1 /* Definitions of target machine for GNU compiler.
2    Matsushita MN10300 series
3    Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4    Free Software Foundation, Inc.
5    Contributed by Jeff Law (law@cygnus.com).
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13 
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING.  If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA.  */
23 
24 
25 #undef ASM_SPEC
26 #undef LIB_SPEC
27 #undef ENDFILE_SPEC
28 #undef LINK_SPEC
29 #define LINK_SPEC "%{mrelax:--relax}"
30 #undef STARTFILE_SPEC
31 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
32 
33 /* Names to predefine in the preprocessor for this target machine.  */
34 
35 #define TARGET_CPU_CPP_BUILTINS()		\
36   do						\
37     {						\
38       builtin_define ("__mn10300__");		\
39       builtin_define ("__MN10300__");		\
40     }						\
41   while (0)
42 
43 #define CPP_SPEC "%{mam33:-D__AM33__} %{mam33-2:-D__AM33__=2 -D__AM33_2__}"
44 
45 /* Run-time compilation parameters selecting different hardware subsets.  */
46 
47 extern int target_flags;
48 
49 extern GTY(()) int mn10300_unspec_int_label_counter;
50 
51 /* Macros used in the machine description to test the flags.  */
52 
53 /* Macro to define tables used to set the flags.
54    This is a list in braces of pairs in braces,
55    each pair being { "NAME", VALUE }
56    where VALUE is the bits to set or minus the bits to clear.
57    An empty string NAME is used to identify the default VALUE.  */
58 
59 /* Generate code to work around mul/mulq bugs on the mn10300.  */
60 #define TARGET_MULT_BUG			(target_flags & 0x1)
61 
62 /* Generate code for the AM33 processor.  */
63 #define TARGET_AM33			(target_flags & 0x2)
64 
65 /* Generate code for the AM33/2.0 processor.  */
66 #define TARGET_AM33_2			(target_flags & 0x4)
67 
68 #define TARGET_SWITCHES  \
69   {{ "mult-bug",	0x1,  N_("Work around hardware multiply bug")},	\
70    { "no-mult-bug", 	-0x1, N_("Do not work around hardware multiply bug")},\
71    { "am33", 		0x2,  N_("Target the AM33 processor")},	\
72    { "am33", 		-(0x1), ""},\
73    { "no-am33", 	-0x2, ""},	\
74    { "no-crt0",		0,    N_("No default crt0.o") }, \
75    { "am33-2",		0x6,  N_("Target the AM33/2.0 processor")},   \
76    { "am33-2",		-(0x1), ""},\
77    { "no-am33-2",	-0x4,   ""},  \
78    { "relax",		0,    N_("Enable linker relaxations") }, \
79    { "", TARGET_DEFAULT, NULL}}
80 
81 #ifndef TARGET_DEFAULT
82 #define TARGET_DEFAULT 0x1
83 #endif
84 
85 /* Print subsidiary information on the compiler version in use.  */
86 
87 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
88 
89 
90 /* Target machine storage layout */
91 
92 /* Define this if most significant bit is lowest numbered
93    in instructions that operate on numbered bit-fields.
94    This is not true on the Matsushita MN1003.  */
95 #define BITS_BIG_ENDIAN 0
96 
97 /* Define this if most significant byte of a word is the lowest numbered.  */
98 /* This is not true on the Matsushita MN10300.  */
99 #define BYTES_BIG_ENDIAN 0
100 
101 /* Define this if most significant word of a multiword number is lowest
102    numbered.
103    This is not true on the Matsushita MN10300.  */
104 #define WORDS_BIG_ENDIAN 0
105 
106 /* Width of a word, in units (bytes).  */
107 #define UNITS_PER_WORD		4
108 
109 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
110 #define PARM_BOUNDARY		32
111 
112 /* The stack goes in 32 bit lumps.  */
113 #define STACK_BOUNDARY 		32
114 
115 /* Allocation boundary (in *bits*) for the code of a function.
116    8 is the minimum boundary; it's unclear if bigger alignments
117    would improve performance.  */
118 #define FUNCTION_BOUNDARY 8
119 
120 /* No data type wants to be aligned rounder than this.  */
121 #define BIGGEST_ALIGNMENT	32
122 
123 /* Alignment of field after `int : 0' in a structure.  */
124 #define EMPTY_FIELD_BOUNDARY 32
125 
126 /* Define this if move instructions will actually fail to work
127    when given unaligned data.  */
128 #define STRICT_ALIGNMENT 1
129 
130 /* Define this as 1 if `char' should by default be signed; else as 0.  */
131 #define DEFAULT_SIGNED_CHAR 0
132 
133 /* Standard register usage.  */
134 
135 /* Number of actual hardware registers.
136    The hardware registers are assigned numbers for the compiler
137    from 0 to just below FIRST_PSEUDO_REGISTER.
138 
139    All registers that the compiler knows about must be given numbers,
140    even those that are not normally considered general registers.  */
141 
142 #define FIRST_PSEUDO_REGISTER 50
143 
144 /* Specify machine-specific register numbers.  */
145 #define FIRST_DATA_REGNUM 0
146 #define LAST_DATA_REGNUM 3
147 #define FIRST_ADDRESS_REGNUM 4
148 #define LAST_ADDRESS_REGNUM 8
149 #define FIRST_EXTENDED_REGNUM 10
150 #define LAST_EXTENDED_REGNUM 17
151 #define FIRST_FP_REGNUM 18
152 #define LAST_FP_REGNUM 49
153 
154 /* Specify the registers used for certain standard purposes.
