1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3    2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4    Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5    and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6    Software Science at the University of Utah.
7 
8 This file is part of GCC.
9 
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14 
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 GNU General Public License for more details.
19 
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING.  If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA.  */
24 
25 enum cmp_type				/* comparison type */
26 {
27   CMP_SI,				/* compare integers */
28   CMP_SF,				/* compare single precision floats */
29   CMP_DF,				/* compare double precision floats */
30   CMP_MAX				/* max comparison type */
31 };
32 
33 /* For long call handling.  */
34 extern unsigned long total_code_bytes;
35 
36 /* Which processor to schedule for.  */
37 
38 enum processor_type
39 {
40   PROCESSOR_700,
41   PROCESSOR_7100,
42   PROCESSOR_7100LC,
43   PROCESSOR_7200,
44   PROCESSOR_7300,
45   PROCESSOR_8000
46 };
47 
48 /* For -mschedule= option.  */
49 extern const char *pa_cpu_string;
50 extern enum processor_type pa_cpu;
51 
52 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
53 
54 /* Which architecture to generate code for.  */
55 
56 enum architecture_type
57 {
58   ARCHITECTURE_10,
59   ARCHITECTURE_11,
60   ARCHITECTURE_20
61 };
62 
63 struct rtx_def;
64 
65 /* For -march= option.  */
66 extern const char *pa_arch_string;
67 extern enum architecture_type pa_arch;
68 
69 /* Print subsidiary information on the compiler version in use.  */
70 
71 #define TARGET_VERSION fputs (" (hppa)", stderr);
72 
73 /* Run-time compilation parameters selecting different hardware subsets.  */
74 
75 extern int target_flags;
76 
77 /* compile code for HP-PA 1.1 ("Snake").  */
78 
79 #define MASK_PA_11 1
80 
81 /* Disable all FP registers (they all become fixed).  This may be necessary
82    for compiling kernels which perform lazy context switching of FP regs.
83    Note if you use this option and try to perform floating point operations
84    the compiler will abort!  */
85 
86 #define MASK_DISABLE_FPREGS 2
87 #define TARGET_DISABLE_FPREGS (target_flags & MASK_DISABLE_FPREGS)
88 
89 /* Generate code which assumes that all space register are equivalent.
90    Triggers aggressive unscaled index addressing and faster
91    builtin_return_address.  */
92 #define MASK_NO_SPACE_REGS 4
93 #define TARGET_NO_SPACE_REGS (target_flags & MASK_NO_SPACE_REGS)
94 
95 /* Allow unconditional jumps in the delay slots of call instructions.  */
96 #define MASK_JUMP_IN_DELAY 8
97 #define TARGET_JUMP_IN_DELAY (target_flags & MASK_JUMP_IN_DELAY)
98 
99 /* Disable indexed addressing modes.  */
100 #define MASK_DISABLE_INDEXING 32
101 #define TARGET_DISABLE_INDEXING (target_flags & MASK_DISABLE_INDEXING)
102 
103 /* Emit code which follows the new portable runtime calling conventions
104    HP wants everyone to use for ELF objects.  If at all possible you want
105    to avoid this since it's a performance loss for non-prototyped code.
106 
107    Note TARGET_PORTABLE_RUNTIME also forces all calls to use inline
108    long-call stubs which is quite expensive.  */
109 #define MASK_PORTABLE_RUNTIME 64
110 #define TARGET_PORTABLE_RUNTIME (target_flags & MASK_PORTABLE_RUNTIME)
111 
112 /* Emit directives only understood by GAS.  This allows parameter
113    relocations to work for static functions.  There is no way
114    to make them work the HP assembler at this time.  */
115 #define MASK_GAS 128
116 #define TARGET_GAS (target_flags & MASK_GAS)
117 
118 /* Emit code for processors which do not have an FPU.  */
119 #define MASK_SOFT_FLOAT 256
120 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
121 
122 /* Use 3-insn load/store sequences for access to large data segments
123    in shared libraries on hpux10.  */
124 #define MASK_LONG_LOAD_STORE 512
125 #define TARGET_LONG_LOAD_STORE (target_flags & MASK_LONG_LOAD_STORE)
126 
127 /* Use a faster sequence for indirect calls.  This assumes that calls
128    through function pointers will never cross a space boundary, and
129    that the executable is not dynamically linked.  Such assumptions
130    are generally safe for building kernels and statically linked
131    executables.  Code compiled with this option will fail miserably if
132    the executable is dynamically linked or uses nested functions!  */
133 #define MASK_FAST_INDIRECT_CALLS 1024
134 #define TARGET_FAST_INDIRECT_CALLS (target_flags & MASK_FAST_INDIRECT_CALLS)
135 
136 /* Generate code with big switch statements to avoid out of range branches
137    occurring within the switch table.  */
138 #define MASK_BIG_SWITCH 2048
139 #define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
140 
141 /* Generate code for the HPPA 2.0 architecture.  TARGET_PA_11 should also be
142    true when this is true.  */
143 #define MASK_PA_20 4096
144 
145 /* Generate cpp defines for server I/O.  */
146 #define MASK_SIO 8192
147 #define TARGET_SIO (target_flags & MASK_SIO)
148 
149 /* Assume GNU linker by default.  */
150 #define MASK_GNU_LD 16384
151 #ifndef TARGET_GNU_LD
152 #define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
153 #endif
154 
155 /* Force generation of long calls.  */
156 #define MASK_LONG_CALLS 32768
157 #ifndef TARGET_LONG_CALLS
158 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
159 #endif
160 
161 #ifndef TARGET_PA_10
162 #define TARGET_PA_10 (target_flags & (MASK_PA_11 | MASK_PA_20) == 0)
163 #endif
164 
165 #ifndef TARGET_PA_11
166 #define TARGET_PA_11 (target_flags & MASK_PA_11)
167 #endif
168 
169 #ifndef TARGET_PA_20
170 #define TARGET_PA_20 (target_flags & MASK_PA_20)
171 #endif
172 
173 /* Generate code for the HPPA 2.0 architecture in 64bit mode.  */
174 #ifndef TARGET_64BIT
175 #define TARGET_64BIT 0
176 #endif
177 
178 /* Generate code for ELF32 ABI.  */
179 #ifndef TARGET_ELF32
180 #define TARGET_ELF32 0
181 #endif
182 
183 /* Generate code for SOM 32bit ABI.  */
184 #ifndef TARGET_SOM
185 #define TARGET_SOM 0
186 #endif
187 
188 /* The following three defines are potential target switches.  The current
189    defines are optimal given the current capabilities of GAS and GNU ld.  */
190 
191 /* Define to a C expression evaluating to true to use long absolute calls.
192    Currently, only the HP assembler and SOM linker support long absolute
193    calls.  They are used only in non-pic code.  */
194 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
195 
196 /* Define to a C expression evaluating to true to use long pic symbol
197    difference calls.  This is a call variant similar to the long pic
198    pc-relative call.  Long pic symbol difference calls are only used with
199    the HP SOM linker.  Currently, only the HP assembler supports these
200    calls.  GAS doesn't allow an arbitrary difference of two symbols.  */
201 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS)
202 
203 /* Define to a C expression evaluating to true to use long pic
204    pc-relative calls.  Long pic pc-relative calls are only used with
205    GAS.  Currently, they are usable for calls within a module but
206    not for external calls.  */
207 #define TARGET_LONG_PIC_PCREL_CALL 0
208 
209 /* Define to a C expression evaluating to true to use SOM secondary
210    definition symbols for weak support.  Linker support for secondary
211    definition symbols is buggy prior to HP-UX 11.X.  */
212 #define TARGET_SOM_SDEF 0
213 
214 /* Define to a C expression evaluating to true to save the entry value
215    of SP in the current frame marker.  This is normally unnecessary.
216    However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
217    HP compilers don't use this flag but it is supported by the assembler.
218    We set this flag to indicate that register %r3 has been saved at the
219    start of the frame.  Thus, when the HP unwind library is used, we
220    need to generate additional code to save SP into the frame marker.  */
221 #define TARGET_HPUX_UNWIND_LIBRARY 0
222 
223 /* Macro to define tables used to set the flags.  This is a
224    list in braces of target switches with each switch being
225    { "NAME", VALUE, "HELP_STRING" }.  VALUE is the bits to set,
226    or minus the bits to clear.  An empty string NAME is used to
227    identify the default VALUE.  Do not mark empty strings for
228    translation.  */
229 
230 #define TARGET_SWITCHES \
231   {{ "snake",			 MASK_PA_11,				\
232      N_("Generate PA1.1 code") },					\
233    { "nosnake",			-(MASK_PA_11 | MASK_PA_20),		\
234      N_("Generate PA1.0 code") },					\
235    { "pa-risc-1-0",		-(MASK_PA_11 | MASK_PA_20),		\
236      N_("Generate PA1.0 code") },					\
237    { "pa-risc-1-1",		 MASK_PA_11,				\
238      N_("Generate PA1.1 code") },					\
239    { "pa-risc-2-0",		 MASK_PA_20,				\
240      N_("Generate PA2.0 code (requires binutils 2.10 or later)") },	\
241    { "disable-fpregs",		 MASK_DISABLE_FPREGS,			\
242      N_("Disable FP regs") },						\
243    { "no-disable-fpregs",	-MASK_DISABLE_FPREGS,			\
244      N_("Do not disable FP regs") },					\
245    { "no-space-regs",		 MASK_NO_SPACE_REGS,			\
246      N_("Disable space regs") },					\
247    { "space-regs",		-MASK_NO_SPACE_REGS,			\
248      N_("Do not disable space regs") },					\
249    { "jump-in-delay",		 MASK_JUMP_IN_DELAY,			\
250      N_("Put jumps in call delay slots") },				\
251    { "no-jump-in-delay",	-MASK_JUMP_IN_DELAY,			\
252      N_("Do not put jumps in call delay slots") },			\
253    { "disable-indexing",	 MASK_DISABLE_INDEXING,			\
254      N_("Disable indexed addressing") },				\
255    { "no-disable-indexing",	-MASK_DISABLE_INDEXING,			\
256      N_("Do not disable indexed addressing") },				\
257    { "portable-runtime",	 MASK_PORTABLE_RUNTIME,			\
258      N_("Use portable calling conventions") },				\
259    { "no-portable-runtime",	-MASK_PORTABLE_RUNTIME,			\
260      N_("Do not use portable calling conventions") },			\
261    { "gas",			 MASK_GAS,				\
262      N_("Assume code will be assembled by GAS") },			\
263    { "no-gas",			-MASK_GAS,				\
264      N_("Do not assume code will be assembled by GAS") },		\
265    { "soft-float",		 MASK_SOFT_FLOAT,			\
266      N_("Use software floating point") },				\
267    { "no-soft-float",		-MASK_SOFT_FLOAT,			\
268      N_("Do not use software floating point") },			\
269    { "long-load-store",		 MASK_LONG_LOAD_STORE,			\
270      N_("Emit long load/store sequences") },				\
271    { "no-long-load-store",	-MASK_LONG_LOAD_STORE,			\
272      N_("Do not emit long load/store sequences") },			\
273    { "fast-indirect-calls",	 MASK_FAST_INDIRECT_CALLS,		\
274      N_("Generate fast indirect calls") },				\
275    { "no-fast-indirect-calls",	-MASK_FAST_INDIRECT_CALLS,		\
276      N_("Do not generate fast indirect calls") },			\
277    { "big-switch",		 MASK_BIG_SWITCH,			\
278      N_("Generate code for huge switch statements") },			\
279    { "no-big-switch",		-MASK_BIG_SWITCH,			\
280      N_("Do not generate code for huge switch statements") },		\
281    { "long-calls",		 MASK_LONG_CALLS,			\
282      N_("Always generate long calls") },				\
283    { "no-long-calls",		-MASK_LONG_CALLS,			\
284      N_("Generate long calls only when needed") },			\
285    { "linker-opt",		 0,					\
286      N_("Enable linker optimizations") },				\
287    SUBTARGET_SWITCHES							\
288    { "",			 TARGET_DEFAULT | TARGET_CPU_DEFAULT,	\
289      NULL }}
290 
291 #ifndef TARGET_DEFAULT
292 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY)
293 #endif
294 
295 #ifndef TARGET_CPU_DEFAULT
296 #define TARGET_CPU_DEFAULT 0
297 #endif
298 
299 #ifndef SUBTARGET_SWITCHES
300 #define SUBTARGET_SWITCHES
301 #endif
302 
303 #ifndef TARGET_SCHED_DEFAULT
304 #define TARGET_SCHED_DEFAULT "8000"
305 #endif
306 
307 #define TARGET_OPTIONS							\
308 {									\
309   { "schedule=",		&pa_cpu_string,				\
310     N_("Specify CPU for scheduling purposes"), 0},			\
311   { "arch=",			&pa_arch_string,			\
312     N_("Specify architecture for code generation.  Values are 1.0, 1.1, and 2.0.  2.0 requires gas snapshot 19990413 or later."), 0}\
313 }
314 
315 /* Support for a compile-time default CPU, et cetera.  The rules are:
316    --with-schedule is ignored if -mschedule is specified.
