1 /* Caching code for GDB, the GNU debugger.
2
3 Copyright 1992, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2003 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "dcache.h"
25 #include "gdbcmd.h"
26 #include "gdb_string.h"
27 #include "gdbcore.h"
28 #include "target.h"
29
30 /* The data cache could lead to incorrect results because it doesn't
31 know about volatile variables, thus making it impossible to debug
32 functions which use memory mapped I/O devices. Set the nocache
33 memory region attribute in those cases.
34
35 In general the dcache speeds up performance, some speed improvement
36 comes from the actual caching mechanism, but the major gain is in
37 the reduction of the remote protocol overhead; instead of reading
38 or writing a large area of memory in 4 byte requests, the cache
39 bundles up the requests into 32 byte (actually LINE_SIZE) chunks.
40 Reducing the overhead to an eighth of what it was. This is very
41 obvious when displaying a large amount of data,
42
43 eg, x/200x 0
44
45 caching | no yes
46 ----------------------------
47 first time | 4 sec 2 sec improvement due to chunking
48 second time | 4 sec 0 sec improvement due to caching
49
50 The cache structure is unusual, we keep a number of cache blocks
51 (DCACHE_SIZE) and each one caches a LINE_SIZEed area of memory.
52 Within each line we remember the address of the line (always a
53 multiple of the LINE_SIZE) and a vector of bytes over the range.
54 There's another vector which contains the state of the bytes.
55
56 ENTRY_BAD means that the byte is just plain wrong, and has no
57 correspondence with anything else (as it would when the cache is
58 turned on, but nothing has been done to it.
59
60 ENTRY_DIRTY means that the byte has some data in it which should be
61 written out to the remote target one day, but contains correct
62 data.
63
64 ENTRY_OK means that the data is the same in the cache as it is in
65 remote memory.
66
67
68 The ENTRY_DIRTY state is necessary because GDB likes to write large
69 lumps of memory in small bits. If the caching mechanism didn't
70 maintain the DIRTY information, then something like a two byte
71 write would mean that the entire cache line would have to be read,
72 the two bytes modified and then written out again. The alternative
73 would be to not read in the cache line in the first place, and just
74 write the two bytes directly into target memory. The trouble with
75 that is that it really nails performance, because of the remote
76 protocol overhead. This way, all those little writes are bundled
77 up into an entire cache line write in one go, without having to
78 read the cache line in the first place.
79 */
80
81 /* NOTE: Interaction of dcache and memory region attributes
82
83 As there is no requirement that memory region attributes be aligned
84 to or be a multiple of the dcache page size, dcache_read_line() and
85 dcache_write_line() must break up the page by memory region. If a
86 chunk does not have the cache attribute set, an invalid memory type
87 is set, etc., then the chunk is skipped. Those chunks are handled
88 in target_xfer_memory() (or target_xfer_memory_partial()).
89
90 This doesn't occur very often. The most common occurance is when
91 the last bit of the .text segment and the first bit of the .data
92 segment fall within the same dcache page with a ro/cacheable memory
93 region defined for the .text segment and a rw/non-cacheable memory
94 region defined for the .data segment. */
95
96 /* This value regulates the number of cache blocks stored.
97 Smaller values reduce the time spent searching for a cache
98 line, and reduce memory requirements, but increase the risk
99 of a line not being in memory */
100
101 #define DCACHE_SIZE 64
102
103 /* This value regulates the size of a cache line. Smaller values
104 reduce the time taken to read a single byte, but reduce overall
105 throughput. */
106
107 #define LINE_SIZE_POWER (5)
108 #define LINE_SIZE (1 << LINE_SIZE_POWER)
109
110 /* Each cache block holds LINE_SIZE bytes of data
111 starting at a multiple-of-LINE_SIZE address. */
112
113 #define LINE_SIZE_MASK ((LINE_SIZE - 1))
114 #define XFORM(x) ((x) & LINE_SIZE_MASK)
115 #define MASK(x) ((x) & ~LINE_SIZE_MASK)
116
117
118 #define ENTRY_BAD 0 /* data at this byte is wrong */
119 #define ENTRY_DIRTY 1 /* data at this byte needs to be written back */
120 #define ENTRY_OK 2 /* data at this byte is same as in memory */
121
122
123 struct dcache_block
124 {
125 struct dcache_block *p; /* next in list */
126 CORE_ADDR addr; /* Address for which data is recorded. */
127 char data[LINE_SIZE]; /* bytes at given address */
128 unsigned char state[LINE_SIZE]; /* what state the data is in */
129
130 /* whether anything in state is dirty - used to speed up the
131 dirty scan. */
132 int anydirty;
133
134 int refs;
135 };
136
137
138 /* FIXME: dcache_struct used to have a cache_has_stuff field that was
139 used to record whether the cache had been accessed. This was used
140 to invalidate the cache whenever caching was (re-)enabled (if the
141 cache was disabled and later re-enabled, it could contain stale
142 data). This was not needed because the cache is write through and
143 the code that enables, disables, and deletes memory region all
144 invalidate the cache.