155    The values of these macros are register numbers.  */
156 
157 /* Register to use for pushing function arguments.  */
158 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM+1)
159 
160 /* Base register for access to local variables of the function.  */
161 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM-1)
162 
163 /* Base register for access to arguments of the function.  This
164    is a fake register and will be eliminated into either the frame
165    pointer or stack pointer.  */
166 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
167 
168 /* Register in which static-chain is passed to a function.  */
169 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM+1)
170 
171 /* 1 for registers that have pervasive standard uses
172    and are not available for the register allocator.  */
173 
174 #define FIXED_REGISTERS \
175   { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 \
176   , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
177   , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
178   }
179 
180 /* 1 for registers not available across function calls.
181    These must include the FIXED_REGISTERS and also any
182    registers that can be used without being saved.
183    The latter must include the registers where values are returned
184    and the register where structure-value addresses are passed.
185    Aside from that, you can include as many other registers as you
186    like.  */
187 
188 #define CALL_USED_REGISTERS \
189   { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 \
190   , 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
191   , 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
192   }
193 
194 #define REG_ALLOC_ORDER \
195   { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
196   , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
197   , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 \
198   }
199 
200 #define CONDITIONAL_REGISTER_USAGE \
201 {						\
202   unsigned int i;				\
203 						\
204   if (!TARGET_AM33)				\
205     {						\
206       for (i = FIRST_EXTENDED_REGNUM; 		\
207 	   i <= LAST_EXTENDED_REGNUM; i++) 	\
208 	fixed_regs[i] = call_used_regs[i] = 1; 	\
209     }						\
210   if (!TARGET_AM33_2)				\
211     {						\
212       for (i = FIRST_FP_REGNUM;			\
213 	   i <= LAST_FP_REGNUM; 		\
214            i++) 				\
215 	fixed_regs[i] = call_used_regs[i] = 1;	\
216     }						\
217   if (flag_pic)					\
218     fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;	\
219 }
220 
221 /* Return number of consecutive hard regs needed starting at reg REGNO
222    to hold something of mode MODE.
223 
224    This is ordinarily the length in words of a value of mode MODE
225    but can be less for certain modes in special long registers.  */
226 
227 #define HARD_REGNO_NREGS(REGNO, MODE)   \
228   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
229 
230 /* Value is 1 if hard register REGNO can hold a value of machine-mode
231    MODE.  */
232 
233 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
234  ((REGNO_REG_CLASS (REGNO) == DATA_REGS \
235    || (TARGET_AM33 && REGNO_REG_CLASS (REGNO) == ADDRESS_REGS) \
236    || REGNO_REG_CLASS (REGNO) == EXTENDED_REGS) \
237   ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4	\
238   : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
239 
240 /* Value is 1 if it is a good idea to tie two pseudo registers
241    when one has mode MODE1 and one has mode MODE2.
242    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
243    for any hard reg, then this must be 0 for correct output.  */
244 #define MODES_TIEABLE_P(MODE1, MODE2) \
245   (TARGET_AM33  \
246    || MODE1 == MODE2 \
247    || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
248 
249 /* 4 data, and effectively 3 address registers is small as far as I'm
250    concerned.  */
251 #define SMALL_REGISTER_CLASSES 1
252 
253 /* Define the classes of registers for register constraints in the
254    machine description.  Also define ranges of constants.
255 
256    One of the classes must always be named ALL_REGS and include all hard regs.
257    If there is more than one class, another class must be named NO_REGS
258    and contain no registers.
259 
260    The name GENERAL_REGS must be the name of a class (or an alias for
261    another name such as ALL_REGS).  This is the class of registers
262    that is allowed by "g" or "r" in a register constraint.
263    Also, registers outside this class are allocated only when
264    instructions express preferences for them.
265 
266    The classes must be numbered in nondecreasing order; that is,
267    a larger-numbered class must never be contained completely
268    in a smaller-numbered class.
269 
270    For any two classes, it is very desirable that there be another
271    class that represents their union.  */
272 
273 enum reg_class {
274   NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
275   DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
276   EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
277   SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
278   FP_REGS, FP_ACC_REGS,
279   GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
280 };
281 
282 #define N_REG_CLASSES (int) LIM_REG_CLASSES
283 
284 /* Give names of register classes as strings for dump file.  */
285 
286 #define REG_CLASS_NAMES \
287 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
288   "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
289   "EXTENDED_REGS", \
290   "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
291   "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
292   "FP_REGS", "FP_ACC_REGS", \
293   "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
294 
295 /* Define which registers fit in which classes.
