), GEN_INT (mask),
7166 					    XEXP (x, 1));
7167 	  if (temp && GET_CODE (temp) == CONST_INT)
7168 	    SUBST (XEXP (x, 0),
7169 		   force_to_mode (XEXP (x, 0), GET_MODE (x),
7170 				  INTVAL (temp), reg, next_select));
7171 	}
7172       break;
7173 
7174     case NEG:
7175       /* If we just want the low-order bit, the NEG isn't needed since it
7176 	 won't change the low-order bit.  */
7177       if (mask == 1)
7178 	return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7179 
7180       /* We need any bits less significant than the most significant bit in
7181 	 MASK since carries from those bits will affect the bits we are
7182 	 interested in.  */
7183       mask = fuller_mask;
7184       goto unop;
7185 
7186     case NOT:
7187       /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7188 	 same as the XOR case above.  Ensure that the constant we form is not
7189 	 wider than the mode of X.  */
7190 
7191       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7192 	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7193 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7194 	  && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7195 	      < GET_MODE_BITSIZE (GET_MODE (x)))
7196 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7197 	{
7198 	  temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7199 			       GET_MODE (x));
7200 	  temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7201 	  x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7202 
7203 	  return force_to_mode (x, mode, mask, reg, next_select);
7204 	}
7205 
7206       /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7207 	 use the full mask inside the NOT.  */
7208       mask = fuller_mask;
7209 
7210     unop:
7211       op0 = gen_lowpart_for_combine (op_mode,
7212 				     force_to_mode (XEXP (x, 0), mode, mask,
7213 						    reg, next_select));
7214       if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7215 	x = simplify_gen_unary (code, op_mode, op0, op_mode);
7216       break;
7217 
7218     case NE:
7219       /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7220 	 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7221 	 which is equal to STORE_FLAG_VALUE.  */
7222       if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7223 	  && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7224 	  && (nonzero_bits (XEXP (x, 0), mode)
7225 	      == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7226 	return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7227 
7228       break;
7229 
7230     case IF_THEN_ELSE:
7231       /* We have no way of knowing if the IF_THEN_ELSE can itself be
7232 	 written in a narrower mode.  We play it safe and do not do so.  */
7233 
7234       SUBST (XEXP (x, 1),
7235 	     gen_lowpart_for_combine (GET_MODE (x),
7236 				      force_to_mode (XEXP (x, 1), mode,
7237 						     mask, reg, next_select)));
7238       SUBST (XEXP (x, 2),
7239 	     gen_lowpart_for_combine (GET_MODE (x),
7240 				      force_to_mode (XEXP (x, 2), mode,
7241 						     mask, reg, next_select)));
7242       break;
7243 
7244     default:
7245       break;
7246     }
7247 
7248   /* Ensure we return a value of the proper mode.  */
7249   return gen_lowpart_for_combine (mode, x);
7250 }
7251 
7252 /* Return nonzero if X is an expression that has one of two values depending on
7253    whether some other value is zero or nonzero.  In that case, we return the
7254    value that is being tested, *PTRUE is set to the value if the rtx being
7255    returned has a nonzero value, and *PFALSE is set to the other alternative.
7256 
7257    If we return zero, we set *PTRUE and *PFALSE to X.  */
7258 
7259 static rtx
if_then_else_cond(rtx x,rtx * ptrue,rtx * pfalse)7260 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7261 {
7262   enum machine_mode mode = GET_MODE (x);
7263   enum rtx_code code = GET_CODE (x);
7264   rtx cond0, cond1, true0, true1, false0, false1;
7265   unsigned HOST_WIDE_INT nz;
7266 
7267   /* If we are comparing a value against zero, we are done.  */
7268   if ((code == NE || code == EQ)
7269       && XEXP (x, 1) == const0_rtx)
7270     {
7271       *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7272       *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7273       return XEXP (x, 0);
7274     }
7275 
7276   /* If this is a unary operation whose operand has one of two values, apply
7277      our opcode to compute those values.  */
7278   else if (GET_RTX_CLASS (code) == '1'
7279 	   && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7280     {
7281       *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7282       *pfalse = simplify_gen_unary (code, mode, false0,
7283 				    GET_MODE (XEXP (x, 0)));
7284       return cond0;
7285     }
7286 
7287   /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7288      make can't possibly match and would suppress other optimizations.  */
7289   else if (code == COMPARE)
7290     ;
7291 
7292   /* If this is a binary operation, see if either side has only one of two
7293      values.  If either one does or if both do and they are conditional on
7294      the same value, compute the new true and false values.  */
7295   else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7296 	   || GET_RTX_CLASS (code) == '<')
7297     {
7298       cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7299       cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7300 
7301       if ((cond0 != 0 || cond1 != 0)
7302 	  && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7303 	{
7304 	  /* If if_then_else_cond returned zero, then true/false are the
7305 	     same rtl.  We must copy one of them to prevent invalid rtl
7306 	     sharing.  */
7307 	  if (cond0 == 0)
7308 	    true0 = copy_rtx (true0);
7309 	  else if (cond1 == 0)
7310 	    true1 = copy_rtx (true1);
7311 
7312 	  *ptrue = gen_binary (code, mode, true0, true1);
7313 	  *pfalse = gen_binary (code, mode, false0, false1);
7314 	  return cond0 ? cond0 : cond1;
7315 	}
7316 
7317       /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7318 	 operands is zero when the other is nonzero, and vice-versa,
7319 	 and STORE_FLAG_VALUE is 1 or -1.  */
7320 
7321       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7322 	  && (code == PLUS || code == IOR || code == XOR || code == MINUS
7323 	      || code == UMAX)
7324 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7325 	{
7326 	  rtx op0 = XEXP (XEXP (x, 0), 1);
7327 	  rtx op1 = XEXP (XEXP (x, 1), 1);
7328 
7329 	  cond0 = XEXP (XEXP (x, 0), 0);
7330 	  cond1 = XEXP (XEXP (x, 1), 0);
7331 
7332 	  if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7333 	      && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7334 	      && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7335 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7336 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7337 		  || ((swap_condition (GET_CODE (cond0))
7338 		       == combine_reversed_comparison_code (cond1))
7339 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7340 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7341 	      && ! side_effects_p (x))
7342 	    {
7343 	      *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7344 	      *pfalse = gen_binary (MULT, mode,
7345 				    (code == MINUS
7346 				     ? simplify_gen_unary (NEG, mode, op1,
7347 							   mode)
7348 				     : op1),
7349 				    const_true_rtx);
7350 	      return cond0;
7351 	    }
7352 	}
7353 
7354       /* Similarly for MULT, AND and UMIN, except that for these the result
7355 	 is always zero.  */
7356       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7357 	  && (code == MULT || code == AND || code == UMIN)
7358 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7359 	{
7360 	  cond0 = XEXP (XEXP (x, 0), 0);
7361 	  cond1 = XEXP (XEXP (x, 1), 0);
7362 
7363 	  if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7364 	      && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7365 	      && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7366 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7367 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7368 		  || ((swap_condition (GET_CODE (cond0))
7369 		       == combine_reversed_comparison_code (cond1))
7370 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7371 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7372 	      && ! side_effects_p (x))
7373 	    {
7374 	      *ptrue = *pfalse = const0_rtx;
7375 	      return cond0;
7376 	    }
7377 	}
7378     }
7379 
7380   else if (code == IF_THEN_ELSE)
7381     {
7382       /* If we have IF_THEN_ELSE already, extract the condition and
7383 	 canonicalize it if it is NE or EQ.  */
7384       cond0 = XEXP (x, 0);
7385       *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7386       if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7387 	return XEXP (cond0, 0);
7388       else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7389 	{
7390 	  *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7391 	  return XEXP (cond0, 0);
7392 	}
7393       else
7394 	return cond0;
7395     }
7396 
7397   /* If X is a SUBREG, we can narrow both the true and false values
7398      if the inner expression, if there is a condition.  */
7399   else if (code == SUBREG
7400 	   && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7401 					       &true0, &false0)))
7402     {
7403       true0 = simplify_gen_subreg (mode, true0,
7404 				   GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7405       false0 = simplify_gen_subreg (mode, false0,
7406 				    GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7407       if (true0 && false0)
7408 	{
7409 	  *ptrue = true0;
7410 	  *pfalse = false0;
7411 	  return cond0;
7412 	}
7413     }
7414 
7415   /* If X is a constant, this isn't special and will cause confusions
7416      if we treat it as such.  Likewise if it is equivalent to a constant.  */
7417   else if (CONSTANT_P (x)
7418 	   || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7419     ;
7420 
7421   /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7422      will be least confusing to the rest of the compiler.  */
7423   else if (mode == BImode)
7424     {
7425       *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7426       return x;
7427     }
7428 
7429   /* If X is known to be either 0 or -1, those are the true and
7430      false values when testing X.  */
7431   else if (x == constm1_rtx || x == const0_rtx
7432 	   || (mode != VOIDmode
7433 	       && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7434     {
7435       *ptrue = constm1_rtx, *pfalse = const0_rtx;
7436       return x;
7437     }
7438 
7439   /* Likewise for 0 or a single bit.  */
7440   else if (SCALAR_INT_MODE_P (mode)
7441 	   && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7442 	   && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7443     {
7444       *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7445       return x;
7446     }
7447 
7448   /* Otherwise fail; show no condition with true and false values the same.  */
7449   *ptrue = *pfalse = x;
7450   return 0;
7451 }
7452 
7453 /* Return the value of expression X given the fact that condition COND
7454    is known to be true when applied to REG as its first operand and VAL
7455    as its second.  X is known to not be shared and so can be modified in
7456    place.
7457 
7458    We only handle the simplest cases, and specifically those cases that
7459    arise with IF_THEN_ELSE expressions.  */
7460 
7461 static rtx
known_cond(rtx x,enum rtx_code cond,rtx reg,rtx val)7462 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7463 {
7464   enum rtx_code code = GET_CODE (x);
7465   rtx temp;
7466   const char *fmt;
7467   int i, j;
7468 
7469   if (side_effects_p (x))
7470     return x;
7471 
7472   /* If either operand of the condition is a floating point value,
7473      then we have to avoid collapsing an EQ comparison.  */
7474   if (cond == EQ
7475       && rtx_equal_p (x, reg)
7476       && ! FLOAT_MODE_P (GET_MODE (x))
7477       && ! FLOAT_MODE_P (GET_MODE (val)))
7478     return val;
7479 
7480   if (cond == UNEQ && rtx_equal_p (x, reg))
7481     return val;
7482 
7483   /* If X is (abs REG) and we know something about REG's relationship
7484      with zero, we may be able to simplify this.  */
7485 
7486   if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7487     switch (cond)
7488       {
7489       case GE:  case GT:  case EQ:
7490 	return XEXP (x, 0);
7491       case LT:  case LE:
7492 	return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7493 				   XEXP (x, 0),
7494 				   GET_MODE (XEXP (x, 0)));
7495       default:
7496 	break;
7497       }
7498 
7499   /* The only other cases we handle are MIN, MAX, and comparisons if the
7500      operands are the same as REG and VAL.  */
7501 
7502   else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7503     {
7504       if (rtx_equal_p (XEXP (x, 0), val))
7505 	cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7506 
7507       if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7508 	{
7509 	  if (GET_RTX_CLASS (code) == '<')
7510 	    {
7511 	      if (comparison_dominates_p (cond, code))
7512 		return const_true_rtx;
7513 
7514 	      code = combine_reversed_comparison_code (x);
7515 	      if (code != UNKNOWN
7516 		  && comparison_dominates_p (cond, code))
7517 		return const0_rtx;
7518 	      else
7519 		return x;
7520 	    }
7521 	  else if (code == SMAX || code == SMIN
7522 		   || code == UMIN || code == UMAX)
7523 	    {
7524 	      int unsignedp = (code == UMIN || code == UMAX);
7525 
7526 	      /* Do not reverse the condition when it is NE or EQ.
7527 		 This is because we cannot conclude anything about
7528 		 the value of 'SMAX (x, y)' when x is not equal to y,
7529 		 but we can when x equals y.  */
7530 	      if ((code == SMAX || code == UMAX)
7531 		  && ! (cond == EQ || cond == NE))
7532 		cond = reverse_condition (cond);
7533 
7534 	      switch (cond)
7535 		{
7536 		case GE:   case GT:
7537 		  return unsignedp ? x : XEXP (x, 1);
7538 		case LE:   case LT:
7539 		  return unsignedp ? x : XEXP (x, 0);
7540 		case GEU:  case GTU:
7541 		  return unsignedp ? XEXP (x, 1) : x;
7542 		case LEU:  case LTU:
7543 		  return unsignedp ? XEXP (x, 0) : x;
7544 		default:
7545 		  break;
7546 		}
7547 	    }
7548 	}
7549     }
7550   else if (code == SUBREG)
7551     {
7552       enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7553       rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7554 
7555       if (SUBREG_REG (x) != r)
7556 	{
7557 	  /* We must simplify subreg here, before we lose track of the
7558 	     original inner_mode.  */
7559 	  new = simplify_subreg (GET_MODE (x), r,
7560 				 inner_mode, SUBREG_BYTE (x));
7561 	  if (new)
7562 	    return new;
7563 	  else
7564 	    SUBST (SUBREG_REG (x), r);
7565 	}
7566 
7567       return x;
7568     }
7569   /* We don't have to handle SIGN_EXTEND here, because even in the
7570      case of replacing something with a modeless CONST_INT, a
7571      CONST_INT is already (supposed to be) a valid sign extension for
7572      its narrower mode, which implies it's already properly
7573      sign-extended for the wider mode.  Now, for ZERO_EXTEND, the
7574      story is different.  */
7575   else if (code == ZERO_EXTEND)
7576     {
7577       enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7578       rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7579 
7580       if (XEXP (x, 0) != r)
7581 	{
7582 	  /* We must simplify the zero_extend here, before we lose
7583              track of the original inner_mode.  */
7584 	  new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7585 					  r, inner_mode);
7586 	  if (new)
7587 	    return new;
7588 	  else
7589 	    SUBST (XEXP (x, 0), r);
7590 	}
7591 
7592       return x;
7593     }
7594 
7595   fmt = GET_RTX_FORMAT (code);
7596   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7597     {
7598       if (fmt[i] == 'e')
7599 	SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7600       else if (fmt[i] == 'E')
7601 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7602 	  SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7603 						cond, reg, val));
7604     }
7605 
7606   return x;
7607 }
7608 
7609 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7610    assignment as a field assignment.  */
7611 
7612 static int
rtx_equal_for_field_assignment_p(rtx x,rtx y)7613 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7614 {
7615   if (x == y || rtx_equal_p (x, y))
7616     return 1;
7617 
7618   if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7619     return 0;
7620 
7621   /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7622      Note that all SUBREGs of MEM are paradoxical; otherwise they
7623      would have been rewritten.  */
7624   if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7625       && GET_CODE (SUBREG_REG (y)) == MEM
7626       && rtx_equal_p (SUBREG_REG (y),
7627 		      gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7628     return 1;
7629 
7630   if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7631       && GET_CODE (SUBREG_REG (x)) == MEM
7632       && rtx_equal_p (SUBREG_REG (x),
7633 		      gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7634     return 1;
7635 
7636   /* We used to see if get_last_value of X and Y were the same but that's
7637      not correct.  In one direction, we'll cause the assignment to have
7638      the wrong destination and in the case, we'll import a register into this
7639      insn that might have already have been dead.   So fail if none of the
7640      above cases are true.  */
7641   return 0;
7642 }
7643 
7644 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7645    Return that assignment if so.
7646 
7647    We only handle the most common cases.  */
7648 
7649 static rtx
make_field_assignment(rtx x)7650 make_field_assignment (rtx x)
7651 {
7652   rtx dest = SET_DEST (x);
7653   rtx src = SET_SRC (x);
7654   rtx assign;
7655   rtx rhs, lhs;
7656   HOST_WIDE_INT c1;
7657   HOST_WIDE_INT pos;
7658   unsigned HOST_WIDE_INT len;
7659   rtx other;
7660   enum machine_mode mode;
7661 
7662   /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7663      a clear of a one-bit field.  We will have changed it to
7664      (and (rotate (const_int -2) POS) DEST), so check for that.  Also check
7665      for a SUBREG.  */
7666 
7667   if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7668       && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7669       && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7670       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7671     {
7672       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7673 				1, 1, 1, 0);
7674       if (assign != 0)
7675 	return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7676       return x;
7677     }
7678 
7679   else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7680 	   && subreg_lowpart_p (XEXP (src, 0))
7681 	   && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7682 	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7683 	   && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7684 	   && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7685 	   && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7686 	   && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7687     {
7688       assign = make_extraction (VOIDmode, dest, 0,
7689 				XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7690 				1, 1, 1, 0);
7691       if (assign != 0)
7692 	return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7693       return x;
7694     }
7695 
7696   /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7697      one-bit field.  */
7698   else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7699 	   && XEXP (XEXP (src, 0), 0) == const1_rtx
7700 	   && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7701     {
7702       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7703 				1, 1, 1, 0);
7704       if (assign != 0)
7705 	return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7706       return x;
7707     }
7708 
7709   /* The other case we handle is assignments into a constant-position
7710      field.  They look like (ior/xor (and DEST C1) OTHER).  If C1 represents
7711      a mask that has all one bits except for a group of zero bits and
7712      OTHER is known to have zeros where C1 has ones, this is such an
7713      assignment.  Compute the position and length from C1.  Shift OTHER
7714      to the appropriate position, force it to the required mode, and
7715      make the extraction.  Check for the AND in both operands.  */
7716 
7717   if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7718     return x;
7719 
7720   rhs = expand_compound_operation (XEXP (src, 0));
7721   lhs = expand_compound_operation (XEXP (src, 1));
7722 
7723   if (GET_CODE (rhs) == AND
7724       && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7725       && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7726     c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7727   else if (GET_CODE (lhs) == AND
7728 	   && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7729 	   && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7730     c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7731   else
7732     return x;
7733 
7734   pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7735   if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7736       || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7737       || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7738     return x;
7739 
7740   assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7741   if (assign == 0)
7742     return x;
7743 
7744   /* The mode to use for the source is the mode of the assignment, or of
7745      what is inside a possible STRICT_LOW_PART.  */
7746   mode = (GET_CODE (assign) == STRICT_LOW_PART
7747 	  ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7748 
7749   /* Shift OTHER right POS places and make it the source, restricting it
7750      to the proper length and mode.  */
7751 
7752   src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7753 					     GET_MODE (src), other, pos),
7754 		       mode,
7755 		       GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7756 		       ? ~(unsigned HOST_WIDE_INT) 0
7757 		       : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7758 		       dest, 0);
7759 
7760   /* If SRC is masked by an AND that does not make a difference in
7761      the value being stored, strip it.  */
7762   if (GET_CODE (assign) == ZERO_EXTRACT
7763       && GET_CODE (XEXP (assign, 1)) == CONST_INT
7764       && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7765       && GET_CODE (src) == AND
7766       && GET_CODE (XEXP (src, 1)) == CONST_INT
7767       && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7768 	  == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7769     src = XEXP (src, 0);
7770 
7771   return gen_rtx_SET (VOIDmode, assign, src);
7772 }
7773 
7774 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7775    if so.  */
7776 
7777 static rtx
apply_distributive_law(rtx x)7778 apply_distributive_law (rtx x)
7779 {
7780   enum rtx_code code = GET_CODE (x);
7781   enum rtx_code inner_code;
7782   rtx lhs, rhs, other;
7783   rtx tem;
7784 
7785   /* Distributivity is not true for floating point as it can change the
7786      value.  So we don't do it unless -funsafe-math-optimizations.  */
7787   if (FLOAT_MODE_P (GET_MODE (x))
7788       && ! flag_unsafe_math_optimizations)
7789     return x;
7790 
7791   /* The outer operation can only be one of the following:  */
7792   if (code != IOR && code != AND && code != XOR
7793       && code != PLUS && code != MINUS)
7794     return x;
7795 
7796   lhs = XEXP (x, 0);
7797   rhs = XEXP (x, 1);
7798 
7799   /* If either operand is a primitive we can't do anything, so get out
7800      fast.  */
7801   if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7802       || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7803     return x;
7804 
7805   lhs = expand_compound_operation (lhs);
7806   rhs = expand_compound_operation (rhs);
7807   inner_code = GET_CODE (lhs);
7808   if (inner_code != GET_CODE (rhs))
7809     return x;
7810 
7811   /* See if the inner and outer operations distribute.  */
7812   switch (inner_code)
7813     {
7814     case LSHIFTRT:
7815     case ASHIFTRT:
7816     case AND:
7817     case IOR:
7818       /* These all distribute except over PLUS.  */
7819       if (code == PLUS || code == MINUS)
7820 	return x;
7821       break;
7822 
7823     case MULT:
7824       if (code != PLUS && code != MINUS)
7825 	return x;
7826       break;
7827 
7828     case ASHIFT:
7829       /* This is also a multiply, so it distributes over everything.  */
7830       break;
7831 
7832     case SUBREG:
7833       /* Non-paradoxical SUBREGs distributes over all operations, provided
7834 	 the inner modes and byte offsets are the same, this is an extraction
7835 	 of a low-order part, we don't convert an fp operation to int or
7836 	 vice versa, and we would not be converting a single-word
7837 	 operation into a multi-word operation.  The latter test is not
7838 	 required, but it prevents generating unneeded multi-word operations.
7839 	 Some of the previous tests are redundant given the latter test, but
7840 	 are retained because they are required for correctness.
7841 
7842 	 We produce the result slightly differently in this case.  */
7843 
7844       if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7845 	  || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7846 	  || ! subreg_lowpart_p (lhs)
7847 	  || (GET_MODE_CLASS (GET_MODE (lhs))
7848 	      != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7849 	  || (GET_MODE_SIZE (GET_MODE (lhs))
7850 	      > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7851 	  || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7852 	return x;
7853 
7854       tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7855 			SUBREG_REG (lhs), SUBREG_REG (rhs));
7856       return gen_lowpart_for_combine (GET_MODE (x), tem);
7857 
7858     default:
7859       return x;
7860     }
7861 
7862   /* Set LHS and RHS to the inner operands (A and B in the example
7863      above) and set OTHER to the common operand (C in the example).
7864      These is only one way to do this unless the inner operation is
7865      commutative.  */
7866   if (GET_RTX_CLASS (inner_code) == 'c'
7867       && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7868     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7869   else if (GET_RTX_CLASS (inner_code) == 'c'
7870 	   && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7871     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7872   else if (GET_RTX_CLASS (inner_code) == 'c'
7873 	   && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7874     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7875   else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7876     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7877   else
7878     return x;
7879 
7880   /* Form the new inner operation, seeing if it simplifies first.  */
7881   tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7882 
7883   /* There is one exception to the general way of distributing:
7884      (a | c) ^ (b | c) -> (a ^ b) & ~c  */
7885   if (code == XOR && inner_code == IOR)
7886     {
7887       inner_code = AND;
7888       other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7889     }
7890 
7891   /* We may be able to continuing distributing the result, so call
7892      ourselves recursively on the inner operation before forming the
7893      outer operation, which we return.  */
7894   return gen_binary (inner_code, GET_MODE (x),
7895 		     apply_distributive_law (tem), other);
7896 }
7897 
7898 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7899    in MODE.
7900 
7901    Return an equivalent form, if different from X.  Otherwise, return X.  If
7902    X is zero, we are to always construct the equivalent form.  */
7903 
7904 static rtx
simplify_and_const_int(rtx x,enum machine_mode mode,rtx varop,unsigned HOST_WIDE_INT constop)7905 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
7906 			unsigned HOST_WIDE_INT constop)
7907 {
7908   unsigned HOST_WIDE_INT nonzero;
7909   int i;
7910 
7911   /* Simplify VAROP knowing that we will be only looking at some of the
7912      bits in it.
7913 
7914      Note by passing in CONSTOP, we guarantee that the bits not set in
7915      CONSTOP are not significant and will never be examined.  We must
7916      ensure that is the case by explicitly masking out those bits
7917      before returning.  */
7918   varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7919 
7920   /* If VAROP is a CLOBBER, we will fail so return it.  */
7921   if (GET_CODE (varop) == CLOBBER)
7922     return varop;
7923 
7924   /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7925      to VAROP and return the new constant.  */
7926   if (GET_CODE (varop) == CONST_INT)
7927     return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7928 
7929   /* See what bits may be nonzero in VAROP.  Unlike the general case of
7930      a call to nonzero_bits, here we don't care about bits outside
7931      MODE.  */
7932 
7933   nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7934 
7935   /* Turn off all bits in the constant that are known to already be zero.
7936      Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7937      which is tested below.  */
7938 
7939   constop &= nonzero;
7940 
7941   /* If we don't have any bits left, return zero.  */
7942   if (constop == 0)
7943     return const0_rtx;
7944 
7945   /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7946      a power of two, we can replace this with an ASHIFT.  */
7947   if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7948       && (i = exact_log2 (constop)) >= 0)
7949     return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7950 
7951   /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7952      or XOR, then try to apply the distributive law.  This may eliminate
7953      operations if either branch can be simplified because of the AND.