145
146 This is overkill, since it also invalidates cache lines from
147 unrelated regions. One way this could be addressed by adding a
148 new function that takes an address and a length and invalidates
149 only those cache lines that match. */
150
151 struct dcache_struct
152 {
153 /* free list */
154 struct dcache_block *free_head;
155 struct dcache_block *free_tail;
156
157 /* in use list */
158 struct dcache_block *valid_head;
159 struct dcache_block *valid_tail;
160
161 /* The cache itself. */
162 struct dcache_block *the_cache;
163 };
164
165 static int dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr);
166
167 static int dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr);
168
169 static struct dcache_block *dcache_hit (DCACHE *dcache, CORE_ADDR addr);
170
171 static int dcache_write_line (DCACHE *dcache, struct dcache_block *db);
172
173 static int dcache_read_line (DCACHE *dcache, struct dcache_block *db);
174
175 static struct dcache_block *dcache_alloc (DCACHE *dcache, CORE_ADDR addr);
176
177 static int dcache_writeback (DCACHE *dcache);
178
179 static void dcache_info (char *exp, int tty);
180
181 void _initialize_dcache (void);
182
183 static int dcache_enabled_p = 0;
184
185 DCACHE *last_cache; /* Used by info dcache */
186
187
188 /* Free all the data cache blocks, thus discarding all cached data. */
189
190 void
dcache_invalidate(DCACHE * dcache)191 dcache_invalidate (DCACHE *dcache)
192 {
193 int i;
194 dcache->valid_head = 0;
195 dcache->valid_tail = 0;
196
197 dcache->free_head = 0;
198 dcache->free_tail = 0;
199
200 for (i = 0; i < DCACHE_SIZE; i++)
201 {
202 struct dcache_block *db = dcache->the_cache + i;
203
204 if (!dcache->free_head)
205 dcache->free_head = db;
206 else
207 dcache->free_tail->p = db;
208 dcache->free_tail = db;
209 db->p = 0;
210 }
211
212 return;
213 }
214
215 /* If addr is present in the dcache, return the address of the block
216 containing it. */
217
218 static struct dcache_block *
dcache_hit(DCACHE * dcache,CORE_ADDR addr)219 dcache_hit (DCACHE *dcache, CORE_ADDR addr)
220 {
221 struct dcache_block *db;
222
223 /* Search all cache blocks for one that is at this address. */
224 db = dcache->valid_head;
225
226 while (db)
227 {
228 if (MASK (addr) == db->addr)
229 {
230 db->refs++;
231 return db;
232 }
233 db = db->p;
234 }
235
236 return NULL;
237 }
238
239 /* Make sure that anything in this line which needs to
240 be written is. */
241
242 static int
dcache_write_line(DCACHE * dcache,struct dcache_block * db)243 dcache_write_line (DCACHE *dcache, struct dcache_block *db)
244 {
245 CORE_ADDR memaddr;
246 char *myaddr;
247 int len;
248 int res;
249 int reg_len;
250 struct mem_region *region;
251
252 if (!db->anydirty)
253 return 1;
254
255 len = LINE_SIZE;
256 memaddr = db->addr;
257 myaddr = db->data;
258
259 while (len > 0)
260 {
261 int s;
262 int e;
263 int dirty_len;
264
265 region = lookup_mem_region(memaddr);
266 if (memaddr + len < region->hi)
267 reg_len = len;
268 else
269 reg_len = region->hi - memaddr;
270
271 if (!region->attrib.cache || region->attrib.mode == MEM_RO)
272 {
273 memaddr += reg_len;
274 myaddr += reg_len;
275 len -= reg_len;
276 continue;
277 }
278
279 while (reg_len > 0)
280 {
281 s = XFORM(memaddr);
282 while (reg_len > 0) {
283 if (db->state[s] == ENTRY_DIRTY)
284 break;
285 s++;
286 reg_len--;
287
288 memaddr++;
289 myaddr++;
290 len--;
291 }
292
293 e = s;
294 while (reg_len > 0) {
295 if (db->state[e] != ENTRY_DIRTY)
296 break;
297 e++;
298 reg_len--;
299 }
300
301 dirty_len = e - s;