317    --with-arch is ignored if -march is specified.  */
318 #define OPTION_DEFAULT_SPECS \
319   {"arch", "%{!march=*:-march=%(VALUE)}" }, \
320   {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
321 
322 /* Specify the dialect of assembler to use.  New mnemonics is dialect one
323    and the old mnemonics are dialect zero.  */
324 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
325 
326 #define OVERRIDE_OPTIONS override_options ()
327 
328 /* Override some settings from dbxelf.h.  */
329 
330 /* We do not have to be compatible with dbx, so we enable gdb extensions
331    by default.  */
332 #define DEFAULT_GDB_EXTENSIONS 1
333 
334 /* This used to be zero (no max length), but big enums and such can
335    cause huge strings which killed gas.
336 
337    We also have to avoid lossage in dbxout.c -- it does not compute the
338    string size accurately, so we are real conservative here.  */
339 #undef DBX_CONTIN_LENGTH
340 #define DBX_CONTIN_LENGTH 3000
341 
342 /* Only labels should ever begin in column zero.  */
343 #define ASM_STABS_OP "\t.stabs\t"
344 #define ASM_STABN_OP "\t.stabn\t"
345 
346 /* GDB always assumes the current function's frame begins at the value
347    of the stack pointer upon entry to the current function.  Accessing
348    local variables and parameters passed on the stack is done using the
349    base of the frame + an offset provided by GCC.
350 
351    For functions which have frame pointers this method works fine;
352    the (frame pointer) == (stack pointer at function entry) and GCC provides
353    an offset relative to the frame pointer.
354 
355    This loses for functions without a frame pointer; GCC provides an offset
356    which is relative to the stack pointer after adjusting for the function's
357    frame size.  GDB would prefer the offset to be relative to the value of
358    the stack pointer at the function's entry.  Yuk!  */
359 #define DEBUGGER_AUTO_OFFSET(X) \
360   ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
361     + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
362 
363 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
364   ((GET_CODE (X) == PLUS ? OFFSET : 0) \
365     + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
366 
367 #define TARGET_CPU_CPP_BUILTINS()				\
368 do {								\
369      builtin_assert("cpu=hppa");				\
370      builtin_assert("machine=hppa");				\
371      builtin_define("__hppa");					\
372      builtin_define("__hppa__");				\
373      if (TARGET_PA_20)						\
374        builtin_define("_PA_RISC2_0");				\
375      else if (TARGET_PA_11)					\
376        builtin_define("_PA_RISC1_1");				\
377      else							\
378        builtin_define("_PA_RISC1_0");				\
379 } while (0)
380 
381 /* An old set of OS defines for various BSD-like systems.  */
382 #define TARGET_OS_CPP_BUILTINS()				\
383   do								\
384     {								\
385 	builtin_define_std ("REVARGV");				\
386 	builtin_define_std ("hp800");				\
387 	builtin_define_std ("hp9000");				\
388 	builtin_define_std ("hp9k8");				\
389 	if (!c_dialect_cxx () && !flag_iso)			\
390 	  builtin_define ("hppa");				\
391 	builtin_define_std ("spectrum");			\
392 	builtin_define_std ("unix");				\
393 	builtin_assert ("system=bsd");				\
394 	builtin_assert ("system=unix");				\
395     }								\
396   while (0)
397 
398 #define CC1_SPEC "%{pg:} %{p:}"
399 
400 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
401 
402 /* We don't want -lg.  */
403 #ifndef LIB_SPEC
404 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
405 #endif
406 
407 /* This macro defines command-line switches that modify the default
408    target name.
409 
410    The definition is be an initializer for an array of structures.  Each
411    array element has have three elements: the switch name, one of the
412    enumeration codes ADD or DELETE to indicate whether the string should be
413    inserted or deleted, and the string to be inserted or deleted.  */
414 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
415 
416 /* Make gcc agree with <machine/ansi.h> */
417 
418 #define SIZE_TYPE "unsigned int"
419 #define PTRDIFF_TYPE "int"
420 #define WCHAR_TYPE "unsigned int"
421 #define WCHAR_TYPE_SIZE 32
422 
423 /* Show we can debug even without a frame pointer.  */
424 #define CAN_DEBUG_WITHOUT_FP
425 
426 /* target machine storage layout */
427 
428 /* Define this macro if it is advisable to hold scalars in registers
429    in a wider mode than that declared by the program.  In such cases,
430    the value is constrained to be within the bounds of the declared
431    type, but kept valid in the wider mode.  The signedness of the
432    extension may differ from that of the type.  */
433 
434 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
435   if (GET_MODE_CLASS (MODE) == MODE_INT	\
436       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)  	\
437     (MODE) = word_mode;
438 
439 /* Define this if most significant bit is lowest numbered
440    in instructions that operate on numbered bit-fields.  */
441 #define BITS_BIG_ENDIAN 1
442 
443 /* Define this if most significant byte of a word is the lowest numbered.  */
444 /* That is true on the HP-PA.  */
445 #define BYTES_BIG_ENDIAN 1
446 
447 /* Define this if most significant word of a multiword number is lowest
448    numbered.  */
449 #define WORDS_BIG_ENDIAN 1
450 
451 #define MAX_BITS_PER_WORD 64
452 #define MAX_LONG_TYPE_SIZE 32
453 
454 /* Width of a word, in units (bytes).  */
455 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
456 #define MIN_UNITS_PER_WORD 4
457 
458 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
459 #define PARM_BOUNDARY BITS_PER_WORD
460 
461 /* Largest alignment required for any stack parameter, in bits.
462    Don't define this if it is equal to PARM_BOUNDARY */
463 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
464 
465 /* Boundary (in *bits*) on which stack pointer is always aligned;
466    certain optimizations in combine depend on this.
467 
468    The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
469    the stack on the 32 and 64-bit ports, respectively.  However, we
470    are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
471    in main.  Thus, we treat the former as the preferred alignment.  */
472 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
473 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
474 
475 /* Allocation boundary (in *bits*) for the code of a function.  */
476 #define FUNCTION_BOUNDARY BITS_PER_WORD
477 
478 /* Alignment of field after `int : 0' in a structure.  */
479 #define EMPTY_FIELD_BOUNDARY 32
480 
481 /* Every structure's size must be a multiple of this.  */
482 #define STRUCTURE_SIZE_BOUNDARY 8
483 
484 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
485 #define PCC_BITFIELD_TYPE_MATTERS 1
486 
487 /* No data type wants to be aligned rounder than this.  */
488 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
489 
490 /* Get around hp-ux assembler bug, and make strcpy of constants fast.  */
491 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
492   ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
493 
494 /* Make arrays of chars word-aligned for the same reasons.  */
495 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
496   (TREE_CODE (TYPE) == ARRAY_TYPE		\
497    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
498    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
499 
500 /* Set this nonzero if move instructions will actually fail to work
501    when given unaligned data.  */
502 #define STRICT_ALIGNMENT 1
503 
504 /* Generate calls to memcpy, memcmp and memset.  */
505 #define TARGET_MEM_FUNCTIONS
506 
507 /* Value is 1 if it is a good idea to tie two pseudo registers
508    when one has mode MODE1 and one has mode MODE2.
509    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
510    for any hard reg, then this must be 0 for correct output.  */
511 #define MODES_TIEABLE_P(MODE1, MODE2) \
512   (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
513 
514 /* Specify the registers used for certain standard purposes.
515    The values of these macros are register numbers.  */
516 
517 /* The HP-PA pc isn't overloaded on a register that the compiler knows about.  */
518 /* #define PC_REGNUM  */
519 
520 /* Register to use for pushing function arguments.  */
521 #define STACK_POINTER_REGNUM 30
522 
523 /* Base register for access to local variables of the function.  */
524 #define FRAME_POINTER_REGNUM 3
525 
526 /* Value should be nonzero if functions must have frame pointers.  */
527 #define FRAME_POINTER_REQUIRED \
528   (current_function_calls_alloca)
529 
530 /* C statement to store the difference between the frame pointer
531    and the stack pointer values immediately after the function prologue.
532 
533    Note, we always pretend that this is a leaf function because if
534    it's not, there's no point in trying to eliminate the
535    frame pointer.  If it is a leaf function, we guessed right!  */
536 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
537   do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
538 
539 /* Base register for access to arguments of the function.  */
540 #define ARG_POINTER_REGNUM 3
541 
542 /* Register in which static-chain is passed to a function.  */
543 #define STATIC_CHAIN_REGNUM 29
544 
545 /* Register used to address the offset table for position-independent
546    data references.  */
547 #define PIC_OFFSET_TABLE_REGNUM \
548   (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
549 
550 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
551 
552 /* Function to return the rtx used to save the pic offset table register
553    across function calls.  */
554 extern struct rtx_def *hppa_pic_save_rtx (void);
555 
556 #define DEFAULT_PCC_STRUCT_RETURN 0
557 
558 /* SOM ABI says that objects larger than 64 bits are returned in memory.