7954      It may also make some cases more complex, but those cases probably
7955      won't match a pattern either with or without this.  */
7956 
7957   if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7958     return
7959       gen_lowpart_for_combine
7960 	(mode,
7961 	 apply_distributive_law
7962 	 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7963 		      simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7964 					      XEXP (varop, 0), constop),
7965 		      simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7966 					      XEXP (varop, 1), constop))));
7967 
7968   /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7969      the AND and see if one of the operands simplifies to zero.  If so, we
7970      may eliminate it.  */
7971 
7972   if (GET_CODE (varop) == PLUS
7973       && exact_log2 (constop + 1) >= 0)
7974     {
7975       rtx o0, o1;
7976 
7977       o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
7978       o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
7979       if (o0 == const0_rtx)
7980 	return o1;
7981       if (o1 == const0_rtx)
7982 	return o0;
7983     }
7984 
7985   /* Get VAROP in MODE.  Try to get a SUBREG if not.  Don't make a new SUBREG
7986      if we already had one (just check for the simplest cases).  */
7987   if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7988       && GET_MODE (XEXP (x, 0)) == mode
7989       && SUBREG_REG (XEXP (x, 0)) == varop)
7990     varop = XEXP (x, 0);
7991   else
7992     varop = gen_lowpart_for_combine (mode, varop);
7993 
7994   /* If we can't make the SUBREG, try to return what we were given.  */
7995   if (GET_CODE (varop) == CLOBBER)
7996     return x ? x : varop;
7997 
7998   /* If we are only masking insignificant bits, return VAROP.  */
7999   if (constop == nonzero)
8000     x = varop;
8001   else
8002     {
8003       /* Otherwise, return an AND.  */
8004       constop = trunc_int_for_mode (constop, mode);
8005       /* See how much, if any, of X we can use.  */
8006       if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8007 	x = gen_binary (AND, mode, varop, GEN_INT (constop));
8008 
8009       else
8010 	{
8011 	  if (GET_CODE (XEXP (x, 1)) != CONST_INT
8012 	      || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8013 	    SUBST (XEXP (x, 1), GEN_INT (constop));
8014 
8015 	  SUBST (XEXP (x, 0), varop);
8016 	}
8017     }
8018 
8019   return x;
8020 }
8021 
8022 #define nonzero_bits_with_known(X, MODE) \
8023   cached_nonzero_bits (X, MODE, known_x, known_mode, known_ret)
8024 
8025 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
8026    It avoids exponential behavior in nonzero_bits1 when X has
8027    identical subexpressions on the first or the second level.  */
8028 
8029 static unsigned HOST_WIDE_INT
cached_nonzero_bits(rtx x,enum machine_mode mode,rtx known_x,enum machine_mode known_mode,unsigned HOST_WIDE_INT known_ret)8030 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
8031 		     enum machine_mode known_mode,
8032 		     unsigned HOST_WIDE_INT known_ret)
8033 {
8034   if (x == known_x && mode == known_mode)
8035     return known_ret;
8036 
8037   /* Try to find identical subexpressions.  If found call
8038      nonzero_bits1 on X with the subexpressions as KNOWN_X and the
8039      precomputed value for the subexpression as KNOWN_RET.  */
8040 
8041   if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8042       || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8043     {
8044       rtx x0 = XEXP (x, 0);
8045       rtx x1 = XEXP (x, 1);
8046 
8047       /* Check the first level.  */
8048       if (x0 == x1)
8049 	return nonzero_bits1 (x, mode, x0, mode,
8050 			      nonzero_bits_with_known (x0, mode));
8051 
8052       /* Check the second level.  */
8053       if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8054 	   || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8055 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8056 	return nonzero_bits1 (x, mode, x1, mode,
8057 			      nonzero_bits_with_known (x1, mode));
8058 
8059       if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8060 	   || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8061 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8062 	return nonzero_bits1 (x, mode, x0, mode,
8063 			 nonzero_bits_with_known (x0, mode));
8064     }
8065 
8066   return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
8067 }
8068 
8069 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8070    We don't let nonzero_bits recur into num_sign_bit_copies, because that
8071    is less useful.  We can't allow both, because that results in exponential
8072    run time recursion.  There is a nullstone testcase that triggered
8073    this.  This macro avoids accidental uses of num_sign_bit_copies.  */
8074 #define cached_num_sign_bit_copies()
8075 
8076 /* Given an expression, X, compute which bits in X can be nonzero.
8077    We don't care about bits outside of those defined in MODE.
8078 
8079    For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8080    a shift, AND, or zero_extract, we can do better.  */
8081 
8082 static unsigned HOST_WIDE_INT
nonzero_bits1(rtx x,enum machine_mode mode,rtx known_x,enum machine_mode known_mode,unsigned HOST_WIDE_INT known_ret)8083 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
8084 	       enum machine_mode known_mode,
8085 	       unsigned HOST_WIDE_INT known_ret)
8086 {
8087   unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8088   unsigned HOST_WIDE_INT inner_nz;
8089   enum rtx_code code;
8090   unsigned int mode_width = GET_MODE_BITSIZE (mode);
8091   rtx tem;
8092 
8093   /* For floating-point values, assume all bits are needed.  */
8094   if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8095     return nonzero;
8096 
8097   /* If X is wider than MODE, use its mode instead.  */
8098   if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8099     {
8100       mode = GET_MODE (x);
8101       nonzero = GET_MODE_MASK (mode);
8102       mode_width = GET_MODE_BITSIZE (mode);
8103     }
8104 
8105   if (mode_width > HOST_BITS_PER_WIDE_INT)
8106     /* Our only callers in this case look for single bit values.  So
8107        just return the mode mask.  Those tests will then be false.  */
8108     return nonzero;
8109 
8110 #ifndef WORD_REGISTER_OPERATIONS
8111   /* If MODE is wider than X, but both are a single word for both the host
8112      and target machines, we can compute this from which bits of the
8113      object might be nonzero in its own mode, taking into account the fact
8114      that on many CISC machines, accessing an object in a wider mode
8115      causes the high-order bits to become undefined.  So they are
8116      not known to be zero.  */
8117 
8118   if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8119       && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8120       && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8121       && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8122     {
8123       nonzero &= nonzero_bits_with_known (x, GET_MODE (x));
8124       nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8125       return nonzero;
8126     }
8127 #endif
8128 
8129   code = GET_CODE (x);
8130   switch (code)
8131     {
8132     case REG:
8133 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8134       /* If pointers extend unsigned and this is a pointer in Pmode, say that
8135 	 all the bits above ptr_mode are known to be zero.  */
8136       if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8137 	  && REG_POINTER (x))
8138 	nonzero &= GET_MODE_MASK (ptr_mode);
8139 #endif
8140 
8141       /* Include declared information about alignment of pointers.  */
8142       /* ??? We don't properly preserve REG_POINTER changes across
8143 	 pointer-to-integer casts, so we can't trust it except for
8144 	 things that we know must be pointers.  See execute/960116-1.c.  */
8145       if ((x == stack_pointer_rtx
8146 	   || x == frame_pointer_rtx
8147 	   || x == arg_pointer_rtx)
8148 	  && REGNO_POINTER_ALIGN (REGNO (x)))
8149 	{
8150 	  unsigned HOST_WIDE_INT alignment
8151 	    = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8152 
8153 #ifdef PUSH_ROUNDING
8154 	  /* If PUSH_ROUNDING is defined, it is possible for the
8155 	     stack to be momentarily aligned only to that amount,
8156 	     so we pick the least alignment.  */
8157 	  if (x == stack_pointer_rtx && PUSH_ARGS)
8158 	    alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
8159 			     alignment);
8160 #endif
8161 
8162 	  nonzero &= ~(alignment - 1);
8163 	}
8164 
8165       /* If X is a register whose nonzero bits value is current, use it.
8166 	 Otherwise, if X is a register whose value we can find, use that
8167 	 value.  Otherwise, use the previously-computed global nonzero bits
8168 	 for this register.  */
8169 
8170       if (reg_last_set_value[REGNO (x)] != 0
8171 	  && (reg_last_set_mode[REGNO (x)] == mode
8172 	      || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8173 		  && GET_MODE_CLASS (mode) == MODE_INT))
8174 	  && (reg_last_set_label[REGNO (x)] == label_tick
8175 	      || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8176 		  && REG_N_SETS (REGNO (x)) == 1
8177 		  && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8178 					REGNO (x))))
8179 	  && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8180 	return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8181 
8182       tem = get_last_value (x);
8183 
8184       if (tem)
8185 	{
8186 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8187 	  /* If X is narrower than MODE and TEM is a non-negative
8188 	     constant that would appear negative in the mode of X,
8189 	     sign-extend it for use in reg_nonzero_bits because some
8190 	     machines (maybe most) will actually do the sign-extension
8191 	     and this is the conservative approach.
8192 
8193 	     ??? For 2.5, try to tighten up the MD files in this regard
8194 	     instead of this kludge.  */
8195 
8196 	  if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8197 	      && GET_CODE (tem) == CONST_INT
8198 	      && INTVAL (tem) > 0
8199 	      && 0 != (INTVAL (tem)
8200 		       & ((HOST_WIDE_INT) 1
8201 			  << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8202 	    tem = GEN_INT (INTVAL (tem)
8203 			   | ((HOST_WIDE_INT) (-1)
8204 			      << GET_MODE_BITSIZE (GET_MODE (x))));
8205 #endif
8206 	  return nonzero_bits_with_known (tem, mode) & nonzero;
8207 	}
8208       else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8209 	{
8210 	  unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8211 
8212 	  if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8213 	    /* We don't know anything about the upper bits.  */
8214 	    mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8215 	  return nonzero & mask;
8216 	}
8217       else
8218 	return nonzero;
8219 
8220     case CONST_INT:
8221 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8222       /* If X is negative in MODE, sign-extend the value.  */
8223       if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8224 	  && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8225 	return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8226 #endif
8227 
8228       return INTVAL (x);
8229 
8230     case MEM:
8231 #ifdef LOAD_EXTEND_OP
8232       /* In many, if not most, RISC machines, reading a byte from memory
8233 	 zeros the rest of the register.  Noticing that fact saves a lot
8234 	 of extra zero-extends.  */
8235       if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8236 	nonzero &= GET_MODE_MASK (GET_MODE (x));
8237 #endif
8238       break;
8239 
8240     case EQ:  case NE:
8241     case UNEQ:  case LTGT:
8242     case GT:  case GTU:  case UNGT:
8243     case LT:  case LTU:  case UNLT:
8244     case GE:  case GEU:  case UNGE:
8245     case LE:  case LEU:  case UNLE:
8246     case UNORDERED: case ORDERED:
8247 
8248       /* If this produces an integer result, we know which bits are set.
8249 	 Code here used to clear bits outside the mode of X, but that is
8250 	 now done above.  */
8251 
8252       if (GET_MODE_CLASS (mode) == MODE_INT
8253 	  && mode_width <= HOST_BITS_PER_WIDE_INT)
8254 	nonzero = STORE_FLAG_VALUE;
8255       break;
8256 
8257     case NEG:
8258 #if 0
8259       /* Disabled to avoid exponential mutual recursion between nonzero_bits
8260 	 and num_sign_bit_copies.  */
8261       if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8262 	  == GET_MODE_BITSIZE (GET_MODE (x)))
8263 	nonzero = 1;
8264 #endif
8265 
8266       if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8267 	nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8268       break;
8269 
8270     case ABS:
8271 #if 0
8272       /* Disabled to avoid exponential mutual recursion between nonzero_bits
8273 	 and num_sign_bit_copies.  */
8274       if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8275 	  == GET_MODE_BITSIZE (GET_MODE (x)))
8276 	nonzero = 1;
8277 #endif
8278       break;
8279 
8280     case TRUNCATE:
8281       nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8282 		  & GET_MODE_MASK (mode));
8283       break;
8284 
8285     case ZERO_EXTEND:
8286       nonzero &= nonzero_bits_with_known (XEXP (x, 0), mode);
8287       if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8288 	nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8289       break;
8290 
8291     case SIGN_EXTEND:
8292       /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8293 	 Otherwise, show all the bits in the outer mode but not the inner
8294 	 may be nonzero.  */
8295       inner_nz = nonzero_bits_with_known (XEXP (x, 0), mode);
8296       if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8297 	{
8298 	  inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8299 	  if (inner_nz
8300 	      & (((HOST_WIDE_INT) 1
8301 		  << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8302 	    inner_nz |= (GET_MODE_MASK (mode)
8303 			 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8304 	}
8305 
8306       nonzero &= inner_nz;
8307       break;
8308 
8309     case AND:
8310       nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8311 		  & nonzero_bits_with_known (XEXP (x, 1), mode));
8312       break;
8313 
8314     case XOR:   case IOR:
8315     case UMIN:  case UMAX:  case SMIN:  case SMAX:
8316       {
8317 	unsigned HOST_WIDE_INT nonzero0 =
8318 	  nonzero_bits_with_known (XEXP (x, 0), mode);
8319 
8320 	/* Don't call nonzero_bits for the second time if it cannot change
8321 	   anything.  */
8322 	if ((nonzero & nonzero0) != nonzero)
8323 	  nonzero &= (nonzero0
8324 		      | nonzero_bits_with_known (XEXP (x, 1), mode));
8325       }
8326       break;
8327 
8328     case PLUS:  case MINUS:
8329     case MULT:
8330     case DIV:   case UDIV:
8331     case MOD:   case UMOD:
8332       /* We can apply the rules of arithmetic to compute the number of
8333 	 high- and low-order zero bits of these operations.  We start by
8334 	 computing the width (position of the highest-order nonzero bit)
8335 	 and the number of low-order zero bits for each value.  */
8336       {
8337 	unsigned HOST_WIDE_INT nz0 =
8338 	  nonzero_bits_with_known (XEXP (x, 0), mode);
8339 	unsigned HOST_WIDE_INT nz1 =
8340 	  nonzero_bits_with_known (XEXP (x, 1), mode);
8341 	int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
8342 	int width0 = floor_log2 (nz0) + 1;
8343 	int width1 = floor_log2 (nz1) + 1;
8344 	int low0 = floor_log2 (nz0 & -nz0);
8345 	int low1 = floor_log2 (nz1 & -nz1);
8346 	HOST_WIDE_INT op0_maybe_minusp
8347 	  = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
8348 	HOST_WIDE_INT op1_maybe_minusp
8349 	  = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
8350 	unsigned int result_width = mode_width;
8351 	int result_low = 0;
8352 
8353 	switch (code)
8354 	  {
8355 	  case PLUS:
8356 	    result_width = MAX (width0, width1) + 1;
8357 	    result_low = MIN (low0, low1);
8358 	    break;
8359 	  case MINUS:
8360 	    result_low = MIN (low0, low1);
8361 	    break;
8362 	  case MULT:
8363 	    result_width = width0 + width1;
8364 	    result_low = low0 + low1;
8365 	    break;
8366 	  case DIV:
8367 	    if (width1 == 0)
8368 	      break;
8369 	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
8370 	      result_width = width0;
8371 	    break;
8372 	  case UDIV:
8373 	    if (width1 == 0)
8374 	      break;
8375 	    result_width = width0;
8376 	    break;
8377 	  case MOD:
8378 	    if (width1 == 0)
8379 	      break;
8380 	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
8381 	      result_width = MIN (width0, width1);
8382 	    result_low = MIN (low0, low1);
8383 	    break;
8384 	  case UMOD:
8385 	    if (width1 == 0)
8386 	      break;
8387 	    result_width = MIN (width0, width1);
8388 	    result_low = MIN (low0, low1);
8389 	    break;
8390 	  default:
8391 	    abort ();
8392 	  }
8393 
8394 	if (result_width < mode_width)
8395 	  nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8396 
8397 	if (result_low > 0)
8398 	  nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8399 
8400 #ifdef POINTERS_EXTEND_UNSIGNED
8401 	/* If pointers extend unsigned and this is an addition or subtraction
8402 	   to a pointer in Pmode, all the bits above ptr_mode are known to be
8403 	   zero.  */
8404 	if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8405 	    && (code == PLUS || code == MINUS)
8406 	    && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8407 	  nonzero &= GET_MODE_MASK (ptr_mode);
8408 #endif
8409       }
8410       break;
8411 
8412     case ZERO_EXTRACT:
8413       if (GET_CODE (XEXP (x, 1)) == CONST_INT
8414 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8415 	nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8416       break;
8417 
8418     case SUBREG:
8419       /* If this is a SUBREG formed for a promoted variable that has
8420 	 been zero-extended, we know that at least the high-order bits
8421 	 are zero, though others might be too.  */
8422 
8423       if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8424 	nonzero = (GET_MODE_MASK (GET_MODE (x))
8425 		   & nonzero_bits_with_known (SUBREG_REG (x), GET_MODE (x)));
8426 
8427       /* If the inner mode is a single word for both the host and target
8428 	 machines, we can compute this from which bits of the inner
8429 	 object might be nonzero.  */
8430       if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8431 	  && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8432 	      <= HOST_BITS_PER_WIDE_INT))
8433 	{
8434 	  nonzero &= nonzero_bits_with_known (SUBREG_REG (x), mode);
8435 
8436 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8437 	  /* If this is a typical RISC machine, we only have to worry
8438 	     about the way loads are extended.  */
8439 	  if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8440 	       ? (((nonzero
8441 		    & (((unsigned HOST_WIDE_INT) 1
8442 			<< (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8443 		   != 0))
8444 	       : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8445 	      || GET_CODE (SUBREG_REG (x)) != MEM)
8446 #endif
8447 	    {
8448 	      /* On many CISC machines, accessing an object in a wider mode
8449 		 causes the high-order bits to become undefined.  So they are
8450 		 not known to be zero.  */
8451 	      if (GET_MODE_SIZE (GET_MODE (x))
8452 		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8453 		nonzero |= (GET_MODE_MASK (GET_MODE (x))
8454 			    & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8455 	    }
8456 	}
8457       break;
8458 
8459     case ASHIFTRT:
8460     case LSHIFTRT:
8461     case ASHIFT:
8462     case ROTATE:
8463       /* The nonzero bits are in two classes: any bits within MODE
8464 	 that aren't in GET_MODE (x) are always significant.  The rest of the
8465 	 nonzero bits are those that are significant in the operand of
8466 	 the shift when shifted the appropriate number of bits.  This
8467 	 shows that high-order bits are cleared by the right shift and
8468 	 low-order bits by left shifts.  */
8469       if (GET_CODE (XEXP (x, 1)) == CONST_INT
8470 	  && INTVAL (XEXP (x, 1)) >= 0
8471 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8472 	{
8473 	  enum machine_mode inner_mode = GET_MODE (x);
8474 	  unsigned int width = GET_MODE_BITSIZE (inner_mode);
8475 	  int count = INTVAL (XEXP (x, 1));
8476 	  unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8477 	  unsigned HOST_WIDE_INT op_nonzero =
8478 	    nonzero_bits_with_known (XEXP (x, 0), mode);
8479 	  unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8480 	  unsigned HOST_WIDE_INT outer = 0;
8481 
8482 	  if (mode_width > width)
8483 	    outer = (op_nonzero & nonzero & ~mode_mask);
8484 
8485 	  if (code == LSHIFTRT)
8486 	    inner >>= count;
8487 	  else if (code == ASHIFTRT)
8488 	    {
8489 	      inner >>= count;
8490 
8491 	      /* If the sign bit may have been nonzero before the shift, we
8492 		 need to mark all the places it could have been copied to
8493 		 by the shift as possibly nonzero.  */
8494 	      if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8495 		inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8496 	    }
8497 	  else if (code == ASHIFT)
8498 	    inner <<= count;
8499 	  else
8500 	    inner = ((inner << (count % width)
8501 		      | (inner >> (width - (count % width)))) & mode_mask);
8502 
8503 	  nonzero &= (outer | inner);
8504 	}
8505       break;
8506 
8507     case FFS:
8508     case POPCOUNT:
8509       /* This is at most the number of bits in the mode.  */
8510       nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
8511       break;
8512 
8513     case CLZ:
8514       /* If CLZ has a known value at zero, then the nonzero bits are
8515 	 that value, plus the number of bits in the mode minus one.  */
8516       if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8517 	nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8518       else
8519 	nonzero = -1;
8520       break;
8521 
8522     case CTZ:
8523       /* If CTZ has a known value at zero, then the nonzero bits are
8524 	 that value, plus the number of bits in the mode minus one.  */
8525       if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8526 	nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8527       else
8528 	nonzero = -1;
8529       break;
8530 
8531     case PARITY:
8532       nonzero = 1;
8533       break;
8534 
8535     case IF_THEN_ELSE:
8536       nonzero &= (nonzero_bits_with_known (XEXP (x, 1), mode)
8537 		  | nonzero_bits_with_known (XEXP (x, 2), mode));
8538       break;
8539 
8540     default:
8541       break;
8542     }
8543 
8544   return nonzero;
8545 }
8546 
8547 /* See the macro definition above.  */
8548 #undef cached_num_sign_bit_copies
8549 
8550 #define num_sign_bit_copies_with_known(X, M) \
8551   cached_num_sign_bit_copies (X, M, known_x, known_mode, known_ret)
8552 
8553 /* The function cached_num_sign_bit_copies is a wrapper around
8554    num_sign_bit_copies1.  It avoids exponential behavior in
8555    num_sign_bit_copies1 when X has identical subexpressions on the
8556    first or the second level.  */
8557 
8558 static unsigned int
cached_num_sign_bit_copies(rtx x,enum machine_mode mode,rtx known_x,enum machine_mode known_mode,unsigned int known_ret)8559 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
8560 			    enum machine_mode known_mode,
8561 			    unsigned int known_ret)
8562 {
8563   if (x == known_x && mode == known_mode)
8564     return known_ret;
8565 
8566   /* Try to find identical subexpressions.  If found call
8567      num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
8568      the precomputed value for the subexpression as KNOWN_RET.  */
8569 
8570   if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8571       || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8572     {
8573       rtx x0 = XEXP (x, 0);
8574       rtx x1 = XEXP (x, 1);
8575 
8576       /* Check the first level.  */
8577       if (x0 == x1)
8578 	return
8579 	  num_sign_bit_copies1 (x, mode, x0, mode,
8580 				num_sign_bit_copies_with_known (x0, mode));
8581 
8582       /* Check the second level.  */
8583       if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8584 	   || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8585 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8586 	return
8587 	  num_sign_bit_copies1 (x, mode, x1, mode,
8588 				num_sign_bit_copies_with_known (x1, mode));
8589 
8590       if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8591 	   || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8592 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8593 	return
8594 	  num_sign_bit_copies1 (x, mode, x0, mode,
8595 				num_sign_bit_copies_with_known (x0, mode));
8596     }
8597 
8598   return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
8599 }
8600 
8601 /* Return the number of bits at the high-order end of X that are known to
8602    be equal to the sign bit.  X will be used in mode MODE; if MODE is
8603    VOIDmode, X will be used in its own mode.  The returned value  will always
8604    be between 1 and the number of bits in MODE.  */
8605 
8606 static unsigned int
num_sign_bit_copies1(rtx x,enum machine_mode mode,rtx known_x,enum machine_mode known_mode,unsigned int known_ret)8607 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
8608 		      enum machine_mode known_mode,
8609 		      unsigned int known_ret)
8610 {
8611   enum rtx_code code = GET_CODE (x);
8612   unsigned int bitwidth;
8613   int num0, num1, result;
8614   unsigned HOST_WIDE_INT nonzero;
8615   rtx tem;
8616 
8617   /* If we weren't given a mode, use the mode of X.  If the mode is still
8618      VOIDmode, we don't know anything.  Likewise if one of the modes is
8619      floating-point.  */
8620 
8621   if (mode == VOIDmode)
8622     mode = GET_MODE (x);
8623 
8624   if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8625     return 1;
8626 
8627   bitwidth = GET_MODE_BITSIZE (mode);
8628 
8629   /* For a smaller object, just ignore the high bits.  */
8630   if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8631     {
8632       num0 = num_sign_bit_copies_with_known (x, GET_MODE (x));
8633       return MAX (1,
8634 		  num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8635     }
8636 
8637   if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8638     {
8639 #ifndef WORD_REGISTER_OPERATIONS
8640   /* If this machine does not do all register operations on the entire
8641      register and MODE is wider than the mode of X, we can say nothing
8642      at all about the high-order bits.  */
8643       return 1;
8644 #else
8645       /* Likewise on machines that do, if the mode of the object is smaller
8646 	 than a word and loads of that size don't sign extend, we can say
8647 	 nothing about the high order bits.  */
8648       if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8649 #ifdef LOAD_EXTEND_OP
8650 	  && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8651 #endif
8652 	  )
8653 	return 1;
8654 #endif
8655     }
8656 
8657   switch (code)
8658     {
8659     case REG:
8660 
8661 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8662       /* If pointers extend signed and this is a pointer in Pmode, say that
8663 	 all the bits above ptr_mode are known to be sign bit copies.  */
8664       if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8665 	  && REG_POINTER (x))
8666 	return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8667 #endif
8668 
8669       if (reg_last_set_value[REGNO (x)] != 0
8670 	  && reg_last_set_mode[REGNO (x)] == mode
8671 	  && (reg_last_set_label[REGNO (x)] == label_tick
8672 	      || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8673 		  && REG_N_SETS (REGNO (x)) == 1
8674 		  && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8675 					REGNO (x))))
8676 	  && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8677 	return reg_last_set_sign_bit_copies[REGNO (x)];
8678 
8679       tem = get_last_value (x);
8680       if (tem != 0)
8681 	return num_sign_bit_copies_with_known (tem, mode);
8682 
8683       if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8684 	  && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8685 	return reg_sign_bit_copies[REGNO (x)];
8686       break;
8687 
8688     case MEM:
8689 #ifdef LOAD_EXTEND_OP
8690       /* Some RISC machines sign-extend all loads of smaller than a word.  */
8691       if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8692 	return MAX (1, ((int) bitwidth
8693 			- (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8694 #endif
8695       break;
8696 
8697     case CONST_INT:
8698       /* If the constant is negative, take its 1's complement and remask.