296    This is an initializer for a vector of HARD_REG_SET
297    of length N_REG_CLASSES.  */
298 
299 #define REG_CLASS_CONTENTS  			\
300 {  { 0,	0 },		/* No regs      */	\
301  { 0x0000f, 0 },	/* DATA_REGS */		\
302  { 0x001f0, 0 },	/* ADDRESS_REGS */	\
303  { 0x00200, 0 },	/* SP_REGS */		\
304  { 0x001ff, 0 },	/* DATA_OR_ADDRESS_REGS */\
305  { 0x003f0, 0 },	/* SP_OR_ADDRESS_REGS */\
306  { 0x3fc00, 0 },	/* EXTENDED_REGS */	\
307  { 0x3fc0f, 0 },	/* DATA_OR_EXTENDED_REGS */	\
308  { 0x3fdf0, 0 },	/* ADDRESS_OR_EXTENDED_REGS */	\
309  { 0x3fe00, 0 },	/* SP_OR_EXTENDED_REGS */	\
310  { 0x3fff0, 0 },	/* SP_OR_ADDRESS_OR_EXTENDED_REGS */	\
311  { 0xfffc0000, 0x3ffff }, /* FP_REGS */		\
312  { 0x03fc0000, 0 },	/* FP_ACC_REGS */	\
313  { 0x3fdff, 0 }, 	/* GENERAL_REGS */	\
314  { 0xffffffff, 0x3ffff } /* ALL_REGS 	*/	\
315 }
316 
317 /* The same information, inverted:
318    Return the class number of the smallest class containing
319    reg number REGNO.  This could be a conditional expression
320    or could index an array.  */
321 
322 #define REGNO_REG_CLASS(REGNO) \
323   ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
324    (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
325    (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
326    (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
327    (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
328    NO_REGS)
329 
330 /* The class value for index registers, and the one for base regs.  */
331 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
332 #define BASE_REG_CLASS  SP_OR_ADDRESS_REGS
333 
334 /* Get reg_class from a letter such as appears in the machine description.  */
335 
336 #define REG_CLASS_FROM_LETTER(C) \
337   ((C) == 'd' ? DATA_REGS : \
338    (C) == 'a' ? ADDRESS_REGS : \
339    (C) == 'y' ? SP_REGS : \
340    ! TARGET_AM33 ? NO_REGS : \
341    (C) == 'x' ? EXTENDED_REGS : \
342    ! TARGET_AM33_2 ? NO_REGS : \
343    (C) == 'f' ? FP_REGS : \
344    (C) == 'A' ? FP_ACC_REGS : \
345    NO_REGS)
346 
347 /* Macros to check register numbers against specific register classes.  */
348 
349 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
350    and check its validity for a certain class.
351    We have two alternate definitions for each of them.
352    The usual definition accepts all pseudo regs; the other rejects
353    them unless they have been allocated suitable hard regs.
354    The symbol REG_OK_STRICT causes the latter definition to be used.
355 
356    Most source files want to accept pseudo regs in the hope that
357    they will get allocated to the class that the insn wants them to be in.
358    Source files for reload pass need to be strict.
359    After reload, it makes no difference, since pseudo regs have
360    been eliminated by then.  */
361 
362 /* These assume that REGNO is a hard or pseudo reg number.
363    They give nonzero only if REGNO is a hard reg of the suitable class
364    or a pseudo reg currently allocated to a suitable hard reg.
365    Since they use reg_renumber, they are safe only once reg_renumber
366    has been allocated, which happens in local-alloc.c.  */
367 
368 #ifndef REG_OK_STRICT
369 # define REGNO_IN_RANGE_P(regno,min,max) \
370   (IN_RANGE ((regno), (min), (max)) || (regno) >= FIRST_PSEUDO_REGISTER)
371 #else
372 # define REGNO_IN_RANGE_P(regno,min,max) \
373   (IN_RANGE ((regno), (min), (max)) \
374    || (reg_renumber \
375        && reg_renumber[(regno)] >= (min) && reg_renumber[(regno)] <= (max)))
376 #endif
377 
378 #define REGNO_DATA_P(regno) \
379   REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM)
380 #define REGNO_ADDRESS_P(regno) \
381   REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM)
382 #define REGNO_SP_P(regno) \
383   REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM)
384 #define REGNO_EXTENDED_P(regno) \
385   REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM)
386 #define REGNO_AM33_P(regno) \
387   (REGNO_DATA_P ((regno)) || REGNO_ADDRESS_P ((regno)) \
388    || REGNO_EXTENDED_P ((regno)))
389 #define REGNO_FP_P(regno) \
390   REGNO_IN_RANGE_P ((regno), FIRST_FP_REGNUM, LAST_FP_REGNUM)
391 
392 #define REGNO_OK_FOR_BASE_P(regno) \
393   (REGNO_SP_P ((regno)) \
394    || REGNO_ADDRESS_P ((regno)) || REGNO_EXTENDED_P ((regno)))
395 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
396 
397 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
398   (REGNO_SP_P ((regno)) || REGNO_ADDRESS_P ((regno)))
399 #define REG_OK_FOR_BIT_BASE_P(X) REGNO_OK_FOR_BIT_BASE_P (REGNO (X))
400 
401 #define REGNO_OK_FOR_INDEX_P(regno) \
402   (REGNO_DATA_P ((regno)) || REGNO_EXTENDED_P ((regno)))
403 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
404 
405 /* Given an rtx X being reloaded into a reg required to be
406    in class CLASS, return the class of reg to actually use.
407    In general this is just CLASS; but on some machines
408    in some cases it is preferable to use a more restrictive class.  */
409 
410 #define PREFERRED_RELOAD_CLASS(X,CLASS)				\
411   ((X) == stack_pointer_rtx && (CLASS) != SP_REGS		\
412    ? ADDRESS_OR_EXTENDED_REGS					\
413    : (GET_CODE (X) == MEM					\
414       || (GET_CODE (X) == REG					\
415 	  && REGNO (X) >= FIRST_PSEUDO_REGISTER)		\
416       || (GET_CODE (X) == SUBREG				\
417 	  && GET_CODE (SUBREG_REG (X)) == REG			\
418 	  && REGNO (SUBREG_REG (X)) >= FIRST_PSEUDO_REGISTER)	\
419       ? LIMIT_RELOAD_CLASS (GET_MODE (X), CLASS)		\
420       : (CLASS)))
421 
422 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
423   (X == stack_pointer_rtx && CLASS != SP_REGS \
424    ? ADDRESS_OR_EXTENDED_REGS : CLASS)
425 
426 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
427   (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
428 
429 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
430   secondary_reload_class(CLASS,MODE,IN)
431 
432 /* Return the maximum number of consecutive registers
433    needed to represent mode MODE in a register of class CLASS.  */
434 
435 #define CLASS_MAX_NREGS(CLASS, MODE)	\
436   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
437 
438 /* A class that contains registers which the compiler must always
439    access in a mode that is the same size as the mode in which it
440    loaded the register.  */
441 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
442 
443 /* The letters I, J, K, L, M, N, O, P in a register constraint string
444    can be used to stand for particular ranges of immediate operands.