559    PA64 ABI says that objects larger than 128 bits are returned in memory.
560    Note, int_size_in_bytes can return -1 if the size of the object is
561    variable or larger than the maximum value that can be expressed as
562    a HOST_WIDE_INT.   It can also return zero for an empty type.  The
563    simplest way to handle variable and empty types is to pass them in
564    memory.  This avoids problems in defining the boundaries of argument
565    slots, allocating registers, etc.  */
566 #define RETURN_IN_MEMORY(TYPE)	\
567   (int_size_in_bytes (TYPE) > (TARGET_64BIT ? 16 : 8)	\
568    || int_size_in_bytes (TYPE) <= 0)
569 
570 /* Register in which address to store a structure value
571    is passed to a function.  */
572 #define STRUCT_VALUE_REGNUM 28
573 
574 /* Describe how we implement __builtin_eh_return.  */
575 #define EH_RETURN_DATA_REGNO(N)	\
576   ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
577 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 29)
578 #define EH_RETURN_HANDLER_RTX \
579   gen_rtx_MEM (word_mode,						\
580 	       gen_rtx_PLUS (word_mode, frame_pointer_rtx,		\
581 			     TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
582 
583 
584 /* Offset from the argument pointer register value to the top of
585    stack.  This is different from FIRST_PARM_OFFSET because of the
586    frame marker.  */
587 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
588 
589 /* The letters I, J, K, L and M in a register constraint string
590    can be used to stand for particular ranges of immediate operands.
591    This macro defines what the ranges are.
592    C is the letter, and VALUE is a constant value.
593    Return 1 if VALUE is in the range specified by C.
594 
595    `I' is used for the 11 bit constants.
596    `J' is used for the 14 bit constants.
597    `K' is used for values that can be moved with a zdepi insn.
598    `L' is used for the 5 bit constants.
599    `M' is used for 0.
600    `N' is used for values with the least significant 11 bits equal to zero
601 	                  and when sign extended from 32 to 64 bits the
602 			  value does not change.
603    `O' is used for numbers n such that n+1 is a power of 2.
604    */
605 
606 #define CONST_OK_FOR_LETTER_P(VALUE, C)  \
607   ((C) == 'I' ? VAL_11_BITS_P (VALUE)					\
608    : (C) == 'J' ? VAL_14_BITS_P (VALUE)					\
609    : (C) == 'K' ? zdepi_cint_p (VALUE)					\
610    : (C) == 'L' ? VAL_5_BITS_P (VALUE)					\
611    : (C) == 'M' ? (VALUE) == 0						\
612    : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
613 		   || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff))	\
614 		       == (HOST_WIDE_INT) -1 << 31))			\
615    : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0)			\
616    : (C) == 'P' ? and_mask_p (VALUE)					\
617    : 0)
618 
619 /* Similar, but for floating or large integer constants, and defining letters
620    G and H.   Here VALUE is the CONST_DOUBLE rtx itself.
621 
622    For PA, `G' is the floating-point constant zero.  `H' is undefined.  */
623 
624 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  			\
625   ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT	\
626 		 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))		\
627    : 0)
628 
629 /* The class value for index registers, and the one for base regs.  */
630 #define INDEX_REG_CLASS GENERAL_REGS
631 #define BASE_REG_CLASS GENERAL_REGS
632 
633 #define FP_REG_CLASS_P(CLASS) \
634   ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
635 
636 /* True if register is floating-point.  */
637 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
638 
639 /* Given an rtx X being reloaded into a reg required to be
640    in class CLASS, return the class of reg to actually use.
641    In general this is just CLASS; but on some machines
642    in some cases it is preferable to use a more restrictive class.  */
643 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
644 
645 /* Return the register class of a scratch register needed to copy
646    IN into a register in CLASS in MODE, or a register in CLASS in MODE
647    to IN.  If it can be done directly NO_REGS is returned.
648 
649   Avoid doing any work for the common case calls.  */
650 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
651   ((CLASS == BASE_REG_CLASS && GET_CODE (IN) == REG		\
652     && REGNO (IN) < FIRST_PSEUDO_REGISTER)			\
653    ? NO_REGS : secondary_reload_class (CLASS, MODE, IN))
654 
655 #define MAYBE_FP_REG_CLASS_P(CLASS) \
656   reg_classes_intersect_p ((CLASS), FP_REGS)
657 
658 /* On the PA it is not possible to directly move data between
659    GENERAL_REGS and FP_REGS.  */
660 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)		\
661   (MAYBE_FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)	\
662    || MAYBE_FP_REG_CLASS_P (CLASS2) != FP_REG_CLASS_P (CLASS1))
663 
664 /* Return the stack location to use for secondary memory needed reloads.  */
665 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
666   gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-16)))
667 
668 
669 /* Stack layout; function entry, exit and calling.  */
670 
671 /* Define this if pushing a word on the stack
672    makes the stack pointer a smaller address.  */
673 /* #define STACK_GROWS_DOWNWARD */
674 
675 /* Believe it or not.  */
676 #define ARGS_GROW_DOWNWARD
677 
678 /* Define this if the nominal address of the stack frame
679    is at the high-address end of the local variables;
680    that is, each additional local variable allocated
681    goes at a more negative offset in the frame.  */
682 /* #define FRAME_GROWS_DOWNWARD */
683 
684 /* Offset within stack frame to start allocating local variables at.
685    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
686    first local allocated.  Otherwise, it is the offset to the BEGINNING
687    of the first local allocated.
688 
689    On the 32-bit ports, we reserve one slot for the previous frame
690    pointer and one fill slot.  The fill slot is for compatibility
691    with HP compiled programs.  On the 64-bit ports, we reserve one
692    slot for the previous frame pointer.  */
693 #define STARTING_FRAME_OFFSET 8
694 
695 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
696    of the stack.  The default is to align it to STACK_BOUNDARY.  */
697 #define STACK_ALIGNMENT_NEEDED 0
698 
699 /* If we generate an insn to push BYTES bytes,
700    this says how many the stack pointer really advances by.
701    On the HP-PA, don't define this because there are no push insns.  */
702 /*  #define PUSH_ROUNDING(BYTES) */
703 
704 /* Offset of first parameter from the argument pointer register value.
705    This value will be negated because the arguments grow down.
706    Also note that on STACK_GROWS_UPWARD machines (such as this one)
707    this is the distance from the frame pointer to the end of the first
708    argument, not it's beginning.  To get the real offset of the first
709    argument, the size of the argument must be added.  */
710 
711 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
712 
713 /* When a parameter is passed in a register, stack space is still
714    allocated for it.  */
715 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
716 
717 /* Define this if the above stack space is to be considered part of the
718    space allocated by the caller.  */
719 #define OUTGOING_REG_PARM_STACK_SPACE
720 
721 /* Keep the stack pointer constant throughout the function.
722    This is both an optimization and a necessity: longjmp
723    doesn't behave itself when the stack pointer moves within
724    the function!  */
725 #define ACCUMULATE_OUTGOING_ARGS 1
726 
727 /* The weird HPPA calling conventions require a minimum of 48 bytes on
728    the stack: 16 bytes for register saves, and 32 bytes for magic.
729    This is the difference between the logical top of stack and the
730    actual sp.
731 
732    On the 64-bit port, the HP C compiler allocates a 48-byte frame
733    marker, although the runtime documentation only describes a 16
734    byte marker.  For compatibility, we allocate 48 bytes.  */
735 #define STACK_POINTER_OFFSET \
736   (TARGET_64BIT ? -(current_function_outgoing_args_size + 48): -32)
737 
738 #define STACK_DYNAMIC_OFFSET(FNDECL)	\
739   (TARGET_64BIT				\
740    ? (STACK_POINTER_OFFSET)		\
741    : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
742 
743 /* Value is 1 if returning from a function call automatically
744    pops the arguments described by the number-of-args field in the call.
745    FUNDECL is the declaration node of the function (as a tree),
746    FUNTYPE is the data type of the function (as a tree),
747    or for a library call it is an identifier node for the subroutine name.  */
748 
749 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
750 
751 /* Define how to find the value returned by a function.
752    VALTYPE is the data type of the value (as a tree).
753    If the precise function being called is known, FUNC is its FUNCTION_DECL;
754    otherwise, FUNC is 0.  */
755 
756 #define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
757 
758 /* Define how to find the value returned by a library function
759    assuming the value has mode MODE.  */
760 
761 #define LIBCALL_VALUE(MODE)	\
762   gen_rtx_REG (MODE,							\
763 	       (! TARGET_SOFT_FLOAT					\
764 		&& ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
765 
766 /* 1 if N is a possible register number for a function value
767    as seen by the caller.  */
768 
769 #define FUNCTION_VALUE_REGNO_P(N) \
770   ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
771 
772 
773 /* Define a data type for recording info about an argument list
774    during the scan of that argument list.  This data type should
775    hold all necessary information about the function itself
776    and about the args processed so far, enough to enable macros
777    such as FUNCTION_ARG to determine where the next arg should go.
778 
779    On the HP-PA, the WORDS field holds the number of words
780    of arguments scanned so far (including the invisible argument,
781    if any, which holds the structure-value-address).  Thus, 4 or
782    more means all following args should go on the stack.
783 
784    The INCOMING field tracks whether this is an "incoming" or
785    "outgoing" argument.
786 
787    The INDIRECT field indicates whether this is is an indirect
788    call or not.
789 
790    The NARGS_PROTOTYPE field indicates that an argument does not
791    have a prototype when it less than or equal to 0.  */
792 
793 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
794 
795 #define CUMULATIVE_ARGS struct hppa_args
796 
797 /* Initialize a variable CUM of type CUMULATIVE_ARGS
798    for a call to a function whose data type is FNTYPE.
799    For a library call, FNTYPE is 0.  */
800 
801 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
802   (CUM).words = 0, 							\
803   (CUM).incoming = 0,							\
804   (CUM).indirect = (FNTYPE) && !(FNDECL),				\
805   (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE)		\
806 			   ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1	\
807 			      + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
808 				 || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
809 			   : 0)
810 
811 
812 
813 /* Similar, but when scanning the definition of a procedure.  We always
814    set NARGS_PROTOTYPE large so we never return a PARALLEL.  */
815 
816 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
817   (CUM).words = 0,				\
818   (CUM).incoming = 1,				\
819   (CUM).indirect = 0,				\
820   (CUM).nargs_prototype = 1000
821 
822 /* Figure out the size in words of the function argument.  The size
823    returned by this macro should always be greater than zero because
824    we pass variable and zero sized objects by reference.  */
825 
826 #define FUNCTION_ARG_SIZE(MODE, TYPE)	\
827   ((((MODE) != BLKmode \
828      ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
829      : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
830 
831 /* Update the data in CUM to advance over an argument
832    of mode MODE and data type TYPE.