8699 	 Then see how many zero bits we have.  */
8700       nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8701       if (bitwidth <= HOST_BITS_PER_WIDE_INT
8702 	  && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8703 	nonzero = (~nonzero) & GET_MODE_MASK (mode);
8704 
8705       return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8706 
8707     case SUBREG:
8708       /* If this is a SUBREG for a promoted object that is sign-extended
8709 	 and we are looking at it in a wider mode, we know that at least the
8710 	 high-order bits are known to be sign bit copies.  */
8711 
8712       if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8713 	{
8714 	  num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8715 	  return MAX ((int) bitwidth
8716 		      - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8717 		      num0);
8718 	}
8719 
8720       /* For a smaller object, just ignore the high bits.  */
8721       if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8722 	{
8723 	  num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), VOIDmode);
8724 	  return MAX (1, (num0
8725 			  - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8726 				   - bitwidth)));
8727 	}
8728 
8729 #ifdef WORD_REGISTER_OPERATIONS
8730 #ifdef LOAD_EXTEND_OP
8731       /* For paradoxical SUBREGs on machines where all register operations
8732 	 affect the entire register, just look inside.  Note that we are
8733 	 passing MODE to the recursive call, so the number of sign bit copies
8734 	 will remain relative to that mode, not the inner mode.  */
8735 
8736       /* This works only if loads sign extend.  Otherwise, if we get a
8737 	 reload for the inner part, it may be loaded from the stack, and
8738 	 then we lose all sign bit copies that existed before the store
8739 	 to the stack.  */
8740 
8741       if ((GET_MODE_SIZE (GET_MODE (x))
8742 	   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8743 	  && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8744 	  && GET_CODE (SUBREG_REG (x)) == MEM)
8745 	return num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8746 #endif
8747 #endif
8748       break;
8749 
8750     case SIGN_EXTRACT:
8751       if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8752 	return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8753       break;
8754 
8755     case SIGN_EXTEND:
8756       return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8757 	      + num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode));
8758 
8759     case TRUNCATE:
8760       /* For a smaller object, just ignore the high bits.  */
8761       num0 = num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode);
8762       return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8763 				    - bitwidth)));
8764 
8765     case NOT:
8766       return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8767 
8768     case ROTATE:       case ROTATERT:
8769       /* If we are rotating left by a number of bits less than the number
8770 	 of sign bit copies, we can just subtract that amount from the
8771 	 number.  */
8772       if (GET_CODE (XEXP (x, 1)) == CONST_INT
8773 	  && INTVAL (XEXP (x, 1)) >= 0
8774 	  && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8775 	{
8776 	  num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8777 	  return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8778 				 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8779 	}
8780       break;
8781 
8782     case NEG:
8783       /* In general, this subtracts one sign bit copy.  But if the value
8784 	 is known to be positive, the number of sign bit copies is the
8785 	 same as that of the input.  Finally, if the input has just one bit
8786 	 that might be nonzero, all the bits are copies of the sign bit.  */
8787       num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8788       if (bitwidth > HOST_BITS_PER_WIDE_INT)
8789 	return num0 > 1 ? num0 - 1 : 1;
8790 
8791       nonzero = nonzero_bits (XEXP (x, 0), mode);
8792       if (nonzero == 1)
8793 	return bitwidth;
8794 
8795       if (num0 > 1
8796 	  && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8797 	num0--;
8798 
8799       return num0;
8800 
8801     case IOR:   case AND:   case XOR:
8802     case SMIN:  case SMAX:  case UMIN:  case UMAX:
8803       /* Logical operations will preserve the number of sign-bit copies.
8804 	 MIN and MAX operations always return one of the operands.  */
8805       num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8806       num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8807       return MIN (num0, num1);
8808 
8809     case PLUS:  case MINUS:
8810       /* For addition and subtraction, we can have a 1-bit carry.  However,
8811 	 if we are subtracting 1 from a positive number, there will not
8812 	 be such a carry.  Furthermore, if the positive number is known to
8813 	 be 0 or 1, we know the result is either -1 or 0.  */
8814 
8815       if (code == PLUS && XEXP (x, 1) == constm1_rtx
8816 	  && bitwidth <= HOST_BITS_PER_WIDE_INT)
8817 	{
8818 	  nonzero = nonzero_bits (XEXP (x, 0), mode);
8819 	  if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8820 	    return (nonzero == 1 || nonzero == 0 ? bitwidth
8821 		    : bitwidth - floor_log2 (nonzero) - 1);
8822 	}
8823 
8824       num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8825       num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8826       result = MAX (1, MIN (num0, num1) - 1);
8827 
8828 #ifdef POINTERS_EXTEND_UNSIGNED
8829       /* If pointers extend signed and this is an addition or subtraction
8830 	 to a pointer in Pmode, all the bits above ptr_mode are known to be
8831 	 sign bit copies.  */
8832       if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8833 	  && (code == PLUS || code == MINUS)
8834 	  && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8835 	result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8836 			     - GET_MODE_BITSIZE (ptr_mode) + 1),
8837 		      result);
8838 #endif
8839       return result;
8840 
8841     case MULT:
8842       /* The number of bits of the product is the sum of the number of
8843 	 bits of both terms.  However, unless one of the terms if known
8844 	 to be positive, we must allow for an additional bit since negating
8845 	 a negative number can remove one sign bit copy.  */
8846 
8847       num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8848       num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8849 
8850       result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8851       if (result > 0
8852 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
8853 	      || (((nonzero_bits (XEXP (x, 0), mode)
8854 		    & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8855 		  && ((nonzero_bits (XEXP (x, 1), mode)
8856 		       & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8857 	result--;
8858 
8859       return MAX (1, result);
8860 
8861     case UDIV:
8862       /* The result must be <= the first operand.  If the first operand
8863          has the high bit set, we know nothing about the number of sign
8864          bit copies.  */
8865       if (bitwidth > HOST_BITS_PER_WIDE_INT)
8866 	return 1;
8867       else if ((nonzero_bits (XEXP (x, 0), mode)
8868 		& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8869 	return 1;
8870       else
8871 	return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8872 
8873     case UMOD:
8874       /* The result must be <= the second operand.  */
8875       return num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8876 
8877     case DIV:
8878       /* Similar to unsigned division, except that we have to worry about
8879 	 the case where the divisor is negative, in which case we have
8880 	 to add 1.  */
8881       result = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8882       if (result > 1
8883 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
8884 	      || (nonzero_bits (XEXP (x, 1), mode)
8885 		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8886 	result--;
8887 
8888       return result;
8889 
8890     case MOD:
8891       result = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8892       if (result > 1
8893 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
8894 	      || (nonzero_bits (XEXP (x, 1), mode)
8895 		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8896 	result--;
8897 
8898       return result;
8899 
8900     case ASHIFTRT:
8901       /* Shifts by a constant add to the number of bits equal to the
8902 	 sign bit.  */
8903       num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8904       if (GET_CODE (XEXP (x, 1)) == CONST_INT
8905 	  && INTVAL (XEXP (x, 1)) > 0)
8906 	num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8907 
8908       return num0;
8909 
8910     case ASHIFT:
8911       /* Left shifts destroy copies.  */
8912       if (GET_CODE (XEXP (x, 1)) != CONST_INT
8913 	  || INTVAL (XEXP (x, 1)) < 0
8914 	  || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8915 	return 1;
8916 
8917       num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8918       return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8919 
8920     case IF_THEN_ELSE:
8921       num0 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8922       num1 = num_sign_bit_copies_with_known (XEXP (x, 2), mode);
8923       return MIN (num0, num1);
8924 
8925     case EQ:  case NE:  case GE:  case GT:  case LE:  case LT:
8926     case UNEQ:  case LTGT:  case UNGE:  case UNGT:  case UNLE:  case UNLT:
8927     case GEU: case GTU: case LEU: case LTU:
8928     case UNORDERED: case ORDERED:
8929       /* If the constant is negative, take its 1's complement and remask.
8930 	 Then see how many zero bits we have.  */
8931       nonzero = STORE_FLAG_VALUE;
8932       if (bitwidth <= HOST_BITS_PER_WIDE_INT
8933 	  && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8934 	nonzero = (~nonzero) & GET_MODE_MASK (mode);
8935 
8936       return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8937       break;
8938 
8939     default:
8940       break;
8941     }
8942 
8943   /* If we haven't been able to figure it out by one of the above rules,
8944      see if some of the high-order bits are known to be zero.  If so,
8945      count those bits and return one less than that amount.  If we can't
8946      safely compute the mask for this mode, always return BITWIDTH.  */
8947 
8948   if (bitwidth > HOST_BITS_PER_WIDE_INT)
8949     return 1;
8950 
8951   nonzero = nonzero_bits (x, mode);
8952   return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8953 	  ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8954 }
8955 
8956 /* Return the number of "extended" bits there are in X, when interpreted
8957    as a quantity in MODE whose signedness is indicated by UNSIGNEDP.  For
8958    unsigned quantities, this is the number of high-order zero bits.
8959    For signed quantities, this is the number of copies of the sign bit
8960    minus 1.  In both case, this function returns the number of "spare"
8961    bits.  For example, if two quantities for which this function returns
8962    at least 1 are added, the addition is known not to overflow.
8963 
8964    This function will always return 0 unless called during combine, which
8965    implies that it must be called from a define_split.  */
8966 
8967 unsigned int
extended_count(rtx x,enum machine_mode mode,int unsignedp)8968 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8969 {
8970   if (nonzero_sign_valid == 0)
8971     return 0;
8972 
8973   return (unsignedp
8974 	  ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8975 	     ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8976 			       - floor_log2 (nonzero_bits (x, mode)))
8977 	     : 0)
8978 	  : num_sign_bit_copies (x, mode) - 1);
8979 }
8980 
8981 /* This function is called from `simplify_shift_const' to merge two
8982    outer operations.  Specifically, we have already found that we need
8983    to perform operation *POP0 with constant *PCONST0 at the outermost
8984    position.  We would now like to also perform OP1 with constant CONST1
8985    (with *POP0 being done last).
8986 
8987    Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8988    the resulting operation.  *PCOMP_P is set to 1 if we would need to
8989    complement the innermost operand, otherwise it is unchanged.
8990 
8991    MODE is the mode in which the operation will be done.  No bits outside
8992    the width of this mode matter.  It is assumed that the width of this mode
8993    is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8994 
8995    If *POP0 or OP1 are NIL, it means no operation is required.  Only NEG, PLUS,
8996    IOR, XOR, and AND are supported.  We may set *POP0 to SET if the proper
8997    result is simply *PCONST0.
8998 
8999    If the resulting operation cannot be expressed as one operation, we
9000    return 0 and do not change *POP0, *PCONST0, and *PCOMP_P.  */
9001 
9002 static int
merge_outer_ops(enum rtx_code * pop0,HOST_WIDE_INT * pconst0,enum rtx_code op1,HOST_WIDE_INT const1,enum machine_mode mode,int * pcomp_p)9003 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9004 {
9005   enum rtx_code op0 = *pop0;
9006   HOST_WIDE_INT const0 = *pconst0;
9007 
9008   const0 &= GET_MODE_MASK (mode);
9009   const1 &= GET_MODE_MASK (mode);
9010 
9011   /* If OP0 is an AND, clear unimportant bits in CONST1.  */
9012   if (op0 == AND)
9013     const1 &= const0;
9014 
9015   /* If OP0 or OP1 is NIL, this is easy.  Similarly if they are the same or
9016      if OP0 is SET.  */
9017 
9018   if (op1 == NIL || op0 == SET)
9019     return 1;
9020 
9021   else if (op0 == NIL)
9022     op0 = op1, const0 = const1;
9023 
9024   else if (op0 == op1)
9025     {
9026       switch (op0)
9027 	{
9028 	case AND:
9029 	  const0 &= const1;
9030 	  break;
9031 	case IOR:
9032 	  const0 |= const1;
9033 	  break;
9034 	case XOR:
9035 	  const0 ^= const1;
9036 	  break;
9037 	case PLUS:
9038 	  const0 += const1;
9039 	  break;
9040 	case NEG:
9041 	  op0 = NIL;
9042 	  break;
9043 	default:
9044 	  break;
9045 	}
9046     }
9047 
9048   /* Otherwise, if either is a PLUS or NEG, we can't do anything.  */
9049   else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9050     return 0;
9051 
9052   /* If the two constants aren't the same, we can't do anything.  The
9053      remaining six cases can all be done.  */
9054   else if (const0 != const1)
9055     return 0;
9056 
9057   else
9058     switch (op0)
9059       {
9060       case IOR:
9061 	if (op1 == AND)
9062 	  /* (a & b) | b == b */
9063 	  op0 = SET;
9064 	else /* op1 == XOR */
9065 	  /* (a ^ b) | b == a | b */
9066 	  {;}
9067 	break;
9068 
9069       case XOR:
9070 	if (op1 == AND)
9071 	  /* (a & b) ^ b == (~a) & b */
9072 	  op0 = AND, *pcomp_p = 1;
9073 	else /* op1 == IOR */
9074 	  /* (a | b) ^ b == a & ~b */
9075 	  op0 = AND, const0 = ~const0;
9076 	break;
9077 
9078       case AND:
9079 	if (op1 == IOR)
9080 	  /* (a | b) & b == b */
9081 	op0 = SET;
9082 	else /* op1 == XOR */
9083 	  /* (a ^ b) & b) == (~a) & b */
9084 	  *pcomp_p = 1;
9085 	break;
9086       default:
9087 	break;
9088       }
9089 
9090   /* Check for NO-OP cases.  */
9091   const0 &= GET_MODE_MASK (mode);
9092   if (const0 == 0
9093       && (op0 == IOR || op0 == XOR || op0 == PLUS))
9094     op0 = NIL;
9095   else if (const0 == 0 && op0 == AND)
9096     op0 = SET;
9097   else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9098 	   && op0 == AND)
9099     op0 = NIL;
9100 
9101   /* ??? Slightly redundant with the above mask, but not entirely.
9102      Moving this above means we'd have to sign-extend the mode mask
9103      for the final test.  */
9104   const0 = trunc_int_for_mode (const0, mode);
9105 
9106   *pop0 = op0;
9107   *pconst0 = const0;
9108 
9109   return 1;
9110 }
9111 
9112 /* Simplify a shift of VAROP by COUNT bits.  CODE says what kind of shift.
9113    The result of the shift is RESULT_MODE.  X, if nonzero, is an expression
9114    that we started with.
9115 
9116    The shift is normally computed in the widest mode we find in VAROP, as
9117    long as it isn't a different number of words than RESULT_MODE.  Exceptions
9118    are ASHIFTRT and ROTATE, which are always done in their original mode,  */
9119 
9120 static rtx
simplify_shift_const(rtx x,enum rtx_code code,enum machine_mode result_mode,rtx varop,int orig_count)9121 simplify_shift_const (rtx x, enum rtx_code code,
9122 		      enum machine_mode result_mode, rtx varop,
9123 		      int orig_count)
9124 {
9125   enum rtx_code orig_code = code;
9126   unsigned int count;
9127   int signed_count;
9128   enum machine_mode mode = result_mode;
9129   enum machine_mode shift_mode, tmode;
9130   unsigned int mode_words
9131     = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9132   /* We form (outer_op (code varop count) (outer_const)).  */
9133   enum rtx_code outer_op = NIL;
9134   HOST_WIDE_INT outer_const = 0;
9135   rtx const_rtx;
9136   int complement_p = 0;
9137   rtx new;
9138 
9139   /* Make sure and truncate the "natural" shift on the way in.  We don't
9140      want to do this inside the loop as it makes it more difficult to
9141      combine shifts.  */
9142   if (SHIFT_COUNT_TRUNCATED)
9143     orig_count &= GET_MODE_BITSIZE (mode) - 1;
9144 
9145   /* If we were given an invalid count, don't do anything except exactly
9146      what was requested.  */
9147 
9148   if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9149     {
9150       if (x)
9151 	return x;
9152 
9153       return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9154     }
9155 
9156   count = orig_count;
9157 
9158   /* Unless one of the branches of the `if' in this loop does a `continue',
9159      we will `break' the loop after the `if'.  */
9160 
9161   while (count != 0)
9162     {
9163       /* If we have an operand of (clobber (const_int 0)), just return that
9164 	 value.  */
9165       if (GET_CODE (varop) == CLOBBER)
9166 	return varop;
9167 
9168       /* If we discovered we had to complement VAROP, leave.  Making a NOT
9169 	 here would cause an infinite loop.  */
9170       if (complement_p)
9171 	break;
9172 
9173       /* Convert ROTATERT to ROTATE.  */
9174       if (code == ROTATERT)
9175 	{
9176 	  unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9177 	  code = ROTATE;
9178 	  if (VECTOR_MODE_P (result_mode))
9179 	    count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9180 	  else
9181 	    count = bitsize - count;
9182 	}
9183 
9184       /* We need to determine what mode we will do the shift in.  If the
9185 	 shift is a right shift or a ROTATE, we must always do it in the mode
9186 	 it was originally done in.  Otherwise, we can do it in MODE, the
9187 	 widest mode encountered.  */
9188       shift_mode
9189 	= (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9190 	   ? result_mode : mode);
9191 
9192       /* Handle cases where the count is greater than the size of the mode
9193 	 minus 1.  For ASHIFT, use the size minus one as the count (this can
9194 	 occur when simplifying (lshiftrt (ashiftrt ..))).  For rotates,
9195 	 take the count modulo the size.  For other shifts, the result is
9196 	 zero.
9197 
9198 	 Since these shifts are being produced by the compiler by combining
9199 	 multiple operations, each of which are defined, we know what the
9200 	 result is supposed to be.  */
9201 
9202       if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9203 	{
9204 	  if (code == ASHIFTRT)
9205 	    count = GET_MODE_BITSIZE (shift_mode) - 1;
9206 	  else if (code == ROTATE || code == ROTATERT)
9207 	    count %= GET_MODE_BITSIZE (shift_mode);
9208 	  else
9209 	    {
9210 	      /* We can't simply return zero because there may be an
9211 		 outer op.  */
9212 	      varop = const0_rtx;
9213 	      count = 0;
9214 	      break;
9215 	    }
9216 	}
9217 
9218       /* An arithmetic right shift of a quantity known to be -1 or 0
9219 	 is a no-op.  */
9220       if (code == ASHIFTRT
9221 	  && (num_sign_bit_copies (varop, shift_mode)
9222 	      == GET_MODE_BITSIZE (shift_mode)))
9223 	{
9224 	  count = 0;
9225 	  break;
9226 	}
9227 
9228       /* If we are doing an arithmetic right shift and discarding all but
9229 	 the sign bit copies, this is equivalent to doing a shift by the
9230 	 bitsize minus one.  Convert it into that shift because it will often
9231 	 allow other simplifications.  */
9232 
9233       if (code == ASHIFTRT
9234 	  && (count + num_sign_bit_copies (varop, shift_mode)
9235 	      >= GET_MODE_BITSIZE (shift_mode)))
9236 	count = GET_MODE_BITSIZE (shift_mode) - 1;
9237 
9238       /* We simplify the tests below and elsewhere by converting
9239 	 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9240 	 `make_compound_operation' will convert it to an ASHIFTRT for
9241 	 those machines (such as VAX) that don't have an LSHIFTRT.  */
9242       if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9243 	  && code == ASHIFTRT
9244 	  && ((nonzero_bits (varop, shift_mode)
9245 	       & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9246 	      == 0))
9247 	code = LSHIFTRT;
9248 
9249       if (code == LSHIFTRT
9250 	  && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9251 	  && !(nonzero_bits (varop, shift_mode) >> count))
9252 	varop = const0_rtx;
9253       if (code == ASHIFT
9254 	  && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9255 	  && !((nonzero_bits (varop, shift_mode) << count)
9256 	       & GET_MODE_MASK (shift_mode)))
9257 	varop = const0_rtx;
9258 
9259       switch (GET_CODE (varop))
9260 	{
9261 	case SIGN_EXTEND:
9262 	case ZERO_EXTEND:
9263 	case SIGN_EXTRACT:
9264 	case ZERO_EXTRACT:
9265 	  new = expand_compound_operation (varop);
9266 	  if (new != varop)
9267 	    {
9268 	      varop = new;
9269 	      continue;
9270 	    }
9271 	  break;
9272 
9273 	case MEM:
9274 	  /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9275 	     minus the width of a smaller mode, we can do this with a
9276 	     SIGN_EXTEND or ZERO_EXTEND from the narrower memory location.  */
9277 	  if ((code == ASHIFTRT || code == LSHIFTRT)
9278 	      && ! mode_dependent_address_p (XEXP (varop, 0))
9279 	      && ! MEM_VOLATILE_P (varop)
9280 	      && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9281 					 MODE_INT, 1)) != BLKmode)
9282 	    {
9283 	      new = adjust_address_nv (varop, tmode,
9284 				       BYTES_BIG_ENDIAN ? 0
9285 				       : count / BITS_PER_UNIT);
9286 
9287 	      varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9288 				     : ZERO_EXTEND, mode, new);
9289 	      count = 0;
9290 	      continue;
9291 	    }
9292 	  break;
9293 
9294 	case USE:
9295 	  /* Similar to the case above, except that we can only do this if
9296 	     the resulting mode is the same as that of the underlying
9297 	     MEM and adjust the address depending on the *bits* endianness
9298 	     because of the way that bit-field extract insns are defined.  */
9299 	  if ((code == ASHIFTRT || code == LSHIFTRT)
9300 	      && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9301 					 MODE_INT, 1)) != BLKmode
9302 	      && tmode == GET_MODE (XEXP (varop, 0)))
9303 	    {
9304 	      if (BITS_BIG_ENDIAN)
9305 		new = XEXP (varop, 0);
9306 	      else
9307 		{
9308 		  new = copy_rtx (XEXP (varop, 0));
9309 		  SUBST (XEXP (new, 0),
9310 			 plus_constant (XEXP (new, 0),
9311 					count / BITS_PER_UNIT));
9312 		}
9313 
9314 	      varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9315 				     : ZERO_EXTEND, mode, new);
9316 	      count = 0;
9317 	      continue;
9318 	    }
9319 	  break;
9320 
9321 	case SUBREG:
9322 	  /* If VAROP is a SUBREG, strip it as long as the inner operand has
9323 	     the same number of words as what we've seen so far.  Then store
9324 	     the widest mode in MODE.  */
9325 	  if (subreg_lowpart_p (varop)
9326 	      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9327 		  > GET_MODE_SIZE (GET_MODE (varop)))
9328 	      && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9329 				  + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9330 		 == mode_words)
9331 	    {
9332 	      varop = SUBREG_REG (varop);
9333 	      if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9334 		mode = GET_MODE (varop);
9335 	      continue;
9336 	    }
9337 	  break;
9338 
9339 	case MULT:
9340 	  /* Some machines use MULT instead of ASHIFT because MULT
9341 	     is cheaper.  But it is still better on those machines to
9342 	     merge two shifts into one.  */
9343 	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9344 	      && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9345 	    {
9346 	      varop
9347 		= gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9348 			      GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9349 	      continue;
9350 	    }
9351 	  break;
9352 
9353 	case UDIV:
9354 	  /* Similar, for when divides are cheaper.  */
9355 	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9356 	      && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9357 	    {
9358 	      varop
9359 		= gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9360 			      GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9361 	      continue;
9362 	    }
9363 	  break;
9364 
9365 	case ASHIFTRT:
9366 	  /* If we are extracting just the sign bit of an arithmetic
9367 	     right shift, that shift is not needed.  However, the sign
9368 	     bit of a wider mode may be different from what would be
9369 	     interpreted as the sign bit in a narrower mode, so, if
9370 	     the result is narrower, don't discard the shift.  */
9371 	  if (code == LSHIFTRT
9372 	      && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9373 	      && (GET_MODE_BITSIZE (result_mode)
9374 		  >= GET_MODE_BITSIZE (GET_MODE (varop))))
9375 	    {
9376 	      varop = XEXP (varop, 0);
9377 	      continue;
9378 	    }
9379 
9380 	  /* ... fall through ...  */
9381 
9382 	case LSHIFTRT:
9383 	case ASHIFT:
9384 	case ROTATE:
9385 	  /* Here we have two nested shifts.  The result is usually the
9386 	     AND of a new shift with a mask.  We compute the result below.  */
9387 	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9388 	      && INTVAL (XEXP (varop, 1)) >= 0
9389 	      && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9390 	      && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9391 	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9392 	    {
9393 	      enum rtx_code first_code = GET_CODE (varop);
9394 	      unsigned int first_count = INTVAL (XEXP (varop, 1));
9395 	      unsigned HOST_WIDE_INT mask;
9396 	      rtx mask_rtx;
9397 
9398 	      /* We have one common special case.  We can't do any merging if
9399 		 the inner code is an ASHIFTRT of a smaller mode.  However, if
9400 		 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9401 		 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9402 		 we can convert it to
9403 		 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9404 		 This simplifies certain SIGN_EXTEND operations.  */
9405 	      if (code == ASHIFT && first_code == ASHIFTRT
9406 		  && count == (unsigned int)
9407 			      (GET_MODE_BITSIZE (result_mode)
9408 			       - GET_MODE_BITSIZE (GET_MODE (varop))))
9409 		{
9410 		  /* C3 has the low-order C1 bits zero.  */
9411 
9412 		  mask = (GET_MODE_MASK (mode)
9413 			  & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9414 
9415 		  varop = simplify_and_const_int (NULL_RTX, result_mode,
9416 						  XEXP (varop, 0), mask);
9417 		  varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9418 						varop, count);
9419 		  count = first_count;
9420 		  code = ASHIFTRT;
9421 		  continue;
9422 		}
9423 
9424 	      /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9425 		 than C1 high-order bits equal to the sign bit, we can convert
9426 		 this to either an ASHIFT or an ASHIFTRT depending on the
9427 		 two counts.