302 while (dirty_len > 0)
303 {
304 res = do_xfer_memory(memaddr, myaddr, dirty_len, 1,
305 ®ion->attrib);
306 if (res <= 0)
307 return 0;
308
309 memset (&db->state[XFORM(memaddr)], ENTRY_OK, res);
310 memaddr += res;
311 myaddr += res;
312 len -= res;
313 dirty_len -= res;
314 }
315 }
316 }
317
318 db->anydirty = 0;
319 return 1;
320 }
321
322 /* Read cache line */
323 static int
dcache_read_line(DCACHE * dcache,struct dcache_block * db)324 dcache_read_line (DCACHE *dcache, struct dcache_block *db)
325 {
326 CORE_ADDR memaddr;
327 char *myaddr;
328 int len;
329 int res;
330 int reg_len;
331 struct mem_region *region;
332
333 /* If there are any dirty bytes in the line, it must be written
334 before a new line can be read */
335 if (db->anydirty)
336 {
337 if (!dcache_write_line (dcache, db))
338 return 0;
339 }
340
341 len = LINE_SIZE;
342 memaddr = db->addr;
343 myaddr = db->data;
344
345 while (len > 0)
346 {
347 region = lookup_mem_region(memaddr);
348 if (memaddr + len < region->hi)
349 reg_len = len;
350 else
351 reg_len = region->hi - memaddr;
352
353 if (!region->attrib.cache || region->attrib.mode == MEM_WO)
354 {
355 memaddr += reg_len;
356 myaddr += reg_len;
357 len -= reg_len;
358 continue;
359 }
360
361 while (reg_len > 0)
362 {
363 res = do_xfer_memory (memaddr, myaddr, reg_len, 0,
364 ®ion->attrib);
365 if (res <= 0)
366 return 0;
367
368 memaddr += res;
369 myaddr += res;
370 len -= res;
371 reg_len -= res;
372 }
373 }
374
375 memset (db->state, ENTRY_OK, sizeof (db->data));
376 db->anydirty = 0;
377
378 return 1;
379 }
380
381 /* Get a free cache block, put or keep it on the valid list,
382 and return its address. */
383
384 static struct dcache_block *
dcache_alloc(DCACHE * dcache,CORE_ADDR addr)385 dcache_alloc (DCACHE *dcache, CORE_ADDR addr)
386 {
387 struct dcache_block *db;
388
389 /* Take something from the free list */
390 db = dcache->free_head;
391 if (db)
392 {
393 dcache->free_head = db->p;
394 }
395 else
396 {
397 /* Nothing left on free list, so grab one from the valid list */
398 db = dcache->valid_head;
399
400 if (!dcache_write_line (dcache, db))
401 return NULL;
402
403 dcache->valid_head = db->p;
404 }
405
406 db->addr = MASK(addr);
407 db->refs = 0;
408 db->anydirty = 0;
409 memset (db->state, ENTRY_BAD, sizeof (db->data));
410
411 /* append this line to end of valid list */
412 if (!dcache->valid_head)
413 dcache->valid_head = db;
414 else
415 dcache->valid_tail->p = db;
416 dcache->valid_tail = db;
417 db->p = 0;
418
419 return db;
420 }
421
422 /* Writeback any dirty lines. */
423 static int
dcache_writeback(DCACHE * dcache)424 dcache_writeback (DCACHE *dcache)
425 {
426 struct dcache_block *db;
427
428 db = dcache->valid_head;
429
430 while (db)
431 {
432 if (!dcache_write_line (dcache, db))
433 return 0;
434 db = db->p;
435 }
436 return 1;
437 }
438
439
440 /* Using the data cache DCACHE return the contents of the byte at
441 address ADDR in the remote machine.
442
443 Returns 0 on error. */
444
445 static int
dcache_peek_byte(DCACHE * dcache,CORE_ADDR addr,char * ptr)446 dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr)
447 {
448 struct dcache_block *db = dcache_hit (dcache, addr);
449
450 if (!db)
451 {
452 db = dcache_alloc (dcache, addr);
453 if (!db)
454 return 0;
455 }
456
457 if (db->state[XFORM (addr)] == ENTRY_BAD)
458 {
459 if (!dcache_read_line(dcache, db))
460 return 0;
461 }
462
463 *ptr = db->data[XFORM (addr)];
464 return 1;
465 }
466
467
468 /* Write the byte at PTR into ADDR in the data cache.