445    This macro defines what the ranges are.
446    C is the letter, and VALUE is a constant value.
447    Return 1 if VALUE is in the range specified by C.  */
448 
449 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
450 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
451 
452 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
453 #define CONST_OK_FOR_J(VALUE) ((VALUE) == 1)
454 #define CONST_OK_FOR_K(VALUE) ((VALUE) == 2)
455 #define CONST_OK_FOR_L(VALUE) ((VALUE) == 4)
456 #define CONST_OK_FOR_M(VALUE) ((VALUE) == 3)
457 #define CONST_OK_FOR_N(VALUE) ((VALUE) == 255 || (VALUE) == 65535)
458 
459 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
460   ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
461    (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
462    (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
463    (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
464    (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
465    (C) == 'N' ? CONST_OK_FOR_N (VALUE) : 0)
466 
467 
468 /* Similar, but for floating constants, and defining letters G and H.
469    Here VALUE is the CONST_DOUBLE rtx itself.
470 
471   `G' is a floating-point zero.  */
472 
473 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
474   ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT	\
475 		 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) : 0)
476 
477 
478 /* Stack layout; function entry, exit and calling.  */
479 
480 /* Define this if pushing a word on the stack
481    makes the stack pointer a smaller address.  */
482 
483 #define STACK_GROWS_DOWNWARD
484 
485 /* Define this if the nominal address of the stack frame
486    is at the high-address end of the local variables;
487    that is, each additional local variable allocated
488    goes at a more negative offset in the frame.  */
489 
490 #define FRAME_GROWS_DOWNWARD
491 
492 /* Offset within stack frame to start allocating local variables at.
493    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
494    first local allocated.  Otherwise, it is the offset to the BEGINNING
495    of the first local allocated.  */
496 
497 #define STARTING_FRAME_OFFSET 0
498 
499 /* Offset of first parameter from the argument pointer register value.  */
500 /* Is equal to the size of the saved fp + pc, even if an fp isn't
501    saved since the value is used before we know.  */
502 
503 #define FIRST_PARM_OFFSET(FNDECL) 4
504 
505 #define ELIMINABLE_REGS				\
506 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
507  { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
508  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
509 
510 #define CAN_ELIMINATE(FROM, TO) 1
511 
512 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
513   OFFSET = initial_offset (FROM, TO)
514 
515 /* We can debug without frame pointers on the mn10300, so eliminate
516    them whenever possible.  */
517 #define FRAME_POINTER_REQUIRED 0
518 #define CAN_DEBUG_WITHOUT_FP
519 
520 /* A guess for the MN10300.  */
521 #define PROMOTE_PROTOTYPES 1
522 
523 /* Value is the number of bytes of arguments automatically
524    popped when returning from a subroutine call.
525    FUNDECL is the declaration node of the function (as a tree),
526    FUNTYPE is the data type of the function (as a tree),
527    or for a library call it is an identifier node for the subroutine name.
528    SIZE is the number of bytes of arguments passed on the stack.  */
529 
530 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
531 
532 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
533    for a register flushback area.  */
534 #define REG_PARM_STACK_SPACE(DECL) 8
535 #define OUTGOING_REG_PARM_STACK_SPACE
536 #define ACCUMULATE_OUTGOING_ARGS 1
537 
538 /* So we can allocate space for return pointers once for the function
539    instead of around every call.  */
540 #define STACK_POINTER_OFFSET 4
541 
542 /* 1 if N is a possible register number for function argument passing.
543    On the MN10300, no registers are used in this way.  */
544 
545 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
546 
547 
548 /* Define a data type for recording info about an argument list
549    during the scan of that argument list.  This data type should
550    hold all necessary information about the function itself
551    and about the args processed so far, enough to enable macros
552    such as FUNCTION_ARG to determine where the next arg should go.
553 
554    On the MN10300, this is a single integer, which is a number of bytes
555    of arguments scanned so far.  */
556 
557 #define CUMULATIVE_ARGS struct cum_arg
558 struct cum_arg {int nbytes; };
559 
560 /* Initialize a variable CUM of type CUMULATIVE_ARGS
561    for a call to a function whose data type is FNTYPE.
562    For a library call, FNTYPE is 0.
563 
564    On the MN10300, the offset starts at 0.  */
565 
566 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
567  ((CUM).nbytes = 0)
568 
569 /* Update the data in CUM to advance over an argument
570    of mode MODE and data type TYPE.
571    (TYPE is null for libcalls where that information may not be available.)  */
572 
573 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
574  ((CUM).nbytes += ((MODE) != BLKmode			\
575 	           ? (GET_MODE_SIZE (MODE) + 3) & ~3	\
576 	           : (int_size_in_bytes (TYPE) + 3) & ~3))
577 
578 /* Define where to put the arguments to a function.