9428 
9429 		 We cannot do this if VAROP's mode is not SHIFT_MODE.  */
9430 
9431 	      if (code == ASHIFTRT && first_code == ASHIFT
9432 		  && GET_MODE (varop) == shift_mode
9433 		  && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9434 		      > first_count))
9435 		{
9436 		  varop = XEXP (varop, 0);
9437 
9438 		  signed_count = count - first_count;
9439 		  if (signed_count < 0)
9440 		    count = -signed_count, code = ASHIFT;
9441 		  else
9442 		    count = signed_count;
9443 
9444 		  continue;
9445 		}
9446 
9447 	      /* There are some cases we can't do.  If CODE is ASHIFTRT,
9448 		 we can only do this if FIRST_CODE is also ASHIFTRT.
9449 
9450 		 We can't do the case when CODE is ROTATE and FIRST_CODE is
9451 		 ASHIFTRT.
9452 
9453 		 If the mode of this shift is not the mode of the outer shift,
9454 		 we can't do this if either shift is a right shift or ROTATE.
9455 
9456 		 Finally, we can't do any of these if the mode is too wide
9457 		 unless the codes are the same.
9458 
9459 		 Handle the case where the shift codes are the same
9460 		 first.  */
9461 
9462 	      if (code == first_code)
9463 		{
9464 		  if (GET_MODE (varop) != result_mode
9465 		      && (code == ASHIFTRT || code == LSHIFTRT
9466 			  || code == ROTATE))
9467 		    break;
9468 
9469 		  count += first_count;
9470 		  varop = XEXP (varop, 0);
9471 		  continue;
9472 		}
9473 
9474 	      if (code == ASHIFTRT
9475 		  || (code == ROTATE && first_code == ASHIFTRT)
9476 		  || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9477 		  || (GET_MODE (varop) != result_mode
9478 		      && (first_code == ASHIFTRT || first_code == LSHIFTRT
9479 			  || first_code == ROTATE
9480 			  || code == ROTATE)))
9481 		break;
9482 
9483 	      /* To compute the mask to apply after the shift, shift the
9484 		 nonzero bits of the inner shift the same way the
9485 		 outer shift will.  */
9486 
9487 	      mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9488 
9489 	      mask_rtx
9490 		= simplify_binary_operation (code, result_mode, mask_rtx,
9491 					     GEN_INT (count));
9492 
9493 	      /* Give up if we can't compute an outer operation to use.  */
9494 	      if (mask_rtx == 0
9495 		  || GET_CODE (mask_rtx) != CONST_INT
9496 		  || ! merge_outer_ops (&outer_op, &outer_const, AND,
9497 					INTVAL (mask_rtx),
9498 					result_mode, &complement_p))
9499 		break;
9500 
9501 	      /* If the shifts are in the same direction, we add the
9502 		 counts.  Otherwise, we subtract them.  */
9503 	      signed_count = count;
9504 	      if ((code == ASHIFTRT || code == LSHIFTRT)
9505 		  == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9506 		signed_count += first_count;
9507 	      else
9508 		signed_count -= first_count;
9509 
9510 	      /* If COUNT is positive, the new shift is usually CODE,
9511 		 except for the two exceptions below, in which case it is
9512 		 FIRST_CODE.  If the count is negative, FIRST_CODE should
9513 		 always be used  */
9514 	      if (signed_count > 0
9515 		  && ((first_code == ROTATE && code == ASHIFT)
9516 		      || (first_code == ASHIFTRT && code == LSHIFTRT)))
9517 		code = first_code, count = signed_count;
9518 	      else if (signed_count < 0)
9519 		code = first_code, count = -signed_count;
9520 	      else
9521 		count = signed_count;
9522 
9523 	      varop = XEXP (varop, 0);
9524 	      continue;
9525 	    }
9526 
9527 	  /* If we have (A << B << C) for any shift, we can convert this to
9528 	     (A << C << B).  This wins if A is a constant.  Only try this if
9529 	     B is not a constant.  */
9530 
9531 	  else if (GET_CODE (varop) == code
9532 		   && GET_CODE (XEXP (varop, 1)) != CONST_INT
9533 		   && 0 != (new
9534 			    = simplify_binary_operation (code, mode,
9535 							 XEXP (varop, 0),
9536 							 GEN_INT (count))))
9537 	    {
9538 	      varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9539 	      count = 0;
9540 	      continue;
9541 	    }
9542 	  break;
9543 
9544 	case NOT:
9545 	  /* Make this fit the case below.  */
9546 	  varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9547 			       GEN_INT (GET_MODE_MASK (mode)));
9548 	  continue;
9549 
9550 	case IOR:
9551 	case AND:
9552 	case XOR:
9553 	  /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9554 	     with C the size of VAROP - 1 and the shift is logical if
9555 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9556 	     we have an (le X 0) operation.   If we have an arithmetic shift
9557 	     and STORE_FLAG_VALUE is 1 or we have a logical shift with
9558 	     STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation.  */
9559 
9560 	  if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9561 	      && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9562 	      && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9563 	      && (code == LSHIFTRT || code == ASHIFTRT)
9564 	      && count == (unsigned int)
9565 			  (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9566 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9567 	    {
9568 	      count = 0;
9569 	      varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9570 				  const0_rtx);
9571 
9572 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9573 		varop = gen_rtx_NEG (GET_MODE (varop), varop);
9574 
9575 	      continue;
9576 	    }
9577 
9578 	  /* If we have (shift (logical)), move the logical to the outside
9579 	     to allow it to possibly combine with another logical and the
9580 	     shift to combine with another shift.  This also canonicalizes to
9581 	     what a ZERO_EXTRACT looks like.  Also, some machines have
9582 	     (and (shift)) insns.  */
9583 
9584 	  if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9585 	      && (new = simplify_binary_operation (code, result_mode,
9586 						   XEXP (varop, 1),
9587 						   GEN_INT (count))) != 0
9588 	      && GET_CODE (new) == CONST_INT
9589 	      && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9590 				  INTVAL (new), result_mode, &complement_p))
9591 	    {
9592 	      varop = XEXP (varop, 0);
9593 	      continue;
9594 	    }
9595 
9596 	  /* If we can't do that, try to simplify the shift in each arm of the
9597 	     logical expression, make a new logical expression, and apply
9598 	     the inverse distributive law.  */
9599 	  {
9600 	    rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9601 					    XEXP (varop, 0), count);
9602 	    rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9603 					    XEXP (varop, 1), count);
9604 
9605 	    varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9606 	    varop = apply_distributive_law (varop);
9607 
9608 	    count = 0;
9609 	  }
9610 	  break;
9611 
9612 	case EQ:
9613 	  /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9614 	     says that the sign bit can be tested, FOO has mode MODE, C is
9615 	     GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9616 	     that may be nonzero.  */
9617 	  if (code == LSHIFTRT
9618 	      && XEXP (varop, 1) == const0_rtx
9619 	      && GET_MODE (XEXP (varop, 0)) == result_mode
9620 	      && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9621 	      && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9622 	      && ((STORE_FLAG_VALUE
9623 		   & ((HOST_WIDE_INT) 1
9624 		      < (GET_MODE_BITSIZE (result_mode) - 1))))
9625 	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9626 	      && merge_outer_ops (&outer_op, &outer_const, XOR,
9627 				  (HOST_WIDE_INT) 1, result_mode,
9628 				  &complement_p))
9629 	    {
9630 	      varop = XEXP (varop, 0);
9631 	      count = 0;
9632 	      continue;
9633 	    }
9634 	  break;
9635 
9636 	case NEG:
9637 	  /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9638 	     than the number of bits in the mode is equivalent to A.  */
9639 	  if (code == LSHIFTRT
9640 	      && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9641 	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9642 	    {
9643 	      varop = XEXP (varop, 0);
9644 	      count = 0;
9645 	      continue;
9646 	    }
9647 
9648 	  /* NEG commutes with ASHIFT since it is multiplication.  Move the
9649 	     NEG outside to allow shifts to combine.  */
9650 	  if (code == ASHIFT
9651 	      && merge_outer_ops (&outer_op, &outer_const, NEG,
9652 				  (HOST_WIDE_INT) 0, result_mode,
9653 				  &complement_p))
9654 	    {
9655 	      varop = XEXP (varop, 0);
9656 	      continue;
9657 	    }
9658 	  break;
9659 
9660 	case PLUS:
9661 	  /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9662 	     is one less than the number of bits in the mode is
9663 	     equivalent to (xor A 1).  */
9664 	  if (code == LSHIFTRT
9665 	      && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9666 	      && XEXP (varop, 1) == constm1_rtx
9667 	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9668 	      && merge_outer_ops (&outer_op, &outer_const, XOR,
9669 				  (HOST_WIDE_INT) 1, result_mode,
9670 				  &complement_p))
9671 	    {
9672 	      count = 0;
9673 	      varop = XEXP (varop, 0);
9674 	      continue;
9675 	    }
9676 
9677 	  /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9678 	     that might be nonzero in BAR are those being shifted out and those
9679 	     bits are known zero in FOO, we can replace the PLUS with FOO.
9680 	     Similarly in the other operand order.  This code occurs when
9681 	     we are computing the size of a variable-size array.  */
9682 
9683 	  if ((code == ASHIFTRT || code == LSHIFTRT)
9684 	      && count < HOST_BITS_PER_WIDE_INT
9685 	      && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9686 	      && (nonzero_bits (XEXP (varop, 1), result_mode)
9687 		  & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9688 	    {
9689 	      varop = XEXP (varop, 0);
9690 	      continue;
9691 	    }
9692 	  else if ((code == ASHIFTRT || code == LSHIFTRT)
9693 		   && count < HOST_BITS_PER_WIDE_INT
9694 		   && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9695 		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9696 			    >> count)
9697 		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9698 			    & nonzero_bits (XEXP (varop, 1),
9699 						 result_mode)))
9700 	    {
9701 	      varop = XEXP (varop, 1);
9702 	      continue;
9703 	    }
9704 
9705 	  /* (ashift (plus foo C) N) is (plus (ashift foo N) C').  */
9706 	  if (code == ASHIFT
9707 	      && GET_CODE (XEXP (varop, 1)) == CONST_INT
9708 	      && (new = simplify_binary_operation (ASHIFT, result_mode,
9709 						   XEXP (varop, 1),
9710 						   GEN_INT (count))) != 0
9711 	      && GET_CODE (new) == CONST_INT
9712 	      && merge_outer_ops (&outer_op, &outer_const, PLUS,
9713 				  INTVAL (new), result_mode, &complement_p))
9714 	    {
9715 	      varop = XEXP (varop, 0);
9716 	      continue;
9717 	    }
9718 	  break;
9719 
9720 	case MINUS:
9721 	  /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9722 	     with C the size of VAROP - 1 and the shift is logical if
9723 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9724 	     we have a (gt X 0) operation.  If the shift is arithmetic with
9725 	     STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9726 	     we have a (neg (gt X 0)) operation.  */
9727 
9728 	  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9729 	      && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9730 	      && count == (unsigned int)
9731 			  (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9732 	      && (code == LSHIFTRT || code == ASHIFTRT)
9733 	      && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9734 	      && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9735 		 == count
9736 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9737 	    {
9738 	      count = 0;
9739 	      varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9740 				  const0_rtx);
9741 
9742 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9743 		varop = gen_rtx_NEG (GET_MODE (varop), varop);
9744 
9745 	      continue;
9746 	    }
9747 	  break;
9748 
9749 	case TRUNCATE:
9750 	  /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9751 	     if the truncate does not affect the value.  */
9752 	  if (code == LSHIFTRT
9753 	      && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9754 	      && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9755 	      && (INTVAL (XEXP (XEXP (varop, 0), 1))
9756 		  >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9757 		      - GET_MODE_BITSIZE (GET_MODE (varop)))))
9758 	    {
9759 	      rtx varop_inner = XEXP (varop, 0);
9760 
9761 	      varop_inner
9762 		= gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9763 				    XEXP (varop_inner, 0),
9764 				    GEN_INT
9765 				    (count + INTVAL (XEXP (varop_inner, 1))));
9766 	      varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9767 	      count = 0;
9768 	      continue;
9769 	    }
9770 	  break;
9771 
9772 	default:
9773 	  break;
9774 	}
9775 
9776       break;
9777     }
9778 
9779   /* We need to determine what mode to do the shift in.  If the shift is
9780      a right shift or ROTATE, we must always do it in the mode it was
9781      originally done in.  Otherwise, we can do it in MODE, the widest mode
9782      encountered.  The code we care about is that of the shift that will
9783      actually be done, not the shift that was originally requested.  */
9784   shift_mode
9785     = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9786        ? result_mode : mode);
9787 
9788   /* We have now finished analyzing the shift.  The result should be
9789      a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places.  If
9790      OUTER_OP is non-NIL, it is an operation that needs to be applied
9791      to the result of the shift.  OUTER_CONST is the relevant constant,
9792      but we must turn off all bits turned off in the shift.
9793 
9794      If we were passed a value for X, see if we can use any pieces of
9795      it.  If not, make new rtx.  */
9796 
9797   if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9798       && GET_CODE (XEXP (x, 1)) == CONST_INT
9799       && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9800     const_rtx = XEXP (x, 1);
9801   else
9802     const_rtx = GEN_INT (count);
9803 
9804   if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9805       && GET_MODE (XEXP (x, 0)) == shift_mode
9806       && SUBREG_REG (XEXP (x, 0)) == varop)
9807     varop = XEXP (x, 0);
9808   else if (GET_MODE (varop) != shift_mode)
9809     varop = gen_lowpart_for_combine (shift_mode, varop);
9810 
9811   /* If we can't make the SUBREG, try to return what we were given.  */
9812   if (GET_CODE (varop) == CLOBBER)
9813     return x ? x : varop;
9814 
9815   new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9816   if (new != 0)
9817     x = new;
9818   else
9819     x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9820 
9821   /* If we have an outer operation and we just made a shift, it is
9822      possible that we could have simplified the shift were it not
9823      for the outer operation.  So try to do the simplification
9824      recursively.  */
9825 
9826   if (outer_op != NIL && GET_CODE (x) == code
9827       && GET_CODE (XEXP (x, 1)) == CONST_INT)
9828     x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9829 			      INTVAL (XEXP (x, 1)));
9830 
9831   /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9832      turn off all the bits that the shift would have turned off.  */
9833   if (orig_code == LSHIFTRT && result_mode != shift_mode)
9834     x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9835 				GET_MODE_MASK (result_mode) >> orig_count);
9836 
9837   /* Do the remainder of the processing in RESULT_MODE.  */
9838   x = gen_lowpart_for_combine (result_mode, x);
9839 
9840   /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9841      operation.  */
9842   if (complement_p)
9843     x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9844 
9845   if (outer_op != NIL)
9846     {
9847       if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9848 	outer_const = trunc_int_for_mode (outer_const, result_mode);
9849 
9850       if (outer_op == AND)
9851 	x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9852       else if (outer_op == SET)
9853 	/* This means that we have determined that the result is
9854 	   equivalent to a constant.  This should be rare.  */
9855 	x = GEN_INT (outer_const);
9856       else if (GET_RTX_CLASS (outer_op) == '1')
9857 	x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9858       else
9859 	x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9860     }
9861 
9862   return x;
9863 }
9864 
9865 /* Like recog, but we receive the address of a pointer to a new pattern.
9866    We try to match the rtx that the pointer points to.
9867    If that fails, we may try to modify or replace the pattern,
9868    storing the replacement into the same pointer object.
9869 
9870    Modifications include deletion or addition of CLOBBERs.
9871 
9872    PNOTES is a pointer to a location where any REG_UNUSED notes added for
9873    the CLOBBERs are placed.
9874 
9875    The value is the final insn code from the pattern ultimately matched,
9876    or -1.  */
9877 
9878 static int
recog_for_combine(rtx * pnewpat,rtx insn,rtx * pnotes)9879 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9880 {
9881   rtx pat = *pnewpat;
9882   int insn_code_number;
9883   int num_clobbers_to_add = 0;
9884   int i;
9885   rtx notes = 0;
9886   rtx old_notes, old_pat;
9887 
9888   /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9889      we use to indicate that something didn't match.  If we find such a
9890      thing, force rejection.  */
9891   if (GET_CODE (pat) == PARALLEL)
9892     for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9893       if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9894 	  && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9895 	return -1;
9896 
9897   old_pat = PATTERN (insn);
9898   old_notes = REG_NOTES (insn);
9899   PATTERN (insn) = pat;
9900   REG_NOTES (insn) = 0;
9901 
9902   insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9903 
9904   /* If it isn't, there is the possibility that we previously had an insn
9905      that clobbered some register as a side effect, but the combined
9906      insn doesn't need to do that.  So try once more without the clobbers
9907      unless this represents an ASM insn.  */
9908 
9909   if (insn_code_number < 0 && ! check_asm_operands (pat)
9910       && GET_CODE (pat) == PARALLEL)
9911     {
9912       int pos;
9913 
9914       for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9915 	if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9916 	  {
9917 	    if (i != pos)
9918 	      SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9919 	    pos++;
9920 	  }
9921 
9922       SUBST_INT (XVECLEN (pat, 0), pos);
9923 
9924       if (pos == 1)
9925 	pat = XVECEXP (pat, 0, 0);
9926 
9927       PATTERN (insn) = pat;
9928       insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9929     }
9930   PATTERN (insn) = old_pat;
9931   REG_NOTES (insn) = old_notes;
9932 
9933   /* Recognize all noop sets, these will be killed by followup pass.  */
9934   if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9935     insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9936 
9937   /* If we had any clobbers to add, make a new pattern than contains
9938      them.  Then check to make sure that all of them are dead.  */
9939   if (num_clobbers_to_add)
9940     {
9941       rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9942 				     rtvec_alloc (GET_CODE (pat) == PARALLEL
9943 						  ? (XVECLEN (pat, 0)
9944 						     + num_clobbers_to_add)
9945 						  : num_clobbers_to_add + 1));
9946 
9947       if (GET_CODE (pat) == PARALLEL)
9948 	for (i = 0; i < XVECLEN (pat, 0); i++)
9949 	  XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9950       else
9951 	XVECEXP (newpat, 0, 0) = pat;
9952 
9953       add_clobbers (newpat, insn_code_number);
9954 
9955       for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9956 	   i < XVECLEN (newpat, 0); i++)
9957 	{
9958 	  if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9959 	      && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9960 	    return -1;
9961 	  notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9962 				     XEXP (XVECEXP (newpat, 0, i), 0), notes);
9963 	}
9964       pat = newpat;
9965     }
9966 
9967   *pnewpat = pat;
9968   *pnotes = notes;
9969 
9970   return insn_code_number;
9971 }
9972 
9973 /* Like gen_lowpart but for use by combine.  In combine it is not possible
9974    to create any new pseudoregs.  However, it is safe to create
9975    invalid memory addresses, because combine will try to recognize
9976    them and all they will do is make the combine attempt fail.
9977 
9978    If for some reason this cannot do its job, an rtx
9979    (clobber (const_int 0)) is returned.
9980    An insn containing that will not be recognized.  */
9981 
9982 #undef gen_lowpart
9983 
9984 static rtx
gen_lowpart_for_combine(enum machine_mode mode,rtx x)9985 gen_lowpart_for_combine (enum machine_mode mode, rtx x)
9986 {
9987   rtx result;
9988 
9989   if (GET_MODE (x) == mode)
9990     return x;
9991 
9992   /* Return identity if this is a CONST or symbolic
9993      reference.  */
9994   if (mode == Pmode
9995       && (GET_CODE (x) == CONST
9996 	  || GET_CODE (x) == SYMBOL_REF
9997 	  || GET_CODE (x) == LABEL_REF))
9998     return x;
9999 
10000   /* We can only support MODE being wider than a word if X is a
10001      constant integer or has a mode the same size.  */
10002 
10003   if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
10004       && ! ((GET_MODE (x) == VOIDmode
10005 	     && (GET_CODE (x) == CONST_INT
10006 		 || GET_CODE (x) == CONST_DOUBLE))
10007 	    || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
10008     return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10009 
10010   /* X might be a paradoxical (subreg (mem)).  In that case, gen_lowpart
10011      won't know what to do.  So we will strip off the SUBREG here and
10012      process normally.  */
10013   if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
10014     {
10015       x = SUBREG_REG (x);
10016       if (GET_MODE (x) == mode)
10017 	return x;
10018     }
10019 
10020   result = gen_lowpart_common (mode, x);
10021 #ifdef CANNOT_CHANGE_MODE_CLASS
10022   if (result != 0
10023       && GET_CODE (result) == SUBREG
10024       && GET_CODE (SUBREG_REG (result)) == REG
10025       && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
10026     bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (result))
10027 				      * MAX_MACHINE_MODE
10028 				      + GET_MODE (result));
10029 #endif
10030 
10031   if (result)
10032     return result;
10033 
10034   if (GET_CODE (x) == MEM)
10035     {
10036       int offset = 0;
10037 
10038       /* Refuse to work on a volatile memory ref or one with a mode-dependent
10039 	 address.  */
10040       if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10041 	return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10042 
10043       /* If we want to refer to something bigger than the original memref,
10044 	 generate a perverse subreg instead.  That will force a reload
10045 	 of the original memref X.  */
10046       if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
10047 	return gen_rtx_SUBREG (mode, x, 0);
10048 
10049       if (WORDS_BIG_ENDIAN)
10050 	offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
10051 		  - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
10052 
10053       if (BYTES_BIG_ENDIAN)
10054 	{
10055 	  /* Adjust the address so that the address-after-the-data is
10056 	     unchanged.  */
10057 	  offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
10058 		     - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
10059 	}
10060 
10061       return adjust_address_nv (x, mode, offset);
10062     }
10063 
10064   /* If X is a comparison operator, rewrite it in a new mode.  This
10065      probably won't match, but may allow further simplifications.  */
10066   else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
10067     return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
10068 
10069   /* If we couldn't simplify X any other way, just enclose it in a
10070      SUBREG.  Normally, this SUBREG won't match, but some patterns may
10071      include an explicit SUBREG or we may simplify it further in combine.  */
10072   else
10073     {
10074       int offset = 0;
10075       rtx res;
10076       enum machine_mode sub_mode = GET_MODE (x);
10077 
10078       offset = subreg_lowpart_offset (mode, sub_mode);
10079       if (sub_mode == VOIDmode)
10080 	{
10081 	  sub_mode = int_mode_for_mode (mode);
10082 	  x = gen_lowpart_common (sub_mode, x);
10083 	  if (x == 0)
10084 	    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
10085 	}
10086       res = simplify_gen_subreg (mode, x, sub_mode, offset);
10087       if (res)
10088 	return res;
10089       return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10090     }
10091 }
10092 
10093 /* These routines make binary and unary operations by first seeing if they
10094    fold; if not, a new expression is allocated.  */
10095 
10096 static rtx
gen_binary(enum rtx_code code,enum machine_mode mode,rtx op0,rtx op1)10097 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
10098 {
10099   rtx result;
10100   rtx tem;
10101 
10102   if (GET_CODE (op0) == CLOBBER)
10103     return op0;
10104   else if (GET_CODE (op1) == CLOBBER)
10105     return op1;
10106 
10107   if (GET_RTX_CLASS (code) == 'c'
10108       && swap_commutative_operands_p (op0, op1))
10109     tem = op0, op0 = op1, op1 = tem;
10110 
10111   if (GET_RTX_CLASS (code) == '<')
10112     {
10113       enum machine_mode op_mode = GET_MODE (op0);
10114 
10115       /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10116 	 just (REL_OP X Y).  */
10117       if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10118 	{
10119 	  op1 = XEXP (op0, 1);
10120 	  op0 = XEXP (op0, 0);
10121 	  op_mode = GET_MODE (op0);
10122 	}
10123 
10124       if (op_mode == VOIDmode)
10125 	op_mode = GET_MODE (op1);
10126       result = simplify_relational_operation (code, op_mode, op0, op1);
10127     }
10128   else
10129     result = simplify_binary_operation (code, mode, op0, op1);
10130 
10131   if (result)
10132     return result;
10133 
10134   /* Put complex operands first and constants second.  */
10135   if (GET_RTX_CLASS (code) == 'c'
10136       && swap_commutative_operands_p (op0, op1))
10137     return gen_rtx_fmt_ee (code, mode, op1, op0);
10138 
10139   /* If we are turning off bits already known off in OP0, we need not do
10140      an AND.  */
10141   else if (code == AND && GET_CODE (op1) == CONST_INT
10142 	   && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10143 	   && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10144     return op0;
10145 
10146   return gen_rtx_fmt_ee (code, mode, op0, op1);
10147 }
10148 
10149 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10150    comparison code that will be tested.
10151 
10152    The result is a possibly different comparison code to use.  *POP0 and
10153    *POP1 may be updated.