833    (TYPE is null for libcalls where that information may not be available.)  */
834 
835 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
836 { (CUM).nargs_prototype--;						\
837   (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE)	 			\
838     + (((CUM).words & 01) && (TYPE) != 0				\
839 	&& FUNCTION_ARG_SIZE(MODE, TYPE) > 1);				\
840 }
841 
842 /* Determine where to put an argument to a function.
843    Value is zero to push the argument on the stack,
844    or a hard register in which to store the argument.
845 
846    MODE is the argument's machine mode.
847    TYPE is the data type of the argument (as a tree).
848     This is null for libcalls where that information may
849     not be available.
850    CUM is a variable of type CUMULATIVE_ARGS which gives info about
851     the preceding args and about the function being called.
852    NAMED is nonzero if this argument is a named parameter
853     (otherwise it is an extra parameter matching an ellipsis).
854 
855    On the HP-PA the first four words of args are normally in registers
856    and the rest are pushed.  But any arg that won't entirely fit in regs
857    is pushed.
858 
859    Arguments passed in registers are either 1 or 2 words long.
860 
861    The caller must make a distinction between calls to explicitly named
862    functions and calls through pointers to functions -- the conventions
863    are different!  Calls through pointers to functions only use general
864    registers for the first four argument words.
865 
866    Of course all this is different for the portable runtime model
867    HP wants everyone to use for ELF.  Ugh.  Here's a quick description
868    of how it's supposed to work.
869 
870    1) callee side remains unchanged.  It expects integer args to be
871    in the integer registers, float args in the float registers and
872    unnamed args in integer registers.
873 
874    2) caller side now depends on if the function being called has
875    a prototype in scope (rather than if it's being called indirectly).
876 
877       2a) If there is a prototype in scope, then arguments are passed
878       according to their type (ints in integer registers, floats in float
879       registers, unnamed args in integer registers.
880 
881       2b) If there is no prototype in scope, then floating point arguments
882       are passed in both integer and float registers.  egad.
883 
884   FYI: The portable parameter passing conventions are almost exactly like
885   the standard parameter passing conventions on the RS6000.  That's why
886   you'll see lots of similar code in rs6000.h.  */
887 
888 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
889 
890 /* Do not expect to understand this without reading it several times.  I'm
891    tempted to try and simply it, but I worry about breaking something.  */
892 
893 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
894   function_arg (&CUM, MODE, TYPE, NAMED)
895 
896 /* Nonzero if we do not know how to pass TYPE solely in registers.  */
897 #define MUST_PASS_IN_STACK(MODE,TYPE) \
898   ((TYPE) != 0							\
899    && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST		\
900        || TREE_ADDRESSABLE (TYPE)))
901 
902 /* For an arg passed partly in registers and partly in memory,
903    this is the number of registers used.
904    For args passed entirely in registers or entirely in memory, zero.  */
905 
906 /* For PA32 there are never split arguments. PA64, on the other hand, can
907    pass arguments partially in registers and partially in memory.  */
908 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
909   (TARGET_64BIT ? function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED) : 0)
910 
911 /* If defined, a C expression that gives the alignment boundary, in
912    bits, of an argument with the specified mode and type.  If it is
913    not defined,  `PARM_BOUNDARY' is used for all arguments.  */
914 
915 /* Arguments larger than one word are double word aligned.  */
916 
917 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE)				\
918   (((TYPE)								\
919     ? (integer_zerop (TYPE_SIZE (TYPE))					\
920        || !TREE_CONSTANT (TYPE_SIZE (TYPE))				\
921        || int_size_in_bytes (TYPE) <= UNITS_PER_WORD)			\
922     : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD)				\
923    ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
924 
925 /* In the 32-bit runtime, arguments larger than eight bytes are passed
926    by invisible reference.  As a GCC extension, we also pass anything
927    with a zero or variable size by reference.
928 
929    The 64-bit runtime does not describe passing any types by invisible
930    reference.  The internals of GCC can't currently handle passing
931    empty structures, and zero or variable length arrays when they are
932    not passed entirely on the stack or by reference.  Thus, as a GCC
933    extension, we pass these types by reference.  The HP compiler doesn't
934    support these types, so hopefully there shouldn't be any compatibility
935    issues.  This may have to be revisited when HP releases a C99 compiler
936    or updates the ABI.  */
937 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED)		\
938   (TARGET_64BIT								\
939    ? ((TYPE) && int_size_in_bytes (TYPE) <= 0)				\
940    : (((TYPE) && (int_size_in_bytes (TYPE) > 8				\
941 		  || int_size_in_bytes (TYPE) <= 0))			\
942       || ((MODE) && GET_MODE_SIZE (MODE) > 8)))
943 
944 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) 		\
945   FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED)
946 
947 
948 extern GTY(()) rtx hppa_compare_op0;
949 extern GTY(()) rtx hppa_compare_op1;
950 extern enum cmp_type hppa_branch_type;
951 
952 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
953    as assembly via FUNCTION_PROFILER.  Just output a local label.
954    We can't use the function label because the GAS SOM target can't
955    handle the difference of a global symbol and a local symbol.  */
956 
957 #ifndef FUNC_BEGIN_PROLOG_LABEL
958 #define FUNC_BEGIN_PROLOG_LABEL        "LFBP"
959 #endif
960 
961 #define FUNCTION_PROFILER(FILE, LABEL) \
962   (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
963 
964 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
965 void hppa_profile_hook (int label_no);
966 
967 /* The profile counter if emitted must come before the prologue.  */
968 #define PROFILE_BEFORE_PROLOGUE 1
969 
970 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
971    the stack pointer does not matter.  The value is tested only in
972    functions that have frame pointers.
973    No definition is equivalent to always zero.  */
974 
975 extern int may_call_alloca;
976 
977 #define EXIT_IGNORE_STACK	\
978  (get_frame_size () != 0	\
979   || current_function_calls_alloca || current_function_outgoing_args_size)
980 
981 /* Output assembler code for a block containing the constant parts
982    of a trampoline, leaving space for the variable parts.\
983 
984    The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
985    and then branches to the specified routine.
986 
987    This code template is copied from text segment to stack location
988    and then patched with INITIALIZE_TRAMPOLINE to contain
989    valid values, and then entered as a subroutine.
990 
991    It is best to keep this as small as possible to avoid having to
992    flush multiple lines in the cache.  */
993 
994 #define TRAMPOLINE_TEMPLATE(FILE) 					\
995   {									\
996     if (!TARGET_64BIT)							\
997       {									\
998 	fputs ("\tldw	36(%r22),%r21\n", FILE);			\
999 	fputs ("\tbb,>=,n	%r21,30,.+16\n", FILE);			\
1000 	if (ASSEMBLER_DIALECT == 0)					\
1001 	  fputs ("\tdepi	0,31,2,%r21\n", FILE);			\
1002 	else								\
1003 	  fputs ("\tdepwi	0,31,2,%r21\n", FILE);			\
1004 	fputs ("\tldw	4(%r21),%r19\n", FILE);				\
1005 	fputs ("\tldw	0(%r21),%r21\n", FILE);				\
1006 	if (TARGET_PA_20)						\
1007 	  {								\
1008 	    fputs ("\tbve	(%r21)\n", FILE);			\
1009 	    fputs ("\tldw	40(%r22),%r29\n", FILE);		\
1010 	    fputs ("\t.word	0\n", FILE);				\
1011 	    fputs ("\t.word	0\n", FILE);				\
1012 	  }								\
1013 	else								\
1014 	  {								\
1015 	    fputs ("\tldsid	(%r21),%r1\n", FILE);			\
1016 	    fputs ("\tmtsp	%r1,%sr0\n", FILE);			\
1017 	    fputs ("\tbe	0(%sr0,%r21)\n", FILE);			\
1018 	    fputs ("\tldw	40(%r22),%r29\n", FILE);		\
1019 	  }								\
1020 	fputs ("\t.word	0\n", FILE);					\
1021 	fputs ("\t.word	0\n", FILE);					\
1022 	fputs ("\t.word	0\n", FILE);					\
1023 	fputs ("\t.word	0\n", FILE);					\
1024       }									\
1025     else								\
1026       {									\
1027 	fputs ("\t.dword 0\n", FILE);					\
1028 	fputs ("\t.dword 0\n", FILE);					\
1029 	fputs ("\t.dword 0\n", FILE);					\
1030 	fputs ("\t.dword 0\n", FILE);					\
1031 	fputs ("\tmfia	%r31\n", FILE);					\
1032 	fputs ("\tldd	24(%r31),%r1\n", FILE);				\
1033 	fputs ("\tldd	24(%r1),%r27\n", FILE);				\
1034 	fputs ("\tldd	16(%r1),%r1\n", FILE);				\
1035 	fputs ("\tbve	(%r1)\n", FILE);				\
1036 	fputs ("\tldd	32(%r31),%r31\n", FILE);			\
1037 	fputs ("\t.dword 0  ; fptr\n", FILE);				\
1038 	fputs ("\t.dword 0  ; static link\n", FILE);			\
1039       }									\
1040   }
1041 
1042 /* Length in units of the trampoline for entering a nested function.  */
1043 
1044 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
1045 
1046 /* Length in units of the trampoline instruction code.  */
1047 
1048 #define TRAMPOLINE_CODE_SIZE (TARGET_64BIT ? 24 : (TARGET_PA_20 ? 32 : 40))
1049 
1050 /* Minimum length of a cache line.  A length of 16 will work on all
1051    PA-RISC processors.  All PA 1.1 processors have a cache line of
1052    32 bytes.  Most but not all PA 2.0 processors have a cache line
1053    of 64 bytes.  As cache flushes are expensive and we don't support
1054    PA 1.0, we use a minimum length of 32.  */
1055 
1056 #define MIN_CACHELINE_SIZE 32
1057 
1058 /* Emit RTL insns to initialize the variable parts of a trampoline.
1059    FNADDR is an RTX for the address of the function's pure code.
1060    CXT is an RTX for the static chain value for the function.
1061 
1062    Move the function address to the trampoline template at offset 36.
1063    Move the static chain value to trampoline template at offset 40.
1064    Move the trampoline address to trampoline template at offset 44.
1065    Move r19 to trampoline template at offset 48.  The latter two
1066    words create a plabel for the indirect call to the trampoline.
1067 
1068    A similar sequence is used for the 64-bit port but the plabel is
1069    at the beginning of the trampoline.