579    Value is zero to push the argument on the stack,
580    or a hard register in which to store the argument.
581 
582    MODE is the argument's machine mode.
583    TYPE is the data type of the argument (as a tree).
584     This is null for libcalls where that information may
585     not be available.
586    CUM is a variable of type CUMULATIVE_ARGS which gives info about
587     the preceding args and about the function being called.
588    NAMED is nonzero if this argument is a named parameter
589     (otherwise it is an extra parameter matching an ellipsis).  */
590 
591 /* On the MN10300 all args are pushed.  */
592 
593 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
594   function_arg (&CUM, MODE, TYPE, NAMED)
595 
596 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
597   function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
598 
599 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED)		\
600   ((TYPE) && int_size_in_bytes (TYPE) > 8)
601 
602 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
603   ((TYPE) && int_size_in_bytes (TYPE) > 8)
604 
605 /* Define how to find the value returned by a function.
606    VALTYPE is the data type of the value (as a tree).
607    If the precise function being called is known, FUNC is its FUNCTION_DECL;
608    otherwise, FUNC is 0.  */
609 
610 #define FUNCTION_VALUE(VALTYPE, FUNC) \
611   gen_rtx_REG (TYPE_MODE (VALTYPE), POINTER_TYPE_P (VALTYPE) \
612 	       ? FIRST_ADDRESS_REGNUM : FIRST_DATA_REGNUM)
613 
614 /* Define how to find the value returned by a library function
615    assuming the value has mode MODE.  */
616 
617 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM)
618 
619 /* 1 if N is a possible register number for a function value.  */
620 
621 #define FUNCTION_VALUE_REGNO_P(N) \
622   ((N) == FIRST_DATA_REGNUM || (N) == FIRST_ADDRESS_REGNUM)
623 
624 /* Return values > 8 bytes in length in memory.  */
625 #define DEFAULT_PCC_STRUCT_RETURN 0
626 #define RETURN_IN_MEMORY(TYPE)  \
627   (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
628 
629 /* Register in which address to store a structure value
630    is passed to a function.  On the MN10300 it's passed as
631    the first parameter.  */
632 
633 #define STRUCT_VALUE 0
634 
635 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
636    the stack pointer does not matter.  The value is tested only in
637    functions that have frame pointers.
638    No definition is equivalent to always zero.  */
639 
640 #define EXIT_IGNORE_STACK 1
641 
642 /* Output assembler code to FILE to increment profiler label # LABELNO
643    for profiling a function entry.  */
644 
645 #define FUNCTION_PROFILER(FILE, LABELNO) ;
646 
647 #define TRAMPOLINE_TEMPLATE(FILE)			\
648   do {							\
649     fprintf (FILE, "\tadd -4,sp\n");			\
650     fprintf (FILE, "\t.long 0x0004fffa\n");		\
651     fprintf (FILE, "\tmov (0,sp),a0\n");		\
652     fprintf (FILE, "\tadd 4,sp\n");			\
653     fprintf (FILE, "\tmov (13,a0),a1\n");		\
654     fprintf (FILE, "\tmov (17,a0),a0\n");		\
655     fprintf (FILE, "\tjmp (a0)\n");			\
656     fprintf (FILE, "\t.long 0\n");			\
657     fprintf (FILE, "\t.long 0\n");			\
658   } while (0)
659 
660 /* Length in units of the trampoline for entering a nested function.  */
661 
662 #define TRAMPOLINE_SIZE 0x1b
663 
664 #define TRAMPOLINE_ALIGNMENT 32
665 
666 /* Emit RTL insns to initialize the variable parts of a trampoline.
667    FNADDR is an RTX for the address of the function's pure code.
668    CXT is an RTX for the static chain value for the function.  */
669 
670 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)			\
671 {									\
672   emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)),	\
673  		 (CXT));						\
674   emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)),	\
675 		 (FNADDR));						\
676 }
677 /* A C expression whose value is RTL representing the value of the return
678    address for the frame COUNT steps up from the current frame.
679 
680    On the mn10300, the return address is not at a constant location
681    due to the frame layout.  Luckily, it is at a constant offset from
682    the argument pointer, so we define RETURN_ADDR_RTX to return a
683    MEM using arg_pointer_rtx.  Reload will replace arg_pointer_rtx
684    with a reference to the stack/frame pointer + an appropriate offset.  */
685 
686 #define RETURN_ADDR_RTX(COUNT, FRAME)   \
687   ((COUNT == 0)                         \
688    ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
689    : (rtx) 0)
690 
691 /* Emit code for a call to builtin_saveregs.  We must emit USE insns which
692    reference the 2 integer arg registers.