10154 
10155    It is possible that we might detect that a comparison is either always
10156    true or always false.  However, we do not perform general constant
10157    folding in combine, so this knowledge isn't useful.  Such tautologies
10158    should have been detected earlier.  Hence we ignore all such cases.  */
10159 
10160 static enum rtx_code
simplify_comparison(enum rtx_code code,rtx * pop0,rtx * pop1)10161 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10162 {
10163   rtx op0 = *pop0;
10164   rtx op1 = *pop1;
10165   rtx tem, tem1;
10166   int i;
10167   enum machine_mode mode, tmode;
10168 
10169   /* Try a few ways of applying the same transformation to both operands.  */
10170   while (1)
10171     {
10172 #ifndef WORD_REGISTER_OPERATIONS
10173       /* The test below this one won't handle SIGN_EXTENDs on these machines,
10174 	 so check specially.  */
10175       if (code != GTU && code != GEU && code != LTU && code != LEU
10176 	  && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10177 	  && GET_CODE (XEXP (op0, 0)) == ASHIFT
10178 	  && GET_CODE (XEXP (op1, 0)) == ASHIFT
10179 	  && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10180 	  && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10181 	  && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10182 	      == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10183 	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
10184 	  && XEXP (op0, 1) == XEXP (op1, 1)
10185 	  && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10186 	  && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10187 	  && (INTVAL (XEXP (op0, 1))
10188 	      == (GET_MODE_BITSIZE (GET_MODE (op0))
10189 		  - (GET_MODE_BITSIZE
10190 		     (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10191 	{
10192 	  op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10193 	  op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10194 	}
10195 #endif
10196 
10197       /* If both operands are the same constant shift, see if we can ignore the
10198 	 shift.  We can if the shift is a rotate or if the bits shifted out of
10199 	 this shift are known to be zero for both inputs and if the type of
10200 	 comparison is compatible with the shift.  */
10201       if (GET_CODE (op0) == GET_CODE (op1)
10202 	  && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10203 	  && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10204 	      || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10205 		  && (code != GT && code != LT && code != GE && code != LE))
10206 	      || (GET_CODE (op0) == ASHIFTRT
10207 		  && (code != GTU && code != LTU
10208 		      && code != GEU && code != LEU)))
10209 	  && GET_CODE (XEXP (op0, 1)) == CONST_INT
10210 	  && INTVAL (XEXP (op0, 1)) >= 0
10211 	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10212 	  && XEXP (op0, 1) == XEXP (op1, 1))
10213 	{
10214 	  enum machine_mode mode = GET_MODE (op0);
10215 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10216 	  int shift_count = INTVAL (XEXP (op0, 1));
10217 
10218 	  if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10219 	    mask &= (mask >> shift_count) << shift_count;
10220 	  else if (GET_CODE (op0) == ASHIFT)
10221 	    mask = (mask & (mask << shift_count)) >> shift_count;
10222 
10223 	  if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10224 	      && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10225 	    op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10226 	  else
10227 	    break;
10228 	}
10229 
10230       /* If both operands are AND's of a paradoxical SUBREG by constant, the
10231 	 SUBREGs are of the same mode, and, in both cases, the AND would
10232 	 be redundant if the comparison was done in the narrower mode,
10233 	 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10234 	 and the operand's possibly nonzero bits are 0xffffff01; in that case
10235 	 if we only care about QImode, we don't need the AND).  This case
10236 	 occurs if the output mode of an scc insn is not SImode and
10237 	 STORE_FLAG_VALUE == 1 (e.g., the 386).
10238 
10239 	 Similarly, check for a case where the AND's are ZERO_EXTEND
10240 	 operations from some narrower mode even though a SUBREG is not
10241 	 present.  */
10242 
10243       else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10244 	       && GET_CODE (XEXP (op0, 1)) == CONST_INT
10245 	       && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10246 	{
10247 	  rtx inner_op0 = XEXP (op0, 0);
10248 	  rtx inner_op1 = XEXP (op1, 0);
10249 	  HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10250 	  HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10251 	  int changed = 0;
10252 
10253 	  if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10254 	      && (GET_MODE_SIZE (GET_MODE (inner_op0))
10255 		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10256 	      && (GET_MODE (SUBREG_REG (inner_op0))
10257 		  == GET_MODE (SUBREG_REG (inner_op1)))
10258 	      && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10259 		  <= HOST_BITS_PER_WIDE_INT)
10260 	      && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10261 					     GET_MODE (SUBREG_REG (inner_op0)))))
10262 	      && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10263 					     GET_MODE (SUBREG_REG (inner_op1))))))
10264 	    {
10265 	      op0 = SUBREG_REG (inner_op0);
10266 	      op1 = SUBREG_REG (inner_op1);
10267 
10268 	      /* The resulting comparison is always unsigned since we masked
10269 		 off the original sign bit.  */
10270 	      code = unsigned_condition (code);
10271 
10272 	      changed = 1;
10273 	    }
10274 
10275 	  else if (c0 == c1)
10276 	    for (tmode = GET_CLASS_NARROWEST_MODE
10277 		 (GET_MODE_CLASS (GET_MODE (op0)));
10278 		 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10279 	      if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10280 		{
10281 		  op0 = gen_lowpart_for_combine (tmode, inner_op0);
10282 		  op1 = gen_lowpart_for_combine (tmode, inner_op1);
10283 		  code = unsigned_condition (code);
10284 		  changed = 1;
10285 		  break;
10286 		}
10287 
10288 	  if (! changed)
10289 	    break;
10290 	}
10291 
10292       /* If both operands are NOT, we can strip off the outer operation
10293 	 and adjust the comparison code for swapped operands; similarly for
10294 	 NEG, except that this must be an equality comparison.  */
10295       else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10296 	       || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10297 		   && (code == EQ || code == NE)))
10298 	op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10299 
10300       else
10301 	break;
10302     }
10303 
10304   /* If the first operand is a constant, swap the operands and adjust the
10305      comparison code appropriately, but don't do this if the second operand
10306      is already a constant integer.  */
10307   if (swap_commutative_operands_p (op0, op1))
10308     {
10309       tem = op0, op0 = op1, op1 = tem;
10310       code = swap_condition (code);
10311     }
10312 
10313   /* We now enter a loop during which we will try to simplify the comparison.
10314      For the most part, we only are concerned with comparisons with zero,
10315      but some things may really be comparisons with zero but not start
10316      out looking that way.  */
10317 
10318   while (GET_CODE (op1) == CONST_INT)
10319     {
10320       enum machine_mode mode = GET_MODE (op0);
10321       unsigned int mode_width = GET_MODE_BITSIZE (mode);
10322       unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10323       int equality_comparison_p;
10324       int sign_bit_comparison_p;
10325       int unsigned_comparison_p;
10326       HOST_WIDE_INT const_op;
10327 
10328       /* We only want to handle integral modes.  This catches VOIDmode,
10329 	 CCmode, and the floating-point modes.  An exception is that we
10330 	 can handle VOIDmode if OP0 is a COMPARE or a comparison
10331 	 operation.  */
10332 
10333       if (GET_MODE_CLASS (mode) != MODE_INT
10334 	  && ! (mode == VOIDmode
10335 		&& (GET_CODE (op0) == COMPARE
10336 		    || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10337 	break;
10338 
10339       /* Get the constant we are comparing against and turn off all bits
10340 	 not on in our mode.  */
10341       const_op = INTVAL (op1);
10342       if (mode != VOIDmode)
10343 	const_op = trunc_int_for_mode (const_op, mode);
10344       op1 = GEN_INT (const_op);
10345 
10346       /* If we are comparing against a constant power of two and the value
10347 	 being compared can only have that single bit nonzero (e.g., it was
10348 	 `and'ed with that bit), we can replace this with a comparison
10349 	 with zero.  */
10350       if (const_op
10351 	  && (code == EQ || code == NE || code == GE || code == GEU
10352 	      || code == LT || code == LTU)
10353 	  && mode_width <= HOST_BITS_PER_WIDE_INT
10354 	  && exact_log2 (const_op) >= 0
10355 	  && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10356 	{
10357 	  code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10358 	  op1 = const0_rtx, const_op = 0;
10359 	}
10360 
10361       /* Similarly, if we are comparing a value known to be either -1 or
10362 	 0 with -1, change it to the opposite comparison against zero.  */
10363 
10364       if (const_op == -1
10365 	  && (code == EQ || code == NE || code == GT || code == LE
10366 	      || code == GEU || code == LTU)
10367 	  && num_sign_bit_copies (op0, mode) == mode_width)
10368 	{
10369 	  code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10370 	  op1 = const0_rtx, const_op = 0;
10371 	}
10372 
10373       /* Do some canonicalizations based on the comparison code.  We prefer
10374 	 comparisons against zero and then prefer equality comparisons.
10375 	 If we can reduce the size of a constant, we will do that too.  */
10376 
10377       switch (code)
10378 	{
10379 	case LT:
10380 	  /* < C is equivalent to <= (C - 1) */
10381 	  if (const_op > 0)
10382 	    {
10383 	      const_op -= 1;
10384 	      op1 = GEN_INT (const_op);
10385 	      code = LE;
10386 	      /* ... fall through to LE case below.  */
10387 	    }
10388 	  else
10389 	    break;
10390 
10391 	case LE:
10392 	  /* <= C is equivalent to < (C + 1); we do this for C < 0  */
10393 	  if (const_op < 0)
10394 	    {
10395 	      const_op += 1;
10396 	      op1 = GEN_INT (const_op);
10397 	      code = LT;
10398 	    }
10399 
10400 	  /* If we are doing a <= 0 comparison on a value known to have
10401 	     a zero sign bit, we can replace this with == 0.  */
10402 	  else if (const_op == 0
10403 		   && mode_width <= HOST_BITS_PER_WIDE_INT
10404 		   && (nonzero_bits (op0, mode)
10405 		       & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10406 	    code = EQ;
10407 	  break;
10408 
10409 	case GE:
10410 	  /* >= C is equivalent to > (C - 1).  */
10411 	  if (const_op > 0)
10412 	    {
10413 	      const_op -= 1;
10414 	      op1 = GEN_INT (const_op);
10415 	      code = GT;
10416 	      /* ... fall through to GT below.  */
10417 	    }
10418 	  else
10419 	    break;
10420 
10421 	case GT:
10422 	  /* > C is equivalent to >= (C + 1); we do this for C < 0.  */
10423 	  if (const_op < 0)
10424 	    {
10425 	      const_op += 1;
10426 	      op1 = GEN_INT (const_op);
10427 	      code = GE;
10428 	    }
10429 
10430 	  /* If we are doing a > 0 comparison on a value known to have
10431 	     a zero sign bit, we can replace this with != 0.  */
10432 	  else if (const_op == 0
10433 		   && mode_width <= HOST_BITS_PER_WIDE_INT
10434 		   && (nonzero_bits (op0, mode)
10435 		       & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10436 	    code = NE;
10437 	  break;
10438 
10439 	case LTU:
10440 	  /* < C is equivalent to <= (C - 1).  */
10441 	  if (const_op > 0)
10442 	    {
10443 	      const_op -= 1;
10444 	      op1 = GEN_INT (const_op);
10445 	      code = LEU;
10446 	      /* ... fall through ...  */
10447 	    }
10448 
10449 	  /* (unsigned) < 0x80000000 is equivalent to >= 0.  */
10450 	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10451 		   && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10452 	    {
10453 	      const_op = 0, op1 = const0_rtx;
10454 	      code = GE;
10455 	      break;
10456 	    }
10457 	  else
10458 	    break;
10459 
10460 	case LEU:
10461 	  /* unsigned <= 0 is equivalent to == 0 */
10462 	  if (const_op == 0)
10463 	    code = EQ;
10464 
10465 	  /* (unsigned) <= 0x7fffffff is equivalent to >= 0.  */
10466 	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10467 		   && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10468 	    {
10469 	      const_op = 0, op1 = const0_rtx;
10470 	      code = GE;
10471 	    }
10472 	  break;
10473 
10474 	case GEU:
10475 	  /* >= C is equivalent to < (C - 1).  */
10476 	  if (const_op > 1)
10477 	    {
10478 	      const_op -= 1;
10479 	      op1 = GEN_INT (const_op);
10480 	      code = GTU;
10481 	      /* ... fall through ...  */
10482 	    }
10483 
10484 	  /* (unsigned) >= 0x80000000 is equivalent to < 0.  */
10485 	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10486 		   && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10487 	    {
10488 	      const_op = 0, op1 = const0_rtx;
10489 	      code = LT;
10490 	      break;
10491 	    }
10492 	  else
10493 	    break;
10494 
10495 	case GTU:
10496 	  /* unsigned > 0 is equivalent to != 0 */
10497 	  if (const_op == 0)
10498 	    code = NE;
10499 
10500 	  /* (unsigned) > 0x7fffffff is equivalent to < 0.  */
10501 	  else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10502 		   && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10503 	    {
10504 	      const_op = 0, op1 = const0_rtx;
10505 	      code = LT;
10506 	    }
10507 	  break;
10508 
10509 	default:
10510 	  break;
10511 	}
10512 
10513       /* Compute some predicates to simplify code below.  */
10514 
10515       equality_comparison_p = (code == EQ || code == NE);
10516       sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10517       unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10518 			       || code == GEU);
10519 
10520       /* If this is a sign bit comparison and we can do arithmetic in
10521 	 MODE, say that we will only be needing the sign bit of OP0.  */
10522       if (sign_bit_comparison_p
10523 	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10524 	op0 = force_to_mode (op0, mode,
10525 			     ((HOST_WIDE_INT) 1
10526 			      << (GET_MODE_BITSIZE (mode) - 1)),
10527 			     NULL_RTX, 0);
10528 
10529       /* Now try cases based on the opcode of OP0.  If none of the cases
10530 	 does a "continue", we exit this loop immediately after the
10531 	 switch.  */
10532 
10533       switch (GET_CODE (op0))
10534 	{
10535 	case ZERO_EXTRACT:
10536 	  /* If we are extracting a single bit from a variable position in
10537 	     a constant that has only a single bit set and are comparing it
10538 	     with zero, we can convert this into an equality comparison
10539 	     between the position and the location of the single bit.  */
10540 	  /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10541 	     have already reduced the shift count modulo the word size.  */
10542 	  if (!SHIFT_COUNT_TRUNCATED
10543 	      && GET_CODE (XEXP (op0, 0)) == CONST_INT
10544 	      && XEXP (op0, 1) == const1_rtx
10545 	      && equality_comparison_p && const_op == 0
10546 	      && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10547 	    {
10548 	      if (BITS_BIG_ENDIAN)
10549 		{
10550 		  enum machine_mode new_mode
10551 		    = mode_for_extraction (EP_extzv, 1);
10552 		  if (new_mode == MAX_MACHINE_MODE)
10553 		    i = BITS_PER_WORD - 1 - i;
10554 		  else
10555 		    {
10556 		      mode = new_mode;
10557 		      i = (GET_MODE_BITSIZE (mode) - 1 - i);
10558 		    }
10559 		}
10560 
10561 	      op0 = XEXP (op0, 2);
10562 	      op1 = GEN_INT (i);
10563 	      const_op = i;
10564 
10565 	      /* Result is nonzero iff shift count is equal to I.  */
10566 	      code = reverse_condition (code);
10567 	      continue;
10568 	    }
10569 
10570 	  /* ... fall through ...  */
10571 
10572 	case SIGN_EXTRACT:
10573 	  tem = expand_compound_operation (op0);
10574 	  if (tem != op0)
10575 	    {
10576 	      op0 = tem;
10577 	      continue;
10578 	    }
10579 	  break;
10580 
10581 	case NOT:
10582 	  /* If testing for equality, we can take the NOT of the constant.  */
10583 	  if (equality_comparison_p
10584 	      && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10585 	    {
10586 	      op0 = XEXP (op0, 0);
10587 	      op1 = tem;
10588 	      continue;
10589 	    }
10590 
10591 	  /* If just looking at the sign bit, reverse the sense of the
10592 	     comparison.  */
10593 	  if (sign_bit_comparison_p)
10594 	    {
10595 	      op0 = XEXP (op0, 0);
10596 	      code = (code == GE ? LT : GE);
10597 	      continue;
10598 	    }
10599 	  break;
10600 
10601 	case NEG:
10602 	  /* If testing for equality, we can take the NEG of the constant.  */
10603 	  if (equality_comparison_p
10604 	      && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10605 	    {
10606 	      op0 = XEXP (op0, 0);
10607 	      op1 = tem;
10608 	      continue;
10609 	    }
10610 
10611 	  /* The remaining cases only apply to comparisons with zero.  */
10612 	  if (const_op != 0)
10613 	    break;
10614 
10615 	  /* When X is ABS or is known positive,
10616 	     (neg X) is < 0 if and only if X != 0.  */
10617 
10618 	  if (sign_bit_comparison_p
10619 	      && (GET_CODE (XEXP (op0, 0)) == ABS
10620 		  || (mode_width <= HOST_BITS_PER_WIDE_INT
10621 		      && (nonzero_bits (XEXP (op0, 0), mode)
10622 			  & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10623 	    {
10624 	      op0 = XEXP (op0, 0);
10625 	      code = (code == LT ? NE : EQ);
10626 	      continue;
10627 	    }
10628 
10629 	  /* If we have NEG of something whose two high-order bits are the
10630 	     same, we know that "(-a) < 0" is equivalent to "a > 0".  */
10631 	  if (num_sign_bit_copies (op0, mode) >= 2)
10632 	    {
10633 	      op0 = XEXP (op0, 0);
10634 	      code = swap_condition (code);
10635 	      continue;
10636 	    }
10637 	  break;
10638 
10639 	case ROTATE:
10640 	  /* If we are testing equality and our count is a constant, we
10641 	     can perform the inverse operation on our RHS.  */
10642 	  if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10643 	      && (tem = simplify_binary_operation (ROTATERT, mode,
10644 						   op1, XEXP (op0, 1))) != 0)
10645 	    {
10646 	      op0 = XEXP (op0, 0);
10647 	      op1 = tem;
10648 	      continue;
10649 	    }
10650 
10651 	  /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10652 	     a particular bit.  Convert it to an AND of a constant of that
10653 	     bit.  This will be converted into a ZERO_EXTRACT.  */
10654 	  if (const_op == 0 && sign_bit_comparison_p
10655 	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10656 	      && mode_width <= HOST_BITS_PER_WIDE_INT)
10657 	    {
10658 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10659 					    ((HOST_WIDE_INT) 1
10660 					     << (mode_width - 1
10661 						 - INTVAL (XEXP (op0, 1)))));
10662 	      code = (code == LT ? NE : EQ);
10663 	      continue;
10664 	    }
10665 
10666 	  /* Fall through.  */
10667 
10668 	case ABS:
10669 	  /* ABS is ignorable inside an equality comparison with zero.  */
10670 	  if (const_op == 0 && equality_comparison_p)
10671 	    {
10672 	      op0 = XEXP (op0, 0);
10673 	      continue;
10674 	    }
10675 	  break;
10676 
10677 	case SIGN_EXTEND:
10678 	  /* Can simplify (compare (zero/sign_extend FOO) CONST)
10679 	     to (compare FOO CONST) if CONST fits in FOO's mode and we
10680 	     are either testing inequality or have an unsigned comparison
10681 	     with ZERO_EXTEND or a signed comparison with SIGN_EXTEND.  */
10682 	  if (! unsigned_comparison_p
10683 	      && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10684 		  <= HOST_BITS_PER_WIDE_INT)
10685 	      && ((unsigned HOST_WIDE_INT) const_op
10686 		  < (((unsigned HOST_WIDE_INT) 1
10687 		      << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10688 	    {
10689 	      op0 = XEXP (op0, 0);
10690 	      continue;
10691 	    }
10692 	  break;
10693 
10694 	case SUBREG:
10695 	  /* Check for the case where we are comparing A - C1 with C2,
10696 	     both constants are smaller than 1/2 the maximum positive
10697 	     value in MODE, and the comparison is equality or unsigned.
10698 	     In that case, if A is either zero-extended to MODE or has
10699 	     sufficient sign bits so that the high-order bit in MODE
10700 	     is a copy of the sign in the inner mode, we can prove that it is
10701 	     safe to do the operation in the wider mode.  This simplifies
10702 	     many range checks.  */
10703 
10704 	  if (mode_width <= HOST_BITS_PER_WIDE_INT
10705 	      && subreg_lowpart_p (op0)
10706 	      && GET_CODE (SUBREG_REG (op0)) == PLUS
10707 	      && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10708 	      && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10709 	      && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10710 		  < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10711 	      && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10712 	      && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10713 				      GET_MODE (SUBREG_REG (op0)))
10714 			& ~GET_MODE_MASK (mode))
10715 		  || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10716 					   GET_MODE (SUBREG_REG (op0)))
10717 		      > (unsigned int)
10718 			(GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10719 			 - GET_MODE_BITSIZE (mode)))))
10720 	    {
10721 	      op0 = SUBREG_REG (op0);
10722 	      continue;
10723 	    }
10724 
10725 	  /* If the inner mode is narrower and we are extracting the low part,
10726 	     we can treat the SUBREG as if it were a ZERO_EXTEND.  */
10727 	  if (subreg_lowpart_p (op0)
10728 	      && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10729 	    /* Fall through */ ;
10730 	  else
10731 	    break;
10732 
10733 	  /* ... fall through ...  */
10734 
10735 	case ZERO_EXTEND:
10736 	  if ((unsigned_comparison_p || equality_comparison_p)
10737 	      && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10738 		  <= HOST_BITS_PER_WIDE_INT)
10739 	      && ((unsigned HOST_WIDE_INT) const_op
10740 		  < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10741 	    {
10742 	      op0 = XEXP (op0, 0);
10743 	      continue;
10744 	    }
10745 	  break;
10746 
10747 	case PLUS:
10748 	  /* (eq (plus X A) B) -> (eq X (minus B A)).  We can only do
10749 	     this for equality comparisons due to pathological cases involving
10750 	     overflows.  */
10751 	  if (equality_comparison_p
10752 	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
10753 							op1, XEXP (op0, 1))))
10754 	    {
10755 	      op0 = XEXP (op0, 0);
10756 	      op1 = tem;
10757 	      continue;
10758 	    }
10759 
10760 	  /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0.  */
10761 	  if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10762 	      && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10763 	    {
10764 	      op0 = XEXP (XEXP (op0, 0), 0);
10765 	      code = (code == LT ? EQ : NE);
10766 	      continue;
10767 	    }
10768 	  break;
10769 
10770 	case MINUS:
10771 	  /* We used to optimize signed comparisons against zero, but that
10772 	     was incorrect.  Unsigned comparisons against zero (GTU, LEU)
10773 	     arrive here as equality comparisons, or (GEU, LTU) are
10774 	     optimized away.  No need to special-case them.  */
10775 
10776 	  /* (eq (minus A B) C) -> (eq A (plus B C)) or
10777 	     (eq B (minus A C)), whichever simplifies.  We can only do
10778 	     this for equality comparisons due to pathological cases involving
10779 	     overflows.  */
10780 	  if (equality_comparison_p
10781 	      && 0 != (tem = simplify_binary_operation (PLUS, mode,
10782 							XEXP (op0, 1), op1)))
10783 	    {
10784 	      op0 = XEXP (op0, 0);
10785 	      op1 = tem;
10786 	      continue;
10787 	    }
10788 
10789 	  if (equality_comparison_p
10790 	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
10791 							XEXP (op0, 0), op1)))
10792 	    {
10793 	      op0 = XEXP (op0, 1);
10794 	      op1 = tem;
10795 	      continue;
10796 	    }
10797 
10798 	  /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10799 	     of bits in X minus 1, is one iff X > 0.  */
10800 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10801 	      && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10802 	      && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10803 		 == mode_width - 1
10804 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10805 	    {
10806 	      op0 = XEXP (op0, 1);
10807 	      code = (code == GE ? LE : GT);
10808 	      continue;
10809 	    }
10810 	  break;
10811 
10812 	case XOR:
10813 	  /* (eq (xor A B) C) -> (eq A (xor B C)).  This is a simplification
10814 	     if C is zero or B is a constant.  */
10815 	  if (equality_comparison_p
10816 	      && 0 != (tem = simplify_binary_operation (XOR, mode,
10817 							XEXP (op0, 1), op1)))
10818 	    {
10819 	      op0 = XEXP (op0, 0);
10820 	      op1 = tem;
10821 	      continue;
10822 	    }
10823 	  break;
10824 
10825 	case EQ:  case NE:
10826 	case UNEQ:  case LTGT:
10827 	case LT:  case LTU:  case UNLT:  case LE:  case LEU:  case UNLE:
10828 	case GT:  case GTU:  case UNGT:  case GE:  case GEU:  case UNGE:
10829         case UNORDERED: case ORDERED:
10830 	  /* We can't do anything if OP0 is a condition code value, rather
10831 	     than an actual data value.  */
10832 	  if (const_op != 0
10833 	      || CC0_P (XEXP (op0, 0))
10834 	      || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10835 	    break;
10836 
10837 	  /* Get the two operands being compared.  */
10838 	  if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10839 	    tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10840 	  else
10841 	    tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10842 
10843 	  /* Check for the cases where we simply want the result of the
10844 	     earlier test or the opposite of that result.  */
10845 	  if (code == NE || code == EQ
10846 	      || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10847 		  && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10848 		  && (STORE_FLAG_VALUE
10849 		      & (((HOST_WIDE_INT) 1
10850 			  << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10851 		  && (code == LT || code == GE)))
10852 	    {
10853 	      enum rtx_code new_code;
10854 	      if (code == LT || code == NE)
10855 		new_code = GET_CODE (op0);
10856 	      else
10857 		new_code = combine_reversed_comparison_code (op0);
10858 
10859 	      if (new_code != UNKNOWN)
10860 		{
10861 		  code = new_code;
10862 		  op0 = tem;
10863 		  op1 = tem1;
10864 		  continue;
10865 		}
10866 	    }
10867 	  break;
10868 
10869 	case IOR:
10870 	  /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10871 	     iff X <= 0.  */
10872 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10873 	      && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10874 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10875 	    {
10876 	      op0 = XEXP (op0, 1);
10877 	      code = (code == GE ? GT : LE);
10878 	      continue;
10879 	    }
10880 	  break;
10881 
10882 	case AND:
10883 	  /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1).  This
10884 	     will be converted to a ZERO_EXTRACT later.  */
10885 	  if (const_op == 0 && equality_comparison_p
10886 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
10887 	      && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10888 	    {
10889 	      op0 = simplify_and_const_int
10890 		(op0, mode, gen_rtx_LSHIFTRT (mode,
10891 					      XEXP (op0, 1),
10892 					      XEXP (XEXP (op0, 0), 1)),
10893 		 (HOST_WIDE_INT) 1);
10894 	      continue;
10895 	    }
10896 
10897 	  /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10898 	     zero and X is a comparison and C1 and C2 describe only bits set
10899 	     in STORE_FLAG_VALUE, we can compare with X.  */
10900 	  if (const_op == 0 && equality_comparison_p
10901 	      && mode_width <= HOST_BITS_PER_WIDE_INT
10902 	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10903 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10904 	      && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10905 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10906 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10907 	    {
10908 	      mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10909 		      << INTVAL (XEXP (XEXP (op0, 0), 1)));
10910 	      if ((~STORE_FLAG_VALUE & mask) == 0
10911 		  && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10912 		      || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10913 			  && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10914 		{
10915 		  op0 = XEXP (XEXP (op0, 0), 0);
10916 		  continue;
10917 		}
10918 	    }
10919 
10920 	  /* If we are doing an equality comparison of an AND of a bit equal
10921 	     to the sign bit, replace this with a LT or GE comparison of
10922 	     the underlying value.  */
10923 	  if (equality_comparison_p
10924 	      && const_op == 0
10925 	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10926 	      && mode_width <= HOST_BITS_PER_WIDE_INT
10927 	      && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10928 		  == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10929 	    {
10930 	      op0 = XEXP (op0, 0);
10931 	      code = (code == EQ ? GE : LT);
10932 	      continue;
10933 	    }
10934 
10935 	  /* If this AND operation is really a ZERO_EXTEND from a narrower
10936 	     mode, the constant fits within that mode, and this is either an
10937 	     equality or unsigned comparison, try to do this comparison in
10938 	     the narrower mode.  */
10939 	  if ((equality_comparison_p || unsigned_comparison_p)
10940 	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
10941 	      && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10942 				   & GET_MODE_MASK (mode))
10943 				  + 1)) >= 0
10944 	      && const_op >> i == 0
10945 	      && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10946 	    {
10947 	      op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10948 	      continue;
10949 	    }
10950 
10951 	  /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10952 	     fits in both M1 and M2 and the SUBREG is either paradoxical
10953 	     or represents the low part, permute the SUBREG and the AND
10954 	     and try again.  */
10955 	  if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10956 	    {
10957 	      unsigned HOST_WIDE_INT c1;
10958 	      tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10959 	      /* Require an integral mode, to avoid creating something like
10960 		 (AND:SF ...).  */
10961 	      if (SCALAR_INT_MODE_P (tmode)
10962 		  /* It is unsafe to commute the AND into the SUBREG if the
10963 		     SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10964 		     not defined.  As originally written the upper bits
10965 		     have a defined value due to the AND operation.