1070 
1071    Finally, the cache entries for the trampoline code are flushed.
1072    This is necessary to ensure that the trampoline instruction sequence
1073    is written to memory prior to any attempts at prefetching the code
1074    sequence.  */
1075 
1076 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) 			\
1077 {									\
1078   rtx start_addr = gen_reg_rtx (Pmode);					\
1079   rtx end_addr = gen_reg_rtx (Pmode);					\
1080   rtx line_length = gen_reg_rtx (Pmode);				\
1081   rtx tmp;								\
1082 									\
1083   if (!TARGET_64BIT)							\
1084     {									\
1085       tmp = memory_address (Pmode, plus_constant ((TRAMP), 36));	\
1086       emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR));		\
1087       tmp = memory_address (Pmode, plus_constant ((TRAMP), 40));	\
1088       emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT));			\
1089 									\
1090       /* Create a fat pointer for the trampoline.  */			\
1091       tmp = memory_address (Pmode, plus_constant ((TRAMP), 44));	\
1092       emit_move_insn (gen_rtx_MEM (Pmode, tmp), (TRAMP));		\
1093       tmp = memory_address (Pmode, plus_constant ((TRAMP), 48));	\
1094       emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
1095 		      gen_rtx_REG (Pmode, 19));				\
1096 									\
1097       /* fdc and fic only use registers for the address to flush,	\
1098 	 they do not accept integer displacements.  We align the	\
1099 	 start and end addresses to the beginning of their respective	\
1100 	 cache lines to minimize the number of lines flushed.  */	\
1101       tmp = force_reg (Pmode, (TRAMP));					\
1102       emit_insn (gen_andsi3 (start_addr, tmp,				\
1103 			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1104       tmp = force_reg (Pmode,						\
1105 		       plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1));	\
1106       emit_insn (gen_andsi3 (end_addr, tmp,				\
1107 			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1108       emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE));	\
1109       emit_insn (gen_dcacheflush (start_addr, end_addr, line_length));	\
1110       emit_insn (gen_icacheflush (start_addr, end_addr, line_length,	\
1111 				  gen_reg_rtx (Pmode),			\
1112 				  gen_reg_rtx (Pmode)));		\
1113     }									\
1114   else									\
1115     {									\
1116       tmp = memory_address (Pmode, plus_constant ((TRAMP), 56));	\
1117       emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR));		\
1118       tmp = memory_address (Pmode, plus_constant ((TRAMP), 64));	\
1119       emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT));			\
1120 									\
1121       /* Create a fat pointer for the trampoline.  */			\
1122       tmp = memory_address (Pmode, plus_constant ((TRAMP), 16));	\
1123       emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
1124 		      force_reg (Pmode, plus_constant ((TRAMP), 32)));	\
1125       tmp = memory_address (Pmode, plus_constant ((TRAMP), 24));	\
1126       emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
1127 		      gen_rtx_REG (Pmode, 27));				\
1128 									\
1129       /* fdc and fic only use registers for the address to flush,	\
1130 	 they do not accept integer displacements.  We align the	\
1131 	 start and end addresses to the beginning of their respective	\
1132 	 cache lines to minimize the number of lines flushed.  */	\
1133       tmp = force_reg (Pmode, plus_constant ((TRAMP), 32));		\
1134       emit_insn (gen_anddi3 (start_addr, tmp,				\
1135 			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1136       tmp = force_reg (Pmode,						\
1137 		       plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1));	\
1138       emit_insn (gen_anddi3 (end_addr, tmp,				\
1139 			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1140       emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE));	\
1141       emit_insn (gen_dcacheflush (start_addr, end_addr, line_length));	\
1142       emit_insn (gen_icacheflush (start_addr, end_addr, line_length,	\
1143 				  gen_reg_rtx (Pmode),			\
1144 				  gen_reg_rtx (Pmode)));		\
1145     }									\
1146 }
1147 
1148 /* Perform any machine-specific adjustment in the address of the trampoline.
1149    ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1150    Adjust the trampoline address to point to the plabel at offset 44.  */
1151 
1152 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1153   if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1154 
1155 /* Emit code for a call to builtin_saveregs.  We must emit USE insns which
1156    reference the 4 integer arg registers and 4 fp arg registers.
1157    Ordinarily they are not call used registers, but they are for
1158    _builtin_saveregs, so we must make this explicit.  */
1159 
1160 #define EXPAND_BUILTIN_SAVEREGS() hppa_builtin_saveregs ()
1161 
1162 /* Implement `va_start' for varargs and stdarg.  */
1163 
1164 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1165   hppa_va_start (valist, nextarg)
1166 
1167 /* Implement `va_arg'.  */
1168 
1169 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1170   hppa_va_arg (valist, type)
1171 
1172 /* Addressing modes, and classification of registers for them.
1173 
1174    Using autoincrement addressing modes on PA8000 class machines is
1175    not profitable.  */
1176 
1177 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1178 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
1179 
1180 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1181 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
1182 
1183 /* Macros to check register numbers against specific register classes.  */
1184 
1185 /* These assume that REGNO is a hard or pseudo reg number.
1186    They give nonzero only if REGNO is a hard reg of the suitable class
1187    or a pseudo reg currently allocated to a suitable hard reg.
1188    Since they use reg_renumber, they are safe only once reg_renumber
1189    has been allocated, which happens in local-alloc.c.  */
1190 
1191 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1192   ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1193 #define REGNO_OK_FOR_BASE_P(REGNO)  \
1194   ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1195 #define REGNO_OK_FOR_FP_P(REGNO) \
1196   (FP_REGNO_P (REGNO) || FP_REGNO_P (reg_renumber[REGNO]))
1197 
1198 /* Now macros that check whether X is a register and also,
1199    strictly, whether it is in a specified class.
1200 
1201    These macros are specific to the HP-PA, and may be used only
1202    in code for printing assembler insns and in conditions for
1203    define_optimization.  */
1204 
1205 /* 1 if X is an fp register.  */
1206 
1207 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1208 
1209 /* Maximum number of registers that can appear in a valid memory address.  */
1210 
1211 #define MAX_REGS_PER_ADDRESS 2
1212 
1213 /* Recognize any constant value that is a valid address except
1214    for symbolic addresses.  We get better CSE by rejecting them
1215    here and allowing hppa_legitimize_address to break them up.  We
1216    use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE.  */
1217 
1218 #define CONSTANT_ADDRESS_P(X) \
1219   ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
1220    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1221    || GET_CODE (X) == HIGH) 						\
1222    && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1223 
1224 /* A C expression that is nonzero if we are using the new HP assembler.  */
1225 
1226 #ifndef NEW_HP_ASSEMBLER
1227 #define NEW_HP_ASSEMBLER 0
1228 #endif
1229 
1230 /* The macros below define the immediate range for CONST_INTS on
1231    the 64-bit port.  Constants in this range can be loaded in three
1232    instructions using a ldil/ldo/depdi sequence.  Constants outside
1233    this range are forced to the constant pool prior to reload.  */
1234 
1235 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
1236 #define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
1237 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
1238   ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
1239 
1240 /* A C expression that is nonzero if X is a legitimate constant for an
1241    immediate operand.
1242 
1243    We include all constant integers and constant doubles, but not
1244    floating-point, except for floating-point zero.  We reject LABEL_REFs
1245    if we're not using gas or the new HP assembler.
1246 
1247    In 64-bit mode, we reject CONST_DOUBLES.  We also reject CONST_INTS
1248    that need more than three instructions to load prior to reload.  This
1249    limit is somewhat arbitrary.  It takes three instructions to load a
1250    CONST_INT from memory but two are memory accesses.  It may be better
1251    to increase the allowed range for CONST_INTS.  We may also be able
1252    to handle CONST_DOUBLES.  */
1253 
1254 #define LEGITIMATE_CONSTANT_P(X)				\
1255   ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT			\
1256     || (X) == CONST0_RTX (GET_MODE (X)))			\
1257    && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF)	\
1258    && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE)		\
1259    && !(TARGET_64BIT && GET_CODE (X) == CONST_INT		\
1260 	&& !(HOST_BITS_PER_WIDE_INT <= 32			\
1261 	     || (reload_in_progress || reload_completed)	\
1262 	     || LEGITIMATE_64BIT_CONST_INT_P (INTVAL (X))	\
1263 	     || cint_ok_for_move (INTVAL (X))))			\
1264    && !function_label_operand (X, VOIDmode))
1265 
1266 /* Subroutines for EXTRA_CONSTRAINT.
1267 
1268    Return 1 iff OP is a pseudo which did not get a hard register and
1269    we are running the reload pass.  */
1270 #define IS_RELOADING_PSEUDO_P(OP) \
1271   ((reload_in_progress					\
1272     && GET_CODE (OP) == REG				\
1273     && REGNO (OP) >= FIRST_PSEUDO_REGISTER		\
1274     && reg_renumber [REGNO (OP)] < 0))
1275 
1276 /* Return 1 iff OP is a scaled or unscaled index address.  */
1277 #define IS_INDEX_ADDR_P(OP) \
1278   (GET_CODE (OP) == PLUS				\
1279    && GET_MODE (OP) == Pmode				\
1280    && (GET_CODE (XEXP (OP, 0)) == MULT			\
1281        || GET_CODE (XEXP (OP, 1)) == MULT		\
1282        || (REG_P (XEXP (OP, 0))				\
1283 	   && REG_P (XEXP (OP, 1)))))
1284 
1285 /* Return 1 iff OP is a LO_SUM DLT address.  */
1286 #define IS_LO_SUM_DLT_ADDR_P(OP) \
1287   (GET_CODE (OP) == LO_SUM				\
1288    && GET_MODE (OP) == Pmode				\
1289    && REG_P (XEXP (OP, 0))				\
1290    && REG_OK_FOR_BASE_P (XEXP (OP, 0))			\
1291    && GET_CODE (XEXP (OP, 1)) == UNSPEC)
1292 
1293 /* Optional extra constraints for this machine. Borrowed from sparc.h.
1294 
1295    `A' is a LO_SUM DLT memory operand.
1296 
1297    `Q' is any memory operand that isn't a symbolic, indexed or lo_sum
1298        memory operand.  Note that an unassigned pseudo register is such a
1299        memory operand.  Needed because reload will generate these things
1300        and then not re-recognize the insn, causing constrain_operands to
1301        fail.
1302 
1303    `R' is a scaled/unscaled indexed memory operand.
1304 
1305    `S' is the constant 31.
1306 
1307    `T' is for floating-point loads and stores.