693    Ordinarily they are not call used registers, but they are for
694    _builtin_saveregs, so we must make this explicit.  */
695 
696 #define EXPAND_BUILTIN_SAVEREGS() mn10300_builtin_saveregs ()
697 
698 /* Implement `va_start' for varargs and stdarg.  */
699 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
700   mn10300_va_start (valist, nextarg)
701 
702 /* Implement `va_arg'.  */
703 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
704   mn10300_va_arg (valist, type)
705 
706 /* Addressing modes, and classification of registers for them.  */
707 
708 
709 /* 1 if X is an rtx for a constant that is a valid address.  */
710 
711 #define CONSTANT_ADDRESS_P(X)   CONSTANT_P (X)
712 
713 /* Extra constraints.  */
714 
715 #define OK_FOR_Q(OP) \
716    (GET_CODE (OP) == MEM && ! CONSTANT_ADDRESS_P (XEXP (OP, 0)))
717 
718 #define OK_FOR_R(OP) \
719    (GET_CODE (OP) == MEM					\
720     && GET_MODE (OP) == QImode					\
721     && (CONSTANT_ADDRESS_P (XEXP (OP, 0))			\
722 	|| (GET_CODE (XEXP (OP, 0)) == REG			\
723 	    && REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0))		\
724 	    && XEXP (OP, 0) != stack_pointer_rtx)		\
725 	|| (GET_CODE (XEXP (OP, 0)) == PLUS			\
726 	    && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG		\
727 	    && REG_OK_FOR_BIT_BASE_P (XEXP (XEXP (OP, 0), 0))	\
728 	    && XEXP (XEXP (OP, 0), 0) != stack_pointer_rtx	\
729 	    && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT	\
730 	    && INT_8_BITS (INTVAL (XEXP (XEXP (OP, 0), 1))))))
731 
732 #define OK_FOR_T(OP) \
733    (GET_CODE (OP) == MEM					\
734     && GET_MODE (OP) == QImode					\
735     && (GET_CODE (XEXP (OP, 0)) == REG				\
736 	&& REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0))			\
737 	&& XEXP (OP, 0) != stack_pointer_rtx))
738 
739 #define EXTRA_CONSTRAINT(OP, C) \
740  ((C) == 'R' ? OK_FOR_R (OP) \
741   : (C) == 'Q' ? OK_FOR_Q (OP) \
742   : (C) == 'S' && flag_pic \
743   ? GET_CODE (OP) == UNSPEC && (XINT (OP, 1) == UNSPEC_PLT \
744 				|| XINT (OP, 1) == UNSPEC_PIC) \
745   : (C) == 'S' ? GET_CODE (OP) == SYMBOL_REF \
746   : (C) == 'T' ? OK_FOR_T (OP) \
747   : 0)
748 
749 /* Maximum number of registers that can appear in a valid memory address.  */
750 
751 #define MAX_REGS_PER_ADDRESS 2
752 
753 
754 #define HAVE_POST_INCREMENT (TARGET_AM33)
755 
756 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
757    that is a valid memory address for an instruction.
758    The MODE argument is the machine mode for the MEM expression
759    that wants to use this address.
760 
761    The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
762    except for CONSTANT_ADDRESS_P which is actually
763    machine-independent.
764 
765    On the mn10300, the value in the address register must be
766    in the same memory space/segment as the effective address.
767 
768    This is problematical for reload since it does not understand
769    that base+index != index+base in a memory reference.
770 
771    Note it is still possible to use reg+reg addressing modes,
772    it's just much more difficult.  For a discussion of a possible
773    workaround and solution, see the comments in pa.c before the
774    function record_unscaled_index_insn_codes.  */
775 
776 /* Accept either REG or SUBREG where a register is valid.  */
777 
778 #define RTX_OK_FOR_BASE_P(X)					\
779   ((REG_P (X) && REG_OK_FOR_BASE_P (X))				\
780    || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X))		\
781        && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
782 
783 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)    	\
784 {							\
785   if (CONSTANT_ADDRESS_P (X)				\
786       && (! flag_pic || legitimate_pic_operand_p (X)))	\
787     goto ADDR;						\
788   if (RTX_OK_FOR_BASE_P (X))				\
789     goto ADDR;						\
790   if (TARGET_AM33					\
791       && GET_CODE (X) == POST_INC			\
792       && RTX_OK_FOR_BASE_P (XEXP (X, 0))		\
793       && (MODE == SImode || MODE == SFmode || MODE == HImode))\
794     goto ADDR;						\
795   if (GET_CODE (X) == PLUS)				\
796     {							\
797       rtx base = 0, index = 0;				\
798       if (REG_P (XEXP (X, 0))				\
799 	  && REG_OK_FOR_BASE_P (XEXP (X, 0)))		\
800 	base = XEXP (X, 0), index = XEXP (X, 1);	\
801       if (REG_P (XEXP (X, 1))				\
802 	  && REG_OK_FOR_BASE_P (XEXP (X, 1)))		\
803 	base = XEXP (X, 1), index = XEXP (X, 0);	\
804       if (base != 0 && index != 0)			\
805 	{						\
806 	  if (GET_CODE (index) == CONST_INT)		\
807 	    goto ADDR;					\
808 	  if (GET_CODE (index) == CONST)		\
809 	    goto ADDR;					\
810 	}						\
811     }							\
812 }
813 
814 
815 /* Try machine-dependent ways of modifying an illegitimate address
816    to be legitimate.  If we find one, return the new, valid address.
817    This macro is used in only one place: `memory_address' in explow.c.
818 
819    OLDX is the address as it was before break_out_memory_refs was called.
820    In some cases it is useful to look at this to decide what needs to be done.
821 
822    MODE and WIN are passed so that this macro can use
823    GO_IF_LEGITIMATE_ADDRESS.
824 
825    It is always safe for this macro to do nothing.  It exists to recognize
826    opportunities to optimize the output.  */
827 
828 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)  \
829 { rtx orig_x = (X);				\
830   (X) = legitimize_address (X, OLDX, MODE);	\
831   if ((X) != orig_x && memory_address_p (MODE, X)) \
832     goto WIN; }
833 
834 /* Go to LABEL if ADDR (a legitimate address expression)
835    has an effect that depends on the machine mode it is used for.  */
836 
837 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)        \
838   if (GET_CODE (ADDR) == POST_INC) \
839     goto LABEL
840 
841 /* Nonzero if the constant value X is a legitimate general operand.