10966 		     However, if we commute the AND inside the SUBREG then
10967 		     they no longer have defined values and the meaning of
10968 		     the code has been changed.  */
10969 		  && (0
10970 #ifdef WORD_REGISTER_OPERATIONS
10971 		      || (mode_width > GET_MODE_BITSIZE (tmode)
10972 			  && mode_width <= BITS_PER_WORD)
10973 #endif
10974 		      || (mode_width <= GET_MODE_BITSIZE (tmode)
10975 			  && subreg_lowpart_p (XEXP (op0, 0))))
10976 		  && GET_CODE (XEXP (op0, 1)) == CONST_INT
10977 		  && mode_width <= HOST_BITS_PER_WIDE_INT
10978 		  && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10979 		  && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10980 		  && (c1 & ~GET_MODE_MASK (tmode)) == 0
10981 		  && c1 != mask
10982 		  && c1 != GET_MODE_MASK (tmode))
10983 		{
10984 		  op0 = gen_binary (AND, tmode,
10985 				    SUBREG_REG (XEXP (op0, 0)),
10986 				    gen_int_mode (c1, tmode));
10987 		  op0 = gen_lowpart_for_combine (mode, op0);
10988 		  continue;
10989 		}
10990 	    }
10991 
10992 	  /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0).  */
10993 	  if (const_op == 0 && equality_comparison_p
10994 	      && XEXP (op0, 1) == const1_rtx
10995 	      && GET_CODE (XEXP (op0, 0)) == NOT)
10996 	    {
10997 	      op0 = simplify_and_const_int
10998 		(NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10999 	      code = (code == NE ? EQ : NE);
11000 	      continue;
11001 	    }
11002 
11003 	  /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11004 	     (eq (and (lshiftrt X) 1) 0).
11005 	     Also handle the case where (not X) is expressed using xor.  */
11006 	  if (const_op == 0 && equality_comparison_p
11007 	      && XEXP (op0, 1) == const1_rtx
11008 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11009 	    {
11010 	      rtx shift_op = XEXP (XEXP (op0, 0), 0);
11011 	      rtx shift_count = XEXP (XEXP (op0, 0), 1);
11012 
11013 	      if (GET_CODE (shift_op) == NOT
11014 		  || (GET_CODE (shift_op) == XOR
11015 		      && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
11016 		      && GET_CODE (shift_count) == CONST_INT
11017 		      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11018 		      && (INTVAL (XEXP (shift_op, 1))
11019 			  == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
11020 		{
11021 		  op0 = simplify_and_const_int
11022 		    (NULL_RTX, mode,
11023 		     gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
11024 		     (HOST_WIDE_INT) 1);
11025 		  code = (code == NE ? EQ : NE);
11026 		  continue;
11027 		}
11028 	    }
11029 	  break;
11030 
11031 	case ASHIFT:
11032 	  /* If we have (compare (ashift FOO N) (const_int C)) and
11033 	     the high order N bits of FOO (N+1 if an inequality comparison)
11034 	     are known to be zero, we can do this by comparing FOO with C
11035 	     shifted right N bits so long as the low-order N bits of C are
11036 	     zero.  */
11037 	  if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11038 	      && INTVAL (XEXP (op0, 1)) >= 0
11039 	      && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11040 		  < HOST_BITS_PER_WIDE_INT)
11041 	      && ((const_op
11042 		   & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11043 	      && mode_width <= HOST_BITS_PER_WIDE_INT
11044 	      && (nonzero_bits (XEXP (op0, 0), mode)
11045 		  & ~(mask >> (INTVAL (XEXP (op0, 1))
11046 			       + ! equality_comparison_p))) == 0)
11047 	    {
11048 	      /* We must perform a logical shift, not an arithmetic one,
11049 		 as we want the top N bits of C to be zero.  */
11050 	      unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11051 
11052 	      temp >>= INTVAL (XEXP (op0, 1));
11053 	      op1 = gen_int_mode (temp, mode);
11054 	      op0 = XEXP (op0, 0);
11055 	      continue;
11056 	    }
11057 
11058 	  /* If we are doing a sign bit comparison, it means we are testing
11059 	     a particular bit.  Convert it to the appropriate AND.  */
11060 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
11061 	      && mode_width <= HOST_BITS_PER_WIDE_INT)
11062 	    {
11063 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11064 					    ((HOST_WIDE_INT) 1
11065 					     << (mode_width - 1
11066 						 - INTVAL (XEXP (op0, 1)))));
11067 	      code = (code == LT ? NE : EQ);
11068 	      continue;
11069 	    }
11070 
11071 	  /* If this an equality comparison with zero and we are shifting
11072 	     the low bit to the sign bit, we can convert this to an AND of the
11073 	     low-order bit.  */
11074 	  if (const_op == 0 && equality_comparison_p
11075 	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
11076 	      && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11077 		 == mode_width - 1)
11078 	    {
11079 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11080 					    (HOST_WIDE_INT) 1);
11081 	      continue;
11082 	    }
11083 	  break;
11084 
11085 	case ASHIFTRT:
11086 	  /* If this is an equality comparison with zero, we can do this
11087 	     as a logical shift, which might be much simpler.  */
11088 	  if (equality_comparison_p && const_op == 0
11089 	      && GET_CODE (XEXP (op0, 1)) == CONST_INT)
11090 	    {
11091 	      op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11092 					  XEXP (op0, 0),
11093 					  INTVAL (XEXP (op0, 1)));
11094 	      continue;
11095 	    }
11096 
11097 	  /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11098 	     do the comparison in a narrower mode.  */
11099 	  if (! unsigned_comparison_p
11100 	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
11101 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
11102 	      && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11103 	      && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11104 					 MODE_INT, 1)) != BLKmode
11105 	      && (((unsigned HOST_WIDE_INT) const_op
11106 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
11107 		  <= GET_MODE_MASK (tmode)))
11108 	    {
11109 	      op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
11110 	      continue;
11111 	    }
11112 
11113 	  /* Likewise if OP0 is a PLUS of a sign extension with a
11114 	     constant, which is usually represented with the PLUS
11115 	     between the shifts.  */
11116 	  if (! unsigned_comparison_p
11117 	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
11118 	      && GET_CODE (XEXP (op0, 0)) == PLUS
11119 	      && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11120 	      && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11121 	      && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11122 	      && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11123 					 MODE_INT, 1)) != BLKmode
11124 	      && (((unsigned HOST_WIDE_INT) const_op
11125 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
11126 		  <= GET_MODE_MASK (tmode)))
11127 	    {
11128 	      rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11129 	      rtx add_const = XEXP (XEXP (op0, 0), 1);
11130 	      rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11131 					  XEXP (op0, 1));
11132 
11133 	      op0 = gen_binary (PLUS, tmode,
11134 				gen_lowpart_for_combine (tmode, inner),
11135 				new_const);
11136 	      continue;
11137 	    }
11138 
11139 	  /* ... fall through ...  */
11140 	case LSHIFTRT:
11141 	  /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11142 	     the low order N bits of FOO are known to be zero, we can do this
11143 	     by comparing FOO with C shifted left N bits so long as no
11144 	     overflow occurs.  */
11145 	  if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11146 	      && INTVAL (XEXP (op0, 1)) >= 0
11147 	      && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11148 	      && mode_width <= HOST_BITS_PER_WIDE_INT
11149 	      && (nonzero_bits (XEXP (op0, 0), mode)
11150 		  & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11151 	      && (((unsigned HOST_WIDE_INT) const_op
11152 		   + (GET_CODE (op0) != LSHIFTRT
11153 		      ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11154 			 + 1)
11155 		      : 0))
11156 		  <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11157 	    {
11158 	      /* If the shift was logical, then we must make the condition
11159 		 unsigned.  */
11160 	      if (GET_CODE (op0) == LSHIFTRT)
11161 		code = unsigned_condition (code);
11162 
11163 	      const_op <<= INTVAL (XEXP (op0, 1));
11164 	      op1 = GEN_INT (const_op);
11165 	      op0 = XEXP (op0, 0);
11166 	      continue;
11167 	    }
11168 
11169 	  /* If we are using this shift to extract just the sign bit, we
11170 	     can replace this with an LT or GE comparison.  */
11171 	  if (const_op == 0
11172 	      && (equality_comparison_p || sign_bit_comparison_p)
11173 	      && GET_CODE (XEXP (op0, 1)) == CONST_INT
11174 	      && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11175 		 == mode_width - 1)
11176 	    {
11177 	      op0 = XEXP (op0, 0);
11178 	      code = (code == NE || code == GT ? LT : GE);
11179 	      continue;
11180 	    }
11181 	  break;
11182 
11183 	default:
11184 	  break;
11185 	}
11186 
11187       break;
11188     }
11189 
11190   /* Now make any compound operations involved in this comparison.  Then,
11191      check for an outmost SUBREG on OP0 that is not doing anything or is
11192      paradoxical.  The latter transformation must only be performed when
11193      it is known that the "extra" bits will be the same in op0 and op1 or
11194      that they don't matter.  There are three cases to consider:
11195 
11196      1. SUBREG_REG (op0) is a register.  In this case the bits are don't
11197      care bits and we can assume they have any convenient value.  So
11198      making the transformation is safe.
11199 
11200      2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11201      In this case the upper bits of op0 are undefined.  We should not make
11202      the simplification in that case as we do not know the contents of
11203      those bits.
11204 
11205      3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11206      NIL.  In that case we know those bits are zeros or ones.  We must
11207      also be sure that they are the same as the upper bits of op1.
11208 
11209      We can never remove a SUBREG for a non-equality comparison because
11210      the sign bit is in a different place in the underlying object.  */
11211 
11212   op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11213   op1 = make_compound_operation (op1, SET);
11214 
11215   if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11216       && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11217       && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11218       && (code == NE || code == EQ))
11219     {
11220       if (GET_MODE_SIZE (GET_MODE (op0))
11221 	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11222 	{
11223 	  /* For paradoxical subregs, allow case 1 as above.  Case 3 isn't
11224 	     implemented.  */
11225           if (GET_CODE (SUBREG_REG (op0)) == REG)
11226 	    {
11227 	      op0 = SUBREG_REG (op0);
11228 	      op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11229 	    }
11230 	}
11231       else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11232 		<= HOST_BITS_PER_WIDE_INT)
11233 	       && (nonzero_bits (SUBREG_REG (op0),
11234 				 GET_MODE (SUBREG_REG (op0)))
11235 		   & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11236 	{
11237 	  tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11238 
11239 	  if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11240 	       & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11241 	    op0 = SUBREG_REG (op0), op1 = tem;
11242 	}
11243     }
11244 
11245   /* We now do the opposite procedure: Some machines don't have compare
11246      insns in all modes.  If OP0's mode is an integer mode smaller than a
11247      word and we can't do a compare in that mode, see if there is a larger
11248      mode for which we can do the compare.  There are a number of cases in
11249      which we can use the wider mode.  */
11250 
11251   mode = GET_MODE (op0);
11252   if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11253       && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11254       && ! have_insn_for (COMPARE, mode))
11255     for (tmode = GET_MODE_WIDER_MODE (mode);
11256 	 (tmode != VOIDmode
11257 	  && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11258 	 tmode = GET_MODE_WIDER_MODE (tmode))
11259       if (have_insn_for (COMPARE, tmode))
11260 	{
11261 	  int zero_extended;
11262 
11263 	  /* If the only nonzero bits in OP0 and OP1 are those in the
11264 	     narrower mode and this is an equality or unsigned comparison,
11265 	     we can use the wider mode.  Similarly for sign-extended
11266 	     values, in which case it is true for all comparisons.  */
11267 	  zero_extended = ((code == EQ || code == NE
11268 			    || code == GEU || code == GTU
11269 			    || code == LEU || code == LTU)
11270 			   && (nonzero_bits (op0, tmode)
11271 			       & ~GET_MODE_MASK (mode)) == 0
11272 			   && ((GET_CODE (op1) == CONST_INT
11273 				|| (nonzero_bits (op1, tmode)
11274 				    & ~GET_MODE_MASK (mode)) == 0)));
11275 
11276 	  if (zero_extended
11277 	      || ((num_sign_bit_copies (op0, tmode)
11278 		   > (unsigned int) (GET_MODE_BITSIZE (tmode)
11279 				     - GET_MODE_BITSIZE (mode)))
11280 		  && (num_sign_bit_copies (op1, tmode)
11281 		      > (unsigned int) (GET_MODE_BITSIZE (tmode)
11282 					- GET_MODE_BITSIZE (mode)))))
11283 	    {
11284 	      /* If OP0 is an AND and we don't have an AND in MODE either,
11285 		 make a new AND in the proper mode.  */
11286 	      if (GET_CODE (op0) == AND
11287 		  && !have_insn_for (AND, mode))
11288 		op0 = gen_binary (AND, tmode,
11289 				  gen_lowpart_for_combine (tmode,
11290 							   XEXP (op0, 0)),
11291 				  gen_lowpart_for_combine (tmode,
11292 							   XEXP (op0, 1)));
11293 
11294 	      op0 = gen_lowpart_for_combine (tmode, op0);
11295 	      if (zero_extended && GET_CODE (op1) == CONST_INT)
11296 		op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11297 	      op1 = gen_lowpart_for_combine (tmode, op1);
11298 	      break;
11299 	    }
11300 
11301 	  /* If this is a test for negative, we can make an explicit
11302 	     test of the sign bit.  */
11303 
11304 	  if (op1 == const0_rtx && (code == LT || code == GE)
11305 	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11306 	    {
11307 	      op0 = gen_binary (AND, tmode,
11308 				gen_lowpart_for_combine (tmode, op0),
11309 				GEN_INT ((HOST_WIDE_INT) 1
11310 					 << (GET_MODE_BITSIZE (mode) - 1)));
11311 	      code = (code == LT) ? NE : EQ;
11312 	      break;
11313 	    }
11314 	}
11315 
11316 #ifdef CANONICALIZE_COMPARISON
11317   /* If this machine only supports a subset of valid comparisons, see if we
11318      can convert an unsupported one into a supported one.  */
11319   CANONICALIZE_COMPARISON (code, op0, op1);
11320 #endif
11321 
11322   *pop0 = op0;
11323   *pop1 = op1;
11324 
11325   return code;
11326 }
11327 
11328 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11329    searching backward.  */
11330 static enum rtx_code
combine_reversed_comparison_code(rtx exp)11331 combine_reversed_comparison_code (rtx exp)
11332 {
11333   enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11334   rtx x;
11335 
11336   if (code1 != UNKNOWN
11337       || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11338     return code1;
11339   /* Otherwise try and find where the condition codes were last set and
11340      use that.  */
11341   x = get_last_value (XEXP (exp, 0));
11342   if (!x || GET_CODE (x) != COMPARE)
11343     return UNKNOWN;
11344   return reversed_comparison_code_parts (GET_CODE (exp),
11345 					 XEXP (x, 0), XEXP (x, 1), NULL);
11346 }
11347 
11348 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11349    Return NULL_RTX in case we fail to do the reversal.  */
11350 static rtx
reversed_comparison(rtx exp,enum machine_mode mode,rtx op0,rtx op1)11351 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
11352 {
11353   enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11354   if (reversed_code == UNKNOWN)
11355     return NULL_RTX;
11356   else
11357     return gen_binary (reversed_code, mode, op0, op1);
11358 }
11359 
11360 /* Utility function for following routine.  Called when X is part of a value
11361    being stored into reg_last_set_value.  Sets reg_last_set_table_tick
11362    for each register mentioned.  Similar to mention_regs in cse.c  */
11363 
11364 static void
update_table_tick(rtx x)11365 update_table_tick (rtx x)
11366 {
11367   enum rtx_code code = GET_CODE (x);
11368   const char *fmt = GET_RTX_FORMAT (code);
11369   int i;
11370 
11371   if (code == REG)
11372     {
11373       unsigned int regno = REGNO (x);
11374       unsigned int endregno
11375 	= regno + (regno < FIRST_PSEUDO_REGISTER
11376 		   ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11377       unsigned int r;
11378 
11379       for (r = regno; r < endregno; r++)
11380 	reg_last_set_table_tick[r] = label_tick;
11381 
11382       return;
11383     }
11384 
11385   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11386     /* Note that we can't have an "E" in values stored; see
11387        get_last_value_validate.  */
11388     if (fmt[i] == 'e')
11389       {
11390 	/* Check for identical subexpressions.  If x contains
11391 	   identical subexpression we only have to traverse one of
11392 	   them.  */
11393 	if (i == 0
11394 	    && (GET_RTX_CLASS (code) == '2'
11395 		|| GET_RTX_CLASS (code) == 'c'))
11396 	  {
11397 	    /* Note that at this point x1 has already been
11398 	       processed.  */
11399 	    rtx x0 = XEXP (x, 0);
11400 	    rtx x1 = XEXP (x, 1);
11401 
11402 	    /* If x0 and x1 are identical then there is no need to
11403 	       process x0.  */
11404 	    if (x0 == x1)
11405 	      break;
11406 
11407 	    /* If x0 is identical to a subexpression of x1 then while
11408 	       processing x1, x0 has already been processed.  Thus we
11409 	       are done with x.  */
11410 	    if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11411 		 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11412 		&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11413 	      break;
11414 
11415 	    /* If x1 is identical to a subexpression of x0 then we
11416 	       still have to process the rest of x0.  */
11417 	    if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11418 		 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11419 		&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11420 	      {
11421 		update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11422 		break;
11423 	      }
11424 	  }
11425 
11426 	update_table_tick (XEXP (x, i));
11427       }
11428 }
11429 
11430 /* Record that REG is set to VALUE in insn INSN.  If VALUE is zero, we
11431    are saying that the register is clobbered and we no longer know its
11432    value.  If INSN is zero, don't update reg_last_set; this is only permitted
11433    with VALUE also zero and is used to invalidate the register.  */
11434 
11435 static void
record_value_for_reg(rtx reg,rtx insn,rtx value)11436 record_value_for_reg (rtx reg, rtx insn, rtx value)
11437 {
11438   unsigned int regno = REGNO (reg);
11439   unsigned int endregno
11440     = regno + (regno < FIRST_PSEUDO_REGISTER
11441 	       ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11442   unsigned int i;
11443 
11444   /* If VALUE contains REG and we have a previous value for REG, substitute
11445      the previous value.  */
11446   if (value && insn && reg_overlap_mentioned_p (reg, value))
11447     {
11448       rtx tem;
11449 
11450       /* Set things up so get_last_value is allowed to see anything set up to
11451 	 our insn.  */
11452       subst_low_cuid = INSN_CUID (insn);
11453       tem = get_last_value (reg);
11454 
11455       /* If TEM is simply a binary operation with two CLOBBERs as operands,
11456 	 it isn't going to be useful and will take a lot of time to process,
11457 	 so just use the CLOBBER.  */
11458 
11459       if (tem)
11460 	{
11461 	  if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11462 	       || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11463 	      && GET_CODE (XEXP (tem, 0)) == CLOBBER
11464 	      && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11465 	    tem = XEXP (tem, 0);
11466 
11467 	  value = replace_rtx (copy_rtx (value), reg, tem);
11468 	}
11469     }
11470 
11471   /* For each register modified, show we don't know its value, that
11472      we don't know about its bitwise content, that its value has been
11473      updated, and that we don't know the location of the death of the
11474      register.  */
11475   for (i = regno; i < endregno; i++)
11476     {
11477       if (insn)
11478 	reg_last_set[i] = insn;
11479 
11480       reg_last_set_value[i] = 0;
11481       reg_last_set_mode[i] = 0;
11482       reg_last_set_nonzero_bits[i] = 0;
11483       reg_last_set_sign_bit_copies[i] = 0;
11484       reg_last_death[i] = 0;
11485     }
11486 
11487   /* Mark registers that are being referenced in this value.  */
11488   if (value)
11489     update_table_tick (value);
11490 
11491   /* Now update the status of each register being set.
11492      If someone is using this register in this block, set this register
11493      to invalid since we will get confused between the two lives in this
11494      basic block.  This makes using this register always invalid.  In cse, we
11495      scan the table to invalidate all entries using this register, but this
11496      is too much work for us.  */
11497 
11498   for (i = regno; i < endregno; i++)
11499     {
11500       reg_last_set_label[i] = label_tick;
11501       if (value && reg_last_set_table_tick[i] == label_tick)
11502 	reg_last_set_invalid[i] = 1;
11503       else
11504 	reg_last_set_invalid[i] = 0;
11505     }
11506 
11507   /* The value being assigned might refer to X (like in "x++;").  In that
11508      case, we must replace it with (clobber (const_int 0)) to prevent
11509      infinite loops.  */
11510   if (value && ! get_last_value_validate (&value, insn,
11511 					  reg_last_set_label[regno], 0))
11512     {
11513       value = copy_rtx (value);
11514       if (! get_last_value_validate (&value, insn,
11515 				     reg_last_set_label[regno], 1))
11516 	value = 0;
11517     }
11518 
11519   /* For the main register being modified, update the value, the mode, the
11520      nonzero bits, and the number of sign bit copies.  */
11521 
11522   reg_last_set_value[regno] = value;
11523 
11524   if (value)
11525     {
11526       enum machine_mode mode = GET_MODE (reg);
11527       subst_low_cuid = INSN_CUID (insn);
11528       reg_last_set_mode[regno] = mode;
11529       if (GET_MODE_CLASS (mode) == MODE_INT
11530 	  && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11531 	mode = nonzero_bits_mode;
11532       reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11533       reg_last_set_sign_bit_copies[regno]
11534 	= num_sign_bit_copies (value, GET_MODE (reg));
11535     }
11536 }
11537 
11538 /* Called via note_stores from record_dead_and_set_regs to handle one
11539    SET or CLOBBER in an insn.  DATA is the instruction in which the
11540    set is occurring.  */
11541 
11542 static void
record_dead_and_set_regs_1(rtx dest,rtx setter,void * data)11543 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11544 {
11545   rtx record_dead_insn = (rtx) data;
11546 
11547   if (GET_CODE (dest) == SUBREG)
11548     dest = SUBREG_REG (dest);
11549 
11550   if (GET_CODE (dest) == REG)
11551     {
11552       /* If we are setting the whole register, we know its value.  Otherwise
11553 	 show that we don't know the value.  We can handle SUBREG in
11554 	 some cases.  */
11555       if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11556 	record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11557       else if (GET_CODE (setter) == SET
11558 	       && GET_CODE (SET_DEST (setter)) == SUBREG
11559 	       && SUBREG_REG (SET_DEST (setter)) == dest
11560 	       && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11561 	       && subreg_lowpart_p (SET_DEST (setter)))
11562 	record_value_for_reg (dest, record_dead_insn,
11563 			      gen_lowpart_for_combine (GET_MODE (dest),
11564 						       SET_SRC (setter)));
11565       else
11566 	record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11567     }
11568   else if (GET_CODE (dest) == MEM
11569 	   /* Ignore pushes, they clobber nothing.  */
11570 	   && ! push_operand (dest, GET_MODE (dest)))
11571     mem_last_set = INSN_CUID (record_dead_insn);
11572 }
11573 
11574 /* Update the records of when each REG was most recently set or killed
11575    for the things done by INSN.  This is the last thing done in processing
11576    INSN in the combiner loop.
11577 
11578    We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11579    reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11580    and also the similar information mem_last_set (which insn most recently
11581    modified memory) and last_call_cuid (which insn was the most recent
11582    subroutine call).  */
11583 
11584 static void
record_dead_and_set_regs(rtx insn)11585 record_dead_and_set_regs (rtx insn)
11586 {
11587   rtx link;
11588   unsigned int i;
11589 
11590   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11591     {
11592       if (REG_NOTE_KIND (link) == REG_DEAD
11593 	  && GET_CODE (XEXP (link, 0)) == REG)
11594 	{
11595 	  unsigned int regno = REGNO (XEXP (link, 0));
11596 	  unsigned int endregno
11597 	    = regno + (regno < FIRST_PSEUDO_REGISTER
11598 		       ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11599 		       : 1);
11600 
11601 	  for (i = regno; i < endregno; i++)
11602 	    reg_last_death[i] = insn;
11603 	}
11604       else if (REG_NOTE_KIND (link) == REG_INC)
11605 	record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11606     }
11607 
11608   if (GET_CODE (insn) == CALL_INSN)
11609     {
11610       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11611 	if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11612 	  {
11613 	    reg_last_set_value[i] = 0;
11614 	    reg_last_set_mode[i] = 0;
11615 	    reg_last_set_nonzero_bits[i] = 0;
11616 	    reg_last_set_sign_bit_copies[i] = 0;
11617 	    reg_last_death[i] = 0;
11618 	  }
11619 
11620       last_call_cuid = mem_last_set = INSN_CUID (insn);
11621 
11622       /* Don't bother recording what this insn does.  It might set the
11623 	 return value register, but we can't combine into a call
11624 	 pattern anyway, so there's no point trying (and it may cause
11625 	 a crash, if e.g. we wind up asking for last_set_value of a
11626 	 SUBREG of the return value register).  */
11627       return;
11628     }
11629 
11630   note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11631 }
11632 
11633 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11634    register present in the SUBREG, so for each such SUBREG go back and
11635    adjust nonzero and sign bit information of the registers that are
11636    known to have some zero/sign bits set.