1308 
1309    `U' is the constant 63.  */
1310 
1311 #define EXTRA_CONSTRAINT(OP, C) \
1312   ((C) == 'Q' ?								\
1313    (IS_RELOADING_PSEUDO_P (OP)						\
1314     || (GET_CODE (OP) == MEM						\
1315 	&& (reload_in_progress						\
1316 	    || memory_address_p (GET_MODE (OP), XEXP (OP, 0)))		\
1317 	&& !symbolic_memory_operand (OP, VOIDmode)			\
1318 	&& !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0))				\
1319 	&& !IS_INDEX_ADDR_P (XEXP (OP, 0))))				\
1320    : ((C) == 'A' ?							\
1321       (GET_CODE (OP) == MEM						\
1322        && IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0)))				\
1323    : ((C) == 'R' ?							\
1324       (GET_CODE (OP) == MEM						\
1325        && IS_INDEX_ADDR_P (XEXP (OP, 0)))				\
1326    : ((C) == 'T' ? 							\
1327       (GET_CODE (OP) == MEM						\
1328        && !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0))				\
1329        && !IS_INDEX_ADDR_P (XEXP (OP, 0))				\
1330        /* Floating-point loads and stores are used to load		\
1331 	  integer values as well as floating-point values.		\
1332 	  They don't have the same set of REG+D address modes		\
1333 	  as integer loads and stores.  PA 1.x supports only		\
1334 	  short displacements.  PA 2.0 supports long displacements	\
1335 	  but the base register needs to be aligned.			\
1336 									\
1337 	  The checks in GO_IF_LEGITIMATE_ADDRESS for SFmode and		\
1338 	  DFmode test the validity of an address for use in a		\
1339 	  floating point load or store.  So, we use SFmode/DFmode	\
1340 	  to see if the address is valid for a floating-point		\
1341 	  load/store operation.  */					\
1342        && memory_address_p ((GET_MODE_SIZE (GET_MODE (OP)) == 4		\
1343 			     ? SFmode					\
1344 			     : DFmode),					\
1345 			    XEXP (OP, 0)))				\
1346    : ((C) == 'S' ?							\
1347       (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31)			\
1348    : ((C) == 'U' ?							\
1349       (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63) : 0))))))
1350 
1351 
1352 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1353    and check its validity for a certain class.
1354    We have two alternate definitions for each of them.
1355    The usual definition accepts all pseudo regs; the other rejects
1356    them unless they have been allocated suitable hard regs.
1357    The symbol REG_OK_STRICT causes the latter definition to be used.
1358 
1359    Most source files want to accept pseudo regs in the hope that
1360    they will get allocated to the class that the insn wants them to be in.
1361    Source files for reload pass need to be strict.
1362    After reload, it makes no difference, since pseudo regs have
1363    been eliminated by then.  */
1364 
1365 #ifndef REG_OK_STRICT
1366 
1367 /* Nonzero if X is a hard reg that can be used as an index
1368    or if it is a pseudo reg.  */
1369 #define REG_OK_FOR_INDEX_P(X) \
1370 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1371 /* Nonzero if X is a hard reg that can be used as a base reg
1372    or if it is a pseudo reg.  */
1373 #define REG_OK_FOR_BASE_P(X) \
1374 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1375 
1376 #else
1377 
1378 /* Nonzero if X is a hard reg that can be used as an index.  */
1379 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1380 /* Nonzero if X is a hard reg that can be used as a base reg.  */
1381 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1382 
1383 #endif
1384 
1385 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1386    valid memory address for an instruction.  The MODE argument is the
1387    machine mode for the MEM expression that wants to use this address.
1388 
1389    On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
1390    REG+REG, and REG+(REG*SCALE).  The indexed address forms are only
1391    available with floating point loads and stores, and integer loads.
1392    We get better code by allowing indexed addresses in the initial
1393    RTL generation.
1394 
1395    The acceptance of indexed addresses as legitimate implies that we
1396    must provide patterns for doing indexed integer stores, or the move
1397    expanders must force the address of an indexed store to a register.
1398    We have adopted the latter approach.
1399 
1400    Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
1401    the base register is a valid pointer for indexed instructions.
1402    On targets that have non-equivalent space registers, we have to
1403    know at the time of assembler output which register in a REG+REG
1404    pair is the base register.  The REG_POINTER flag is sometimes lost
1405    in reload and the following passes, so it can't be relied on during
1406    code generation.  Thus, we either have to canonicalize the order
1407    of the registers in REG+REG indexed addresses, or treat REG+REG
1408    addresses separately and provide patterns for both permutations.
1409 
1410    The latter approach requires several hundred additional lines of
1411    code in pa.md.  The downside to canonicalizing is that a PLUS
1412    in the wrong order can't combine to form to make a scaled indexed
1413    memory operand.  As we won't need to canonicalize the operands if
1414    the REG_POINTER lossage can be fixed, it seems better canonicalize.
1415 
1416    We initially break out scaled indexed addresses in canonical order
1417    in emit_move_sequence.  LEGITIMIZE_ADDRESS also canonicalizes
1418    scaled indexed addresses during RTL generation.  However, fold_rtx
1419    has its own opinion on how the operands of a PLUS should be ordered.
1420    If one of the operands is equivalent to a constant, it will make
1421    that operand the second operand.  As the base register is likely to
1422    be equivalent to a SYMBOL_REF, we have made it the second operand.
1423 
1424    GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
1425    operands are in the order INDEX+BASE on targets with non-equivalent
1426    space registers, and in any order on targets with equivalent space
1427    registers.  It accepts both MULT+BASE and BASE+MULT for scaled indexing.
1428 
1429    We treat a SYMBOL_REF as legitimate if it is part of the current
1430    function's constant-pool, because such addresses can actually be
1431    output as REG+SMALLINT.
1432 
1433    Note we only allow 5 bit immediates for access to a constant address;
1434    doing so avoids losing for loading/storing a FP register at an address
1435    which will not fit in 5 bits.  */
1436 
1437 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1438 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1439 
1440 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1441 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1442 
1443 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1444 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1445 
1446 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1447 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1448 
1449 #if HOST_BITS_PER_WIDE_INT > 32
1450 #define VAL_32_BITS_P(X) \
1451   ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31)    \
1452    < (unsigned HOST_WIDE_INT) 2 << 31)
1453 #else
1454 #define VAL_32_BITS_P(X) 1
1455 #endif
1456 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
1457 
1458 /* These are the modes that we allow for scaled indexing.  */
1459 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
1460   ((TARGET_64BIT && (MODE) == DImode)					\
1461    || (MODE) == SImode							\
1462    || (MODE) == HImode							\
1463    || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1464 
1465 /* These are the modes that we allow for unscaled indexing.  */
1466 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
1467   ((TARGET_64BIT && (MODE) == DImode)					\
1468    || (MODE) == SImode							\
1469    || (MODE) == HImode							\
1470    || (MODE) == QImode							\
1471    || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1472 
1473 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1474 {									\
1475   if ((REG_P (X) && REG_OK_FOR_BASE_P (X))				\
1476       || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC		\
1477 	   || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC)	\
1478 	  && REG_P (XEXP (X, 0))					\
1479 	  && REG_OK_FOR_BASE_P (XEXP (X, 0))))				\
1480     goto ADDR;								\
1481   else if (GET_CODE (X) == PLUS)					\
1482     {									\
1483       rtx base = 0, index = 0;						\
1484       if (REG_P (XEXP (X, 1))						\
1485 	  && REG_OK_FOR_BASE_P (XEXP (X, 1)))				\
1486 	base = XEXP (X, 1), index = XEXP (X, 0);			\
1487       else if (REG_P (XEXP (X, 0))					\
1488 	       && REG_OK_FOR_BASE_P (XEXP (X, 0)))			\
1489 	base = XEXP (X, 0), index = XEXP (X, 1);			\
1490       if (base								\
1491 	  && GET_CODE (index) == CONST_INT				\
1492 	  && ((INT_14_BITS (index)					\
1493 	       && (((MODE) != DImode					\
1494 		    && (MODE) != SFmode					\
1495 		    && (MODE) != DFmode)				\
1496 		   /* The base register for DImode loads and stores	\
1497 		      with long displacements must be aligned because	\
1498 		      the lower three bits in the displacement are	\
1499 		      assumed to be zero.  */				\
1500 		   || ((MODE) == DImode					\
1501 		       && (!TARGET_64BIT				\
1502 			   || (INTVAL (index) % 8) == 0))		\
1503 		   /* Similarly, the base register for SFmode/DFmode	\
1504 		      loads and stores with long displacements must	\
1505 		      be aligned.					\
1506 									\
1507 		      FIXME: the ELF32 linker clobbers the LSB of	\
1508 		      the FP register number in PA 2.0 floating-point	\
1509 		      insns with long displacements.  This is because	\
1510 		      R_PARISC_DPREL14WR and other relocations like	\
1511 		      it are not supported.  For now, we reject long	\
1512 		      displacements on this target.  */			\
1513 		   || (((MODE) == SFmode || (MODE) == DFmode)		\
1514 		       && (TARGET_SOFT_FLOAT				\
1515 			   || (TARGET_PA_20				\
1516 			       && !TARGET_ELF32				\
1517 			       && (INTVAL (index)			\
1518 				   % GET_MODE_SIZE (MODE)) == 0)))))	\
1519 	       || INT_5_BITS (index)))					\
1520 	goto ADDR;							\
1521       if (!TARGET_DISABLE_INDEXING					\
1522 	  /* Only accept the "canonical" INDEX+BASE operand order	\
1523 	     on targets with non-equivalent space registers.  */	\
1524 	  && (TARGET_NO_SPACE_REGS					\
1525 	      ? (base && REG_P (index))					\
1526 	      : (base == XEXP (X, 1) && REG_P (index)			\
1527 		 && REG_POINTER (base) && !REG_POINTER (index)))	\
1528 	  && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE)			\
1529 	  && REG_OK_FOR_INDEX_P (index)					\
1530 	  && borx_reg_operand (base, Pmode)				\
1531 	  && borx_reg_operand (index, Pmode))				\
1532 	goto ADDR;							\
1533       if (!TARGET_DISABLE_INDEXING					\
1534 	  && base							\
1535 	  && GET_CODE (index) == MULT					\
1536 	  && MODE_OK_FOR_SCALED_INDEXING_P (MODE)			\
1537 	  && REG_P (XEXP (index, 0))					\
1538 	  && GET_MODE (XEXP (index, 0)) == Pmode			\
1539 	  && REG_OK_FOR_INDEX_P (XEXP (index, 0))			\
1540 	  && GET_CODE (XEXP (index, 1)) == CONST_INT			\
1541 	  && INTVAL (XEXP (index, 1))					\
1542 	     == (HOST_WIDE_INT) GET_MODE_SIZE (MODE)			\
1543 	  && borx_reg_operand (base, Pmode))				\
1544 	goto ADDR;							\
1545     }									\
1546   else if (GET_CODE (X) == LO_SUM					\
1547 	   && GET_CODE (XEXP (X, 0)) == REG				\
1548 	   && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
1549 	   && CONSTANT_P (XEXP (X, 1))					\
1550 	   && (TARGET_SOFT_FLOAT					\
1551 	       /* We can allow symbolic LO_SUM addresses for PA2.0.  */	\
1552 	       || (TARGET_PA_20						\
1553 		   && !TARGET_ELF32					\
1554 	           && GET_CODE (XEXP (X, 1)) != CONST_INT)		\
1555 	       || ((MODE) != SFmode					\
1556 		   && (MODE) != DFmode)))				\
1557     goto ADDR;								\
1558   else if (GET_CODE (X) == LO_SUM					\
1559 	   && GET_CODE (XEXP (X, 0)) == SUBREG				\
1560 	   && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG		\
1561 	   && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))		\
1562 	   && CONSTANT_P (XEXP (X, 1))					\
1563 	   && (TARGET_SOFT_FLOAT					\
1564 	       /* We can allow symbolic LO_SUM addresses for PA2.0.  */	\
1565 	       || (TARGET_PA_20						\
1566 		   && !TARGET_ELF32					\
1567 	           && GET_CODE (XEXP (X, 1)) != CONST_INT)		\
1568 	       || ((MODE) != SFmode					\
1569 		   && (MODE) != DFmode)))				\
1570     goto ADDR;								\
1571   else if (GET_CODE (X) == LABEL_REF					\
1572 	   || (GET_CODE (X) == CONST_INT				\
1573 	       && INT_5_BITS (X)))					\
1574     goto ADDR;								\
1575   /* Needed for -fPIC */						\
1576   else if (GET_CODE (X) == LO_SUM					\
1577 	   && GET_CODE (XEXP (X, 0)) == REG             		\
1578 	   && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
1579 	   && GET_CODE (XEXP (X, 1)) == UNSPEC				\
1580 	   && (TARGET_SOFT_FLOAT					\
1581 	       || (TARGET_PA_20	&& !TARGET_ELF32)			\
1582 	       || ((MODE) != SFmode					\
1583 		   && (MODE) != DFmode)))				\
1584     goto ADDR;								\
1585 }
1586 
1587 /* Look for machine dependent ways to make the invalid address AD a
1588    valid address.