842    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
843 
844 #define LEGITIMATE_CONSTANT_P(X) 1
845 
846 /* Zero if this needs fixing up to become PIC.  */
847 
848 #define LEGITIMATE_PIC_OPERAND_P(X) (legitimate_pic_operand_p (X))
849 
850 /* Register to hold the addressing base for
851    position independent code access to data items.  */
852 #define PIC_OFFSET_TABLE_REGNUM	PIC_REG
853 
854 /* The name of the pseudo-symbol representing the Global Offset Table.  */
855 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
856 
857 #define SYMBOLIC_CONST_P(X)	\
858 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF)	\
859   && ! LEGITIMATE_PIC_OPERAND_P (X))
860 
861 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled.  */
862 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
863 
864 /* Recognize machine-specific patterns that may appear within
865    constants.  Used for PIC-specific UNSPECs.  */
866 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
867   do									\
868     if (GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1)	\
869       {									\
870 	switch (XINT ((X), 1))						\
871 	  {								\
872 	  case UNSPEC_INT_LABEL:					\
873 	    asm_fprintf ((STREAM), ".%LLIL%d",				\
874  			 INTVAL (XVECEXP ((X), 0, 0)));			\
875 	    break;							\
876 	  case UNSPEC_PIC:						\
877 	    /* GLOBAL_OFFSET_TABLE or local symbols, no suffix.  */	\
878 	    output_addr_const ((STREAM), XVECEXP ((X), 0, 0));		\
879 	    break;							\
880 	  case UNSPEC_GOT:						\
881 	    output_addr_const ((STREAM), XVECEXP ((X), 0, 0));		\
882 	    fputs ("@GOT", (STREAM));					\
883 	    break;							\
884 	  case UNSPEC_GOTOFF:						\
885 	    output_addr_const ((STREAM), XVECEXP ((X), 0, 0));		\
886 	    fputs ("@GOTOFF", (STREAM));				\
887 	    break;							\
888 	  case UNSPEC_PLT:						\
889 	    output_addr_const ((STREAM), XVECEXP ((X), 0, 0));		\
890 	    fputs ("@PLT", (STREAM));					\
891 	    break;							\
892 	  default:							\
893 	    goto FAIL;							\
894 	  }								\
895 	break;								\
896       }									\
897     else								\
898       goto FAIL;							\
899   while (0)
900 
901 /* Tell final.c how to eliminate redundant test instructions.  */
902 
903 /* Here we define machine-dependent flags and fields in cc_status
904    (see `conditions.h').  No extra ones are needed for the VAX.  */
905 
906 /* Store in cc_status the expressions
907    that the condition codes will describe
908    after execution of an instruction whose pattern is EXP.
909    Do not alter them if the instruction would not alter the cc's.  */
910 
911 #define CC_OVERFLOW_UNUSABLE 0x200
912 #define CC_NO_CARRY CC_NO_OVERFLOW
913 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
914 
915 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
916   ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
917    ((CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS) && \
918     (CLASS2 == ADDRESS_REGS || CLASS2 == DATA_REGS)) ? 4 : \
919    (CLASS1 == SP_REGS && CLASS2 == ADDRESS_REGS) ? 2 : \
920    (CLASS1 == ADDRESS_REGS && CLASS2 == SP_REGS) ? 4 : \
921    ! TARGET_AM33 ? 6 : \
922    (CLASS1 == SP_REGS || CLASS2 == SP_REGS) ? 6 : \
923    (CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS) ? 6 : \
924    (CLASS1 == FP_REGS || CLASS2 == FP_REGS) ? 6 : \
925    (CLASS1 == EXTENDED_REGS || CLASS2 == EXTENDED_REGS) ? 4 : \
926    4)
927 
928 /* Nonzero if access to memory by bytes or half words is no faster
929    than accessing full words.  */
930 #define SLOW_BYTE_ACCESS 1
931 
932 /* Dispatch tables on the mn10300 are extremely expensive in terms of code
933    and readonly data size.  So we crank up the case threshold value to
934    encourage a series of if/else comparisons to implement many small switch
935    statements.  In theory, this value could be increased much more if we
936    were solely optimizing for space, but we keep it "reasonable" to avoid
937    serious code efficiency lossage.  */
938 #define CASE_VALUES_THRESHOLD 6
939 
940 #define NO_FUNCTION_CSE
941 
942 /* According expr.c, a value of around 6 should minimize code size, and
943    for the MN10300 series, that's our primary concern.  */
944 #define MOVE_RATIO 6
945 
946 #define TEXT_SECTION_ASM_OP "\t.section .text"
947 #define DATA_SECTION_ASM_OP "\t.section .data"
948 #define BSS_SECTION_ASM_OP "\t.section .bss"
949 
950 #define ASM_COMMENT_START "#"
951 
952 /* Output to assembler file text saying following lines
953    may contain character constants, extra white space, comments, etc.  */
954 
955 #define ASM_APP_ON "#APP\n"
956 
957 /* Output to assembler file text saying following lines
958    no longer contain unusual constructs.  */
959 
960 #define ASM_APP_OFF "#NO_APP\n"
961 
962 /* This says how to output the assembler to define a global
963    uninitialized but not common symbol.
964    Try to use asm_output_bss to implement this macro.  */
965 
966 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
967   asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
968 
969 /* Globalizing directive for a label.  */
970 #define GLOBAL_ASM_OP "\t.global "
971 
972 /* This is how to output a reference to a user-level label named NAME.