11637 
11638    This is needed because when combine blows the SUBREGs away, the
11639    information on zero/sign bits is lost and further combines can be
11640    missed because of that.  */
11641 
11642 static void
record_promoted_value(rtx insn,rtx subreg)11643 record_promoted_value (rtx insn, rtx subreg)
11644 {
11645   rtx links, set;
11646   unsigned int regno = REGNO (SUBREG_REG (subreg));
11647   enum machine_mode mode = GET_MODE (subreg);
11648 
11649   if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11650     return;
11651 
11652   for (links = LOG_LINKS (insn); links;)
11653     {
11654       insn = XEXP (links, 0);
11655       set = single_set (insn);
11656 
11657       if (! set || GET_CODE (SET_DEST (set)) != REG
11658 	  || REGNO (SET_DEST (set)) != regno
11659 	  || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11660 	{
11661 	  links = XEXP (links, 1);
11662 	  continue;
11663 	}
11664 
11665       if (reg_last_set[regno] == insn)
11666 	{
11667 	  if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11668 	    reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11669 	}
11670 
11671       if (GET_CODE (SET_SRC (set)) == REG)
11672 	{
11673 	  regno = REGNO (SET_SRC (set));
11674 	  links = LOG_LINKS (insn);
11675 	}
11676       else
11677 	break;
11678     }
11679 }
11680 
11681 /* Scan X for promoted SUBREGs.  For each one found,
11682    note what it implies to the registers used in it.  */
11683 
11684 static void
check_promoted_subreg(rtx insn,rtx x)11685 check_promoted_subreg (rtx insn, rtx x)
11686 {
11687   if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11688       && GET_CODE (SUBREG_REG (x)) == REG)
11689     record_promoted_value (insn, x);
11690   else
11691     {
11692       const char *format = GET_RTX_FORMAT (GET_CODE (x));
11693       int i, j;
11694 
11695       for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11696 	switch (format[i])
11697 	  {
11698 	  case 'e':
11699 	    check_promoted_subreg (insn, XEXP (x, i));
11700 	    break;
11701 	  case 'V':
11702 	  case 'E':
11703 	    if (XVEC (x, i) != 0)
11704 	      for (j = 0; j < XVECLEN (x, i); j++)
11705 		check_promoted_subreg (insn, XVECEXP (x, i, j));
11706 	    break;
11707 	  }
11708     }
11709 }
11710 
11711 /* Utility routine for the following function.  Verify that all the registers
11712    mentioned in *LOC are valid when *LOC was part of a value set when
11713    label_tick == TICK.  Return 0 if some are not.
11714 
11715    If REPLACE is nonzero, replace the invalid reference with
11716    (clobber (const_int 0)) and return 1.  This replacement is useful because
11717    we often can get useful information about the form of a value (e.g., if
11718    it was produced by a shift that always produces -1 or 0) even though
11719    we don't know exactly what registers it was produced from.  */
11720 
11721 static int
get_last_value_validate(rtx * loc,rtx insn,int tick,int replace)11722 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11723 {
11724   rtx x = *loc;
11725   const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11726   int len = GET_RTX_LENGTH (GET_CODE (x));
11727   int i;
11728 
11729   if (GET_CODE (x) == REG)
11730     {
11731       unsigned int regno = REGNO (x);
11732       unsigned int endregno
11733 	= regno + (regno < FIRST_PSEUDO_REGISTER
11734 		   ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11735       unsigned int j;
11736 
11737       for (j = regno; j < endregno; j++)
11738 	if (reg_last_set_invalid[j]
11739 	    /* If this is a pseudo-register that was only set once and not
11740 	       live at the beginning of the function, it is always valid.  */
11741 	    || (! (regno >= FIRST_PSEUDO_REGISTER
11742 		   && REG_N_SETS (regno) == 1
11743 		   && (! REGNO_REG_SET_P
11744 		       (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11745 		&& reg_last_set_label[j] > tick))
11746 	  {
11747 	    if (replace)
11748 	      *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11749 	    return replace;
11750 	  }
11751 
11752       return 1;
11753     }
11754   /* If this is a memory reference, make sure that there were
11755      no stores after it that might have clobbered the value.  We don't
11756      have alias info, so we assume any store invalidates it.  */
11757   else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11758 	   && INSN_CUID (insn) <= mem_last_set)
11759     {
11760       if (replace)
11761 	*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11762       return replace;
11763     }
11764 
11765   for (i = 0; i < len; i++)
11766     {
11767       if (fmt[i] == 'e')
11768 	{
11769 	  /* Check for identical subexpressions.  If x contains
11770 	     identical subexpression we only have to traverse one of
11771 	     them.  */
11772 	  if (i == 1
11773 	      && (GET_RTX_CLASS (GET_CODE (x)) == '2'
11774 		  || GET_RTX_CLASS (GET_CODE (x)) == 'c'))
11775 	    {
11776 	      /* Note that at this point x0 has already been checked
11777 		 and found valid.  */
11778 	      rtx x0 = XEXP (x, 0);
11779 	      rtx x1 = XEXP (x, 1);
11780 
11781 	      /* If x0 and x1 are identical then x is also valid.  */
11782 	      if (x0 == x1)
11783 		return 1;
11784 
11785 	      /* If x1 is identical to a subexpression of x0 then
11786 		 while checking x0, x1 has already been checked.  Thus
11787 		 it is valid and so as x.  */
11788 	      if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11789 		   || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11790 		  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11791 		return 1;
11792 
11793 	      /* If x0 is identical to a subexpression of x1 then x is
11794 		 valid iff the rest of x1 is valid.  */
11795 	      if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11796 		   || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11797 		  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11798 		return
11799 		  get_last_value_validate (&XEXP (x1,
11800 						  x0 == XEXP (x1, 0) ? 1 : 0),
11801 					   insn, tick, replace);
11802 	    }
11803 
11804 	  if (get_last_value_validate (&XEXP (x, i), insn, tick,
11805 				       replace) == 0)
11806 	    return 0;
11807 	}
11808       /* Don't bother with these.  They shouldn't occur anyway.  */
11809       else if (fmt[i] == 'E')
11810 	return 0;
11811     }
11812 
11813   /* If we haven't found a reason for it to be invalid, it is valid.  */
11814   return 1;
11815 }
11816 
11817 /* Get the last value assigned to X, if known.  Some registers
11818    in the value may be replaced with (clobber (const_int 0)) if their value
11819    is known longer known reliably.  */
11820 
11821 static rtx
get_last_value(rtx x)11822 get_last_value (rtx x)
11823 {
11824   unsigned int regno;
11825   rtx value;
11826 
11827   /* If this is a non-paradoxical SUBREG, get the value of its operand and
11828      then convert it to the desired mode.  If this is a paradoxical SUBREG,
11829      we cannot predict what values the "extra" bits might have.  */
11830   if (GET_CODE (x) == SUBREG
11831       && subreg_lowpart_p (x)
11832       && (GET_MODE_SIZE (GET_MODE (x))
11833 	  <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11834       && (value = get_last_value (SUBREG_REG (x))) != 0)
11835     return gen_lowpart_for_combine (GET_MODE (x), value);
11836 
11837   if (GET_CODE (x) != REG)
11838     return 0;
11839 
11840   regno = REGNO (x);
11841   value = reg_last_set_value[regno];
11842 
11843   /* If we don't have a value, or if it isn't for this basic block and
11844      it's either a hard register, set more than once, or it's a live
11845      at the beginning of the function, return 0.
11846 
11847      Because if it's not live at the beginning of the function then the reg
11848      is always set before being used (is never used without being set).
11849      And, if it's set only once, and it's always set before use, then all
11850      uses must have the same last value, even if it's not from this basic
11851      block.  */
11852 
11853   if (value == 0
11854       || (reg_last_set_label[regno] != label_tick
11855 	  && (regno < FIRST_PSEUDO_REGISTER
11856 	      || REG_N_SETS (regno) != 1
11857 	      || (REGNO_REG_SET_P
11858 		  (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11859     return 0;
11860 
11861   /* If the value was set in a later insn than the ones we are processing,
11862      we can't use it even if the register was only set once.  */
11863   if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11864     return 0;
11865 
11866   /* If the value has all its registers valid, return it.  */
11867   if (get_last_value_validate (&value, reg_last_set[regno],
11868 			       reg_last_set_label[regno], 0))
11869     return value;
11870 
11871   /* Otherwise, make a copy and replace any invalid register with
11872      (clobber (const_int 0)).  If that fails for some reason, return 0.  */
11873 
11874   value = copy_rtx (value);
11875   if (get_last_value_validate (&value, reg_last_set[regno],
11876 			       reg_last_set_label[regno], 1))
11877     return value;
11878 
11879   return 0;
11880 }
11881 
11882 /* Return nonzero if expression X refers to a REG or to memory
11883    that is set in an instruction more recent than FROM_CUID.  */
11884 
11885 static int
use_crosses_set_p(rtx x,int from_cuid)11886 use_crosses_set_p (rtx x, int from_cuid)
11887 {
11888   const char *fmt;
11889   int i;
11890   enum rtx_code code = GET_CODE (x);
11891 
11892   if (code == REG)
11893     {
11894       unsigned int regno = REGNO (x);
11895       unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11896 				 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11897 
11898 #ifdef PUSH_ROUNDING
11899       /* Don't allow uses of the stack pointer to be moved,
11900 	 because we don't know whether the move crosses a push insn.  */
11901       if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11902 	return 1;
11903 #endif
11904       for (; regno < endreg; regno++)
11905 	if (reg_last_set[regno]
11906 	    && INSN_CUID (reg_last_set[regno]) > from_cuid)
11907 	  return 1;
11908       return 0;
11909     }
11910 
11911   if (code == MEM && mem_last_set > from_cuid)
11912     return 1;
11913 
11914   fmt = GET_RTX_FORMAT (code);
11915 
11916   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11917     {
11918       if (fmt[i] == 'E')
11919 	{
11920 	  int j;
11921 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11922 	    if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11923 	      return 1;
11924 	}
11925       else if (fmt[i] == 'e'
11926 	       && use_crosses_set_p (XEXP (x, i), from_cuid))
11927 	return 1;
11928     }
11929   return 0;
11930 }
11931 
11932 /* Define three variables used for communication between the following
11933    routines.  */
11934 
11935 static unsigned int reg_dead_regno, reg_dead_endregno;
11936 static int reg_dead_flag;
11937 
11938 /* Function called via note_stores from reg_dead_at_p.
11939 
11940    If DEST is within [reg_dead_regno, reg_dead_endregno), set
11941    reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET.  */
11942 
11943 static void
reg_dead_at_p_1(rtx dest,rtx x,void * data ATTRIBUTE_UNUSED)11944 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11945 {
11946   unsigned int regno, endregno;
11947 
11948   if (GET_CODE (dest) != REG)
11949     return;
11950 
11951   regno = REGNO (dest);
11952   endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11953 		      ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11954 
11955   if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11956     reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11957 }
11958 
11959 /* Return nonzero if REG is known to be dead at INSN.
11960 
11961    We scan backwards from INSN.  If we hit a REG_DEAD note or a CLOBBER
11962    referencing REG, it is dead.  If we hit a SET referencing REG, it is
11963    live.  Otherwise, see if it is live or dead at the start of the basic
11964    block we are in.  Hard regs marked as being live in NEWPAT_USED_REGS
11965    must be assumed to be always live.  */
11966 
11967 static int
reg_dead_at_p(rtx reg,rtx insn)11968 reg_dead_at_p (rtx reg, rtx insn)
11969 {
11970   basic_block block;
11971   unsigned int i;
11972 
11973   /* Set variables for reg_dead_at_p_1.  */
11974   reg_dead_regno = REGNO (reg);
11975   reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11976 					? HARD_REGNO_NREGS (reg_dead_regno,
11977 							    GET_MODE (reg))
11978 					: 1);
11979 
11980   reg_dead_flag = 0;
11981 
11982   /* Check that reg isn't mentioned in NEWPAT_USED_REGS.  */
11983   if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11984     {
11985       for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11986 	if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11987 	  return 0;
11988     }
11989 
11990   /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11991      beginning of function.  */
11992   for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11993        insn = prev_nonnote_insn (insn))
11994     {
11995       note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11996       if (reg_dead_flag)
11997 	return reg_dead_flag == 1 ? 1 : 0;
11998 
11999       if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12000 	return 1;
12001     }
12002 
12003   /* Get the basic block that we were in.  */
12004   if (insn == 0)
12005     block = ENTRY_BLOCK_PTR->next_bb;
12006   else
12007     {
12008       FOR_EACH_BB (block)
12009 	if (insn == BB_HEAD (block))
12010 	  break;
12011 
12012       if (block == EXIT_BLOCK_PTR)
12013 	return 0;
12014     }
12015 
12016   for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12017     if (REGNO_REG_SET_P (block->global_live_at_start, i))
12018       return 0;
12019 
12020   return 1;
12021 }
12022 
12023 /* Note hard registers in X that are used.  This code is similar to
12024    that in flow.c, but much simpler since we don't care about pseudos.  */
12025 
12026 static void
mark_used_regs_combine(rtx x)12027 mark_used_regs_combine (rtx x)
12028 {
12029   RTX_CODE code = GET_CODE (x);
12030   unsigned int regno;
12031   int i;
12032 
12033   switch (code)
12034     {
12035     case LABEL_REF:
12036     case SYMBOL_REF:
12037     case CONST_INT:
12038     case CONST:
12039     case CONST_DOUBLE:
12040     case CONST_VECTOR:
12041     case PC:
12042     case ADDR_VEC:
12043     case ADDR_DIFF_VEC:
12044     case ASM_INPUT:
12045 #ifdef HAVE_cc0
12046     /* CC0 must die in the insn after it is set, so we don't need to take
12047        special note of it here.  */
12048     case CC0:
12049 #endif
12050       return;
12051 
12052     case CLOBBER:
12053       /* If we are clobbering a MEM, mark any hard registers inside the
12054 	 address as used.  */
12055       if (GET_CODE (XEXP (x, 0)) == MEM)
12056 	mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12057       return;
12058 
12059     case REG:
12060       regno = REGNO (x);
12061       /* A hard reg in a wide mode may really be multiple registers.
12062 	 If so, mark all of them just like the first.  */
12063       if (regno < FIRST_PSEUDO_REGISTER)
12064 	{
12065 	  unsigned int endregno, r;
12066 
12067 	  /* None of this applies to the stack, frame or arg pointers.  */
12068 	  if (regno == STACK_POINTER_REGNUM
12069 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12070 	      || regno == HARD_FRAME_POINTER_REGNUM
12071 #endif
12072 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12073 	      || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12074 #endif
12075 	      || regno == FRAME_POINTER_REGNUM)
12076 	    return;
12077 
12078 	  endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12079 	  for (r = regno; r < endregno; r++)
12080 	    SET_HARD_REG_BIT (newpat_used_regs, r);
12081 	}
12082       return;
12083 
12084     case SET:
12085       {
12086 	/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12087 	   the address.  */
12088 	rtx testreg = SET_DEST (x);
12089 
12090 	while (GET_CODE (testreg) == SUBREG
12091 	       || GET_CODE (testreg) == ZERO_EXTRACT
12092 	       || GET_CODE (testreg) == SIGN_EXTRACT
12093 	       || GET_CODE (testreg) == STRICT_LOW_PART)
12094 	  testreg = XEXP (testreg, 0);
12095 
12096 	if (GET_CODE (testreg) == MEM)
12097 	  mark_used_regs_combine (XEXP (testreg, 0));
12098 
12099 	mark_used_regs_combine (SET_SRC (x));
12100       }
12101       return;
12102 
12103     default:
12104       break;
12105     }
12106 
12107   /* Recursively scan the operands of this expression.  */
12108 
12109   {
12110     const char *fmt = GET_RTX_FORMAT (code);
12111 
12112     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12113       {
12114 	if (fmt[i] == 'e')
12115 	  mark_used_regs_combine (XEXP (x, i));
12116 	else if (fmt[i] == 'E')
12117 	  {
12118 	    int j;
12119 
12120 	    for (j = 0; j < XVECLEN (x, i); j++)
12121 	      mark_used_regs_combine (XVECEXP (x, i, j));
12122 	  }
12123       }
12124   }
12125 }
12126 
12127 /* Remove register number REGNO from the dead registers list of INSN.
12128 
12129    Return the note used to record the death, if there was one.  */
12130 
12131 rtx
remove_death(unsigned int regno,rtx insn)12132 remove_death (unsigned int regno, rtx insn)
12133 {
12134   rtx note = find_regno_note (insn, REG_DEAD, regno);
12135 
12136   if (note)
12137     {
12138       REG_N_DEATHS (regno)--;
12139       remove_note (insn, note);
12140     }
12141 
12142   return note;
12143 }
12144 
12145 /* For each register (hardware or pseudo) used within expression X, if its
12146    death is in an instruction with cuid between FROM_CUID (inclusive) and
12147    TO_INSN (exclusive), put a REG_DEAD note for that register in the
12148    list headed by PNOTES.
12149 
12150    That said, don't move registers killed by maybe_kill_insn.
12151 
12152    This is done when X is being merged by combination into TO_INSN.  These
12153    notes will then be distributed as needed.  */
12154 
12155 static void
move_deaths(rtx x,rtx maybe_kill_insn,int from_cuid,rtx to_insn,rtx * pnotes)12156 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
12157 	     rtx *pnotes)
12158 {
12159   const char *fmt;
12160   int len, i;
12161   enum rtx_code code = GET_CODE (x);
12162 
12163   if (code == REG)
12164     {
12165       unsigned int regno = REGNO (x);
12166       rtx where_dead = reg_last_death[regno];
12167       rtx before_dead, after_dead;
12168 
12169       /* Don't move the register if it gets killed in between from and to.  */
12170       if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12171 	  && ! reg_referenced_p (x, maybe_kill_insn))
12172 	return;
12173 
12174       /* WHERE_DEAD could be a USE insn made by combine, so first we
12175 	 make sure that we have insns with valid INSN_CUID values.  */
12176       before_dead = where_dead;
12177       while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12178 	before_dead = PREV_INSN (before_dead);
12179 
12180       after_dead = where_dead;
12181       while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12182 	after_dead = NEXT_INSN (after_dead);
12183 
12184       if (before_dead && after_dead
12185 	  && INSN_CUID (before_dead) >= from_cuid
12186 	  && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12187 	      || (where_dead != after_dead
12188 		  && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12189 	{
12190 	  rtx note = remove_death (regno, where_dead);
12191 
12192 	  /* It is possible for the call above to return 0.  This can occur
12193 	     when reg_last_death points to I2 or I1 that we combined with.
12194 	     In that case make a new note.
12195 
12196 	     We must also check for the case where X is a hard register
12197 	     and NOTE is a death note for a range of hard registers
12198 	     including X.  In that case, we must put REG_DEAD notes for
12199 	     the remaining registers in place of NOTE.  */
12200 
12201 	  if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12202 	      && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12203 		  > GET_MODE_SIZE (GET_MODE (x))))
12204 	    {
12205 	      unsigned int deadregno = REGNO (XEXP (note, 0));
12206 	      unsigned int deadend
12207 		= (deadregno + HARD_REGNO_NREGS (deadregno,
12208 						 GET_MODE (XEXP (note, 0))));
12209 	      unsigned int ourend
12210 		= regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12211 	      unsigned int i;
12212 
12213 	      for (i = deadregno; i < deadend; i++)
12214 		if (i < regno || i >= ourend)
12215 		  REG_NOTES (where_dead)
12216 		    = gen_rtx_EXPR_LIST (REG_DEAD,
12217 					 regno_reg_rtx[i],
12218 					 REG_NOTES (where_dead));
12219 	    }
12220 
12221 	  /* If we didn't find any note, or if we found a REG_DEAD note that
12222 	     covers only part of the given reg, and we have a multi-reg hard
12223 	     register, then to be safe we must check for REG_DEAD notes
12224 	     for each register other than the first.  They could have
12225 	     their own REG_DEAD notes lying around.  */
12226 	  else if ((note == 0
12227 		    || (note != 0
12228 			&& (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12229 			    < GET_MODE_SIZE (GET_MODE (x)))))
12230 		   && regno < FIRST_PSEUDO_REGISTER
12231 		   && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12232 	    {
12233 	      unsigned int ourend
12234 		= regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12235 	      unsigned int i, offset;
12236 	      rtx oldnotes = 0;
12237 
12238 	      if (note)
12239 		offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12240 	      else
12241 		offset = 1;
12242 
12243 	      for (i = regno + offset; i < ourend; i++)
12244 		move_deaths (regno_reg_rtx[i],
12245 			     maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12246 	    }
12247 
12248 	  if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12249 	    {
12250 	      XEXP (note, 1) = *pnotes;
12251 	      *pnotes = note;
12252 	    }
12253 	  else
12254 	    *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12255 
12256 	  REG_N_DEATHS (regno)++;
12257 	}
12258 
12259       return;
12260     }
12261 
12262   else if (GET_CODE (x) == SET)
12263     {
12264       rtx dest = SET_DEST (x);
12265 
12266       move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12267 
12268       /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12269 	 that accesses one word of a multi-word item, some
12270 	 piece of everything register in the expression is used by
12271 	 this insn, so remove any old death.  */
12272       /* ??? So why do we test for equality of the sizes?  */
12273 
12274       if (GET_CODE (dest) == ZERO_EXTRACT
12275 	  || GET_CODE (dest) == STRICT_LOW_PART
12276 	  || (GET_CODE (dest) == SUBREG
12277 	      && (((GET_MODE_SIZE (GET_MODE (dest))
12278 		    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12279 		  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12280 		       + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12281 	{
12282 	  move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12283 	  return;
12284 	}
12285 
12286       /* If this is some other SUBREG, we know it replaces the entire
12287 	 value, so use that as the destination.  */
12288       if (GET_CODE (dest) == SUBREG)
12289 	dest = SUBREG_REG (dest);
12290 
12291       /* If this is a MEM, adjust deaths of anything used in the address.
12292 	 For a REG (the only other possibility), the entire value is
12293 	 being replaced so the old value is not used in this insn.  */
12294 
12295       if (GET_CODE (dest) == MEM)
12296 	move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12297 		     to_insn, pnotes);
12298       return;
12299     }
12300 
12301   else if (GET_CODE (x) == CLOBBER)
12302     return;
12303 
12304   len = GET_RTX_LENGTH (code);
12305   fmt = GET_RTX_FORMAT (code);
12306 
12307   for (i = 0; i < len; i++)
12308     {
12309       if (fmt[i] == 'E')
12310 	{
12311 	  int j;
12312 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12313 	    move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12314 			 to_insn, pnotes);
12315 	}
12316       else if (fmt[i] == 'e')
12317 	move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12318     }
12319 }
12320 
12321 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12322    pattern of an insn.  X must be a REG.  */
12323 
12324 static int
reg_bitfield_target_p(rtx x,rtx body)12325 reg_bitfield_target_p (rtx x, rtx body)
12326 {
12327   int i;
12328 
12329   if (GET_CODE (body) == SET)
12330     {
12331       rtx dest = SET_DEST (body);
12332       rtx target;
12333       unsigned int regno, tregno, endregno, endtregno;
12334 
12335       if (GET_CODE (dest) == ZERO_EXTRACT)
12336 	target = XEXP (dest, 0);
12337       else if (GET_CODE (dest) == STRICT_LOW_PART)
12338 	target = SUBREG_REG (XEXP (dest, 0));
12339       else
12340 	return 0;
12341 
12342       if (GET_CODE (target) == SUBREG)
12343 	target = SUBREG_REG (target);
12344 
12345       if (GET_CODE (target) != REG)
12346 	return 0;
12347 
12348       tregno = REGNO (target), regno = REGNO (x);
12349       if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12350 	return target == x;
12351 
12352       endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12353       endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12354 
12355       return endregno > tregno && regno < endtregno;
12356     }
12357 
12358   else if (GET_CODE (body) == PARALLEL)
12359     for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12360       if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12361 	return 1;
12362 
12363   return 0;
12364 }
12365 
12366 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12367    as appropriate.  I3 and I2 are the insns resulting from the combination
12368    insns including FROM (I2 may be zero).