469 Return zero on write error.
470 */
471
472 static int
dcache_poke_byte(DCACHE * dcache,CORE_ADDR addr,char * ptr)473 dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr)
474 {
475 struct dcache_block *db = dcache_hit (dcache, addr);
476
477 if (!db)
478 {
479 db = dcache_alloc (dcache, addr);
480 if (!db)
481 return 0;
482 }
483
484 db->data[XFORM (addr)] = *ptr;
485 db->state[XFORM (addr)] = ENTRY_DIRTY;
486 db->anydirty = 1;
487 return 1;
488 }
489
490 /* Initialize the data cache. */
491 DCACHE *
dcache_init(void)492 dcache_init (void)
493 {
494 int csize = sizeof (struct dcache_block) * DCACHE_SIZE;
495 DCACHE *dcache;
496
497 dcache = (DCACHE *) xmalloc (sizeof (*dcache));
498
499 dcache->the_cache = (struct dcache_block *) xmalloc (csize);
500 memset (dcache->the_cache, 0, csize);
501
502 dcache_invalidate (dcache);
503
504 last_cache = dcache;
505 return dcache;
506 }
507
508 /* Free a data cache */
509 void
dcache_free(DCACHE * dcache)510 dcache_free (DCACHE *dcache)
511 {
512 if (last_cache == dcache)
513 last_cache = NULL;
514
515 xfree (dcache->the_cache);
516 xfree (dcache);
517 }
518
519 /* Read or write LEN bytes from inferior memory at MEMADDR, transferring
520 to or from debugger address MYADDR. Write to inferior if SHOULD_WRITE is
521 nonzero.
522
523 Returns length of data written or read; 0 for error.
524
525 This routine is indended to be called by remote_xfer_ functions. */
526
527 int
dcache_xfer_memory(DCACHE * dcache,CORE_ADDR memaddr,char * myaddr,int len,int should_write)528 dcache_xfer_memory (DCACHE *dcache, CORE_ADDR memaddr, char *myaddr, int len,
529 int should_write)
530 {
531 int i;
532 int (*xfunc) (DCACHE *dcache, CORE_ADDR addr, char *ptr);
533 xfunc = should_write ? dcache_poke_byte : dcache_peek_byte;
534
535 for (i = 0; i < len; i++)
536 {
537 if (!xfunc (dcache, memaddr + i, myaddr + i))
538 return 0;
539 }
540
541 /* FIXME: There may be some benefit from moving the cache writeback
542 to a higher layer, as it could occur after a sequence of smaller
543 writes have been completed (as when a stack frame is constructed
544 for an inferior function call). Note that only moving it up one
545 level to target_xfer_memory() (also target_xfer_memory_partial())
546 is not sufficent, since we want to coalesce memory transfers that
547 are "logically" connected but not actually a single call to one
548 of the memory transfer functions. */
549
550 if (should_write)
551 dcache_writeback (dcache);
552
553 return len;
554 }
555
556 static void
dcache_info(char * exp,int tty)557 dcache_info (char *exp, int tty)
558 {
559 struct dcache_block *p;
560
561 printf_filtered ("Dcache line width %d, depth %d\n",
562 LINE_SIZE, DCACHE_SIZE);
563
564 if (last_cache)
565 {
566 printf_filtered ("Cache state:\n");
567
568 for (p = last_cache->valid_head; p; p = p->p)
569 {
570 int j;
571 printf_filtered ("Line at %s, referenced %d times\n",
572 paddr (p->addr), p->refs);
573
574 for (j = 0; j < LINE_SIZE; j++)
575 printf_filtered ("%02x", p->data[j] & 0xFF);
576 printf_filtered ("\n");
577
578 for (j = 0; j < LINE_SIZE; j++)
579 printf_filtered ("%2x", p->state[j]);
580 printf_filtered ("\n");
581 }
582 }
583 }
584
585 void
_initialize_dcache(void)586 _initialize_dcache (void)
587 {
588 add_show_from_set
589 (add_set_cmd ("remotecache", class_support, var_boolean,
590 (char *) &dcache_enabled_p,
591 "\
592 Set cache use for remote targets.\n\
593 When on, use data caching for remote targets. For many remote targets\n\
594 this option can offer better throughput for reading target memory.\n\
595 Unfortunately, gdb does not currently know anything about volatile\n\
596 registers and thus data caching will produce incorrect results with\n\
597 volatile registers are in use. By default, this option is off.",
598 &setlist),
599 &showlist);
600
601 add_info ("dcache", dcache_info,
602 "Print information on the dcache performance.");
603
604 }
605