1589 
1590    For the PA, transform:
1591 
1592         memory(X + <large int>)
1593 
1594    into:
1595 
1596         if (<large int> & mask) >= 16
1597           Y = (<large int> & ~mask) + mask + 1  Round up.
1598         else
1599           Y = (<large int> & ~mask)             Round down.
1600         Z = X + Y
1601         memory (Z + (<large int> - Y));
1602 
1603    This makes reload inheritance and reload_cse work better since Z
1604    can be reused.
1605 
1606    There may be more opportunities to improve code with this hook.  */
1607 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) 	\
1608 do { 									\
1609   long offset, newoffset, mask;						\
1610   rtx new, temp = NULL_RTX;						\
1611 									\
1612   mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT				\
1613 	  ? (TARGET_PA_20 && !TARGET_ELF32 ? 0x3fff : 0x1f) : 0x3fff);	\
1614 									\
1615   if (optimize && GET_CODE (AD) == PLUS)				\
1616     temp = simplify_binary_operation (PLUS, Pmode,			\
1617 				      XEXP (AD, 0), XEXP (AD, 1));	\
1618 									\
1619   new = temp ? temp : AD;						\
1620 									\
1621   if (optimize								\
1622       && GET_CODE (new) == PLUS						\
1623       && GET_CODE (XEXP (new, 0)) == REG				\
1624       && GET_CODE (XEXP (new, 1)) == CONST_INT)				\
1625     {									\
1626       offset = INTVAL (XEXP ((new), 1));				\
1627 									\
1628       /* Choose rounding direction.  Round up if we are >= halfway.  */	\
1629       if ((offset & mask) >= ((mask + 1) / 2))				\
1630 	newoffset = (offset & ~mask) + mask + 1;			\
1631       else								\
1632 	newoffset = offset & ~mask;					\
1633 									\
1634       /* Ensure that long displacements are aligned.  */		\
1635       if (!VAL_5_BITS_P (newoffset)					\
1636 	  && GET_MODE_CLASS (MODE) == MODE_FLOAT)			\
1637 	newoffset &= ~(GET_MODE_SIZE (MODE) -1);			\
1638 									\
1639       if (newoffset != 0 && VAL_14_BITS_P (newoffset))			\
1640 	{								\
1641 	  temp = gen_rtx_PLUS (Pmode, XEXP (new, 0),			\
1642 			       GEN_INT (newoffset));			\
1643 	  AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1644 	  push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0,		\
1645 		       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,		\
1646 		       (OPNUM), (TYPE));				\
1647 	  goto WIN;							\
1648 	}								\
1649     }									\
1650 } while (0)
1651 
1652 
1653 
1654 
1655 /* Try machine-dependent ways of modifying an illegitimate address
1656    to be legitimate.  If we find one, return the new, valid address.
1657    This macro is used in only one place: `memory_address' in explow.c.
1658 
1659    OLDX is the address as it was before break_out_memory_refs was called.
1660    In some cases it is useful to look at this to decide what needs to be done.
1661 
1662    MODE and WIN are passed so that this macro can use
1663    GO_IF_LEGITIMATE_ADDRESS.
1664 
1665    It is always safe for this macro to do nothing.  It exists to recognize
1666    opportunities to optimize the output.  */
1667 
1668 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)	\
1669 { rtx orig_x = (X);				\
1670   (X) = hppa_legitimize_address (X, OLDX, MODE);	\
1671   if ((X) != orig_x && memory_address_p (MODE, X)) \
1672     goto WIN; }
1673 
1674 /* Go to LABEL if ADDR (a legitimate address expression)
1675    has an effect that depends on the machine mode it is used for.  */
1676 
1677 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)	\
1678   if (GET_CODE (ADDR) == PRE_DEC	\
1679       || GET_CODE (ADDR) == POST_DEC	\
1680       || GET_CODE (ADDR) == PRE_INC	\
1681       || GET_CODE (ADDR) == POST_INC)	\
1682     goto LABEL
1683 
1684 #define TARGET_ASM_SELECT_SECTION  pa_select_section
1685 
1686 /* Return a nonzero value if DECL has a section attribute.  */
1687 #define IN_NAMED_SECTION_P(DECL) \
1688   ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1689    && DECL_SECTION_NAME (DECL) != NULL_TREE)
1690 
1691 /* Define this macro if references to a symbol must be treated
1692    differently depending on something about the variable or
1693    function named by the symbol (such as what section it is in).
1694 
1695    The macro definition, if any, is executed immediately after the
1696    rtl for DECL or other node is created.
1697    The value of the rtl will be a `mem' whose address is a
1698    `symbol_ref'.
1699 
1700    The usual thing for this macro to do is to a flag in the
1701    `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1702    name string in the `symbol_ref' (if one bit is not enough
1703    information).
1704 
1705    On the HP-PA we use this to indicate if a symbol is in text or
1706    data space.  Also, function labels need special treatment.  */
1707 
1708 #define TEXT_SPACE_P(DECL)\
1709   (TREE_CODE (DECL) == FUNCTION_DECL					\
1710    || (TREE_CODE (DECL) == VAR_DECL					\
1711        && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL)		\
1712        && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1713        && !flag_pic)							\
1714    || (TREE_CODE_CLASS (TREE_CODE (DECL)) == 'c'			\
1715        && !(TREE_CODE (DECL) == STRING_CST && flag_writable_strings)))
1716 
1717 #define FUNCTION_NAME_P(NAME)  (*(NAME) == '@')
1718 
1719 /* Specify the machine mode that this machine uses for the index in the
1720    tablejump instruction.  For small tables, an element consists of a
1721    ia-relative branch and its delay slot.  When -mbig-switch is specified,
1722    we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1723    for both 32 and 64-bit pic code.  */
1724 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1725 
1726 /* Jump tables must be 32-bit aligned, no matter the size of the element.  */
1727 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1728 
1729 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1730 #define DEFAULT_SIGNED_CHAR 1
1731 
1732 /* Max number of bytes we can move from memory to memory
1733    in one reasonably fast instruction.  */
1734 #define MOVE_MAX 8
1735 
1736 /* Higher than the default as we prefer to use simple move insns
1737    (better scheduling and delay slot filling) and because our
1738    built-in block move is really a 2X unrolled loop.
1739 
1740    Believe it or not, this has to be big enough to allow for copying all
1741    arguments passed in registers to avoid infinite recursion during argument
1742    setup for a function call.  Why?  Consider how we copy the stack slots
1743    reserved for parameters when they may be trashed by a call.  */
1744 #define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1745 
1746 /* Define if operations between registers always perform the operation
1747    on the full register even if a narrower mode is specified.  */
1748 #define WORD_REGISTER_OPERATIONS
1749 
1750 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1751    will either zero-extend or sign-extend.  The value of this macro should
1752    be the code that says which one of the two operations is implicitly
1753    done, NIL if none.  */
1754 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1755 
1756 /* Nonzero if access to memory by bytes is slow and undesirable.  */
1757 #define SLOW_BYTE_ACCESS 1
1758 
1759 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1760    is done just by pretending it is already truncated.  */
1761 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1762 
1763 /* When a prototype says `char' or `short', really pass an `int'.  */
1764 #define PROMOTE_PROTOTYPES 1
1765 #define PROMOTE_FUNCTION_RETURN 1
1766 
1767 /* Specify the machine mode that pointers have.
1768    After generation of rtl, the compiler makes no further distinction
1769    between pointers and any other objects of this machine mode.  */
1770 #define Pmode word_mode
1771 
1772 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1773    return the mode to be used for the comparison.  For floating-point, CCFPmode
1774    should be used.  CC_NOOVmode should be used when the first operand is a
1775    PLUS, MINUS, or NEG.  CCmode should be used when no special processing is
1776    needed.  */
1777 #define SELECT_CC_MODE(OP,X,Y) \
1778   (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode)    \
1779 
1780 /* A function address in a call instruction
1781    is a byte address (for indexing purposes)
1782    so give the MEM rtx a byte's mode.  */
1783 #define FUNCTION_MODE SImode
1784 
1785 /* Define this if addresses of constant functions
1786    shouldn't be put through pseudo regs where they can be cse'd.
1787    Desirable on machines where ordinary constants are expensive
1788    but a CALL with constant address is cheap.  */
1789 #define NO_FUNCTION_CSE
1790 
1791 /* Define this to be nonzero if shift instructions ignore all but the low-order
1792    few bits.  */
1793 #define SHIFT_COUNT_TRUNCATED 1
1794 
1795 /* Compute extra cost of moving data between one register class
1796    and another.
1797 
1798    Make moves from SAR so expensive they should never happen.  We used to
1799    have 0xffff here, but that generates overflow in rare cases.
1800 
1801    Copies involving a FP register and a non-FP register are relatively
1802    expensive because they must go through memory.
1803 
1804    Other copies are reasonably cheap.  */
1805 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1806  (CLASS1 == SHIFT_REGS ? 0x100					\
1807   : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16	\
1808   : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16	\
1809   : 2)
1810 
1811 /* Adjust the cost of branches.  */
1812 #define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1813 
1814 /* Handling the special cases is going to get too complicated for a macro,
1815    just call `pa_adjust_insn_length' to do the real work.  */
1816 #define ADJUST_INSN_LENGTH(INSN, LENGTH)	\
1817   LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1818 
1819 /* Millicode insns are actually function calls with some special
1820    constraints on arguments and register usage.
1821 
1822    Millicode calls always expect their arguments in the integer argument
1823    registers, and always return their result in %r29 (ret1).  They
1824    are expected to clobber their arguments, %r1, %r29, and the return
1825    pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1826 
1827    This macro tells reorg that the references to arguments and
1828    millicode calls do not appear to happen until after the millicode call.