12369 
12370    Each note in the list is either ignored or placed on some insns, depending
12371    on the type of note.  */
12372 
12373 static void
distribute_notes(rtx notes,rtx from_insn,rtx i3,rtx i2)12374 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
12375 {
12376   rtx note, next_note;
12377   rtx tem;
12378 
12379   for (note = notes; note; note = next_note)
12380     {
12381       rtx place = 0, place2 = 0;
12382 
12383       /* If this NOTE references a pseudo register, ensure it references
12384 	 the latest copy of that register.  */
12385       if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12386 	  && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12387 	XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12388 
12389       next_note = XEXP (note, 1);
12390       switch (REG_NOTE_KIND (note))
12391 	{
12392 	case REG_BR_PROB:
12393 	case REG_BR_PRED:
12394 	  /* Doesn't matter much where we put this, as long as it's somewhere.
12395 	     It is preferable to keep these notes on branches, which is most
12396 	     likely to be i3.  */
12397 	  place = i3;
12398 	  break;
12399 
12400 	case REG_VALUE_PROFILE:
12401 	  /* Just get rid of this note, as it is unused later anyway.  */
12402 	  break;
12403 
12404 	case REG_VTABLE_REF:
12405 	  /* ??? Should remain with *a particular* memory load.  Given the
12406 	     nature of vtable data, the last insn seems relatively safe.  */
12407 	  place = i3;
12408 	  break;
12409 
12410 	case REG_NON_LOCAL_GOTO:
12411 	  if (GET_CODE (i3) == JUMP_INSN)
12412 	    place = i3;
12413 	  else if (i2 && GET_CODE (i2) == JUMP_INSN)
12414 	    place = i2;
12415 	  else
12416 	    abort ();
12417 	  break;
12418 
12419 	case REG_EH_REGION:
12420 	  /* These notes must remain with the call or trapping instruction.  */
12421 	  if (GET_CODE (i3) == CALL_INSN)
12422 	    place = i3;
12423 	  else if (i2 && GET_CODE (i2) == CALL_INSN)
12424 	    place = i2;
12425 	  else if (flag_non_call_exceptions)
12426 	    {
12427 	      if (may_trap_p (i3))
12428 		place = i3;
12429 	      else if (i2 && may_trap_p (i2))
12430 		place = i2;
12431 	      /* ??? Otherwise assume we've combined things such that we
12432 		 can now prove that the instructions can't trap.  Drop the
12433 		 note in this case.  */
12434 	    }
12435 	  else
12436 	    abort ();
12437 	  break;
12438 
12439 	case REG_ALWAYS_RETURN:
12440 	case REG_NORETURN:
12441 	case REG_SETJMP:
12442 	  /* These notes must remain with the call.  It should not be
12443 	     possible for both I2 and I3 to be a call.  */
12444 	  if (GET_CODE (i3) == CALL_INSN)
12445 	    place = i3;
12446 	  else if (i2 && GET_CODE (i2) == CALL_INSN)
12447 	    place = i2;
12448 	  else
12449 	    abort ();
12450 	  break;
12451 
12452 	case REG_UNUSED:
12453 	  /* Any clobbers for i3 may still exist, and so we must process
12454 	     REG_UNUSED notes from that insn.
12455 
12456 	     Any clobbers from i2 or i1 can only exist if they were added by
12457 	     recog_for_combine.  In that case, recog_for_combine created the
12458 	     necessary REG_UNUSED notes.  Trying to keep any original
12459 	     REG_UNUSED notes from these insns can cause incorrect output
12460 	     if it is for the same register as the original i3 dest.
12461 	     In that case, we will notice that the register is set in i3,
12462 	     and then add a REG_UNUSED note for the destination of i3, which
12463 	     is wrong.  However, it is possible to have REG_UNUSED notes from
12464 	     i2 or i1 for register which were both used and clobbered, so
12465 	     we keep notes from i2 or i1 if they will turn into REG_DEAD
12466 	     notes.  */
12467 
12468 	  /* If this register is set or clobbered in I3, put the note there
12469 	     unless there is one already.  */
12470 	  if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12471 	    {
12472 	      if (from_insn != i3)
12473 		break;
12474 
12475 	      if (! (GET_CODE (XEXP (note, 0)) == REG
12476 		     ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12477 		     : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12478 		place = i3;
12479 	    }
12480 	  /* Otherwise, if this register is used by I3, then this register
12481 	     now dies here, so we must put a REG_DEAD note here unless there
12482 	     is one already.  */
12483 	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12484 		   && ! (GET_CODE (XEXP (note, 0)) == REG
12485 			 ? find_regno_note (i3, REG_DEAD,
12486 					    REGNO (XEXP (note, 0)))
12487 			 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12488 	    {
12489 	      PUT_REG_NOTE_KIND (note, REG_DEAD);
12490 	      place = i3;
12491 	    }
12492 	  break;
12493 
12494 	case REG_EQUAL:
12495 	case REG_EQUIV:
12496 	case REG_NOALIAS:
12497 	  /* These notes say something about results of an insn.  We can
12498 	     only support them if they used to be on I3 in which case they
12499 	     remain on I3.  Otherwise they are ignored.
12500 
12501 	     If the note refers to an expression that is not a constant, we
12502 	     must also ignore the note since we cannot tell whether the
12503 	     equivalence is still true.  It might be possible to do
12504 	     slightly better than this (we only have a problem if I2DEST
12505 	     or I1DEST is present in the expression), but it doesn't
12506 	     seem worth the trouble.  */
12507 
12508 	  if (from_insn == i3
12509 	      && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12510 	    place = i3;
12511 	  break;
12512 
12513 	case REG_INC:
12514 	case REG_NO_CONFLICT:
12515 	  /* These notes say something about how a register is used.  They must
12516 	     be present on any use of the register in I2 or I3.  */
12517 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12518 	    place = i3;
12519 
12520 	  if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12521 	    {
12522 	      if (place)
12523 		place2 = i2;
12524 	      else
12525 		place = i2;
12526 	    }
12527 	  break;
12528 
12529 	case REG_LABEL:
12530 	  /* This can show up in several ways -- either directly in the
12531 	     pattern, or hidden off in the constant pool with (or without?)
12532 	     a REG_EQUAL note.  */
12533 	  /* ??? Ignore the without-reg_equal-note problem for now.  */
12534 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12535 	      || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12536 		  && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12537 		  && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12538 	    place = i3;
12539 
12540 	  if (i2
12541 	      && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12542 		  || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12543 		      && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12544 		      && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12545 	    {
12546 	      if (place)
12547 		place2 = i2;
12548 	      else
12549 		place = i2;
12550 	    }
12551 
12552 	  /* Don't attach REG_LABEL note to a JUMP_INSN which has
12553 	     JUMP_LABEL already.  Instead, decrement LABEL_NUSES.  */
12554 	  if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12555 	    {
12556 	      if (JUMP_LABEL (place) != XEXP (note, 0))
12557 		abort ();
12558 	      if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12559 		LABEL_NUSES (JUMP_LABEL (place))--;
12560 	      place = 0;
12561 	    }
12562 	  if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12563 	    {
12564 	      if (JUMP_LABEL (place2) != XEXP (note, 0))
12565 		abort ();
12566 	      if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12567 		LABEL_NUSES (JUMP_LABEL (place2))--;
12568 	      place2 = 0;
12569 	    }
12570 	  break;
12571 
12572 	case REG_NONNEG:
12573 	  /* This note says something about the value of a register prior
12574 	     to the execution of an insn.  It is too much trouble to see
12575 	     if the note is still correct in all situations.  It is better
12576 	     to simply delete it.  */
12577 	  break;
12578 
12579 	case REG_RETVAL:
12580 	  /* If the insn previously containing this note still exists,
12581 	     put it back where it was.  Otherwise move it to the previous
12582 	     insn.  Adjust the corresponding REG_LIBCALL note.  */
12583 	  if (GET_CODE (from_insn) != NOTE)
12584 	    place = from_insn;
12585 	  else
12586 	    {
12587 	      tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12588 	      place = prev_real_insn (from_insn);
12589 	      if (tem && place)
12590 		XEXP (tem, 0) = place;
12591 	      /* If we're deleting the last remaining instruction of a
12592 		 libcall sequence, don't add the notes.  */
12593 	      else if (XEXP (note, 0) == from_insn)
12594 		tem = place = 0;
12595 	      /* Don't add the dangling REG_RETVAL note.  */
12596 	      else if (! tem)
12597 		place = 0;
12598 	    }
12599 	  break;
12600 
12601 	case REG_LIBCALL:
12602 	  /* This is handled similarly to REG_RETVAL.  */
12603 	  if (GET_CODE (from_insn) != NOTE)
12604 	    place = from_insn;
12605 	  else
12606 	    {
12607 	      tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12608 	      place = next_real_insn (from_insn);
12609 	      if (tem && place)
12610 		XEXP (tem, 0) = place;
12611 	      /* If we're deleting the last remaining instruction of a
12612 		 libcall sequence, don't add the notes.  */
12613 	      else if (XEXP (note, 0) == from_insn)
12614 		tem = place = 0;
12615 	      /* Don't add the dangling REG_LIBCALL note.  */
12616 	      else if (! tem)
12617 		place = 0;
12618 	    }
12619 	  break;
12620 
12621 	case REG_DEAD:
12622 	  /* If the register is used as an input in I3, it dies there.
12623 	     Similarly for I2, if it is nonzero and adjacent to I3.
12624 
12625 	     If the register is not used as an input in either I3 or I2
12626 	     and it is not one of the registers we were supposed to eliminate,
12627 	     there are two possibilities.  We might have a non-adjacent I2
12628 	     or we might have somehow eliminated an additional register
12629 	     from a computation.  For example, we might have had A & B where
12630 	     we discover that B will always be zero.  In this case we will
12631 	     eliminate the reference to A.
12632 
12633 	     In both cases, we must search to see if we can find a previous
12634 	     use of A and put the death note there.  */
12635 
12636 	  if (from_insn
12637 	      && GET_CODE (from_insn) == CALL_INSN
12638 	      && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12639 	    place = from_insn;
12640 	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12641 	    place = i3;
12642 	  else if (i2 != 0 && next_nonnote_insn (i2) == i3
12643 		   && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12644 	    place = i2;
12645 
12646 	  if (place == 0)
12647 	    {
12648 	      basic_block bb = this_basic_block;
12649 
12650 	      for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12651 		{
12652 		  if (! INSN_P (tem))
12653 		    {
12654 		      if (tem == BB_HEAD (bb))
12655 			break;
12656 		      continue;
12657 		    }
12658 
12659 		  /* If the register is being set at TEM, see if that is all
12660 		     TEM is doing.  If so, delete TEM.  Otherwise, make this
12661 		     into a REG_UNUSED note instead.  Don't delete sets to
12662 		     global register vars.  */
12663 		  if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12664 		       || !global_regs[REGNO (XEXP (note, 0))])
12665 		      && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12666 		    {
12667 		      rtx set = single_set (tem);
12668 		      rtx inner_dest = 0;
12669 #ifdef HAVE_cc0
12670 		      rtx cc0_setter = NULL_RTX;
12671 #endif
12672 
12673 		      if (set != 0)
12674 			for (inner_dest = SET_DEST (set);
12675 			     (GET_CODE (inner_dest) == STRICT_LOW_PART
12676 			      || GET_CODE (inner_dest) == SUBREG
12677 			      || GET_CODE (inner_dest) == ZERO_EXTRACT);
12678 			     inner_dest = XEXP (inner_dest, 0))
12679 			  ;
12680 
12681 		      /* Verify that it was the set, and not a clobber that
12682 			 modified the register.
12683 
12684 			 CC0 targets must be careful to maintain setter/user
12685 			 pairs.  If we cannot delete the setter due to side
12686 			 effects, mark the user with an UNUSED note instead
12687 			 of deleting it.  */
12688 
12689 		      if (set != 0 && ! side_effects_p (SET_SRC (set))
12690 			  && rtx_equal_p (XEXP (note, 0), inner_dest)
12691 #ifdef HAVE_cc0
12692 			  && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12693 			      || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12694 				  && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12695 #endif
12696 			  )
12697 			{
12698 			  /* Move the notes and links of TEM elsewhere.
12699 			     This might delete other dead insns recursively.
12700 			     First set the pattern to something that won't use
12701 			     any register.  */
12702 			  rtx old_notes = REG_NOTES (tem);
12703 
12704 			  PATTERN (tem) = pc_rtx;
12705 			  REG_NOTES (tem) = NULL;
12706 
12707 			  distribute_notes (old_notes, tem, tem, NULL_RTX);
12708 			  distribute_links (LOG_LINKS (tem));
12709 
12710 			  PUT_CODE (tem, NOTE);
12711 			  NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12712 			  NOTE_SOURCE_FILE (tem) = 0;
12713 
12714 #ifdef HAVE_cc0
12715 			  /* Delete the setter too.  */
12716 			  if (cc0_setter)
12717 			    {
12718 			      PATTERN (cc0_setter) = pc_rtx;
12719 			      old_notes = REG_NOTES (cc0_setter);
12720 			      REG_NOTES (cc0_setter) = NULL;
12721 
12722 			      distribute_notes (old_notes, cc0_setter,
12723 						cc0_setter, NULL_RTX);
12724 			      distribute_links (LOG_LINKS (cc0_setter));
12725 
12726 			      PUT_CODE (cc0_setter, NOTE);
12727 			      NOTE_LINE_NUMBER (cc0_setter)
12728 				= NOTE_INSN_DELETED;
12729 			      NOTE_SOURCE_FILE (cc0_setter) = 0;
12730 			    }
12731 #endif
12732 			}
12733 		      /* If the register is both set and used here, put the
12734 			 REG_DEAD note here, but place a REG_UNUSED note
12735 			 here too unless there already is one.  */
12736 		      else if (reg_referenced_p (XEXP (note, 0),
12737 						 PATTERN (tem)))
12738 			{
12739 			  place = tem;
12740 
12741 			  if (! find_regno_note (tem, REG_UNUSED,
12742 						 REGNO (XEXP (note, 0))))
12743 			    REG_NOTES (tem)
12744 			      = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12745 						   REG_NOTES (tem));
12746 			}
12747 		      else
12748 			{
12749 			  PUT_REG_NOTE_KIND (note, REG_UNUSED);
12750 
12751 			  /*  If there isn't already a REG_UNUSED note, put one
12752 			      here.  */
12753 			  if (! find_regno_note (tem, REG_UNUSED,
12754 						 REGNO (XEXP (note, 0))))
12755 			    place = tem;
12756 			  break;
12757 			}
12758 		    }
12759 		  else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12760 			   || (GET_CODE (tem) == CALL_INSN
12761 			       && find_reg_fusage (tem, USE, XEXP (note, 0))))
12762 		    {
12763 		      place = tem;
12764 
12765 		      /* If we are doing a 3->2 combination, and we have a
12766 			 register which formerly died in i3 and was not used
12767 			 by i2, which now no longer dies in i3 and is used in
12768 			 i2 but does not die in i2, and place is between i2
12769 			 and i3, then we may need to move a link from place to
12770 			 i2.  */
12771 		      if (i2 && INSN_UID (place) <= max_uid_cuid
12772 			  && INSN_CUID (place) > INSN_CUID (i2)
12773 			  && from_insn
12774 			  && INSN_CUID (from_insn) > INSN_CUID (i2)
12775 			  && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12776 			{
12777 			  rtx links = LOG_LINKS (place);
12778 			  LOG_LINKS (place) = 0;
12779 			  distribute_links (links);
12780 			}
12781 		      break;
12782 		    }
12783 
12784 		  if (tem == BB_HEAD (bb))
12785 		    break;
12786 		}
12787 
12788 	      /* We haven't found an insn for the death note and it
12789 		 is still a REG_DEAD note, but we have hit the beginning
12790 		 of the block.  If the existing life info says the reg
12791 		 was dead, there's nothing left to do.  Otherwise, we'll
12792 		 need to do a global life update after combine.  */
12793 	      if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12794 		  && REGNO_REG_SET_P (bb->global_live_at_start,
12795 				      REGNO (XEXP (note, 0))))
12796 		SET_BIT (refresh_blocks, this_basic_block->index);
12797 	    }
12798 
12799 	  /* If the register is set or already dead at PLACE, we needn't do
12800 	     anything with this note if it is still a REG_DEAD note.
12801 	     We can here if it is set at all, not if is it totally replace,
12802 	     which is what `dead_or_set_p' checks, so also check for it being
12803 	     set partially.  */
12804 
12805 	  if (place && REG_NOTE_KIND (note) == REG_DEAD)
12806 	    {
12807 	      unsigned int regno = REGNO (XEXP (note, 0));
12808 
12809 	      /* Similarly, if the instruction on which we want to place
12810 		 the note is a noop, we'll need do a global live update
12811 		 after we remove them in delete_noop_moves.  */
12812 	      if (noop_move_p (place))
12813 		SET_BIT (refresh_blocks, this_basic_block->index);
12814 
12815 	      if (dead_or_set_p (place, XEXP (note, 0))
12816 		  || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12817 		{
12818 		  /* Unless the register previously died in PLACE, clear
12819 		     reg_last_death.  [I no longer understand why this is
12820 		     being done.] */
12821 		  if (reg_last_death[regno] != place)
12822 		    reg_last_death[regno] = 0;
12823 		  place = 0;
12824 		}
12825 	      else
12826 		reg_last_death[regno] = place;
12827 
12828 	      /* If this is a death note for a hard reg that is occupying
12829 		 multiple registers, ensure that we are still using all
12830 		 parts of the object.  If we find a piece of the object
12831 		 that is unused, we must arrange for an appropriate REG_DEAD
12832 		 note to be added for it.  However, we can't just emit a USE
12833 		 and tag the note to it, since the register might actually
12834 		 be dead; so we recourse, and the recursive call then finds
12835 		 the previous insn that used this register.  */
12836 
12837 	      if (place && regno < FIRST_PSEUDO_REGISTER
12838 		  && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12839 		{
12840 		  unsigned int endregno
12841 		    = regno + HARD_REGNO_NREGS (regno,
12842 						GET_MODE (XEXP (note, 0)));
12843 		  int all_used = 1;
12844 		  unsigned int i;
12845 
12846 		  for (i = regno; i < endregno; i++)
12847 		    if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12848 			 && ! find_regno_fusage (place, USE, i))
12849 			|| dead_or_set_regno_p (place, i))
12850 		      all_used = 0;
12851 
12852 		  if (! all_used)
12853 		    {
12854 		      /* Put only REG_DEAD notes for pieces that are
12855 			 not already dead or set.  */
12856 
12857 		      for (i = regno; i < endregno;
12858 			   i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12859 			{
12860 			  rtx piece = regno_reg_rtx[i];
12861 			  basic_block bb = this_basic_block;
12862 
12863 			  if (! dead_or_set_p (place, piece)
12864 			      && ! reg_bitfield_target_p (piece,
12865 							  PATTERN (place)))
12866 			    {
12867 			      rtx new_note
12868 				= gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12869 
12870 			      distribute_notes (new_note, place, place,
12871 						NULL_RTX);
12872 			    }
12873 			  else if (! refers_to_regno_p (i, i + 1,
12874 							PATTERN (place), 0)
12875 				   && ! find_regno_fusage (place, USE, i))
12876 			    for (tem = PREV_INSN (place); ;
12877 				 tem = PREV_INSN (tem))
12878 			      {
12879 				if (! INSN_P (tem))
12880 				  {
12881 				    if (tem == BB_HEAD (bb))
12882 				      {
12883 					SET_BIT (refresh_blocks,
12884 						 this_basic_block->index);
12885 					break;
12886 				      }
12887 				    continue;
12888 				  }
12889 				if (dead_or_set_p (tem, piece)
12890 				    || reg_bitfield_target_p (piece,
12891 							      PATTERN (tem)))
12892 				  {
12893 				    REG_NOTES (tem)
12894 				      = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12895 							   REG_NOTES (tem));
12896 				    break;
12897 				  }
12898 			      }
12899 
12900 			}
12901 
12902 		      place = 0;
12903 		    }
12904 		}
12905 	    }
12906 	  break;
12907 
12908 	default:
12909 	  /* Any other notes should not be present at this point in the
12910 	     compilation.  */
12911 	  abort ();
12912 	}
12913 
12914       if (place)
12915 	{
12916 	  XEXP (note, 1) = REG_NOTES (place);
12917 	  REG_NOTES (place) = note;
12918 	}
12919       else if ((REG_NOTE_KIND (note) == REG_DEAD
12920 		|| REG_NOTE_KIND (note) == REG_UNUSED)
12921 	       && GET_CODE (XEXP (note, 0)) == REG)
12922 	REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12923 
12924       if (place2)
12925 	{
12926 	  if ((REG_NOTE_KIND (note) == REG_DEAD
12927 	       || REG_NOTE_KIND (note) == REG_UNUSED)
12928 	      && GET_CODE (XEXP (note, 0)) == REG)
12929 	    REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12930 
12931 	  REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12932 					       REG_NOTE_KIND (note),
12933 					       XEXP (note, 0),
12934 					       REG_NOTES (place2));
12935 	}
12936     }
12937 }
12938 
12939 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12940    I3, I2, and I1 to new locations.  This is also called to add a link
12941    pointing at I3 when I3's destination is changed.  */
12942 
12943 static void
distribute_links(rtx links)12944 distribute_links (rtx links)
12945 {
12946   rtx link, next_link;
12947 
12948   for (link = links; link; link = next_link)
12949     {
12950       rtx place = 0;
12951       rtx insn;
12952       rtx set, reg;
12953 
12954       next_link = XEXP (link, 1);
12955 
12956       /* If the insn that this link points to is a NOTE or isn't a single
12957 	 set, ignore it.  In the latter case, it isn't clear what we
12958 	 can do other than ignore the link, since we can't tell which
12959 	 register it was for.  Such links wouldn't be used by combine
12960 	 anyway.
12961 
12962 	 It is not possible for the destination of the target of the link to
12963 	 have been changed by combine.  The only potential of this is if we
12964 	 replace I3, I2, and I1 by I3 and I2.  But in that case the
12965 	 destination of I2 also remains unchanged.  */
12966 
12967       if (GET_CODE (XEXP (link, 0)) == NOTE
12968 	  || (set = single_set (XEXP (link, 0))) == 0)
12969 	continue;
12970 
12971       reg = SET_DEST (set);
12972       while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12973 	     || GET_CODE (reg) == SIGN_EXTRACT
12974 	     || GET_CODE (reg) == STRICT_LOW_PART)
12975 	reg = XEXP (reg, 0);
12976 
12977       /* A LOG_LINK is defined as being placed on the first insn that uses
12978 	 a register and points to the insn that sets the register.  Start
12979 	 searching at the next insn after the target of the link and stop
12980 	 when we reach a set of the register or the end of the basic block.
12981 
12982 	 Note that this correctly handles the link that used to point from
12983 	 I3 to I2.  Also note that not much searching is typically done here
12984 	 since most links don't point very far away.  */
12985 
12986       for (insn = NEXT_INSN (XEXP (link, 0));
12987 	   (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12988 		     || BB_HEAD (this_basic_block->next_bb) != insn));
12989 	   insn = NEXT_INSN (insn))
12990 	if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12991 	  {
12992 	    if (reg_referenced_p (reg, PATTERN (insn)))
12993 	      place = insn;
12994 	    break;
12995 	  }
12996 	else if (GET_CODE (insn) == CALL_INSN
12997 		 && find_reg_fusage (insn, USE, reg))
12998 	  {
12999 	    place = insn;
13000 	    break;
13001 	  }
13002 	else if (INSN_P (insn) && reg_set_p (reg, insn))
13003 	  break;
13004 
13005       /* If we found a place to put the link, place it there unless there
13006 	 is already a link to the same insn as LINK at that point.  */
13007 
13008       if (place)
13009 	{
13010 	  rtx link2;
13011 
13012 	  for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13013 	    if (XEXP (link2, 0) == XEXP (link, 0))
13014 	      break;
13015 
13016 	  if (link2 == 0)
13017 	    {
13018 	      XEXP (link, 1) = LOG_LINKS (place);
13019 	      LOG_LINKS (place) = link;
13020 
13021 	      /* Set added_links_insn to the earliest insn we added a
13022 		 link to.  */
13023 	      if (added_links_insn == 0
13024 		  || INSN_CUID (added_links_insn) > INSN_CUID (place))
13025 		added_links_insn = place;
13026 	    }
13027 	}
13028     }
13029 }
13030 
13031 /* Compute INSN_CUID for INSN, which is an insn made by combine.  */
13032 
13033 static int
insn_cuid(rtx insn)13034 insn_cuid (rtx insn)
13035 {
13036   while (insn != 0 && INSN_UID (insn) > max_uid_cuid
13037 	 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
13038     insn = NEXT_INSN (insn);
13039 
13040   if (INSN_UID (insn) > max_uid_cuid)
13041     abort ();
13042 
13043   return INSN_CUID (insn);
13044 }
13045 
13046 void
dump_combine_stats(FILE * file)13047 dump_combine_stats (FILE *file)
13048 {
13049   fnotice
13050     (file,
13051      ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13052      combine_attempts, combine_merges, combine_extras, combine_successes);
13053 }
13054 
13055 void
dump_combine_total_stats(FILE * file)13056 dump_combine_total_stats (FILE *file)
13057 {
13058   fnotice
13059     (file,
13060      "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13061      total_attempts, total_merges, total_extras, total_successes);
13062 }
13063