973    `assemble_name' uses this.  */
974 
975 #undef ASM_OUTPUT_LABELREF
976 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
977   fprintf (FILE, "_%s", (*targetm.strip_name_encoding) (NAME))
978 
979 #define ASM_PN_FORMAT "%s___%lu"
980 
981 /* This is how we tell the assembler that two symbols have the same value.  */
982 
983 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
984   do { assemble_name(FILE, NAME1); 	 \
985        fputs(" = ", FILE);		 \
986        assemble_name(FILE, NAME2);	 \
987        fputc('\n', FILE); } while (0)
988 
989 
990 /* How to refer to registers in assembler output.
991    This sequence is indexed by compiler's hard-register-number (see above).  */
992 
993 #define REGISTER_NAMES \
994 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
995   "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
996 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
997 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
998 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
999 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
1000 }
1001 
1002 #define ADDITIONAL_REGISTER_NAMES \
1003 { {"r8",  4}, {"r9",  5}, {"r10", 6}, {"r11", 7}, \
1004   {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
1005   {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
1006   {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
1007 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
1008 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
1009 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
1010 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
1011 }
1012 
1013 /* Print an instruction operand X on file FILE.
1014    look in mn10300.c for details */
1015 
1016 #define PRINT_OPERAND(FILE, X, CODE)  print_operand(FILE,X,CODE)
1017 
1018 /* Print a memory operand whose address is X, on file FILE.
1019    This uses a function in output-vax.c.  */
1020 
1021 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1022 
1023 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
1024 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
1025 
1026 /* This is how to output an element of a case-vector that is absolute.  */
1027 
1028 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1029   fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
1030 
1031 /* This is how to output an element of a case-vector that is relative.  */
1032 
1033 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1034   fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
1035 
1036 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1037   if ((LOG) != 0)			\
1038     fprintf (FILE, "\t.align %d\n", (LOG))
1039 
1040 /* We don't have to worry about dbx compatibility for the mn10300.  */
1041 #define DEFAULT_GDB_EXTENSIONS 1
1042 
1043 /* Use dwarf2 debugging info by default.  */
1044 #undef PREFERRED_DEBUGGING_TYPE
1045 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1046 
1047 #define DWARF2_ASM_LINE_DEBUG_INFO 1
1048 
1049 /* GDB always assumes the current function's frame begins at the value
1050    of the stack pointer upon entry to the current function.  Accessing
1051    local variables and parameters passed on the stack is done using the
1052    base of the frame + an offset provided by GCC.
1053 
1054    For functions which have frame pointers this method works fine;
1055    the (frame pointer) == (stack pointer at function entry) and GCC provides
1056    an offset relative to the frame pointer.
1057 
1058    This loses for functions without a frame pointer; GCC provides an offset
1059    which is relative to the stack pointer after adjusting for the function's
1060    frame size.  GDB would prefer the offset to be relative to the value of
1061    the stack pointer at the function's entry.  Yuk!  */
1062 #define DEBUGGER_AUTO_OFFSET(X) \
1063   ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
1064     + (frame_pointer_needed \
1065        ? 0 : -initial_offset (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM)))
1066 
1067 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1068   ((GET_CODE (X) == PLUS ? OFFSET : 0) \
1069     + (frame_pointer_needed \
1070        ? 0 : -initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM)))
1071 
1072 /* Specify the machine mode that this machine uses
1073    for the index in the tablejump instruction.  */
1074 #define CASE_VECTOR_MODE Pmode
1075 
1076 /* Define if operations between registers always perform the operation
1077    on the full register even if a narrower mode is specified.  */
1078 #define WORD_REGISTER_OPERATIONS
1079 
1080 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1081 
1082 /* This flag, if defined, says the same insns that convert to a signed fixnum
1083    also convert validly to an unsigned one.  */
1084 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1085 
1086 /* Max number of bytes we can move from memory to memory
1087    in one reasonably fast instruction.  */
1088 #define MOVE_MAX	4
1089 
1090 /* Define if shifts truncate the shift count
1091    which implies one can omit a sign-extension or zero-extension
1092    of a shift count.  */
1093 #define SHIFT_COUNT_TRUNCATED 1
1094 
1095 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1096    is done just by pretending it is already truncated.  */
1097 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1098 
1099 /* Specify the machine mode that pointers have.
1100    After generation of rtl, the compiler makes no further distinction
1101    between pointers and any other objects of this machine mode.  */
1102 #define Pmode SImode
1103 
1104 /* A function address in a call instruction
1105    is a byte address (for indexing purposes)
1106    so give the MEM rtx a byte's mode.  */
1107 #define FUNCTION_MODE QImode
1108 
1109 /* The assembler op to get a word.  */
1110 
1111 #define FILE_ASM_OP "\t.file\n"
1112 
1113 #define PREDICATE_CODES					\
1114   {"const_1f_operand", {CONST_INT, CONST_DOUBLE}},	\
1115   {"const_8bit_operand", {CONST_INT}},			\
1116   {"call_address_operand", {SYMBOL_REF, REG, UNSPEC}},
1117 
1118 typedef struct mn10300_cc_status_mdep
1119   {
1120     int fpCC;
1121   }
1122 cc_status_mdep;
1123 
1124 #define CC_STATUS_MDEP cc_status_mdep
1125 
1126 #define CC_STATUS_MDEP_INIT (cc_status.mdep.fpCC = 0)
1127