1829    This allows reorg to put insns which set the argument registers into the
1830    delay slot of the millicode call -- thus they act more like traditional
1831    CALL_INSNs.
1832 
1833    Note we can not consider side effects of the insn to be delayed because
1834    the branch and link insn will clobber the return pointer.  If we happened
1835    to use the return pointer in the delay slot of the call, then we lose.
1836 
1837    get_attr_type will try to recognize the given insn, so make sure to
1838    filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1839    in particular.  */
1840 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1841 
1842 
1843 /* Control the assembler format that we output.  */
1844 
1845 /* A C string constant describing how to begin a comment in the target
1846    assembler language.  The compiler assumes that the comment will end at
1847    the end of the line.  */
1848 
1849 #define ASM_COMMENT_START ";"
1850 
1851 /* Output to assembler file text saying following lines
1852    may contain character constants, extra white space, comments, etc.  */
1853 
1854 #define ASM_APP_ON ""
1855 
1856 /* Output to assembler file text saying following lines
1857    no longer contain unusual constructs.  */
1858 
1859 #define ASM_APP_OFF ""
1860 
1861 /* This is how to output the definition of a user-level label named NAME,
1862    such as the label on a static function or variable NAME.  */
1863 
1864 #define ASM_OUTPUT_LABEL(FILE, NAME)	\
1865   do { assemble_name (FILE, NAME); 	\
1866        fputc ('\n', FILE); } while (0)
1867 
1868 /* This is how to output a reference to a user-level label named NAME.
1869    `assemble_name' uses this.  */
1870 
1871 #define ASM_OUTPUT_LABELREF(FILE,NAME)	\
1872   do {					\
1873     const char *xname = (NAME);		\
1874     if (FUNCTION_NAME_P (NAME))		\
1875       xname += 1;			\
1876     if (xname[0] == '*')		\
1877       xname += 1;			\
1878     else				\
1879       fputs (user_label_prefix, FILE);	\
1880     fputs (xname, FILE);		\
1881   } while (0)
1882 
1883 /* This is how to store into the string LABEL
1884    the symbol_ref name of an internal numbered label where
1885    PREFIX is the class of label and NUM is the number within the class.
1886    This is suitable for output with `assemble_name'.  */
1887 
1888 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1889   sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1890 
1891 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1892 
1893 #define ASM_OUTPUT_ASCII(FILE, P, SIZE)  \
1894   output_ascii ((FILE), (P), (SIZE))
1895 
1896 /* Jump tables are always placed in the text section.  Technically, it
1897    is possible to put them in the readonly data section when -mbig-switch
1898    is specified.  This has the benefit of getting the table out of .text
1899    and reducing branch lengths as a result.  The downside is that an
1900    additional insn (addil) is needed to access the table when generating
1901    PIC code.  The address difference table also has to use 32-bit
1902    pc-relative relocations.  Currently, GAS does not support these
1903    relocations, although it is easily modified to do this operation.
1904    The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1905    when using ELF GAS.  A simple difference can be used when using
1906    SOM GAS or the HP assembler.  The final downside is GDB complains
1907    about the nesting of the label for the table when debugging.  */
1908 
1909 #define JUMP_TABLES_IN_TEXT_SECTION 1
1910 
1911 /* This is how to output an element of a case-vector that is absolute.  */
1912 
1913 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1914   if (TARGET_BIG_SWITCH)						\
1915     fprintf (FILE, "\t.word L$%04d\n", VALUE);				\
1916   else									\
1917     fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1918 
1919 /* This is how to output an element of a case-vector that is relative.
1920    Since we always place jump tables in the text section, the difference
1921    is absolute and requires no relocation.  */
1922 
1923 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
1924   if (TARGET_BIG_SWITCH)						\
1925     fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL);		\
1926   else									\
1927     fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1928 
1929 /* This is how to output an assembler line that says to advance the
1930    location counter to a multiple of 2**LOG bytes.  */
1931 
1932 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1933     fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1934 
1935 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1936   fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n",		\
1937 	   (unsigned HOST_WIDE_INT)(SIZE))
1938 
1939 /* This says how to output an assembler line to define a global common symbol
1940    with size SIZE (in bytes) and alignment ALIGN (in bits).  */
1941 
1942 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNED)  		\
1943 { bss_section ();							\
1944   assemble_name ((FILE), (NAME));					\
1945   fprintf ((FILE), "\t.comm "HOST_WIDE_INT_PRINT_UNSIGNED"\n",		\
1946 	   MAX ((unsigned HOST_WIDE_INT)(SIZE),				\
1947 		((unsigned HOST_WIDE_INT)(ALIGNED) / BITS_PER_UNIT)));}
1948 
1949 /* This says how to output an assembler line to define a local common symbol
1950    with size SIZE (in bytes) and alignment ALIGN (in bits).  */
1951 
1952 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)		\
1953 { bss_section ();							\
1954   fprintf ((FILE), "\t.align %d\n", ((ALIGNED) / BITS_PER_UNIT));	\
1955   assemble_name ((FILE), (NAME));					\
1956   fprintf ((FILE), "\n\t.block "HOST_WIDE_INT_PRINT_UNSIGNED"\n",	\
1957 	   (unsigned HOST_WIDE_INT)(SIZE));}
1958 
1959 #define ASM_PN_FORMAT "%s___%lu"
1960 
1961 /* All HP assemblers use "!" to separate logical lines.  */
1962 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
1963 
1964 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1965   ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1966 
1967 /* Print operand X (an rtx) in assembler syntax to file FILE.
1968    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1969    For `%' followed by punctuation, CODE is the punctuation and X is null.
1970 
1971    On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1972    and an immediate zero should be represented as `r0'.
1973 
1974    Several % codes are defined:
1975    O an operation
1976    C compare conditions
1977    N extract conditions
1978    M modifier to handle preincrement addressing for memory refs.
1979    F modifier to handle preincrement addressing for fp memory refs */
1980 
1981 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1982 
1983 
1984 /* Print a memory address as an operand to reference that memory location.  */
1985 
1986 #define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
1987 { register rtx addr = ADDR;						\
1988   register rtx base;							\
1989   int offset;								\
1990   switch (GET_CODE (addr))						\
1991     {									\
1992     case REG:								\
1993       fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]);		\
1994       break;								\
1995     case PLUS:								\
1996       if (GET_CODE (XEXP (addr, 0)) == CONST_INT)			\
1997 	offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);	\
1998       else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)			\
1999 	offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);	\
2000       else								\
2001 	abort ();							\
2002       fprintf (FILE, "%d(%s)", offset, reg_names [REGNO (base)]);	\
2003       break;								\
2004     case LO_SUM:							\
2005       if (!symbolic_operand (XEXP (addr, 1), VOIDmode))			\
2006 	fputs ("R'", FILE);						\
2007       else if (flag_pic == 0)						\
2008 	fputs ("RR'", FILE);						\
2009       else								\
2010 	fputs ("RT'", FILE);						\
2011       output_global_address (FILE, XEXP (addr, 1), 0);			\
2012       fputs ("(", FILE);						\
2013       output_operand (XEXP (addr, 0), 0);				\
2014       fputs (")", FILE);						\
2015       break;								\
2016     case CONST_INT:							\
2017       fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr));	\
2018       break;								\
2019     default:								\
2020       output_addr_const (FILE, addr);					\
2021     }}
2022 
2023 
2024 /* Find the return address associated with the frame given by
2025    FRAMEADDR.  */
2026 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR)				 \
2027   (return_addr_rtx (COUNT, FRAMEADDR))
2028 
2029 /* Used to mask out junk bits from the return address, such as
2030    processor state, interrupt status, condition codes and the like.  */
2031 #define MASK_RETURN_ADDR						\
2032   /* The privilege level is in the two low order bits, mask em out	\
2033      of the return address.  */						\
2034   (GEN_INT (-4))
2035 
2036 /* The number of Pmode words for the setjmp buffer.  */
2037 #define JMP_BUF_SIZE 50
2038 
2039 #define PREDICATE_CODES							\
2040   {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},		\
2041   {"call_operand_address", {LABEL_REF, SYMBOL_REF, CONST_INT,		\
2042 			    CONST_DOUBLE, CONST, HIGH, CONSTANT_P_RTX}}, \
2043   {"indexed_memory_operand", {SUBREG, MEM}},				\
2044   {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},			\
2045   {"symbolic_memory_operand", {SUBREG, MEM}},				\
2046   {"reg_before_reload_operand", {REG, MEM}},				\
2047   {"reg_or_0_or_nonsymb_mem_operand", {SUBREG, REG, MEM, CONST_INT,	\
2048 				       CONST_DOUBLE}},			\
2049   {"move_dest_operand", {SUBREG, REG, MEM}},				\
2050   {"move_src_operand", {SUBREG, REG, CONSTANT_P_RTX, CONST_INT, MEM}},	\
2051   {"reg_or_cint_move_operand", {SUBREG, REG, CONST_INT}},		\
2052   {"pic_label_operand", {LABEL_REF, CONST}},				\
2053   {"fp_reg_operand", {REG}},						\
2054   {"arith_operand", {SUBREG, REG, CONST_INT}},				\
2055   {"arith11_operand", {SUBREG, REG, CONST_INT}},			\
2056   {"pre_cint_operand", {CONST_INT}},					\
2057   {"post_cint_operand", {CONST_INT}},					\
2058   {"arith_double_operand", {SUBREG, REG, CONST_DOUBLE}},		\
2059   {"ireg_or_int5_operand", {CONST_INT, REG}},				\
2060   {"int5_operand", {CONST_INT}},					\
2061   {"uint5_operand", {CONST_INT}},					\
2062   {"int11_operand", {CONST_INT}},					\
2063   {"uint32_operand", {CONST_INT,					\
2064    HOST_BITS_PER_WIDE_INT > 32 ? 0 : CONST_DOUBLE}},			\
2065   {"arith5_operand", {SUBREG, REG, CONST_INT}},				\
2066   {"and_operand", {SUBREG, REG, CONST_INT}},				\
2067   {"ior_operand", {CONST_INT}},						\
2068   {"lhs_lshift_cint_operand", {CONST_INT}},				\
2069   {"lhs_lshift_operand", {SUBREG, REG, CONST_INT}},			\
2070   {"arith32_operand", {SUBREG, REG, CONST_INT}},			\
2071   {"pc_or_label_operand", {PC, LABEL_REF}},				\
2072   {"plus_xor_ior_operator", {PLUS, XOR, IOR}},				\
2073   {"shadd_operand", {CONST_INT}},					\
2074   {"div_operand", {REG, CONST_INT}},					\
2075   {"ireg_operand", {REG}},						\
2076   {"cmpib_comparison_operator", {EQ, NE, LT, LE, LEU,			\
2077    GT, GTU, GE}},							\
2078   {"movb_comparison_operator", {EQ, NE, LT, GE}},
2079 
2080 /* We need a libcall to canonicalize function pointers on TARGET_ELF32.  */
2081 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
2082   "__canonicalize_funcptr_for_compare"
2083